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Abstract
Finite elements with Allman’s rotations provide good computational efficiency
for explicit codes exhibiting less locking than linear elements and lower com-
putational cost than quadratic finite elements. One way to further raise their
efficiency is to increase the feasible time step or increase the accuracy of the
lowest eigenfrequencies via reciprocal mass matrices. This article presents a
formulation for variationally scaled reciprocal mass matrices and an efficient
estimator for the feasible time step for finite elements with Allman’s rotations.
These developments take special care of two core features of such elements: exis-
tence of spurious zero-energy rotation modes implying the incompleteness of
the ansatz spaces, and the presence of mixed-dimensional degrees of freedom.
The former feature excludes construction of dual bases used in the standard vari-
ational derivation of reciprocal mass matrices. The latter feature destroys the
efficiency of the existing nodal-based time step estimators stemming from the
Gershgorin’s eigenvalue bound. Finally, the developments are tested for stan-
dard benchmarks and triangular, quadrilateral, and tetrahedral finite elements
with Allman’s rotations.
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1 INTRODUCTION

Successful finite element formulations for solid continuum with vertex rotations are known from the early 1980s
from the works by Mohr1 and by Allman.2 These vertex rotations are usually called as Allman’s rotational degrees
of freedom or simply Allman’s rotations. The aim of the Allman’s rotations is a compatible interpolation of the dis-
placements for an element with only vertex degrees of freedom. Taking a standard quadratic element as a base, the
midside nodal displacements are then constrained to vertex displacements and rotations of the edge by a transforma-
tion matrix. Therefore, the ansatz space of this family contains truncated quadratic functions. The common argument
for the development of such formulations is an increased accuracy with respect to the first-order finite elements
that tend to lock and a lower computational cost for comparable accuracy with respect to the standard quadratic
finite elements.
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A vast literature is available on the topic of finite elements with Allman’s rotations even if the connection of All-
man’s rotation to drilling stiffness of plate elements is excluded. Some selected papers are given here ordered according
to the finite element shape. These developments feature compatible strain field, assumed strain field, hybrid stress,
and free formulations. The compatible strain field formulations rely on the strain-displacement operator from the com-
patible displacement field in the principle of virtual work, as initially proposed by Mohr.1 The compatible strain field
formulations tend to be too stiff and they could be refined by a geometrical projection of the compatible strains onto
an assumed strain field.2 Hybrid stress formulations are usually based on the standard version of Hellinger–Reissner
variational principle3,4 or its extension to drilling rotation field by Brezzi and Hughes.5 The latter principle allows an
easier suppression of spurious zero-energy modes (SZEM). The spurious zero energy modes are a common feature of
the elements, for example, a vector with zero displacement and equal vertex rotations produce the zero displacement
field for each 2D element. This SZEM can be easily suppressed by fixing of one rotation in a part. A 4-node tetrahedral
element has four SZEM, which is equal to the rank deficit of the transformation matrix.6 A targeted stiffness stabi-
lization is employed to suppress them. Finally, free formulations construct the stiffness matrix of the element using an
energy-orthogonal decomposition in so-called basic stiffness that is needed to pass the patch test and a higher order
stiffness, which takes care of rank sufficiency and accuracy.7 Free parameters in the higher order stiffness give raise to
a stiffness template for a finite element and give the name of the free formulations. All these formulations for 3-node
triangular elements for 2D plane elasticity are presented in References 1-3,7. Their comparison from the point of view
of the stiffness templates and an optimal 3-node triangle finite elements are given by Felippa in Reference 8. A hybrid
stress formulation for a 4-node quadrilateral element for 2D plane elasticity is presented in Reference 4 and it is further
refined with better stress ansatz spaces and bubble functions in References 9,10. A 4-node tetrahedral element is pro-
posed in a compatible strain field form and an assumed strain form in Reference 11. That element exhibits a spurious
zero-energy mode and the assumed strain form is not objective.6,12 Two objective hybrid stress versions of the tetrahedral
element and stabilization with a sufficient rank are given in Reference 6. Large displacement inelastic problems can be
solved with a co-rotational hybrid formulation.13 Alternatively, a version based on the free formulation is presented in
Reference 14. Finally, a compatible strain field and its refinement with three incompatible modes for an 8-node hexahedral
element are presented in Reference 15. Further effort was made to construct mass matrices and test these formulations
for modal and transient analyses. The consistent mass matrix (CMM) are presented in References 16,17 for a 3-node
triangle, in Reference 18 for a 4-node quadrilateral and in in Reference 6 for a 4-node tetrahedron element. A general
construction for the lumped mass matrix (LMM) for elements with Allman’s rotation is given in Reference 16. It uses
the row-sum lumping procedure for the displacement degrees of freedom and scaled values for Allman’s rotation to
reach the critical time step of the linear elements. Unfortunately, this LMM provides less accuracy of eigenfrequencies
compared to CMM in Reference 17. Moreover, the scaling of the rotary inertia in LMM should be adjusted to the stabi-
lization stiffness of the element. Therefore, CMM is preferred in implicit analysis.18,19 Based on this profound research,
finite elements with Allman’s rotation made its way to academic finite element packages, for example, as 3-node tri-
angle TrPlaneStrRot in the open-source code OOFEM20 and commercial programs, for example, 4-node tetrahedron
(ELFORM = 4) and 8-node hexahedron (ELFORM = 3) in LS-DYNA. The latter two formulations are used in explicit
dynamics. In the context of the explicit dynamics, a further feature of the elements with Allman’s rotations becomes
important. These elements have a feasible time step comparable to linear elements and a twice larger feasible time step
than a quadratic element. There is an even higher potential for these elements if they are combined with one of the mass
scaling or inertia tailoring schemes, which can yield a larger feasible time step or an accuracy close to one obtained with
the CMM.

The basic idea of mass scaling in the context of nonlinear structural dynamics is to add artificial terms to the mass
matrix, thus reducing the highest eigenfrequencies of the discretized structure, while changing the lower eigenmodes
and frequencies as little as possible.21 Mass scaling aims at reduction of the computational cost since the highest eigenfre-
quency of the system limits the critical time step for explicit time marching. Adding artificial terms to only diagonal terms
of the mass matrix is known as conventional mass scaling and it is practiced since the 1970s. Conventional mass scaling
increases the translational mass of the structure. Therefore, it is very efficient if only a few stiff or short elements with high
eigenfrequencies limit the feasible time step and the time step can be manipulated at the price of relatively small growth
of the total mass. Alternatively, selective mass scaling adds both diagonal and off-diagonal terms to the mass matrix to
preserve the translational mass of the structure.21-25 Selective mass scaling comes at the cost of the solution of a linear
system of equation for affected degrees of freedom each time step. This solution is done usually by the conjugate gradi-
ent method with the Jacobi preconditioner.26 To avoid this step, several formulations for reciprocal mass matrices were
introduced recently. Reciprocal mass matrices (RMM) are sparse matrices that connect the total force vector to the nodal
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acceleration vector by mere matrix-vector multiplication. They can be assembled from elemental matrices and their usage
does not require large changes of the finite element code. Algebraic constructions of the reciprocal mass matrix are intro-
duced in papers.27-30 These formulations apply to solid finite elements with displacement degrees of freedom and plate
finite elements with rotations. The starting point of the formulation is a diagonal mass matrix and a stiffness matrix. Vari-
ational formulations are independently elaborated in References 31-33. The starting point of the variational construction
is parametrized Hamilton’s principle with independent fields for displacement, velocity, and linear momentum. Choos-
ing an independent discretization of the linear momentum with a local dual basis the enables derivation of the sparse
reciprocal mass matrix. These RMMs are always augmented to increase the feasible time step, or decrease the dispersion
error (increase accuracy of the lowest modes), or to reach both simultaneously. The RMMs after the augmentation are
called variationally scaled reciprocal mass matrices (VSRMM).31,32

Dual bases are not available for the standard elements with Allman’s rotations because the transformation matrix has
a rank deficit and supports for rotary degrees of freedom are undefined. Therefore, a pure variational approach would fail
and it leaves an open question for construction of the reciprocal mass matrix in the case of Allman’s rotation. However,
an alternative construction should satisfy a list of requirements denoted with M* as follows

M1 preservation of the translational inertia,
M2 assemblable from the local matrices,
M3 having a mask of the consistent mass matrix or even a tighter mask,
M4 having a larger feasible time step or/and accuracy than for the diagonal mass matrix,
M5 dependence on a minimal number of tuning parameters.

This builds the first part of the article.
Feasible time step estimates for RMM is not always trivial. Global estimators, for example, based on forward itera-

tions or Lanczos method are too expensive. Elemental estimators may be not conservative in the case of RMM as shown
by the paper.34 Therefore, the common approach is using nodal time estimators. Nodal time estimators were initially
proposed for diagonal mass matrices in the context of dynamic relaxation35 and explicit dynamics.36 These estimates
have roots in Gershgorin’s circle theorem and use the corresponding bound for the largest eigenvalue. The largest eigen-
value is bound by the maximum absolute row-sum or column-sum of the stiffness matrix divided by the nodal mass. For
symmetric stiffness matrices, no difference between row- and column-sum is observed. Recently, estimators based on
Gershgorin’s circle theorem were proposed for structural undamped systems with RMM and displacement degrees only.34

In this case, the largest eigenvalue is bound by a row-sum or a column-sum of absolute values of entries of the product of
the reciprocal mass matrix and the stiffness matrix. The rowwise and columnwise versions are not identical in this case
and perform similarly for several studied finite element types and meshes.34 These estimators usually leave a 10%–30%
gap to the exact critical time step. This raises the question of whether a sharper estimator may be constructed by using
a different eigenvalue bound. The second question is whether the proposed estimators are still efficient for the element
with displacements and Allman’s rotation, that is, values with mixed physical dimension (m) versus (–). A recent paper
compares Gershgorin’s, Parker’s, Brauer’s, Ostrowski’s and trace eigenvalue bounds for time step estimates in case of a
diagonal mass matrix with spectral finite elements for explicit acoustics.37 The paper indicates that the Ostrowski’s bound
is the sharpest bound for most of the cases. Further study discovers that in the presence of mixed degrees of freedom, like
displacement and rotations in a Bernoulli beam element, the Gershgorin’s and Ostrowski’s bounds substantially under-
estimate the critical time step.38 Therefore, an additional similarity transformation by Fan39 should assist the bounds.
Such an estimator is tested for a 3-node plate element and a stiffened panel structure with a regular mesh and an identi-
cal similarity transformation matrix at each node.38 This opens a perspective of adjusting of this estimator to the case of
elements with Allman’s rotations and testing whether this estimator satisfies following requirements denoted with T*

T1 to be conservative,
T2 to be efficient for finite elements with displacement and Allman’s rotations, and
T3 to provide satisfactory results for irregular and distorted meshes.

This builds the second part of the article.
The article is structured as follows: Section 2 described the problem statement and a general method for the

construction of RMM for finite elements with Allman’s rotations. An estimator for the critical time step based on rel-
evant eigenvalue bounds is presented in Section 3. Section 4 contains a set of numerical experiments supporting the
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developments. This includes a comparison with existing nodal time step estimates and with competing finite element
formulations with nodal displacements only. A discussion of the obtained results is given in Section 5. Finally, the main
results and possible directions for future work are outlined in Section 6.

