
Institute of Software Engineering
Software Quality and Architecture

University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Masterarbeit

Implementing an Enumerative
Semantic Differencing Operator for

OPC UA

Patrick Spaney

Course of Study: Informatik

Examiner: Prof. Dr.-Ing. Steffen Becker

Supervisor: Jun.-Prof. Dr. rer. nat. habil.
Andreas Wortmann

Commenced: December 22, 2021

Completed: June 22, 2022

Abstract

The OPC Unified Architecture (OPC UA) is a widely adopted set of communication standards for
industrial automation that provides its own extensible data model. To understand the evolution of
models over time and the differences between model versions, differencing is an essential tool.
Differencing is commonly done syntactically, e.g., consisting of add and delete operations for model
elements that transform one version into the other. In contrast to the usual syntactic approach,
differencing can also be done on a semantic level by providing a model or an enumeration of
instances, so-called witnesses, that can be derived from one model but not from another.
OPC UA’s semantics, i.e., the rules for instantiation of its types, are rather complicated. This can
make the precise semantic differences between model versions difficult to see. Furthermore, OPC
UA information models may often be designed by domain experts of various engineering disciplines
with little prior modeling experience.
To tackle this problem, we introduce uadiff, an enumerative semantic differencing operator for OPC
UA models. Moreover, uadiff uses a complete interpretation, i.e., references are only present on
instances if they are present in the type definition. We aim to simplify comparisons of model versions
and thus model development, reduce redundant models and through our stricter instantiation rules
improve the overall model quality.
To our knowledge, no semantic differencing operator exists for OPC UA models. However, such
operators have been described and implemented for other modeling languages, such as UML class
diagrams (CDs). We present an ATL transformation from OPC UA to CD, which, in composition
with a slightly modified CD semantic differencing operator, forms uadiff. The combination of these
components lets uadiff preserve many semantic intricacies that are not present in UML.
The uadiff operator is implemented as a Java demonstrator application executing the transformation
and applying the modified CD differencing solution to the results. We demonstrate the operator
and its implementation with a simple example and evaluate the performance on models relevant in
practice.
We conclude the thesis with a discussion on the applicability and limitations of our approach, as
well as an outlook on possible future research.

iii

Kurzfassung

Die OPC Unified Architecture (OPC UA) ist eine verbreitete Sammlung von Kommunikationsstan-
dards für industrielle Automatisierung, welche ihr eigenes erweiterbares Datenmodell bereitstellt.
Differencing ist ein essentielles Werkzeug um die zeitliche Evolution von Modellen nachzuvol-
lziehen.
Gewöhnlich handelt es sich um syntaktisches Differencing, welches beispielsweise aus add und
delete Operationen besteht, die eine Version des Modells in die andere überführen. Im Gegensatz
zum üblichen syntaktischen Ansatz kann Differencing auch auf semantischer Ebene betrieben
werden, indem man ein Modell oder eine Aufzählung der Instanzen erzeugt, welche aus einem
Modell instanziiert werden können, nicht aber aus dem anderen.
OPC UAs Semantik, also die Regeln für die Instanziierung der Typen, sind verhältnismäßig kom-
pliziert. Dadurch kann es schwierig sein die exakte semantische Differenz zwischen zwei Versionen
eine Modells zu erkennen. Darüber hinaus kommt es vor, dass OPC UA Informationsmodelle
von Domänenexperten anderer Ingenieursdisziplinen erstellt werden, welche wenig Erfahrung mit
Modellierung haben.
Um dieses Problem anzugehen stellen wir uadiff vor, einen enumerativen semantic Differencing
Operator für OPC UA Modelle. Darüber hinaus nutzt uadiff eine vollständige Interpretation von
OPC UA Modellen, d.h. Referenzen von Instanzen sind nur dann vorhanden, wenn der jeweilige
Typ diese auch definiert. Wir streben damit an, Vergleiche verschiedener Versionen von Modellen
zu vereinfachen sowie eine Reduktion redundanter Modelle und eine allgemeine Verbesserung der
Qualität von OPC UA Modellen zu erreichen.
Unserem besten Wissen nach existiert bislang kein semantic Differencing Operator für OPC UA
Modelle. Jedoch wurden solche Operatoren für andere Modellierungssprachen beschrieben und
implementiert, so z.B. für UML Klassendiagramme (CDs). Wir stellen eine ATL Transformation
vor, welche zusammen mit einem leicht modifizierten Differencing Operator für CDs uadiff bildet.
Die Kombination beider Komponenten erlaubt es uadiff, viele semantische Feinheiten der OPC UA
beizubehalten, welche so nicht in UML vorkommen.
Der uadiff Operator wird als eine Java Demonstrator-Anwendung implementiert, welche die Trans-
formation ausführt und die modifizierte OPC UA Differencing Lösung auf die Ergebnisse anwendet.
Wir führen eine Demonstration des Operators und seiner Implementierung an einem einfachen
Beispiel durch und evaluieren die Performanz für praxisrelevante Modelle.
Abschließend erörtern wir die praktische Anwendbarkeit sowie die Einschränkungen unseres
Ansatzes und geben einen Ausblick auf mögliche zukünftige Forschung.

v

Contents

1 Introduction 1

2 Foundations and Related Work 5
2.1 Foundations . 5
2.2 Related work . 16

3 UADiff Operator 19
3.1 Mapping UA to CD . 19
3.2 Changes to CD4A’s semantic mapping . 27

4 Implementation 29
4.1 ATL Transformation . 29
4.2 CDDiff Changes . 38
4.3 Demonstrator . 39

5 Evaluation 43
5.1 Validity on Simple Example . 43
5.2 Performance on Real-World NodeSets . 44
5.3 Discussion . 46
5.4 Threats to Validity . 47

6 Conclusion 49
6.1 Summary . 49
6.2 Benefits . 49
6.3 Limitations . 50
6.4 Lessons Learned . 50
6.5 Future Work . 51

Bibliography 53

A Listings 57

B Figures 61

C UA Graphical Notation 65

vii

List of Figures

2.1 OPC UA NodeClasses [OPC21b] . 8
2.2 Instance of the House-ObjectType with a JetEngine component 13
2.3 Example of two syntactically different, but semantically identical models. Adapted

from [MRR11b]. 15

3.1 Subclasses with a refined association. 20
3.2 OPC UA model including an InstanceDeclaration of type Animal, which has several

subtypes. 21
3.3 Class hierarchy created for the InstanceDeclaration ZooAnimal from figure 3.2. . 22
3.4 All possible variations of Instances for the House ObjectType in figure 2.2, using a

complete interpretation of OPC UA models. 26

5.1 �1, an OPC UA adaptation of 3.1 featuring Optional Bananas. 44
5.2 �2, an OPC UA adaptation of 3.1 featuring Mandatory Bananas. 44

B.1 Structure of the uadiff Application. 61
B.2 Activity diagram showing the workflow of the uadiff application. 62
B.3 Different model representations and transformations when running uadiff 63

ix

List of Tables

3.1 Mapping from OPC UA to UML . 20
3.2 ModellingRule of the Reference’s TargetNode in OPC UA mapped to UML multi-

plicities. The mapping for all ModellingRules except ExposesItsArray is found in
[OPC21b]. 24

3.3 Rules for changing ModellingRules when overriding InstanceDeclarations from
[OPC21b]. ExposesItsArray does not appear in the list for allowed changes and has
different semantics to the other ModellingRules. We therefore assume it to always
remain unchanged. 25

5.1 ModellingRule of the Reference’s TargetNode in OPC UA mapped to UML multi-
plicities . 45

5.2 Execution time for two parallel transformations on the same NodeSet. The values
are averaged over consecutive 50 executions of uadiff. 46

C.1 OPC UA graphical notation [OPC21b] for NodeClasses relevant to this work.
Graphical elements from [OPC21a]. 65

C.2 OPC UA graphical notation [OPC21b] for ReferenceTypes relevant to this work.
All References are forward References from left to right. Graphical elements from
[OPC21a]. 66

xi

Listings

2.1 Simple ATL module with a single matched rule. Contains a local variable section
and an imperative section in addition to the source and target patterns.
The code is simplified and does not correspond to any transformation used in this
work. 7

2.2 Simple ATL helper for transformations with OPC UA source models. 8
2.3 First add function . 15

4.1 ATL relevantNodes atribute helper. 31
4.2 ATL findAllRelatedNodes helper. 31
4.3 ATL abstractTypesMap attribute helper. 32
4.4 ATL getClassName helper. 33
4.5 ATL getSuperTypeName helper. 33
4.6 ATL matched rule UAType2CDInterface. 34
4.7 ATL matched rule UAType2CDClass. 35
4.8 UAType2InterfaceName lazy rule. 38
4.9 Additional signatures in generated Alloy modules. 38
4.10 Additional fact and function in generated Alloy modules. 39
4.11 Additional condition for references between the same Nodes. 39

5.1 Witness produced by uadiff�1,�2 . 45

A.1 ATL matched rule InstanceDeclaration2Class. 58
A.2 ATL matched rule Reference2Association. 59
A.3 ATL called rule CreateInstanceDeclarationSubTypes 60

xiii

Acronyms

API application programming interface. 40

AST abstract syntax tree. 14, 19, 34, 37, 40, 41

ATL Atlas Transformation Language. iii, v, xiii, 2, 6, 7, 8, 19, 29, 31, 32, 33, 34, 35, 38, 39, 40, 41,
43, 44, 45, 49, 50, 58, 59, 60

CD class diagram. iii, v, 1, 2, 9, 14, 15, 17, 19, 20, 21, 23, 26, 27, 29, 32, 34, 39, 40, 43, 46, 47,
49, 50, 51

CD4A Class Diagrams for Analysis. 6, 14, 16, 17, 19, 20, 24, 29, 34, 37, 40, 41, 49, 51

CD4C Class Diagrams for Code. 14

CLI command-line interface. 40

DSL domain specific language. 14

EMF Eclipse Modeling Framework. 6, 8, 14, 18, 40, 41

EMFTVM EMF Transformation Virtual Machine. 6, 7, 34, 40, 41, 44, 46

MC MontiCore. 14, 18, 40

MDE model-driven engineering. 1, 6

MOF Meta Object Facility. 6

OCL Object Constraint Language. 7

OOP object-oriented programming. 9

OPC Open Platform Communications. 1

OPC UA OPC Unified Architecture. iii, v, ix, xi, xiii, 1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 38, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 65, 66

SAT Boolean satisfiability problem. 5, 29

UML Unified Modeling Language. iii, v, xi, 1, 2, 6, 9, 14, 16, 17, 18, 20, 22, 24, 34, 45, 49, 50

VM virtual machine. 40

XML Extensible Markup Language. 19, 32, 41

XSD XML Schema Definition. 6, 8, 19, 40, 41

xv

1 Introduction

The OPC Unified Architecture (OPC UA) is a set of standards for communication in industrial
automation announced by the OPC foundation in 2006 [SB13]. It was designed as successor for
Open Platform Communications (OPC),which included several interface specifications.
OPC UA combines the different functionalities of these interfaces while providing platform indepen-
dence and security. Furthermore, an extensible information model is defined within the specification
using a metamodel and a base information model, which is an instance of the metamodel [LM06;
OPC20; OPC21b]. Vendors can construct new information models by creating their own instances
of the OPC UA metamodel.

In model-driven engineering (MDE) model differencing is an important tool that allows to better
understand the evolution of models over different versions. It is commonly used to compare two
models within a common version history. Most differencing operators are purely syntactical, where
the difference usually consists of the creation and deletion of model elements. While this kind of
operator is useful, it does not take semantics, i.e., what instances can actually be derived from the
models, into account and thus might find semantically similar models to be very different from each
other or vice versa.
To address this problem a generic semantic differencing operator was proposed by Maoz et al.
[MRR10]. The abstract operator takes two models as input and outputs so-called diff witnesses,
which are instances of the first model but not of the second model. Using this property, several
relationships between model versions can be checked, such as both models being semantically
equivalent to each other or one model being a refinement of the other. The difference can also be
summarized by defining distinct equivalence classes of diff witnesses and computing a representative
for each of the respective classes [MRR12].
There are existing concrete instances of the operator, namely CDDiff for class diagrams (CDs)
[MRR11b] and ADDiff for activity diagrams [MRR11a]. In the course of this work we will focus
on the former, as the metamodels for OPC UA and Unified Modeling Language (UML) CDs share
many similarities.

Instantiation rules for OPC UA, as defined in [OPC21b], are quite complicated due to several factors,
most prominently different levels of abstraction are not as clearly separated as in, e.g. CDs.
OPC UA models contain so-called TypeDefinitionNodes, instances of the metamodel elements
ObjectType and VariableType. The TypeDefinitionNodes’ Instances, as defined by a HasType-
Definition Reference, are actually instances of other metamodel objects, Object and Variable.
Additionally, these Instances can be part of a type definition if directly or indirectly referenced by a
TypeDefinitionNode and these References can be overridden in subtypes of the TypeDefinitionNode.
Furthermore, Instances can contain almost arbitrary References regardless of their type’s References.
These aspects make it difficult to understand OPC UA semantics and to determine the difference
between model versions on a semantic level.

1

1 Introduction

To address this problem we first propose a complete interpretation, similar to the complete interpre-
tation of CDs in [MRR11b; Rum11], with restricted instantiation rules for OPC UA.
Such an interpretation makes the models easier to comprehend and enables the use of semantic
differencing in a meaningful way. Based on this interpretation we present semantics for OPC UA
models, mapping valid OPC UA models to UML object models. Using this mapping we can define
an OPC UA specific instance of the semantic differencing operator described in [MRR10].

The semantic mapping is constructed using an Atlas Transformation Language (ATL) transformation
[JABK08] from OPC UA to UML and a slightly modified version of cddiff ’s semantic mapping.
We examine the rules for instantiation of OPC UA types in detail and construct the mapping in such
a way, that OPC UA’s special semantics are preserved. As a proof of concept we implemented the
operator as a Java application. It transforms subsets of both input models by executing the ATL
transformation and passes the output CDs to the cddiff implementation [MRR11b].

We demonstrate how key parts of OPC UA semantics are reflected by our implemented operator using
a simple model of our own creation. Additionally, we evaluate the performance of the demonstrator
on several types from OPC UA models used in practice, measuring the execution time of the ATL
transformation and counting the produced CD elements. The latter is an indicator of the expected
cddiff performance [MRR11b]. The results of this performance evaluation demonstrate the basic
viability of our implementation approach for use in practice.

We discuss the achieved results, including benefits and limitations. The limitations include some
inherent difficulties of applying semantic differencing to OPC UA in a meaningful way and some
weaknesses of our implementation approach. Finally we also discuss possible future research,
including improved presentation of witnesses and extending the implementation or using a different
approach.

The contribution of this thesis is a semantic differencing operator for OPC UA, simplifying the
analysis and understanding of OPC UA model evolutions through comparison of two model versions.
This includes a refined interpretation of OPC UA models for an approach to OPC UA modeling
with full-fledged types that concisely define the form of their instances instead of just defining a
minimal set of required references.

Thesis Structure

The remainder of the thesis is divided into the following chapters:

Chapter 2 – Foundations and Related Work: Here, we provide foundations for concepts and tech-
nologies used in the thesis. Additionally, we discuss related work.

Chapter 3 – UADiff Operator: In this chapter we conceptually describe the structure of our operator
and the involved mappings.

Chapter 4 – Implementation: Following the conceptual part, we move on to the concrete imple-
mentation and, by means of ATL transformation, definition of our operator.

Chapter 5 – Evaluation: Afterwards we demonstrate the correctness for key aspects of our imple-
mentation on a simple example and evaluate the performance on several OPC UA models in
practice.

2

Chapter 6 – Conclusion We conclude our thesis with a brief summary, a discussion of benefits
and limitations and an outlook on possible future research.

3

2 Foundations and Related Work

In this chapter we give introductions to the concepts and technologies used in the context of this
work. We also discuss some related work and the reasoning why we chose this approach to semantic
differencing for OPC UA.

2.1 Foundations

Two important concepts used in this thesis are model-to-model transformations and differencing,
specifically semantic differencing. Therefore we give a brief introduction to both concepts, as
well as to specific frameworks, tools and languages we used in the process of implementing our
operator. We cover the type model of OPC UA information models [OPC21b] extensively, as a
detailed understanding of the way types are instantiated in OPC UA is essential to this work. For
other software and languages used in the context of this work we do not require in-depth knowledge
and will therefore be more brief in the respective sections.

2.1.1 Alloy

Alloy is a specification language using first order logic constructs [Jac19] that is analyzed via its
corresponding tool, the Alloy Analyzer [JSS00]. The Alloy Analyzer translates Alloy modules to
Boolean formulas. This can be accomplished by limitation of the module to a finite scope. The
generated formulas are then solved by standard SAT solvers and the solutions are translated back.
We will not go into details regarding Alloy since we only did some minor modifications to the Alloy
module generated by the cddiff implementation and covering Alloy extensively would exceed the
scope of this work. To help the reader understand the small modifications to the existing Alloy
generator in cddiff, we shall briefly cover the relevant Alloy constructs:

sig Signatures are used to define sets. The declaration of a signature can also include relations.
Together these sets and relations are the underlying data structures of Alloy. Elements of
these sets are called atoms.

fun Functions in Alloy are relations that map their given input to some output. The output is itself
a relation.

pred Predicates are similar to functions, but they return either true or false. With the run command
instances of the model for which the predicate evaluates to true are searched.

fact Facts are used to constrain models. They are similar to predicates, but they have no input
and are assumed to be always true. When searching for model instances with a run or check
command, any model instance for which the predicate evaluates to false is discarded, which
means such instances are not valid counter examples when running a check command.

5

2 Foundations and Related Work

2.1.2 Model-to-Model Transformations

Model-to-model transformations are a core concept in MDE, mapping source models to target
models and executing the mapping in an automated fashion [Béz05; WHR13]. The transforma-
tions are often described in a model transformation language, such as ATL, that requires a target
metamodel the produced target models conform to, while the source models conform to a source
metamodel [JABK08]. The model transformations in this work are purely exogenous horizontal
model transformations, following the taxonomy proposed by Mens and Van Gorp [MV06], meaning
the model will be transformed from one modeling language to another and remain at the same level
of abstraction.

EMF

The Eclipse Modeling Framework (EMF) is “a [modeling] framework and code generation facil-
ity”[SBMP11, p. 14]. Models handled by the EMF must conform to the Ecore Metamodel, which is
similar to the MOF [Obj06], the metamodel for UML.

Models can be created or edited directly in Eclipse or imported from a variety of sources, including
XML Schema Definitions (XSDs). Once a model is available in the EMF registry, Java code can be
generated from it. EMF-generated code provides classes corresponding to the model elements and
additional facilities needed to process the models. The models are structured in EPackages, which
are registered at an EPackageRegistry. Each package registers all contained classes, interfaces,
and any relationships between them. Additionally, an EPackage provides an EFactory for creating
instances of each class. Not all of these facilities are strictly necessary for every use case, since
metamodels can also be created dynamically at runtime. However, they are needed for the OPC UA
and CD4A metamodels in the context of this work.

EMF also enables the use of various tools on EMF models. One such example are model-to-
model transformations, which can be described in a model transformation language, such as ATL
[WTCJ11].

ATL

The Atlas Transformation Language (ATL) is “a domain-specific language for specifying model-to-
model transformations” [JABK08].
Every ATL transformation needs a source and a target metamodel, both conforming to a common
meta-metamodel, which for transformations between EMF models is Ecore. ATL modules them-
selves are instances of the ATL metamodel, which also conforms to the mentioned meta-metamodel.
ATL uses both declarative and imperative concepts, but the use of declarative over imperative code
is heavily encouraged. In this work we use ATL with the EMF Transformation Virtual Machine
(EMFTVM) [WTCJ11], therefore some details might differ from standard ATL. The ATL code is
compiled to EMFTVM bytecode and then executed by the EMFTVM.

In ATL every transformation is defined by a single module, which contains rules, helpers and a
mandatory header with general information.

The rules are divided into several categories:

6

2.1 Foundations

1 module SimpleUA2CD;

2 create OUT : CD4A from IN : UA;

3
4 rule ObjectType2Class {

5 from

6 --source pattern, matches all abstract ObjectTypes

7 objectType : UA!ObjectType (

8 not objectType.isAbstract

9)

10 using{

11 className : String = objectType.browseName; --define a local variable

12 }

13 to

14 --target pattern, creates a Class with the same name as the ObjectType

15 class : CD4A!ASTCDClass (

16 Name <- className;

17)

18 do {

19 class.Modifier <- thisModule.createUmlModifier(objectType); --imperative code

20 }

21 }

Listing 2.1: Simple ATL module with a single matched rule. Contains a local variable section and
an imperative section in addition to the source and target patterns.
The code is simplified and does not correspond to any transformation used in this work.

Matched Rules always have a source pattern and a target pattern. A matched rule is executed
for each source element that matches the source pattern, thus creating the target elements
specified in the target pattern. The source pattern must consist at least of a source type
from the source metamodel and may contain additional conditions as a Boolean expression.
Target model elements created by a matched rule or unique lazy rule can be retrieved via the
respective source element using EMFTVM’s tracing mechanism.

(Unique) Lazy Rules are special matched rules. They are only invoked when called by another
rule. Lazy rules create new target elements each time they are called while unique lazy rules
always return the same target elements for the same source elements.

Called Rules do not have a source pattern but may have a target pattern. They are called from
other rules to create target elements in an imperative way and may have parameters. The
special entrypoint and endpoint called rules constitute an exception to this. The entrypoint
rule, if present, is called after initialization but before the matching phase for the matched
rules. Analogously the endpoint rule, if present, is called after the matching phase.

Every rule may also have a local variables section and an imperative section. The structure of a
matched rule containing all possible sections is shown in listing 2.1.
The data types in ATL, including collections, are based on those in OCL. Additionally, metamodel
types can be used with some restrictions, depending on the type being part of a source or a target
metamodel.

Helpers are functions that can be defined in the context of a type or the module. They return a single
value and can take several input parameters. A simple helper in the context of a source metamodel
type is shown in 2.2. The use of helpers reduces code-redundancy which is why helpers can be
collected in libraries for reuse in other transformations. A byproduct of this work is a library with a
number of OPC UA specific helpers.

7

2 Foundations and Related Work

1 --This helper returns the target node of a reference

2 helper context UA!Reference def : getTargetNode() : UA!UANode =

3 let targetId : String =

4 self.value

5 in

6 thisModule.getNodeById(targetId)

7 ;

Listing 2.2: Simple ATL helper for transformations with OPC UA source models.

Figure 2.1: OPC UA NodeClasses [OPC21b]

2.1.3 OPC UA

The OPC UA metamodel is given in the OPC UA Address Space Model [OPC21b], which defines the
basic elements as well as rules for well-formed models and instantiation of types. In order to define
an appropriate semantic differencing operator, we need to understand precisely how an instance
is created from its type in OPC UA. To this end, we give an introduction to the most important
concepts in [OPC21b]. Note that the XSD file, from which we generate the EMF-conforming OPC
UA metamodel for uadiff does not include many of the well-formedness rules from [OPC21b] and
we assume only correct models to be used as input for our operator.

Models in OPC UA consist of Nodes connected by References contained in the Nodes. Nodes can
be of different NodeClasses (see figure 2.1), which are defined in the metamodel. Each of these
NodeClasses has a set of Attributes associated with its instances that provide additional metadata
about the Nodes. The set of Attributes is defined by the specification for each NodeClass and cannot
be extended. Every Node can be uniquely identified by its NodeId Attribute. A Node also has a
DisplayName and a BrowseName.
For References the containing Node is called the SourceNode and the referenced Node is called the
TargetNode.
The latter is important for instantiation, but both names may not be unique within a model.

The NodeClasses as defined by the specification are the following:

8

2.1 Foundations

ObjectType Represents a type of Object and models common properties for all Objects of the type.
OPC UA, however, does not separate these two levels of abstraction. The metamodel element
ObjectType corresponds closely to the metamodel element Class in UML and ObjectType
instances therefore correspond to classes.

Object A specific instance of an ObjectType. It represents a (real-world) asset by organizing the
respective data and offering Methods for interaction. While each Object is an instance of
the metamodel element Object, it is also in a type-instance relationship with an ObjectType,
similar to classes and objects in object-oriented programming.

VariableType The types for Variables, although again residing on the same level of abstraction.
Similarly to ObjectType, the metamodel element is comparable to Class in UML and the
instances to classes.

Variable A specific instance of a VariableType. A Variable can be a DataVariable or a Property. A
DataVariable represents the contents of an Object either directly or as a complex DataVariable,
which references further Variables. A Property, on the other hand, provides characteristics
of an Object or Variable, such as the engineering unit for a DataVariable. Analogously to
Objects, each Variable is an instance of the metamodel element Variable, but it is also in a type-
instance relationship with an VariableType, similar to classes and objects in object-oriented
programming.

ReferenceType Type definitions for References. The OPC UA specification defines a set of standard
ReferenceTypes for different purposes.

DataType As the name suggests, DataType Nodes are used to define data types. They describe the
structure of the Value Attribute for Variables and are therefore referenced by VariableTypes
and their instance Variables.

Method Similar to methods in object-oriented programming (OOP), Methods in OPC UA represent
functions in the scope of an Object or ObjectType. They may affect the state of the respective
Object. We do not go into further detail here because Methods will be ignored by our operator.

View Defines a subset of the Nodes in the potentially very large AddressSpace in order to present
only the relevant information for a specific context. While not directly relevant for the
differencing operator, they could be a way to define the input subset of an AddressSpace
directly from within OPC UA.

OPC UA also defines its own graphical notation. The notation for Nodes and References used in
this work can be found in tables C.1 and C.2.
While OPC UA implements some object-oriented concepts, it differs from class diagrams in some key
aspects. We will therefore elaborate further on the relevant NodeClasses and their instantiation.

Types and InstanceDeclarations

In principle only ObjectTypes and VariableTypes can be instantiated. Nodes of these NodeClasses
are also called TypeDefinitionNodes and the Objects or Variables that reference them as their type
definition are Instances of the respective TypeDefinitionNodes. We often use TypeDefinitionNode
and type interchangeably, but the term TypeDefinitionNode is a more explicit way of referring to

9

2 Foundations and Related Work

the Node representing the type. TypeDefinitionNodes can define references to other Nodes which
must then, depending on the NodeClass of the TargetNode, the presence of a ModellingRule and the
ReferenceType of the Reference, also be present on their Instances.

In order to properly understand the instantiation of types we must first introduce the concepts
of InstanceDeclarations and InstanceDeclarationHierarchies. We will sometimes restate the
definitions found in the specification [OPC21b] slightly altered to better accommodate our goals or
achieve a more concise definition.

Definition 2.1.1 (InstanceDeclaration)
An Object or Variable is called an InstanceDeclaration iff it references a ModellingRule with a Has-
ModellingRule Reference and is the TargetNode of at least one forward hierarchical Reference where
the SourceNode is either a TypeDefinitionNode or an InstanceDeclaration whose ModellingRule is
Mandatory, Optional or ExposesItsArray. The type of an InstanceDeclaration may be abstract, but
any instance based on it must be of a concrete type.

Note that forward hierarchical References are References of a subtype of HierarchicalReferences.
All concrete ReferenceTypes are subtypes of either HierarchicalReferences or NonHierarchicalRef-
erences.

We purposely exclude Methods from the definition, as we do not plan to include them in the semantic
difference.
Furthermore, we distinguish between Instances referenced by InstanceDeclarations with different
ModellingRules. This is due to the fact that Instances referenced by a InstanceDeclaration with
either a MandatoryPlaceholder or an OptionalPlaceholder ModellingRule are not considered to be
part of the InstanceDeclarationHierarchy. From here on we will sometimes refer to InstanceDec-
larations with these ModellingRules as placeholders. We consider it good practice to include
this in the definition of InstanceDeclarations because an Instance that would be considered an
InstanceDeclaration solely by virtue of such a Reference does not differ semantically from a Instance
that is not an InstanceDeclaration.
Although OPC UA allows defining new ModellingRules, we assume there to be only the five
ModellingRules from the specification [OPC21b]: Mandatory, MandatoryPlaceholder, Optional,
OptionalPlaceholder and ExposesItsArray.
Since there is currently no standard way to define the semantics of new ModellingRules, there
is no way of taking user-defined ModellingRules into account without first implementing such a
mechanism.

Every path from a TypeDefinitionNode consisting of one or more InstanceDeclarations connected
by forward hierarchical References corresponds to a sequence of BrowseNames. This sequence is
called a BrowsePath.

Definition 2.1.2 (BrowsePath)
Starting from a TypeDefinitionNode, a sequence of BrowseNames, corresponding to a sequence
(=0, =1, ..., =<) of Nodes, constitutes a BrowsePath. All Nodes in the path (except the start Node =0)
must be InstanceDeclarations.
For 0 < 8 < < all =8 must reference one of the ModellingRules Mandatory, Optional or ExposesIt-
sArray with a HasModellingRule Reference.
For each 8 < < of Nodes there must exist a forward hierarchical reference with SourceNode =8 and
TargetNode =8+1.

10

2.1 Foundations

We do not include References with a MandatoryPlaceholder or OptionalPlaceholder InstanceDec-
laration as SourceNode, since these references are not considered when instantiating the type. In
the context of our operator it would therefore be pointless to consider any resulting BrowsePaths.

Based on the definitions of InstanceDeclarations and BrowsePaths we can now introduce the
aforementioned concept of an InstanceDeclarationHierarchy.

Definition 2.1.3 (InstanceDeclarationHierarchy)
The InstanceDeclarationHierarchy of a TypeDefinitionNode consists of all InstanceDeclarations
that have a BrowsePath in the context of the TypeDefinitionNode. We consider forward hierarchical
References between the InstanceDeclarations and from the TypeDefinitionNode to the InstanceDec-
larations to be part of the InstanceDeclarationHierarchy as well.

The specification [OPC21b] is somewhat ambiguous regarding InstanceDeclarationHierarchies as
it states that they consist only of the InstanceDeclarations, but at a later point declares a supporting
table of References necessary to fully represent an InstanceDeclarationHierarchy. We chose to
follow the latter since knowledge of the number and type of Reference is required for instantiating
the type.

Every type inherits the InstanceDeclarationHierarchies of its supertypes, i.e., of all TypeDef-
initionNodes either directly or indirectly referenced via inverse HasSubType References. For
non-conflicting BrowsePaths, the InstanceDeclarationHierarchies are simply combined while
for conflicting BrowsePaths the subtypes can successively override the InstanceDeclarations.

An InstanceDeclaration specified by some type can be overridden in a subtype’s InstanceDeclara-
tionHierarchy by an InstanceDeclaration with the same BrowsePath.

For overriding InstanceDeclarations some rules apply. Any InstanceDeclaration � overriding an
InstanceDeclaration �

• must be of the same type as � or a subtype of �’s type.

• must have the same ModellingRule as � or a more restrictive one. For the standard-
ModellingRules only going from Optional to Mandatory and from OptionalPlaceholder
to MandatoryPlaceholder is allowed.

A forward hierachical Reference A overrides another forward hierachical Reference A ′ from a super-
type’s InstanceDeclarationHierarchy if it goes between two overridden Nodes and A is of the same
type as A ′ or a subtype of it. The SourceNode in this context can also be the TypeDefinitionNode.

An overriding InstanceDeclaration may also declare new References. Reference that are not explicitly
specified are still inherited from the supertypes, but not overridden.

The InstanceDeclarationHierarchy together with any inherited InstanceDeclarations forms the
so-called fully-inherited InstanceDeclarationHierarchy.

Instantiating a TypeDefinitionNode in its minimal form is very similar to instantiating classes from
a class diagram. The specification [OPC21b] states that the Instance must be the root of a hierarchy
mirroring the InstanceDeclarationHierarchy of the TypeDefinitionNode. This means that there must
be References and similar Nodes present in a multiplicity determined by the ModellingRules of the
respective InstanceDeclaration. A similar Node to an InstanceDeclaration is a Node with the same
type or a subtype and the same BrowseName.

11

2 Foundations and Related Work

We will briefly explain the five standard ModellingRules and the corresponding rules. For each
InstanceDeclaration � that references a ModellingRule and is referenced by a TypeDefinitionNode
or a non-placeholder InstanceDeclaration � through one or more forward hierarchical References,
there is a specific number of similar Nodes to � that must be referenced by any Instance based on
�.

