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Abstract

Navigating through dense traffic situations like merging onto highways and making unprotected left
turns remains a challenge for the existing autonomous driving system. Classifying vehicles into
parked, stopped, and moving vehicles can benefit the decision-making system in this case because
they play different roles during the vehicle-to-vehicle negotiation process. Existing works in vehicle
classification focused on trivial cases and used methods that are not generalized enough. To fill
this gap, after analyzing this problem and summarizing the necessary information needed for this
problem, we propose a multi-modal model that can leverage information from lidar, radar, camera,
and high-definition maps. To meet the complexity of our task and the needs of our model, we collect
the dataset in real driving scenario and then preprocess and label it. By utilizing a pretrained vision
encoder for fine-grained visual feature extraction and vision foundation model (CLIP) for scene
understanding, our model achieves a 97.63% test accuracy on our dataset. Through visualization
methods, experiments, and quantitative analyses, we investigate the effectiveness and importance of
different encoders used in our model. We interpret and explain the successes and failures of our
model to give a better understanding of how different latent features contribute to the final result. In
the end, the limitations of our model and potential improvements are discussed.
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1 Introduction

In spite of recent advancements in autonomous driving solutions|HYC+23; NAZ+22], navigating
through dense traffic situations like merging onto highways and making unprotected left turns
remains a challenge for the widespread deployment of autonomous vehicles[SAR18]. Driving
in dense traffic conditions is intrinsically an interactive task[UGA+15], where the autonomous
vehicles’ actions elicit immediate reactions from nearby traffic participants and vice-versa. Making
safe, intelligent, and socially compatible decisions is one of the core capabilities for autonomous
vehicles targeting widespread deployment in the real world[ HWL21].

To meet this challenge, there have been many works in the field of interaction-aware predic-
tion[HLW+23; KVB22]. However, most of these works are based on labeled datasets (e.g.
inD[BKM+20]) where parked vehicles are already distinguished and excluded from the decision-
making process. In the real world, autonomous driving systems need to do this kind of classification
on their own. Depending on the scenario, a wrong belief in the parked vehicle might result in a
dangerous overtaking maneuver and furthermore in blockage of the traffic flow or even in a collision
risk.

Further than the binary classification of vehicles into parked and non-parked vehicles, identification
of the stopped vehicle can also be beneficial. On one hand, stopped vehicles should be distinguished
from parked vehicles because of potential dangers coming from unpredictable driver’s behaviour.
On the other hand, stopped vehicles should be distinguished from moving vehicles because stopped
vehicles play a different role than moving vehicles during the vehicle-to-vehicle negotiation. At the
intersection, stopped vehicles that are waiting are expected to be driven by while a moving vehicle
in the process of a left turn may expect the ego vehicle to yield. For stopped vehicles pulled over to
pick up or set down persons, overtaking behaviour is expected.

In this work, we focus on the task of distinguishing between parked, stopped, and moving vehicles.
A single modality is insufficient to tackle this problem. For example, it is hard to distinguish a
stopped vehicle waiting at the intersection from a parked vehicle with radar. Ideally, it is possible to
only rely on the camera, as human drivers rely on their eyes. However, this is only possible because
human eyes are very powerful vision and depth detectors and human drivers have strong reasoning
ability that comes from their experience.

To consider what kind of information is relevant for this task and should be included in our model,
we begin by examining how humans typically make this kind of decision. When a human driver sees
a nearby vehicle and tries to evaluate its motion status, they might ponder the following questions
implicitly:

* Is there a driver inside?

* Are the brake lights on?

¢ What kind of car is it?
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* Are there people next to the car?

* Is this a parking area?

* Is here a controlled-access road?

* What is the former states (velocity, position) of the car?

* Are there obstacles / pedestrians in front of the car?

Human drivers do this kind of classification of surrounding vehicles implicitly while driving based
on their experience and understanding of the surrounding environment. From the perspective of an
autonomous driving vehicle, these questions can be answered by multi-modal information from
different sensors.

Inspired by this, we propose a multi-modal classifier that can leverage information from lidar, radar
as well as camera and high-definition maps that can achieve 97.63% accuracy on our dataset. Our
model consists of four modality encoders: states encoder, global vision encoder, object-level vision
encoder, and map encoder. The idea is to better leverage information from different sensors and
combine them for vehicle classification. Our model first takes into consideration the tracked history
of the target vehicle along with nearby traffic participants. Then, the model evaluates the object and
the surrounding scene visually through multi-scale image crops that are encoded with pretrained
foundation models. Map information is encoded with a convolutional neural network to provide
additional information about the target with respect to the road from a bird’s eye view. The latent
features given by four encoders are fused through concatenation and decoded by a linear layer. We
also conducted experiments on the impact of each modality and visualized their attention or weight
distributions.

Existing large-scale datasets| GLSU13; WQA+23] for autonomous driving don’t have annotations
for stopped vehicles. To fill this gap, we collect the first dataset that includes labels for the vehicles’
motion status (parked, stopped, moving) in dense traffic scenarios that includes various cases of
stopped vehicles. Our dataset consists of long-time data sequences taken with vehicles equipped
with various sensors including high-resolution cameras, lidar, radar, accelerometer, and GPS.

Our contributions can be summarized as follows:

* We evaluate the limitations of existing work in the field of vehicle motion state classification
by introducing the “stopped” label and including more complex or ambiguous cases in the
dataset.

* We present a transformer-based multi-modal model that can fuse the information from various
sensors about the target vehicle and the surrounding scene into a latent fused feature that can
be used for vehicle classification.

* We incorporated vision foundation models in our model for scene understanding and have
conducted thorough experiments on the choice, the attention distribution, and the effect of
vision foundation models under the context of vehicle classification.



2 Related Work

2.1 Vehicle Classification for Autonomous Driving

Despite being a very important and meaningful component of traffic prediction, little work has
addressed the vehicle motion state classification problems. Behrendt et.al.[BMBL19] first introduce
the problem of parked car classification in the context of autonomous driving. They introduce a
list of possible sensors and features, e.g., estimated velocity, distance to left/right lane boundaries.
Out of the 13 candidate features they selected, they use the best 5 features and present three
baseline approaches based on heuristic thresholding, support vector machines (SVMs), and a simple
multilayer perceptron (MLP).

Their main limitations lie in several aspects. First, they used manually selected features that heavily
rely on feature engineering which makes their work hard to be generalized well on different datasets.
For example, their most important feature is “distance to the left lane boundary”. However, the road
width of different areas varies a lot. It is impossible for the model to learn a criterion that suits them
all.

Second, they didn’t include visual information, which is the most important information when
humans analyze the motion state of a vehicle. Without visual information about the vehicle and the
surrounding scene, non-trivial cases discussed here[BMBL19], e.g., bus loading passengers, can
never be properly evaluated by the model.

What’s more, They merely focused on the binary classification of parked and moving(with driver
inside) vehicles without further distinguishing stopped vehicles from moving vehicles or parked
vehicles. Also, they use a small and unbalanced dataset with trivial cases.

Yang et.al.[YLLS21] used a similar architecture where 10 selected features are fed into a multilayer
feedforward network to generate a binary output. Differently, they directly focused on the overtaking
decision and used whether the target vehicle is overtaken by the ego vehicle as the predicted label.
They take the human driver’s decision as the target label in their dataset which is recorded during
data collection to teach the model to make more human-like decisions. For example, the second
most influential feature is the waiting time, because human drivers tend to make overtaking decisions
following a period of waiting.

2.2 Motion forecasting

Motion forecasting is the task of predicting the location of road agents (vehicles, pedestrians, etc.)
in the future[NAZ+22]. Motion forecasting mainly focuses on constantly moving targets instead
of stopped targets because stopped targets are unpredictable. Hence, works in motion forecasting
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can’t be used as a direct solution to vehicle motion state classification. However, since the sensors
available on the vehicle are the same for both tasks, their approaches for multi-modal scene encoding
are still worthy of reference.

The state of art in motion forecasting encodes features including agent history, agent interactions,
map information, and traffic light states[NAZ+22]. These features are usually encoded and fused
into a latent feature for downstream tasks. There are many different mechanisms of doing that, in
this work, we will use a simple multi-modal encoder that is discussed in detail in Section 3.1.

2.3 Transformer-based models in autonomous driving

This section follows Zhong et. al.’s excellent survey [ZLC23].

Attention mechanism [BCB16] has been introduced to further enhance the performance of CNN-
based methods in autonomous driving. The primary idea behind attention mechanisms is to allow
the model to weigh different parts of the input based on their relevance to the current context. In the
case of sequence-to-sequence models, for example, attention mechanisms enable the decoder to
focus on specific parts of the source sequence while generating the target sequence. This selective
focus allows the model to capture longer-range dependencies and relationships more effectively
than traditional recurrent neural networks. The attention mechanism can be described as a function
that computes a weighted sum of a set of input values, also known as “values” (V), based on their
compatibility with a given query (Q). The attention mechanism calculates an attention score for
each key-query pair using an attention scoring function and then normalizes these scores using a
softmax function to produce attention weights. These weights are used to compute the weighted
sum of the values, which represents the output of the attention mechanism. By selectively attending
to relevant information, attention mechanisms can improve the efficiency and robustness of the
learning process [ZLC23].

Transformer architecture [VSP+23] was originally developed on attention mechanism for natural
language processing (NLP) tasks, but their ability to model long-range dependencies and capture
global context has made them attractive for perception tasks in autonomous driving. It aims
to process and capture dependencies in input data, which eliminates the need for recurrent or
convolutional layers, enabling highly parallelized computation. A typical Transformer consists
of an encoder-decoder structure. The encoder is composed of a stack of identical layers, each
containing two primary components: a multi-head self-attention mechanism and a position-wise
feed-forward neural network. The multi-head attention module enables the model to simultaneously
weigh the importance of different parts of the input sequence relative to each other, capturing
long-range dependencies. Transformer architecture incorporates positional encoding, which injects
information about the relative or absolute position of input elements, as the attention mechanism
does not inherently capture positional information [ZLC23].

In autonomous driving applications, Transformer-based architectures have been widely adopted in
a variety of sub-tasks, including object detection [LWL+22; LWZS22], lane detection [PCF+22],
and segmentation [LWX+22], tracking and localization [NAZ+22; ZCW+22], path planning,
and decision-making [HYC+23; ZTG+22]. Additionally, recent studies have explored the use of
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Transformer in constructing end-to-end deep learning models [HYC+23] for autonomous driving.
These models leverage the attention mechanism to further improve their ability to focus on relevant
information and perform effectively in complex, real-world driving scenarios [ZLC23].

2.4 Multi-modal Feature Fusion

Simultaneous multimodal sensations are a crucial enabler of human perceptual learning [SG05]. For
artificial learning systems, however, designing a unified model for modality fusion is challenging
due to a number of factors: (i) variations in learning dynamics between modalities [WTF20], (ii)
different noise topologies, with some modality streams containing more information for the task at
hand than others, as well as (iii) specialised input representations [NYA+22].

The self-attention operation of transformers provides a natural mechanism to connect multimodal
signals. Multimodal transformers have been applied to various tasks including audio enhancement
[EML+18], speech recognition [HTG16], image segmentation [YRLW19] as well as autonomous
driving [CPJ+22; WSDY23]. Wayformer [NAZ+22] used concatenation and attention encoder for
feature fusion and discussed differences between early fusion, late fusion, and hierarchical fusion in
the context of motion forecasting.

2.5 Scene Understanding

Scene understanding aims to recognize the semantic information of objects within their contextual
environment. It is involved in various tasks like object detection, semantic segmentation, visual
question answering, etc., and plays a critical role in robotics, autonomous driving, smart city, etc..
Significant advancements have been made by current supervised methods for 2D and 3D scene
understanding[HZM+22; WLJ+22; WLL+22]. However, these methods heavily rely on extensively
annotated datasets, which pose significant challenges when encountering unseen instances that were
not included in the training data.

In contrast, the CLIP (Contrastive Language-Image Pre-training)[RKH+21] leverages contrastive
learning, a powerful technique that enables the model to learn rich semantic representations from
unlabeled data. By training on large-scale datasets with diverse image-text pairs, CLIP learns to
associate semantically similar concepts while distinguishing between dissimilar ones. This enables
CLIP to develop a nuanced understanding of scene semantics, allowing it to be used as a generalized
scene semantic feature encoder in this work. Without leveraging the power of CLIP, we would need
a large-scale dataset that includes various complex driving scenarios to train our semantic feature
encoder, which is very costly to collect.

Initially designed for image classification, CLIP falls short in segmentation and localization
performance[CLK+23]. These two kinds of tasks appear to be dramatically different: localization
tasks are vision only and require fine-grained output (e.g., bounding boxes or pixel masks), while
VL understanding tasks emphasize fusion between two modalities and require high-level semantic
outputs (e.g., answers or captions) [ZZH+22]. Zhang et.al. proposed GLIPv2, a grounded VL
understanding model as a unified model for localization and VL understanding tasks. They
reformulate localization tasks as VL grounding tasks, in which the language input is a synthesized

11
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sentence as the concatenation of category names [LZZ+22]. In GLIPv2, they introduce the novel
inter-image region-word contrastive learning task, which leverages phrases from other sentences
in the same batch as potential negatives, as another much stronger VL grounding task. This new
region-word contrastive loss enables GLIPv2 to learn more discriminative region-word features and
achieves mutual benefit between localization and VL understanding [ZZH+22].

12



3 Methodology

We have information from various sensors including cameras, lidar, radar, and GPS. Additionally,
the high-definition map that is pre-generated by Bosch is available for the whole route in the dataset.
The camera can give information about the target vehicle about the driver inside, brake light, type
of vehicle, and surrounding scenes. Radar and Lidar can give information about the velocity and
relative position of the target vehicle and nearby traffic participants. GPS and maps can give
information about the type of road.

The information from various sensors included in our dataset should be sufficient for our neural
network to distinguish vehicles with different motion statuses in most of the cases. In order to
do that, we need to build special encoders for each modality for feature extraction and fuse those
features into a single latent feature that can be used for classification. Details for this feature
extraction and fusion pipeline will be discussed in the following sections.

3.1 Overall Architecture

Let us first take a look at the overall architecture of our feature extraction fusion pipeline as shown
in Fig3.1 before diving into details for each component.

In the previous chapter, we proposed several questions that human drivers will think about when
evaluating the motion status of a nearby vehicle. Inspired by that, we designed our model so that all
the questions raised above can be answered by part of our model.

States encoder utilizes information from radar and lidar to answer questions about motions and
locations of different traffic participants:

* Are there people next to the car?
* What are the former states (velocity, position) of the car?
* Are there obstacles / pedestrians in front of the car?

Global vision encoder utilizes information from the entire photo captured by the camera to address
questions regarding the semantics information about the scene as well as the target vehicle:

¢ What kind of car is it?
* Is this a parking area?
¢ Is here a controlled-access road?

Object-level vision encoder utilizes information from the image crop around the target vehicle to
answer visual questions specifically related to it:

13
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Figure 3.1: Architecture of our model. States encoder utilizes information from radar and lidar
to output features representing the motion and locations of the target vehicle. Global
and object-level vision encoders encode image crops to latent features representing the
scene semantics and vehicle attributes. Map encoder encodes the map data to latent
features representing the type of road and location of the target vehicle on the map

e Is there a driver inside?
* Are the brake lights on?
¢ What kind of car is it?

Map encoder utilizes the high-definition map and the target vehicle’s position on it to answer
questions about the location from a high-level perspective:

* [s this a parking area?
¢ Is here a controlled-access road?

In the following, we will call the four encoders mentioned above latent encoder, which stands for the
encoder that encodes the part of the input data into latent information that serves a certain need.

With the latent features provided by the four latent encoders, we can then combine them by
concatenating the four latent features into one fused feature. The fused features are then fed into the
classifier which is a linear layer to output the logits for three categories.

14



3.2 States encoder

In summary, the four latent encoders illustrated in Fig 3.1 are listed as follows:

States encoder: Encoding the former tracked states of the target vehicle with a transform
encoder. The last token of the output sequence is used as the latent target feature that
represents the motion of the target vehicle. This latent target feature will then attend to nearby
traffic participants’ states through a cross-attention computation and a residual addition.

Global vision encoder: Encoding the multi-scale image crops around the target vehicle with a
pretrained CLIP model. CLIP features from multi-scale image crops are then aggregated into
singe latent semantic feature that represents the semantic information of the scene related to
the target vehicle.

Object-level vision encoder: Encoding the image crop of the target vehicle for object-level
attributes like type of vehicle, and brake light state with a pretrained Swin Transformer.

Map encoder: Encoding the map data with EfficientNet. The latent feature represents the
type of road and location of the target vehicle on the map.

In the following sections, the details about the structures of the four latent encoders and their inputs
and outputs will be introduced.

3.2

States encoder

We define the state of a vehicle at time frame ¢ as its velocity v, € R?, position p; € R?, and
orientation d; € R”. Those attributes of vehicles at different times is measured by lidar and radar
and preprocessed with the sensor fusion pipeline of Bosch. Details on that will be discussed in
Section 4.1. The aim of the states encoder is to encode the former states of the target vehicle.

Before entering the encoder, the state of all vehicles is first transformed into target-centric normalized
coordinates and mapped into a state embedding of higher dimension. Specifically, the state of a
vehicle at time ¢, {v;, p;,d;} € R®is mapped into s; € R% where d is the dimension of our latent
feature space. As shown in Fig 3.2, the transformation is done in three steps.

Figure 3.2: Overview of embedding mapping process that consists of three steps

15
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For the first step, the state is transformed with respect to the position and orientation of the target
at time ¢ and then normalized to values between 0 and 1 through min-max normalization. The
normalization is done on position and velocity separately, the orientation which is computed
with sine and cosine functions is normalized in nature. The transformation makes the state value
independent of the ego vehicle’s motion and thus makes it easier for the model to capture the
pattern.

For the second step, the former states of the target vehicle that will be used as the input of the states
encoder are interpolated. Note that this step doesn’t affect the state of nearby traffic participants
because only the state at time # is considered in those cases. The interpolation is necessary because
the tracked former states of the target vehicle are not always distributed uniformly on time. This
could be a problem because the positional embeddings typically only represent the index of the
input token instead of its time stamp. To fix this problem, the input states are interpolated with
equal time step size through linear interpolation.

For the third step, the target-centric interpolated normalized state will be projected into a higher
dimension d with single linear layer with bias and ReL.U activation.

After the mapping process, we encode embeddings of the former states of the target vehicle into
a latent target feature as shown in Fig 3.3. The input sequence of the transformer encoder is the
sequence of former states embeddings mixed with positional embeddings. The last token of the
output sequence is used as the latent target embedding representing the state of the target vehicle
while attending to the tracked history of it.

While transformers typically utilize pooling layers or a special classification token (CLS) to
summarize the features of the entire sequence [DBK+21; DCLT19], our approach takes the last
layer hidden state of the input sequence’s last token as the latent target embedding. It encapsulates
the latent representations with an emphasis on the state at time ¢, which is the time frame where we
make decision on.

In the transformer encoder, positional embedding is an additional embedding that is added to the
input embeddings before they are processed by the model. They provide the model with information
about the positions of tokens in the sequence, as transformers do not inherently possess built-in
notions of order or position. In our case, the positional embeddings represent the time step for each
state in the history.

While in the original paper [VSP+23] the positional embeddings are calculated using sine and
cosine functions of different frequencies and phases. Remarkable follow-up works tend to use
learnable 1D positional embeddings [DBK+21; DCLT19]. The learnable positional embeddings
are learned along with the other parameters of the model during training. In this way, the model
is endowed with the ability to adaptively learn representations of position that are tailored to the
specific characteristics of the input data. Hence, we also use the learnable positional embeddings in
this work.

It is very common for a vehicle to stop to give way to other vehicles or pedestrians. Instead of
only considering the positions and motion of the target vehicle, it will be beneficial to also take the
interaction between the target vehicle and nearby traffic participants into consideration.

16



3.2 States encoder

Figure 3.3: We use a transformer encoder as the states encoder for encoding embeddings of the
former states of the target vehicle. The positional embeddings are learnable parameters
random initialized. The last token of the output sequence is used as the latent target
embedding.

Other than being used as a powerful feature extractor that can capture long-range dependencies and
global context on the input, attention mechanism is commonly used for encoding the interactions
between different agents in motion forecasting works [MYVN21; ZWLH23]. Schmidt et.al. have
quantitatively shown that the self-attention mechanism is able to learn social interactions between
vehicles [SIGD22].

As shown in Fig. 3.4, inspired by the social attention in motion forecasting works [MYVN21;
ZWLH23], we use a cross-attention computation in which the latent feature of the target vehicle are
used as query and the state embeddings of other nearby traffic participants at time ¢ will be used as
key and value. The output of this social encoder will be a latent feature that represents the relative
relationship between the target and other agents and it will be added to the original latent target
feature in a residual addition manner.

Note that our design differs from [MYVN21; ZWLH23] in that the former state embeddings of the
neighbours here are not encoded by the states encoder like the target vehicle. There are several
reasons behind this. First of all, unlike motion forecasting where the target’s future trajectory is
affected by the trajectory of its neighbours. The positions and velocities of the neighbours are

17
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Figure 3.4: We use a cross attention mechanism to encode the interactions between the target
vehicle and nearby vehicles and pedestrians (neighbours). The interaction embedding
is then added with latent target embedding for the target embedding with context.

sufficient in our case to determine whether the target vehicle is blocked by other traffic participants.
Second, encoding the former states of all the neighbours is a big computation overhead, especially
considering that all these states need to be first transformed into the target vehicle’s coordinates
before entering the state encoder, which means that they can’t be reused for different targets. This
problem has been discussed in detail in [ZWLH23].

Due to this difference, the target embedding and neighbours’ state embeddings share the same
dimension but don’t live in the same space. Hence, instead of a self-attention mechanism, we use a
cross-attention mechanism to extract the interaction embedding and add it on top of the latent target
embedding.

3.3 Global Vision Encoder

With the global vision encoder, we aim to encode the rich semantic features of the scene related to
the target vehicle. As discussed in Section 2.5, CLIP’s pretraining on a vast dataset comprising
diverse visual concepts ensures that it can generalize well to novel environments and tasks, making
it a versatile and powerful choice for this. However, CLIP embeddings are global in nature and not
suitable for target-focused feature extraction. That is to say, the CLIP model is trained to output
embeddings that represent the whole image without being able to align it to a certain pixel or area,
as shown in 3.5. This can be a problem in our application because we only want the semantic
feature of the scene surrounding the target vehicle instead of the whole scene that may contain a lot
of irrelevant objects like the houses on the side of the road.

There are many works[KKG+23; ZSZ+24] that aim to ground CLIP embeddings into 3D fields at
pixel level for 3D scene understanding. In order to do pixel-aligned feature extraction, they use
methods based on CLIP embeddings across multi-scale crops of training views. Inspired by this, we

18



3.3 Global Vision Encoder

Figure 3.5: CLIP overview. From Radford et al.’s Learning Transferable Visual Models From
Natural Language Supervision|RKH+21]

adopt a similar method where CLIP embeddings are computed on multi-scale crops centered at the
target vehicle as shown in Fig 3.6. These crops’ embeddings are then fused with a 1D convolution
layer.

Figure 3.6: CLIP features are computed on multi-scale crops centered at the target vehicle and then
fused by a 1D convolution layer

As discussed in Section 2.5, GLIPv2[ZZH+22] serves both localization tasks that require fine-
grained output and vision-language understanding tasks that require high-level semantic outputs by
unifying localization pre-training and vision-language pre-training with three pre-training tasks.
Using its pre-trained encoder as our encoder might result in a performance gain because in our
application we also expect the vision encoder to capture features at different levels. However, due to
that the code of GLIPv2 is not yet released, we leave this experiment for the follow-up work.

19
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3.4 Object-level Vision Encoder

While being a powerful vision encoder, CLIP’s pretraining focuses on learning to associate images
with text across a wide range of concepts, enabling it to perform tasks such as image-text retrieval
and zero-shot classification rather than fine-grained object detection. Hence, CLIP can capture
high-level semantic features of objects, but it does not provide the level of granularity needed for
tasks such as identifying brake light states or vehicle types. Therefore, while CLIP is a powerful
tool for understanding visual content at a global level, it is not directly suitable for serving as an
object-level encoder without additional modifications or adaptations.

In this context, training a specific Swin Transformer [LLC+21] at the object-level emerges as a
good choice. By feeding the model with cropped images centered at the target vehicle as shown
in Fig 3.1, we expect the model to extract specific visual features such as brake lights and vehicle
types. This approach enables the vision transformer to focus on the object of interest within the
image, leveraging its capabilities to capture fine-grained details and object-specific attributes.

Capturing attributes like brake light blinking ideally requires an encoder designed for video data,
which can effectively analyze temporal dynamics and sequential patterns. Despite numerous works
focusing on video understanding, encoding an image sequence with transformers entails significant
computational overhead. This complexity poses challenges for real-time inference, especially in
applications such as autonomous driving where low latency is critical. Thus, while using a video
encoder as our object-level encoder might have a small positive impact on the overall performance,
we choose to use an image encoder due to its significantly lower computational burden relative to
the minor benefits a video encoder offers.

3.5 Map Encoder

Figure 3.7: Map examples
The high-definition map is generated by Bosch and aligned with the ego vehicle’s location through

the self-localization component which is part of Bosch’s sensor fusion pipeline. The map data
comes as a list of line segments that can be drawn to a binary image as shown in Fig 3.7. The drawn
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3.5 Map Encoder

map is relative to the ego vehicle’s location and orientation. The location of the ego vehicle (not
drawn on the map) on the map is at the bottom center with the head vertically upward. Other than
the line segments, we also annotate the location of the target vehicle with its relative pose to the ego
vehicle and its width and length estimated by lidar / radar.

Instead of representing the map as a binary image, it is a common practice in motion forecasting
works[NAZ+22; WSDY23; ZWLH23] to represent road graph segments as polylines, approximating
the road shape with collections of line segments specified by their endpoints and annotated with
type information. However, in our application, the directions of the road are not important to us.
We only care about where the target vehicle lies on the map, so there’s no need to transform every
segment of the roadgraph into vector space.

Due to the simplicity of the map image structure and the trivial feature we want to extract from it, we
decided to use a convolutional neural network (CNN)-based model due to its better computationally
efficiency compared to transformer-based models. EfficientNet[TL20] emerges as a good choice
due to its good performance while maintaining efficiency in terms of model size and computational
cost. Map images are cropped from thebottom to fit the input size of EfficientNet.
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4 Dataset

Existing large-scale datasets| GLSU13; WQA+23] for autonomous driving don’t have annotations
for stopped vehicles. To fill this gap, we collect the first dataset that includes labels for the vehicle’s
motion status(parked, stopped, moving) in dense traffic scenarios that include various cases of
stopped vehicles. The dataset consists of 7 data sequences. Each of them were taken from a dense
traffic route between the Bosch Renningen Campus and the city center of Renningen. It takes on
average 25 minutes for a human driver to drive through this route and the data from sensors is
recorded along the way. The data-collecting vehicle is equipped with high-resolution cameras, lidar,
radar, accelerometer, and GPS.

The transformation from the raw recordings to the dataset for training proposes several challenges.
The raw dataset contains a lot of outliers, ghost objects, and objects that are too far away. The
identification of stopped vehicles is complex so careful manual labeling is required. Another
challenge is that the dataset is very unbalanced because most of the vehicles we encounter are either
parked or moving instead of stopped. The details on how to tackle these challenges are discussed in
the following sections.

4.1 Data Pre-processing

The recorded sensor data are processed by a sensor fusion pipeline of Bosch where the objects
including vehicles and pedestrians are detected and tracked. For each time frame, we get an object
list containing all the objects that are tracked in this frame. Each element in this list contains
various information about the object and also an object ID that is supposed to be identical for the
same object across the whole sequence. From the object list, we extract the velocity, position and
orientation of the tracked objects. For each time frame, we also extract the photo of size 2560 X
1216 taken by the front camera at that time and the map image for each object as shown in Fig 3.7.

As shown in Fig 4.1, typically the front view photo contains a lot of objects. In order to obtain
image crops for use in the global and object-level vision encoders, we must first align the position
and size information derived from lidar and radar in 3D space with a bounding box on the 2D
front view photograph. With the front camera’s intrinsic and extrinsic parameters, this is done by
composing the perspective projection matrix.

We use the pinhole camera model to describe the mathematical relationship between the coordinates
of a point in 3D space and its projection onto the image plane of our front-view camera. According
to it, the projection relationship is described by:
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Figure 4.1: An example of the photo from the front camera
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Where u and v are the x and y coordinates of the pixel in the camera, x., y., z. are the coordinates
of the source of the light ray which hits the camera sensor in ego vehicle coordinates. For the
same object, this ego vehicle coordinate is assumed to be the same when captured by the camera
and detected by the lidar/radar at the same time. z. is the z-coordinate of the camera relative to
the world origin, which is divided from the matrix product for the pixel coordinates. R, T are the
extrinsic parameters which denote the coordinate system transformations from 3D ego vehicle
coordinates to 3D camera coordinates where R is the rotation matrix and 7 is the translation matrix.
R, T is determined by the relative position between the ego vehicle and the front view camera
and is obtained by the camera calibration conducted by Bosch before. K is the intrinsic matrix as
described below:

ax 7y uy O
K={0 a, vo O
0O 0 0 1

Where a and @y, represent focal length in terms of pixels, y represents the skew coefficient between
the x and the y axis and ug and v represent the principal point, which would be ideally in the center
of the image. These parameters are associated with the front view camera and is obtained by the
camera calibration conducted by Bosch before.
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With the target vehicle’s size {l, w, h} where [, w, h is the length, width, and height of the vehicle,
we can obtain the coordinates of 8 corners of the 3D bounding box in target vehicle coordinates.
With the target vehicle’s position {x., y., zZ } and orientation in ego vehicle coordinates, we can
transform those corner coordinates into the ego coordinates. After that, with equation 4.1, we can
project those corner coordinates into pixels on the front view image. By taking the minimum and
maximum of these 8 corners in the x and y axes, we can reduce the number of corners to 4 and have
the approximate bounding box in 2D space. With the 2D bounding box, we can extract image crops
around the target vehicle on the front view image.

4.2 Data Filtering & Labeling

When we have the processed data, the next step is to label the data and filter it. First of all, for each
sequence, we filter out a list of vehicles that are at least once close enough to the ego vehicle. The
detection range of lidar and radar is very far compared to the camera. Since we use the camera input
as an important part of our model, we must limit the predictable vehicles to the vehicles that can
be seen by the front camera. As shown in Fig 4.2, only the vehicles that enter the prediction area
will be included in the predictable vehicles list. The prediction area is thinner horizontally because
too many irrelevant vehicles will be included if the horizontal distance is 15 meters, e.g. vehicles
behind a fence or a wall. When a vehicle first enters the prediction area, its ID is included in the
predictable vehicles list as long as the time stamp which will be used as the prediction time.

Based on the predictable vehicles list, we generate videos with a frame rate of 10 from the front
view image sequence with object ID, bounding box, and velocity drawn for each predictable vehicle
with OpenCV. An example of a frame of the annotated video is shown in Fig. 4.3. On the upper left
corner there is the time stamp of the current frame. There are three vehicles tracked on this frame,
each of them is surrounded by red dots that represent their bounding box. Their object ID, and the
vertical and horizontal velocity with respect to the ego vehicle are shown above the bounding box.

Figure 4.2: Prediction area. Only vehicles that enter the prediction area is considered
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Figure 4.3: One frame of the annotated video

Annotated video simplifies the labeling process for predictable vehicles, as we can easily identify
and label them by going through the video and observing the annotations. Each vehicle requires
labeling only once, as predictions are made based on their motion status upon entering the prediction
area for the first time, even if the motion status of some vehicle changes (e.g., transitioning from
moving to stopped). The prediction time is automatically determined when a vehicle is included in
the predictable vehicles list. This method reduces the need to record prediction times via timestamps.
Instead, we only need to record the object ID and label associated with it. This simplifies the
labeling process very much. For special cases where the prediction time is inappropriate, e.g. the
vehicle can’t be seen or can only partly be seen by the front camera, we will manually adjust the
prediction time.

After the labeling, we need to filter the dataset again because the sensor data is noisy sometimes
and there are many outliers in the dataset. For all the vehicles that are labeled as “parked”, the norm
of the difference of their positions in the tracked history should not be larger than 1. For vehicles
that are labeled as “moving”, the norm of the maximum velocity in the tracked history should not
be smaller than 1. The vehicles that fail to meet these criteria will be removed from the dataset.
Other than that, vehicles that have a tracked history that is too short (shorter than 0.5 seconds) will
also be removed because their motion status is hard to tell in this case.

Number of sequences 7
Number of parked vehicles 856
Number of stopped vehicles 66
Number of moving vehicles 383
Number of vehicles in total 1305

Table 4.1: Overview of our dataset after labeling and filtering
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4.3 Data Augmentation

4.3 Data Augmentation

As shown in Table 4.1, the dataset is very unbalanced because it is much easier to encounter parked
or moving vehicles than stopped vehicles. Before data augmentation, there were 856 parked vehicles
and 383 moving vehicles while the number of stopped vehicles is only 66. This will make it very
hard for our model to generalize well on different labels.

In order to solve this problem, instead of one prediction time we use a short sequence of time as
prediction time and treat the same stopped vehicle at different time frames as independent samples
during training and testing as shown in Fig 4.4. This is done by manually recording the suitable
prediction time range for each stopped vehicle during the labeling process. A suitable prediction
range here means that for each time step within this range, the target vehicle should already have a
long enough tracked history and the motion status of the target vehicle within this range should
remain stable. Although these instances are similar to each other each of them still carries special
features. The model should learn by trying to discover the commonality of them. Note that the data
samples in the training set and test set are independent of each other. After the data augmentation, we
now have 819 stopped instances derived from 66 independent vehicles, which is already comparable
to the number of parked vehicles.

During the training process, we utilize the WeightedRandomSampler from Pytorch and adjust the
weight for each instance based on their label so that for each batch that is drawn for training, the
labels for the instances are uniformly distributed. For the test set, in order to keep the accuracy a
fair metric for all labels, we assign the same number of instances for each label in the test set, which
is 169. The split of training and test dataset is done randomly for each category once.

Training set Test set

Number of sequences 7
Number of parked vehicles 687 169
Number of stopped vehicles 650 169
Number of moving vehicles 214 169
Number of vehicles in total 2058

Table 4.2: Overview of our dataset after data augmentation and training/test set split
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Figure 4.4: Instances derived from the same stopped vehicle
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5.1 Implementation Details

The dimension d of state embeddings and latent features as stated in the previous chapters are
768. For the global vision encoder, we use a pre-trained CLIP model with base-sized ViT as its
vision encoder and a batch size of 32. The dimension of the CLIP output is 512 which is then
projected into d. The object-level vision encoder is a tiny-sized Swin Transformer pre-trained on
ImageNet-1k at resolution 224x224. The output of the Swin Transformer is 768. The map encoder
is an untrained EfficientNet BO model. The reason why we don’t use a pre-trained model here
is that the map images in our application differ a lot from the natural images in the pre-training
dataset like ImageNet-1k. The states encoder is implemented following the original transformer
paper[VSP+23] and the number of transformer blocks is one. The projection layer and the final
classifier are both single linear layers. Dropout layers are placed after projection layers and output
layers in states encoder for regularization. In the end, our model has a size of 207M parameters.

For training, we use a cross entrop loss and a SGD optimizer with a momentum of 0.9, a learning
rate of 0.0001, and weight decay of 0.02. All models discussed and compared in this chapter are
trained with early stopping for best test performance. The training is done with a NVIDIA GeForce
RTX 2070 SUPER with a batch size of 16.

Before the joint training of the full model. We first pretrain the map encoder by only feeding latent
features from the map encoder to the classifier. The idea is that in this way we give the map encoder
a warm-up to help it extract meaningful information and make it comparable to other pretrained
encoders. This can prevent the model from greedily relying on other modalities and keeping the
map encoder underfit. Of course, the accuracy will be very low when only relying on map data.
We will early stop the training process before overfitting the map encoder. More details on this
pretraining process and the reason behind it can be found in Section 5.4.4.

We don’t use methods introduced in previous works [BMBL19; YLLS21] discussed in Section 2.1
as our baseline for two reasons. First of all, these two works aim at the binary classification of
parked / moving vehicles and “should overtake” / “shouldn’t overtake™ and select crafted features
based on their goal and dataset. This makes their method not applicable to our task because we aim
at three categories classification on another dataset where the stopped vehicles are very hard to
identify based on the features they selected. Second, the features they crafted based on their dataset
aren’t present in our dataset. As a result, we use a single states encoder and our classifier layer as
the baseline model where no information about the scene is included.
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5.2 Results

In this section, we will present and analyze the results of our full model.

5.2.1 Metrics

As discussed in Section 4.3. Our test dataset consists of 169 instances for each category and we
evaluate our model on it with accuracy, recall and confusion matrix. Other than that, we include
two fully independent sequences (no instance in these sequences is in the training dataset) as an
additional assessment for the generality of our model on unseen data.

5.2.2 Performance

Metrics Baseline Ours

Accuracy 83.23%  97.63%
Recall Parked  98.82%  97.63%
Recall Stopped  52.66%  98.22%
Recall Moving  98.22%  97.04%

Table 5.1: Accuracy and recalls of our model and baseline on test dataset. All models are trained
with early stopping for the highest test accuracy and the same hyperparameters.

Predicted Labels
= Parked | Stopped | Moving
§ Parked | 165 4 0
© Stopped 1 166 2
£ | Moving 0 5 164

Table 5.2: Confusion matrix of our model

Predicted Labels
= Parked | Stopped | Moving
§ Parked | 167 2 0
° Stopped 74 89 6
& | Moving 1 2 166

Table 5.3: Confusion matrix of baseline

We first compare the performance of our model with the baseline on our dataset. As shown in Table
5.1, 5.2, and 5.3, the baseline fails to distinguish parked and stopped vehicles as we expected while
our model achieves 97.96% accuracy with a 98.22% recall on stopped vehicles. This shows that our
model does succeed on this three categories classification task with the help of multimodal input
and scene understanding.
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5.2 Results

From the confusion matrix, we can observe that the differentiation between parked and moving
vehicles is easy for our model while sometimes it confuses parked and moving vehicles with stopped
vehicles. This could be due to the noise in our dataset. The measurements of the sensors are not
always stable during the real driving situation, especially when it comes to the estimation of the ego
vehicle’s motion. The estimation of other vehicle’s position and velocity is based on the estimation
of the ego vehicle’s motion, so they are not always accurate. It is very common that a parked vehicle
has a small velocity in our dataset.

From Table 5.4 we can observe that parked vehicles that are wrongly classified as stopped vehicles
have larger average velocity at detection time. On the other hand, moving vehicles that are wrongly
classified as stopped vehicles have much lower average velocity. From this, we can tell that some of
the errors may be introduced by the detection noise of the parked vehicle and some of the slowly
moving vehicles.

Predicted Labels
~ v, m/s | Parked | Stopped | Moving
§ Parked | 0.11 0.25 /
° Moving / 3.22 11.58
=

Table 5.4: v; here stands for the magnitude of velocity at detection time ¢. In this table, we group
the instances by their true labels and predicted labels and show the average v, for each
group.

Then we evaluate our model with two independent short sequences that are recorded from the same
route with the same set of sensors on different days. Each of them has a length of 8 minutes and
none of their data is included in the training dataset. Thus, we can prevent if there is any information
leaking across different samples in the same sequence.

From Table 5.5, 5.6, and 5.7 we can see that there’s some performance drop on the recall of parked
vehicles in sequence 0. Other than that, our model remains very high accuracy on independent
sequences.

Metrics Sequence0 Sequencel
Accuracy 91.58% 97.81%
Recall Parked  80.49% 95.45%
Recall Stopped  100% 98.65%
Recall Moving  100% 100%

Table 5.5: Accuracy and recalls of our model on two independent short sequences

Predicted Labels
= Parked | Stopped | Moving
§ Parked 33 8 0
2 Stopped 0 37 0
£ | Moving 0 0 17

Table 5.6: Confusion matrix of our model on independent sequence 0
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Predicted Labels
= Parked | Stopped | Moving
§ Parked | 42 2 0
2 Stopped 1 73 6
£ | Moving 0 0 19

Table 5.7: Confusion matrix of our model on independent sequence 1

5.3 Model Interpretation

In this section, we will have a deeper look into what our model is paying attention to and try to add
some explainabilities to our model’s decision process.

5.3.1 Impact of Latent Encoders

First of all, let us see which latent encoder is contributing more to the result. As shown in Figure 5.1,
we use a single linear layer as our classification head and it takes the concatenated latent features
from four latent encoders as input. This means that each of these latent features contributes to the
output logits for certain categories (“parked” in the figure) independently. This is helpful for us
because the parameters in the classification head can directly be used as a measurement for the
impact of each latent encoder.

Figure 5.1: The latent features from four latent encoders contribute to the output logits of each
category independently

In formal, given the parameters of the classification head P.;; € R*¥*3, the impact I 7 (i <4) of the
ith latent encoder for category ¢ (¢ < 3) is described as:

mean(abs(P¢slid : (i +1)d, c])) Pallv ol

(5.1 Iic = Zc’;tc mean(abs(P¢s[id @ (i +1)d, C’]))’ '
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Where mean and abs stand for the average and absolute value function. By using this equation,
we can get a table as shown in Table 5.8. States encoders have the highest impact on the decision
for moving vehicles while object-level vision encoder has the highest impact on the decision for
parked and stopped vehicles. This makes sense because the best way of distinguishing a moving
vehicle is to see if its position is changing over time and if it has a high velocity. On the other hand,
it is hard to distinguish parked from stopped vehicles relying on the states encoder because both
parked and stopped vehicles are not moving. Hence, it makes sense that the model relies more on
the object-level vision encoder in this case because looking at the vehicle directly is the best way of
telling whether the vehicle is started (looking at the brake lights and the driver inside).

states encoder | global vision encoder | object-level vision encoder | map encoder
parked 0.24 0.25 0.28* 0.23
stopped 0.24 0.24 0.28* 0.24
moving 0.35" 0.22 0.22 0.22

Table 5.8: Impact of latent encoders on the output. All the values are rounded to two decimal
places. Highest impact value for each category is marked with *

5.3.2 Visualization of Object-level Vision Encoder

Following the analyses above, we further investigate what our vision encoders are paying attention to.
With the great advancements that vision transformers bring to the computer vision field. Researchers
also made great efforts in interpreting them [AZ20; CGW21]. However, most of the research
in this field focused on ViT. Swin Transformer uses attention matrixes of different sizes and are
shifted during the computation, which makes its attention matrixes hard to visualize. Famous
existing methods [AZ20; CGW21] are not applicable to Swin Transformer. Hence, in the following,
we will visualize the attention of our object-level encoder which is a Swin Transformer with
transformers-interpret' library that is based on Captum? and uses the integrated gradients method
for the Interpretation. The integrated gradients method computes the integral of the gradients of the
model’s output with respect to its input along a straight path from a baseline input (usually an input
with zero relevance) to the actual input. It assigns attribution scores to input features based on how
much they contribute to the model’s output change.

As shown in Fig 5.2, we can observe that our object-level vision encoder learns to pay more attention
to the brake lights in order to determine that this vehicle is stopped. Interestingly, when we visualize
the attributions to label “parked”, the brake lights area becomes negative impact (annotated in blue
instead of red). This confirms our assumption on the reason for the high impact of object-level
vision encoder on prediction on labels “parked” and “stopped”. The object-level vision encoder
distinguishs them through the brake lights states. Most of the time stopped vehicles have their brake
lights on or blinking.

https://github.com/cdpierse/transformers-interpret
2https:// github.com/pytorch/captum
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Figure 5.2: On the left: A stopped van. On the right: The attributions to label “stopped” of every
pixel in the image through the object-level vision encoder (Swin Transformer) in our
trained model.

Figure 5.3: On the left: A stopped van. On the right: The attributions to label “parked” of every
pixel in the image through the object-level vision encoder (Swin Transformer) in our
trained model.
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5.3.3 Visualization of Global Vision Encoder

(a) traffic sign (b) bus lane

(c) neighbouring vehicles (d) traffic sign

Figure 5.4: Good examples of fine-tuned CLIP paying attention to meaningful areas like traffic
signs, bus lane, neighbouring vehicles

In this section, we will try to add some explainability to our global vision encoder, the fine-tuned
CLIP model. CLIP uses a base-sized ViT as its vision encoder. As discussed in the previous section,
there have been many works on the Interpretation of ViT and we use attention rollout [AZ20] in this
work.

At every transformer block we get an attention matrix A that defines how much attention is going to
flow from token j in the previous layer to token i in the next layer with element A, ;.

We can multiply the matrices between every two layers, to get the total attention flow between them.
Taking the residual connections into consideration, we can recursively compute the attention rollout
matrix at layer [:

(5.2) AttentionRollout; = (A; + I)AttentionRollout;_

where I is the identity matrix. AttentionRollouty for the deepest layer will be the attention matrix
that can be used to show the attention flow from each patch to the final representation. Note that
here the attention flow isn’t related to certain output labels because we are mainly interested in
knowing the fine-tuned CLIP model’s attention distributions in general.
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From Fig 5.4 we can observe that the fine-tuned CLIP model is capable of paying attention to
meaningful semantic information that is related to our task. For example, traffic signs, bus lanes,
neighbouring vehicles, and the road. From Fig 5.5 we can observe that the fine-tuned CLIP model
shows different attention patterns at different scales. At low scale, it pays more attention to the
target vehicle. At medium scale, it starts to focus on nearby objects like traffic cones and fences. At
high scale, the model tends to pay more attention to the road and nearby vehicles.

However, we find out that the attention of the fine-tuned CLIP model is very easy to be distracted by
irrelevant objects. As shown in Fig 5.6, trees are especially easy to distract the fine-tuned CLIP
model. Other irrelevant things like parts of the ego vehicle, houses by the street, sky, etc. are also
frequently the focus of attention. This problem arises from the paradox of our expectation of the
CLIP model as the global vision encoder. On one hand, we expect CLIP to retain its generality so
that it can extract semantic information from objects that are unseen or rarely seen in the training
dataset. On the other hand, we don’t want it to focus on irrelevant objects like trees and thus
introduce noise to the model.

A potential solution to this problem is to retrain a foundation model that is specially tailored
for autonomous driving problems using contrastive learning by limiting the images and texts to
traffic-related field. This is beyond the scope of this work and we hope future works will fill this

gap.

Figure 5.5: Examples of fine-tuned CLIP paying attention to different things at different scales
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Figure 5.6: Examples of fine-tuned CLIP get distracted by irrelevant objects

5.3.4 Visualization of Map Encoder

In this section we would like to investigate whether our map encoder is paying attention to meaningful
features. To visualize the EfficientNet that we use as the map encoder, we use Grad-CAM [SCD+19],
a well-known method that is typically used for the visualization of convolution neural networks.
Grad-CAM leverages the gradient information flowing into the last convolutional layer of the
network to compute the importance of each feature map. By weighting the feature maps based on
their importance, it produces a heatmap that indicates the regions most relevant to the network’s
prediction.

We first focus on cases where we need the map encoder the most. As shown on the left of Fig
5.7, these three stopped vehicles are hard to be distinguished from parked vehicles by the latent
features from the states encoder and object-level vision encoder. The states encoder has difficulty
distinguishing parked and stopped vehicles because, as discussed before, both stopped and parked
vehicles are stationary. The object-level vision encoders also have difficulties in these cases because
the brake lights are not on or visible. On the other hand, map information can be useful in this
situation because stopped vehicles typically appear at the intersection of the roads or in the middle
of a multi-lane road where vehicles are not normally allowed to be parked. Hence, the position of
the target vehicle over the map can be strong evidence to a stopped vehicle.

As shown on the right of Fig 5.7, high relevance is shown between the output of our trained
map encoder and the class “stopped”. The map encoder learns to detect that the vehicle is at the
intersection or in the middle of the road and relates that to the class “stopped”.
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Figure 5.7: On the left: Original images of stopped vehicles that are hard to be distinguished from

38

parked vehicles through lidar / radar or camera. On the left: Importance heat map of
map encoder, generated with Grad-CAM. Reddish areas mean high relevance to the
output logit corresponding to the target class shown above. A larger relevant area also
means a larger output logit and a higher possibility of the target class.



5.4 Ablation Studies

5.4 Ablation Studies

In this section we will introduce the ablation studies performed on our model and explain some of
our design decisions based on the experiment results.

5.4.1 Feature Fusion

As discussed in the Section 2.4, the self-attention operation is commonly used for feature fusion
due to its ability to capture long-range dependencies. For simplicity, we simply use concatenation
for the fusion of four latent features and use a single linear layer as the classification head. This
design doesn’t allow the latent features to communicate with each other. Instead, they “vote” for the
final results independently as shown in Fig 5.1. In this section, we investigate whether fusing the
latent features through self-attention will have a positive impact. Instead of directly concatenating
the four latent features, we first pass them into a self-attention operation to let them communicate
with each other and then concatenate them.

Figure 5.8: On the left: Comparison of test accuracy between our model using concatenation as
latent features’ fusion method and the model using self-attention instead. On the right:
Comparison of test loss between the two models.

As shown in Fig 5.8, using self-attention as the method for latent features fusion results in slightly
lower peak test accuracy (2.56% decrease) and comparable test loss. Self-attention operation will
introduce more parameters into the model, without obvious performance gain, using concatenation
as the method for latent features’ fusion is sufficient for our model on our dataset. However, it is
possible that on larger and more complex datasets allowing latent features to communicate will
result in better performance.

5.4.2 States Encoder Pooling Method

As discussed in Section 3.2, we take the last layer hidden state of the input sequence’s last token as
the latent target embedding because it encapsulates the latent representations with an emphasis on
the state at decision time ¢. In this section, we investigate whether appending a classification token
(CLS) at the beginning of the states and use it as an aggregation over the former states results in
better performance.
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Figure 5.9: On the left: Comparison of test accuracy between our model using the last token as
the latent target embedding and the model using the CLS token instead. On the right:
Comparison of test loss between the two models.

As shown in Fig 5.9, there will be small peak test accuracy degradation and test loss increase if we
use the CLS token as the latent target embedding that summarizes the former states of the target
vehicle.

To get a better understanding of the differences here, we take a closer look at the accuracy, recall and
the latent encoders’ impact. From Fig 5.11, we can observe a drop of 2% in the impact of the states
encoder on the moving vehicles prediction. This is a negative reflection on the quality of the states
encoder. The model learns to rely more on other encoders when the states encoder is not as reliable
as before. As shown in Table 5.9, although there is only a small accuracy degradation overall and a
small increase in the recall of the parked vehicles, the recall of stopped vehicles drops by 6.5%.

Metrics CLS Last token
Accuracy 95.86% 97.63%
Recall Parked  98.82% 97.63%
Recall Stopped  91.72%  98.22%
Recall Moving  97.04% 97.04%

Table 5.9: Comparison of test accuracy and recalls between our model using the last token as the
latent target embedding and the model using the CLS token instead. All models are
trained with early stopping for the highest test accuracy and the same hyperparameters.

Predicted Labels
- Parked | Stopped | Moving
§ Parked | 167 2 0
2 Stopped 14 155 0
£ | Moving 0 5 164

Table 5.10: Confusion matrix of the model using the CLS token as the latent target embedding
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states encoder | global vision encoder | object-level vision encoder | map encoder
parked 0.24 0.25 0.28* 0.23
stopped 0.24 0.24 0.28* 0.24
moving 0.33" 0.22 0.24 0.22

Table 5.11: Impact of latent encoders of the model using CLS token as the latent target embedding.
All the values are rounded to two decimal places. The highest impact value for each
category is marked with *

5.4.3 Interpolation

In this section we investigate the usefulness of the interpolation in the former states of the target
vehicle.

Figure 5.10: On the left: Comparison of test accuracy of our model with and without interpolation
in the former states target. On the right: Comparison of test loss between these two
situations.

As shown in Fig 5.10, applying interpolation on the states sequence will result in slightly higher
peak test accuracy (1.97% increase) and lower test loss. Since little computation overhead is cost by
the interpolation process, we consider it as a useful preprocess step.

5.4.4 Map Encoder Pretraining

Previous studies [WJCG22] on multi-modal deep neural networks have shown that models tend to
rely on some modalities while under-fitting the other modalities. In our case, this phenomenon
is especially likely to happen because we use pre-trained CLIP model and Swin Transformer as
our vision encoders while the EfficientNet we use as the map encoder is not trained due to the big
domain change. At the beginning of joint training, pretrained CLIP model and Swin Transformer
immediately extract useful information while the map encoder is generating random output. The
model will learn to give more weight to other encoders and thus let map encoder underfit. To prove
our assumption on this, we conducted the following experiments.
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Figure 5.11: On the left: Comparison of test accuracy of our model with pretrained and untrained

map encoder at the beginning of joint training. On the right: Comparison of test loss
between these two situations.

From Fig 5.11 we can observe that the model with the map encoder pretrained has slightly higher
peak test accuracy and lower test loss. However, from Table 5.14, we can observe that the impact
of the map encoder drops on both parked and stopped vehicles prediction. This makes the map
encoder the most unimportant latent encoder among the four latent encoders. As a result, we can
observe from Table 5.12 and 5.13 that there is an obvious accuracy degradation in the prediction of
parked vehicles because, as discussed before, information from the map provides an important clue
for distinguishing stopped vehicles from parked vehicles.

In Fig 5.12 we compare the importance heatmap generated from the map encoder that is not
pretrained before joint training with the heatmaps from Fig 5.7. It is obvious that without pretraining,
the map encoder shows underfitting and gets less concentrated on its attention and decision.

Metrics Map encoder w/o pretraining Map encoder pretrained
Accuracy 96.25% 97.63%
Recall Parked  92.89% 97.63%
Recall Stopped  98.22% 98.22%
Recall Moving  97.04% 97.04%

Table 5.12: Comparison of test accuracy and recalls of our model with pretrained and untrained
map encoder at the beginning of joint training. All models are trained with early
stopping for the highest test accuracy and the same hyperparameters.

Predicted Labels
= Parked | Stopped | Moving
§ Parked | 157 12 0
2 Stopped 1 166 0
£ | Moving 0 4 165

Table 5.13: Confusion matrix of the model using the untrained map encoder at the beginning of
joint training
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5.4 Ablation Studies

Figure 5.12: On the left: Original images of stopped vehicles that are hard to be distinguished from
parked vehicles through lidar / radar or camera. On the left: Importance heat map
of the map encoder. The heatmap above comes from map encoder that is pretrained
before joint training as in Fig 5.7 while the heatmap below comes from map encoder
that is not pretrained.
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states encoder | global vision encoder | object-level vision encoder | map encoder
parked 0.25 0.26 0.28* 0.22
stopped 0.25 0.25 0.28* 0.22
moving 0.34" 0.22 0.24 0.22

Table 5.14: Impact of latent encoders of the model using untrained map encoder at the beginning
of joint training. All the values are rounded to two decimal places. The highest impact
value for each category is marked with *

In conclusion, while there won’t be a big performance degradation overall even if we don’t pretrain
the map encoder, we still believe that this is a meaningful step because it prevents the map encoder
from being underfitted. We suggest that the small performance difference between these two setups
is due to the limited size and complexity of our dataset. On a larger and more complex dataset, the
differences could be bigger.

5.4.5 CLIP Features Fusion Method

As shown in Fig 3.6, we used a 1d convolution layer across CLIP representations at different scales
which is basically a weighted average. In this section, we investigate whether another aggregation
method will result in better performance. We evaluate two additional aggregation methods: average
and self-attention operation.

Figure 5.13: On the left: Comparison of test accuracy between three CLIP fusion approaches: 1d
convolution, average and self-attention. On the right: Comparison of test loss between
these three situations.

As shown in Fig 5.13, directly taking the average of multi-scale CLIP features as latent semantic
features will cause an obvious degradation in both test accuracy (5.13% decrease) and loss. Using
self-attention and pooling for aggregation will cause slightly lower peak test accuracy (1.38%
decrease) and higher test loss. Also, the test performance is very unstable in this case. More
complex architecture makes the model prone to overfitting.

In conclusion, the 1d convolution fusion gives the best performance without adding more complexity
to the model.
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5.4 Ablation Studies

5.4.6 Latent Encoder Selection

Accuracy Recall Parked Recall Stopped Recall Moving
full model 97.63% 97.63% 98.88% 97.04%
w/o map 95.26% 89.34%" 99.41% 97.04%
w/o global vision ~ 94.08% 90.53% 95.86% 95.86%
w/o object vision ~ 92.11% 89.94% 90.53% 95.86%
w/o states encoder  89.15% 95.26% 87.57%* 84.61%"

Table 5.15: Comparison of test accuracy and recalls between our full model and models without
certain latent encoders. All models are trained with early stopping for the highest
test accuracy and the same hyperparameters. “Map” stands for map encoder, “global
vision” stands for the global vision encoder, “object vision” stands for object-level

vision encoder. Lowest recalls are marked with *

Predicted Labels
w/o map encoder w/o global vision encoder
Parked | Stopped | Moving Parked | Stopped | Moving
Parked 151 18 0 Parked 153 16 0
» | Stopped 0 168 1 Stopped 7 162 0
g Moving 0 5 164 Moving 0 7 162
—
% w/o object-level vision encoder w/o states encoder
= Parked | Stopped | Moving Parked | Stopped | Moving
Parked 152 17 0 Parked 161 6 2
Stopped 14 153 2 Stopped 12 148 9
Moving 0 7 162 Moving 7 19 143

Table 5.16: Comparison of test accuracy and recalls between our full model and models without
certain latent encoders. All models are trained with early stopping for the highest test
accuracy and the same hyperparameters.

In this section, we investigate the contributions of the four latent encoders by removing each of
them from the model and evaluating the influences.

From Table 5.15, we can observe that in general removing the states encoder and object-level
encoder will cause obvious performance degradation. This aligns with our intuition because these
two encoders are responsible for fine-grained information (position, velocity, brake lights state) that
is highly related to the target. Specifically, removing the object-level encoder will cause an obvious
accuracy degradation in the recall of stopped vehicles. By looking at Table 5.16 we can find that
this recall drop comes from wrongly classifying stopped vehicles as parked vehicles. This also
aligns with our analyses before. The object-level encoder plays an important role in distinguishing
stopped and parked vehicles by providing information about the brake lights.

The recall of moving vehicles remains high when removing map, global vision and object-level
vision encoders. However, when states encoder is removed, the recall of moving vehicles drops to
84.61%. From Table 5.16, we can observe that for the first time, the model confuses parked vehicles
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with moving vehicles. This also aligns well with our intuition and previous analyses. The states
encoder is very important for identifying moving vehicles because it encoders the velocity of the
target vehicle. The recall of stopped vehicles also drops by large because the model also starts to
confuse stopped vehicles with moving vehicles without knowing the velocities.

Removing the map encoder and global vision encoder will not have a big influences except for the
obvious accuracy degradation in parked vehicles. From Table 5.16, we can observe that the recall
drop comes from wrongly classifying parked vehicles as stopped vehicles. In particular, a recall
drop presents for all three labels when removing the global vison encoder. This suggests that the
CLIP model still contributes to the identification of vehicles in all three categories despite being
distracted by irrelevant objects.

Interestingly, removing the states encoder will have a very small influence on the recall of parked
vehicles while removing any of the other latent encoders will cause an obvious drop. In summary,
this shows that all the other latent encoders (map, global vision and object-level vision encoders)
are contributing together to distinguish parked and stopped vehicles, while states encoder didn’t
provide useful information.
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6 Conclusion and Discussions

In this thesis, we focused on the task of classifying vehicles into parked, stopped and moving
vehicles. We motivate the need for vehicle classification by analyzing the challenge of the current
autonomous driving systems in dense traffic and how vehicle classification can help interaction-aware
prediction and planning. Then, we introduce a new category “stopped vehicle” to the previous
vehicle classification problem for its potential benefit for the decision-making system. We continued
by analyzing the limitations of existing works on vehicle classification and reasoning the necessary
information that should be included for this problem. By analyzing the decision making process of
human drivers on this problem, we correspond the necessary information to the measurements of
sensors and propose a multi-modal model. To meet the complexity of our task and the needs of our
model, we collect the dataset in real driving scenarios and then preprocess and label it. In the end,
we implement and train this model and conduct thorough analyses and interpretations of it.

Our main contribution is that we design a novel multi-modal model that can leverage information
from various sensors including lidar, radar, camera, GPS and high-definition maps for the task of
vehicle classification. Four latent encoders that are responsible for extracting different kinds of
features are included in our model. By introducing the CLIP model as our global vision encoder,
we want to give our model the ability of scene understanding in order to generalize well on different
driving scenarios and handle complex cases.

We investigate the effectiveness of each latent encoder through visualization methods and quantitative
analysis. We find out that the model learns to combine the latent features from different encoders
and the four latent encoders learn to solve a part of the problem with the information that they have.
The Swin Transformer learns to extract information about brake lights states in order to distinguish
stopped and moving vehicles from parked vehicles. The map encoder learns to detect whether
the vehicle is at an intersection or in the middle of the road to distinguish stopped vehicles from
parked vehicles. The states encoder learns to identify moving vehicles through velocity and position
change. Removing one of these encoders will result in performance degradation in a certain part of
the problem.

We find out that the fine-tuned CLIP model contributes to the identification of all labels based on
the quantitative analysis. On the other hand, by visualizing the attention map of our fine-tuned CLIP
model, we showed that directly applying foundation vision in the field of autonomous driving is not
the best solution. The CLIP model is easily distracted by irrelevant objects and thus introduces
noise to the model. More delicate fine-tuning and transfer learning could be done for better
performance.

During the training process, we find out that directly applying the joint training of pretrained
encoders and untrained encoders will cause the untrained encoders to be underfitted. To solve this
problem, we pretrained our map encoder before joint training.
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6 Conclusion and Discussions

In this work, we simply use concatenation for the fusion of four latent features. We showed through
experiments that a more sophisticated feature fusion method is not necessary in our case. However,
our design does not allow communications between different latent features and this could limit
its performance on larger and more complex datasets. In our model, the latent features essentially
contribute through the classification head independently to the output. However, as shown in
our ablation studies, different latent features don’t always have useful information to provide for
the identification of a certain vehicle. The uncertainty in this case could potentially contribute
negatively, how to combine the information from different latent encoders wisely and only let
certain latent encoders to contribute when they are certain about their decision is a very interesting
direction for the follow-up work.
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