2 PROBLEM STATEMENT AND DERIVATION OF RECIPROCAL MASS
MATRICES

2.1 Problem statement

Consider a solid finite element with Allman-type rotations. Each vertex node has three degrees of freedom [ux,uy, 𝜃z]
in 2D and six degrees of freedom [ux,uy,uz, 𝜃x, 𝜃y, 𝜃z] in 3D. Let NR and Nq denote the matrix with the Allman-type
interpolation of displacements and the matrix with the shape functions of the base quadratic finite element, respectively.
Then the Allman-type interpolation can be written as

NR =  Nq, (1)

where  is the transformation matrix between the Allman-type interpolation and the base quadratic element. Examples of
base and Allman-type elements are shown in Figure 1. The interpolation couples a single vertex rotation to a displacement
field in two orthogonal directions. Details on the transformation matrix are given in Appendix B.

Problem statement. Find a general formulation for a reciprocal mass matrix for this class of elements and an appro-
priate feasible time step estimator that satisfy requirements M1–M5 and T1–T3 and test these developments for triangle
Tri3R, quadrilateral Quad4R, and tetrahedron Tet4R.

2.2 Derivation of reciprocal mass matrices

The standard variational multiparameter construction of the reciprocal mass matrices for elements with displacement
degrees of freedom only from in Reference 33 relies on a three-field Hamilton’s principle with independent fields for the
displacement u, several velocities v(i), and the linear momentum p. The first variation of the principle read

𝛿H(u,p, v(i)) = ∫
tend

t0

𝛿

(
T◦(u̇,p, v(i)) − Πint(u) + Πext(u)

)
dt = 0, (2)

where T◦(u̇,p, v(i)) is the modified kinetic energy, Πext(u) and Πext(u) are the potential energies for the internal and exter-
nal forces. t0 and tend denote the initial and the termination time for the transient problem. The modified kinetic energy
is expressed as

T◦(u̇,p, v(i)) = ∫Ω

(
u̇Tp − 1

2𝜌
p2 +

∑
i

C2i

2𝜌
(p − 𝜌v(i))2

)
dV , (3)
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F I G U R E 1 Base 6-node triangle, 8-node quadrilateral, and 10-node tetrahedron are transformed into Tri3R, Quad4R, and Tet4R
elements, respectively. Empty circles and solid circles denote midside nodes and vertex nodes, respectively
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where Ω is the domain of the body, 𝜌 is the density, C2i is a template (free) parameter in the sense of parametrized varia-
tional principles introduced by Felippa.40 The customization parameters should be positive and their sum must be strictly
smaller than one as shown in Reference 33. Discretization of the independent fields with independent interpolations

u = NU, v(i) = 𝚿(i)V(i), p = 𝝌P (4)

leads to the variationally scaled reciprocal mass matrix C◦ (VSRMM) in a multiparameter template form

C◦ = C + 𝝀̃
◦ = C +

∑
i

C2i(W(i)(Y(i))−1(W(i))T − C). (5)

The augmentation of the reciprocal mass matrix 𝝀̃◦ is computed using the projection matrix W, the mass matrix for ith
velocity field Y(i) and the reciprocal mass matrix C. The latter three matrices are assembled from the local matrices with

we = ∫Ωe

𝝌T𝚿(i) dΩe, y(i)
e = ∫Ωe

𝜌(𝚿(i))T𝚿(i) dΩe, ce = ∫Ωe

𝜌−1𝝌T𝝌 dΩe, (6)

Ωe denotes the domain of individual elements. The matrices Y(i) are block diagonal for incompatible velocity approxi-
mations v(i). That property insures a sparse shape of the resulting VSRMM. A set of free customization parameters C2i
allows tuning of the VSRMM to desired properties.

The matrix C◦ is neither an inverse of the consistent mass matrix nor a sparse approximation of such an inverse. It is
a sparse and assemblable approximation of the inertia properties of the structure. Interpolation functions for the linear
momentum 𝝌 are always biorthogonal to the displacement shape functions as proposed in Reference 33. Biorthogonal
functions are constructed in three steps: compute the local metric matrix me; construct unweighted dual functions 𝝌̂

from primary functions Ne using the inverse of the local metric matrix; weighting of the dual functions with density, the
local support te, i and the inverse of the global support (Tj). These steps are concisely given below.

me = ∫Ωe

𝜌NT
e Ne dV , (7)

𝝌̂ = Nem−1
e , (8)

𝜒i = 𝜌
𝜒̂ite,i

Tj
, te,i = ∫Ωe

𝜌Ne,i dV , T=
⋃

e
te. (9)

The direct transfer of this construction to Allman-type elements contains two issues. First, the transformation matrix
 has a rank deficit, which leads to the failure of the construction of the unweighted dual basis in Equation (8) due to
the singularity of the local metric matrix. If the pseudo-inverse of the metric matrix is used in Equation (8) then the
construction does not preserve translational inertia even for a single finite element (thus violating the condition M1).
Second, Allman’s rotations couple interpolation displacements in x-, y- and z-direction and it is unclear how to extend
the scalar support associated with the DOF. Therefore, an alternative approach is sought.

The Allman’s rotations add hierarchically truncated quadratic displacements N𝜃 onto a linear finite element Nlin with
vertex displacements only. Thus, the rows of the Allman-type interpolation may be split as

NR =
[

Nlin N𝜃

]
. (10)

Therefore, the vertex displacements can be assigned with the VSRMM according to the variational construction
described above in Equations (5)–(9). The construction needs approximation matrices of velocity fields 𝚿(i). Here, the
number of the velocity fields is limited by two. The matrix 𝚿(1) associated with the free parameter C21 is always the
identity matrix. The matrix 𝚿(2) combines all linear functions in each spatial direction, see for details.32,33 Reuse of the
construction for vertex displacements guarantees preservation of the translational inertia (requirement M1). Now, the
inertia at the Allman’s rotations can be defined. If the inertia of Allman’s rotations is decoupled from translational inertia
then it does not compromise the preservation of the translational inertia, which is already provided for the construction
in Equations (5)–(9). Therefore, the coupling terms in the reciprocal matrix between displacements uj and rotations 𝜃j
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are taken zero. Furthermore, we propose to use for the Allman’s rotations a diagonal shape of the local reciprocal mass
matrix. This choice reduces the number of nonzero entries of the reciprocal mass matrix (requirement M3) and avoids
new tuning parameters (requirement M5). Now, these diagonal values should be computed from local information. For
comparison, diagonal entries of the local lumped mass matrix read

mLMM
𝜃,jj = 5

4∫Ωe

𝜌NT
𝜃,jN𝜃,j dV , (11)

where N𝜃,j is jth column of the Allman-type interpolation in Equation (10). The possibility to scale the diagonal term of
the rotary inertia for this type of elements is discussed in Reference 16. The factor 5

4
is a compromise between time step

size and accuracy in the lowest modes for coarse and moderate meshes, see details in Appendix A. We can assemble the
reciprocal values of the local lumped mass matrix if they are scaled with the square of the ratio of the local support to the
global support.33 This leads to the sought diagonal values

c𝜃,jj =
16t2

e,j

25T2
j ∫Ωe

𝜌NT
𝜃,jN𝜃,j dV

. (12)

The physical dimension of the entries c𝜃,jj is reciprocal to the moment of inertia 1/(kg ⋅m2). Equation (12) completes
the proposed construction of the reciprocal mass matrix.

3 FEASIBLE TIME STEP ESTIMATOR BASED ON OSTROWSKI’S AND
FAN’S EIGENVALUE BOUNDS

For the central difference method and undamped problems, the feasible time step Δt is limited by the critical time step
Δtcrit through the stability criterion

Δt < Δtcrit =
2

𝜔max
, (13)

where 𝜔max is the maximum eigenfrequency of the assembled system.41 The maximum eigenfrequency of the global
system with reciprocal mass matrices is determined by the standard eigenvalue problem

(C◦K − 𝜆iI)𝝓i = 0 with 𝜆i = 𝜔2
i , (14)

where C◦ and K are the variationally scaled reciprocal mass matrix and the stiffness matrix and 𝜆i, 𝜔i, and
𝝓i are the ith eigenvalue, eigenfrequency, and eigenvector, respectively. The VSRMM is a sparse matrix and the
product C◦K defines a nonsymmetric sparse matrix, whose largest eigenvalue limits the time step. Below, rel-
evant eigenvalue bounds are considered and a novel time step estimator is proposed. This estimator uses the
local information about mesh size for the similarity transformation and Ostrowski’s bounds with exponents on a
regular grid.

3.1 Considered eigenvalue bounds

Let Pi(A) =
∑

j≠i|Aij| and P̂i(A) =
∑

j≠i|Aji| be the sums of absolute values of the nondiagonal entries in ith row and in ith
column of a square real matrix A ∈ Rn×n, respectively. Let denote with Si(Aii,Pi(A)) ⊆ C a closed disk on complex plane
centered at Aii with radius Pi(A) ∈ R+. Gershgorin’s circle theorem states that each eigenvalue of a square real matrix A
lies within at least one of Gershgorin’s disks Si(Aii,Pi(A)). A corollary of this theorem leads to rowwise Gershgorin’s bound
of the largest eigenvalue

𝜆GR
max ≤ maxi(Aii + Pi(A)). (15)
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The spectrum of a matrix A and its transpose AT coincide. Therefore, columnwise Gershgorin’s bound of the highest
eigenvalue

𝜆GC
max ≤ maxi(Aii + P̂i(A)) (16)

is also valid. In the case of nonsymmetric matrices, the latter two bounds are not identical.
The Gershgorin’s bound can be extended in two ways. First, a bound with a weighted row sum is due to a note by

Fan.39 Spectrum of a matrix is invariant under a similarity transformation A→ S−1AS. Fan’s bound is obtained from the
rowwise Gershgorin’s bound assuming a diagonal shape of the similarity transformation matrix with positive entries only
Sii = xi > 0

𝜆F
max ≤ maxi

(
Aii +

1
xi

∑
j≠i

|Aij|xj

)
≡ 𝜆GR

max(S−1AS). (17)

This transformation is of special interest in case the system has degrees of freedom with different physi-
cal dimensions, for example, solid elements with Allman’s rotations or thin-walled elements with rotations. A
possible construction of the similarity matrix is discussed in Subsection 3.2. The second extension is due to
Ostrowski’s circle theorem. It states that every eigenvalue of a square real matrix A lies within at least one
of the disks Si(Aii, (Pi(A))1−𝛽(P̂i(A))𝛽) for any 𝛽 ∈ [0, 1]. This theorem gives rise to the Ostrowski’s bound for
a fixed 𝛽

𝜆OF
max ≤ maxi(Aii + (Pi(A))1−𝛽(P̂i(A))𝛽) (18)

or the best from all admissible values of 𝛽

𝜆O
max ≤ min

𝛽∈[0,1]
(maxi(Aii + (Pi(A))1−𝛽(P̂i(A))𝛽)). (19)

The rowwise and columnwise Gershgorin’s disk systems are special cases of Ostrowski’s disk systems for 𝛽 = 0
and 𝛽 = 1, respectively and the Ostrowski’s bound with the best choice of 𝛽 cannot be worse than any of two Ger-
shgorin’s bounds. In the case of a symmetric matrix, the values of P̂i(A) and Pi(A) coincide and the Ostrowski’s
bound reduces to the Gershgorin’s bound. This opens an opportunity for constructing sharper time step estima-
tors using Ostrowski’s bound for nonsymmetric matrices, like the product of the reciprocal mass matrix and the
stiffness matrix in Equation (14). Computing minimax problem in Equation (19) for continuous the exponent 𝛽

is challenging. Herein, a discrete uniform grid for the exponent is used. Similar estimator was introduced on
the elemental level in Reference 37, but it is not clear whether continuous or discrete values of the exponent 𝛽

are used.

3.2 Similarity matrix for Fan’s bound

The similarity matrix in Fan’s bound improves dramatically the tightness of the time step estimator. The following straight-
forward example illustrates this statement. Consider a single Euler–Bernoulli beam in 2D with cubic Hermite shape
functions and local degrees of freedom [w1,w′

1,w2,w′
2]. The element has a constant rectangular cross-section b× t and

length L. The material of the beam is given by density 𝜌 and Young’s modulus E. The element matrices and a corresponding
matrix in a nonsymmetric eigenvalue problem read

K = Ebt3

6L3

⎡⎢⎢⎢⎢⎢⎣

6 3L −6 3L
3L 2L2 −3L L2

−6 −3L 6 −3L
3L L2 −3L 2L2

⎤⎥⎥⎥⎥⎥⎦
, M = 𝜌btL

24

⎡⎢⎢⎢⎢⎢⎣

12 0 0 0
0 t2 0 0
0 0 12 0
0 0 0 t2

⎤⎥⎥⎥⎥⎥⎦
, A = M−1K, (A − 𝜆iI)𝝓i = 0. (20)
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The exact maximum eigenvalue of the matrix A can be analytically determined and it is equal to

𝜆max =
4E(3L2 + t2)

L4𝜌
. (21)

The columnwise Gershgorin’s estimate given in Equation (16) for the matrix A in Equation (20) yields

𝜆GC
max ≤ max

(
12E
L2𝜌

+ 24E
L3𝜌

,
4Et2

L4𝜌
+ 2Et2

L3𝜌

)
. (22)

Analysis of the physical units in Equation (22) reveals a contradiction. Both arguments of the max function are the
sum of values with units m2/s2 and m/s2. This contradiction destroys the sharpness of the estimate for small absolute
numbers for element length L→ 0, that is, the ratio of the estimate to the exact value grows to infinity. These small absolute
numbers are also achievable by changing length units used in the model, for example, from mm to m. The rowwise
Gershgorin estimate behaves similarly. Fan’s trick with a properly chosen similarity matrix corrects the mismatch of the
physical units. Let us select a diagonal similarity transformation matrix S where entries possess physical dimensions of
corresponding degrees of freedom, that is, displacement—meter (m) and rotation—radian (–). Fan’s bound for the single
beam element and exemplary transformation matrix read

S = diag
[

L 𝜂 L 𝜂

]
, 𝜆F = 𝜆GR

max(S−1AS) ≤ max
(

2E(𝜂t2 + 6L2)
L4𝜌

,
4E(𝜂t2 + 6L2)

𝜌L4𝜂

)
, (23)

with diag[×] being the constructor of a diagonal matrix from a vector and 𝜂 being a positive dimensionless scalar. The
result of this estimate has the correct physical unit of m2/s2. This motivates us to use a similarity transformation with
some characteristic edge length at each displacement degree of freedom. An algorithm for the computation of nodal
characteristic length is specified below.

Nodal characteristic length is computed as minimum edge length for all adjacent elements

Lj = min
e∈j

Le, (24)

where element index e loops over all adjacent elements j to node j and Le is the smallest edge of the element e. The
similarity matrix is defined as

Sjj =

{
Lj j ∈ d

𝜂 j ∈ 𝜃

, (25)

where d and 𝜃 are nodal indexes for displacement and Allman’s degrees of freedom, respectively. This matrix is com-
puted once. The selection of suitable values for 𝜂 is an additional issue. Different values of dimensionless parameter 𝜂
result in the following estimates

𝜆F|𝜂=6 = 12E
L2𝜌

+ 12Et2

L4𝜌
, 𝜆F|𝜂=6 − 𝜆max =

8Et2

L4𝜌
, (26)

𝜆F|𝜂=2 = 12E
L2𝜌

+ 4Et2

L4𝜌
, 𝜆F|𝜂=2 − 𝜆max = 0, (27)

𝜆F|𝜂=0.5 = 48E
L2𝜌

+ 4Et2

L4𝜌
, 𝜆F|𝜂=0.5 − 𝜆max =

36E
L2𝜌

. (28)

At the optimal value 𝜂 = 2, the estimate coincides with the largest eigenvalue. Such serendipity is not
observed for real structures with more than one element. Nevertheless, values of 𝜂 close to two leave a small
gap to 𝜆max for most of the regular meshes. Another feature is that the estimate stays accurate for 𝜂 > 2
for a thin beam element (L≫ t) and for 𝜂 < 2 for thick beam element (t ≫L). Therefore, values of 𝜂 far
from two may be useful for distorted and irregular meshes. Herein, a constant value for a complete structure
is used.
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Algorithm 1. Time step estimator using Ostrowski’s bound

Input: K,C◦, S,ng,

Output: Δtcrit - critical time step estimate for an undamped system
Require: S - diag, ng ≥ 2 - grid size for Ostrowski exponents, ng ∈ [11..21] is a good choice

1: procedure OstrowskiEstimateWithFanTrick(K,C◦, S,ng,)
2: A ← S−1C◦KS
3: Λ ← array [1..ng] initialized with 0
4: for j ← 1 to size(K) do
5: Pj(A) ←

∑
i≠j |Aji|

6: P̂j(A) ←
∑

i≠j |Aij|
7: for k ← 1 to ng do
8: 𝛽k ← (k − 1)∕(ng − 1) ⊳ Uniform grid for sampling with 𝛽

9: R ← (Pj(A))1−𝛽k (P̂j(A))𝛽k

10: Λk ← max(Ajj + R,Λk)
11: end for
12: end for
13: 𝜆max ← min(Λ)
14: return 2∕

√
𝜆max

15: end procedure

3.3 Novel time step estimator

We propose to estimate the largest eigenvalue using the Ostrowski’s bound given in Equation (18) and combine it with
the diagonal similarity transformation in given Equation (25) as suggested by Fan39

A = S−1C◦KS, (29)

𝜆O
max ≤ min

0≤j≤ng
(maxi(Aii + (Pi(A))1−𝛽j(P̂i(A))𝛽j)), (30)

where exponents 𝛽j belong to the regular grid of ng points in the interval [0, 1]

𝛽j =
j

ng − 1
, j ∈ 0,ng − 1. (31)

This estimator exploits unsymmetry of the matrix product S−1C◦KS. An algorithm is given in Box 1. The performance
of the estimator is controlled by two parameters: the number of sampling points for exponent ng and the dimensionless
parameter in the similarity matrix 𝜂.

The exact computational cost of the proposed time step estimator (30) depends on the implementation details. An
estimation of the computational cost is possible analogously to in Reference 34 using a simple floating-point operation
(FLOP) count of steps in the Algorithm 1. Following simplifying assumptions are made here: The dimension of all matri-
ces is denoted as n and all Steps with a cost much smaller than n are skipped. The matrices C◦, K, and C◦K are assumed to
have an average bandwidth b, b, and a, respectively. The grid size for Ostrowski exponents and the average bandwidth are
assumed to be much smaller than dimension n. Two calls of function power in Step 9 are assumed to cost 20 operations
each. The cost of the computation of matrices in the input (Step 1) is excluded from the estimate.

FLOP counts for the sparse matrix-matrix product C◦K (Step 2) is the main cost with 2nb2 + 2na. Here, an estimate
according to in Reference 42 of the Gustavson algorithm43 is used. Steps 5–12 are repeated n times. