
Institute of Software Engineering

Software Quality and Architecture

University of Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis

Transformation of

Technology-specific Deployment

Models into Technology-agnostic

Deployment Models

Marcel Weller

Course of Study: Softwaretechnik

Examiner: Prof. Dr.-Ing. Steffen Becker

Supervisor: Sandro Speth, M. Sc.

Dr. rer. nat. Uwe Breitenbücher

Commenced: November 1, 2021

Completed: April 29, 2022

Abstract

The deployment of software applications to the cloud is a highly complex process that leaves

plenty of room for further improvement and optimization. To facilitate the automation and man-

agement of deployment processes, development teams can use various deployment technologies

to create deployment models. For that, developers must acquire specialized knowledge and exper-

tise in the deployment technologies they intend to use. Consequently, development teams create

technology-specific deployment models that are difficult to comprehend for developers and other

application stakeholders who do not have the required expertise. This work aims to transform

technology-specific deployment models into technology-agnostic deployment models to facilitate

the comprehensibility of application deployments. Technology-agnostic deployment models de-

scribe application deployments using abstract concepts that do not require experience with specific

deployment technologies to comprehend them. In this work, we present the concept of a transfor-

mation framework capable of performing such a transformation process. Furthermore, we evaluate

a prototypical realization of the transformation framework that supports four different deployment

technologies. The results show that the transformation framework can create technology-agnostic

deployment models that contain most of the application deployment information. However, we also

found that the transformation framework requires significantly more development effort to support

arbitrary deployment technologies. The presented concept provides a foundation for future work

exploring various topics regarding the transformation of technology-specific deployment models

into technology-agnostic deployment models.

iii

Kurzfassung

Das Deployment von Softwareanwendungen in der Cloud ist ein hochkomplexer Prozess, der noch

viel Raum für weitere Verbesserungen und Optimierungen lässt. Um die Automatisierung und

Verwaltung von Deployment Prozessen zu erleichtern, können Entwicklungsteams verschiedene

Deployment Technologien zur Erstellung von Deployment Modellen verwenden. Dazu müssen

die Entwickler spezielles Fachwissen und Expertise über die zu verwendenden Deployment Tech-

nologien erwerben. Infolgedessen erstellen Entwicklungsteams technologiespezifische Deployment

Modelle, die für Entwickler und andere an der Anwendung Beteiligte, die nicht über das erforderliche

Fachwissen verfügen, nur schwer zu verstehen sind. Das Ziel dieser Arbeit ist die Transforma-

tion von technologiespezifischen Deployment Modellen zu technologieagnostischen Deployment

Modellen, um die Verständlichkeit der Deployments von Anwendungen zu erleichtern. Technologie-

unabhängige Deployment Modelle beschreiben Deployments von Anwendungen mit Hilfe abstrakter

Konzepte, die keine Erfahrung mit bestimmten Deployment Technologien erfordern, um sie zu

verstehen. In dieser Arbeit stellen wir das Konzept eines Transformations-Frameworks vor, das

in der Lage ist, einen solchen Transformationsprozess durchzuführen. Darüber hinaus evaluieren

wir eine prototypische Realisierung des Transformations-Frameworks, das vier verschiedene De-

ployment Technologien unterstützt. Die Ergebnisse zeigen, dass das Transformations-Framework

technologieunabhängige Deployment Modelle erstellen kann, die einen Großteil der Informatio-

nen über das Deployment der Anwendung enthalten. Allerdings haben wir auch festgestellt, dass

das Transformations-Framework wesentlich mehr Entwicklungsaufwand erfordert, um beliebige

Deployment Technologien zu unterstützen. Das vorgestellte Konzept stellt eine Grundlage für

zukünftige Arbeiten dar, welche sich mit der Erforschung einer Vielzahl von Themen bezüglich

der Transformation von technologiespezifischen Deployment Modellen in technologieunabhängige

Deployment Modelle beschäftigen können.

v

Contents

1 Introduction 1

2 Foundations and Related Work 3

2.1 Foundations . 3

2.2 Related Work . 7

3 Concept and Design 9

3.1 Overview of the Concept . 9

3.2 Definitions . 10

3.3 Meta-Model for the Technology-Agnostic Deployment Model 12

3.4 Concept of the Transformation Framework . 15

3.5 Architecture . 19

4 Prototypical Realization 35

4.1 Java Applications . 36

4.2 Databases . 36

4.3 Message Broker . 37

4.4 User Interaction . 39

4.5 Plugins . 41

5 Evaluation 49

5.1 Design . 49

5.2 Exemplary Technology-Specific Deployment Model 51

5.3 Results . 53

5.4 Discussion . 55

5.5 Threats to Validity . 57

6 Conclusion 59

6.1 Summary . 59

6.2 Benefits . 59

6.3 Limitations . 60

6.4 Lessons Learned . 60

6.5 Future Work . 61

Bibliography 63

A Expected Technology-Agnostic Deployment Model 67

B Evaluation Results 93

B.1 M1: Application Logs Summary . 93

vii

B.2 M2: Registered Plugins . 95

B.3 M3: Message Broker Definitions . 96

B.4 M5: Actual Technology-Agnostic Deployment Model 100

viii

List of Figures

2.1 Directions of relationships between components of an application topology

[WBB+20b]. 6

3.1 High-level concept of the transformation framework. 9

3.2 Relationship between deployment model and embedded deployment model. . . . 11

3.3 Process of transforming a technology-specific deployment model following a static

analysis approach. 12

3.4 Process of transforming a technology-specific deployment model following a dy-

namic analysis approach. 13

3.5 The Essential Deployment Metamodel [WBF+20]. 13

3.6 Phases of the transformation process. 18

3.7 Component diagram of the transformation framework. The databases and queues

show additional information about which entities they store. There can be multiple

instances of the components Plugin and AnalysisTaskRequestQueue. 19

3.8 Unified Modeling Language (UML) Class diagram of the internal representation of

the technology-specific deployment model. 21

3.9 UML Class diagram of the internal technology-agnostic deployment model. The

original Essential Deployment Metamodel (EDMM) is extended with information

for internal processing, marked in blue. 25

3.10 UML Sequence diagram showing the plugin registration process. 27

3.11 UML Class diagram for the Plugin. It is created by the AnalysisManager and

persisted in the ConfigurationsDatabase during the plugin registration process. . . 28

3.12 UML sequence diagram showing the start of the transformation process. The

AnalysisManager creates the first AnalysisTask and sends it to a suitable Plugin. . 29

3.13 UML Class diagram of the analysis task. 30

3.14 UML class diagram of the different messages that the AnalysisManager and the

Plugins send and consume from the messaging queues during the transformation

process. 30

3.15 UML sequence diagram showing the analysis and possible responses of a Plugin

during the transformation process. 31

3.16 UML sequence diagram showing the first steps of the processing of an Analysis-

TaskResponse by the AnalysisManager. 33

3.17 UML sequence diagram showing how the AnalysisManager searches for and starts

AnalysisTasks that need to be run. 34

4.1 UML component diagram showing the architecture of the realized prototype. . . 35

4.2 Overview of the entities in the AMQP model. 37

4.3 The tad-shell CLI with all available commands. 39

ix

4.4 Execution of the transform command in the tad-shell CLI. The transformation

framework prints the result of a successful transformation process to the tad-shell. 40

4.5 UML Class diagram of the internal Terraform model. 43

4.6 UML Class diagram of the meta-model for the internal representation of Kubernetes

deployment objects. 45

4.7 UML Class diagram of the meta-model for the internal representation of Kubernetes

service objects. 46

5.1 Component Diagram of the T2 Project [SSB22]. 52

5.2 Overview of the exemplary technology-specific deployment model. It shows the

structure of the deployment model with all embedded deployment models and the

deployment technologies. 53

x

List of Tables

2.1 Deployment Technologies . 5

5.1 GQM model . 50

xi

List of Listings

3.1 Example of a deployment model created with EDMM in YAML specification. . . 14

4.1 Specification of relations in the modified EDMM in YAML specification. 40

4.2 Syntax of the Terraform language [Has21]. 42

4.3 EDMM component type for a physical node in the YAML syntax. 43

4.4 Definition of exemplary Kubernetes deployment and service objects in YAML format. 44

5.1 Output of the transformation result to the Command-Line Interface (CLI) of the

transfromation framework. It shows the location of the technology-agnostic deploy-

ment model and the calculated values for the metrics. 55

A.1 The expected technology-agnostic deployment model. It is the result that we expect

from the transformation framework when it transforms the exemplary technology-

specific deployment model of the T2 Project. 67

B.1 Summary of the events in the application logs from the viewpoint of the analysis

manager. 93

B.2 Registered plugins in the configurations database. 95

B.3 Created AMQP entities on the RabbitMQ message broker. 96

B.4 The actual technology-agnostic deployment model that the transformation frame-

work created from the transformation of the exemplary technology-specific deploy-

ment model. 100

xiii

Acronyms

AMQP Advanced Message Queuing Protocol.

API Application Programming Interface.

BSON Binary JSON.

CLI Command-Line Interface.

DNS Domain Name System.

DSL Domain Specific Language.

ECA Environment-Centric Artifact.

EDMM Essential Deployment Metamodel.

GQM Goal Question Metric.

GUI Graphical User Interface.

IaaS Infrastructure as a Service.

IaC Infrastructure as Code.

JAR Java Archive.

JSON Javascript Object Notation.

NCA Node-Centric Artifact.

PaaS Platform as a Service.

REST Representational State Transfer.

SaaS Software as a Service.

SQL Structured Query Language.

TOSCA Topology and Orchestration Specification for Cloud Applications.

UML Unified Modeling Language.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

YAML YAML Ain’t Markup Language.

xv

1 Introduction

In recent years, both industry and research adopted many deployment technologies to meet the

growing need for deployment management and automation. Software applications nowadays

typically consist of several components for which different development teams or external providers

are responsible [BBK+13; BBK+14; EEKS11]. For example, development teams can integrate

service offerings of cloud providers with their self-written components, which makes its deployment

a challenging task.

Since manual deployments are error-prone and hard to repeat in the exact same manner, it is crucial

to automate the deployment process [HBF+18; WBF+20]. Deployment technologies allow to model

an application deployment in a deployment model and provide means to automatically deploy it to a

target deployment environment such as a specific cloud platform. With this, they enable fast and

repeatable application deployments.

Individual deployment technologies can differ heavily in features and mechanisms, for example,

regarding the Domain Specific Language (DSL) that they provide to create the deployment model

[EBF+17]. As applications are complex and deployment technologies typically serve a specific pur-

pose, development teams often need to apply a mix of different deployment technologies [BBK+14].

The corresponding technology-specific deployment models are hard to create, understand and

modify because this requires a high level of understanding and technical expertise in the individual

deployment technologies [BBK+14; EBLW17; HBF+18]. Because the application development

and operation involve many people with various backgrounds, the comprehensibility of deployment

models is crucial for the business’s success. For the communication of the application deployment,

it is sufficient to give an overview of the components, their interconnections and the required cloud

resources that the deployment model describes. However, this information is often not visible in the

deployment model because the technical details of the deployment technology obscure it.

Therefore, we seek to transform technology-specific deployment models into deployment models

independent of deployment technologies. These technology-agnostic deployment models rely on

general concepts to overview the application deployment while preserving all relevant information

to deploy it. As a result, the required technical expertise to comprehend a technology-agnostic

deployment model should be significantly lower.

We present a concept and architecture for a transformation framework that takes a technology-

specific deployment model as input and outputs a technology-agnostic deployment model. The

framework follows a plugin-based approach, where each plugin is responsible for transforming

a specific deployment technology. We also provide a concept for the transformation process that

the transformation framework executes. Furthermore, we select the EDMM as the meta-model

for the technology-agnostic deployment model. We developed a prototypical realization of the

transformation framework with four plugins to test and evaluate the presented concept. For that,

we use an exemplary technology-specific deployment model that consists of different deployment

technologies to represent a complex and realistic application deployment.

1

1 Introduction

The evaluation result shows that the transformation framework finds most of the information in

the exemplary technology-specific deployment model and can create adequate components of the

technology-agnostic deployment model. However, the transformation framework cannot detect

some information, which requires further improvements to both the concept and the prototypical

realization. The most critical points herein are improvements in the application of the EDMM type

system and exploring possibilities for the plugins to communicate findings. With the plugin-based

approach, we can extend the transformation framework to include more deployment technologies or

implement alternative transformation methods.

We conclude that the concept is generally applicable for the transformation of deployment models.

While we identify some ways to improve it, we see the biggest challenge in implementing the

transformation framework. The support for a wide range of different deployment technologies

and the ability to retain all relevant information requires significant development effort of various

plugins.

The main contribution of this thesis is the concept and architecture of the transformation framework

and its transformation process. It shows a general approach for transforming technology-specific

deployment models into technology-agnostic deployment models. Furthermore, the evaluation of

the prototypical realization reveals challenges that we still need to overcome. Finally, we outline

different possibilities for future work to investigate topics based on this concept.

Thesis Structure

The thesis is structured in the following chapters.

Chapter 2 – Foundations and Related Work: First, we provide information about the most im-

portant foundations for this work and related work that have already done research in a similar

direction.

Chapter 3 – Concept and Design This chapter presents the main contribution of the thesis. It

contains the concept and the architecture of the transformation framework.

Chapter 4 – Prototypical Realization Here, we describe how we implemented a prototype of the

transformation framework.

Chapter 5 – Evaluation: This chapter describes the evaluation of the prototypical realization of

the transformation framework and discusses the results.

Chapter 6 – Conclusion We conclude our thesis by outlining benefits, limitations, lessons learned

and possible future work.

2

2 Foundations and Related Work

This chapter presents essential concepts that form the foundation of our work in Section 2.1. It

continues with related work that has already explored similar topics in Section 2.2.

2.1 Foundations

We provide details on important concepts to understand the thesis in the following. First, we

give an overview of essential aspects of cloud computing. After that, we describe deployment

technologies and deployment models. Based on this, we provide more details on the characteristics

of technology-agnostic deployment models and different approaches.

Cloud Computing

To deploy applications quickly and reliably, cloud computing is an optimal solution. Cloud providers

offer decentralized compute resources or other services through a cloud platform. Customers can

rent these cloud offerings on-demand. Consequently, customers do not need to provide expensive

hardware or expertise on-site, which saves effort, time, and costs.

Mell and Grance [MG11] define the most important aspects of cloud computing to facilitate

comparisons and discussions about topics in this area. They define three cloud service models:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS).

The cloud service models categorize approaches of cloud platforms for providing offerings to the

user. IaaS offerings provide capabilities to deploy infrastructure resources like computing, network,

and storage. The customer has complete control over the subsequent deployment of software

components but not the underlying infrastructure. With PaaS offerings, the customer can deploy a

hosting environment on the cloud platform that may consist of several provider-created software

components. They can then deploy their customer-created applications in this hosting environment.

The underlying infrastructure is not visible to the customer, but they can configure the software

components of the hosting environment. Finally, cloud providers can deploy software applications

on the cloud platform and provide it as a SaaS offering. Customers that rent such services do

not have control over the deployed components and can at most configure some options of the

application.

Furthermore, Mell and Grance [MG11] define four cloud deployment models, which describe who

has access to the offerings and where the cloud platform is located. Private clouds restrict access to

single organizations that can host the cloud platform on- or off-premise. Community clouds expand

this concept and share access to the offerings between organizations. In contrast, offerings of public

3

2 Foundations and Related Work

clouds are open for use by everyone and reside on the premises of a cloud provider. Finally, they

define hybrid clouds, which is a combination of several cloud platforms that can follow different

cloud deployment models.

It is crucial to differentiate between the terms “cloud deployment model” and “deployment model”

because they are different concepts, and we use both of them throughout the thesis. We describe the

term deployment model in the following section.

Deployment Technologies and Deployment Models

The deployment process of a software application combines several activities like the release,

installation, update, and removal of the whole system or its components [CFH+98]. It involves

transferring the software application code to the desired deployment environment, which consists

of infrastructure resources and optionally a set of other preinstalled software components. As it is

challenging to achieve fast and repeatable application deployments by executing the deployment

process manually, deployment technologies have emerged that automate the deployment process

and tackle these problems [EBF+17; HBF+18; WBF+20].

Deployment technologies allow creating automatically executable models, so-called deployment

models [EBF+17]. Deployment models describe the components, their relationships, and the

required infrastructure resources of software applications [HBF+18; WBF+20]. Other literature

commonly uses the term “deployment artifacts” for deployment models [EBLW17; WBB+20a].

Deployment technologies provide a DSL, which is often based on Javascript Object Notation

(JSON)1 or YAML Ain’t Markup Language (YAML)2 for the creation of the deployment models

[HBF+18; WBF+20]. A deployment model is a set of files that many people can manage and

maintain in collaboration and through a version control system. As a result, deployment models

enable a repeatable deployment process.

Deployment models follow either a declarative or imperative deployment modeling approach

[EBF+17]. Declarative deployment models describe the desired state of the application deployment

using structural models. The deployment technology provides a deployment engine that interprets

the declarative deployment model and then deploys the application. Doing so enforces the desired

state on the actual state of the running application. In contrast, imperative deployment models

explicitly describe the execution of processes required for the deployment. As such, they make use

of procedural models that a process engine executes. Declarative deployment models are more

widely accepted in the industry [WBF+20].

Wettinger et al. [WBKL16] provide a systematic classification for DevOps artifacts. These are

deployment models that are stored in public repositories, like Chef cookbooks or Juju charms.

Development teams can reuse these DevOps artifacts to integrate them into larger software ap-

plications. They identify two classes of DevOps artifacts: Node-Centric Artifacts (NCAs) and

Environment-Centric Artifacts (ECAs). A node is either a physical server, a virtual machine, or a

container. NCAs are deployed on a single node and therefore consist of only one component without

any relations to other components. In contrast, ECAs consist of several interconnected components

that require the deployment on multiple nodes.

1JSON homepage: https://json.org/
2YAML homepage: https://yaml.org/

4

2.1 Foundations

Wurster et al. [WBF+20] give an overview of the most popular deployment technologies by the

number of search hits on Google (see Table 2.1). Furthermore, they assign these deployment

technologies to three categories: General-Purpose, Provider-Specific and Platform-Specific. They

base this categorization on similarities found in the deployment technologies’ features. The features

relate to the concepts of cloud computing defined by Mell and Grance [MG11]. General-purpose

technologies support all kinds of cloud service models and cloud deployment models. On the other

hand, provider-specific deployment technologies are restricted to a specific cloud provider and can

therefore not support the hybrid cloud deployment model. Lastly, they define platform-specific

deployment technologies, which only support one or some cloud service models and rely on specific

platform bundles like container images.

Technology Category

Puppet General-Purpose

Chef General-Purpose

Ansible General-Purpose

Kubernetes Platform-Specific

OpenStack HEAT General-Purpose

Terraform General-Purpose

AWS CloudFormation Provider-Specific

SaltStack General-Purpose

Juju General-Purpose

CFEngine Platform-Specific

Azure Resource Manager Provider-Specific

Docker Compose Platform-Specific

Cloudify General-Purpose

Table 2.1: Most popular deployment technologies and assigned category, as of February 2019

[WBF+20].

As deployment technologies can differ heavily in supported features, there are different use cases

where it makes sense to prefer one technology over the other. Some deployment technologies are

based on general principles like Infrastructure as Code (IaC) or configuration management. IaC

focuses on the automated deployment of infrastructure resources by describing their provisioning

through code [Mor16]. Examples of deployment technologies following the IaC principle are

Terraform, Pulumi and AWS CloudFormation. Other deployment technologies, like Kubernetes or

Docker Compose, focus solely on the software components of an application and do not provide

means to deploy infrastructure resources. Therefore, selecting an appropriate deployment technology

for creating deployment models in the given use case is crucial. Furthermore, it is possible to combine

deployment models of different deployment technologies into one larger deployment model. Such a

combination of deployment technologies has the advantage that we can select the best fit for each

part of the application deployment. At the same time, it has the downside that the deployment model

grows in complexity and the deployment process is more complicated.

5

2 Foundations and Related Work

2.1.1 Technology-Agnostic Deployment Models

Understanding deployment models created with the DSLs of specific deployment technologies

requires both technical expertise and experience with these technologies [BBK+14; EBLW17;

HBF+18]. Later manual changes, especially of architectural nature, are therefore hard to carry

out. Moreover, this can result in a vendor lock-in concerning the deployment technology or cloud

provider, which negatively impacts the portability of the application.

Various standards, modeling languages, and meta-models aim to overcome these disadvantages

by providing means to create technology-agnostic deployment models. They describe application

deployments with abstract concepts that are often based on patterns and leave out technical details

[EEKS11; HBF+18; LSS+13]. Consequently, technology-agnostic deployment models are generic

representations of application deployments independent of specific deployment technologies.

A prominent example is the Topology and Orchestration Specification for Cloud Applications

(TOSCA), which provides an extensible meta-model for instantiating concrete, technology-agnostic

deployment models [Org13]. TOSCA models application deployments in the form of directed,

acyclic graphs. The vertices represent logical components of the application or underlying infra-

structure resources, whereas the edges denote the relationships in between. The relationships can

run in two major directions: vertical and horizontal (see Figure 2.1) [WBB+20b]. [WBB+20b].

(a) Vertical relationship. (b) Horizontal relationship.

Figure 2.1: Directions of relationships between components of an application topology

[WBB+20b].

Vertical relationships describe the mapping to underlying components, where one component is

“hosted on” the other (see Figure 2.1a). In that sense, they form a set of components that are stacked

on top of each other. At the bottom, we can commonly find components that provide infrastructure

resources. In contrast, horizontal relationships describe how a component “connects to” another

component or service for the exchange of information (see Figure 2.1b).

6

2.2 Related Work

2.2 Related Work

In the following we present work that relates to the thesis topic. First, we provide information on

how we searched for and selected relevant articles. Then we present the selected work and organize

them in sections based on similarities in their approaches and research goals. For each related work

we present an overview, point out differences, and highlight relevant concepts for the thesis.

2.2.1 Literature Research Methodology

For the research of related literature, we used the academic search engine Google Scholar. We exclu-

sively searched for English literature. We tried different combinations of the keywords “deployment

model”, “transformation”, “deployment artifact”, and “technology agnostic”. The combinations

that worked the best are the following:

1. deployment model transformation

2. deployment artifact transformation

3. technology agnostic deployment

We split the selection process of the results into two steps. In the first step we looked at the first

twenty results of each search string and scanned their title and abstract. This lead to a preselection

of potentially relevant results that we read in more detail in the second step. We often found work

of the same authors that build on each other. In these cases, we tried to identify the most recent and

relevant articles. To find further literature, we also looked in the references of selected work.

2.2.2 Transformation of Common Deployment Models from Public Code Repositories

In their work, Endres et al. [EBLW17] describe a methodology to crawl public code repositories for

technology-specific deployment models and transform them into technology-agnostic deployment

models. Their goal is to create reusable technology-agnostic deployment models from common ap-

plications and later combine them with other deployment models to build more complex applications.

They focused on the deployment technology Chef, which allows the creation of technology-specific

deployment models called Chef artifacts. In a case study, they transformed Chef artifacts into

TOSCA models. For the information extraction, they used a method called depth-first search

[Tar72]. The resulting TOSCA models lacked information about the underlying infrastructure

because Chef artifacts do not explicitly describe this information. Consequently, they were not able

to deploy these TOSCA models. Therefore, they suggest using a modeling tool to add the missing

information manually.

Wettinger et al. [WBKL16] also pursue the creation of reusable technology-agnostic deployment

models from technology-specific deployment models that they crawl from public code repositories.

For that purpose, they developed a framework consisting of an end-to-end toolchain. Their focus is

on the deployment technologies Chef and Juju because they represent an NCA and ECA, respectively.

They describe in detail the mapping from entities and operations of the deployment technologies to

nodes and relations of a TOSCA model. Moreover, they describe an iterative process in which they

look for dependencies in the technology-specific deployment models to other deployment models of

7

2 Foundations and Related Work

the same deployment technology. If they find a dependency, they add the corresponding technology-

specific deployment model to the transformation process and scan it for further dependencies. The

actual transformation to the TOSCA model focuses solely on the software components and leaves

out information about underlying infrastructure resources. They add this information in a subsequent

step using a modeling tool that is similar to the one employed by Endres et al. [EBLW17] so that

they can deploy the TOSCA models.

In contrast to both related works, we do not seek to crawl public code repositories to transform

technology-specific deployment models of common applications. Furthermore, we do not focus

on specific deployment technologies but rather provide a general concept that works with arbitrary

deployment technologies. Finally, we avoid including manual steps in the transformation process

to achieve full automation. However, we acknowledge the idea of Wettinger et al. [WBKL16] for

finding dependencies to other deployment models. We partly adopt this with our notion of embedded

deployment models (see Section 3.2.1).

2.2.3 The EDMM Modeling and Transformation System

Based on the commonalities of the 13 most popular deployment technologies, Wurster et al.

[WBF+20] created their own standard for technology-agnostic deployment models, called the

EDMM (see Table 2.1). In a follow-up work, Wurster et al. [WBB+19] built a plugin-based trans-

formation framework to transform an EDMM model into a technology-specific deployment model.

The transformation framework supports all 13 most popular deployment technologies. It offers a

CLI, either for user interaction or the integration of the transformation framework into an automated

workflow. Each plugin provides the implementation logic for transforming an EDMM model into

a technology-specific deployment model of its respective deployment technology. Thereby, the

transformation framework can integrate various deployment technologies in an extensible and

pluggable way. Internally, the framework represents the EDMM model as a graph, which allows the

plugins to traverse the data and apply the transformation logic efficiently. Wurster et al. [WBB+20a]

later extended the framework to also support transformations to PaaS- and SaaS-based deployment

models, because initially it was only possible to create IaaS-based models.

This work also provides the concept and a prototypical realization of a plugin-based transformation

framework, but it performs the transformation in the opposite direction. Still, we build on many

of the findings by Wurster et al. [WBB+19] throughout this thesis. For example, we also build a

plugin-based transformation framework and use their definitions of mappings between EDMM and

the deployment technologies for the implementation of the prototypical realization.

8

3 Concept and Design

The overall objective of this work is to provide a concept for a transformation framework that can

transform technology-specific deployment models into technology-agnostic deployment models.

This chapter presents the concept and a more specific design and resulting architecture. First, we

give a comprehensive overview of the concept in Section 3.1. Then we provide basic definitions

of terms that we use throughout this chapter in Section 3.2. Section 3.4 presents the concept in

detail, including the main requirements and design decisions leading to this concept. We then

introduce the meta-model we selected for the technology-agnostic deployment model in ??. Finally,

we present the architecture for the transformation framework that we designed based on the concept

in Section 3.5.

3.1 Overview of the Concept

The transformation framework transforms technology-specific deployment models into technology-

agnostic deployment models following a plugin-based approach (see Figure 3.1). It contains several

plugins that each can analyze deployment models created with a specific deployment technology

into the entities of the technology-agnostic deployment model. For example, the Terraform Plugin in

Figure 3.1 can only transform deployment models created with the deployment technology Terraform.

When the transformation framework receives a technology-specific deployment model as input, it

determines the deployment technology used to create it and passes it to the corresponding plugin.

The plugin analyzes the technology-specific deployment model and creates the technology-agnostic

deployment model with the information it can find. The transformation framework stores this

technology-agnostic deployment model and outputs it at the end of the transformation process.

Figure 3.1: High-level concept of the transformation framework.

With this concept, the transformation framework can also transform more complex deployment

models that use several deployment technologies. In that case, it distributes work packages for

analyzing parts of the technology-specific deployment model across the appropriate plugins. The

9

3 Concept and Design

plugins now collectively extend the internal technology-agnostic deployment model, adding in-

formation about their part of the technology-specific deployment model. Additionally, they also

create an internal representation of the technology-specific deployment model. It helps to create

a shared understanding of the technology-specific deployment model. This is important because

the transformation framework may not know all deployment technologies that were used for the

creation of the technology-specific deployment model at the beginning of the transformation process.

Suppose plugins find a part of the technology-specific deployment model they do not understand

because they were created with a different deployment technology. In that case, they can note this

in the internal technology-specific deployment model. The transformation framework can then

create a new work package and distribute it to an appropriate plugin. That way, the plugins can

communicate relevant findings for subsequent processing steps of other plugins. Furthermore, the

transformation framework can track when all parts of the technology-specific deployment model

have been analyzed and determine when the transformation process is finished.

3.2 Definitions

In the first part, this section defines deployment models based on the information presented in

Section 2.1. This serves as a precise specification for this work to define what we want to analyze

and transform with the transformation framework. Furthermore, we define the term embedded

deployment model, which shows how we handle more complex deployment models that are created

by integrating different deployment technologies. In the second part, we define general analysis

techniques that the plugins of the transformation framework can apply.

3.2.1 Deployment Model and Embedded Deployment Model

A deployment model prescriptively describes the deployment of an application and its required

infrastructure. The term comprises scripts, configurations, files, declarative models, and

imperative models created with arbitrary technologies to deploy an application automatically.

For example, TOSCA topology templates or EDMM deployment models are declarative deployment

models that describe the components as well as their dependencies in the form of a typed and

weighted graph. We also consider Terraform configuration files or Kubernetes configuration files

as deployment models because they contain object definitions of the components following an

object model defined by their DSL. A Bash script is an imperative deployment model if it contains

commands for deploying an application.

An embedded deployment model is a deployment model that is contained in another deploy-

ment model, an embedding deployment model. The embedded deployment model prescriptively

describes the deployment of a specific part of the embedding deployment model. A deploy-

ment model can embed any number of other deployment models. The embedded deployment

model is possibly created with a different technology than the embedding deployment model

and can also recursively contain further embedded deployment models.

10

3.2 Definitions

Figure 3.2 visualizes this relation. For example, in a declarative TOSCA topology template, a node

template could be of a node type that provides an embedded deployment model in the form of an

install management operation with a corresponding implementation artifact, e.g., an imperative

Bash script. To give another example, Terraform configuration files deploy a Kubernetes cluster

and reference Kubernetes configuration files that deploy the application in this cluster.

Figure 3.2: Relationship between deployment model and embedded deployment model.

A source code artifact implements a component’s business logic and may contain additional

dependencies required to execute it.

For example, a TOSCA node template that describes a Java application may contain a source code

artifact in the form of a Java Archive (JAR) file. Alternatively, a Kubernetes deployment object may

reference a source code artifact in the form of a Docker image. Next to the source code, source code

artifacts can contain additional dependencies. For example, a JAR file may contain an embedded

Apache Tomcat, which is a separate component that hosts the application. Docker images can be

created based on other previously built Docker images, like operating systems. Furthermore, it is

possible to copy other source code artifacts or embedded deployment models, like imperative scripts,

onto the Docker image during its creation. In these cases, source code artifacts are deployment

models that we need to analyze.

3.2.2 Analysis Techniques

In general, we identify two different approaches for the analysis and transformation of deployment

models: 1. static analysis and 2. dynamic analysis.

Static analysis parses in the files of the technology-specific deployment model and extracts all the

information that it can find. It can understand entities of the DSL of the employed deployment

technologies and can directly transform them into entities of the technology-agnostic deployment

model. Figure 3.3 shows how an application following a static analysis technique operates. First,

this Static Analysis Application parses in the files of the technology-specific deployment model

(1). It then analyzes the deployment model directly or through an intermediate data model and

transforms it into entities of the technology-agnostic deployment model (2). After the Static Analysis

Application has analyzed all files, it returns the completed technology-agnostic deployment model

(3).

Dynamic analysis on the other hand, deploys the given technology-specific deployment model and

then analyzes the running application. It may involve monitoring application metrics, analyzing

logs, or running load tests and tracing the requests. From these results, it creates the entities of

the technology-agnostic deployment model. Figure 3.4 visualizes this process. In the first step,

11

3 Concept and Design

Figure 3.3: Process of transforming a technology-specific deployment model following a static

analysis approach.

the Dynamic Analysis Application determines the deployment technologies of the technology-

specific deployment model (1). This is important to create a suitable deployment environment

in the second step (2). The deployment environment is a collection of infrastructure resources

and software components required to run the application that the technology-specific deployment

model describes. The Dynamic Analysis Application can deploy these resources by installing

them on the local machine or using managed services of cloud providers. For example, a Dynamic

Analysis Application provisions a Kubernetes cluster if it finds the use of the deployment technology

Kubernetes in the technology-specific deployment model. In the third step, the Dynamic Analysis

Application deploys the application to this deployment environment by executing the technology-

specific deployment model (3). It does that by passing the technology-specific deployment model to

an instance of the process or deployment engine of the utilized deployment technology. After that,

the Dynamic Analysis Application analyzes the running application and creates the corresponding

entities of the technology-agnostic deployment model (4). When it reaches a point where it cannot

find any new information in the running application, it returns the completed technology-agnostic

deployment model (5). Finally, it destroys the deployment environment by deprovisioning its

software components and infrastructure resources (6).

3.3 Meta-Model for the Technology-Agnostic Deployment Model

A specific meta-model must be selected or created for the technology-agnostic deployment model.

It should be able to describe all relevant parts of application deployments while being independent

of any deployment technology. At the same time, it should be as simple as possible so that the

instantiated technology-agnostic deployment model is easy to understand.

We selected EDMM because it fits very well to these requirements. EDMM is based on the essential

parts that the most popular deployment technologies support, which was determined by a systematic

analysis of those deployment technologies [WBF+20]. That way, it can express a deployment model

in a technology-agnostic way while ensuring that technology-specific deployment models can be

mapped and transformed to it. It is inspired by the TOSCA standard, and as the name suggests, it

provides a meta-model comprised of several entities (see Figure 3.5).

The primary entity is the Deployment Model which contains all other entities. The essential building

blocks are the Component and Relation. A Component is a physical, functional, or logical unit of

an application, while a Relation is a directed physical, functional, or logical dependency between

exactly two of such Components. For both of them, corresponding type entities, the Component

12

3.3 Meta-Model for the Technology-Agnostic Deployment Model

Figure 3.4: Process of transforming a technology-specific deployment model following a dynamic

analysis approach.

Figure 3.5: The Essential Deployment Metamodel [WBF+20].

Type and Relation Type are defined. They are used as templates for Components or Relations and are

therefore defined across Deployment Models for better reusability. These entities can have Properties

to express further configuration information. Additionally, they can have Operations which describe

executable procedures associated with an entity, for example, an installation command. Operations

and Components can be implemented by an Artifact. An Artifact is a physical piece of information

like an installation script that an Operation may reference or a container image that contains the

source code of a Component.

Hence, a deployment model created with EDMM serves not only as an overview of the application

deployment but also contains all the information necessary to deploy the described application.

13

3 Concept and Design

1 ---

2 components:

3 pet_clinic:

4 type: web_application

5 properties:

6 db_hostname: "${db.public_address}"

7 db_user: "${db.user}"

8 db_password: "${db.password}"

9 db_schema: "${db.schema_name}"

10 artifacts:

11 - war: "./files/app.war"

12 operations:

13 configure: "./files/configure.sh"

14 relations:

15 - hosted_on: pet_clinic_tomcat

16 pet_clinic_tomcat:

17 type: web_server

18 operations:

19 create: "./files/create.sh"

20 start: "./files/start.sh"

21

22 component_types:

23 base:

24 extends: null

25 description: The base type

26 metadata: {}

27 web_server:

28 extends: base

29 properties:

30 port:

31 type: integer

32 default_value: 80

33 web_application:

34 extends: base

35

36 relation_types:

37 depends_on:

38 extends: null

39 hosted_on:

40 extends: depends_on

41 connects_to:

42 extends: depends_on

Listing 3.1: Example of a deployment model created with EDMM in YAML specification.

14

3.4 Concept of the Transformation Framework

To instantiate an EDMM and therefore create a deployment model, the EDMM GitHub project

provides a specification for a concrete syntax in the YAML format1. Using this specification,

they also created some example deployment models2. Listing 3.1 shows a shortened version of

one of those examples. It contains three main sections for components, component types, and

relation types. There are two components, the pet_clinic component of type web_application and

the pet_clinic_tomcat component of type web_server. Both types are defined in the section for the

component types and extend the base component type. There is also one relation of type hosted_on,

that is specified inside the pet_clinic component. It indicates, that the pet_clinic component is

hosted on the pet_clinic_tomcat component.

3.4 Concept of the Transformation Framework

This section describes the most important requirements and elaborates on the design decisions that

lead to the presented concept of the transformation framework.

3.4.1 Requirements

The transformation framework should fulfill the following key requirements:

Requirement 1 The transformation framework shall be able to transform a technology-specific

deployment model into a technology-agnostic deployment model based on EDMM.

Requirement 2 The resulting technology-agnostic deployment model shall contain all information

about the application deployment from the originating technology-specific deployment model

so that no information about the application deployment is lost.

Requirement 3 The transformation framework shall be extensible so that it is possible to add

support for more deployment technologies or alternative analysis techniques dynamically and

with low effort.

Requirement 4 The transformation framework shall be able to transform technology-specific

deployment models created from a combination of different deployment technologies.

If the transformation framework fails to find any information about the application deployment, the

technology-agnostic deployment model does not correctly represent the originating technology-

specific deployment model. In that case, the transformation process has failed. The same applies

when the transformation framework adds incorrect information. Therefore, the completeness of

the technology-agnostic deployment model is a critical factor for the success of the transformation

framework. Consequently, it is not required to achieve short processing times for the transformation

process.

Another important factor is the number of supported deployment technologies. The transformation

framework cannot transform deployment technologies that use unsupported deployment technologies.

However, there are many more deployment technologies than the 12 most popular ones described

1EDMM in YAML Specification: https://github.com/UST-EDMM/spec-yaml
2EDMM examples: https://github.com/UST-EDMM/edmm/tree/master/edmm-core/src/test/resources/templates

15

3 Concept and Design

by Wurster et al. [WBF+20]. If we include the analysis of source code artifacts, the amount of

technologies that need to be supported is even higher. Therefore, we do not plan to cover every

existing deployment technology from the start. Moreover, we plan to extend the transformation

framework to support more deployment technologies over time, starting with the most popular ones.

Therefore, the required time and effort to integrate the transformation logic for new deployment

technologies should be as low as possible. This also benefits testing alternative analysis techniques,

e.g., when comparing variations or combinations thereof to improve the transformation result.

3.4.2 Concept

Important information about the application deployment in a technology-specific deployment model

may be hidden behind the peculiarities of the employed deployment technologies, especially their

DSL. Because deployment technologies differ heavily in that regard, it is inescapable to run the

analysis process in a technology-specific way. This ensures that the transformation framework

retrieves all information and fulfills Requirement 2. Therefore, the transformation framework follows

a plugin-based approach so that each plugin provides the logic to transform deployment models

written with one specific deployment technology into the technology-agnostic deployment model

(see Figure 3.1). Each plugin is a self-contained and decoupled service that can easily be added

to and removed from the transformation framework. As a result, the transformation framework is

extensible regarding the support of more deployment technologies to fulfill Requirement 3.

To fulfill Requirement 4, the transformation framework can determine the applied deployment

technologies in a technology-specific deployment model. It can distribute tasks for analyzing a

specific part of the technology-specific deployment model to appropriate plugins. For that purpose,

it creates an internal representation of the technology-specific deployment model that it shares

across all plugins (see Figure 3.1). The plugins continuously extend it with new information

they find during the transformation process. The internal technology-specific deployment model

contains additional meta-information, like the location of associated files, but does not contain the

actual information about the application deployment. It represents a common understanding of

the structure of the technology-specific deployment model and its embedded deployment models,

which helps to manage and track the transformation process for more complex deployment models.

Additionally, the transformation framework contains an internal technology-agnostic deployment

model that the plugins continuously extend with new-found information (see Figure 3.1). The data

format of the internal technology-agnostic deployment model can differ from the format of the

technology-agnostic deployment model that the transformation framework outputs. We can select a

suitable data format for each use case when realizing the transformation framework.

To assess the quality of the resulting technology-agnostic deployment model during and at the

end of the transformation process, we need a way to measure it. The quality of the technology-

agnostic deployment model refers to Requirement 2 and should state how sure we are that it includes

all information about the application deployment. This results from the consideration of several

factors:

1. How much of the technology-specific deployment model were we able to analyze?

2. How good do we comprehend the technology-specific deployment model?

16

3.4 Concept of the Transformation Framework

3. How confident are we that the found information in the technology-agnostic deployment

model is correct?

When the transformation framework has analyzed and correctly comprehended the technology-

specific deployment model and is confident that all found information is correct, we assume that

the resulting technology-agnostic deployment model has high quality. We define metrics that

the transformation framework records in the internal representations of the technology-specific

deployment model and the technology-agnostic deployment model. When extending the internal

deployment models during the transformation process, the plugins determine and record the metrics

accordingly.

The internal technology-specific deployment model contains the following metrics:

Analysis Progress Indicates if the transformation framework has analyzed the given part of the

technology-specific deployment model. This is measured by a Boolean value.

Comprehensibility Gives the proportion of the technology-specific deployment model that the

transformation framework can comprehend. This is measured in percent.

In the internal technology-agnostic deployment model, the plugins record the following metrics:

Confidence Measures how sure the transformation framework is that a given entity of the

technology-agnostic deployment model is part of the application deployment described

in the technology-specific deployment model. This metric has either the value “suspected” or

“confirmed”. Confirmed means that a plugin is sure that the entity is part of the application

deployment. A plugin can create an entity and mark it as suspected if it has not found any

evidence about its existence but assumes that it is part of the application deployment. For

example, suppose a plugin has found two components of type “database” and “web_appli-

cation” respectively that share the same name. In that case, it may add a relation between

those components and mark it as suspected, although it has not found any evidence about the

existence of such a relation.

Type Completeness Measures the number of properties and operations that the transformation

framework found for a component or relation entity in the technology-agnostic deployment

model, in proportion to the number of required properties and operations that their component

or relation type define. This metric is enabled through the type system of EDMM. Plugins

specify generic component and relation types that contain properties and operations required

for a component or relation of this type. We can calculate the type completeness of components

and relations by comparing the found properties and operations to those required by its type.

The plugins do not need to record this metric as an additional field in the internal technology-

agnostic deployment model. Instead, the transformation framework can directly calculate it

from the given entities.

We describe the implementation of these metrics in more detail in Section 3.5.

Different analysis techniques and methods are combined to ensure the extracted information’s

completeness further. For example, the transformation framework may contain a Terraform plugin

employing a static analysis technique and at the same time also provide another Terraform plugin

that transforms deployment models using a dynamic analysis technique. Both plugins can be used

and combined in the same transformation process.

17

3 Concept and Design

A concept for the transformation process is presented in Figure 3.6. It shows the partition of

the transformation process into four major transformation phases. The deployment model and

all embedded deployment models are recursively analyzed separately by repeating those four

transformation phases.

Figure 3.6: Phases of the transformation process.

For the current deployment model, the transformation framework identifies the deployment tech-

nology. It selects a corresponding plugin for the first phase, which carries out a static analysis

of the deployment model. If the transformation framework does not contain an appropriate plu-

gin, the transformation process continues with Phase 3. Otherwise, the plugin analyzes the given

technology-specific deployment model and saves the result in the internal models of the transforma-

tion framework. This includes recording the previously described metrics.

After that follows Phase 2: Verification. It reviews if the technology-agnostic deployment model

meets the internal requirements of the transformation framework, defined by the recorded metrics in

the internal models. The transformation framework can assess how well the transformation process

has worked so far from these metrics. Based on this, the transformation framework decides how to

proceed with Phase 3.

In this next phase, the transformation framework analyzes the same deployment model using a

dynamic analysis technique. It extends the technology-agnostic deployment model created during

Phase 1 with newly found information. It ensures that we find more information about the application

deployment, especially when the preceding static analysis delivered poor results. Alternatively, the

transformation framework can skip Phase 3 and directly proceed with analyzing the next deployment

model or outputting the technology-agnostic deployment model if it has analyzed every deployment

model. It selects this option when the quality of the current technology-agnostic deployment model

is high enough, meaning the static analysis worked very well and the additional dynamic analysis

would be unnecessary. Alternatively, it skips Phase 3 if there is no plugin supporting the dynamic

analysis of the corresponding deployment technology.

In Phase 4, the transformation framework verifies the technology-agnostic deployment model again

and in the same way as in Phase 2. If it ran Phase 3, the transformation framework could see if the

dynamic analysis improved the result.

When the transformation framework has analyzed every deployment model, it calculates an aggre-

gated score for each metric. It then removes the recorded metric values from the technology-agnostic

deployment model and outputs it alongside the calculated scores.

18

3.5 Architecture

3.5 Architecture

From the concept, we designed a concrete architecture for the transformation framework. This

section first gives an overview of the architecture by describing the components of the transformation

framework. After that, it provides definitions for the internal deployment models, which are the

internal technology-specific deployment model and the internal technology-agnostic deployment

model, and the calculations of the metrics that the plugins record. The transformation framework

executes two processes: The plugin registration process and the transformation process. We describe

these processes in detail at the end.

3.5.1 Overview

Figure 3.7 shows an overview of the different components that make up the transformation framework.

It contains three different kinds of applications (AnalysisManager, ModelsService, and Plugins),

three databases (ModelsDatabase, ConfigurationsDatabase, and TasksDatabase), and two different

kinds of messaging queues (AnalysisTaskRequestQueues and AnalysisTaskResponseQueue).

Figure 3.7: Component diagram of the transformation framework. The databases and queues show

additional information about which entities they store. There can be multiple instances

of the components Plugin and AnalysisTaskRequestQueue.

The AnalysisManager is one of the main components of the transformation framework and is

responsible for the user interaction and management of the transformation process. Analogous to

the previously presented concept, there can be many Plugins in the transformation framework. The

Plugins carry out the actual transformation logic. They register at the AnalysisManager through

19

3 Concept and Design

the iPluginRegistration interface, which is a Representational State Transfer (REST) endpoint.

The AnalysisManager stores information about registered Plugins in the ConfigurationsDatabase.

Thereby, the AnalysisManager can distribute tasks to analyze a given deployment model across the

plugins. The AnalysisManager communicates with the Plugins through asynchronous messaging

that the two queues enable. Each Plugin has its own AnalysisTaskRequestQueue, so that the number

of Plugins is equal to the number of AnalysisTaskRequestQueues in the transformation framework.

To kick off the transformation process, the AnalysisManager creates AnalysisTasks, stores them

in the TasksDatabase to keep track of them, and sends corresponding AnalysisTaskStartRequest

messages to a selected AnalysisTaskRequestQueue. Plugins consume AnalysisTaskStartRequest

messages from their AnalysisTaskRequestQueue and then run their transformation logic. When they

are finished with the transformation, they respond by sending an AnalysisTaskResponse message to

the AnalysisTaskResponseQueue. The AnalysisManager consumes this message and continues with

the overall transformation process. Alternatively, a Plugin may find an embedded deployment model

during the analysis that it cannot analyze because it uses a different deployment technology. In that

case, it pauses its analysis and sends an EmbeddedDeploymentModelAnalysisRequest message

to the AnalysisTaskResponseQueue. The AnalysisManager consumes this message, creates an

appropriate AnalysisTask, and sends a corresponding AnalysisTaskStartRequest message to the

AnalysisTaskRequestQueue of a Plugin that can analyze the corresponding deployment technology.

When this task has finished, the AnalysisManager sends an AnalysisTaskResumeRequest message

to the AnalysisTaskRequestQueue of the Plugin that has initially detected the embedded deployment

model and stopped its analysis. The Plugin will then resume its analysis task. Every time the

AnalysisManager consumes an AnalysisTaskResponse message, it checks if it still needs to run

additional tasks or resume stopped ones. The transformation process is finished when the plugins

have processed all AnalysisTasks. The AnalysisManager then returns the resulting technology-

agnostic deployment model to the User.

The ModelsService manages the internal deployment models, the TechnologyAgnosticDeployment-

Model and the TechnologySpecificDeploymentModel, and stores are stored in the ModelsDatabase

and managed by the ModelsService. The ModelsService serves as an abstraction layer between

the internal deployment models and the Plugins. It can resolve conflicts between the Plugins while

providing a common interface to the internal data models for the whole transformation framework.

Consequently, Plugins can use this interface and do not need to implement the same functionality for

creating the entities of the internal deployment models. At the same time, the ModelsService pro-

vides access to the AnalysisManager for initializing the internal deployment models and retrieving

the metrics and the result.

3.5.2 Internal Deployment Models

The internal deployment models are the internal technology-specific deployment model and the

internal technology-agnostic deployment model. In the following, we first introduce the meta-

model for the internal technology-specific deployment model and define how we calculate the

analysis progress and comprehensibility metrics from this model. Then we present the meta-model

for the internal technology-agnostic deployment model, which we extended from the EDMM to

store information for internal processing. This enables the calculation of the confidence and type

completeness metrics, which we define afterward.

20

3.5 Architecture

Internal Technology-Specific Deployment Model

To keep track of the transformation process and create a common understanding of the technology-

specific deployment model across all plugins, an internal representation needs to be created that

provides meta-information about the technology-specific deployment model. This representation

is called the internal technology-specific deployment model and is presented in Figure 3.8. It is

continuously created and extended throughout the transformation process by the different plugins.

Figure 3.8: UML Class diagram of the internal representation of the technology-specific deployment

model.

The TechnologySpecificDeploymentModel is the main entity. It can be uniquely identified by the id

field and matched to a specific transformation process through the transformationProcessId field.

Similar to our definition given in Figure 3.2, it can contain an arbitrary number of embeddedDeploy-

mentModels, which are other TechnologySpecificDeploymentModel entities that must share the

same transformationProcessId. The technology field of the TechnologySpecificDeploymentModel

entity indicates the deployment technology that was used to create it. The transformation framework

utilizes it to match suitable plugins for transforming the technology-specific deployment model. The

commands field contains a set of commands that execute operations on the deployment model. It is

essential for some deployment technologies because they may hold information on how developers

intend to use the deployment model. For example, they may provide specific values for variables

in the deployment model. Users of the transformation framework can provide these commands.

21

3 Concept and Design

Alternatively, Plugins may find them in an embedding deployment model. If this is not the case, the

commands field may be left empty, or the transformation framework may add a default command

for the corresponding deployment technology.

Meta information about the content of the technology-specific deployment model is expressed

through the entities DeploymentModelContent and Line. The DeploymentModelContent represents

a file or a part of a file and is identified by the location field. This is a Uniform Resource Locator

(URL) pointing to a file on the local file system or a web resource. A TechnologySpecificDeploy-

mentModel can contain several DeploymentModelContents, distributed over different locations.

The DeploymentModelContent consists of one or more Lines in sequential order. Each Line is

identified by its position in this sequence through the field number. Additionally, it stores the

values for calculating the analysis progress and comprehensibility metrics in the analyzed and

comprehensibility fields, respectively. The analyzed field indicates if a plugin has analyzed the

given Line or not. On the other hand, the comprehensibility field shows how well a plugin could

understand the content of the technology-specific deployment model that the given Line refers

to. This is expressed in percent through a floating-point number between zero and one. “Zero”

means that the content of the Line was not understood, while “one” means that the Line was fully

understood. Depending on the plugin’s implementation, it may split the content of a Line into

several parts for analyzing it. For example, it may split a Bash command into several tokens for

each given parameter. In these cases, a plugin can record that it has partly understood the content of

a Line, e.g., only a specific proportion of the tokens. By default, plugins set the comprehensibility

to zero. Further analysis by other plugins can only increase comprehensibility, not decrease it. If no

plugin has analyzed the content of a Line, the corresponding comprehensibility field must have the

value “zero” (not understood). Vice versa, if the comprehensibility indicates that the content of the

Line is at least partially understood, it must have been analyzed by some plugin.

The following sections further explain how the transformation framework can use these values to

calculate the corresponding metrics for the whole internal technology-specific deployment model.

Analysis Progress The analysis progress metric is set per Line by the plugins in the “ana-

lyzed” field. By computing it for overlying entities of the type DeploymentModelContent and

TechnologySpecificDeploymentModel, the transformation framework can track the progress of

the transformation process. Furthermore, it can see which parts of the technology-specific de-

ployment model need to be analyzed. Depending on the entity type, the analysis progress metric

has a different meaning. For a Line entity, plugins record it as a Boolean value, which means it

has either analyzed the Line or not. In the context of a DeploymentModelContent or Technolo-

gySpecificDeploymentModel entity, it stands for the proportion of contained Lines that have been

analyzed.

The following formulas show how to calculate the analysis progress for a DeploymentModelContent

(Formula 2) and a TechnologySpecificDeploymentModel (Formula 5), using helper functions

defined in the remaining formulas:

Definitions The following abbreviations are used for instances of entities in the internal technology-

specific deployment model:

22

3.5 Architecture

C(�" := C42ℎ=>;>6H(?428 5 82�4?;>H<4=C">34;

3"� := 34?;>H<4=C">34;�>=C4=C

4�"B := 4<143343�4?;>H<4=C">34;B

Formula 1 Function to calculate the sum of all analyzed Lines contained in a DeploymentModel-

Content, called the “analyzedLinesSum”:

0=0;HI43!8=4B(D<(3"�) =
∑ |3"�.;8=4B |

==1
0= =

{

0, if 3"�.;8=4B=.0=0;HI43 = 5 0;B4

1, if 3"�.;8=4B=.0=0;HI43 = CAD4

Formula 2 Formula 1 can be used to calculate the analysis progress of a DeploymentModelContent

by dividing through the amount of contained Lines:

3"�.0=0;HB8B%A>6A4BB =
0=0;HI43!8=4B(D<(3"�)

|3"�.;8=4B |

Formula 3 Function to calculate the “analyzedLinesSum” for a TechnologySpecificDeployment-

Model by recursively calling itself for all contained embeddedDeploymentModels:

20;2D;0C4�=0;HI43!8=4B(D<(C(�") =
∑ |C(�".2>=C4=C |

==1
0=0;HI43!8=4B(D<(C(�".2>=C4=C=)

+
∑ |C(�".4�"B |

==1
20;2D;0C4�=0;HI43!8=4B(D<(C(�".4�"B=)

Formula 4 Function to calculate the total amount of Lines contained in a TechnologySpecificDe-

ploymentModel by recursively calling itself for all contained embeddedDeploymentModels:

20;2D;0C4!8=4�>D=C (C(�") =
∑ |C(�".3"� |

==1
|C(�".3"�=.;8=4B |

+
∑ |C(�".4�"B |

==1
20;2D;0C4!8=4�>D=C (C(�".4�"B=)

Formula 5 Finally, calculate the analysis progress of a TechnologySpecificDeploymentModel

by dividing its “analyzedLinesSum” through the total amount of Lines contained in the

TechnologySpecificDeploymentModel:

C(�".0=0;HB8B%A>6A4BB =
20;2D;0C4�=0;HI43!8=4B(D<(C(�")

20;2D;0C4!8=4�>D=C (C(�")

Comprehensibility The transformation framework records the comprehensibility metric in the

field “comprehensibility” of the Line entity (see Figure 3.8). From this, it can calculate the metric

for each DeploymentModelContent entity, each embeddedDeploymentModel entity, and the whole

TechnologySpecificDeploymentModel entity. It describes how well the transformation framework

understands the part of the original technology-specific deployment model that corresponds to the

given entity. The comprehensibility metric is given in percent, based on the understood parts. When

a plugin analyzes a Line, it can either comprehend it entirely, partially, or not at all.

The following formulas show how to calculate the comprehensibility of a TechnologySpecificDe-

ploymentModel (Formula 5) and a DeploymentModelContent (Formula 2). For that, we define

helper functions in the remaining formulas.

Definitions The following abbreviations are used for instances of entities in the internal technology-

specific deployment model:

C(�" := C42ℎ=>;>6H(?428 5 82�4?;>H<4=C">34;

3"� := 34?;>H<4=C">34;�>=C4=C

4�"B := 4<143343�4?;>H<4=C">34;B

23

3 Concept and Design

Formula 1 Function to calculate the sum of comprehensibility values of all Lines contained in a

DeploymentModelContent, called the “comprehensibilitySum”:

2><?A4ℎ4=B818;8CH(D<(3"�) =
∑ |3"�.;8=4B |

==1
3"�.;8=4B=.2><?A4ℎ4=B818;8CH

Formula 2 Formula 1 can be used to calculate the comprehensibility of a DeploymentModelContent

by dividing through the amount of contained Lines:

3"�.2><?A4ℎ4=B818;8CH =

2><?A4ℎ4=B818;8C H(D<(3"�)

|3"�.;8=4B |

Formula 3 Function to calculate the “comprehensibilitySum” for a TechnologySpecificDeploy-

mentModel by recursively calling itself for all contained embeddedDeploymentModels:

20;2D;0C4�><?A4ℎ4=B818;8CH(D<(C(�") =
∑ |C(�".2>=C4=C |

==1
2><?A4ℎ4=B818;8CH(D<(C(�".2>=C4=C=)

+
∑ |C(�".4�"B |

==1
20;2D;0C4�><?A4ℎ4=B818;8CH(D<(C(�".4�"B=)

Formula 4 Function to calculate the total amount of Lines contained in a TechnologySpecificDe-

ploymentModel by recursively calling itself for all contained embeddedDeploymentModels:

20;2D;0C4!8=4�>D=C (C(�") =
∑ |C(�".3"� |

==1
|C(�".3"�=.;8=4B |

+
∑ |C(�".4�"B |

==1
20;2D;0C4!8=4�>D=C (C(�".4�"B=)

Formula 5 Finally, calculate the comprehensibility of a TechnologySpecificDeploymentModel

by dividing its “comprehensibilitySum” through the total amount of Lines contained in the

TechnologySpecificDeploymentModel:

C(�".2><?A4ℎ4=B818;8CH =

20;2D;0C4�><?A4ℎ4=B818;8C H(D<(C(�")

20;2D;0C4!8=4�>D=C (C(�")

Internal Technology-Agnostic Deployment Model

As stated in Section 3.3, the transformation framework should create and output a technology-

agnostic deployment model following the EDMM. For the internal technology-agnostic deployment

model, we present a meta-model in Figure 3.9, which is based on EDMM and can store additional

information that we need for the internal processing.

All the main entities of the EDMM are still in place (see Figure 3.5). We rename the Deploy-

mentModel entity into TechnologyAgnosticDeploymentModel to distinguish it clearly from the

technology-specific deployment models. The fields marked in blue are only needed during the trans-

formation process and the ModelsService removes them when outputting the technology-agnostic

deployment model. The transformationProcessId in the TechnologyAgnosticDeploymentModel

entity allows the transformation framework to assign the internal technology-agnostic deployment

model to a specific transformation process. Furthermore, the Property, Operation, Relation, Com-

ponent, and Artifact entities contain a field for storing the confidence metric.

Additionally, we add fields to the entities of the EDMM because we need this information to

instantiate a concrete model. We obtained this information from the textual description of the

EDMM by Wurster et al. [WBF+20] and especially their specification for a concrete syntax in the

YAML format3. Each Property represents a key-value pair and has corresponding fields to store

3EDMM in YAML Specification: https://github.com/UST-EDMM/spec-yaml

24

3.5 Architecture

Figure 3.9: UML Class diagram of the internal technology-agnostic deployment model. The

original EDMM is extended with information for internal processing, marked in blue.

this information. If the Property is contained in a ComponentType or RelationType, we can use

the value field to express a default value for the Property. The data type of the value is variable

and defined per Property by its type field, which can either be a Boolean, double, integer, or string.

With the required field, we can indicate if a Component or Relation must include this Property

or if it is optional. Entities of type ModelEntity, Operation, and Artifact contain a field name to

differentiate between entities of the same type. Artifacts have a field fileURI that stores a Uniform

Resource Identifier (URI) to the actual file that an Artifact is representing. We add an aggregation

to the ComponentType and the RelationType for specifying a parentType. It enables reusing type

definitions for building type hierarchies and leads to more concise technology-agnostic deployment

models. An example for this can be seen in Listing 3.1 where the parentType is expressed through

the extends field. Finally, we add a constraint, which defines that a Component cannot have a

Relation to itself. This is based on its definition, stating that a “relation is a [..] dependency between

exactly two components” [WBF+20].

We can calculate the confidence and type completeness metrics from the internal technology-agnostic

deployment model. The latter does not require an additional field as the confidence metric does.

Instead, the transformation framework can calculate it by comparing the Relations and Components

with their assigned types. We present the calculations for both metrics in the following.

Confidence The confidence metric gives us a better understanding of how many entities in the

technology-agnostic deployment model we can be sure that they are part of the application deploy-

ment. To calculate this, the transformation framework computes the percentage of AnnotatedProp-

25

3 Concept and Design

erties, AnnotatedOperations, AnnotatedRelations, AnnotatedComponents, and AnnotatedArtifacts

that have a confidence set to “confirmed”. We do this by dividing the sum of all confirmed entities

by the sum of all entities, as shown in this formula:

2>= 5 834=24 =

BD<$ 5 �>= 5 8A<43�=C8C84B

BD<$ 5 �=C8C84B

The plugins do not record the confidence for all types of entities in the internal technology-agnostic

deployment model. The ComponentType and RelationType entities do not represent actual infor-

mation about the application deployment because they only serve as templates for Relations and

Components. For the DeloymentModel entity, it makes no sense to record the confidence either

because there is always only one instance per internal technology-agnostic deployment model.

Therefore, we exclude these three entities from calculations of the confidence metric.

Type Completeness We can calculate the type completeness metric for each Relation and Compo-

nent. It represents the percentage of required Properties and Operations, given by the type definition,

present in a given Relation or Component. For that, we need to sum up the required Properties and

Operations of the ComponentType or RelationType. This gives us the “sumOfRequiredPropertiesAn-

dOperations”. Then, we need to look at the Component or Relation and count the number of these

required Properties and Operations that are present, resulting in the “sumOfActualPropertiesAndOp-

erations”. We ignore optional Properties. By dividing the sumOfActualPropertiesAndOperations

by the sumOfRequiredPropertiesAndOperations for a given entity, we can calculate the type com-

pleteness:

4=C8CH.CH?4�><?;4C4=4BB =
BD<$ 5 �2CD0;%A>?4AC84B�=3$?4A0C8>=B (4=C8C H)

BD<$ 5 '4@D8A43%A>?4AC84B�=3$?4A0C8>=B (4=C8C H.C H ?4)

The type completeness of the whole technology-agnostic deployment model (abbreviated in the

following formulas with “tadm”) is composed of two values. The first value represents the percentage

of required Properties and Operations in relation to the present ones in all Relations and Components

for the whole technology-agnostic deployment model combined. This gives a better understanding

about the ability of the plugins to find all the required information. Its calculation is similar to the

calculation for each entity on its own, as shown above. The difference is that we do not calculate

the sumOfRequiredPropertiesAndOperations and sumOfActualPropertiesAndOperations for each

entity but rather as a sum over all entities.

C03<.CH?4�><?;4C4=4BB+0;1 =

BD<$ 5 �2CD0;%A>?4AC84B�=3$?4A0C8>=B (C03<)

BD<$ 5 '4@D8A43%A>?4AC84B�=3$?4A0C8>=B (C03<)

The second value gives the percentage of Components and Relations that are type complete. From

an excellent result (close to “1”), we can see that almost all entities are type complete, while a lower

result (close to “0”) indicates that we miss information in almost all entities. This means, that they

contain all required Properties and Operations, so that CH?4�><?;4C4=4BB(4=C8CH) = 1. We show

this in the following formulas:

=D<14A$ 5)H?4�><?;4C4�=C8C84B(C03<) =

|C03<.A4;0C8>=B where CH?4�><?;4C4=4BB(A4;0C8>=) == 1|

+ |C03<.2><?>=4=CB where CH?4�><?;4C4=4BB(2><?>=4=C) == 1|

C03<.CH?4�><?;4C4=4BB+0;2 =

=D<14A$ 5) H?4�><?;4C4�=C8C84B (C03<)

|C03<.A4;0C8>=B |+ |C03<.2><?>=4=CB |

26

3.5 Architecture

From both of these values combined, we can assess the general ability of the plugins to find

information in the technology-specific deployment model. If both values are high, we can infer

that the plugins were very good at finding information, whereas low results indicate the opposite.

More interesting are the cases when both values show significant differences in their results. If the

typeCompletenessVal1 is much lower in relation to the typeCompletenessVal2, some entities may

miss almost all the required information. When the typeCompletenessVal1 is much higher than the

typeCompletenessVal2, we can interpret that most entities miss at least some information.

3.5.3 Plugin Registration Process

The AnalysisManager distributes tasks for transforming the technology-specific deployment model

over the Plugins of the transformation framework. For that purpose, the AnalysisManager needs to

know which Plugins are available, especially their deployment technology and the type of analysis

technique they support. The plugin registration process enables this (see Figure 3.10). The Plugins

send all necessary information to the AnalysisManager when we deploy them. We can deploy the

Plugins alongside the AnalysisManager and the other entities of the transformation framework.

However, it is also possible to add Plugins at a later point in time to an already running instance of

the transformation framework.

Figure 3.10: UML Sequence diagram showing the plugin registration process.

27

3 Concept and Design

In the first step of the plugin transformation process, a Plugin calls the corresponding endpoint of

the AnalysisManager. It provides information about the deployment technology and the analysis

type. The AnalysisManager then first creates and provisions a new AnalysisTaskRequestQueue

for the Plugin. It saves the name of the queue alongside the technology and the analysis type

in an entity called Plugin and persists it in the ConfigurationsDatabase. A UML class diagram

for this Plugin entity is presented in Figure 3.11. The field analysisType has either the value

“STATIC” or “DYNAMIC” corresponding to the two different analysis techniques defined in

Section 3.2.2. Persisting the queueName is essential because it later provides the information for

the AnalysisManager on where to send an analysis task when it selects this Plugin.

Figure 3.11: UML Class diagram for the Plugin. It is created by the AnalysisManager and persisted

in the ConfigurationsDatabase during the plugin registration process.

The AnalysisManager then returns the name of the newly created AnalysisTaskRequestQueue and

the name of the already running AnalysisTaskResponseQueue. When we deploy the Analysis-

Manager, it provisions the AnalysisTaskResponseQueue. From this information, the Plugin then

establishes a connection to both queues. After that, the Plugin is ready to receive messages from

the AnalysisTaskRequestQueue and send messages to the AnalysisTaskResponseQueue. With that,

the plugin registration process is finished.

3.5.4 Transformation Process

The transformation process starts with a user supplying a technology-specific deployment model and

ending with the transformation framework returning the result in the form of the created technology-

agnostic deployment model. This process involves all components of the transformation framework

(see Figure 3.7) and follows the phases presented in Figure 3.6. Because this encompasses many

steps, we split the modeling of the transformation process into several diagrams. In these diagrams,

we use the abbreviations TSDM and TADM for the technology-specific deployment model and the

technology-agnostic deployment model, respectively. Generally, the transformation framework can

run several transformation processes but not in parallel.

Figure 3.12 shows the first steps of the transformation process, focusing on the AnalysisManager.

The User starts the process by calling the AnalysisManager. They provide information about the

technology-specific deployment model that they want to transform. The information comprises

the deployment technology of the deployment model, commands for executing it, and one or more

locations in the form of URLs where the deployment model is located. The AnalysisManager starts

with looking for a suitable Plugin for analyzing the technology-specific deployment model. For

that, it queries the ConfigurationsDatabase which stores information about available Plugins. In

alignment with the conceptualized transformation phases, it first looks for a Plugin following a static

28

3.5 Architecture

analysis approach. If there is no suitable Plugin, the analysis manager skips this phase and looks for

a Plugin that implements a dynamic analysis technique. In case the AnalysisManager is not able

to find any Plugin that can transform the given technology-specific deployment model, it ends the

transformation process. Then it responds to the User with an error message.

Figure 3.12: UML sequence diagram showing the start of the transformation process. The Analy-

sisManager creates the first AnalysisTask and sends it to a suitable Plugin.

Otherwise, the AnalysisManager continues with creating the first AnalysisTask. Figure 3.13 shows a

UML class diagram of such an AnalysisTask. It contains a unique taskid and a transformationProces-

sId that the AnalysisManager generates to correlate the AnalysisTask to the current transformation

process. In addition, it includes the information about the technology-specific deployment model

given by the User. The AnalysisManager maps the locations to a class DeploymentModelLocation,

that can optionally provide a startLineNumber and an endLineNumber to limit the area of a given

file. The AnalysisTask has a field status which helps to keep track of the current state of processing.

For the initial AnalysisTask is sets the status to “RUNNING”. Finally, the AnalysisTask contains

the pluginId of the Plugin that it selected for the analysis.

The AnalysisManager persists this initial AnalysisTask in the TasksDatabase (see Figure 3.12).

Then it sends a request to the ModelsService for initializing the internal technology-specific de-

ployment model and the internal technology-agnostic deployment model. It provides the previously

created transformationProcessId and further information about the technology-specific deployment

model. The ModelsService creates the internal deployment models and persists them in the Mod-

elsDatabase. Finally, it creates an AnalysisTaskStartRequest message from the AnalysisTask and

29

3 Concept and Design

Figure 3.13: UML Class diagram of the analysis task.

sends it to the AnalysisTaskRequestQueue of the selected Plugin. Figure 3.14 shows a model of the

AnalysisTaskStartRequest message alongside the other types of messages that are involved in the

transformation process at a later stage.

Figure 3.14: UML class diagram of the different messages that the AnalysisManager and the Plugins

send and consume from the messaging queues during the transformation process.

30

3.5 Architecture

The transformation process continues with the selected Plugin consuming the AnalysisTaskStartRe-

quest from its AnalysisTaskRequestQueue. The Plugin then starts with the analysis of the technology-

specific deployment model. The processing steps of the Plugin are the second part of the transfor-

mation process that we present in Figure 3.15.

Figure 3.15: UML sequence diagram showing the analysis and possible responses of a Plugin

during the transformation process.

First, the Plugin retrieves both internal deployment models from the ModelsService. After that, it

runs the analysis of the technology-specific deployment model. The exact actions and workflow of

this analysis depend on the specific implementation of the Plugin. In general, it covers the following

steps:

1. Parse in and analyze the technology-specific deployment model from the given locations.

2. Update the internal technology-specific deployment model with new information and set the

analysis progress and comprehensibility metrics.

3. Update the internal technology-agnostic deployment model with new EDMM entities and set

the confidence metric.

31

3 Concept and Design

If an error occurs during the analysis, the Plugin creates and sends an AnalysisTaskResponse

message (see Figure 3.14) to the AnalysisTaskResponseQueue. To indicate that the analysis has

failed, the Plugin sets the success field of the AnalysisTaskResponse message to “false”. It adds

an errorMessage that describes the error and its cause. If the analysis was successful, the Plugin

sends the modified internal deployment models to the ModelsService, which then updates them

in the ModelsDatabase. If the Plugin discovered embedded deployment models during the anal-

ysis, it would create corresponding EmbeddedDeploymentModelAnalysisRequest messages (see

Figure 3.14) and send them to the AnalysisTaskResponseQueue. The EmbeddedDeploymentModel-

AnalysisRequest message contains information about the embedded deployment model, like the

deployment technology, possible commands, and the locations. Furthermore, the Plugin writes the

taskId and the transformationProcessId of the AnalysisTaskStartRequest that it consumed in the

beginning to the parentTaskId and the transformationProcessId fields, respectively. Finally, the

Plugin sends an AnalysisTaskResponse message to the AnalysisTaskResponseQueue, this time with

the success field set to “true”.

The AnalysisManager listens to the AnalysisTaskResponseQueue. When it consumes an Em-

beddedDeploymentModelAnalysisRequest message, it extracts the information and creates a new

AnalysisTask for analyzing the embedded deployment model. The parentTaskId is used to add

the AnalysisTask, that the EmbeddedDeploymentModelAnalysisRequest resulted from, as the par-

entTask to the newly created AnalysisTask (see Figure 3.13). Both AnalysisTasks have to share

the same transformationProcessId. The AnalysisManager persists the new AnalysisTask in the

TasksDatabase with the status field set to “WAITING”.

When the AnalysisManager gets an AnalysisTaskResponse, it updates the status of the AnalysisTask

with the given taskId to either “FAILED” or “FINISHED” based on the success field (see Figure 3.16).

The AnalysisManager now has several options on how to proceed with the transformation process:

1. The previous AnalysisTask used a Plugin with a static analysis technique and the Analysis-

Manager has to find a Plugin using a dynamic analysis technique.

2. There are other AnalysisTasks with a status set to “WAITING” and the AnalysisManager has

to run on of them.

3. The transformation process is finished and the AnalysisManager has to return the result to

the User.

To make the right choice, the AnalysisManager examines the current conditions. If the analysisType

of the previous AnalysisTask is set to “STATIC”, it queries the ConfigurationsDatabase for a

Plugin with the same technology but with an analysisType set to “DYNAMIC” (see the second

part of Figure 3.16). If the AnalysisManager finds a Plugin, it creates a new AnalysisTask and

sends a corresponding AnalysisTaskStartRequest to this Plugin. Otherwise, it checks if the current

conditions meet the second option.

For that, the AnalysisManager queries the TasksDatabase for AnalysisTasks with status “WAIT-

ING”, as shown in Figure 3.17. It prioritizes AnalysisTasks that contain the previous AnalysisTask

as their parentTask. If it finds one, it searches for a Plugin that can analyze it, prioritizing the

static analysis technique. Then it sends an AnalysisTaskStartRequest to the corresponding Anal-

ysisTaskRequestQueue. If there is no suitable Plugin, the AnalysisManager sets the status of the

AnalysisTask to “FAILED” and queries the TasksDatabase for another waiting AnalysisTask.

32

3.5 Architecture

Figure 3.16: UML sequence diagram showing the first steps of the processing of an Analysis-

TaskResponse by the AnalysisManager.

When the status of all AnalysisTasks is either “FAILED” or “FINISHED”, the AnalysisManager

recognizes that the transformation process is finished. In this case, it calls the ModelsService to get

the result of the transformation process. The ModelsService calculates the metrics from the internal

deployment models. Then it transforms the internal technology-agnostic deployment model to an

EDMM conforming format by removing the confidence metric and the transformationProcessId. It

exports the technology-agnostic deployment model as a file to a path on the local file system. After

that, the ModelsService sends a response to the AnalysisManager that contains the path together

with the calculated metrics. The AnalysisManager forwards this information to the User.

33

3 Concept and Design

Figure 3.17: UML sequence diagram showing how the AnalysisManager searches for and starts

AnalysisTasks that need to be run.

34

4 Prototypical Realization

In this chapter, we present a prototypical realization of the transformation framework. It implements

the concepts and follows the designed architecture. We use it to review and improve the concepts

and it serves as an example of a possible implementation. Figure 4.1 presents an overview of the

components that we created.

Figure 4.1: UML component diagram showing the architecture of the realized prototype.

The plugins, the models service, and the analysis manager are self-written applications in the Java

programming language. The analysis manager provides a CLI for the user interaction. We realized

four plugins for the deployment technologies Terraform, Kubernetes, Helm, and Bash. Because

the dynamic analysis technique is more complex than the static analysis technique, we focused

on the latter to provide support for a broader range of different deployment technologies. For

each of the databases, we selected an appropriate database management system. In the case of the

models database we decided to use MongoDB, whereas we selected PostgreSQL for realizing the

configurations database and the tasks database. The communication between the analysis manager

35

4 Prototypical Realization

and the plugins for the transformation process is realized through asynchronous messaging and

modeled in the architecture of the transformation framework (see Figure 3.7) by the components

of type “Queue”. We realized this by deploying a message broker software called RabbitMQ that

handles the message routing between the applications.

The following sections give more details about applied technologies and how we implemented the

Java applications (Section 4.1), the databases (Section 4.2), and the message broker (Section 4.3).

Furthermore, Section 4.4 describes how we realized the user interaction with the prototypical

implementation of the transformation framework through a CLI. The last section provides detailed

information about each plugin with focus on their mapping between the entities of their deployment

technology to the entities of EDMM (see Section 4.5).

4.1 Java Applications

For the applications in the transformation framework, which are the analysis manager, the models

service, and the plugins, we selected the Java-based framework Spring Boot. It allows to quickly

and easily create high-quality modern applications [VMw22d]. For this purpose, it offers so-called

“starter dependencies” for the integration with various tools like databases or message brokers and

supplies them with a default configuration. We selected Maven1 as the build tool for all applications.

It integrates the starter dependencies into the application. Furthermore, Spring Boot directly embeds

a servlet container like Tomcat, which hosts the application when deployed. Through the website

https://start.spring.io/ we generated a base project for each application which already included

most dependencies. This allowed us to directly focus on the development of the application code.

We version the application code in GitHub repositories under a private organization called “UST-

TAD”2. It also hosts a repository called “deployment-config”, which contains a Docker-Compose

deployment model for deploying third-party services that are part of the transformation framework

and integrate with the self-written applications. The deployment model includes the database

systems and a message broker, which we describe in more detail in the following sections.

4.2 Databases

The transformation framework contains three different databases (see Figure 3.7). The analysis

manager uses the configurations database and the tasks database to store objects of type Plugin

and AnalysisTask, respectively. The models service uses the models database to store the internal

deployment models.

For the tasks database and the configurations database, we use PostgreSQL [The22d]. It is a relational

and open source database system based on Structured Query Language (SQL). We selected it because

both the Plugin (see Figure 3.11) and AnalysisTask (see Figure 3.13) objects are not very complex

1Maven: https://maven.apache.org/
2GitHub repositories for the application code: https://github.com/UST-TAD

36

4.3 Message Broker

and do not require any special features. PostgreSQL is a popular and widely used solution that

we consider sufficiently reliable and performant for both databases. For the deployment of the

databases, we use the official Docker image3.

In case of the models database, we decided to use the document database MongoDB. In MongoDB,

objects are stored in documents in the Binary JSON (BSON) format [Mon21]. This is a format close

to JSON and also YAML. We chose the latter as the format of the technology-agnostic deployment

model that the transformation framework outputs to the user (see Section 4.4). Therefore, we

see MongoDB as a potentially good fit for the models database because it stores the technology-

agnostic deployment model in a format similar to the output format. Each internal technology-

agnostic deployment model and internal technology-specific deployment model is one document

that contains all nested objects. The only exception are the embedded deployment models in

the internal technology-specific deployment model, which are self-references. Each embedded

deployment model is a separate document and the embedding deployment model references it

through the id field. MongoDB organizes documents in collections. We store all documents of the

internal technology-specific deployment model in one collection. The internal technology-agnostic

deployment model uses another collection. We deploy the configurations database using the official

Docker image4.

4.3 Message Broker

For realizing the queues and managing the message routing, we selected the RabbitMQ message bro-

ker. It is a widely used and open source solution for messaging that supports multiple programming

languages for client applications and messaging protocols [VMw22b]. The messaging protocol we

used is the Advanced Message Queuing Protocol (AMQP). It enables applications to communicate

through messaging based on an entity model presented in Figure 4.2.

Figure 4.2: Overview of the entities in the AMQP model.

Publishers and consumers are applications that connect to the message broker, while exchanges and

queues are entities, that can be created and configured in the message broker [VMw22a]. Publishers

create messages and publish them to exchanges. Exchanges route copies of the message to queues

that have a binding on the exchange. The message broker then sends this message to consumers that

subscribe to this queue. Alternatively, consumers can consume messages from queues on demand

by actively pulling them.

3PostgreSQL Docker image on DockerHub: https://hub.docker.com/_/postgres
4MongoDB Docker image on DockerHub: https://hub.docker.com/_/mongo

37

4 Prototypical Realization

The routing of messages depends on the exchange type and the specification of the binding. The

AMQP provides four different types of exchanges:

Fanout Exchanges simply route messages to all queues that have a binding on them.

Direct Exchanges route messages based on routing keys. Bindings of queues to direct exchanges

contain a specific routing key. Messages sent to direct exchanges also contain a routing key.

Direct exchanges compare the routing keys of messages and bindings and send messages to

the corresponding queues of matching bindings.

Topic Exchanges work similar to direct exchanges but allow routing of messages based on more

complex routing keys. Instead of specifying just one value, the routing keys of topic exchanges

consist of several values, each belonging to a specific topic. Queues bind to topic exchanges

by specifying a value for each topic and only receive messages matching this combination.

Headers Exchanges route messages based on attributes in the message header. The queue bindings

must contain matching values for these attributes. Headers exchanges allow combining several

attributes while specifying them as independent parameters.

Based on this, we implemented the creation of AMQP entities for the realization of the Analy-

sisTaskRequestQueue and the AnalysisTaskResponseQueue components presented in Figure 3.7.

We deploy the RabbitMQ message broker using the official and publicly available Docker image5

and Docker Compose. It only contains some default exchanges provided by RabbitMQ. When

the analysis manager starts, it connects to the RabbitMQ message broker and creates the required

AMQP entities. The analysis manager and the plugins use the Spring AMQP project. It provides

functionality to connect to a running message broker that uses the AMQP protocol, create AMQP

entities and send and receive messages [VMw22c]. For realizing the AnalysisTaskResponseQueue,

the analysis manager creates a fanout exchange and one queue that it binds to the exchange. It then

subscribes to the queue by specifying a so-called “listener” on a function. Whenever a new message

arrives in the queue, the message broker invokes the listener function and supplies the message.

The realization of the AnalysisTaskRequestQueues is more complex because the analysis manager

has to create the queues dynamically when a new plugin registers. At startup, the analysis manager

only creates a headers exchange. When a plugin registers, it creates a new queue and binds it to the

headers exchange based on two attributes. These are the name of the deployment technology and the

supported analysis technique of the plugin. The analysis manager then responds to the plugin with

the names of the newly created queue and the fanout exchange of the AnalysisTaskResponseQueue.

Subsequently, the plugin registers a new listener for subscribing to its queue. It also registers the

fanout exchange so that it can later publish messages to it. When the analysis manager sends an

AnalysisTaskStartRequest message, it adds the deployment technology and the analysis technique

as parameters to the message header. Consequently, the headers exchange can route it to the correct

queue. The plugins respond to the analysis manager by sending messages to the fanout exchange.

The fanout exchange always routes the messages to the queue of the AnalysisTaskResponseQueue

because it is the only queue with a binding to it. Additionally, the plugins add a “format indicator”

to the header of the messages so that the analysis manager can distinguish AnalysisTaskResponse

messages from EmbeddedDeploymentModelAnalysisRequest messages when it consumes them

from the AnalysisTaskResponseQueue.

5RabbitMQ Docker image on DockerHub: https://hub.docker.com/_/rabbitmq

38

4.4 User Interaction

4.4 User Interaction

The user interaction with the transformation framework mainly comprises two different actions:

1. The user passes information about a technology-specific deployment model to the transfor-

mation framework to start the transformation process.

2. At the end of the transformation process, the transformation framework presents the result to

the user.

As this is not very complex, we wanted to keep things simple and decided to integrate a custom CLI

into the analysis manager application. For that, we used the project Spring Shell, which integrates

seamlessly into Spring Boot projects and provides the baseline for a fully functional CLI [VMw22e].

It offers an annotation-driven programming model for implementing custom commands. When

starting the analysis manager, it launches a CLI where a user can input commands to interact with

the transformation framework.

Figure 4.3: The tad-shell CLI with all available commands.

Figure 4.3 shows this CLI, which we call “tad-shell” and an overview about available commands,

displayed by executing the “help” command. The help command is one of six built-in commands

that the Spring Shell project provides by default. In addition, we added two custom commands.

The “plugins” command returns a list of registered plugins. With this, a user can assess if the trans-

formation framework contains the required plugins to transform a technology-specific deployment

model before starting the transformation process.

The user starts the transformation process by executing the “transform” command. Figure 4.4

shows an exemplary execution, where the user provided the deployment technology “kubernetes”,

a command to execute the deployment model, and a URL to its location on the local file system

as parameter values. In this case, the transformation framework found a suitable plugin and

responded with “Transformation process started!”. After a while, the transformation process

finished successfully, and the transformation framework printed the result to the CLI. The result

contains a path to the technology-agnostic deployment model and the calculated metrics.

39

4 Prototypical Realization

Figure 4.4: Execution of the transform command in the tad-shell CLI. The transformation frame-

work prints the result of a successful transformation process to the tad-shell.

1 ---

2 properties: [...]

3 components: [...]

4 relations:

5 - <Name of Relation>:

6 type: "name of relation type"

7 description: "description"

8 source: "name of source component"

9 target: "name of target component"

10 operations: [...]

11 component_types: [...]

12 relation_types: [...]

Listing 4.1: Specification of relations in the modified EDMM in YAML specification.

Because technology-agnostic deployment models can potentially become large, printing them to the

CLI is not a good solution. Therefore, the transformation framework should output the technology-

agnostic deployment model to a file on the local file system. Additionally, it facilitates further

processing or evaluation steps by the user. We decided to use the EDMM in YAML specification

(see Section 3.3) as the format for the outputted technology-agnostic deployment model because it is

concise and human-readable. However, we made one change to the EDMM in YAML specification.

The official specification stores each relation under its source component, as shown in Listing 3.1.

We changed that to store the relations in a list directly under the deployment model next to the

components, component types, and relation types, as shown in Listing 4.1. With this, we are in

line with the EDMM and can express additional information, like the operations that a relation

contains.

For the transformation from the internal format to the YAML format, we used the library Jackson6

and its YAML module to specify serialization classes for each EDMM entity.

6Jackson Project Home: https://github.com/FasterXML/jackson

40

4.5 Plugins

4.5 Plugins

The plugins of the transformation framework implement and execute the actual transformation logic.

For the prototypical realization, we developed plugins for the deployment technologies Terraform,

Kubernetes, Helm, and Bash.

The selected deployment technologies cover a variety of use cases. Therefore, each plugin shows a

different approach to analyzing technology-specific deployment models. Terraform is an IaC tool that

focuses on infrastructure resources. In contrast, Kubernetes is based on containerized applications

and only supports the deployment of software components. Helm is a deployment technology based

on Kubernetes, which provides reusable and pre-configured Kubernetes deployment models. Bash

is the only selected deployment technology following an imperative deployment modeling approach.

We do not provide a plugin for Docker or other container technologies. Therefore, the plugins add

Docker images that they find as EDMM artifacts to EDMM components.

The following sections describe the implementation of the plugins and their specific transformation

logic. For that, we first present the plugin template in Section 4.5.1. After that follow sections

describing the Terraform (Section 4.5.2), Kubernetes (Section 4.5.3), Helm (Section 4.5.4) and

Bash (Section 4.5.5) plugins. For each of those sections, we first provide a brief introduction to the

deployment technology with focus on the specifics of the deployment models. Then we describe

the mapping from the deployment technology to the EDMM entities that we want to create. Finally,

we describe the prototypical implementation of the plugin, based on the defined mappings.

4.5.1 Plugin Template

Some features are shared among the plugins so that all plugins implement the same functionality to

a certain degree. This includes the initial plugin registration process, accessing the endpoint of the

models service to get and update the internal deployment models, and the requests and responses

they receive and send via the message broker. Therefore, we created a template project using Java

Spring Boot that implements this functionality7. We can now duplicate this project and just need to

make minor modifications to create a new plugin. For example, we created environmental variables

for the supported deployment technology and the analysis type, and need to adjust their values. The

plugin uses these variables to correctly set the parameters of the binding to the request queue. The

“README.md” file lists all of these necessary modification steps. As a result, we do not need to

bother with implementing the same functionality repeatedly and can directly focus on implementing

the actual transformation logic.

4.5.2 Terraform Plugin

Terraform is an IaC tool with a primary focus on deploying infrastructure resources like compute,

storage, and networking, but also offers capabilities to deploy software components [Has22]. A

Deployment model in Terraform is called Terraform configuration. It contains files with the file name

extension “.tf”, and it is possible to distribute it among several files and directories. A Terraform

7GitHub repository of plugin template project: https://github.com/UST-TAD/plugin-template-springboot

41

4 Prototypical Realization

1 <BLOCK TYPE> "<BLOCK LABEL>" "<BLOCK LABEL>" {

2 # Block body

3 <IDENTIFIER> = <EXPRESSION> # Argument

4 }

Listing 4.2: Syntax of the Terraform language [Has21].

configuration mainly consists out of resource, variable and provider definitions, that are specified

in the Terraform language [Has21], a custom data format similar to JSON. Each resource in the

Terraform configuration describes one component that should be deployed, detailed by arguments.

Resources have a specific resource type, which provides a set of arguments that need to be specified.

We can assign values to the arguments in the definition of the resource or through the specification

of variables. Every resource of the Terraform configuration can reuse these variables. Providers

add resource types and optionally data sources, which enable Terraform to access the Application

Programming Interfaces (APIs) of certain services or platforms [Has22]. By default, Terraform

does not provide any resource types. Therefore, a Terraform configuration must contain at least one

provider definition. For instance, the “Azure Provider” allows specifying resources of resource types

that represent offerings of the Azure cloud platform. Additionally, it provides access to the “Azure

Resource Manager API”, a data source that Terraform uses to deploy the described resources.

Similar to Wurster et al. [WBF+20], we map resources and resource types to components and

component types in EDMM, respectively. Additionally, we map arguments to properties and

resolve variables accordingly. The Terraform plugin parses Terraform configurations into an internal

representation. It then transforms this internal representation into entities of the internal technology-

agnostic deployment model. For the first step, the plugin needs to analyze the files of the Terraform

configuration, which uses the Terraform language. The expression in Listing 4.2 describes the

syntax of the Terraform language.

It mainly consists out of blocks and arguments. Blocks act as containers for information and have

a block type. The block type indicates, if the block is a resource, provider, or variable definition.

Furthermore, the block type defines the number of block labels that need to be specified. For

instance, a resource requires two block labels. The first block label defines the resource type, while

the second one specifies its name. A block contains an arbitrary number of arguments and nested

blocks in its block body. An argument consists out of an identifier and an expression.

The Terraform plugin parses these expressions into the internal Terraform model shown in Figure 4.5.

While doing so, it also updates the internal technology-specific deployment model. The plugin only

extracts information needed for the transformation to the technology-agnostic deployment model.

Primarily, these are the resource definitions that it parses into the Resource entities. Analogous to

the syntax of the Terraform language, they are identified by their resourceType and resourceName

and contain Blocks and Arguments. As there are currently over 1700 providers available [Has22],

the Terraform plugin supports only a subset of them. Therefore, the plugin also parses in provider

definitions into Provider entities to be able to determine, if it supports them. If the Terraform plugin

comes upon a provider or resource type during the analysis that it does not support, it marks this in

the internal technology-specific deployment model by setting the comprehension of the respective

lines to zero. Additionally, the plugin stores variable definitions in Variable entities.

42

4.5 Plugins

Figure 4.5: UML Class diagram of the internal Terraform model.

1 physical_node:

2 extends: "-"

3 description: "A physical node providing compute and storage resources

"

4 properties:

5 - cpu_count:

6 type: "INTEGER"

7 required: false

8 - ram_GiB:

9 type: "INTEGER"

10 required: false

11 - storage_GiB:

12 type: "INTEGER"

13 required: false

14 operations: []

Listing 4.3: EDMM component type for a physical node in the YAML syntax.

In the second step, the Terraform plugin analyzes the Resource entities and creates corresponding

entities of the internal technology-agnostic deployment model. If an Argument uses a variable in an

expression, the plugin can resolve it by looking at the Variable entities. We present an example for

an EDMM component type that the Terraform plugin can create in Listing 4.3.

4.5.3 Kubernetes Plugin

Kubernetes facilitates the deployment of containerized applications [The22c]. For that, it offers the

Kubernetes cluster, which is a platform consisting of several components that can host containerized

applications. It provides various features that ease the deployment and operation of containerized

applications, like desired state management or load balancing of network traffic. Kubernetes

describes application deployments in declarative configuration files. They contain definitions of

43

4 Prototypical Realization

1 ---

2 apiVersion: apps/v1

3 kind: Deployment

4 metadata:

5 name: my-deployment

6 spec:

7 selector:

8 matchLabels:

9 app: my-deployment

10 replicas: 2

11 template:

12 spec:

13 containers:

14 - name: my-deployment

15 image: myImage

16 env:

17 - name: env_variable

18 value: "value"

19 ports:

20 - name: "my-containerport"

21 containerPort: 8080

22 ---

23 apiVersion: v1

24 kind: Service

25 metadata:

26 name: my-service

27 spec:

28 ports:

29 - name: "my-port"

30 port: 80

31 targetPort: 8080

32 selector:

33 app: my-deployment

Listing 4.4: Definition of exemplary Kubernetes deployment and service objects in YAML format.

Kubernetes objects either in the YAML or JSON format [The22b]. Kubernetes provides different

types of Kubernetes objects for describing, among others, which containerized applications should

run on the cluster, how they can be accessed, and which resources are available. The most important

Kubernetes object types are the deployment and the service. Deployments describe a containerized

application, while services reference a deployment and describe how it can be accessed. Listing 4.4

shows an example of a deployment and service definition in one YAML file.

The upper part shows the definition of the deployment object with the name “my-deployment”.

With the replicas field, it specifies that Kubernetes should deploy two instances of this application

in the Kubernetes cluster. A deployment can describe one or more containers that should run

together. The definition of a container includes its name, the Docker image, optional environmental

variables, and the port under which it should be accessible. The lower part of Listing 4.4 shows the

definition of a Kubernetes service called “my-service”. It specifies a selector that Kubernetes uses

44

4.5 Plugins

to find a deployment object with a matching selector field. Furthermore, the service defines a port

named “my-port”, that exposes the application on port “80”. The targetPort field specifies to which

container port on the matched deployment object it should map.

The Kubernetes plugin transforms Kubernetes configuration files in three phases:

1. Parse in the Kubernetes configuration files and update technology-specific deployment model

2. Create EDMM components and corresponding component types

3. Find and create EDMM relations

In the first phase, the Kubernetes plugin parses in the Kubernetes configuration files. It extracts the

relevant information and transforms it into an intermediary data model, similar to the Terraform

plugin. For each Kubernetes object type, it provides a different meta-model. Figure 4.6 shows the

meta-model for the deployment object. It retains the name of the deployment and the number of

replicas. Furthermore, it contains one or more labels and container. Each container has a name, an

image, container ports and environment variables that refer to the respective fields in the original

Kubernetes deployment object.

Figure 4.6: UML Class diagram of the meta-model for the internal representation of Kubernetes

deployment objects.

We present the meta-model for Kubernetes service objects in Figure 4.7. Here, the plugin extracts

the name of the service and the selectors for matching Kubernetes deployment objects. Additionally,

it stores information about the specified ports in the ServicePort entity.

45

4 Prototypical Realization

Figure 4.7: UML Class diagram of the meta-model for the internal representation of Kubernetes

service objects.

With that, the Kubernetes plugin currently supports the analysis and transformation of the Kubernetes

object types deployment, service, and stateful set. Kubernetes stateful sets are similar to Kubernetes

deployment objects and also describe the deployment of a containerized application The main

difference is that Kubernetes provides persistent storage for containerized applications that stateful

sets describe. As a result, their definitions in the configuration files share the same base properties.

Therefore, the Kubernetes plugin can transform stateful sets with the presented method by treating

them in the same way as Kubernetes deployment objects. The plugin marks definitions of other

Kubernetes object types that it does not support in the technology-specific deployment model as not

comprehended.

After the Kubernetes plugin has analyzed all configuration files, it proceeds with the second phase.

Here, it iterates over the internal representations of the deployments that it found previously. For

each container of a deployment, it creates a new EDMM component. From the image field, it creates

an EDMM artifact and adds it to the component. It converts the replicas field and the environment

variables into EDMM properties. Furthermore, the plugin searches for services that expose the

deployment. It checks, if a service selector matches one of the labels of the deployment. For each

match, it creates properties from the service port and the container port. Finally, it creates a new

EDMM component type for the newly created component. This component type contains copies of

all properties, but with an empty value field.

In the third phase, the Kubernetes plugin tries to find relations between the newly created components.

It can identify two types of relations: “hosted on” and “connects to”. This is based on the definition

of relationship directions shown in Figure 2.1. The corresponding EDMM relation types are already

present in the technology-agnostic deployment model because the models service adds them when

initializing a new technology-agnostic deployment model. First off, the Kubernetes plugin searches

for a component in the technology-agnostic deployment model that can host the newly created

components. Since Kubernetes relies on containerized applications, this must be a component of

type “container runtime”. A container runtime is a software responsible for running containerized

applications. If it finds a suitable component, the plugin creates appropriate relations of type “hosted

on”. Secondly, the Kubernetes plugin looks into the properties of the newly created components

46

4.5 Plugins

to find “connects to” relations to other components, for example, specified by a URL. Within the

Kubernetes cluster, the containerized applications can connect via the names of the deployments or

services, since Kubernetes provides a Domain Name System (DNS) for that purpose. Therefore, the

Kubernetes plugin can extract the host part of a given URL and can scan the internal representation

of Kubernetes deployments and services for an object with the same name. If it finds one, it creates a

“connects to” relation between the components. Finally, the plugin updates the technology-agnostic

deployment model with all newly found EDMM entities.

4.5.4 Helm Plugin

Helm is a package manager for Kubernetes [Hel22]. Helm deployment models are called Helm

charts. They bundle Kubernetes configuration files and can be created and shared as reusable

deployment models. This is similar to the notion of “DevOps Artifacts” defined by Wettinger et al.

[WBKL16]. Helm charts can be installed on a Kubernetes cluster to deploy the application that

the contained Kubernetes configuration files describe. The Kubernetes configuration files in a

Helm chart are called templates because Helm allows adding variables in the place of actual values.

By providing values for these variables during the installation of a Helm chart, Helm creates the

effective Kubernetes configuration files from the templates.

Consequently, each Helm chart embeds a Kubernetes deployment model. The Helm Plugin extracts

the Kubernetes configuration files and creates a new embedded deployment model analysis request

for the Kubernetes plugin. For that, it needs to extract the effective Kubernetes configuration files

with filled-in variables. It does that by executing the “helm template” command with the commands

provided in the analysis task start request, which returns a YAML file with all Kubernetes objects.

The Helm plugin then saves this YAML file on the local file system. It adds the location of the file

to a newly created embedded deployment model of the internal technology-specific deployment

model. The Kubernetes plugin can later retrieve the file from this location and analyze it.

4.5.5 Bash Plugin

The primary focus of Bash is not to deploy software applications. Bash is a kind of shell, that

enables the creation of so-called “Bash-scripts”. A shell comprises a programming language and

a command interpreter [RF20]. Bash-scripts contain Bash commands that a Bash interpreter can

execute. Consequently, Bash can be used for many purposes. This includes creating Bash-scripts

that contain commands for deploying applications. Therefore, Bash-scripts are potential imperative

deployment models created with the deployment technology Bash. Furthermore, many deployment

technologies provide their own commands that can be interpreted and executed by Bash. For

example, the deployment technology Kubernetes provides a command line tool called “kubectl”, for

communicating with Kubernetes clusters [The22a]. This allows deploying Kubernetes deployment

models from the command line or from a Bash-Script.

With the Bash plugin, we focused on detecting embedded deployment models for the technologies

Terraform, Helm, and Kubernetes. The Bash plugin can recognize commands of the command

line tools provided by each deployment technology. In the case of Kubernetes, the plugin scans

for “kubectl create” and “kubectl apply” commands which deploy Kubernetes configuration files

[The22a]. If it finds one, it creates and adds a new embedded deployment model to the internal

47

4 Prototypical Realization

technology-specific deployment model with the command added to the list of commands. Both

kubectl commands allow to optionally specify a path to a file or directory which contains Kubernetes

deployment models. The Bash plugin can detect this and transform the path to a DeploymentMod-

elLocation entity and add it to the locations of the embedded deployment model. The analysis of

Terraform commands works analogously to the one for Kubernetes. In a given Bash-script, the

plugin looks for “terraform init”, and “terraform apply” commands and can extract locations of

embedded deployment models from the commands. If several commands refer to the same location,

the plugin adds them to the same embedded deployment model. The detection of commands for

installing Helm charts works differently. Here, the Bash plugin scans for commands starting with

“helm install” and adds them to the commands list of a newly created embedded deployment model.

Additionally, the plugin can detect commands for adding chart repositories. It adds such a command

to every embedded deployment model using Helm that it created after the detection of the command.

Consequently, the Helm plugin can access charts from external repositories.

48

5 Evaluation

This chapter presents an evaluation of the transformation framework with respect to its ability to

transform technology-specific deployment models into technology-agnostic deployment models.

In Section 5.1 we describe the design of the evaluation with the help of a Goal Question Metric

(GQM) model. This is followed by Section 5.2, where we present an exemplary technology-specific

deployment model that we can transform with the transformation framework to generate data for

the evaluation. Then we present the results of the evaluation (Section 5.3) and interpret them

(Section 5.4). Finally, we discuss possible threats to the validity of the result (Section 5.5).

5.1 Design

For the design of the evaluation we created a model based on the GQM paradigm [BCR94]. We

present this model in Table 5.1. The overall goal is to evaluate the ability to transform technology-

specific deployment models to technology-agnostic deployment models of the transformation

framework. We define two questions and corresponding metrics to answer them. The measurement of

these metrics requires performing a transformation of an exemplary technology-specific deployment

model with the transformation framework. We present such an exemplary technology-specific

deployment model in Section 5.2.

For Q1, we want to assess if the transformation framework correctly implements the plugin reg-

istration process and the transformation process, which we presented in Section 3.5. For that, we

read out logs of the Java applications (M1) and inspect the registered plugins in the configurations

database (M2) and the created AMQP entities on the message broker (M3). In the case of the Java

applications, we add statements at specific locations in the code that print messages to the console

output. These locations are the endpoints of the application so that it outputs a message every time

it receives or sends data. It includes both the REST and messaging endpoints. In the case of the

analysis manager, we also output logs when the user executes a transform command. Additionally,

it outputs an error message when it cannot find a suitable plugin for transforming a selected analysis

task. As a result, we should see in which order the applications are invoked and if this conforms

to the conceptualized processes. With the “plugins” command offered by tad-shell in the analysis

manager, we can retrieve the list of registered plugins. To measure M2, we deploy all plugins and

execute this command. The returned list of registered plugins indicates, if the individual plugin

registration processes were successful and the analysis manager can send analysis tasks to them.

In addition, we review if the transformation framework correctly creates the AMQP entities on

the RabbitMQ message broker, as described in Section 4.3. The analysis manager is responsible

for creating these entities during the plugin registration process. The correct creation of these

entities is crucial for enabling the communication of the plugins with the analysis manager during

49

5 Evaluation

Goal Purpose Evaluate

Issue the ability to transform technology-specific deployment models

to technology-agnostic deployment models

Object (process) of the transformation framework

Viewpoint from the viewpoint of the developer.

Question Q1 Does the transformation framework execute the conceptualized

plugin registration and transformation processes correctly?

Metrics M1 Assessment of logs of Java applications.

M2 Inspection of registered plugins in the configurations database.

M3 Inspection of created AMQP entities on the RabbitMQ message

broker.

Question Q2 Does a resulting technology-agnostic deployment model contain

all relevant information of the originating technology-specific

deployment model?

Metrics M4 Differences between the internal technology-specific deployment

model at the end of the transformation process and the actual

structure of the technology-specific deployment model.

M5 Differences between a technology-agnostic deployment model

from the transformation result and the expected technology-

agnostic deployment model.

M6 Assessment of the metrics in the transformation result (analysis

progress, comprehensibility, confidence and type completeness).

Table 5.1: GQM model for the evaluation of the transformation framework.

the transformation process. RabbitMQ allows exporting definitions of the entities that have been

created, including the definitions of exchanges, queues, and bindings. Based on this, we should be

able to assess if the transformation framework correctly created the AMQP entities.

Q2 focuses on the resulting technology-agnostic deployment model. Here we want to evaluate

if it contains all the information about the application deployment that the technology-specific

deployment model describes. In the first step, we need to assess if the transformation framework

can detect all parts of the technology-specific deployment model. The metric M4 represents this.

It measures if the internal technology-specific deployment model contains correct and complete

information about the structure of the technoloy-specific deployment model that the transformation

framework transformed. For that, we run a transformation process with the exemplary technology-

specific deployment model and export the internal technology-specific deployment model from the

models database in the JSON format. We can then compare this to the structure of the exemplary

technology-specific deployment model presented in Figure 5.2. This shows if the transformation

framework could identify all embedded deployment models and associated files. The metric M5

measures the differences between the actual technology-agnostic deployment model from the

transformation result and the expected outcome. For that, we first create an EDMM model in the

YAML format for the exemplary technology-specific deployment model. This model contains the

complete information about the application deployment that we expect the transformation framework

to find. We present this expected technology-agnostic deployment model in its entirety in Listing A.1.

50

5.2 Exemplary Technology-Specific Deployment Model

After running the transformation with the exemplary technology-specific deployment model, we

compare the actual technology-agnostic deployment model from the transformation result with the

expected one. For that, we use Visual Studio Code, which integrates a tool for comparing files1. We

ignore minor differences in naming, ordering of list elements, and indentation, as long as it conforms

to the YAML format. The number of differences shows, how well the transformation worked.

Additionally, we can have a closer look at these differences to detect areas where the transformation

framework struggled or could not find the correct information. Finally, we interpret the metrics in

the transformation result to assess the quality of the created technology-agnostic deployment model

(M6). The detailed definition and calculation of the metrics is given in Section 3.5.

5.2 Exemplary Technology-Specific Deployment Model

To test and evaluate the transformation framework, we need an exemplary technology-specific

deployment model. It is crucial that the application described by the deployment model is of adequate

complexity, meaning it consists of several interconnected services with different purposes. This

ensures completeness of the transformation methods and significant results from the evaluation.

For that purpose, we use a reference architecture called “T2 Project” [SSB22] and create a technology-

specific deployment model for it. Figure 5.1 shows an overview of the different components of the

T2 Project. It follows a microservice architectural style with eight services and four databases. The

communication between the services is realized through the Saga pattern, which uses messaging

to ensure ACID properties for transactions spanning multiple services and databases [Ric21]. An

implementation of the T2 Project reference architecture can be found on GitHub2. The services

are all based on Java, while different database technologies are used. The project also provides

capabilities for running JMeter load tests for simulating network traffic.

Based on this, we created a technology-specific deployment model for the T2 Project. The GitHub

page of the T2 Project already provides a repository with Kubernetes and Docker-Compose de-

ployment models3. We decided to use the Kubernetes deployment model as a baseline for the

exemplary technology-specific deployment model. The Kubernetes deployment model deploys

the eight services and a PostgreSQL database on an existing Kubernetes cluster. Furthermore, the

documentation gives instructions on installing Helm charts for deploying a MongoDB database

and a Kafka message broker to complete the deployment of the T2 Project [SSB22]. The deployed

instance of the PostgreSQL database hosts both the saga instance repository and the product repos-

itory (see Figure 5.1). Likewise, the MongoDB instance deployed with Helm is responsible for

the cart and order repositories. As this does not conform with the presented architecture, we made

some changes to the Kubernetes deployment model. First, we added Kubernetes configuration files

for a second PostgreSQL database and changed the configuration of the services accordingly so that

they connect to the correct database. Secondly, we created a Bash-script that installs two MongoDB

Helm charts (one for the cart repository and one for the order repository) and the Kafka message

broker. Consequently, we had to adjust the configuration of the services accordingly as well.

1How to do a Diff in VS Code: https://vscode.one/diff-vscode/
2GitHub repositories of the T2 Project: https://github.com/t2-project
3GitHub repository with Kubernetes and Docker-Compose deployment models of the T2 Project: https://github.com/

t2-project/kube

51

5 Evaluation

Figure 5.1: Component Diagram of the T2 Project [SSB22].

The Bash script also deploys the Kubernetes configuration files to a Kubernetes cluster. As a result,

we just need to execute one command for deploying the complete deployment model. To further

automate the deployment of the T2 Project, we created a Terraform deployment model that deploys

a Kubernetes cluster on the Azure cloud platform. Azure is a public cloud, which mainly provides

PaaS offerings. We extended the Bash-script so that it first executes the Terraform deployment

model to deploy the Kubernetes cluster on Azure. The following Helm and Kubernetes commands

deploy the services on this Kubernetes cluster. We provide this exemplary technology-specific

deployment model in a GitHub repository4. Figure 5.2 gives an overview of the structure of this

deployment model.

The Bash-script, called “azure-start.sh”, is the overarching deployment model that executes five

embedded deployment models. These are the Terraform deployment model in the “terraform/”

folder, the Kubernetes deployment model in the “k8/” folder, and the three Helm charts with the

names “mongo-order”, “mongo-cart”, and “kafka”. The Helm charts contain further embedded

Kubernetes deployment models under their “templates/” folder. Kafka contains an embedded Helm

chart for Zookeeper, which is a service that Kafka relies on for storing configuration data.

4GitHub repository with the exemplary technology-specific deployment model: https://github.com/Well5a/kube/

tree/terraform

52

5.3 Results

Figure 5.2: Overview of the exemplary technology-specific deployment model. It shows the struc-

ture of the deployment model with all embedded deployment models and the deployment

technologies.

Based on this, we manually created a technology-agnostic deployment model that we expect as a re-

sult from the transformation framework (see Listing A.1). For that, we created an EDMM component

for each service and database of the T2 Project and added properties from environmental variables

and port definitions that we could find in the deployment models. From the Kubernetes cluster

described in the Terraform deployment model, we expect that the transformation framework finds

a component representing the provided infrastructure resources, an operating system component,

and a container runtime component that enables running containerized applications. Except for the

database components, we created a component type for each component. The database components

should share component types for a PostgreSQL database and a MongoDB database. We looked at

the documentation of the T2 Project and the files of the deployment models to determine which

relations should be present between the components. Additionally, we deployed the T2 Project and

investigated the provisioned services. Furthermore, we executed the provided JMeter load tests and

used the tracing tool Jaeger to determine request routes for confirming and finding new relations.

5.3 Results

For the generation of the evaluation results, we started all services of the transformation framework

and transformed the exemplary technology-specific deployment model. The files that we retrieved

correspond to the metrics in Table 5.1. We provide the most important parts of this result in

Appendix B. For the complete result with all files, refer to the repository on Zenodo5 or GitHub6.

During the run we did not observe any errors or unexpected behavior.

5Zenodo repository with complete evaluation results: https://doi.org/10.5281/zenodo.6503667
6GitHub repository with complete evaluation results: https://github.com/UST-TAD/evaluation-results

53

5 Evaluation

The log files of the Java applications (M1) show the flow of actions during the plugin registration

and the transformation process. Listing B.1 shows a summary of the most important logged events

from the viewpoint of the analysis manager. From the logs of the analysis manager and the plugins,

we can see that all plugins registered at the analysis manager. The list of registered plugins in

the configurations database (M2) confirms this, because it contains one entry for each plugin (see

Listing B.2). The definitions of the AMQP entities on the RabbitMQ message broker (M3) reflect

this as well (see Listing B.3). It contains definitions of a fanout exchange for the analysis task

response queue and a headers exchange for the analysis task request queue (see Listing B.3, line

77). For each plugin, it contains a queue (see Listing B.3, line 40) and a corresponding binding

(see Listing B.3, line 97) to the headers exchange. The binding definition includes the binding

arguments that the transformation framework correctly set to the corresponding analysis technique

and deployment technology.

In the log file of the analysis manager, we can observe the point when we issued the transform

command (see Listing B.1, line 6). The log files show that the analysis manager then sent a request to

the models service for initializing the internal deployment models. After that, the analysis manager

created the first analysis task and sent it to the Bash plugin. The plugin received this request and

started with the transformation. It requested the internal deployment models from the models

service and later sent requests to update them. It found five embedded deployment models and

sent corresponding embedded deployment model analysis requests to the analysis manager. The

transformation was successful and the Bash plugin notified the analysis manager about it. The

analysis manager then tried to find a dynamic plugin for the Bash deployment technology but was

unsuccessful. Therefore, the analysis manager continued with sending the analysis tasks of the

embedded deployment models. First, the analysis manager requested the analysis of the Terraform

deployment model, then the three Helm charts, and finally the Kubernetes deployment model. For

each task, the analysis manager waited for a successful response and then searched for a plugin using

the dynamic analysis technique. As this was always unsuccessful, the analysis manager proceeded

with the next analysis task. In the cases of the Helm charts, the Helm plugin detected the embedded

Kubernetes deployment models during the analysis. For each analysis task that the Helm plugin

successfully completed, the analysis manager directly sent an analysis task for the analysis of the

detected embedded Kubernetes deployment model to the Kubernetes plugin. Finally, the analysis

manager requested the results from the models service.

The internal technology-specific deployment model (M4) points out which parts of the exemplary

technology-specific deployment model the transformation framework could detect. It shows one

big difference from the general structure presented in Figure 5.2. The embedded Helm chart for

the Zookeeper service, including its embedded Kubernetes deployment model, is missing in the

internal technology-specific deployment model. Apart from this, all other embedded deployment

models were detected. For the Terraform deployment model in the “terraform” directory and the

Kubernetes deployment model in the “k8/” directory, the transformation framework could identify

all relevant files and add them as deployment model contents.

At the end of the transformation process, the analysis manager prints the result to the tad-shell.

This result is presented in Listing 5.1. It contains the path to the created technology-agnostic

deployment model, which we provide in Listing B.4. The comparison of this actual technology-

agnostic deployment model to the expected one that we created manually (see Listing A.1) yields

the following differences (M5). First, the transformation framework was not able to find the

expected “connects to” relation from the “kafka” component to the “kafka-zookeeper” component.

54

5.4 Discussion

1 Transformation process finished!

2 Find the technology-agnostic deployment model under the following path:

3 /home/ubuntu/tad/tadms/fc6750c3-dda2-4d04-8116-5808b7f37324.yaml

4 Analysis Progress: 99.50877192982456%

5 Comprehensibility: 64.98245614035088%

6 Confidence: 91.33858267716536%

7 Type Completeness Val1: 99.4535519125683%

8 Type Completeness Val2: 98.24561403508771%

Listing 5.1: Output of the transformation result to the CLI of the transfromation framework. It

shows the location of the technology-agnostic deployment model and the calculated

values for the metrics.

Additionally, both components miss one property each that are specified as environmental variables

in their respective Kubernetes deployment object definitions. It also did not add the service endpoints

with their respective port numbers of the zookeeper service as properties to the “kafka-zookeeper”

component. Furthermore, we expected the transformation framework to define one component type

for a PostgreSQL database and one component type for a MongoDB database. The components

should then be able to reuse this type. Instead, the transformation framework created a separate type

for each database. The components “postgres-orechestrator” and “postgres-inventory” have distinct

component types with almost identical property definitions. The same applies for the “mongo-order”

and “mongo-cart” components.

In addition to the file path of the technology-agnostic deployment model, Listing 5.1 shows the

calculated values of the metrics (M6). The analysis progress and both type completeness metrics

are at almost 100 percent. The confidence metric is a bit lower and at around 91 percent while the

comprehensibility metric has the worst result with almost 65 percent.

5.4 Discussion

From the results, we conclude that the transformation framework is generally able to transform

technology-specific deployment models into technology-agnostic deployment models. The appli-

cation logs show that the transformation framework follows the conceptualized processes for the

plugin registration and the transformation. Furthermore, the analysis manager correctly registers

the plugins and persists them in the configurations database, and creates all required AMQP entities

on the RabbitMQ message broker.

However, although the transformation framework was able to find most of the information in the

technology-specific deployment model, it did not create a complete technology-agnostic deployment

model. The result shows differences between the internal technology-agnostic deployment model

and the originating technology-specific deployment model, as well as between the expected and

actual technology-agnostic deployment models. We can trace back the differences of the internal

technology-specific deployment model to the Helm plugin. It cannot detect embedded Helm charts

that a given Helm chart depends on and create an embedded deployment model for it. However, the

transformation framework could still detect the Zookeeper component that the embedded Helm chart

in the Kafka Helm chart describes. The reason for this is that the “template” command executed by

55

5 Evaluation

the Helm plugin outputs not only the Kubernetes configuration files of the given Helm chart but

also includes all Kubernetes configuration files of embedded Helm charts. Consequently, the trans-

formation framework was still able to detect all information. Only the internal technology-specific

deployment model is not a correct representation of the structure of the originating technology-

specific deployment model. This may seem unproblematic for now but may become an issue when

the transformation framework needs to execute further transformation steps, e.g., for transforming

embedded Docker images. Therefore, we need to improve the Helm plugin so that it can detect

embedded Helm charts, which should enable the transformation framework to transform them

separately.

In the case of the differences between the actual and expected technology-agnostic deployment

models, we suspect that the missing relation between the Zookeeper and Kafka components relates to

the missing properties in these components. Because the Zookeeper component misses information

about external ports, the Kubernetes plugin may not have been able to detect the relation. To find

the cause for these missing properties and fix this issue, we require further tests and improvements

to the Kubernetes plugin.

The type system for components and relations introduced by EDMM can be used to improve the

conciseness and comprehensibility of the technology-agnostic deployment model. By creating one

component type for each component, the transformation framework does not leverage the potential of

this system. Therefore, the transformation framework requires improvements in this regard. Ideally,

it should be able to detect similar components and create shared component types. Alternatively,

the transformation framework could provide a predefined component type hierarchy that the plugins

then use to match found components to one of the types in this hierarchy. However, the definition of

such a general hierarchy applicable in various specific use cases is not trivial and requires further

research.

From the metrics in the transformation result, we can assess the quality of the technology-agnostic

deployment model. The analysis progress metric shows a result of almost 100 percent. The missing

percentages come from initial contents that were created but not replaced or removed properly

during the analysis. Therefore, we can infer that the transformation framework analyzed the detected

part of the technology-specific deployment model entirely.

In contrast, the comprehensibility metric has the lowest score with about 65 percent. This shows

that the transformation framework was not able to comprehend a significant part of the technology-

specific deployment model and could therefore not use it for the transformation into EDMM entities.

By looking at the internal technology-agnostic deployment model in the models database, we can

see that the not comprehended parts mainly refer to Kubernetes objects of types that the Kubernetes

plugin does not support. The other plugins also show some parts that they could not understand.

Here we can identify the potential to improve the transformation framework and the completeness of

the resulting technology-agnostic deployment model. For that, we need to extend the plugins so that

they can understand more concepts that the respective deployment technologies offer. Especially

the Kubernetes plugin could benefit from the support of more Kubernetes object types.

The transformation framework is primarily confident about the EDMM entities in the technology-

agnostic deployment model, as the confidence metric score of about 91 percent indicates. EDMM

entities with a confidence set to “suspected” are mainly relations between components that different

plugins created. One example of this are the “hosted on” relations between the components dis-

covered by the Kubernetes plugin and the container runtime component that the Terraform plugin

56

5.5 Threats to Validity

created. This indicates that the plugins struggle to communicate findings that may be important

for the analysis of other plugins. For this purpose, we initially introduced the internal technology-

specific deployment model. We need to investigate if this model needs to be adjusted or if there are

other possibilities to denote this information for the future processing of other plugins.

Both type completeness metrics are almost at 100 percent. This is no surprise as each component

has their own component type with respective property definitions. Therefore, the significance of

these metrics for assessing the quality of the technology-agnostic deployment model is low. For this

to improve, the transformation framework first needs to change its approach to the EDMM type

system, as described above.

In summary, we assert that the technology-agnostic deployment model is of good quality. However,

it is not complete as some information is missing. Especially the plugins leave room for further

improvements.

In comparison with the requirements described in Section 3.4.1, we conclude that the transformation

framework completely fulfills the requirements 1, 3, and 4. The evaluation showed that the transfor-

mation framework was able to transform the technology-specific deployment model and correctly

implemented the conceptualized processes (see Requirement 1). The resulting technology-agnostic

deployment model contains most of the entities that we expected, but some information is missing.

Therefore, the transformation framework requires further development effort and improvements

so that it can create complete technology-agnostic deployment models that do not miss any in-

formation about the application deployment, as described by Requirement 2. On the other hand,

the transformation framework is extensible and able to transform technology-specific deployment

models created from a combination of different deployment technologies through the plugin-based

approach (see Requirement 3 and 4).

5.5 Threats to Validity

In the following, we present threats to the validity of this evaluation, based on the classification

given by Runeson and Höst [RH09].

5.5.1 Construct Validity

For the evaluation, we provided a prototypical realization of the presented concept. This presents

just one specific way on how the concept can be realized. Naturally, it is possible to implement this

in various ways, for example using different technologies or alternative transformation approaches

for the plugins. Consequently, it is possible that such an alternative implementation of the concepts

could lead to a different outcome of the evaluation. However, as long as the concepts are correctly

implemented, the outcome should not differ too much. Therefore, we evaluated if the prototypical

realization conforms to the conceptualized processes that we defined.

57

5 Evaluation

5.5.2 Internal Validity

The log files of the Java applications show process steps that refer to locations in the code that we

selected. This may not show the actual process flow because it is possible that processing steps that

deviate from the concept happen between individual log statements. Therefore, we made sure to

cover all endpoints of the applications so that we are able to recognize all calls from and to external

services. To confirm this or to gain additional insights into the process flow of the transformation

framework, it could be beneficial to investigate it with the help of a tracing tool like Jaeger.

The information about the application deployment in the expected technology-agnostic deployment

model is limited to our knowledge of the technology-specific deployment model. It may deploy

additional components or communication between certain services are happening that we were

unable to discover. Therefore, it is possible that some information is missing in both the expected

and the actual technology-agnostic deployment model that we are unaware of. To counter this, we

inspected the exemplary technology-specific deployment model as thoroughly as possible, which

included the actual deployment of the T2 Project.

The score of the metrics is calculated based on the values that the plugins record in the internal

deployment models. If the plugins do not implement this as intended, the metrics might not be

representative for what we expect and may falsify the result. We tried to counter this by manually

inspecting the recorded metrics in the internal deployment models in the models database. This

investigation showed that the plugins seem to record the metrics as intended.

5.5.3 External Validity

For the evaluation, we transformed a technology-specific deployment model of one specific applica-

tion. The results of this cannot be generalized for technology-specific deployment models of other

applications, as they may use concepts of deployment technologies that the plugins currently do not

support. Furthermore, we only developed four plugins. Therefore, the usage of any deployment

technology that is not supported by the transformation framework would lead to substantially worse

results. In this first realization of the transformation framework we do not intend to develop a

solution that works for every use case. Rather, we want to confirm that the presented concepts are

suitable and therefore conducted a thorough evaluation with one technology-specific deployment

model.

5.5.4 Reliability

In this chapter, we evaluated the result of one specific run for transforming the exemplary technology-

specific deployment model with the transformation framework. To confirm the reliability of these

results, we repeated this run several times. This showed that the calculated score of the metrics and

the content of the technology-agnostic deployment model are always the same. Therefore, we assert

that the evaluation result is reliable in this regard.

58

6 Conclusion

To conclude the thesis, we first summarize our contribution and results in Section 6.1. After that

we discuss benefits (Section 6.2) and limitations (Section 6.3) of the presented work. Finally, we

describe lessons learned during the research on this topic in Section 6.4 and conclude with an

outlook on possible future work in Section 6.5.

6.1 Summary

The main contribution of the thesis is a concept and architecture for a plugin-based transformation

framework to transform technology-specific deployment models into technology-agnostic deploy-

ment models based on the EDMM. The transformation framework can detect embedded deployment

models and transform them with an appropriate plugin. It also supports the addition and combi-

nation of alternative transformation methods, e.g., mixing static and dynamic analysis techniques

to achieve the best possible results. We described in detail the transformation process that the

transformation framework should implement. Additionally, we provided definitions of metrics that

the transformation framework includes in the transformation result so that users can assess the

quality of the technology-agnostic deployment model.

We implemented this concept in a prototype that contains four plugins for different deployment

technologies. With this prototypical realization, we evaluated the concepts by transforming a

technology-specific deployment model that describes an example application based on a reference

architecture. This evaluation showed that the transformation framework can produce technology-

agnostic deployment models of good quality and that the concepts work. However, the evaluation

also showed some weaknesses of the transformation framework, especially in the implementation of

the plugins. To address these issues, we discussed ways to improve the transformation framework.

6.2 Benefits

Previous, related work focused mainly on the transformation of one or few specific deployment

technologies. With this work, we provide a more general approach that enables the addition of

support for arbitrary technologies. We see it as a baseline for the transformation of technology-

specific deployment models to technology-agnostic deployment models. We can now build on the

provided concepts for future work, improve the prototype of the transformation framework based on

the evaluation result and extend it. Other researchers or developers can use the core components of

the prototypical realization of the transformation framework and provide their own plugins for their

use cases and applied deployment technologies.

59

6 Conclusion

6.3 Limitations

The transformation frameworks’ ability to transform deployment models is limited by the number of

supported deployment technologies. Therefore, we provided an extensible architecture that allows

adding plugins to support more deployment technologies.

Another limitation is that the concept does not provide means to deploy a resulting technology-

agnostic deployment model. Because we focus on the transformation, this is out of scope. We

chose the EDMM as the meta-model, which does not provide a deployment engine for deploying

it to a deployment environment. Therefore, a subsequent deployment of the technology-agnostic

deployment model is currently not possible. To enable this, we can use the EDMM transformation

system presented in [WBB+19] to transform the technology-agnostic deployment model back into a

technology-specific deployment model. However, we did not test this and cannot guarantee that a

resulting deployment completely conforms to the original technology-specific deployment model.

6.4 Lessons Learned

The realization of the prototype showed, that achieving transformations that retain all relevant

information for different deployment models with arbitrary deployment technologies requires lots

of development effort. Since there are many deployment technologies in use today, we would have

to develop many plugins accordingly. Therefore, we should focus on the most popular deployment

technologies first. Furthermore, each deployment technology provides different concepts and

corresponding challenges. Consequently, the approach and implementation of the transformation

logic differ drastically between the plugins. This increases the development effort because it is

hard to reuse parts of existing implementations. Additionally, many deployment technologies

provide many concepts and entities. For example, Terraform allows using over 1700 providers that

each contain their own set of resource types, data sources, and more. To avoid defining distinct

mappings to EDMM entities for each resource type, we need to find more general approaches for

the transformation in such cases, for example, through the dynamic analysis technique. We also

need to take into account that deployment technologies evolve. With updates, they may introduce

new concepts and change or deprecate existing ones. Therefore, it is crucial to update the plugins

for these new changes. Because of this, some plugins may also need to differentiate between major

versions of the deployment technology that a given deployment model uses.

If a deployment model uses managed services of a cloud provider, it is often hard to find out what

they deploy in detail. This is especially difficult in the cases of PaaS and SaaS offerings. Cloud

providers abstract the underlying resources from the user so that they do not have to care about

them. However, for the transformation it is crucial to know this. The transformation framework

should create appropriate EDMM components that are independent of specific cloud providers.

From the evaluation, we learned that we need to make further improvements to the plugins, the

usage of the EDMM type system, and the communication of findings between the plugins.

60

6.5 Future Work

6.5 Future Work

For future work, we can identify several interesting topics. First, it is important to improve the

prototypical realization based on the findings of the evaluation. After that, it would be interesting

to conduct a broader evaluation that includes the transformation of several technology-specific

deployment models. From the findings, we can then assess if we can generalize on the results of the

first evaluation.

Future work may continue the development of the prototypical realization of the transformation

framework. This includes reworking and extending the existing plugins and the addition of new

plugins for the support of more deployment technologies. Furthermore, the development of plugins

that follow a dynamic analysis approach can contribute to the improvement of the transformation

framework. This will enable further research in several ways. First, it can conduct a comparison

between static and dynamic analysis techniques. Findings may show certain areas or categories of

deployment technologies where one technique outperforms the other. Alternatively, future work

can research the effect of combining these techniques to improve the transformation results of a

specific deployment technology.

Another interesting research topic is the improvement of the EDMM component type hierarchy

that the transformation framework creates. In Section 5.4 we already outlined two options. The

first option is to change the plugin implementation so that they can detect commonalities in the

components and create shared component types. The other option focuses on defining a general

component type hierarchy that the plugins can use for transforming arbitrary deployment models. It

would be interesting to know if there is already related research on this topic, how such a hierarchy

looks like, and if it helps to improve the results of the transformation framework.

Moreover, future work may focus on the end user of the transformation framework. For the

improvement of the metrics in the transformation result, it is helpful to evaluate how they support

the end user in assessing the quality of the technology-agnostic deployment model. In the case of

the general user experience, it could be beneficial to replace the existing tad-shell CLI with a more

powerful Graphical User Interface (GUI). This would enable the implementation of more advanced

features, like the real-time tracking of the transformation process with the current status of tasks,

discovered embedded deployment models, and plugins.

We can also identify interesting topics for the conduction of user studies. One possible topic is to

research if users can comprehend the resulting technology-agnostic deployment model of the trans-

formation result better than the originating technology-specific deployment model. Alternatively, a

user study may investigate if there are better alternatives to the EDMM in YAML specification that

we currently use as a textual concrete syntax for the technology-agnostic deployment model. In this

case, the aforementioned GUI would enable to include graphical syntaxes in this comparison.

Finally, future work could also investigate whether the model actually contains enough information

to deploy it and how this is possible. For this, they could test and compare approaches that deploy

the technology-agnostic deployment model directly, or transform it into an intermediate format

first.

61

Bibliography

[BBK+13] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, J. Wettinger. “Integrated Cloud

Application Provisioning: Interconnecting Service-centric and Script-centric Man-

agement Technologies”. In: Proceedings of the 21st International Conference on

Cooperative Information Systems (CoopIS 2013). Springer, 2013. doi: 10.1007/978-

3-642-41030-7_9 (cit. on p. 1).

[BBK+14] U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann, J. Wettinger. “Combining

Declarative and Imperative Cloud Application Provisioning based on TOSCA”. In:

Proceedings of the IEEE International Conference on Cloud Engineering (IEEE

IC2E 2014). IEEE Computer Society, Mar. 2014, pp. 87–96. doi: 10.1109/IC2E.

2014.56 (cit. on pp. 1, 6).

[BCR94] V. R. Basili, G. Caldiera, H. D. Rombach. “The goal question metric approach”. In:

Encyclopedia of software engineering (1994), pp. 528–532 (cit. on p. 49).

[CFH+98] A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner, A. Van Der Hoek, A. L. Wolf.

A characterization framework for software deployment technologies. Tech. rep. Col-

orado State Univ Fort Collins Dept of Computer Science, 1998 (cit. on p. 4).

[EBF+17] C. Endres, U. Breitenbücher, M. Falkenthal, O. Kopp, F. Leymann, J. Wettinger.

“Declarative vs. imperative: two modeling patterns for the automated deployment

of applications”. In: Proceedings of the 9th International Conference on Pervasive

Patterns and Applications. Xpert Publishing Services (XPS). 2017, pp. 22–27 (cit. on

pp. 1, 4).

[EBLW17] C. Endres, U. Breitenbücher, F. Leymann, J. Wettinger. “Anything to Topology - A

Method and System Architecture to Topologize Technology-specific Application

Deployment Artifacts.” In: Proceedings of the 7th International Conference on Cloud

Computing and Services Science (CLOSER 2017). SCITEPRESS – Science and

Technology Publications, Lda, 2017, pp. 180–190. doi: 10.5220/0006305302080218

(cit. on pp. 1, 4, 6–8).

[EEKS11] T. Eilam, M. Elder, A. V. Konstantinou, E. Snible. “Pattern-based composite appli-

cation deployment”. In: 12th IFIP/IEEE International Symposium on Integrated

Network Management (IM 2011) and Workshops. IEEE. 2011, pp. 217–224 (cit. on

pp. 1, 6).

[Has21] HashiCorp, Inc. Terraform Language Documentation. Dec. 15, 2021. url: https:

//www.terraform.io/language (cit. on p. 42).

[Has22] HashiCorp, Inc. What is Terraform? Jan. 27, 2022. url: https://www.terraform.

io/intro (cit. on pp. 41, 42).

63

Bibliography

[HBF+18] L. Harzenetter, U. Breitenbücher, M. Falkenthal, J. Guth, C. Krieger, F. Leymann.

“Pattern-based Deployment Models and Their Automatic Execution”. In: 11th

IEEE/ACM International Conference on Utility and Cloud Computing UCC 2018,

17–20 December 2018, Zurich, Switzerland. IEEE Computer Society, 2018, pp. 41–

52. doi: 10.1109/UCC.2018.00013 (cit. on pp. 1, 4, 6).

[Hel22] Helm Authors. Helm Architecture. 2022. url: https://helm.sh/docs/topics/

architecture/ (cit. on p. 47).

[LSS+13] H. Lu, M. Shtern, B. Simmons, M. Smit, M. Litoiu. “Pattern-based deployment

service for next generation clouds”. In: 2013 IEEE Ninth World Congress on Services.

IEEE. 2013, pp. 464–471 (cit. on p. 6).

[MG11] P. Mell, T. Grance. “The NIST definition of cloud computing”. In: (2011) (cit. on

pp. 3, 5).

[Mon21] MongoDB, Inc. Introduction to MongoDB. 2021. url: https://www.mongodb.com/

docs/manual/introduction/ (cit. on p. 37).

[Mor16] K. Morris. Infrastructure as Code: Managing Servers in the Cloud. Safari Books

Online. O’Reilly Media, 2016. isbn: 9781491924396. url: https://books.google.

de/books?id=BIhRDAAAQBAJ (cit. on p. 5).

[Org13] Organization for the Advancement of Structured Information Standards (OASIS).

Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer

Version 1.0. Jan. 2013. url: http://docs.oasis-open.org/tosca/tosca-primer/v1.

0/cnd01/tosca-primer-v1.0-cnd01.html (cit. on p. 6).

[RF20] C. Ramey, B. Fox. Bash Reference Manual. Dec. 21, 2020. url: https://www.gnu.

org/software/bash/manual/bash.pdf (cit. on p. 47).

[RH09] P. Runeson, M. Höst. “Guidelines for conducting and reporting case study research

in software engineering”. In: Empir. Softw. Eng. 14.2 (2009), pp. 131–164 (cit. on

p. 57).

[Ric21] C. Richardson. Pattern: Saga. 2021. url: https://microservices.io/patterns/

data/saga.html (cit. on p. 51).

[SSB22] S. Speth, S. Stieß, S. Becker. “A Saga Pattern Microservice Reference Architecture

for an Elastic SLO Violation Analysis”. In: Companions Proceedings of 19th IEEE

International Conference on Software Architecture (ICSA-C 2022). IEEE, Mar. 2022

(cit. on pp. 51, 52).

[Tar72] R. Tarjan. “Depth-first search and linear graph algorithms”. In: SIAM journal on

computing 1.2 (1972), pp. 146–160 (cit. on p. 7).

[The22a] The Kubernetes Authors. Command line tool (kubectl). 2022. url: https://kuberne

tes.io/docs/reference/kubectl/ (cit. on p. 47).

[The22b] The Kubernetes Authors. Understanding Kubernetes Objects. Feb. 24, 2022. url:

https : / / kubernetes . io / docs / concepts / overview / working - with - objects /

kubernetes-objects/ (cit. on p. 44).

[The22c] The Kubernetes Authors. What is Kubernetes? Apr. 4, 2022. url: https://kubernet

es.io/docs/concepts/overview/what-is-kubernetes/ (cit. on p. 43).

64

Bibliography

[The22d] The PostgreSQL Global Development Group. What Is PosgreSQL? 2022. url:

https://www.postgresql.org/docs/14/intro-whatis.html (cit. on p. 36).

[VMw22a] VMware, Inc. AMQP 0-9-1 Model Explained. 2022. url: https://www.rabbitmq.

com/tutorials/amqp-concepts.html (cit. on p. 37).

[VMw22b] VMware, Inc. RabbitMQ. 2022. url: https://www.rabbitmq.com/ (cit. on p. 37).

[VMw22c] VMware, Inc. Spring AMQP. 2022. url: https://spring.io/projects/spring-amqp

(cit. on p. 38).

[VMw22d] VMware, Inc. Spring Boot. 2022. url: https://spring.io/projects/spring-boot

(cit. on p. 36).

[VMw22e] VMware, Inc. Spring Shell. 2022. url: https://spring.io/projects/spring-shell

(cit. on p. 39).

[WBB+19] M. Wurster, U. Breitenbücher, A. Brogi, G. Falazi, L. Harzenetter, F. Leymann,

J. Soldani, V. Yussupov. “The EDMM Modeling and Transformation System.” In:

ICSOC Workshops. 2019, pp. 294–298 (cit. on pp. 8, 60).

[WBB+20a] M. Wurster, U. Breitenbücher, A. Brogi, L. Harzenetter, F. Leymann, J. Soldani.

“Technology-Agnostic Declarative Deployment Automation of Cloud Applications”.

In: European Conference on Service-Oriented and Cloud Computing. Springer. 2020,

pp. 97–112 (cit. on pp. 4, 8).

[WBB+20b] M. Wurster, U. Breitenbücher, A. Brogi, F. Leymann, J. Soldani. “Cloud-native

Deploy-ability: An Analysis of Required Features of Deployment Technologies to

Deploy Arbitrary Cloud-native Applications.” In: CLOSER. 2020, pp. 171–180 (cit.

on p. 6).

[WBF+20] M. Wurster, U. Breitenbücher, M. Falkenthal, C. Krieger, F. Leymann, K. Saatkamp,

J. Soldani. “The essential deployment metamodel: a systematic review of deployment

automation technologies”. In: SICS Software-Intensive Cyber-Physical Systems 35.1

(2020), pp. 63–75 (cit. on pp. 1, 4, 5, 8, 12, 13, 16, 24, 25, 42).

[WBKL16] J. Wettinger, U. Breitenbücher, O. Kopp, F. Leymann. “Streamlining DevOps automa-

tion for Cloud applications using TOSCA as standardized metamodel”. In: Future

Generation Computer Systems 56 (2016), pp. 317–332 (cit. on pp. 4, 7, 8, 47).

All links were last followed on April 28, 2022.

65

A Expected Technology-Agnostic Deployment

Model

1 ---

2 properties: []

3 components:

4 - default:

5 type: "physical_node"

6 description: null

7 properties:

8 - cpu_count: 4

9 - ram_GiB: 16

10 - storage_GiB: 32

11 operations: []

12 artifacts: []

13 - default-operating-system:

14 type: "operating_system"

15 description: null

16 properties:

17 - name: "Ubuntu"

18 - version: "18.04"

19 - os_family: "Linux"

20 operations: []

21 artifacts: []

22 - default-container-runtime:

23 type: "container_runtime"

24 description: null

25 properties:

26 - name: "containerd"

27 operations: []

28 artifacts: []

29 - mongo-cart:

30 type: "mongodb"

31 description: null

32 properties:

33 - container-port_mongodb: 27017

34 - MONGODB_DISABLE_SYSTEM_LOG: "\"no\""

35 - ALLOW_EMPTY_PASSWORD: "\"yes\""

36 - BITNAMI_DEBUG: "\"false\""

37 - MONGODB_SYSTEM_LOG_VERBOSITY: "\"0\""

38 - MONGODB_ENABLE_IPV6: "\"no\""

39 - MONGODB_DISABLE_JAVASCRIPT: "\"no\""

40 - MONGODB_ENABLE_JOURNAL: "\"yes\""

41 - MONGODB_ENABLE_DIRECTORY_PER_DB: "\"no\""

42 - external-port_mongodb: "27017:mongodb"

67

A Expected Technology-Agnostic Deployment Model

43 operations: []

44 artifacts:

45 - docker_image:

46 name: docker.io/bitnami/mongodb:4.4.10-debian-10-r44

47 fileURI: "-"

48 - mongo-order:

49 type: "mongodb"

50 description: null

51 properties:

52 - container-port_mongodb: 27017

53 - BITNAMI_DEBUG: "false"

54 - MONGODB_DISABLE_SYSTEM_LOG: "\"no\""

55 - ALLOW_EMPTY_PASSWORD: "\"yes\""

56 - BITNAMI_DEBUG: "\"false\""

57 - MONGODB_SYSTEM_LOG_VERBOSITY: "\"0\""

58 - MONGODB_ENABLE_IPV6: "\"no\""

59 - MONGODB_DISABLE_JAVASCRIPT: "\"no\""

60 - MONGODB_ENABLE_JOURNAL: "\"yes\""

61 - MONGODB_ENABLE_DIRECTORY_PER_DB: "\"no\""

62 - external-port_mongodb: "27017:mongodb"

63 operations: []

64 artifacts:

65 - docker_image:

66 name: docker.io/bitnami/mongodb:4.4.10-debian-10-r44

67 fileURI: "-"

68 - kafka-zookeeper:

69 type: "zookeeper"

70 description: null

71 properties:

72 - container-port_client: 2181

73 - container-port_follower: 2888

74 - container-port_election: 3888

75 - ZOO_4LW_COMMANDS_WHITELIST: "\"srvr, mntr, ruok\""

76 - ALLOW_ANONYMOUS_LOGIN: "\"yes\""

77 - ZOO_SYNC_LIMIT: "\"5\""

78 - ZOO_MAX_SESSION_TIMEOUT: "\"40000\""

79 - ZOO_TICK_TIME: "\"2000\""

80 - ZOO_PRE_ALLOC_SIZE: "\"65536\""

81 - ZOO_SERVERS: "kafka-zookeeper-0.kafka-zookeeper-headless.default.

svc.cluster.local:2888:3888::1"

82 - ZOO_AUTOPURGE_RETAIN_COUNT: "\"3\""

83 - ZOO_SNAPCOUNT: "\"100000\""

84 - ZOO_LOG_LEVEL: "\"ERROR\""

85 - ZOO_MAX_CLIENT_CNXNS: "\"60\""

86 - ZOO_INIT_LIMIT: "\"10\""

87 - BITNAMI_DEBUG: "\"false\""

88 - ZOO_ENABLE_AUTH: "\"no\""

89 - ZOO_DATA_LOG_DIR: "\"\""

90 - ZOO_LISTEN_ALLIPS_ENABLED: "\"no\""

91 - ZOO_PORT_NUMBER: "\"2181\""

92 - ZOO_AUTOPURGE_INTERVAL: "\"0\""

93 - ZOO_HEAP_SIZE: "\"1024\""

94 - POD_NAME: kafka-zookeeper

68

95 - external-port_tcp-client: "2181:client"

96 - external-port_follower: "2888:follower"

97 - external-port_tcp-election: "3888:election"

98 operations: []

99 artifacts:

100 - docker_image:

101 name: docker.io/bitnami/zookeeper:3.7.0-debian-10-r188

102 fileURI: "-"

103 - kafka:

104 type: "kafka"

105 description: null

106 properties:

107 - external-port_kafka-client: 9092

108 - external-port_kafka-internal: 9093

109 - MY_POD_NAME: "kafka"

110 - KAFKA_CFG_SOCKET_RECEIVE_BUFFER_BYTES: "\"102400\""

111 - KAFKA_CFG_SOCKET_SEND_BUFFER_BYTES: "\"102400\""

112 - KAFKA_CFG_LISTENER_SECURITY_PROTOCOL_MAP: "\"INTERNAL:PLAINTEXT,

CLIENT:PLAINTEXT\""

113 - KAFKA_CFG_OFFSETS_TOPIC_REPLICATION_FACTOR: "\"1\""

114 - KAFKA_CFG_LOG_FLUSH_INTERVAL_MS: "\"1000\""

115 - KAFKA_CFG_ZOOKEEPER_CONNECTION_TIMEOUT_MS: "\"6000\""

116 - KAFKA_CFG_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: "\"1\""

117 - KAFKA_CFG_LOG_SEGMENT_BYTES: "\"1073741824\""

118 - KAFKA_CFG_DEFAULT_REPLICATION_FACTOR: "\"1\""

119 - KAFKA_CFG_SUPER_USERS: "\"User:admin\""

120 - KAFKA_CFG_ADVERTISED_LISTENERS: "\"INTERNAL://$(MY_POD_NAME).

kafka-headless.default.svc.cluster.local:9093,CLIENT://$(MY_POD_NAME).kafka

-headless.default.svc.cluster.local:9092\""

121 - KAFKA_CFG_LISTENERS: "\"INTERNAL://:9093,CLIENT://:9092\""

122 - KAFKA_CFG_TRANSACTION_STATE_LOG_MIN_ISR: "\"1\""

123 - KAFKA_CFG_LOG_RETENTION_HOURS: "\"168\""

124 - KAFKA_CFG_LOG_FLUSH_INTERVAL_MESSAGES: "\"10000\""

125 - BITNAMI_DEBUG: "\"false\""

126 - KAFKA_CFG_ZOOKEEPER_CONNECT: "\"kafka-zookeeper\""

127 - KAFKA_CFG_NUM_NETWORK_THREADS: "\"3\""

128 - KAFKA_CFG_ALLOW_EVERYONE_IF_NO_ACL_FOUND: "\"true\""

129 - KAFKA_CFG_NUM_RECOVERY_THREADS_PER_DATA_DIR: "\"1\""

130 - KAFKA_CFG_LOG_RETENTION_BYTES: "\"1073741824\""

131 - KAFKA_CFG_SOCKET_REQUEST_MAX_BYTES: "\"104857600\""

132 - KAFKA_INTER_BROKER_LISTENER_NAME: "\"INTERNAL\""

133 - KAFKA_CFG_NUM_IO_THREADS: "\"8\""

134 - ALLOW_PLAINTEXT_LISTENER: "\"yes\""

135 - KAFKA_CFG_LOG_RETENTION_CHECK_INTERVALS_MS: "\"300000\""

136 - KAFKA_LOG_DIR: "\"/opt/bitnami/kafka/logs\""

137 - KAFKA_CFG_NUM_PARTITIONS: "\"1\""

138 - KAFKA_CFG_AUTHORIZER_CLASS_NAME: "\"\""

139 - KAFKA_CFG_DELETE_TOPIC_ENABLE: "\"false\""

140 - KAFKA_CFG_MESSAGE_MAX_BYTES: "\"1000012\""

141 - KAFKA_VOLUME_DIR: "\"/bitnami/kafka\""

142 - KAFKA_CFG_LOG_DIRS: "\"/bitnami/kafka/data\""

143 - KAFKA_CFG_AUTO_CREATE_TOPICS_ENABLE: "\"true\""

144 - KAFKA_HEAP_OPTS: "\"-Xmx1024m -Xms1024m\""

69

A Expected Technology-Agnostic Deployment Model

145 - external-port_tcp-internal: "9093:kafka-internal"

146 - external-port_tcp-client: "9092:kafka-client"

147 operations: []

148 artifacts:

149 - docker_image:

150 name: docker.io/bitnami/kafka:2.8.1-debian-10-r57

151 fileURI: "-"

152 - cdcservice:

153 type: "cdcservice-type"

154 description: null

155 properties:

156 - container_port: 8080

157 - EVENTUATELOCAL_CDC_READER_NAME: "PostgresPollingReader"

158 - SPRING_DATASOURCE_DRIVER_CLASS_NAME: "org.postgresql.Driver"

159 - SPRING_PROFILES_ACTIVE: "EventuatePolling"

160 - SPRING_DATASOURCE_PASSWORD: "eventuate"

161 - SPRING_DATASOURCE_TEST_ON_BORROW: "\"true\""

162 - SPRING_DATASOURCE_VALIDATION_QUERY: "SELECT 1"

163 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS: "kafka:9092"

164 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING: "kafka-zookeeper:2181

"

165 - SPRING_DATASOURCE_URL: "jdbc:postgresql://postgres-orchestrator/

eventuate"

166 - EVENTUATE_OUTBOX_ID: "\"1\""

167 - JAVA_OPTS: "-Xmx64m"

168 - SPRING_DATASOURCE_USERNAME: "eventuate"

169 - '"8099"': "8099:8080"

170 operations: []

171 artifacts:

172 - docker_image:

173 name: "eventuateio/eventuate-cdc-service:0.12.0.RELEASE"

174 fileURI: "-"

175 - uibackend:

176 type: "uibackend-type"

177 description: null

178 properties:

179 - container_port: 8080

180 - T2_ORCHESTRATOR_URL: "http://orchestrator-cs/order/"

181 - T2_INVENTORY_URL: "http://inventory-cs/inventory/"

182 - T2_RESERVATION_ENDPOINT: "reservation"

183 - JAEGER_HOST: "localhost #todo"

184 - T2_CART_URL: "http://cart-cs/cart/"

185 - external_port: "80:8080"

186 operations: []

187 artifacts:

188 - docker_image:

189 name: "t2project/uibackend:main"

190 fileURI: "-"

191 - cart:

192 type: "cart-type"

193 description: null

194 properties:

195 - container_port: 8080

70

196 - T2_CART_TTL: "\"0\""

197 - JAEGER_HOST: "localhost #todo"

198 - MONGO_HOST: "mongo-cart-mongodb"

199 - T2_CART_TASKRATE: "\"0\""

200 - external_port: "80:8080"

201 operations: []

202 artifacts:

203 - docker_image:

204 name: "t2project/cart:main"

205 fileURI: "-"

206 - creditinstitute:

207 type: "creditinstitute-type"

208 description: null

209 properties:

210 - container_port: 8080

211 - http: "80:8080"

212 - external_port: "80:8080"

213 operations: []

214 artifacts:

215 - docker_image:

216 name: "t2project/creditinstitute:main"

217 fileURI: "-"

218 - ui:

219 type: "ui-type"

220 description: null

221 properties:

222 - container_port: 8080

223 - T2_UIBACKEND_URL: "http://uibackend-cs/"

224 - external_port: "80:8080"

225 operations: []

226 artifacts:

227 - docker_image:

228 name: "t2project/ui:main"

229 fileURI: "-"

230 - payment:

231 type: "payment-type"

232 description: null

233 properties:

234 - container_port: 8080

235 - T2_PAYMENT_PROVIDER_DUMMY_URL: "http://creditinstitute-cs/pay"

236 - SPRING_DATASOURCE_DRIVER_CLASS_NAME: "org.postgresql.Driver"

237 - SPRING_DATASOURCE_PASSWORD: "eventuate"

238 - JAEGER_SERVICE_NAME: "payment"

239 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS: "kafka:9092"

240 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING: "kafka-zookeeper:2181

"

241 - SPRING_DATASOURCE_URL: "jdbc:postgresql://postgres-orchestrator/

eventuate"

242 - JAEGER_ENABLE: "\"FALSE\""

243 - SPRING_DATASOURCE_USERNAME: "eventuate"

244 - JAEGER_HOST: "simplest-agent #todo"

245 - T2_PAYMENT_PROVIDER_TIMEOUT: "\"5\""

246 - external_port: "80:8080"

71

A Expected Technology-Agnostic Deployment Model

247 operations: []

248 artifacts:

249 - docker_image:

250 name: "t2project/payment:main"

251 fileURI: "-"

252 - orchestrator:

253 type: "orchestrator-type"

254 description: null

255 properties:

256 - container_port: 8080

257 - JAEGER_SERVICE_NAME: "orchestrator"

258 - SPRING_DATASOURCE_DRIVER_CLASS_NAME: "org.postgresql.Driver"

259 - SPRING_DATASOURCE_PASSWORD: "eventuate"

260 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS: "kafka:9092"

261 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING: "kafka-zookeeper:2181

"

262 - SPRING_DATASOURCE_URL: "jdbc:postgresql://postgres-orchestrator/

eventuate"

263 - JAEGER_ENABLE: "\"FALSE\""

264 - SPRING_DATASOURCE_USERNAME: "eventuate"

265 - JAEGER_HOST: "simplest-agent #todo"

266 - external_port: "80:8080"

267 operations: []

268 artifacts:

269 - docker_image:

270 name: "t2project/orchestrator:main"

271 fileURI: "-"

272 - postgres-orchestrator:

273 type: "postgres-db"

274 description: null

275 properties:

276 - container_port: 5432

277 - POSTGRES_PASSWORD: "eventuate"

278 - POSTGRES_USER: "eventuate"

279 - USE_DB_ID: "\"true\""

280 - external_port: "5432:5432"

281 operations: []

282 artifacts:

283 - docker_image:

284 name: "eventuateio/eventuate-tram-sagas-postgres:0.18.0.RELEASE

"

285 fileURI: "-"

286 - postgres-inventory:

287 type: "postgres-db"

288 description: null

289 properties:

290 - container_port: 5432

291 - POSTGRES_DB: "inventory"

292 - POSTGRES_PASSWORD: "inventory"

293 - POSTGRES_USER: "inventory"

294 - external_port: "5432:5432"

295 operations: []

296 artifacts:

72

297 - docker_image:

298 name: "postgres:14.1"

299 fileURI: "-"

300 - order:

301 type: "order-type"

302 description: null

303 properties:

304 - container_port: 8080

305 - MONGO_HOST: "mongo-order-mongodb"

306 - SPRING_DATASOURCE_DRIVER_CLASS_NAME: "org.postgresql.Driver"

307 - SPRING_DATASOURCE_PASSWORD: "eventuate"

308 - JAEGER_SERVICE_NAME: "order"

309 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS: "kafka:9092"

310 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING: "kafka-zookeeper:2181

"

311 - SPRING_DATASOURCE_URL: "jdbc:postgresql://postgres-orchestrator/

eventuate"

312 - JAEGER_ENABLE: "\"FALSE\""

313 - SPRING_DATASOURCE_USERNAME: "eventuate"

314 - JAEGER_HOST: "simplest-agent #todo"

315 - external_port: "80:8080"

316 operations: []

317 artifacts:

318 - docker_image:

319 name: "t2project/order:main"

320 fileURI: "-"

321 - inventory:

322 type: "inventory-type"

323 description: null

324 properties:

325 - container_port: 8080

326 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS: "kafka:9092"

327 - INVENTORY_SIZE: "\"25\""

328 - JAEGER_HOST: "simplest-agent #todo"

329 - JAEGER_SERVICE_NAME: "inventory"

330 - SPRING_PROFILE_ACTIVE: "saga"

331 - SPRING_DATASOURCE_DRIVER_CLASS_NAME: "org.postgresql.Driver"

332 - SPRING_DATASOURCE_PASSWORD: "inventory"

333 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING: "kafka-zookeeper:2181

"

334 - SPRING_DATASOURCE_URL: "jdbc:postgresql://postgres-inventory:5432

/inventory"

335 - JAEGER_ENABLE: "\"FALSE\""

336 - T2_INVENTORY_TTL: "\"0\""

337 - T2_INVENTORY_TASKRATE: "\"0\""

338 - SPRING_DATASOURCE_USERNAME: "inventory"

339 - external_port: "80:8080"

340 operations: []

341 artifacts:

342 - docker_image:

343 name: "t2project/inventory:main"

344 fileURI: "-"

345 relations:

73

A Expected Technology-Agnostic Deployment Model

346 - default-operating-system_HostedOn_default:

347 type: "HostedOn"

348 description: null

349 source: "default-operating-system"

350 target: "default"

351 properties: []

352 operations: []

353 - default-container-runtime_HostedOn_default-operating-system:

354 type: "HostedOn"

355 description: null

356 source: "default-container-runtime"

357 target: "default-operating-system"

358 properties: []

359 operations: []

360 - mongo-cart_HostedOn_default-container-runtime:

361 type: "HostedOn"

362 description: null

363 source: "mongo-cart"

364 target: "default-container-runtime"

365 properties: []

366 operations: []

367 - mongo-order_HostedOn_default-container-runtime:

368 type: "HostedOn"

369 description: null

370 source: "mongo-order"

371 target: "default-container-runtime"

372 properties: []

373 operations: []

374 - kafka-zookeeper_HostedOn_default-container-runtime:

375 type: "HostedOn"

376 description: null

377 source: "kafka-zookeeper"

378 target: "default-container-runtime"

379 properties: []

380 operations: []

381 - kafka_ConnectsTo_kafka-zookeeper:

382 type: "ConnectsTo"

383 description: null

384 source: "kafka"

385 target: "kafka-zookeeper"

386 properties: []

387 operations: []

388 - kafka_HostedOn_default-container-runtime:

389 type: "HostedOn"

390 description: null

391 source: "kafka"

392 target: "default-container-runtime"

393 properties: []

394 operations: []

395 - cdcservice_ConnectsTo_kafka:

396 type: "ConnectsTo"

397 description: null

398 source: "cdcservice"

74

399 target: "kafka"

400 properties: []

401 operations: []

402 - cdcservice_ConnectsTo_kafka-zookeeper:

403 type: "ConnectsTo"

404 description: null

405 source: "cdcservice"

406 target: "kafka-zookeeper"

407 properties: []

408 operations: []

409 - cdcservice_ConnectsTo_postgres-orchestrator:

410 type: "ConnectsTo"

411 description: null

412 source: "cdcservice"

413 target: "postgres-orchestrator"

414 properties: []

415 operations: []

416 - cdcservice_HostedOn_default-container-runtime:

417 type: "HostedOn"

418 description: null

419 source: "cdcservice"

420 target: "default-container-runtime"

421 properties: []

422 operations: []

423 - uibackend_ConnectsTo_orchestrator:

424 type: "ConnectsTo"

425 description: null

426 source: "uibackend"

427 target: "orchestrator"

428 properties: []

429 operations: []

430 - uibackend_ConnectsTo_inventory:

431 type: "ConnectsTo"

432 description: null

433 source: "uibackend"

434 target: "inventory"

435 properties: []

436 operations: []

437 - uibackend_ConnectsTo_cart:

438 type: "ConnectsTo"

439 description: null

440 source: "uibackend"

441 target: "cart"

442 properties: []

443 operations: []

444 - uibackend_HostedOn_default-container-runtime:

445 type: "HostedOn"

446 description: null

447 source: "uibackend"

448 target: "default-container-runtime"

449 properties: []

450 operations: []

451 - cart_ConnectsTo_mongo-cart:

75

A Expected Technology-Agnostic Deployment Model

452 type: "ConnectsTo"

453 description: null

454 source: "cart"

455 target: "mongo-cart"

456 properties: []

457 operations: []

458 - cart_HostedOn_default-container-runtime:

459 type: "HostedOn"

460 description: null

461 source: "cart"

462 target: "default-container-runtime"

463 properties: []

464 operations: []

465 - creditinstitute_HostedOn_default-container-runtime:

466 type: "HostedOn"

467 description: null

468 source: "creditinstitute"

469 target: "default-container-runtime"

470 properties: []

471 operations: []

472 - ui_ConnectsTo_uibackend:

473 type: "ConnectsTo"

474 description: null

475 source: "ui"

476 target: "uibackend"

477 properties: []

478 operations: []

479 - ui_HostedOn_default-container-runtime:

480 type: "HostedOn"

481 description: null

482 source: "ui"

483 target: "default-container-runtime"

484 properties: []

485 operations: []

486 - payment_ConnectsTo_creditinstitute:

487 type: "ConnectsTo"

488 description: null

489 source: "payment"

490 target: "creditinstitute"

491 properties: []

492 operations: []

493 - payment_ConnectsTo_kafka:

494 type: "ConnectsTo"

495 description: null

496 source: "payment"

497 target: "kafka"

498 properties: []

499 operations: []

500 - payment_ConnectsTo_kafka-zookeeper:

501 type: "ConnectsTo"

502 description: null

503 source: "payment"

504 target: "kafka-zookeeper"

76

505 properties: []

506 operations: []

507 - payment_ConnectsTo_postgres-orchestrator:

508 type: "ConnectsTo"

509 description: null

510 source: "payment"

511 target: "postgres-orchestrator"

512 properties: []

513 operations: []

514 - payment_HostedOn_default-container-runtime:

515 type: "HostedOn"

516 description: null

517 source: "payment"

518 target: "default-container-runtime"

519 properties: []

520 operations: []

521 - orchestrator_ConnectsTo_kafka:

522 type: "ConnectsTo"

523 description: null

524 source: "orchestrator"

525 target: "kafka"

526 properties: []

527 operations: []

528 - orchestrator_ConnectsTo_kafka-zookeeper:

529 type: "ConnectsTo"

530 description: null

531 source: "orchestrator"

532 target: "kafka-zookeeper"

533 properties: []

534 operations: []

535 - orchestrator_ConnectsTo_postgres-orchestrator:

536 type: "ConnectsTo"

537 description: null

538 source: "orchestrator"

539 target: "postgres-orchestrator"

540 properties: []

541 operations: []

542 - orchestrator_HostedOn_default-container-runtime:

543 type: "HostedOn"

544 description: null

545 source: "orchestrator"

546 target: "default-container-runtime"

547 properties: []

548 operations: []

549 - postgres-orchestrator_HostedOn_default-container-runtime:

550 type: "HostedOn"

551 description: null

552 source: "postgres-orchestrator"

553 target: "default-container-runtime"

554 properties: []

555 operations: []

556 - postgres-inventory_HostedOn_default-container-runtime:

557 type: "HostedOn"

77

A Expected Technology-Agnostic Deployment Model

558 description: null

559 source: "postgres-inventory"

560 target: "default-container-runtime"

561 properties: []

562 operations: []

563 - order_ConnectsTo_mongo-order:

564 type: "ConnectsTo"

565 description: null

566 source: "order"

567 target: "mongo-order"

568 properties: []

569 operations: []

570 - order_ConnectsTo_kafka:

571 type: "ConnectsTo"

572 description: null

573 source: "order"

574 target: "kafka"

575 properties: []

576 operations: []

577 - order_ConnectsTo_kafka-zookeeper:

578 type: "ConnectsTo"

579 description: null

580 source: "order"

581 target: "kafka-zookeeper"

582 properties: []

583 operations: []

584 - order_ConnectsTo_postgres-orchestrator:

585 type: "ConnectsTo"

586 description: null

587 source: "order"

588 target: "postgres-orchestrator"

589 properties: []

590 operations: []

591 - order_HostedOn_default-container-runtime:

592 type: "HostedOn"

593 description: null

594 source: "order"

595 target: "default-container-runtime"

596 properties: []

597 operations: []

598 - inventory_ConnectsTo_kafka:

599 type: "ConnectsTo"

600 description: null

601 source: "inventory"

602 target: "kafka"

603 properties: []

604 operations: []

605 - inventory_ConnectsTo_kafka-zookeeper:

606 type: "ConnectsTo"

607 description: null

608 source: "inventory"

609 target: "kafka-zookeeper"

610 properties: []

78

611 operations: []

612 - inventory_ConnectsTo_postgres-inventory:

613 type: "ConnectsTo"

614 description: null

615 source: "inventory"

616 target: "postgres-inventory"

617 properties: []

618 operations: []

619 - inventory_HostedOn_default-container-runtime:

620 type: "HostedOn"

621 description: null

622 source: "inventory"

623 target: "default-container-runtime"

624 properties: []

625 operations: []

626 component_types:

627 - BaseType:

628 extends: "-"

629 description: "This is the base type"

630 properties: []

631 operations: []

632 - physical_node:

633 extends: "-"

634 description: null

635 properties:

636 - cpu_count:

637 type: "INTEGER"

638 required: false

639 - ram_GiB:

640 type: "INTEGER"

641 required: false

642 - storage_GiB:

643 type: "INTEGER"

644 required: false

645 operations: []

646 - operating_system:

647 extends: "-"

648 description: null

649 properties:

650 - name:

651 type: "STRING"

652 required: false

653 - version:

654 type: "STRING"

655 required: false

656 - os_family:

657 type: "STRING"

658 required: false

659 operations: []

660 - container_runtime:

661 extends: "-"

662 description: null

663 properties:

79

A Expected Technology-Agnostic Deployment Model

664 - name:

665 type: "STRING"

666 required: false

667 - version:

668 type: "STRING"

669 required: false

670 operations: []

671 - mongodb:

672 extends: "-"

673 description: null

674 properties:

675 - container-port_mongodb:

676 type: "INTEGER"

677 required: false

678 - MONGODB_DISABLE_SYSTEM_LOG:

679 type: "STRING"

680 required: false

681 - ALLOW_EMPTY_PASSWORD:

682 type: "STRING"

683 required: false

684 - BITNAMI_DEBUG:

685 type: "STRING"

686 required: false

687 - MONGODB_SYSTEM_LOG_VERBOSITY:

688 type: "STRING"

689 required: false

690 - MONGODB_ENABLE_IPV6:

691 type: "STRING"

692 required: false

693 - MONGODB_DISABLE_JAVASCRIPT:

694 type: "STRING"

695 required: false

696 - MONGODB_ENABLE_JOURNAL:

697 type: "STRING"

698 required: false

699 - MONGODB_ENABLE_DIRECTORY_PER_DB:

700 type: "STRING"

701 required: false

702 - external-port_mongodb:

703 type: "STRING"

704 required: false

705 operations: []

706 - kafka-zookeeper-type:

707 extends: "-"

708 description: null

709 properties:

710 - container-port_client:

711 type: "INTEGER"

712 required: false

713 - container-port_follower:

714 type: "INTEGER"

715 required: false

716 - container-port_election:

80

717 type: "INTEGER"

718 required: false

719 - ZOO_4LW_COMMANDS_WHITELIST:

720 type: "STRING"

721 required: false

722 - ALLOW_ANONYMOUS_LOGIN:

723 type: "STRING"

724 required: false

725 - ZOO_SYNC_LIMIT:

726 type: "STRING"

727 required: false

728 - ZOO_MAX_SESSION_TIMEOUT:

729 type: "STRING"

730 required: false

731 - ZOO_TICK_TIME:

732 type: "STRING"

733 required: false

734 - ZOO_PRE_ALLOC_SIZE:

735 type: "STRING"

736 required: false

737 - ZOO_SERVERS:

738 type: "STRING"

739 required: false

740 - ZOO_AUTOPURGE_RETAIN_COUNT:

741 type: "STRING"

742 required: false

743 - ZOO_SNAPCOUNT:

744 type: "STRING"

745 required: false

746 - ZOO_LOG_LEVEL:

747 type: "STRING"

748 required: false

749 - ZOO_MAX_CLIENT_CNXNS:

750 type: "STRING"

751 required: false

752 - ZOO_INIT_LIMIT:

753 type: "STRING"

754 required: false

755 - BITNAMI_DEBUG:

756 type: "STRING"

757 required: false

758 - ZOO_ENABLE_AUTH:

759 type: "STRING"

760 required: false

761 - ZOO_DATA_LOG_DIR:

762 type: "STRING"

763 required: false

764 - ZOO_LISTEN_ALLIPS_ENABLED:

765 type: "STRING"

766 required: false

767 - ZOO_PORT_NUMBER:

768 type: "STRING"

769 required: false

81

A Expected Technology-Agnostic Deployment Model

770 - ZOO_AUTOPURGE_INTERVAL:

771 type: "STRING"

772 required: false

773 - ZOO_HEAP_SIZE:

774 type: "STRING"

775 required: false

776 - POD_NAME:

777 type: "STRING"

778 required: false

779 - external-port_tcp-client:

780 type: "STRING"

781 required: false

782 - external-port_follower:

783 type: "STRING"

784 required: false

785 - external-port_tcp-election:

786 type: "STRING"

787 required: false

788 operations: []

789 - kafka-type:

790 extends: "-"

791 description: null

792 properties:

793 - external-port_kafka-client:

794 type: "INTEGER"

795 required: false

796 - external-port_kafka-internal:

797 type: "INTEGER"

798 required: false

799 - MY_POD_NAME:

800 type: "STRING"

801 required: false

802 - KAFKA_CFG_SOCKET_RECEIVE_BUFFER_BYTES:

803 type: "STRING"

804 required: false

805 - KAFKA_CFG_SOCKET_SEND_BUFFER_BYTES:

806 type: "STRING"

807 required: false

808 - KAFKA_CFG_LISTENER_SECURITY_PROTOCOL_MAP:

809 type: "STRING"

810 required: false

811 - KAFKA_CFG_OFFSETS_TOPIC_REPLICATION_FACTOR:

812 type: "STRING"

813 required: false

814 - KAFKA_CFG_LOG_FLUSH_INTERVAL_MS:

815 type: "STRING"

816 required: false

817 - KAFKA_CFG_ZOOKEEPER_CONNECTION_TIMEOUT_MS:

818 type: "STRING"

819 required: false

820 - KAFKA_CFG_TRANSACTION_STATE_LOG_REPLICATION_FACTOR:

821 type: "STRING"

822 required: false

82

823 - KAFKA_CFG_LOG_SEGMENT_BYTES:

824 type: "STRING"

825 required: false

826 - KAFKA_CFG_DEFAULT_REPLICATION_FACTOR:

827 type: "STRING"

828 required: false

829 - KAFKA_CFG_SUPER_USERS:

830 type: "STRING"

831 required: false

832 - KAFKA_CFG_ADVERTISED_LISTENERS:

833 type: "STRING"

834 required: false

835 - KAFKA_CFG_LISTENERS:

836 type: "STRING"

837 required: false

838 - KAFKA_CFG_TRANSACTION_STATE_LOG_MIN_ISR:

839 type: "STRING"

840 required: false

841 - KAFKA_CFG_LOG_RETENTION_HOURS:

842 type: "STRING"

843 required: false

844 - KAFKA_CFG_LOG_FLUSH_INTERVAL_MESSAGES:

845 type: "STRING"

846 required: false

847 - BITNAMI_DEBUG:

848 type: "STRING"

849 required: false

850 - KAFKA_CFG_ZOOKEEPER_CONNECT:

851 type: "STRING"

852 required: false

853 - KAFKA_CFG_NUM_NETWORK_THREADS:

854 type: "STRING"

855 required: false

856 - KAFKA_CFG_ALLOW_EVERYONE_IF_NO_ACL_FOUND:

857 type: "STRING"

858 required: false

859 - KAFKA_CFG_NUM_RECOVERY_THREADS_PER_DATA_DIR:

860 type: "STRING"

861 required: false

862 - KAFKA_CFG_LOG_RETENTION_BYTES:

863 type: "STRING"

864 required: false

865 - KAFKA_CFG_SOCKET_REQUEST_MAX_BYTES:

866 type: "STRING"

867 required: false

868 - KAFKA_INTER_BROKER_LISTENER_NAME:

869 type: "STRING"

870 required: false

871 - KAFKA_CFG_NUM_IO_THREADS:

872 type: "STRING"

873 required: false

874 - ALLOW_PLAINTEXT_LISTENER:

875 type: "STRING"

83

A Expected Technology-Agnostic Deployment Model

876 required: false

877 - KAFKA_CFG_LOG_RETENTION_CHECK_INTERVALS_MS:

878 type: "STRING"

879 required: false

880 - KAFKA_LOG_DIR:

881 type: "STRING"

882 required: false

883 - KAFKA_CFG_NUM_PARTITIONS:

884 type: "STRING"

885 required: false

886 - KAFKA_CFG_AUTHORIZER_CLASS_NAME:

887 type: "STRING"

888 required: false

889 - KAFKA_CFG_DELETE_TOPIC_ENABLE:

890 type: "STRING"

891 required: false

892 - KAFKA_CFG_MESSAGE_MAX_BYTES:

893 type: "STRING"

894 required: false

895 - KAFKA_VOLUME_DIR:

896 type: "STRING"

897 required: false

898 - KAFKA_CFG_LOG_DIRS:

899 type: "STRING"

900 required: false

901 - KAFKA_CFG_AUTO_CREATE_TOPICS_ENABLE:

902 type: "STRING"

903 required: false

904 - KAFKA_HEAP_OPTS:

905 type: "STRING"

906 required: false

907 - external-port_tcp-internal:

908 type: "STRING"

909 required: false

910 - external-port_tcp-client:

911 type: "STRING"

912 required: false

913 operations: []

914 - cdcservice-type:

915 extends: "-"

916 description: null

917 properties:

918 - container_port:

919 type: "INTEGER"

920 required: false

921 - EVENTUATELOCAL_CDC_READER_NAME:

922 type: "STRING"

923 required: false

924 - SPRING_DATASOURCE_DRIVER_CLASS_NAME:

925 type: "STRING"

926 required: false

927 - SPRING_PROFILES_ACTIVE:

928 type: "STRING"

84

929 required: false

930 - SPRING_DATASOURCE_PASSWORD:

931 type: "STRING"

932 required: false

933 - SPRING_DATASOURCE_TEST_ON_BORROW:

934 type: "STRING"

935 required: false

936 - SPRING_DATASOURCE_VALIDATION_QUERY:

937 type: "STRING"

938 required: false

939 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS:

940 type: "STRING"

941 required: false

942 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING:

943 type: "STRING"

944 required: false

945 - SPRING_DATASOURCE_URL:

946 type: "STRING"

947 required: false

948 - EVENTUATE_OUTBOX_ID:

949 type: "STRING"

950 required: false

951 - JAVA_OPTS:

952 type: "STRING"

953 required: false

954 - SPRING_DATASOURCE_USERNAME:

955 type: "STRING"

956 required: false

957 - '"8099"':

958 type: "STRING"

959 required: false

960 operations: []

961 - uibackend-type:

962 extends: "-"

963 description: null

964 properties:

965 - container_port:

966 type: "INTEGER"

967 required: false

968 - T2_ORCHESTRATOR_URL:

969 type: "STRING"

970 required: false

971 - T2_INVENTORY_URL:

972 type: "STRING"

973 required: false

974 - T2_RESERVATION_ENDPOINT:

975 type: "STRING"

976 required: false

977 - JAEGER_HOST:

978 type: "STRING"

979 required: false

980 - T2_CART_URL:

981 type: "STRING"

85

A Expected Technology-Agnostic Deployment Model

982 required: false

983 - external_port:

984 type: "STRING"

985 required: false

986 operations: []

987 - cart-type:

988 extends: "-"

989 description: null

990 properties:

991 - container_port:

992 type: "INTEGER"

993 required: false

994 - T2_CART_TTL:

995 type: "STRING"

996 required: false

997 - JAEGER_HOST:

998 type: "STRING"

999 required: false

1000 - MONGO_HOST:

1001 type: "STRING"

1002 required: false

1003 - T2_CART_TASKRATE:

1004 type: "STRING"

1005 required: false

1006 - external_port:

1007 type: "STRING"

1008 required: false

1009 operations: []

1010 - creditinstitute-type:

1011 extends: "-"

1012 description: null

1013 properties:

1014 - container_port:

1015 type: "INTEGER"

1016 required: false

1017 - http:

1018 type: "STRING"

1019 required: false

1020 - external_port:

1021 type: "STRING"

1022 required: false

1023 operations: []

1024 - ui-type:

1025 extends: "-"

1026 description: null

1027 properties:

1028 - container_port:

1029 type: "INTEGER"

1030 required: false

1031 - T2_UIBACKEND_URL:

1032 type: "STRING"

1033 required: false

1034 - external_port:

86

1035 type: "STRING"

1036 required: false

1037 operations: []

1038 - payment-type:

1039 extends: "-"

1040 description: null

1041 properties:

1042 - container_port:

1043 type: "INTEGER"

1044 required: false

1045 - T2_PAYMENT_PROVIDER_DUMMY_URL:

1046 type: "STRING"

1047 required: false

1048 - SPRING_DATASOURCE_DRIVER_CLASS_NAME:

1049 type: "STRING"

1050 required: false

1051 - SPRING_DATASOURCE_PASSWORD:

1052 type: "STRING"

1053 required: false

1054 - JAEGER_SERVICE_NAME:

1055 type: "STRING"

1056 required: false

1057 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS:

1058 type: "STRING"

1059 required: false

1060 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING:

1061 type: "STRING"

1062 required: false

1063 - SPRING_DATASOURCE_URL:

1064 type: "STRING"

1065 required: false

1066 - JAEGER_ENABLE:

1067 type: "STRING"

1068 required: false

1069 - SPRING_DATASOURCE_USERNAME:

1070 type: "STRING"

1071 required: false

1072 - JAEGER_HOST:

1073 type: "STRING"

1074 required: false

1075 - T2_PAYMENT_PROVIDER_TIMEOUT:

1076 type: "STRING"

1077 required: false

1078 - external_port:

1079 type: "STRING"

1080 required: false

1081 operations: []

1082 - orchestrator-type:

1083 extends: "-"

1084 description: null

1085 properties:

1086 - container_port:

1087 type: "INTEGER"

87

A Expected Technology-Agnostic Deployment Model

1088 required: false

1089 - JAEGER_SERVICE_NAME:

1090 type: "STRING"

1091 required: false

1092 - SPRING_DATASOURCE_DRIVER_CLASS_NAME:

1093 type: "STRING"

1094 required: false

1095 - SPRING_DATASOURCE_PASSWORD:

1096 type: "STRING"

1097 required: false

1098 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS:

1099 type: "STRING"

1100 required: false

1101 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING:

1102 type: "STRING"

1103 required: false

1104 - SPRING_DATASOURCE_URL:

1105 type: "STRING"

1106 required: false

1107 - JAEGER_ENABLE:

1108 type: "STRING"

1109 required: false

1110 - SPRING_DATASOURCE_USERNAME:

1111 type: "STRING"

1112 required: false

1113 - JAEGER_HOST:

1114 type: "STRING"

1115 required: false

1116 - external_port:

1117 type: "STRING"

1118 required: false

1119 operations: []

1120 - postgres-db:

1121 extends: "-"

1122 description: null

1123 properties:

1124 - container_port:

1125 type: "INTEGER"

1126 required: false

1127 - POSTGRES_DB:

1128 type: "STRING"

1129 required: false

1130 - POSTGRES_PASSWORD:

1131 type: "STRING"

1132 required: false

1133 - POSTGRES_USER:

1134 type: "STRING"

1135 required: false

1136 - USE_DB_ID:

1137 type: "STRING"

1138 required: false

1139 - external_port:

1140 type: "STRING"

88

1141 required: false

1142 operations: []

1143 - order-type:

1144 extends: "-"

1145 description: null

1146 properties:

1147 - container_port:

1148 type: "INTEGER"

1149 required: false

1150 - MONGO_HOST:

1151 type: "STRING"

1152 required: false

1153 - SPRING_DATASOURCE_DRIVER_CLASS_NAME:

1154 type: "STRING"

1155 required: false

1156 - SPRING_DATASOURCE_PASSWORD:

1157 type: "STRING"

1158 required: false

1159 - JAEGER_SERVICE_NAME:

1160 type: "STRING"

1161 required: false

1162 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS:

1163 type: "STRING"

1164 required: false

1165 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING:

1166 type: "STRING"

1167 required: false

1168 - SPRING_DATASOURCE_URL:

1169 type: "STRING"

1170 required: false

1171 - JAEGER_ENABLE:

1172 type: "STRING"

1173 required: false

1174 - SPRING_DATASOURCE_USERNAME:

1175 type: "STRING"

1176 required: false

1177 - JAEGER_HOST:

1178 type: "STRING"

1179 required: false

1180 - external_port:

1181 type: "STRING"

1182 required: false

1183 operations: []

1184 - inventory-type:

1185 extends: "-"

1186 description: null

1187 properties:

1188 - container_port:

1189 type: "INTEGER"

1190 required: false

1191 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS:

1192 type: "STRING"

1193 required: false

89

A Expected Technology-Agnostic Deployment Model

1194 - INVENTORY_SIZE:

1195 type: "STRING"

1196 required: false

1197 - JAEGER_HOST:

1198 type: "STRING"

1199 required: false

1200 - JAEGER_SERVICE_NAME:

1201 type: "STRING"

1202 required: false

1203 - SPRING_PROFILE_ACTIVE:

1204 type: "STRING"

1205 required: false

1206 - SPRING_DATASOURCE_DRIVER_CLASS_NAME:

1207 type: "STRING"

1208 required: false

1209 - SPRING_DATASOURCE_PASSWORD:

1210 type: "STRING"

1211 required: false

1212 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING:

1213 type: "STRING"

1214 required: false

1215 - SPRING_DATASOURCE_URL:

1216 type: "STRING"

1217 required: false

1218 - JAEGER_ENABLE:

1219 type: "STRING"

1220 required: false

1221 - T2_INVENTORY_TTL:

1222 type: "STRING"

1223 required: false

1224 - T2_INVENTORY_TASKRATE:

1225 type: "STRING"

1226 required: false

1227 - SPRING_DATASOURCE_USERNAME:

1228 type: "STRING"

1229 required: false

1230 - external_port:

1231 type: "STRING"

1232 required: false

1233 operations: []

1234 relation_types:

1235 - DependsOn:

1236 extends: "-"

1237 description: "generic relation type"

1238 properties: []

1239 operations: []

1240 - HostedOn:

1241 extends: "DependsOn"

1242 description: "hosted on relation"

1243 properties: []

1244 operations: []

1245 - ConnectsTo:

1246 extends: "DependsOn"

90

1247 description: "connects to relation"

1248 properties: []

1249 operations: []

Listing A.1: The expected technology-agnostic deployment model. It is the result that we expect

from the transformation framework when it transforms the exemplary technology-

specific deployment model of the T2 Project.

91

B Evaluation Results

In the following we present the results of the evaluation from Chapter 5. Each result refers to a

specific metric of the GQM model presented in Table 5.1. Some files of the evaluation result are too

big to include here, therefore we provide the complete result in a public repository on Zenodo1.

B.1 M1: Application Logs Summary

1 Registers plugin bash

2 Registers plugin terraform

3 Registers plugin helm

4 Registers plugin kubernetes

5

6 Receives transform command from user

7 Sends request to models service for initialiing internal deployment models

8

9 Sends AnalysisTask to plugin bash (azure-start.sh)

10 Receives EmbeddedDeploymentModelAnalysisRequest: for terraform (terraform/)

11 Receives EmbeddedDeploymentModelAnalysisRequest: for helm (mongo-cart)

12 Receives EmbeddedDeploymentModelAnalysisRequest: for helm (mongo-order)

13 Receives EmbeddedDeploymentModelAnalysisRequest: for helm (kafka)

14 Receives EmbeddedDeploymentModelAnalysisRequest: for kubernetes (k8/)

15 Receives successful AnalysisTaskResponse from plugin bash

16 Unable to find dynamic plugin for bash

17

18 Sends AnalysisTask to plugin terraform (terraform/)

19 Receives successful AnalysisTaskResponse from plugin terraform

20 Unable to find dynamic plugin for terraform

21

22 Sends AnalysisTask to plugin helm (mongo-cart)

23 Receives EmbeddedDeploymentModelAnalysisRequest: for kubernetes (mongo-cart

)

24 Receives successful AnalysisTaskResponse from plugin helm

25 Unable to find dynamic plugin for helm

26

27 Sends AnalysisTask to plugin kubernetes (mongo-cart)

28 Receives successful AnalysisTaskResponse from plugin kubernetes

29 Unable to find dynamic plugin for kubernetes

30

31 Sends AnalysisTask to plugin helm (mongo-order)

1Public repository with complete evaluation results: https://doi.org/10.5281/zenodo.6503667

93

B Evaluation Results

32 Receives EmbeddedDeploymentModelAnalysisRequest: for kubernetes (mongo-

order)

33 Receives successful AnalysisTaskResponse from plugin helm

34 Unable to find dynamic plugin for helm

35

36 Sends AnalysisTask to plugin kubernetes (mongo-order)

37 Receives successful AnalysisTaskResponse from plugin kubernetes

38 Unable to find dynamic plugin for kubernetes

39

40 Sends AnalysisTask to plugin helm (kafka)

41 Receives EmbeddedDeploymentModelAnalysisRequest: for kubernetes (kafka)

42 Receives successful AnalysisTaskResponse from plugin helm

43 Unable to find dynamic plugin for helm

44

45 Sends AnalysisTask to plugin kubernetes (kafka)

46 Receives successful AnalysisTaskResponse from plugin kubernetes

47 Unable to find dynamic plugin for kubernetes

48

49 Sends AnalysisTask to plugin helm (k8/)

50 Receives successful AnalysisTaskResponse from plugin kubernetes

51 Unable to find dynamic plugin for kubernetes

52

53 Requests result from models service

Listing B.1: Summary of the events in the application logs from the viewpoint of the analysis

manager.

94

B.2 M2: Registered Plugins

B.2 M2: Registered Plugins

1 [

2 {

3 "id": "f142e723-e658-4bc8-929a-5ee9e45b972d",

4 "technology": "bash",

5 "analysisType": "STATIC",

6 "queueName": "bashSTATIC"

7 },

8 {

9 "id": "8df9a6c6-92d1-42b5-a23f-f8e4a12e3de4",

10 "technology": "terraform",

11 "analysisType": "STATIC",

12 "queueName": "terraformSTATIC"

13 },

14 {

15 "id": "04f6c11d-4f25-48a1-a74f-4ab0293b0682",

16 "technology": "helm",

17 "analysisType": "STATIC",

18 "queueName": "helmSTATIC"

19 },

20 {

21 "id": "227924af-8e39-4e9d-b917-146d03a6658a",

22 "technology": "kubernetes",

23 "analysisType": "STATIC",

24 "queueName": "kubernetesSTATIC"

25 }

26]

Listing B.2: Registered plugins in the configurations database.

95

B Evaluation Results

B.3 M3: Message Broker Definitions

1 {

2 "rabbit_version": "3.9.13",

3 "rabbitmq_version": "3.9.13",

4 "product_name": "RabbitMQ",

5 "product_version": "3.9.13",

6 "users": [

7 {

8 "name": "guest",

9 "password_hash": "6

J8azACJ2ifxWax9fllyI0e1XXyLKy6XNeuUWW629dARvvNZ",

10 "hashing_algorithm": "rabbit_password_hashing_sha256",

11 "tags": [

12 "administrator"

13],

14 "limits": {}

15 }

16],

17 "vhosts": [

18 {

19 "name": "/"

20 }

21],

22 "permissions": [

23 {

24 "user": "guest",

25 "vhost": "/",

26 "configure": ".*",

27 "write": ".*",

28 "read": ".*"

29 }

30],

31 "topic_permissions": [],

32 "parameters": [],

33 "global_parameters": [

34 {

35 "name": "internal_cluster_id",

36 "value": "rabbitmq-cluster-id-RBpa9WVC4sdq-HJjRnztkQ"

37 }

38],

39 "policies": [],

40 "queues": [

41 {

42 "name": "helmSTATIC",

43 "vhost": "/",

44 "durable": true,

45 "auto_delete": false,

46 "arguments": {}

47 },

48 {

49 "name": "bashSTATIC",

96

B.3 M3: Message Broker Definitions

50 "vhost": "/",

51 "durable": true,

52 "auto_delete": false,

53 "arguments": {}

54 },

55 {

56 "name": "AnalysisTaskResponseQueue",

57 "vhost": "/",

58 "durable": true,

59 "auto_delete": false,

60 "arguments": {}

61 },

62 {

63 "name": "kubernetesSTATIC",

64 "vhost": "/",

65 "durable": true,

66 "auto_delete": false,

67 "arguments": {}

68 },

69 {

70 "name": "terraformSTATIC",

71 "vhost": "/",

72 "durable": true,

73 "auto_delete": false,

74 "arguments": {}

75 }

76],

77 "exchanges": [

78 {

79 "name": "AnalysisTaskResponseExchange",

80 "vhost": "/",

81 "type": "fanout",

82 "durable": true,

83 "auto_delete": false,

84 "internal": false,

85 "arguments": {}

86 },

87 {

88 "name": "AnalysisTaskRequestExchange",

89 "vhost": "/",

90 "type": "headers",

91 "durable": true,

92 "auto_delete": false,

93 "internal": false,

94 "arguments": {}

95 }

96],

97 "bindings": [

98 {

99 "source": "AnalysisTaskRequestExchange",

100 "vhost": "/",

101 "destination": "bashSTATIC",

102 "destination_type": "queue",

97

B Evaluation Results

103 "routing_key": "",

104 "arguments": {

105 "analysisType": "STATIC",

106 "technology": "bash",

107 "x-match": "all"

108 }

109 },

110 {

111 "source": "AnalysisTaskRequestExchange",

112 "vhost": "/",

113 "destination": "helmSTATIC",

114 "destination_type": "queue",

115 "routing_key": "",

116 "arguments": {

117 "analysisType": "STATIC",

118 "technology": "helm",

119 "x-match": "all"

120 }

121 },

122 {

123 "source": "AnalysisTaskRequestExchange",

124 "vhost": "/",

125 "destination": "kubernetesSTATIC",

126 "destination_type": "queue",

127 "routing_key": "",

128 "arguments": {

129 "analysisType": "STATIC",

130 "technology": "kubernetes",

131 "x-match": "all"

132 }

133 },

134 {

135 "source": "AnalysisTaskRequestExchange",

136 "vhost": "/",

137 "destination": "terraformSTATIC",

138 "destination_type": "queue",

139 "routing_key": "",

140 "arguments": {

141 "analysisType": "STATIC",

142 "technology": "terraform",

143 "x-match": "all"

144 }

145 },

146 {

147 "source": "AnalysisTaskResponseExchange",

148 "vhost": "/",

149 "destination": "AnalysisTaskResponseQueue",

150 "destination_type": "queue",

151 "routing_key": "",

152 "arguments": {}

153 }

154]

98

B.3 M3: Message Broker Definitions

155 }

Listing B.3: Created AMQP entities on the RabbitMQ message broker.

99

B Evaluation Results

B.4 M5: Actual Technology-Agnostic Deployment Model

1 ---

2 properties: []

3 components:

4 - default:

5 type: "physical_node"

6 description: null

7 properties:

8 - cpu_count: 4

9 - ram_GiB: 16

10 - storage_GiB: 32

11 operations: []

12 artifacts: []

13 - default-operating-system:

14 type: "operating_system"

15 description: null

16 properties:

17 - name: "Ubuntu"

18 - version: "18.04"

19 - os_family: "Linux"

20 operations: []

21 artifacts: []

22 - default-container-runtime:

23 type: "container_runtime"

24 description: null

25 properties:

26 - name: "containerd"

27 operations: []

28 artifacts: []

29 - mongo-cart-mongodb:

30 type: "mongo-cart-mongodb-type"

31 description: null

32 properties:

33 - mongodb: 27017

34 - MONGODB_DISABLE_SYSTEM_LOG: "\"no\""

35 - ALLOW_EMPTY_PASSWORD: "\"yes\""

36 - BITNAMI_DEBUG: "\"false\""

37 - MONGODB_SYSTEM_LOG_VERBOSITY: "\"0\""

38 - MONGODB_ENABLE_IPV6: "\"no\""

39 - MONGODB_DISABLE_JAVASCRIPT: "\"no\""

40 - MONGODB_ENABLE_JOURNAL: "\"yes\""

41 - MONGODB_ENABLE_DIRECTORY_PER_DB: "\"no\""

42 - mongodb: "27017:mongodb"

43 operations: []

44 artifacts:

45 - docker_image:

46 name: "docker.io/bitnami/mongodb:4.4.10-debian-10-r44"

47 fileURI: "-"

48 - mongo-order-mongodb:

49 type: "mongo-order-mongodb-type"

50 description: null

100

B.4 M5: Actual Technology-Agnostic Deployment Model

51 properties:

52 - mongodb: 27017

53 - MONGODB_DISABLE_SYSTEM_LOG: "\"no\""

54 - ALLOW_EMPTY_PASSWORD: "\"yes\""

55 - BITNAMI_DEBUG: "\"false\""

56 - MONGODB_SYSTEM_LOG_VERBOSITY: "\"0\""

57 - MONGODB_ENABLE_IPV6: "\"no\""

58 - MONGODB_DISABLE_JAVASCRIPT: "\"no\""

59 - MONGODB_ENABLE_JOURNAL: "\"yes\""

60 - MONGODB_ENABLE_DIRECTORY_PER_DB: "\"no\""

61 - mongodb: "27017:mongodb"

62 operations: []

63 artifacts:

64 - docker_image:

65 name: "docker.io/bitnami/mongodb:4.4.10-debian-10-r44"

66 fileURI: "-"

67 - kafka-zookeeper:

68 type: "kafka-zookeeper-type"

69 description: null

70 properties:

71 - client: 2181

72 - election: 3888

73 - follower: 2888

74 - ZOO_4LW_COMMANDS_WHITELIST: "\"srvr, mntr, ruok\""

75 - ALLOW_ANONYMOUS_LOGIN: "\"yes\""

76 - ZOO_SYNC_LIMIT: "\"5\""

77 - ZOO_MAX_SESSION_TIMEOUT: "\"40000\""

78 - ZOO_TICK_TIME: "\"2000\""

79 - ZOO_PRE_ALLOC_SIZE: "\"65536\""

80 - ZOO_SERVERS: "kafka-zookeeper-0.kafka-zookeeper-headless.default.

svc.cluster.local:2888:3888::1"

81 - ZOO_AUTOPURGE_RETAIN_COUNT: "\"3\""

82 - ZOO_SNAPCOUNT: "\"100000\""

83 - ZOO_LOG_LEVEL: "\"ERROR\""

84 - ZOO_MAX_CLIENT_CNXNS: "\"60\""

85 - ZOO_INIT_LIMIT: "\"10\""

86 - BITNAMI_DEBUG: "\"false\""

87 - ZOO_ENABLE_AUTH: "\"no\""

88 - ZOO_DATA_LOG_DIR: "\"\""

89 - ZOO_LISTEN_ALLIPS_ENABLED: "\"no\""

90 - ZOO_PORT_NUMBER: "\"2181\""

91 - ZOO_AUTOPURGE_INTERVAL: "\"0\""

92 - ZOO_HEAP_SIZE: "\"1024\""

93 operations: []

94 artifacts:

95 - docker_image:

96 name: "docker.io/bitnami/zookeeper:3.7.0-debian-10-r188"

97 fileURI: "-"

98 - kafka:

99 type: "kafka-type"

100 description: null

101 properties:

102 - kafka-client: 9092

101

B Evaluation Results

103 - kafka-internal: 9093

104 - KAFKA_CFG_SOCKET_RECEIVE_BUFFER_BYTES: "\"102400\""

105 - KAFKA_CFG_SOCKET_SEND_BUFFER_BYTES: "\"102400\""

106 - KAFKA_CFG_LISTENER_SECURITY_PROTOCOL_MAP: "\"INTERNAL:PLAINTEXT,

CLIENT:PLAINTEXT\""

107 - KAFKA_CFG_OFFSETS_TOPIC_REPLICATION_FACTOR: "\"1\""

108 - KAFKA_CFG_LOG_FLUSH_INTERVAL_MS: "\"1000\""

109 - KAFKA_CFG_ZOOKEEPER_CONNECTION_TIMEOUT_MS: "\"6000\""

110 - KAFKA_CFG_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: "\"1\""

111 - KAFKA_CFG_LOG_SEGMENT_BYTES: "\"1073741824\""

112 - KAFKA_CFG_DEFAULT_REPLICATION_FACTOR: "\"1\""

113 - KAFKA_CFG_SUPER_USERS: "\"User:admin\""

114 - KAFKA_CFG_ADVERTISED_LISTENERS: "\"INTERNAL://$(MY_POD_NAME).

kafka-headless.default.svc.cluster.local:9093,CLIENT://$(MY_POD_NAME).kafka

-headless.default.svc.cluster.local:9092\""

115 - KAFKA_CFG_LISTENERS: "\"INTERNAL://:9093,CLIENT://:9092\""

116 - KAFKA_CFG_TRANSACTION_STATE_LOG_MIN_ISR: "\"1\""

117 - KAFKA_CFG_LOG_RETENTION_HOURS: "\"168\""

118 - KAFKA_CFG_LOG_FLUSH_INTERVAL_MESSAGES: "\"10000\""

119 - BITNAMI_DEBUG: "\"false\""

120 - KAFKA_CFG_ZOOKEEPER_CONNECT: "\"kafka-zookeeper\""

121 - KAFKA_CFG_NUM_NETWORK_THREADS: "\"3\""

122 - KAFKA_CFG_ALLOW_EVERYONE_IF_NO_ACL_FOUND: "\"true\""

123 - KAFKA_CFG_NUM_RECOVERY_THREADS_PER_DATA_DIR: "\"1\""

124 - KAFKA_CFG_LOG_RETENTION_BYTES: "\"1073741824\""

125 - KAFKA_CFG_SOCKET_REQUEST_MAX_BYTES: "\"104857600\""

126 - KAFKA_INTER_BROKER_LISTENER_NAME: "\"INTERNAL\""

127 - KAFKA_CFG_NUM_IO_THREADS: "\"8\""

128 - ALLOW_PLAINTEXT_LISTENER: "\"yes\""

129 - KAFKA_CFG_LOG_RETENTION_CHECK_INTERVALS_MS: "\"300000\""

130 - KAFKA_LOG_DIR: "\"/opt/bitnami/kafka/logs\""

131 - KAFKA_CFG_NUM_PARTITIONS: "\"1\""

132 - KAFKA_CFG_AUTHORIZER_CLASS_NAME: "\"\""

133 - KAFKA_CFG_DELETE_TOPIC_ENABLE: "\"false\""

134 - KAFKA_CFG_MESSAGE_MAX_BYTES: "\"1000012\""

135 - KAFKA_VOLUME_DIR: "\"/bitnami/kafka\""

136 - KAFKA_CFG_LOG_DIRS: "\"/bitnami/kafka/data\""

137 - KAFKA_CFG_AUTO_CREATE_TOPICS_ENABLE: "\"true\""

138 - KAFKA_HEAP_OPTS: "\"-Xmx1024m -Xms1024m\""

139 - tcp-internal: "9093:kafka-internal"

140 - tcp-client: "9092:kafka-client"

141 operations: []

142 artifacts:

143 - docker_image:

144 name: "docker.io/bitnami/kafka:2.8.1-debian-10-r57"

145 fileURI: "-"

146 - cdcservice:

147 type: "cdcservice-type"

148 description: null

149 properties:

150 - container_port: 8080

151 - EVENTUATELOCAL_CDC_READER_NAME: "PostgresPollingReader"

152 - SPRING_DATASOURCE_DRIVER_CLASS_NAME: "org.postgresql.Driver"

102

B.4 M5: Actual Technology-Agnostic Deployment Model

153 - SPRING_PROFILES_ACTIVE: "EventuatePolling"

154 - SPRING_DATASOURCE_PASSWORD: "eventuate"

155 - SPRING_DATASOURCE_TEST_ON_BORROW: "\"true\""

156 - SPRING_DATASOURCE_VALIDATION_QUERY: "SELECT 1"

157 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS: "kafka:9092"

158 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING: "kafka-zookeeper:2181

"

159 - SPRING_DATASOURCE_URL: "jdbc:postgresql://postgres-orchestrator/

eventuate"

160 - EVENTUATE_OUTBOX_ID: "\"1\""

161 - JAVA_OPTS: "-Xmx64m"

162 - SPRING_DATASOURCE_USERNAME: "eventuate"

163 - '"8099"': "8099:8080"

164 operations: []

165 artifacts:

166 - docker_image:

167 name: "eventuateio/eventuate-cdc-service:0.12.0.RELEASE"

168 fileURI: "-"

169 - uibackend:

170 type: "uibackend-type"

171 description: null

172 properties:

173 - container_port: 8080

174 - T2_ORCHESTRATOR_URL: "http://orchestrator-cs/order/"

175 - T2_INVENTORY_URL: "http://inventory-cs/inventory/"

176 - T2_RESERVATION_ENDPOINT: "reservation"

177 - JAEGER_HOST: "localhost #todo"

178 - T2_CART_URL: "http://cart-cs/cart/"

179 - external_port: "80:8080"

180 operations: []

181 artifacts:

182 - docker_image:

183 name: "t2project/uibackend:main"

184 fileURI: "-"

185 - cart:

186 type: "cart-type"

187 description: null

188 properties:

189 - container_port: 8080

190 - T2_CART_TTL: "\"0\""

191 - JAEGER_HOST: "localhost #todo"

192 - MONGO_HOST: "mongo-cart-mongodb"

193 - T2_CART_TASKRATE: "\"0\""

194 - external_port: "80:8080"

195 operations: []

196 artifacts:

197 - docker_image:

198 name: "t2project/cart:main"

199 fileURI: "-"

200 - creditinstitute:

201 type: "creditinstitute-type"

202 description: null

203 properties:

103

B Evaluation Results

204 - container_port: 8080

205 - http: "80:8080"

206 - external_port: "80:8080"

207 operations: []

208 artifacts:

209 - docker_image:

210 name: "t2project/creditinstitute:main"

211 fileURI: "-"

212 - ui:

213 type: "ui-type"

214 description: null

215 properties:

216 - container_port: 8080

217 - T2_UIBACKEND_URL: "http://uibackend-cs/"

218 - external_port: "80:8080"

219 operations: []

220 artifacts:

221 - docker_image:

222 name: "t2project/ui:main"

223 fileURI: "-"

224 - payment:

225 type: "payment-type"

226 description: null

227 properties:

228 - container_port: 8080

229 - T2_PAYMENT_PROVIDER_DUMMY_URL: "http://creditinstitute-cs/pay"

230 - SPRING_DATASOURCE_DRIVER_CLASS_NAME: "org.postgresql.Driver"

231 - SPRING_DATASOURCE_PASSWORD: "eventuate"

232 - JAEGER_SERVICE_NAME: "payment"

233 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS: "kafka:9092"

234 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING: "kafka-zookeeper:2181

"

235 - SPRING_DATASOURCE_URL: "jdbc:postgresql://postgres-orchestrator/

eventuate"

236 - JAEGER_ENABLE: "\"FALSE\""

237 - SPRING_DATASOURCE_USERNAME: "eventuate"

238 - JAEGER_HOST: "simplest-agent #todo"

239 - T2_PAYMENT_PROVIDER_TIMEOUT: "\"5\""

240 - external_port: "80:8080"

241 operations: []

242 artifacts:

243 - docker_image:

244 name: "t2project/payment:main"

245 fileURI: "-"

246 - orchestrator:

247 type: "orchestrator-type"

248 description: null

249 properties:

250 - container_port: 8080

251 - JAEGER_SERVICE_NAME: "orchestrator"

252 - SPRING_DATASOURCE_DRIVER_CLASS_NAME: "org.postgresql.Driver"

253 - SPRING_DATASOURCE_PASSWORD: "eventuate"

254 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS: "kafka:9092"

104

B.4 M5: Actual Technology-Agnostic Deployment Model

255 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING: "kafka-zookeeper:2181

"

256 - SPRING_DATASOURCE_URL: "jdbc:postgresql://postgres-orchestrator/

eventuate"

257 - JAEGER_ENABLE: "\"FALSE\""

258 - SPRING_DATASOURCE_USERNAME: "eventuate"

259 - JAEGER_HOST: "simplest-agent #todo"

260 - external_port: "80:8080"

261 operations: []

262 artifacts:

263 - docker_image:

264 name: "t2project/orchestrator:main"

265 fileURI: "-"

266 - postgres-orchestrator:

267 type: "postgres-orchestrator-type"

268 description: null

269 properties:

270 - container_port: 5432

271 - POSTGRES_PASSWORD: "eventuate"

272 - POSTGRES_USER: "eventuate"

273 - USE_DB_ID: "\"true\""

274 - external_port: "5432:5432"

275 operations: []

276 artifacts:

277 - docker_image:

278 name: "eventuateio/eventuate-tram-sagas-postgres:0.18.0.RELEASE

"

279 fileURI: "-"

280 - postgres-inventory:

281 type: "postgres-inventory-type"

282 description: null

283 properties:

284 - container_port: 5432

285 - POSTGRES_DB: "inventory"

286 - POSTGRES_PASSWORD: "inventory"

287 - POSTGRES_USER: "inventory"

288 - external_port: "5432:5432"

289 operations: []

290 artifacts:

291 - docker_image:

292 name: "postgres:14.1"

293 fileURI: "-"

294 - order:

295 type: "order-type"

296 description: null

297 properties:

298 - container_port: 8080

299 - MONGO_HOST: "mongo-order-mongodb"

300 - SPRING_DATASOURCE_DRIVER_CLASS_NAME: "org.postgresql.Driver"

301 - SPRING_DATASOURCE_PASSWORD: "eventuate"

302 - JAEGER_SERVICE_NAME: "order"

303 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS: "kafka:9092"

105

B Evaluation Results

304 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING: "kafka-zookeeper:2181

"

305 - SPRING_DATASOURCE_URL: "jdbc:postgresql://postgres-orchestrator/

eventuate"

306 - JAEGER_ENABLE: "\"FALSE\""

307 - SPRING_DATASOURCE_USERNAME: "eventuate"

308 - JAEGER_HOST: "simplest-agent #todo"

309 - external_port: "80:8080"

310 operations: []

311 artifacts:

312 - docker_image:

313 name: "t2project/order:main"

314 fileURI: "-"

315 - inventory:

316 type: "inventory-type"

317 description: null

318 properties:

319 - container_port: 8080

320 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS: "kafka:9092"

321 - INVENTORY_SIZE: "\"25\""

322 - JAEGER_HOST: "simplest-agent #todo"

323 - JAEGER_SERVICE_NAME: "inventory"

324 - SPRING_PROFILE_ACTIVE: "saga"

325 - SPRING_DATASOURCE_DRIVER_CLASS_NAME: "org.postgresql.Driver"

326 - SPRING_DATASOURCE_PASSWORD: "inventory"

327 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING: "kafka-zookeeper:2181

"

328 - SPRING_DATASOURCE_URL: "jdbc:postgresql://postgres-inventory:5432

/inventory"

329 - JAEGER_ENABLE: "\"FALSE\""

330 - T2_INVENTORY_TTL: "\"0\""

331 - T2_INVENTORY_TASKRATE: "\"0\""

332 - SPRING_DATASOURCE_USERNAME: "inventory"

333 - external_port: "80:8080"

334 operations: []

335 artifacts:

336 - docker_image:

337 name: "t2project/inventory:main"

338 fileURI: "-"

339 relations:

340 - default-operating-system_HostedOn_default:

341 type: "HostedOn"

342 description: null

343 source: "default-operating-system"

344 target: "default"

345 properties: []

346 operations: []

347 - default-container-runtime_HostedOn_default-operating-system:

348 type: "HostedOn"

349 description: null

350 source: "default-container-runtime"

351 target: "default-operating-system"

352 properties: []

106

B.4 M5: Actual Technology-Agnostic Deployment Model

353 operations: []

354 - mongo-cart-mongodb_HostedOn_default-container-runtime:

355 type: "HostedOn"

356 description: null

357 source: "mongo-cart-mongodb"

358 target: "default-container-runtime"

359 properties: []

360 operations: []

361 - mongo-order-mongodb_HostedOn_default-container-runtime:

362 type: "HostedOn"

363 description: null

364 source: "mongo-order-mongodb"

365 target: "default-container-runtime"

366 properties: []

367 operations: []

368 - kafka-zookeeper_HostedOn_default-container-runtime:

369 type: "HostedOn"

370 description: null

371 source: "kafka-zookeeper"

372 target: "default-container-runtime"

373 properties: []

374 operations: []

375 - kafka_HostedOn_default-container-runtime:

376 type: "HostedOn"

377 description: null

378 source: "kafka"

379 target: "default-container-runtime"

380 properties: []

381 operations: []

382 - cdcservice_ConnectsTo_kafka:

383 type: "ConnectsTo"

384 description: null

385 source: "cdcservice"

386 target: "kafka"

387 properties: []

388 operations: []

389 - cdcservice_ConnectsTo_kafka-zookeeper:

390 type: "ConnectsTo"

391 description: null

392 source: "cdcservice"

393 target: "kafka-zookeeper"

394 properties: []

395 operations: []

396 - cdcservice_ConnectsTo_postgres-orchestrator:

397 type: "ConnectsTo"

398 description: null

399 source: "cdcservice"

400 target: "postgres-orchestrator"

401 properties: []

402 operations: []

403 - cdcservice_HostedOn_default-container-runtime:

404 type: "HostedOn"

405 description: null

107

B Evaluation Results

406 source: "cdcservice"

407 target: "default-container-runtime"

408 properties: []

409 operations: []

410 - uibackend_ConnectsTo_orchestrator:

411 type: "ConnectsTo"

412 description: null

413 source: "uibackend"

414 target: "orchestrator"

415 properties: []

416 operations: []

417 - uibackend_ConnectsTo_inventory:

418 type: "ConnectsTo"

419 description: null

420 source: "uibackend"

421 target: "inventory"

422 properties: []

423 operations: []

424 - uibackend_ConnectsTo_cart:

425 type: "ConnectsTo"

426 description: null

427 source: "uibackend"

428 target: "cart"

429 properties: []

430 operations: []

431 - uibackend_HostedOn_default-container-runtime:

432 type: "HostedOn"

433 description: null

434 source: "uibackend"

435 target: "default-container-runtime"

436 properties: []

437 operations: []

438 - cart_ConnectsTo_mongo-cart-mongodb:

439 type: "ConnectsTo"

440 description: null

441 source: "cart"

442 target: "mongo-cart-mongodb"

443 properties: []

444 operations: []

445 - cart_HostedOn_default-container-runtime:

446 type: "HostedOn"

447 description: null

448 source: "cart"

449 target: "default-container-runtime"

450 properties: []

451 operations: []

452 - creditinstitute_HostedOn_default-container-runtime:

453 type: "HostedOn"

454 description: null

455 source: "creditinstitute"

456 target: "default-container-runtime"

457 properties: []

458 operations: []

108

B.4 M5: Actual Technology-Agnostic Deployment Model

459 - ui_ConnectsTo_uibackend:

460 type: "ConnectsTo"

461 description: null

462 source: "ui"

463 target: "uibackend"

464 properties: []

465 operations: []

466 - ui_HostedOn_default-container-runtime:

467 type: "HostedOn"

468 description: null

469 source: "ui"

470 target: "default-container-runtime"

471 properties: []

472 operations: []

473 - payment_ConnectsTo_creditinstitute:

474 type: "ConnectsTo"

475 description: null

476 source: "payment"

477 target: "creditinstitute"

478 properties: []

479 operations: []

480 - payment_ConnectsTo_kafka:

481 type: "ConnectsTo"

482 description: null

483 source: "payment"

484 target: "kafka"

485 properties: []

486 operations: []

487 - payment_ConnectsTo_kafka-zookeeper:

488 type: "ConnectsTo"

489 description: null

490 source: "payment"

491 target: "kafka-zookeeper"

492 properties: []

493 operations: []

494 - payment_ConnectsTo_postgres-orchestrator:

495 type: "ConnectsTo"

496 description: null

497 source: "payment"

498 target: "postgres-orchestrator"

499 properties: []

500 operations: []

501 - payment_HostedOn_default-container-runtime:

502 type: "HostedOn"

503 description: null

504 source: "payment"

505 target: "default-container-runtime"

506 properties: []

507 operations: []

508 - orchestrator_ConnectsTo_kafka:

509 type: "ConnectsTo"

510 description: null

511 source: "orchestrator"

109

B Evaluation Results

512 target: "kafka"

513 properties: []

514 operations: []

515 - orchestrator_ConnectsTo_kafka-zookeeper:

516 type: "ConnectsTo"

517 description: null

518 source: "orchestrator"

519 target: "kafka-zookeeper"

520 properties: []

521 operations: []

522 - orchestrator_ConnectsTo_postgres-orchestrator:

523 type: "ConnectsTo"

524 description: null

525 source: "orchestrator"

526 target: "postgres-orchestrator"

527 properties: []

528 operations: []

529 - orchestrator_HostedOn_default-container-runtime:

530 type: "HostedOn"

531 description: null

532 source: "orchestrator"

533 target: "default-container-runtime"

534 properties: []

535 operations: []

536 - postgres-orchestrator_HostedOn_default-container-runtime:

537 type: "HostedOn"

538 description: null

539 source: "postgres-orchestrator"

540 target: "default-container-runtime"

541 properties: []

542 operations: []

543 - postgres-inventory_HostedOn_default-container-runtime:

544 type: "HostedOn"

545 description: null

546 source: "postgres-inventory"

547 target: "default-container-runtime"

548 properties: []

549 operations: []

550 - order_ConnectsTo_mongo-order-mongodb:

551 type: "ConnectsTo"

552 description: null

553 source: "order"

554 target: "mongo-order-mongodb"

555 properties: []

556 operations: []

557 - order_ConnectsTo_kafka:

558 type: "ConnectsTo"

559 description: null

560 source: "order"

561 target: "kafka"

562 properties: []

563 operations: []

564 - order_ConnectsTo_kafka-zookeeper:

110

B.4 M5: Actual Technology-Agnostic Deployment Model

565 type: "ConnectsTo"

566 description: null

567 source: "order"

568 target: "kafka-zookeeper"

569 properties: []

570 operations: []

571 - order_ConnectsTo_postgres-orchestrator:

572 type: "ConnectsTo"

573 description: null

574 source: "order"

575 target: "postgres-orchestrator"

576 properties: []

577 operations: []

578 - order_HostedOn_default-container-runtime:

579 type: "HostedOn"

580 description: null

581 source: "order"

582 target: "default-container-runtime"

583 properties: []

584 operations: []

585 - inventory_ConnectsTo_kafka:

586 type: "ConnectsTo"

587 description: null

588 source: "inventory"

589 target: "kafka"

590 properties: []

591 operations: []

592 - inventory_ConnectsTo_kafka-zookeeper:

593 type: "ConnectsTo"

594 description: null

595 source: "inventory"

596 target: "kafka-zookeeper"

597 properties: []

598 operations: []

599 - inventory_ConnectsTo_postgres-inventory:

600 type: "ConnectsTo"

601 description: null

602 source: "inventory"

603 target: "postgres-inventory"

604 properties: []

605 operations: []

606 - inventory_HostedOn_default-container-runtime:

607 type: "HostedOn"

608 description: null

609 source: "inventory"

610 target: "default-container-runtime"

611 properties: []

612 operations: []

613 component_types:

614 - BaseType:

615 extends: "-"

616 description: "This is the base type"

617 properties: []

111

B Evaluation Results

618 operations: []

619 - physical_node:

620 extends: "-"

621 description: null

622 properties:

623 - cpu_count:

624 type: "INTEGER"

625 required: false

626 - ram_GiB:

627 type: "INTEGER"

628 required: false

629 - storage_GiB:

630 type: "INTEGER"

631 required: false

632 operations: []

633 - operating_system:

634 extends: "-"

635 description: null

636 properties:

637 - name:

638 type: "STRING"

639 required: false

640 - version:

641 type: "STRING"

642 required: false

643 - os_family:

644 type: "STRING"

645 required: false

646 operations: []

647 - container_runtime:

648 extends: "-"

649 description: null

650 properties:

651 - name:

652 type: "STRING"

653 required: false

654 - version:

655 type: "STRING"

656 required: false

657 operations: []

658 - mongo-cart-mongodb-type:

659 extends: "-"

660 description: null

661 properties:

662 - mongodb:

663 type: "INTEGER"

664 required: false

665 - MONGODB_DISABLE_SYSTEM_LOG:

666 type: "STRING"

667 required: false

668 - ALLOW_EMPTY_PASSWORD:

669 type: "STRING"

670 required: false

112

B.4 M5: Actual Technology-Agnostic Deployment Model

671 - BITNAMI_DEBUG:

672 type: "STRING"

673 required: false

674 - MONGODB_SYSTEM_LOG_VERBOSITY:

675 type: "STRING"

676 required: false

677 - MONGODB_ENABLE_IPV6:

678 type: "STRING"

679 required: false

680 - MONGODB_DISABLE_JAVASCRIPT:

681 type: "STRING"

682 required: false

683 - MONGODB_ENABLE_JOURNAL:

684 type: "STRING"

685 required: false

686 - MONGODB_ENABLE_DIRECTORY_PER_DB:

687 type: "STRING"

688 required: false

689 - mongodb:

690 type: "STRING"

691 required: false

692 operations: []

693 - mongo-order-mongodb-type:

694 extends: "-"

695 description: null

696 properties:

697 - mongodb:

698 type: "INTEGER"

699 required: false

700 - MONGODB_DISABLE_SYSTEM_LOG:

701 type: "STRING"

702 required: false

703 - ALLOW_EMPTY_PASSWORD:

704 type: "STRING"

705 required: false

706 - BITNAMI_DEBUG:

707 type: "STRING"

708 required: false

709 - MONGODB_SYSTEM_LOG_VERBOSITY:

710 type: "STRING"

711 required: false

712 - MONGODB_ENABLE_IPV6:

713 type: "STRING"

714 required: false

715 - MONGODB_DISABLE_JAVASCRIPT:

716 type: "STRING"

717 required: false

718 - MONGODB_ENABLE_JOURNAL:

719 type: "STRING"

720 required: false

721 - MONGODB_ENABLE_DIRECTORY_PER_DB:

722 type: "STRING"

723 required: false

113

B Evaluation Results

724 - mongodb:

725 type: "STRING"

726 required: false

727 operations: []

728 - kafka-zookeeper-type:

729 extends: "-"

730 description: null

731 properties:

732 - client:

733 type: "INTEGER"

734 required: false

735 - election:

736 type: "INTEGER"

737 required: false

738 - follower:

739 type: "INTEGER"

740 required: false

741 - ZOO_4LW_COMMANDS_WHITELIST:

742 type: "STRING"

743 required: false

744 - ALLOW_ANONYMOUS_LOGIN:

745 type: "STRING"

746 required: false

747 - ZOO_SYNC_LIMIT:

748 type: "STRING"

749 required: false

750 - ZOO_MAX_SESSION_TIMEOUT:

751 type: "STRING"

752 required: false

753 - ZOO_TICK_TIME:

754 type: "STRING"

755 required: false

756 - ZOO_PRE_ALLOC_SIZE:

757 type: "STRING"

758 required: false

759 - ZOO_SERVERS:

760 type: "STRING"

761 required: false

762 - ZOO_AUTOPURGE_RETAIN_COUNT:

763 type: "STRING"

764 required: false

765 - ZOO_SNAPCOUNT:

766 type: "STRING"

767 required: false

768 - ZOO_LOG_LEVEL:

769 type: "STRING"

770 required: false

771 - ZOO_MAX_CLIENT_CNXNS:

772 type: "STRING"

773 required: false

774 - ZOO_INIT_LIMIT:

775 type: "STRING"

776 required: false

114

B.4 M5: Actual Technology-Agnostic Deployment Model

777 - BITNAMI_DEBUG:

778 type: "STRING"

779 required: false

780 - ZOO_ENABLE_AUTH:

781 type: "STRING"

782 required: false

783 - ZOO_DATA_LOG_DIR:

784 type: "STRING"

785 required: false

786 - ZOO_LISTEN_ALLIPS_ENABLED:

787 type: "STRING"

788 required: false

789 - ZOO_PORT_NUMBER:

790 type: "STRING"

791 required: false

792 - ZOO_AUTOPURGE_INTERVAL:

793 type: "STRING"

794 required: false

795 - ZOO_HEAP_SIZE:

796 type: "STRING"

797 required: false

798 operations: []

799 - kafka-type:

800 extends: "-"

801 description: null

802 properties:

803 - kafka-client:

804 type: "INTEGER"

805 required: false

806 - kafka-internal:

807 type: "INTEGER"

808 required: false

809 - KAFKA_CFG_SOCKET_RECEIVE_BUFFER_BYTES:

810 type: "STRING"

811 required: false

812 - KAFKA_CFG_SOCKET_SEND_BUFFER_BYTES:

813 type: "STRING"

814 required: false

815 - KAFKA_CFG_LISTENER_SECURITY_PROTOCOL_MAP:

816 type: "STRING"

817 required: false

818 - KAFKA_CFG_OFFSETS_TOPIC_REPLICATION_FACTOR:

819 type: "STRING"

820 required: false

821 - KAFKA_CFG_LOG_FLUSH_INTERVAL_MS:

822 type: "STRING"

823 required: false

824 - KAFKA_CFG_ZOOKEEPER_CONNECTION_TIMEOUT_MS:

825 type: "STRING"

826 required: false

827 - KAFKA_CFG_TRANSACTION_STATE_LOG_REPLICATION_FACTOR:

828 type: "STRING"

829 required: false

115

B Evaluation Results

830 - KAFKA_CFG_LOG_SEGMENT_BYTES:

831 type: "STRING"

832 required: false

833 - KAFKA_CFG_DEFAULT_REPLICATION_FACTOR:

834 type: "STRING"

835 required: false

836 - KAFKA_CFG_SUPER_USERS:

837 type: "STRING"

838 required: false

839 - KAFKA_CFG_ADVERTISED_LISTENERS:

840 type: "STRING"

841 required: false

842 - KAFKA_CFG_LISTENERS:

843 type: "STRING"

844 required: false

845 - KAFKA_CFG_TRANSACTION_STATE_LOG_MIN_ISR:

846 type: "STRING"

847 required: false

848 - KAFKA_CFG_LOG_RETENTION_HOURS:

849 type: "STRING"

850 required: false

851 - KAFKA_CFG_LOG_FLUSH_INTERVAL_MESSAGES:

852 type: "STRING"

853 required: false

854 - BITNAMI_DEBUG:

855 type: "STRING"

856 required: false

857 - KAFKA_CFG_ZOOKEEPER_CONNECT:

858 type: "STRING"

859 required: false

860 - KAFKA_CFG_NUM_NETWORK_THREADS:

861 type: "STRING"

862 required: false

863 - KAFKA_CFG_ALLOW_EVERYONE_IF_NO_ACL_FOUND:

864 type: "STRING"

865 required: false

866 - KAFKA_CFG_NUM_RECOVERY_THREADS_PER_DATA_DIR:

867 type: "STRING"

868 required: false

869 - KAFKA_CFG_LOG_RETENTION_BYTES:

870 type: "STRING"

871 required: false

872 - KAFKA_CFG_SOCKET_REQUEST_MAX_BYTES:

873 type: "STRING"

874 required: false

875 - KAFKA_INTER_BROKER_LISTENER_NAME:

876 type: "STRING"

877 required: false

878 - KAFKA_CFG_NUM_IO_THREADS:

879 type: "STRING"

880 required: false

881 - ALLOW_PLAINTEXT_LISTENER:

882 type: "STRING"

116

B.4 M5: Actual Technology-Agnostic Deployment Model

883 required: false

884 - KAFKA_CFG_LOG_RETENTION_CHECK_INTERVALS_MS:

885 type: "STRING"

886 required: false

887 - KAFKA_LOG_DIR:

888 type: "STRING"

889 required: false

890 - KAFKA_CFG_NUM_PARTITIONS:

891 type: "STRING"

892 required: false

893 - KAFKA_CFG_AUTHORIZER_CLASS_NAME:

894 type: "STRING"

895 required: false

896 - KAFKA_CFG_DELETE_TOPIC_ENABLE:

897 type: "STRING"

898 required: false

899 - KAFKA_CFG_MESSAGE_MAX_BYTES:

900 type: "STRING"

901 required: false

902 - KAFKA_VOLUME_DIR:

903 type: "STRING"

904 required: false

905 - KAFKA_CFG_LOG_DIRS:

906 type: "STRING"

907 required: false

908 - KAFKA_CFG_AUTO_CREATE_TOPICS_ENABLE:

909 type: "STRING"

910 required: false

911 - KAFKA_HEAP_OPTS:

912 type: "STRING"

913 required: false

914 - tcp-internal:

915 type: "STRING"

916 required: false

917 - tcp-client:

918 type: "STRING"

919 required: false

920 operations: []

921 - cdcservice-type:

922 extends: "-"

923 description: null

924 properties:

925 - container_port:

926 type: "INTEGER"

927 required: false

928 - EVENTUATELOCAL_CDC_READER_NAME:

929 type: "STRING"

930 required: false

931 - SPRING_DATASOURCE_DRIVER_CLASS_NAME:

932 type: "STRING"

933 required: false

934 - SPRING_PROFILES_ACTIVE:

935 type: "STRING"

117

B Evaluation Results

936 required: false

937 - SPRING_DATASOURCE_PASSWORD:

938 type: "STRING"

939 required: false

940 - SPRING_DATASOURCE_TEST_ON_BORROW:

941 type: "STRING"

942 required: false

943 - SPRING_DATASOURCE_VALIDATION_QUERY:

944 type: "STRING"

945 required: false

946 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS:

947 type: "STRING"

948 required: false

949 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING:

950 type: "STRING"

951 required: false

952 - SPRING_DATASOURCE_URL:

953 type: "STRING"

954 required: false

955 - EVENTUATE_OUTBOX_ID:

956 type: "STRING"

957 required: false

958 - JAVA_OPTS:

959 type: "STRING"

960 required: false

961 - SPRING_DATASOURCE_USERNAME:

962 type: "STRING"

963 required: false

964 - '"8099"':

965 type: "STRING"

966 required: false

967 operations: []

968 - uibackend-type:

969 extends: "-"

970 description: null

971 properties:

972 - container_port:

973 type: "INTEGER"

974 required: false

975 - T2_ORCHESTRATOR_URL:

976 type: "STRING"

977 required: false

978 - T2_INVENTORY_URL:

979 type: "STRING"

980 required: false

981 - T2_RESERVATION_ENDPOINT:

982 type: "STRING"

983 required: false

984 - JAEGER_HOST:

985 type: "STRING"

986 required: false

987 - T2_CART_URL:

988 type: "STRING"

118

B.4 M5: Actual Technology-Agnostic Deployment Model

989 required: false

990 - external_port:

991 type: "STRING"

992 required: false

993 operations: []

994 - cart-type:

995 extends: "-"

996 description: null

997 properties:

998 - container_port:

999 type: "INTEGER"

1000 required: false

1001 - T2_CART_TTL:

1002 type: "STRING"

1003 required: false

1004 - JAEGER_HOST:

1005 type: "STRING"

1006 required: false

1007 - MONGO_HOST:

1008 type: "STRING"

1009 required: false

1010 - T2_CART_TASKRATE:

1011 type: "STRING"

1012 required: false

1013 - external_port:

1014 type: "STRING"

1015 required: false

1016 operations: []

1017 - creditinstitute-type:

1018 extends: "-"

1019 description: null

1020 properties:

1021 - container_port:

1022 type: "INTEGER"

1023 required: false

1024 - http:

1025 type: "STRING"

1026 required: false

1027 - external_port:

1028 type: "STRING"

1029 required: false

1030 operations: []

1031 - ui-type:

1032 extends: "-"

1033 description: null

1034 properties:

1035 - container_port:

1036 type: "INTEGER"

1037 required: false

1038 - T2_UIBACKEND_URL:

1039 type: "STRING"

1040 required: false

1041 - external_port:

119

B Evaluation Results

1042 type: "STRING"

1043 required: false

1044 operations: []

1045 - payment-type:

1046 extends: "-"

1047 description: null

1048 properties:

1049 - container_port:

1050 type: "INTEGER"

1051 required: false

1052 - T2_PAYMENT_PROVIDER_DUMMY_URL:

1053 type: "STRING"

1054 required: false

1055 - SPRING_DATASOURCE_DRIVER_CLASS_NAME:

1056 type: "STRING"

1057 required: false

1058 - SPRING_DATASOURCE_PASSWORD:

1059 type: "STRING"

1060 required: false

1061 - JAEGER_SERVICE_NAME:

1062 type: "STRING"

1063 required: false

1064 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS:

1065 type: "STRING"

1066 required: false

1067 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING:

1068 type: "STRING"

1069 required: false

1070 - SPRING_DATASOURCE_URL:

1071 type: "STRING"

1072 required: false

1073 - JAEGER_ENABLE:

1074 type: "STRING"

1075 required: false

1076 - SPRING_DATASOURCE_USERNAME:

1077 type: "STRING"

1078 required: false

1079 - JAEGER_HOST:

1080 type: "STRING"

1081 required: false

1082 - T2_PAYMENT_PROVIDER_TIMEOUT:

1083 type: "STRING"

1084 required: false

1085 - external_port:

1086 type: "STRING"

1087 required: false

1088 operations: []

1089 - orchestrator-type:

1090 extends: "-"

1091 description: null

1092 properties:

1093 - container_port:

1094 type: "INTEGER"

120

B.4 M5: Actual Technology-Agnostic Deployment Model

1095 required: false

1096 - JAEGER_SERVICE_NAME:

1097 type: "STRING"

1098 required: false

1099 - SPRING_DATASOURCE_DRIVER_CLASS_NAME:

1100 type: "STRING"

1101 required: false

1102 - SPRING_DATASOURCE_PASSWORD:

1103 type: "STRING"

1104 required: false

1105 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS:

1106 type: "STRING"

1107 required: false

1108 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING:

1109 type: "STRING"

1110 required: false

1111 - SPRING_DATASOURCE_URL:

1112 type: "STRING"

1113 required: false

1114 - JAEGER_ENABLE:

1115 type: "STRING"

1116 required: false

1117 - SPRING_DATASOURCE_USERNAME:

1118 type: "STRING"

1119 required: false

1120 - JAEGER_HOST:

1121 type: "STRING"

1122 required: false

1123 - external_port:

1124 type: "STRING"

1125 required: false

1126 operations: []

1127 - postgres-orchestrator-type:

1128 extends: "-"

1129 description: null

1130 properties:

1131 - container_port:

1132 type: "INTEGER"

1133 required: false

1134 - POSTGRES_PASSWORD:

1135 type: "STRING"

1136 required: false

1137 - POSTGRES_USER:

1138 type: "STRING"

1139 required: false

1140 - USE_DB_ID:

1141 type: "STRING"

1142 required: false

1143 - external_port:

1144 type: "STRING"

1145 required: false

1146 operations: []

1147 - postgres-inventory-type:

121

B Evaluation Results

1148 extends: "-"

1149 description: null

1150 properties:

1151 - container_port:

1152 type: "INTEGER"

1153 required: false

1154 - POSTGRES_DB:

1155 type: "STRING"

1156 required: false

1157 - POSTGRES_PASSWORD:

1158 type: "STRING"

1159 required: false

1160 - POSTGRES_USER:

1161 type: "STRING"

1162 required: false

1163 - external_port:

1164 type: "STRING"

1165 required: false

1166 operations: []

1167 - order-type:

1168 extends: "-"

1169 description: null

1170 properties:

1171 - container_port:

1172 type: "INTEGER"

1173 required: false

1174 - MONGO_HOST:

1175 type: "STRING"

1176 required: false

1177 - SPRING_DATASOURCE_DRIVER_CLASS_NAME:

1178 type: "STRING"

1179 required: false

1180 - SPRING_DATASOURCE_PASSWORD:

1181 type: "STRING"

1182 required: false

1183 - JAEGER_SERVICE_NAME:

1184 type: "STRING"

1185 required: false

1186 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS:

1187 type: "STRING"

1188 required: false

1189 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING:

1190 type: "STRING"

1191 required: false

1192 - SPRING_DATASOURCE_URL:

1193 type: "STRING"

1194 required: false

1195 - JAEGER_ENABLE:

1196 type: "STRING"

1197 required: false

1198 - SPRING_DATASOURCE_USERNAME:

1199 type: "STRING"

1200 required: false

122

B.4 M5: Actual Technology-Agnostic Deployment Model

1201 - JAEGER_HOST:

1202 type: "STRING"

1203 required: false

1204 - external_port:

1205 type: "STRING"

1206 required: false

1207 operations: []

1208 - inventory-type:

1209 extends: "-"

1210 description: null

1211 properties:

1212 - container_port:

1213 type: "INTEGER"

1214 required: false

1215 - EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS:

1216 type: "STRING"

1217 required: false

1218 - INVENTORY_SIZE:

1219 type: "STRING"

1220 required: false

1221 - JAEGER_HOST:

1222 type: "STRING"

1223 required: false

1224 - JAEGER_SERVICE_NAME:

1225 type: "STRING"

1226 required: false

1227 - SPRING_PROFILE_ACTIVE:

1228 type: "STRING"

1229 required: false

1230 - SPRING_DATASOURCE_DRIVER_CLASS_NAME:

1231 type: "STRING"

1232 required: false

1233 - SPRING_DATASOURCE_PASSWORD:

1234 type: "STRING"

1235 required: false

1236 - EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING:

1237 type: "STRING"

1238 required: false

1239 - SPRING_DATASOURCE_URL:

1240 type: "STRING"

1241 required: false

1242 - JAEGER_ENABLE:

1243 type: "STRING"

1244 required: false

1245 - T2_INVENTORY_TTL:

1246 type: "STRING"

1247 required: false

1248 - T2_INVENTORY_TASKRATE:

1249 type: "STRING"

1250 required: false

1251 - SPRING_DATASOURCE_USERNAME:

1252 type: "STRING"

1253 required: false

123

1254 - external_port:

1255 type: "STRING"

1256 required: false

1257 operations: []

1258 relation_types:

1259 - DependsOn:

1260 extends: "-"

1261 description: "generic relation type"

1262 properties: []

1263 operations: []

1264 - HostedOn:

1265 extends: "DependsOn"

1266 description: "hosted on relation"

1267 properties: []

1268 operations: []

1269 - ConnectsTo:

1270 extends: "DependsOn"

1271 description: "connects to relation"

1272 properties: []

1273 operations: []

Listing B.4: The actual technology-agnostic deployment model that the transformation framework

created from the transformation of the exemplary technology-specific deployment

model.

	1 Introduction
	2 Foundations and Related Work
	2.1 Foundations
	2.2 Related Work

	3 Concept and Design
	3.1 Overview of the Concept
	3.2 Definitions
	3.3 Meta-Model for the Technology-Agnostic Deployment Model
	3.4 Concept of the Transformation Framework
	3.5 Architecture

	4 Prototypical Realization
	4.1 Java Applications
	4.2 Databases
	4.3 Message Broker
	4.4 User Interaction
	4.5 Plugins

	5 Evaluation
	5.1 Design
	5.2 Exemplary Technology-Specific Deployment Model
	5.3 Results
	5.4 Discussion
	5.5 Threats to Validity

	6 Conclusion
	6.1 Summary
	6.2 Benefits
	6.3 Limitations
	6.4 Lessons Learned
	6.5 Future Work

	Bibliography
	A Expected Technology-Agnostic Deployment Model
	B Evaluation Results
	B.1 M1: Application Logs Summary
	B.2 M2: Registered Plugins
	B.3 M3: Message Broker Definitions
	B.4 M5: Actual Technology-Agnostic Deployment Model