Mandatory exactly one similar Node must be referenced through References of the same Refer-
enceTypes or subtypes of these.

Optional at most one similar Node may be referenced through References of the same Reference-
Types or subtypes of these.

MandatoryPlaceholder at least one Instance of the same type or a subtype must be referenced
through References of the same ReferenceTypes or subtypes of these. These Instances are not
required to have the same BrowseName as the InstanceDeclaration.

OptionalPlaceholder arbitrarily many Instances of the same type or a subtype may be referenced
through References of the same ReferenceTypes or subtypes of these. These Instances are not
required to have the same BrowseName as the InstanceDeclaration.

ExposesItsArray arbitrarily many Instances of the same type or a subtype must be referenced
through References of the same ReferenceTypes or subtypes of these. These Instances are not
required to have the same BrowseName as the InstanceDeclaration. In contrast to Mandato-
ryPlaceholder and OptionalPlaceholder, for the ExposesItsArray ModellingRule the forward
hierarchical References of the InstanceDeclaration are included in the InstanceDeclara-
tionHierarchy. Unlike for Mandatory and Optional, however, the Instances based on such an
InstanceDeclaration must, in the context of one specific type, all reference the same Instance.

This applies for References of Instances independently instantiated from a TypeDefinitionNode as
well as for those serving as similar Nodes to an InstanceDeclaration as non-root part of a hierarchy.

Moreover, it is important to note that in OPC UA for multiple References connecting the same Nodes
as part of an InstanceDeclarationHierarchy the References mirroring them in the hierarchy of any
Instance must also connect the same Nodes. Otherwise, the InstanceDeclarationHierarchy of the
TypeDefinitionNode would contain a BrowsePath that could not be mapped to a unique Node in the
Instances of the TypeDefinitionNode.

So far we have discussed how instantiate TypeDefinitionNodes based on their InstanceDeclara-
tionHierarchies. In OPC UA, however, Instances are not limited to the References defined by
their TypeDefinitionNode or even those of the InstanceDeclaration they are based on. Except
for some minor limitations, an Instance may have arbitrary References completely unrelated to
its TypeDefinitionNode. A simple example is shown in 2.2, where an ObjectType House with an
optional component of type Garden is defined. Based on this definition of the ObjectType House
we instantiate the Instance HouseInstance with a component of type JetEngine.

As a result, when using OPC UA information models without any restrictions, the ModellingRules
only give a lower limit of how many similar Nodes are expected, due to the possibility to add arbitrary
References to a Node. Therefore, in standard OPC UA every Reference to an InstanceDeclaration
with a ModellingRule Optional or OptionalPlaceholder can be seen as a mere suggestion, since
they do not impact the possible Instances of the respective TypeDefinitionNode at all.

12

2.1 Foundations

Figure 2.2: Instance of the House-ObjectType with a JetEngine component

While this arguably provides some flexibility we will propose and informally describe an alternative
with stricter adherence to type definition in 3.

Interfaces and AddIns

The InstanceDeclarationHierarchy of a TypeDefinitionNode can be further expanded by referencing
Interfaces with a HasInterface Reference. Interfaces are just ObjectTypes that are abstract subtypes
of BaseInterfaceType and as such behave mostly like a normal abstract ObjectType.
When referenced by an TypeDefinitionNode with a HasInterface Reference all Instances of the
type and its subtypes shall be instantiated as if all Nodes and References of the Interface’s In-
stanceDeclarationHierarchy were also part of the TypeDefinitionNode’s InstanceDeclarationHier-
archy. TypeDefinitionNodes may not apply Interfaces with conflicting BrowsePaths and therefore
cannot override any InstanceDeclarations of the Interface.

Additionally, OPC UA allows Instances to reference Interfaces with HasInterface References. In
contrast to TypeDefinitionNodes applying an Interface, the Instance must then directly mirror
the Interface’s InstanceDeclarationHierarchy as if the Interface were applied to the Instance’s
TypeDefinitionNode.
While unusual, this feature is irrelevant for our operator as we do not concern ourselves with
Instances that are no InstanceDeclarations. For InstanceDeclarations, however, the mirroring
InstanceDeclarationHierarchy is also a part of any InstanceDeclarationHierarchies that contain the
InstanceDeclaration.

Since it is explicitly mentioned in the specification [OPC21b] as a special AddressSpace concept
we briefly explain our reasoning on AddIns for the sake of clarity.
Any Object can be used as an AddIn by referencing it from an ObjectType or Object with a forward
HasAddIn Reference, which is as subtype of the HasComponent reference.

13

2 Foundations and Related Work

The HasAddIn ReferenceType has no special semantics distinguishing it from the general HasCom-
ponent ReferenceType other than that the TargetNode is called an AddIn. Therefore we will not
handle AddIns in any special way and will not explicitly discuss them in later chapters.

2.1.4 MontiCore

MontiCore (MC) is described as as a “framework for compositional development of domain specific
languages” [KRV10]. Domain specific languages (DSLs) are tailored to a specific domain, e.g., the
representation of class diagrams as in CD4A [HKR21], as opposed to general purpose programming
languages like Java [AGH05] or C [RY07].
In MC languages are described as context-free grammars, from which Java code is generated, along
with context-conditions that can be added to the code manually.
Most importantly, the generated code includes abstract syntax tree (AST) classes, which can also
be generated to be compatible with the Eclipse Modeling Framework[HKR21; SBMP11]. In
combination with other generated code infrastructure such as builders and visitors for the AST
classes as well as parsers for the DSL code, developers are enabled to build tools for their languages
with relative ease. MontiCore as well as the associated languages and tools are available at 1.

CD4A

The language Class Diagrams for Analysis (CD4A) is a MontiCore language based on UML/P
[Rum11] CDs, representing a subset of their functionality [HKR21]. UML/P is a UML profile
intended for the generation of Java code. In the course of this work mentions of class diagrams will
therefore refer to CD4A class diagrams unless stated otherwise.

Atop the generated code some tools have been implemented for CD4A and the near identical
language Class Diagrams for Code (CD4C). We are specifically interested in the cddiff tool, which
implements the cddiff : operator [MRR11b]. The implementation accepts two CD4A class diagrams
and a parameter : , limiting the maximum number of objects in a witness. Using MC to generate
EMF-compatible AST classes allows us to leverage the powerful set of modeling-related tools
provided by the Eclipse Modeling Framework, including model-to-model transformations.

2.1.5 Differencing

Differencing tools are essential for most software engineering processes as they provide precise
insights on the changes between versions. Most tools approach this on a purely syntactical level,
where the difference often consists of a set of add or delete operations. One of the most prominent
examples for this approach is the git diff command [CS14].
In the example C++ code snippets 2.3 and 2.4, such a diff operator would detect a change in line 2
due to the changed order of 0 and 1. While such a syntactic diff is useful, there are certain cases
where we are more interested in the question whether the program produces different results, which
is obviously not the case here.

1https://github.com/MontiCore

14

https://github.com/MontiCore

2.1 Foundations

In order to detect changes only if they impact the semantics of the program we would need a semantic
differencing tool. In the course of this work we describe and implement such a semantic differencing
operator for OPC UA models.
While, to our knowledge, there is no existing semantic differencing solution for OPC UA, we can
build on existing work for class diagrams.

int add(int a, int b) {

return a + b;

}

Listing 2.3: First add function

int add(int a, int b) {

return b + a;

}

Listing 2.4: Second add function

Syntactic Differencing

PetsV1

PetsV2

Dog Dog

Pet

Figure 2.3: Example of two syntactically different, but semantically identical models. Adapted
from [MRR11b].

Syntactic differencing approaches for models often focus on the creation, deletion and change of
model elements, e.g., classes in class diagrams, between two versions [AP03; OWK03]. This offers
a complete view on the changes to a model on the syntactic level. Some semantic insights, however,
may not be obvious by looking at the syntactic difference.
The two class diagrams in 2.3 differ syntactically by the addition of an abstract superclass Pet. For
both models, however, the set of possible instances is identical, consisting only of objects of the
class Dog without any associations.
They can thus be considered semantically equivalent according to the definition from [MRR11b],
which we introduce in this section. On the other hand, small syntactic changes, e.g., altering
relationships in class diagrams, may lead to vastly different sets of valid instances.
To better understand these implications semantic differencing can be used.

Semantic Differencing

Intuitively the semantic differencing operator proposed by Maoz et al. [MRR10] takes two models
as input and outputs a set of diff witnesses that are instances of the first but not of the second model.
As it enumerates such witnesses instead of producing a description for the difference, it can be

15

2 Foundations and Related Work

classified as an enumerative semantic differencing operator [FALW14].
They formalize the notion by considering a modeling language "! = 〈(H=, (4<, sem〉 (as described
in [HR04]), where (H= is the set of all syntactically correct expressions, (4< is a semantic domain
and sem : (H= → P((4<) is a mapping from the syntactically correct expressions to subsets of
the semantic domain. For two syntactically correct expressions 41, 42 they now define the operator
diff : (H= × (H= → P((4<) as follows:

Definition 2.1.4
diff (41, 42) = {B |B ∈ sem(41) ∧ B ∉ sem(42)}

Therefore, an element of the semantic domain is included in the difference if and only if it is an
instance of the first, but not of the second input model. This straightforward but abstract definition
provides a framework to build operators for specific modeling languages.
Applying this asymmetric operator in both directions can provide insights into the relationship of
the two models. If both differences are empty, the models are semantically equivalent. Meanwhile,
a single empty difference diff (41, 42) = ∅ and diff (42, 41) ≠ ∅ implies that 41 is a refinement of 42
and 42 is a generalization of 41.

CDDiff

The proposed semantic difference operator for UML/P [Rum11] class diagrams, cddiff [MRR11b],
was implemented via a reduction to Alloy.

In the class diagram context the modeling language, as introduced for the abstract operator, is
"! = 〈��,$", sem〉. The set of syntactically correct expressions �� is the set of syntactically
correct CD4A class diagrams. The semantic domain $" consists of all finite object models that
can be instantiated from expressions in �� and sem : �� → P($") maps a class diagram to the
set of object models that can be instantiated from it.
They then define the operator cddiff as follows:

Definition 2.1.5
cddiff (231, 232) = {>< ∈ $" |>< ∈ sem(231) ∧ >< ∉ sem(232)}

For practicability, since cddiff can be very large or even infinite, their implemented operator is a
slightly modified version cddiff : , which restricts the diff witnesses to at most : instances per model.
This restriction is required for the use of Alloy since the language is undecidable and solutions can
therefore only be provided in a limited scope [JSS00].
The underlying assumption is an adapted version of the small scale hypothesis, which originally
states that most flaws already occur in small instances of a model [Jac12]. The version adapted to
the problem of semantic differences in class diagrams states that instances for all classes of diff
witnesses can be found within a relatively small scope [MRR11b].

2.2 Related work

Regarding related work we searched mainly for semantic differencing approaches and transforma-
tions from OPC UA to UML.

16

2.2 Related work

2.2.1 Semantic Differencing Approaches

Non-enumerative approaches to semantic differencing produce concise definitions of the respective
difference instead of a finite set of witnesses. Such operators have been described, e.g. for class
diagrams [FALW14] and automata [FLW11]. As pointed out by Fahrenberg et al. [FALW14], this
approach produces a complete description of the difference in the form of a model. They argue
since the resulting difference resides in the same domain and retains the same level of abstraction as
the input models it can be manipulated more easily by tools and engineers.
When applying this to OPC UA, it must be taken into account that the designers of new specifications
are not usually software engineers but rather experts from other engineering domains. Therefore
we believe an enumerative approach that provides the user with concrete witnesses to be easier to
understand and use.

Enumerative approaches exist for other modeling languages such as class diagrams [MRR11b]
and activity diagrams [MRR11a]. To our knowledge no semantic differencing operator of either
approach has been described for OPC UA.

2.2.2 Existing Transformations

Model transformations between UML CDs and OPC UA have been described in literature [LKYO17;
PWFW18; RPL13]. Combined with semantic differencing for class diagrams like cddiff [MRR11b]
this would provide a potential easy solution, were it not for some limitations.
Existing transformations are often unidirectional from UML to OPC UA [PWFW18; RPL13] as their
main goal is to facilitate the creation of OPC UA information models from UML class diagrams.
A bidirectional approach has been proposed by Lee et al. [LKYO17] who professed some forced
misalignment in their mapping due to OPC UA lacking a clear separation of model and meta-model
elements.

None of the existing transformations we found addressed the InstanceDeclaration concept, including
the overriding of InstanceDeclarations. Unidirectional approaches from UML to OPC UA need not
address the issue of overriding InstanceDeclarations [PWFW18; RPL13]. No equivalent concept
exists in UML, therefore CDs can simply be mapped to OPC UA models where no overriding of
InstanceDeclarations occurs.
Even the bidirectional approach [LKYO17] does not include the concept, as InstanceDeclarations
are mapped to the same classes as their TypeDefinitionNode.
While the CDs resulting from such a transformation are better suited for further use than the ones
we create, they do not reflect OPC UA semantics as accurately as required for meaningful semantic
differencing.
Furthermore, our target language is CD4A, which would require either a second transformation or
rewriting the existing one for CD4A, if we were to use one.

2.2.3 Literature Research Methodology

For our literature research the starting point were the papers about cddiff, the underlying enumerative
semantic differencing approach and its implementations [MRR11a; MRR11b; MRR12; MRR14].

17

2 Foundations and Related Work

From there we conducted the research mainly via the Google Scholar 2 search engine. Used
keywords include differencing, diffference, semantic, syntactic, transformation, mapping, UML, cd,
class diagram, cd4a, UA, OPC UA and combinations of those. Additionally, we followed relevant
citations of sources to discover related work. For some topics we also searched in the university
library catalogue of the University of Stuttgart 3.

We tried to use papers that were published in some peer-reviewed form when possible, but especially
regarding semantic differencing and general transformations between OPC UA and UML, the
number of related papers is rather small.

To assess the usefulness of a paper for our work, we first read the abstract and based on that decided
whether to read the rest of the paper.

When referenced in some paper or concerning an important tool, we also included some books, e.g.,
for UML/P [Rum11], MC [HKR21] or EMF [SBMP11].

2https://scholar.google.com/
3https://www.ub.uni-stuttgart.de/en/

18

https://scholar.google.com/
https://www.ub.uni-stuttgart.de/en/

3 UADiff Operator

We define our operator based on cddiff [MRR11b] by mapping OPC UA models to CD4A class
diagrams and then applying the existing operator.
Reusing cddiff offers some advantages, a more obvious one being the reuse of a quite complex piece
of software instead of implementing a very similar one from scratch. Additionally we can build
on the well-defined semantics of CD4A [CGR14], defining a transformation UA2CD in ATL, thus
obtaining translational semantics [CK07] for OPC UA models.

As a modeling language in the sense of [HR04] (see section 2.1.5), we can define OPC UA as
follows:

Definition 3.0.1 (SR[G)
"!*� B 〈*�,$", semUA〉

The syntactic domain *� consists of all syntactically correct XML NodeSets conforming to OPC
UA XSD [OPC21c] and the constraints stated in [OPC21b].
We define the semantic mapping as the composition of the UA2CD : *� → �� mapping and
a slightly modified version of the semantic mapping for CDs used in [MRR11b], sem’ : �� →
P($"). We explain our modifications to the CD semantic mapping and our reasons for applying
them in section 3.2.

Definition 3.0.2 (semUA)
semUA : *� → P($"), = ↦→ sem’ ◦UA2CD(=)

The operator uadiff is then defined as follows:

Definition 3.0.3 (uadiff)
uadiff (=1, =2) B {>< ∈ $" |>< ∈ semUA(=1) ∧ >< ∉ semUA(=2)}

Note that the actual implementation described in chapter 4 is an operator uadiff : with a maximum
of : objects in any witness, analogous cddiff : .

3.1 Mapping UA to CD

With our mapping UA2CD we map a set of OPC UA Nodes and References to a CD4A class diagram.
In addition to simply enabling the use of cddiff, there are several restrictions we impose on the
instantiation of OPC UA types, that are reflected in this mapping.
We give an overview of the mapping in table 3.1. In this chapter we describe CD4A in terms of the
represented concepts, whereas in the implementation of the mapping in chapter 4 CD4A diagrams
are represented through their ASTs.

19

3 UADiff Operator

OPC UA Element CD4A Element

TypeDefinitionNode Interface and Class
InstanceDeclaration Classes

HasSubtype Reference Inheritance relationship
other forward hierarchical Reference Association

other Nodes and References none, but may provide context information

Table 3.1: Mapping from OPC UA to UML

3.1.1 Assumptions about CDDiff

We use an older version of CD4A where some context conditions are not implemented. This leads
to CDs being valid although a subclass defines an association with the same name as an association
that is already present in a superclass. Due to the way cddiff is implemented this enables us to refine
associations between subclasses regarding multiplicity and which subclass the specific side belongs
to.

The described behaviour can be explained using the CD in figure 3.1:
Every Animal eats an arbitrary amount of Fruits, while each Fruit is eaten by at most one Animal.
Apes, however, only eat Bananas and at most one. Bananas are still eaten by at most one Animal,
but only if it is an Ape.

eatenBy

0..1
eats
∗

eatenBy

0..1
eats
0..1

Animal Fruit

Ape Banana

Figure 3.1: Subclasses with a refined association.

3.1.2 Nodes

We map three different classes of Nodes to some CD construct: Interfaces, non-interface TypeDefi-
nitionNodes and InstanceDeclarations.

For an Interface we simply create a CD interface. Interfaces cannot be instantiated and instances of
any type that implements them must mirror the InstanceDeclarationHierarchies of the respective
Interfaces. Furthermore, ObjectTypes can implement multiple interfaces. The only CD construct
with the described characteristics is an interface, to which we therefore map our Interfaces.

20

3.1 Mapping UA to CD

Any TypeDefinitionNode that is not an Interface is mapped to an interface and a class that implements
the interface. Classes are abstract iff the respective TypeDefinitionNode is abstract. The type’s
References are mapped to associations of the interface, not the class. This allows us to handle the
InstanceDeclarations more easily.

While TypeDefinitionNodes are quite straightforward to map to CD constructs, InstanceDeclarations
are rather complicated.
InstanceDeclaration with ModellingRules Mandatory, Optional or ExposesItsArray, can specify
new References or override those given by the TypeDefinitionNode. Additionally, for InstanceDecla-
rations with Mandatory or Optional ModellingRules the Instances must have the same BrowseName.
Therefore we need to map each of these InstanceDeclarations to a class.
Any InstanceDeclaration with a ModellingRule MandatoryPlaceholder or OptionalPlaceholder,
on the other hand, correspond exactly to their TypeDefinitionNode. For those InstanceDeclarations
neither a BrowseName nor any References beyond those specified by their TypeDefinitionNode
are mandated. We map them to classes the same way as other InstanceDeclarations because the
overriding mechanism described in the previous section 3.1.1 requires subclasses of the original
classes on both sides of the association.
For convenience we assume an InstanceDeclaration �� and a TypeDefinitionNode) , where �� is
of type) . The class ��2;0BB based on �� is a subclass of the class)2;0BB, to which) is mapped.
We also want to reflect that Instances based on InstanceDeclarations may have the same type as the
InstanceDeclaration or a subtype of it. For this purpose we create additional classes, mirroring
the subtype hierarchy of) . We give an example using the OPC UA model in figure 3.2. The
class hierarchy created from the ZooAnimal InstanceDeclaration, including associations, extended
classes and implemented interfaces, is shown in figure 3.3.

Figure 3.2: OPC UA model including an InstanceDeclaration of type Animal, which has several
subtypes.

This has the severe drawback of quickly leading to immensely large CDs, due to the large subtype
hierarchies in OPC UA. We address this issue in chapter 4 by considering only a user-specified subset
of the given NodeSet. The structure of the inheritance relationships provides another challenge,

21

3 UADiff Operator

1..*∗

Animal

Animal:ZooAnimal

Ape:ZooAnimal �interface�
IApe

Gorilla:ZooAnimal�interface�
IGorilla Bonobo:ZooAnimal �interface�

IBonobo

Zoo

Figure 3.3: Class hierarchy created for the InstanceDeclaration ZooAnimal from figure 3.2.

since the root of the created subclass-hierarchy, ��2;0BB, is already a direct subclass of)2;0BB and
can therefore not inherit from any other direct subclass of)2;0BB. For this purpose we map the
TypeDefinitionNodes not only to classes, but also to interfaces. Each class in the created subclass
hierarchy can therefore inherit the interface corresponding to the TypeDefinitionNode it is based on.
A special case is the InstanceDeclaration �� overriding another InstanceDeclaration ��′ of type
) ′. In such a case the mapping is identical except for the superclass of ��2;0BB, which would then
be either ��′

2;0BB
if) ′ =) or otherwise the class in the hierarchy of ��′

2;0BB
corresponding to) .

Such a class must be present, since �� can only override ��′ if) is) ′ or a subtype of) ′.

In most cases this mapping is sufficient, but in OPC UA an InstanceDeclaration could in theory be
part of multiple InstanceDeclarationHierarchies and override a different InstanceDeclaration in
each InstanceDeclarationHierarchy. Such a construct would necessitate a separate hierarchy of
classes for each context the InstanceDeclaration is a part of. Due to time limitations we choose
not to handle such cases in our implementation. Moreover, it can be argued that modeling types in
such a way constitutes bad practice, since the resulting NodeSets would be potentially confusing for
developers and users.

Additionally, all classes created from InstanceDeclarations are private, while classes created from
TypeDefinitionNodes are not. We use this as a convenient way for the modified semantic mapping
to distinguish between those classes, while for the original cddiff operator UML modifiers are
irrelevant.

Nodes of other NodeClasses are not mapped since they are not instantiable, with the exception of
Methods. Including Methods in a meaningful way would exceed the scope of this work.

22

3.1 Mapping UA to CD

3.1.3 References

References are mapped depending on their ReferenceType. Additionally we often need to distinguish
References based on their direction. While this may seem like a purely technical aspect better left
for the implementation chapter, the direction in which a Reference is given is often important. Some
References might have a mandatory and an optional direction, e.g., for HasSubType only the inverse
Reference is always present. For hierarchical References only the forward ones are considered when
instantiating a TypeDefinitionNode.
Since we only map TypeDefinitionNodes and InstanceDeclarations to classes, References are only
mapped if they go between two such Nodes

For nonhierarchical ReferenceTypes we map a forward HasInterface reference to a realization
relationship if and only if the SourceNode is an ObjectType. The class the SourceNode is mapped to
shall then reference the interface the TargetNode is mapped to.
If the SourceNode is an Object we do not need to apply the respective interface to the class since
the Object must mirror the Interface’s InstanceDeclarationHierarchy and only the Nodes appearing
in the mirrored hierarchy are relevant for instantiation. If the Object is not an InstanceDeclaration
it is not relevant for us anyway.
Other nonhierarchical References, e.g., HasModellingRule or HasTypeDefinition may provide
additional information for Nodes or other References, but they are not directly relevant for the
instantiation of TypeDefinitionNodes and are therefore not mapped to any concrete CD element.

Hierarchical References, on the other hand, are mapped to specific relationships, depending on their
ReferenceType and direction.
Inverse HasSubType references shall be mapped to inheritance relationships, as subtyping in OPC
UA is quite similar to inheritance in CDs. The overriding of References and the concept of In-
stanceDeclarations has no counterpart in CDs, but we handle this by mapping InstanceDeclaration
accordingly. The resulting inheritance relationship shall go between the class corresponding to the
TargetNode as superclass and the one created from the SourceNode as subclass.
We ignore forward HasSubType References since they are completely optional, while the inverse
References are always present.
Other subtypes of HierarchicalReferences are mapped to standard associations. In the implemen-
tation the exact ReferenceType will be reflected in the name of the association. There are some
constraints associated with specific ReferenceTypes:

1. Properties, i.e., TargetNodes of forward HasProperty References, shall not be SourceNodes
of hierachical References

2. ReferenceTypes may restrict what NodeClasses are permitted as SourceNodes or TargetNodes.

3. References of the HasChild ReferenceType or any of its subtypes shall never form a cycle. The
same goes for References of the HasEventSource ReferenceType and its subtypes.einhalten

Provided the input models are valid, constraints 1 and 2 are trivially fulfilled in the context of our
work as we do not allow arbitrary References not specified by the TypeDefinitionNode on Instances.
A Property with forward hierarchical References would therefore have to be instantiated from an
InstanceDeclaration that is also a Property with forward hierarchical References, i.e., from an
invalid model.
For the second constraint, if an Instance is instantiated from an Object or ObjectType it is always an
Object and when instantiated from a Variable or VariableType it is always a Variable.

23

3 UADiff Operator

Therefore, the only problematic cases would be Instances of ObjectTypes or Variables where the
Reference is restricted to only the respective NodeClass. For hierarchical ReferenceTypes defined in
[OPC21b] this is only the case with HasSubType, which is not part of InstanceDeclarationHier-
archies. If another hierarchical ReferenceType would be constrained in this way we could safely
consider any InstanceDeclarationHierarchy containing such a Reference invalid as there could never
be a valid Instance mirroring the Reference.
The third constraint is not reflected in our operator. Due to our complete interpretation of OPC UA
models such a case would only be possible for a valid model if the fully inherited InstanceDeclara-
tionHierarchies of two TypeDefinitionNodes contain InstanceDeclarations of the respective other
type. Such cases should be rare because of the typically hierarchical design of OPC UA information
models.

Information regarding the cardinality resides not in the References but in the different InstanceDec-
larations via a Reference to a ModellingRule. These ModellingRules are mapped as shown in table
3.2 according to [OPC21b] except for ExposesItsArray, for which no such cardinality is specified.
We selected the multiplicity of zero or more as the closest match as the version of CD4A we use in
our implementation does not allow upper bounds other than 1. In reality the number of Instances
based on a ExposesItsArray InstanceDeclaration referenced by a single Node may be limited by the
ValueRank and ArrayDimensions Attributes of the InstanceDeclarations, while the ModellingRule
in itself does not imply any cardinality restricitons. Also note the property of ExposesItsArray
that similar Nodes of InstanceDeclarations must reference the same Nodes with all their forward
hierarchical References if they belong to the same InstanceDeclarationHierarchy. This property is
not considered by uadiff.

OPC UA ModellingRule CD4A Multiplicity

Mandatory 1
Optional 0..1

MandatoryPlaceholder 1..*
OptionalPlaceholder *

ExposesItsArray *

Table 3.2: ModellingRule of the Reference’s TargetNode in OPC UA mapped to UML multiplicities.
The mapping for all ModellingRules except ExposesItsArray is found in [OPC21b].

The specified cardinalities are always applied on the association side of the class corresponding to the
TargetNode of the mapped forward hierarchical Reference. Since the TargetNodes are InstanceDec-
larations this refers to the root of the class hierarchy we map the specific InstanceDeclaration to.
The other association side always has cardinality ∗, as in OPC UA there is no restriction on how
many Nodes can be SourceNodes of forward hierarchical References to a single Node except for
HasSubType, which does not concern us here as it is only mapped to inheritance relationships.
This is true even for References of the HasComponent ReferenceType, which is why a mapping
to composition is not warranted. While aggregation may better reflect the intended meaning of
HasComponent References to a human reader, we decide on the use of standard associations for
simplicity as regards the implementation.

24

3.1 Mapping UA to CD

We consider associations to go from left to right regarding the direction of the corresponding
Reference, i.e., the left side of the association is always the class created from SourceNode and the
right side is always the class corresponding to the TargetNode. We then use this property in our
modified semantic mapping to determine the direction.

If an InstanceDeclaration is overridden, the overriding InstanceDeclaration may reference a different
ModellingRule that is applied on instantiation. References are only overriden if the TargetNode
is overridden and the SourceNode is either the TypeDefinitionNode or also overridden. Therefore,
the association created from the overriding Reference always connects two subclasses of the ones
connected by the association created by the overridden reference. Moreover, OPC UA allows only
tightening of constraints when overriding InstanceDeclarations. For an overriding reference, the
multiplicity of the created association is thus refined accordingly as shown in figure 3.1.
The allowed ModellingRules for overriding an InstanceDeclaration with a specific ModellingRule
are shown in 3.3. Input models are considered valid only if they satisfy these constraints.

ModellingRule of the overridden
InstanceDeclaration

ModellingRule of the overriding
InstanceDeclaration

Mandatory Mandatory
Optional Optional or Mandatory
MandatoryPlaceholder MandatoryPlaceholder

OptionalPlaceholder OptionalPlaceholder or Manda-
toryPlaceholder

ExposesItsArray ExposesItsArray

Table 3.3: Rules for changing ModellingRules when overriding InstanceDeclarations from
[OPC21b]. ExposesItsArray does not appear in the list for allowed changes and has
different semantics to the other ModellingRules. We therefore assume it to always remain
unchanged.

An ambiguous situation as regards the overriding of an InstanceDeclaration �� of type) can occur
when a subtype)BD1 of) and �� both have forward hierarchical References to InstanceDeclarations
with some BrowseName �. The References in this scenario are of the same type or one is a subtype
of the other. When creating an Instance of type)BD1 from �� we have to decide if either)BD1 takes
precedence over �� or the other way round in terms of the Reference the Instance has to mirror.
This is in regard to the ReferenceType of the Reference, the TargetNode and the ModellingRule of
the TargetNode.
In our interpretation �� can only be instantiated with type)BD1 if the TargetNodes of such References
are either identical or neither of them have a Mandatory ModellingRule, as the two different
TargetNodes would be mapped to separate classes where none is a subclass of the other.

In its current version our operator does not support every aspect of overriding in OPC UA we would
like to include. Specifically, in order to override a Reference the overriding Reference must be of the
same ReferenceType. If the ReferenceType is a subtype we currently do not consider the Reference
as overriding.

25

3 UADiff Operator

3.1.4 Reflected Restrictions

For cddiff a “complete interpretation for CDs” [MRR11b] is used, i.e., there are no elements in the
object model that are not defined in the CD (see also [Rum11]). By mapping OPC UA models to
CDs such that the resulting CDs contain only associations that correspond to References in type
definitions, we apply this complete interpretation to OPC UA models.
Every class we create corresponds to either a TypeDefinitionNode or an InstanceDeclaration and
every association is created from an Reference. Therefore any object in an output model of uadiff
can be considered an instance of a specific TypeDefinitionNode or InstanceDeclaration present in
the first input model Also any link on such an object corresponds to a Reference where the respective
Node is either the SourceNode or the TargetNode.

This complete interpretation of OPC UA models is not only necessary to allow meaningful semantic
differencing, but we also consider it to be well suited for the design of OPC UA models. The
possibility of adding arbitrary References to Instances provides more flexibility, e.g., for users who
need to extend an Object representing a machine by a new component, but do not wish to define their
own type. From a modeling point of view, however, the expressiveness of such models is severely
limited, as References introduce at most a lower bound for the cardinality. While this presents a way
to specify minimum requirements for Instances of a TypeDefinitionNode, concerning the intended
use of a type it is not binding in any way.
We refer to chapter 2 for our example of a House type with an optional Garden 2.2. Although, in
theory, a designer may have intended for houses to be equipped with jet engines, we believe that for
the purpose of a model design process, houses are better assumed to come with gardens.
In contrast, when using a complete interpretation, the model in figure 2.2 describes a precise set of
possible Instances, as shown in figure 3.4, in an easy to understand way.

Figure 3.4: All possible variations of Instances for the House ObjectType in figure 2.2, using a
complete interpretation of OPC UA models.

26

3.2 Changes to CD4A’s semantic mapping

3.2 Changes to CD4A’s semantic mapping

In order to properly reflect the instantiation of OPC UA models, a mere mapping to CDs proves
insufficient. Therefore we introduce two changes regarding the semantic mapping sem used in
[MRR11b], resulting in the modified semantic mapping sem’. We will not formally define sem’,
but give an informal account and in chapter 4 go into detail on the changes to the generated Alloy
modules.

The first important change concerns public classes, i.e., the classes InstanceDeclarations are mapped
to. We restrict the semantic mapping in such a way that an object model is only valid if all instances
of public classes are directly or indirectly connected to an instance of a non-public class via links nav-
igated from right to left. Since associations always correspond to a forward hierarchical Reference
and the left side always corresponds to the SourceNode, this restriction ensures that InstanceDecla-
rations are only instantiated as part of a TypeDefinitionNode’s InstanceDeclarationHierarchy.
InstanceDeclarations may contain References not specified by their TypeDefinitionNode but they
are not actual subtypes. In order to maintain the complete interpretation of OPC UA models, we
do not allow such pseudo-subtypes to be instantiated outside their specific context, namely the
InstanceDeclarationHierarchies they are part of. This way only the actual TypeDefinitionNodes are
instantiated without being part of some other TypeDefinitionNode’s InstanceDeclarationHierarchy.
At the same time objects based on InstanceDeclarations are still possible if they are part of a
respective mirrored InstanceDeclarationHierarchy.

The second change concerns mutliple associations between the same classes, including inherited
associations. If two classes are connected by more than one association in the same direction, every
pair of objects instantiated from these classes must either be connected by links corresponding to all
these association or not connected by any such link. Through this rule we enforce the analogous OPC
UA constraint that Instances of InstanceDeclarations directly connected by multiple References
must also be connected by all those References.

27

4 Implementation

In this chapter we discuss the actual implementation of the described operator in detail. Along
with the more technical and precise description of the transformations we review the application
architecture and state of implementation.

4.1 ATL Transformation

In chapter 3 we discussed how our operator builds on cddiff. We gave an informal account of OPC
UA model semantics in the context of this work and how this is realized with the transformation
from OPC UA to CD4A. In this chapter we go into detail regarding the actual ATL rules and some
helpers.

4.1.1 Helpers

The ATL module implementing the transformation uses a variety of helpers. Most helpers are used
to navigate structures within the OPC UA NodeSet and are usually fairly self-explanatory. Some
helpers, however, relate to aspects of this specific transformation, rather than OPC UA models in
general. Therefore, we go into detail for the high-level helpers regarding naming of classes and
determining the relevant subset of the source elements for the transformation.

Relevant Subset

The implementation of cddiff cannot handle large CDs due to the generated Alloy module and thus
the Boolean formula quickly growing in size. Since SAT is an NP-hard problem such large formulas
can quickly increase the execution time beyond what is viable for practical application. We therefore
expect two sets of NodeIds as input to our tool:

Included Nodes are the set of TypeDefinitionNodes we are interested in. If an InstanceDeclaration
is of one of these types, we generate all the respective classes, including those corresponding
to any subtypes. In many OPC UA models, there are InstanceDeclaration of very general
types, e.g., BaseObjectType or BaseVariableType, that of course have a plethora of subtypes.
Since including all those subtypes results in very large CDs, we ignore any subtypes of not
included Nodes if they are not relevant for some other reason.

Independent Nodes are the TypeDefinitionNodes that are instantiated independently and not solely
as part of an InstanceDeclarationHierarchy. All subtypes of the explicitly specified inde-
pendent types are treated as such as well. The independent Nodes are always a subset of the

29

4 Implementation

included Nodes. By specifying independent Node the possible instances can be limited such
that they are of the types the user is actually interested in. Thus, the purpose of this set is not
increasing performance, but providing more meaningful witnesses as output.

Within the transformation, TypeDefinitionNodes are checked whether they are included in the
typically small sets. This is accomplished by means of methods isIncluded() and isIndependent(),
provided through a native Java helper.
Note that, while automatically including all subtypes of the explicitly specified types in the respective
sets makes testing the operator by hand easier, when using it with some other application, e.g., an
OPC UA modeling tool, one may wish to limit the sets to the types that are given explicitly.

The included Nodes as described above do not form a valid OPC UA model. The global attribute
helper relevantNodes 4.1 determines all Nodes that must be included to form a valid model and
is used in the matched rules to ensure only those Nodes are matched. Its value is a map from all
TypeDefinitionNodes and InstanceDeclarations to a Boolean value, signifying whether the Node is
relevant.
To construct this map, the helper findAllRelatedNodes() 4.2 is used with the included types and
their subtypes as input. In findAllRelatedNodes() all supertypes and implemented interfaces of
the types argument are collected, their union with types being allTypesAndInterfaces. For this set,
we collect all Nodes contained in their InstanceDeclarationHierarchies, hierarchyMembers, and
collect their types, idTypes. If idTypes contains types that are not included in allTypesAndInterfaces
or considered in previous iterations, i.e., included in seenTypes, findAllRelatedNodes() calls itself
recursively. The new types are now only the newly found types of InstanceDeclarations and the
recursion stops when no InstanceDeclarations of a previously unseen type are found.
The return value is always the union of hierarchyMembers, allTypesAndInterfaces and, if present,
the next recursion step’s return value.

By determining the relevant Nodes this way, we ensure that for every type that may be instantiated
the fully inherited InstanceDeclarationHierarchy is part of the selected subset. The constructed set
is the minimal set (satisfying the following conditions:

1. (contains all included TypeDefinitionNodes and their subtypes.

2. If a TypeDefinitionNode C is contained in (, then (contains all supertypes and implemented
Interfaces of C

3. If a TypeDefinitionNode C is contained in (, then (contains all InstanceDeclarations contained
in the InstanceDeclarationHierarchy of C

4. If an InstanceDeclaration 8 is contained in (, then (contains the TypeDefinitionNode refer-
enced by 8 with a HasTypeDefinition Reference

Note that Interfaces in OPC UA are also TypeDefinitionNodes and therefore all supertypes of
Interfaces in (are contained in (as well.
Special care must be taken for InstanceDeclarations of an abstract type. Our construction of the set
of relevant Nodes does not guarantee that a non-abstract subtype is included, even if such a type
exists in the input model.

Many relevant TypeDefinitionNodes, while needed in order to retain complete InstanceDeclara-
tionHierarchies, are not Nodes that should be instantiated. To give an example, BaseObjectType
will be a relevant Node in most cases, as every ObjectType must be a subtype of BaseObjectType.

30

4.1 ATL Transformation

The isAbstract() helper is used to determine if a TypeDefinitionNode should actually be instantiated.
In contrast to the isAbstract Attribute of TypeDefinitionNodes, the result of this helper is never
applied to classes based on InstanceDeclarations. Internally, a call of isAbstract() looks up the
value stored for the TypeDefinitionNode in abstractTypesMap 4.3.
For this map we collect all independent TypeDefinitionNode and all their subtypes. For every
relevant TypeDefinitionNode the value in abstractTypesMap is true iff it is not included in the union
of these two sets or its isAbstract Attribute is true.

Due to our modification of cddiff, abstract classes for concrete TypeDefinitionNodes are technically
not needed, as any non-independent TypeDefinitionNode is mapped to a public class. If this public
class is not on the right side of any association, which is the case for classes created from TypeDefini-
tionNodes, it can never be instantiated. However, we believe that additionally marking these Classes
as abstract is a more concise way to convey the intention of excluding some TypeDefinitionNodes,
e.g., those of very general supertypes, from being instantiated at all.

1 helper def : relevantNodes : Map(UA!UANode, Boolean) =

2 let relevantNodes : Set(UA!UANode) =

3 thisModule.findAllRelatedNodes(thisModule.includedTypesAndSubTypes, Set{})->union(thisModule.

includedTypesAndSubTypes)

4 in let typesAndInstances : Set(UA!UANode) =

5 UA!UAObjectType.allInstances()->asSet()->union(UA!UAVariableType.allInstances()->asSet())->union(thisModule.

instanceDeclarations)

6 in

7 typesAndInstances->iterate(node ; map : Map(UA!UANode , Boolean) = Map{} |

8 map.including(node, relevantNodes.includes(node))

9)

10 ;

Listing 4.1: ATL relevantNodes atribute helper.

1 helper def : findAllRelatedNodes(types : Set(UA!UANode), seenTypes : Set(UA!UANode)) : Set(UA!UANode) =

2 let allTypes : Set(UA!UANode) = types

3 ->collect(type | type.getAllSuperTypes())->flatten()->asSet()->union(types)

4 in let interfaces : Set(UA!UANode) = allTypes

5 ->collect(type | type.getInterfaces())->flatten()->asSet()

6 in let allInterfaces : Set(UA!UANode) = interfaces

7 ->collect(interface | interface.getAllSuperTypes())->flatten()->asSet()->union(interfaces)

8 in let allTypesAndInterfaces : Set(UA!UANode) = allTypes->union(allInterfaces)->asSet()

9 in let hierarchyMembers : Set(UA!UANode) = allTypesAndInterfaces

10 ->collect(type | type.getInstanceDeclarationHierarchy(Map{}, Set{},'')->getValues())->flatten()->asSet()

11 in let currentSeenTypes : Set(UA!UANode) = seenTypes->union(allTypesAndInterfaces)

12 in let idTypes : Set(UA!UANode) = hierarchyMembers->collect(id | id.getTypeDefinitionNode())->asSet()-

currentSeenTypes

13 in

14 if idTypes.isEmpty()

15 then

16 hierarchyMembers->union(allTypesAndInterfaces)->asSet()

17 else

18 thisModule.findAllRelatedNodes(idTypes, currentSeenTypes)

19 ->union(hierarchyMembers)

20 ->union(allTypesAndInterfaces)

21 ->asSet()

22 endif

23 ;

Listing 4.2: ATL findAllRelatedNodes helper.

31

4 Implementation

1 helper def : abstractTypesMap : Map(UA!UAType, Boolean) =

2 let relevantNodes : Set(UA!UAType) = thisModule.relevantNodes->getKeys()->select(key | thisModule.relevantNodes->

get(key))

3 in let independentTypes : Set(UA!UAType) =

4 UA!UAType.allInstances()->select(type | type.isIndependent())->asSet()

5 in let typesAndSubtypes : Set(UA!UAType) =

6 independentTypes->union(

7 independentTypes->collect(type | type.getAllSubtypes())->flatten()->asSet()

8)->asSet()

9 in let types : Set(UA!UAType) = relevantNodes->select(node |node.oclIsKindOf(UA!UAType))->asSet()

10 in

11 types->iterate(type ; map : Map(UA!UAType , Boolean) = Map{} |

12 map->including(

13 type,

14 type.isAbstract or (not typesAndSubtypes->includes(type))

15)

16)

17 ;

Listing 4.3: ATL abstractTypesMap attribute helper.

Naming

The getClassName() helper 4.4 is the foundation of our naming approach, using the BrowseName of
the given Node as basis for the resulting class name. Other conceivable choices to use as a basis for
class names are the NodeId and the DisplayName. The former is unique within an AddressSpace
and would therefore be an excellent choice if it did not consist of a numeric nameSpaceIndex and an
identifier, in XML NodeSets also a numeric value. The latter is intended for display to the user but
comes with several drawbacks. It may come in different localized versions, which would require the
transformation to select a specific locale. More importantly, in contrast to the BrowseName it is not
guaranteed to be unique within the context of an InstanceDeclarationHierarchy, making it more
difficult to handle. BrowseNames are unaffected by these drawbacks and are usually still suitable for
display.

The helper first creates a baseName by removing some reserved characters from the BrowseName to
avoid creating an invalid Alloy module. If the isTypeToInterface argument is true, a leading I is added
to the baseName to create a name for a CD interface based on a non-Interface TypeDefinitionNode
(see rule 4.6). If the resulting name would not be unique the NodeId is appended to ensure uniqueness.
Different rules might modify the name further for some classes. For example, classes created from
InstanceDeclarations have their TypeDefinitionNode’s class name prepended.

The getSuperTypeName() helper returns the name of the superclass for any class created with
the UAInstanceDeclaration2Class rule A.1. If the InstanceDeclaration overrides another In-
stanceDeclaration that superclass is a class created from the overridden InstanceDeclaration.
Otherwise, the name of the class created from the InstanceDeclaration’s TypeDefinitionNode is
returned. For an InstanceDeclaration � overridding an InstanceDeclaration �′, however, the re-
turned superclass name is the name of the class created from �′ that corresponds to the type
)� of �, which may be the same type as �′ or a subtype. Due to our naming scheme, this
is accomplished by simply applying getClassName(�′) and prepending getClassName()�) via
prependTypeNameToInstanceDeclaration()�). The branch for InstanceDeclaration with multiple

32

4.1 ATL Transformation

overridden InstanceDeclaration additionally appends the class name of the InstanceDeclarationHier-
archy’s root type, but is unused as the transformation is not fully implemented for such structures at
the time of writing.

1 helper context UA!UANode def : getClassName(isTypeToInterface : Boolean) : String =

2 let baseName : String = 'UA' + self.browseName.removeReservedChars() -- quick fix: Alloy does not allow leading

numbers in names

3 in

4 if not isTypeToInterface

5 then

6 if thisModule.nonUniqueBrowseNames->includes(self.browseName)

7 then

8 baseName.appendNodeId(self)

9 else

10 baseName

11 endif

12 else

13 if thisModule.browseNamesWithConflictingIName->includes(self) or thisModule.nonUniqueBrowseNames->includes

(self)

14 then

15 baseName.appendNodeId(self).typeNameToInterfaceName()

16 else

17 baseName.typeNameToInterfaceName()

18 endif

19 endif

20 ;

Listing 4.4: ATL getClassName helper.

1 helper context UA!UAInstance def : getSuperTypeName(hierarchyRoot : UA!UAType) : String =

2 let overriddenIds : Set(TupleType(root : UA!UAType, id : UA!UAInstance)) = thisModule.overriddenIds->get(self)

3 in

4 if overriddenIds.oclIsUndefined() or overriddenIds->isEmpty()

5 then

6 self.getTypeDefinitionNode().getClassName(false)

7 else

8 let supertypes : Set(UA!UAType) = hierarchyRoot.getAllSuperTypes()

9 in let overriddenId : TupleType(root : UA!UAType, id : UA!UAInstance) =

10 overriddenIds->any(tuple | supertypes->includes(tuple.root))

11 in

12 if thisModule.idsWithMultipleOverriddenIds->includes(self)

13 then

14 overriddenId.id.getClassName(false).prependTypeNameToInstanceDeclaration(self.

getTypeDefinitionNode()).appendHierarchyRootToInstanceDeclarationName(overriddenId.root)

15 else

16 overriddenId.id.getClassName(false).prependTypeNameToInstanceDeclaration(self.

getTypeDefinitionNode())

17 endif

18 endif

19 ;

Listing 4.5: ATL getSuperTypeName helper.

4.1.2 Matched Rules

Following ATL philosophy [JABK08], the greater part of the transformation is written in a declarative
way, using matched rules.

33

4 Implementation

TypeDefinitionNodes

The rule UAType2CDInterface 4.6 maps every TypeDefinitionNode to an ASTCDInterface, a CD4A
AST node representing an interface.
For TypeDefinitionNodes that are Interfaces we use the standard name generated by getClassName()
and for other TypeDefinitionNode we modify the CD interface’s name to avoid a collision with the
class that will receive the standard name.
The ASTCDExtendUsage object contains the name of the extended ASTCDInterface if the source
Interface references another Interface with an inverse HasSubType Reference. We create no further
target elements in this rule as inheritance for non-Interface TypeDefinitionNodes is handled on the
class level and any associations are created in another rule, matching References.
In a short imperative section we add all created interfaces to the ASTCDPackage provided by a
native java helper. In theory such an imperative section could be avoided for matched rules by using
ATL’s tracing mechanism to collect the target elements in an endpoint rule. However, due to the
difficulties with EMFTVM’s lazy lists, we use this approach instead.

1 rule UAType2CDInterface {

2 from

3 uaType : UA!UAType (

4 (uaType.oclIsKindOf(UA!UAVariableType) or

5 uaType.oclIsKindOf(UA!UAObjectType)) and

6 thisModule.relevantNodes->get(uaType)

7)

8 using {

9 superType : UA!UAType = uaType.getDirectSuperType();

10 }

11 to

12 cdInterface : CD4A!ASTCDInterface(

13 Name <- uaType.getClassName(not uaType.isInterface()),

14 CDExtendUsage <- extendUsage

15),

16 extendUsage : CD4A!ASTCDExtendUsage (

17 Superclass <-

18 if superType.oclIsUndefined()

19 then

20 Sequence{}

21 else

22 Sequence{

23 thisModule.UAType2SuperclassName(superType)

24 }

25 endif

26)

27 do {

28 thisModule.cdPackage.addCDElement(cdInterface);

29 }

30 }

Listing 4.6: ATL matched rule UAType2CDInterface.

We create an ASTCDClass for any non-Interface TypeDefinitionNode by means of the UAType2CD-
Class rule 4.7. It extends UAType2CDInterface, creating additional target elements and executing
additional imperative code for any source elements that match its source pattern. The source pattern
constitutes a refinement of the extended rule’s source pattern, matching only a subset of its matched
source elements.
In contrast to the interfaces created in UAType2CDInterface, the created classes are more complex.
Every class has a ASTModifier element, representing multiple UML modifiers via Boolean attributes

34

4.1 ATL Transformation

that are set to true if the corresponding modifier is present. We use the abstract modifier when
mapping TypeDefinitionNodes that are abstract or not a TypeDefinitionNode we want to instantiate.
The latter case consists of the TypeDefinitionNodes that are not instantiated independently but are
needed as supertypes of one or more such TypeDefinitionNode.
As in the UAType2CDInterface rule we create an ASTCDExtendUsage instance to describe a possible
inheritance relationship with the name of the superclass. We also create an ASTCDInterfaceUsage
instance, which collects the names of all interfaces implemented by the class. Extended classes and
implemented interfaces are easily determined by simply following the HasSubType Reference and
all forward HasInterface References. Additionally, any class always implements its corresponding
interface created from the same TypeDefinitionNode in the parent rule UAType2CDInterface. The
names and their containing objects are obtained via the lazy rules UAType2SuperclassName and
UAType2InterfaceName.
Again we use a small imperative section to collect the classes in the ASTCDPackage.

1 rule UAType2CDClass extends UAType2CDInterface {

2 from

3 uaType : UA!UAType (

4 (uaType.oclIsTypeOf(UA!UAVariableType) or uaType.oclIsTypeOf(UA!UAObjectType)) and

5 (not uaType.isInterface()) and

6 thisModule.relevantNodes->get(uaType)

7)

8 using {

9 superType : UA!UAType = uaType.getDirectSuperType();

10 }

11 to

12 cdClass : CD4A!ASTCDClass (

13 Name <- uaType.getClassName(false),

14 CDExtendUsage <- extendUsage,

15 CDInterfaceUsage <- interfaceUsage,

16 Modifier <- umlModifier

17),

18 umlModifier : CD4A!ASTModifier (

19 R__abstract <- uaType.isAbstract(),

20 R__public <- not (uaType.getAllSuperTypes()->including(uaType)->exists(type | type.isIndependent()))

21),

22 extendUsage : CD4A!ASTCDExtendUsage (

23 Superclass <-

24 if superType.oclIsUndefined()

25 then

26 Sequence{}

27 else

28 Sequence{thisModule.UAType2SuperclassName(superType)}

29 endif

30),

31 interfaceUsage : CD4A!ASTCDInterfaceUsage (

32 R__interface <- uaType.getInterfaces()->including(uaType)->collect(interface | thisModule.

UAType2InterfaceName(interface))

33)

34 do {

35 thisModule.cdPackage.addCDElement(cdClass);

36 }

37 }

Listing 4.7: ATL matched rule UAType2CDClass.

35

4 Implementation

InstanceDeclarations

The UAInstanceDeclaration2Class rule A.1 maps InstanceDeclarations to a hierarchy of Classes,
provided the InstanceDeclaration is not part of multiple InstanceDeclarationHierarchies where its
overridden Node in one is different from the one in the other InstanceDeclarationHierarchy. We
compute the set of such InstanceDeclarations, as well as the set of general InstanceDeclarations
before the matching phase and need only to check if the sets include or exclude the Instance.

The target pattern elements in UAInstanceDeclaration2Class are largely the same as in the
UAType2CDClass rule 4.7, but in this rule the class does not implement any interface and we
set the attributes of the target elements differently.
The ASTCDClass’s Name is again constructed via getClassName(), but we append the TypeDefini-
tionNode’s Class Name. Determining the name of the superclass is somewhat complicated, thus we
use the helper getSuperTypeName().
In the ASTModifier the public modifier is always present to identify the class as based on an In-
stanceDeclaration. We set abstract to true iff the TypeDefinitionNode of the InstanceDeclaration,
idType, is abstract.
Other reasons for making a class abstract as in UAType2CDClass 4.7 do not apply here as we always
instantiate TypeDefinitionNodes with their InstanceDeclarationHierarchies, not InstanceDeclara-
tions by themselves. Making TypeDefinitionNodes we do not want to instantiate abstract is therefore
sufficient.

The created ASTCDClass is again added to the ASTCDPackage. In contrast to the previous rules
we utilize the imperative section to create further elements. We create an additional class for any
subtype of the InstanceDeclaration’s type. To this end we call the recursive CreateInstanceDecla-
rationSubTypes called rule A.3 on every relevant direct subtype.

References

Another matched rule A.2, Reference2Association, matches every forward hierarchical Reference
between two relevant Nodes, where the TargetNode is an InstanceDeclaration and the SourceNode is
either a TypeDefinitionNode or a non-placeholder InstanceDeclaration. The target pattern consists
of an ASTCDAssociation and several contained objects describing the association.
We set the CDAssocType of the ASTCDAssociation to an instance of ASTCDAssocTypeAssoc, which
makes it an association as opposed to, e.g., a composition. Additionally, we set CDAssocDir to an
ASTCDBiDir instance, making the ASTCDAssociation bidirectional.

All other important properties of the Association are related to either the left side or the right side,
from a textual perspective. Therefore we create ASTCDAssocLeftSide and ASTCDAssocRightSide
instances, with the left side always corresponding to the SourceNode and the right side to the
TargetNode. They contain the cardinality, the name of the respective class, and a role name.
We construct the role names from the BrowseNames of the ReferenceType, SourceNode and Tar-
getNode, thus ensuring overriding References map to associations with the same role names. For the
SourceNode, since the Reference may override a Reference specified by the TypeDefinitionNode, we
do not use the BrowseName of the SourceNode itself. Instead the BrowseName of the highest-level
supertype, where either the TypeDefinitionNode itself or an InstanceDeclaration of its type contains
a Reference of the same ReferenceType to an InstanceDeclaration with the same BrowseName, is

36

4.1 ATL Transformation

used. This way References of TypeDefinitionNodes are overridden correctly. However, at the time
of writing the implementation does not support overriding of References with some ReferenceType
by References of a subtype. Regarding uniqueness of the field names for a class, this is sufficient for
the SourceNode as BrowseNames must be unique within an InstanceDeclarationHierarchy. For the
TargetNode, however, we assume in our current implementation that it is not referenced by a Node
with the same BrowseName as the TargetNode. Moreover, as mentioned in chapter 3, the current
naming strategy allows for overriding of References only if the ReferenceType is identical.
The names of the respective classes are built the same way as they are for the target class in
UAType2CDClass for TypeDefinitionNodes or UAInstanceDeclaration2Class for InstanceDeclara-
tions.

The cardinalities are represented by objects of specific classes, e.g., ASTCDCardOne or ASTCD-
CardMult. For the left side, i.e., the side of the TargetNode, we always use ASTCDCardMult and
create it as part of the target pattern. For the right side we use specific called rules depending on the
ModellingRule of the TargetNode. The mapping of ModellingRules to cardinalities 3.2 is given in
chapter 3. In order not to clutter the target pattern with convoluted if-then-else-clauses, we call the
appropriate rule in the imperative section and add it to the ASTCDAssocRightSide object.

Additionally, as with the other matched rules, we add our top-level target element, the ASTCDAsso-
ciation, to the Package.

4.1.3 Called Rules

The called rule CreateInstanceDeclarationSubTypes A.3 creates a hierarchy of subclasses for an
InstanceDeclaration, corresponding to the subtypes of the InstanceDeclaration’s type. For each call
one specific ASTCDClass is created for the given InstanceDeclaration and its TypeDefinitionNode
idType. The rule calls itself recursively for every direct subtype of idType with the respective
TypeDefinitionNode as new idType.
Target elements other than superclassName and interfaceUsage do not differ significantly from
those in UAInstanceDeclaration2Class. In superclassName we use the supertypeName argument,
which the calling rule always sets to its respective class name. For interfaceUsage we collect all
interfaces implemented by the class corresponding to idType (see chapter 3).

4.1.4 Lazy Rules

In CD4A-ASTs superclasses and implemented interfaces for an ASTCDClass or ASTCDInterface
object are given via ASTCDExtendUsage and ASTCDInterfaceUsage objects by means of the re-
spective class or interface names. Implementation-wise they contain an ASTMCQualifiedType,
containing an ASTMCQualifiedName which then contains the actual string.
The necessary objects are created using the lazy rules UAType2SuperclassName and UAType2Inter-
faceName that use getClassName() to generate the name, thus matching the respective name in the
rule UAType2CDInterface or UAType2CDClass.
UAType2InterfaceName checks if the given TypeDefinitionNode is an Interface and uses either the
standard name or the modified version for a created interface accordingly. UAType2SuperclassName,
on the other hand, always uses the standard name.

37

4 Implementation

1 lazy rule UAType2InterfaceName{

2 interfaceName : CD4A!ASTMCQualifiedName (

3 Parts <- Sequence{

4 uaType.getClassName(not uaType.isInterface())

5 }

6)

7 do {

8 outInterface;

9 }

10 }

Listing 4.8: UAType2InterfaceName lazy rule.

4.2 CDDiff Changes

To implement the changes to the semantic mapping discussed in section 3.2 some changes in the
generated Alloy modules of cddiff [MRR11b] are necessary.

In order to ensure that no InstanceDeclarations are instantiated independently we introduce some
new common signatures 4.9. InstanceDeclarations are mapped to public classes in our ATL
transformation, thus distinguishing them from the target classes of the independent types (see
section 4.1).
We declare a new abstract signature InDec, extending the existing signature Obj, thus creating a
subset of Obj. While in cddiff a signature extending Obj is created for every class, in the modified
version the signatures of public Classes extend InDec instead. Any two signatures extending the
same signature are pairwise disjoint, therefore no atom of Obj can be part of both InDec and the
signature of a non-public class.

Field names in cddiff ’s Alloy module are defined as signatures containing exactly one atom and
extending the abstract FName signature. Associations are then navigated via the get relation. For
a bidirectional association there are two signatures, one from the left role name which is a field
for the right class and analogously one from the right role name, which is a field for the left class.
Here we introduce a new abstract signature RFName, which is extended by the signatures based on
the left role name of an association. With these signatures we can navigate associations in what
corresponds to the backward direction of the respective OPC UA References.

abstract sig Obj { get: FName -> {Obj + Val + EnumVal} }

abstract sig FName {}

abstract sig InDec extends Obj {}

abstract sig RFName extends FName {}

Listing 4.9: Additional signatures in generated Alloy modules.

A single new fact, InDecHierarchy using a simple helper function (see listing 4.10), achieves the
desired effect of no independently instantiated InstanceDeclarations. The function parentRel uses
the RFName signature to return a binary relation, mapping every object to the objects reachable by
navigating one link from right to left. In OPC UA terms it maps a Node to the Nodes that reference
it by means of a forward hierarchical Reference. Alloy includes two transitive closure operators,
which the InDecHierarchy fact uses, thus needing this binary relation. The relation is described as
a function below.

38

4.3 Demonstrator

parentRel : Obj → P(Obj), C ↦→ { B | ∃ 5 ∈ RFName : (C, 5 , B) ∈ 64C}

In the InDecHierarchy fact we use the transitive closure of parentRel to ensure that from every
InDec atom an atom in Obj \ InDec is reachable following the links represented by the parentRel
relation. In OPC UA terms, any Instance based on an InstanceDeclaration is directly or indirectly
referenced by an Instance based on a TypeDefinitionNode through forward hierarchical References.
Therefore, Instances of an InstanceDeclaration exist only as parts of mirrored InstanceDeclara-
tionHierarchies.
Note that while we chose the non-reflexive transitive closure, it is irrelevant which option is used,
since the identity gives us an 8 ∈ InDec and 8 ∈ InDec =⇒ 8 ∉ Obj \ InDec.

//Additional Fact for UADiff. Ensures that InstanceDeclarations are only instantiated as Part of a hierarchy.

fact InDecInHierarchy {

all i: InDec | some o: (Obj-InDec) | o in (i.^parentRel)

}

fun parentRel: Obj -> Obj {

{t:Obj, s:Obj | s in t.get[RFName]}

}

Listing 4.10: Additional fact and function in generated Alloy modules.

The second change to the semantic mapping requires every pair of objects to either have links
corresponding to all defined or inherited associations in the same direction between their respective
classes or none of them. To reflect this, we add additional constraints to the top-level predicate of
the respective CDs. For classes with multiple associations in the same direction to the same class
we add the constraint, that for all atoms of the corresponding signature, the sets of objects returned
by the get relation must be pairwise equal each respective FName.
This is demonstrated in listing 4.11 for an example class SomeClass containing three fields, all
corresponding to some associations with one class on the right side and SomeClass on the left
side.

all o: SomeClass | (o.get[field1]=o.get[field2]) && (o.get[field2]=o.get[field3])

Listing 4.11: Additional condition for references between the same Nodes.

4.3 Demonstrator

Using the ATL transformations and the modified cddiff, we implemented a demonstrator, producing
textual object model witnesses as semantic difference of two OPC UA models. As additional input
the demonstrator takes an upper bound : for the number of objects in the witnesses and the number
of witnesses to be generated. Both arguments are simply passed on to cddiff. In this section we
describe the demonstrator regarding its structure and behaviour.

39

4 Implementation

4.3.1 Structure

We implemented the demonstrator as a Java application, which is the most practical choice as
all used tools and frameworks are also written in Java. The overall structure is visualized as a
component diagram in figure B.1, containing the following components:

UADiff is the tool’s main component, launching the ATL transformations, invoking cddiff and
providing a rudimentary command-line interface (CLI). Additionally it provides a Java class
as helper for EMFTVM, which we decided to omit in the diagram, as we consider it more of
a workaround to provide additional information to the transformation.

EMF refers to different packages of the Eclipse Modeling Framework, which provides the facilities
to process the models and execute transformations with EMFTVM. See chapter 2 for a more
detailed description.

CD4A-EMF is the MC-generated code for the CD4A language with EMF-compatible AST classes,
due to an alternate workflow script in the generation process [HKR21]. The AST classes
form the metamodel for CD4A. The generated EPackages lack the corresponding EFactories
and contain some faults preventing immediate use in ATL transformations. Therefore we
made some handwritten additions to this component.

UA-EMF refers to the classes representing the Ecore-based metamodel of OPC UA and the corre-
sponding infrastructure, e.g., EFactories. It is generated from the XSD for NodeSets given in
[OPC21c]. Contrary to CD4A-EMF there are no handwritten parts in this code.

EMFTVM is a VM for executing ATL transformations on EMF models [WTCJ11]. It provides a
Java API including a compiler from ATL to EMFTVM’s bytecode.

CDDiff is the implementation of cddiff [MRR11b] with some modifications to better reflect OPC
UA semantics. It transforms two CD4A diagrams to an Alloy module and runs the Alloy
Analyzer [JSS00] on it. In the state of the demonstrator at the time of writing it is also
responsible for the final output of the witnesses, which are textual object model structures.

4.3.2 Workflow and Data Representation

The high-level workflow as depicted in figure B.2 is relatively straightforward, as we mostly use
existing tools or execute the transformations, which constitute the core of this work and are already
explained in detail in other sections.

As first step, the transformation is modified and then compiled. We modify the header of the
ATL module to account for varying numbers of source models, as all OPC UA models except the
base information model consist of at least two NodeSets, which are registered in the execution
environment of EMFTVM as separate input models.

Then comes the transformation initialization phase, registering metamodels and compiled transfor-
mations with EMFTVM, reading the input models from their files and launching two threads for
parallel execution of the transformation.

Once both transformations are finished, the target CDs are used as input for the modified CDDiff,
which then outputs the diff witnesses.

40

4.3 Demonstrator

Figure B.3 shows the different representations of the processed models and the transformations
between them. As the OPC UA metamodel is based on an XSD file, EMF can read any XML
file conforming to the XSD [SBMP11], obtaining a representation as instances of the metamodel
classes.
By executing the ATL transformations on the models with EMFTVM we receive CD4A models
represented by instances of CD4A’s AST classes.
These models are then transformed to a single Alloy module by cddiff. For this module the Alloy
Analyzer outputs textual Alloy solutions [JSS00]. These solutions are transformed back to a textual
representation of object models, the witnesses.

41

5 Evaluation

The evaluation of our uadiff demonstrator is twofold. First we run uadiff on some small example
NodeSets, which we specifically created to assess that our implementation works as intended. This
is of course not comparable to thorough testing on a larger scale, but such an approach would not
be feasible within the scope of this work.
Second we evaluate the performance of our uadiff demonstrator on NodeSets used in practice that
were published by the OPC Foundation [OPC22].

5.1 Validity on Simple Example

We chose to adapt the apes and bananas CD to OPC UA in two slightly different versions, �1 5.1
and �2 5.2. While many possible cases in the ATL transformation are obviously not covered by this
simple example, we can observe two key mechanisms of uadiff :

• InstanceDeclarations are not instantiated unless they are part of a mirrored InstanceDeclara-
tionHierarchy.

• InstanceDeclarations override InstanceDeclarations with the same BrowsePath in a super-
type’s InstanceDeclarationHierarchy.

The models include ObjectTypes Animal, Ape, Fruit and Banana, where Ape is a subtype of Animal
and Banana is a subtype of Fruit. Animal references an InstanceDeclaration FruitForAnimal with a
forward hierachical Reference. In both depicted models, the FruitForAnimal InstanceDeclaration
is overridden in the InstanceDeclarationHierarchy of the Ape ObjectType, such that it is of type
Banana. In 5.1 the ModellingRule of this overriding InstanceDeclaration remains Optional, while
in 5.2 it is Mandatory.
Informally, both models specify the ObjectTypes Animal and Fruit, where any Animal may eat a
Fruit. Since Nodes can be the target of arbitrary many forward hierarchical References, multiple
Animals can eat a single Fruit. For Apes the reference is overridden, therefore Apes eat only Bananas.
Contrary to the CD this example is based on, the Bananas eaten by Apes are a distinct subclass of
the Bananas eaten by Animals, thus enabling Animals that are not Apes to eat Bananas.

We run uadiff(�1,�2) with Animal and Ape as independent Nodes and Fruit and Banana as included
Types (see section 4.1.1). All generated witnesses contain at least one Ape without any links. When
further objects are part of the witness, they contain no Fruit or Banana that is not eaten by at least
one Animal or Ape and Apes eat only Bananas. An example of such a witness is the listing 5.1.

43

5 Evaluation

Figure 5.1: �1, an OPC UA adaptation of 3.1 featuring Optional Bananas.

Figure 5.2: �2, an OPC UA adaptation of 3.1 featuring Mandatory Bananas.

5.2 Performance on Real-World NodeSets

We evaluate the performance of uadiff based on the execution time and the number of created
classes and interfaces in relation to the number of relevant (see section 4.1.1) Nodes in the input
model. The time measurements give an easily understandable metric for the performance of the
ATL transformations executed by EMFTVM on the selected input. While still limited by the sample
size, the number of generated classes provide an estimate of how the number of relevant Nodes
affects the input size for cddiff, which is the dominant factor for execution time when working on
large portions of the usually large NodeSets.

5.2.1 Setup and Choice of Input

For the evaluation uadiff was executed on a desktop computer using Windows 10, an Intel quad-core
CPU at 3.4��I, and 16�� RAM. The application was run 50 times from a batch file for each
input since subsequent executions in a loop within the Java application tend to be faster and many
consecutive runs on the exact same input are unlikely to happen in practice. The elapsed time was
measured within the Java application and written to a CSV file. It includes the time for compiling
and initializing the transformation. As the number of relevant Nodes and generated classes do
not change between runs on the same input, the numbers were simply printed as console output.
The NodeSets include some NodeSets from a GitHub repository published by the OPC Foundation
[OPC22], the base information model from [OPC21c] and our own basic example from the previous

44

5.2 Performance on Real-World NodeSets

1 objectdiagram od17 {

2 UABanana_UAFruitForAnimal_ns1i50020:UABanana_UAFruitForAnimal_ns1i5002 {

3 };

4 UAApe0:UAApe {

5 };

6 UAApe1:UAApe {

7 };

8 link UABanana_UAFruitForAnimal_ns1i50020 -> (source_UAEats_Animal_2_FruitForAnimal) UAApe1;

9 link UAApe1 -> (target_UAEats_Animal_2_FruitForAnimal) UABanana_UAFruitForAnimal_ns1i50020;

10 }

Listing 5.1: Witness produced by uadiff�1,�2

section 5.1. The choice of NodeSets was limited to such NodeSets that depend only on the base
information model. NodeIds in References to Nodes in other NodeSets need to be mapped to their
counterpart in the containing NodeSet, which usually has a different NameSpaceIndex component.
At the time of writing our ATL implementation has no way of handling this translation between
NodeSets. The choice of independent TypeDefinitionNodes was not subject to any criteria other
than to include varying numbers of relevant Nodes

5.2.2 Results

The results for generated classes and interfaces can be found in table 5.1.
Note that number of interfaces is exactly the number of relevant TypeDefinitionNodes. The same is
true for associations and relevant forward hierarchical References, which is why we chose to exclude
them from the table.
How many classes are generated in relation to the number of relevant Nodes, on the other hand,
varies greatly depending on the NodeSet and selected TypeDefinitionNode. Also note that the
ObjectTypes in our example NodeSet �1 are subtypes of BaseObjectType, which brings the relevant
Nodes to 7.

NodeSet Independent Type Relevant
Types

Relevant
Instances Classes |Classes |+|Interfaces |

|Nodes |

Example �1 (5.1) Animal 5 2 8 1.86
CommercialKitch-
enEquipment

IceMachineParame-
terType 9 20 41 1.72

MachineVision RecipeManage-
mentType 19 46 83 1.57

PackML PackMLBaseOb-
jectType 20 108 487 3.96

DI TopologyElement-
Type 21 97 167 1.59

OPC UA Base Infor-
mation Model BaseObjectType 262 1480 18454 10.74

Table 5.1: ModellingRule of the Reference’s TargetNode in OPC UA mapped to UML multiplicities

45

5 Evaluation

The average execution times for the transformations within the corresponding uadiff runs are
shown in table 5.2. For smaller sets of relevant Nodes, the initialization phase and some helpers
that are always executed for the whole NodeSet are the dominant factors regarding transformation
performance. The time is always for two parallel executions, as every run of uadiff includes two
transformations of two, usually similar, OPC UA models.

NodeSets Relevant Types Time (s)

Example �1 (5.1) Animal 5
CommercialKitchenEquipment IceMachineParameterType 10.9

MachineVision RecipeManagementType 11.0
PackML PackMLBaseObjectType 10.9

DI TopologyElementType 10.2
OPC UA Base Information Model BaseObjectType 62.2

Table 5.2: Execution time for two parallel transformations on the same NodeSet. The values are
averaged over consecutive 50 executions of uadiff.

For detailed results on the performance of cddiff see [MRR11b]. However, we can state that cddiff
runs relatively fast for sensible input sizes provided the maximum number of objects in a witness, : ,
is not set too high and even much faster than our transformation when using small sets of relevant
Nodes.
In our Animals example 5.1 we had cddiff execution times between 0.8 and 1.2 seconds for : = 5
to : = 10, while for the RecipeManagementType in the MachineVision NodeSet these times are
already up to 50 seconds and 5 minutes, respectively.

5.3 Discussion

The results show that our implementation of the uadiff operator is sufficiently fast to be used in
practice on reasonably sized subsets of OPC UA information models. On large inputs the perfor-
mance declines notably, as the produced CDs for such inputs are multiple times larger regarding the
number of contained elements. However, exceedingly large models are ill-suited for enumerative
semantic differencing approaches not just from a performance perspective.
The difference would either consist of very large witnesses or of small witnesses that in most cases
could have been produced when examining a much smaller subset of the model elements. In the
former case it would become increasingly difficult for the user to determine the reason why a model
is a witness.
Considering the time for initialization of EMFTVM the time for execution of uadiff cannot be
improved beyond a couple of seconds, even for smaller models. Therefore we consider the perfor-
mance of our demonstrator to be within an acceptable range.
Furthermore, we demonstrated on a simple example that our implementation works as described in
chapters 3 and 4. While more testing needs to be done before any practical use, in combination
with the performance evaluation it shows basic viability of our demonstrator.

46

5.4 Threats to Validity

5.4 Threats to Validity

Apart from the ones in [OPC22], publically available NodeSets that are used in industry are scarce.
The selection of used input models is further limited by the capabilities of our demonstrator, which, at
the time of writing, cannot handle translation of NodeIds in References between different NodeSets.
Additionaly, we took into account the size of samples and how many TypeDefinitionNodes or
InstanceDeclarations were included in the relevant subset, but did not take the respective subset
into account. Especially the depth of subtype hierarchies and the number of overrides influence
the number of generated classes. This is somewhat mitigated by the fact, that, in order to produce
useful witnesses, uadiff should be applied on relatively small subsets of NodeSets anyway. Lastly
we assume that our modified version of cddiff performs similar to the original. Any additional
constraints we introduced to the Alloy modules are rather simple and we add only two abstract
signatures. Therefore, we believe a similar performance to be a reasonable assumption, but did not
verify it directly. It is clear, however, that the modified version still runs reasonably fast on CDs
generated from appropriately small inputs to uadiff.

47

6 Conclusion

We conclude our thesis with brief summary and discussion. This includes the benefits of this work,
as well as its limitations. Lastly, we give an overview of possible future research.

6.1 Summary

In this work we presented the, to our knowledge, first semantic differencing operator for OPC UA.
We proposed adapted semantics for OPC UA models, imposing constraints on instantiation such
that the models describe instances in a complete [Rum11] way. To achieve this, we designed an
ATL transformation from OPC UA to UML CDs, or to be more precise, UML/P [Rum11] CDs
represented in the language CD4A [HKR21]. Due to OPC UA not separating different levels of
abstraction in its models, finding an appropriate mapping represents a challenge. The concepts of
InstanceDeclarations and overriding of the same cannot be easily emulated using CDs.
However, using the transformation coupled with a slightly adapted cddiff [MRR11b] we were able
to construct a demonstrator, uadiff, which produces witness object diagram structures representing
instances of OPC UA models.
We were able to confirm on a simple example NodeSet of our own design, including several key
features, e.g., overriding of InstanceDeclarations, that uadiff works as intended. Performance
evaluation on industry-relevant NodeSets revealed that uadiff is well suited for smaller models,
which constitute ideal targets for a semantic differencing tool. From given input NodeSet and
TypeDefinitionNodes of interest, we generate subsets of the typically large input NodeSets to achieve
such smaller models. We learned that our transformation continues to work in acceptable time
frames even for large inputs, whereas this is not the case for the overall tool.

6.2 Benefits

Designers of OPC UA models can use uadiff to gain insights on how the possible instances of their
models change between versions. The tool is intended to supplement usual syntactic differencing
solutions that are already in use. Combined with such a syntactic differencing tool it can simplify
the process of identifying changes and the corresponding effects. This could be especially helpful
for developers without in-depth knowledge of OPC UA.

Additionally we hope that tools with a complete interpretation of OPC UA models might lead to
higher quality models. While it is perfectly possible in OPC UA to specify very general types and
add References to their instances as needed, this could lead to a very heterogeneous landscape of
models even for similar applications. Furthermore, incomplete type specifications are more difficult

49

6 Conclusion

to understand for users. However, the contribution of a tool to such a goal depends on the actual use
and acceptance, which might depend on the willingness to adopt a stricter modeling approach in
the first place.

6.3 Limitations

There are a number of limitations to our operator and its implementation. Some are inherent to
OPC UA models, mostly due to the lack of separation between type definitions and instances.

A complete interpretation of OPC UA models cannot include all the possibilities of the standard
interpretation, e.g., Instances of different non-overriding InstanceDeclaration with the same Type-
DefinitionNode and BrowseName cannot be used interchangeably. While our implementation does
not permit this, even if the References defined by the InstanceDeclaration were identical, a more
permissive operator still could not allow it with different References without giving up on the
complete interpretation to a degree.

Regarding our operator and interpretation of OPC UA, the semantics are not quite as well-defined as,
e.g., for cddiff. Due to our modification of cddiff we alter the semantics of UML/P without formally
defining them. Moreover, the ATL module contains imperative code and some Java helpers, which
are less concise then a purely declarative approach.

For our implementation approach, overriding Reference of some type � with a Reference of some
subtype of � will be difficult to implement, as the overriding mechanism depends on the overriding
association having the same role names, which include the ReferenceType’s BrowseName.
Also the approach is inherently unsuitable for very large input models that cannot be split into
smaller parts, due to increasingly large alloy modules and thus Boolean formulas generated.
We mentioned further limitations of our implementation throughout chapters 4 and 5, but these are
mostly not inherent limitations of our approach, but rather features we did not implement due to
time limitations.

6.4 Lessons Learned

Trying to develop a tool such as semantic differencing for OPC UA, which despite some obvious
similarities differs significantly from UML class diagrams and the object oriented systems they
represent, shows the importance of a clear separation between different levels of abstraction. From
a user or even model designer perspective, the impact might seem relatively small at first, but
when considering the semantics of such models in-depth, problems arise that complicate, e.g., the
development of tools considerably.

50

6.5 Future Work

6.5 Future Work

The tool in its current form serves only as proof of concept and there are a number of ways it could
be improved. A transformation from the textual object models back to OPC UA Instances and maybe
even a visual representation would make the results easier to understand. Completing the OPC UA to
CD4A transformation is another possibility, enabling the use of uadiff on more complicated models,
e.g., ones that include InstanceDeclaration overriding multiple other InstanceDeclarations.

Additionally, many future research challenges that were proposed in [MRR12] are worth pursuing
in the context of OPC UA. Especially integration with syntactic differencing to localize changes
and summarization to avoid showing many similar witnesses seem promising for uadiff.

Lastly, another operator could be developed avoiding a transformation to CDs and the restrictions
that come with it.

51

Bibliography

[AGH05] K. Arnold, J. Gosling, D. Holmes. The Java programming language. Addison Wesley
Professional, 2005 (cit. on p. 14).

[AP03] M. Alanen, I. Porres. “Difference and union of models”. In: International Conference
on the Unified Modeling Language. Springer. 2003, pp. 2–17 (cit. on p. 15).

[Béz05] J. Bézivin. “Model driven engineering: An emerging technical space”. In: Interna-
tional Summer School on Generative and Transformational Techniques in Software
Engineering. Springer. 2005, pp. 36–64 (cit. on p. 6).

[CGR14] M. V. Cengarle, H. Grönninger, B. Rumpe. “System model semantics of class dia-
grams”. In: arXiv preprint arXiv:1409.6635 (2014) (cit. on p. 19).

[CK07] T. Cleenewerck, I. Kurtev. “Separation of concerns in translational semantics for DSLs
in model engineering”. In: Proceedings of the 2007 ACM symposium on applied
computing. 2007, pp. 985–992 (cit. on p. 19).

[CS14] S. Chacon, B. Straub. Pro git. Springer Nature, 2014 (cit. on p. 14).
[FALW14] U. Fahrenberg, M. Acher, A. Legay, A. Wąsowski. “Sound merging and differencing

for class diagrams”. In: International Conference on Fundamental Approaches to
Software Engineering. Springer. 2014, pp. 63–78 (cit. on pp. 16, 17).

[FLW11] U. Fahrenberg, A. Legay, A. Wąsowski. “Vision paper: Make a difference!(semanti-
cally)”. In: International Conference on Model Driven Engineering Languages and
Systems. Springer. 2011, pp. 490–500 (cit. on p. 17).

[HKR21] K. Hölldobler, O. Kautz, B. Rumpe. MontiCore Language Workbench and Library
Handbook: Edition 2021. Aachener Informatik-Berichte, Software Engineering, Band
48. Shaker Verlag, May 2021. isbn: 978-3-8440-8010-0. url: http://www.monticore.
de/handbook.pdf (cit. on pp. 14, 18, 40, 49).

[HR04] D. Harel, B. Rumpe. “Meaningful modeling: what’s the semantics ofßemantics”?”
In: Computer 37.10 (2004), pp. 64–72 (cit. on pp. 16, 19).

[JABK08] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev. “ATL: A model transformation tool”. In:
Science of computer programming 72.1-2 (2008), pp. 31–39 (cit. on pp. 2, 6, 33).

[Jac12] D. Jackson. Software Abstractions: logic, language, and analysis. MIT press, 2012
(cit. on p. 16).

[Jac19] D. Jackson. “Alloy: a language and tool for exploring software designs”. In: Commu-
nications of the ACM 62.9 (2019), pp. 66–76 (cit. on p. 5).

[JSS00] D. Jackson, I. Schechter, H. Shlyahter. “Alcoa: the alloy constraint analyzer”. In:
Proceedings of the 22nd international conference on Software engineering. 2000,
pp. 730–733 (cit. on pp. 5, 16, 40, 41).

53

http://www.monticore.de/handbook.pdf
http://www.monticore.de/handbook.pdf

Bibliography

[KRV10] H. Krahn, B. Rumpe, S. Völkel. “MontiCore: a framework for compositional devel-
opment of domain specific languages”. In: International journal on software tools
for technology transfer 12.5 (2010), pp. 353–372 (cit. on p. 14).

[LKYO17] B. Lee, D.-K. Kim, H. Yang, S. Oh. “Model transformation between OPC UA and
UML”. In: Computer Standards & Interfaces 50 (2017), pp. 236–250 (cit. on p. 17).

[LM06] S.-H. Leitner, W. Mahnke. “OPC UA–service-oriented architecture for industrial
applications”. In: ABB Corporate Research Center 48.61-66 (2006), p. 22 (cit. on
p. 1).

[MRR10] S. Maoz, J. O. Ringert, B. Rumpe. “A manifesto for semantic model differencing”.
In: International Conference on Model Driven Engineering Languages and Systems.
Springer. 2010, pp. 194–203 (cit. on pp. 1, 2, 15).

[MRR11a] S. Maoz, J. O. Ringert, B. Rumpe. “ADDiff: semantic differencing for activity dia-
grams”. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering. 2011, pp. 179–189 (cit. on pp. 1,
17).

[MRR11b] S. Maoz, J. O. Ringert, B. Rumpe. “CDDiff: Semantic differencing for class diagrams”.
In: European Conference on Object-Oriented Programming. Springer. 2011, pp. 230–
254 (cit. on pp. 1, 2, 14–17, 19, 26, 27, 38, 40, 46, 49).

[MRR12] S. Maoz, J. Ringert, B. Rumpe. “An Interim Summary on Semantic Model Differenc-
ing”. In: Softwaretechnik-Trends 32.4 (2012), pp. 44–46. doi: 10.1007/BF03323524
(cit. on pp. 1, 17, 51).

[MRR14] S. Maoz, J. O. Ringert, B. Rumpe. “Summarizing semantic model differences”. In:
arXiv preprint arXiv:1409.2307 (2014) (cit. on p. 17).

[MV06] T. Mens, P. Van Gorp. “A taxonomy of model transformation”. In: Electronic notes
in theoretical computer science 152 (2006), pp. 125–142 (cit. on p. 6).

[Obj06] Object Management Group (OMG). Meta-Object Facility (MOF) Specification, Ver-
sion 2.0. OMG Document Number formal/2006-01-01 (http://www.omg.org/spec/
MOF/2.0). 2006 (cit. on p. 6).

[OPC20] OPC Foundation. OPC Unified Architecture Part 5: Information Model. Release
1.05.00. OPC Foundation. Oct. 2020 (cit. on p. 1).

[OPC21a] OPC Foundation. OPC UA Companion Specification Template. Version 1.01.14. OPC
Foundation. Nov. 2021 (cit. on pp. 65, 66).

[OPC21b] OPC Foundation. OPC Unified Architecture Part 3: Address Space Model. Release
1.05.00. OPC Foundation. Oct. 2021 (cit. on pp. 1, 5, 8, 10, 11, 13, 19, 24, 25, 65,
66).

[OPC21c] OPC Foundation. OPC Unified Architecture Part 5: Mappings. Release 1.05.00. OPC
Foundation. Oct. 2021 (cit. on pp. 19, 40, 44).

[OPC22] OPC Foundation. Project Title. https://github.com/OPCFoundation/UA-Nodeset.
2022 (cit. on pp. 43, 44, 47).

[OWK03] D. Ohst, M. Welle, U. Kelter. “Differences between versions of UML diagrams”. In:
Proceedings of the 9th European software engineering conference held jointly with
11th ACM SIGSOFT international symposium on Foundations of software engineering.
2003, pp. 227–236 (cit. on p. 15).

54

https://doi.org/10.1007/BF03323524
http://www.omg.org/spec/MOF/2.0
http://www.omg.org/spec/MOF/2.0
https://github.com/OPCFoundation/UA-Nodeset

Bibliography

[PWFW18] F. Pauker, S. Wolny, S. M. Fallah, M. Wimmer. “UML2OPC-UATransforming UML
Class Diagrams to OPC UA Information Models”. In: Procedia CIRP 67 (2018),
pp. 128–133 (cit. on p. 17).

[RPL13] S. Rohjans, K. Piech, S. Lehnhoff. “UML-based modeling of OPC UA address spaces
for power systems”. In: 2013 IEEE International Workshop on Inteligent Energy
Systems (IWIES). IEEE. 2013, pp. 209–214 (cit. on p. 17).

[Rum11] B. Rumpe. Modellierung mit UML. Springer Berlin Heidelberg, 2011 (cit. on pp. 2,
14, 16, 18, 26, 49).

[RY07] T. Rothwell, J. Youngman. “The gnu c reference manual”. In: Free Software Founda-
tion, Inc (2007), p. 86 (cit. on p. 14).

[SB13] M. H. Schwarz, J. Börcsök. “A survey on OPC and OPC-UA: About the standard,
developments and investigations”. In: 2013 XXIV International Conference on Infor-
mation, Communication and Automation Technologies (ICAT). IEEE. 2013, pp. 1–6
(cit. on p. 1).

[SBMP11] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro. Eclipse modeling framework:
EMF. Englisch. 2. ed., rev. and updated, 2. printing. The eclipse series. UB Vaihingen.
Upper Saddle River, NJ ; Munich [u.a.]: Addison-Wesley, 2011, XXIX, 704 Seiten.
isbn: 0321331885 (cit. on pp. 6, 14, 18, 41).

[WHR13] J. Whittle, J. Hutchinson, M. Rouncefield. “The state of practice in model-driven
engineering”. In: IEEE software 31.3 (2013), pp. 79–85 (cit. on p. 6).

[WTCJ11] D. Wagelaar, M. Tisi, J. Cabot, F. Jouault. “Towards a general composition semantics
for rule-based model transformation”. In: International Conference on Model Driven
Engineering Languages and Systems. Springer. 2011, pp. 623–637 (cit. on pp. 6, 40).

All links were last followed on June 20, 2022.

55

A Listings

57

A Listings

1 rule InstanceDeclaration2Class {

2 from

3 uaInstance : UA!UAInstance (

4 thisModule.instanceDeclarations->includes(uaInstance) and

5 thisModule.idsWithMultipleOverriddenIds->excludes(uaInstance) and

6 thisModule.relevantNodes->get(uaInstance)

7)

8 using {

9 idType : UA!UAType = uaInstance.getTypeDefinitionNode();

10 hierarchyRoot : UA!UAType = thisModule.hierarchyRoots->get(uaInstance)->any(type | true);

11 overriddenID : TupleType(root : UA!UAType, Id : UA!UAInstance) =

12 let overriddenIds : Set(TupleType(root : UA!UAType, Id : UA!UAInstance)) = thisModule.overriddenIds->get(

uaInstance)

13 in

14 if overriddenIds.oclIsUndefined()

15 then

16 OclUndefined

17 else

18 OclUndefined

19 endif

20 ;

21 directSubtypes : Set(UA!UAType) =

22 let subtypes : UA!UAType = thisModule.directSubtypes->get(idType)

23 in

24 if subtypes.oclIsUndefined()

25 then

26 Set{}

27 else

28 subtypes->select(subtype | thisModule.relevantNodes->get(subtype))

29 endif

30 ;

31 className : String = uaInstance.getClassName(false).prependTypeNameToInstanceDeclaration(idType);

32 }

33 to

34 cdClass : CD4A!ASTCDClass (

35 Name <- className,

36 CDExtendUsage <- extendUsage,

37 Modifier <- umlModifier

38),

39 umlModifier : CD4A!ASTModifier (

40 --if the instance declaration is of abstract type, any instance must be of a concrete subtype

41 R__abstract <- idType.isAbstract,

42 R__public <- true

43),

44 extendUsage : CD4A!ASTCDExtendUsage (

45 Superclass <- Sequence{superclass}

46),

47 superclass : CD4A!ASTMCQualifiedType (

48 MCQualifiedName <- superclassName

49),

50 superclassName : CD4A!ASTMCQualifiedName (

51 Parts <- Sequence{ uaInstance.getSuperTypeName(hierarchyRoot) }

52),

53 interfaceUsage : CD4A!ASTCDInterfaceUsage (

54)

55 do {

56 for (subtype in directSubtypes) {

57 thisModule.CreateInstanceDeclarationSubTypes(uaInstance, className, hierarchyRoot, subtype);

58 }

59 thisModule.cdPackage.addCDElement(cdClass);

60 }

61 }

Listing A.1: ATL matched rule InstanceDeclaration2Class.

58

1 rule Reference2Association {

2 from

3 uaRef : UA!Reference (

4)

5 using {

6 leftName : String =

7 if sourceNode.oclIsKindOf(UA!UAType)

8 then

9 sourceNode.getClassName(not sourceNode.isInterface()) --Association left side is the interface created

from the type

10 else

11 sourceNode.getClassName(false).prependTypeNameToInstanceDeclaration(sourceNode.getTypeDefinitionNode()

)

12 endif;

13 rightName : String =

14 targetNode.getClassName(false).prependTypeNameToInstanceDeclaration(targetNode.getTypeDefinitionNode()

)

15 ;

16 refTypeName : String = thisModule.getNodeById(uaRef.referenceType).getClassName(false);

17 sourceType : UA!UAType =

18 if sourceNode.oclIsKindOf(UA!UAType)

19 then

20 sourceNode

21 else

22 sourceNode.getTypeDefinitionNode()

23 endif;

24 --allows overriding of type-defined references, but is problematic when two distinct IDs of the same type

reference the same ID

25 sourceNameForRole : String = sourceType.findTopLevelTypeWithRef(thisModule.getNodeById(uaRef.referenceType),

targetNode.browseName).browseName;

26 }

27 to

28 cdAssociation : CD4A!ASTCDAssociation (

29 CDAssocType <- cdAssocType,

30 CDAssocDir <- cdAssocDir,

31 Left <- cdAssocLeftSide,

32 Right <- cdAssocRightSide

33),

34 cdAssocType : CD4A!ASTCDAssocTypeAssoc,

35 cdAssocDir : CD4A!ASTCDBiDir,

36 --left side: source node

37 cdAssocLeftSide : CD4A!ASTCDAssocLeftSide (

38 CDCardinality <- cdLeftCardinality,

39 MCQualifiedType <- cdLeftType,

40 CDRole <- cdLeftRole

41),

42 cdLeftCardinality : CD4A!ASTCDCardMult,

43 cdLeftRole : CD4A!ASTCDRole (

44 Name <- 'source_' + refTypeName + '_' + sourceNameForRole.removeReservedChars()

45 + '_2_' + targetNode.browseName.removeReservedChars()

46),

47 -- right side: target node

48 cdAssocRightSide : CD4A!ASTCDAssocRightSide (

49 MCQualifiedType <- cdRightType,

50 CDRole <- cdRightRole

51),

52 cdRightRole : CD4A!ASTCDRole (

53 Name <- 'target_' + refTypeName + '_' + sourceNameForRole.removeReservedChars()

54 + '_2_' + targetNode.browseName.removeReservedChars()

55)

56 }

Listing A.2: ATL matched rule Reference2Association.

59

A Listings

1 rule CreateInstanceDeclarationSubTypes(instanceDeclaration : UA!UAInstance, supertypeName : String, hierarchyRoot : UA

!UAType, idType : UA!UAType){

2 using {

3 directSubtypes : Set(UA!UAType) =

4 let subtypes : UA!UAType = thisModule.directSubtypes->get(idType)

5 in

6 if subtypes.oclIsUndefined()

7 then

8 Set{}

9 else

10 subtypes->select(subtype | thisModule.relevantNodes->get(subtype))

11 endif

12 ;

13 className : String =

14 let baseName : String = instanceDeclaration.getClassName(false).prependTypeNameToInstanceDeclaration(

idType)

15 in

16 if thisModule.idsWithMultipleOverriddenIds->includes(instanceDeclaration)

17 then

18 baseName.appendHierarchyRootToInstanceDeclarationName(hierarchyRoot)

19 else

20 baseName

21 endif

22 ;

23 }

24 to

25 cdClass : CD4A!ASTCDClass(

26 Name <- className,

27 CDInterfaceUsage <- interfaceUsage,

28 CDExtendUsage <- extendUsage,

29 Modifier <- umlModifier

30),

31 umlModifier : CD4A!ASTModifier (

32 --if the instance declaration is of abstract type, any instance must be of a concrete subtype

33 R__abstract <- idType.isAbstract,

34 R__public <- true

35),

36 extendUsage : CD4A!ASTCDExtendUsage (

37 Superclass <- Sequence{superclass}

38),

39 superclass : CD4A!ASTMCQualifiedType (

40 MCQualifiedName <- superclassName

41),

42 superclassName : CD4A!ASTMCQualifiedName (

43 Parts <- Sequence{

44 supertypeName

45 }

46),

47 interfaceUsage : CD4A!ASTCDInterfaceUsage (

48 R__interface <- idType.getInterfaces()->including(idType)->collect(interface | thisModule.

UAType2InterfaceName(interface))

49)

50 do {

51 for (subtype in directSubtypes) {

52 thisModule.CreateInstanceDeclarationSubTypes(instanceDeclaration, className, hierarchyRoot, subtype);

53 }

54 thisModule.cdPackage.addCDElement(cdClass);

55 }

56 }

Listing A.3: ATL called rule CreateInstanceDeclarationSubTypes

60

B Figures

EclipseEclipseMontiCoreMontiCore

UADiffUADiff UA-EMFUA-EMF

EMFTVMEMFTVM

EMFEMF

CD4A-EMFCD4A-EMF

CDDiffCDDiff Alloy-Interface

Figure B.1: Structure of the uadiff Application.

61

B Figures

ATL Transformation

ATL code is modified to match the number of
��� input models per transformation

Modified transformation is then compiled
Modify and Compile ATL-Transformations

Meta Models available as (generated) Java Code
Transformation compiled ATL transformation
UA Input Models from XML NodeSet files

Initialize EMFTVM ExecEnvs

Output Models CD4A ASTs
Transformations are executed in parallel

Execute Transformation

CDDiff

Input Models CD4A ASTS
Output Alloy Module with diff-predicate

Generate Alloy Module

Every instance for which the predicate is true, is a diff witness
Output Object Diagram structures in textual form

Evaluate Predicate

Figure B.2: Activity diagram showing the workflow of the uadiff application.

62

Figure B.3: Different model representations and transformations when running uadiff

63

C UA Graphical Notation

NodeClass Graphical Notation

ObjectType

VariableType

Object

Variable

Table C.1: OPC UA graphical notation [OPC21b] for NodeClasses relevant to this work. Graphical
elements from [OPC21a].

ReferenceType Graphical Notation

HasTypeDefinition

HasInterface

HierarchicalReferences

HasSubType

HasComponent

HasProperty

Table C.2: OPC UA graphical notation [OPC21b] for ReferenceTypes relevant to this work. All
References are forward References from left to right. Graphical elements from [OPC21a].

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Foundations and Related Work
	2.1 Foundations
	2.2 Related work

	3 UADiff Operator
	3.1 Mapping UA to CD
	3.2 Changes to CD4A's semantic mapping

	4 Implementation
	4.1 ATL Transformation
	4.2 CDDiff Changes
	4.3 Demonstrator

	5 Evaluation
	5.1 Validity on Simple Example
	5.2 Performance on Real-World NodeSets
	5.3 Discussion
	5.4 Threats to Validity

	6 Conclusion
	6.1 Summary
	6.2 Benefits
	6.3 Limitations
	6.4 Lessons Learned
	6.5 Future Work

	Bibliography
	A Listings
	B Figures
	C UA Graphical Notation

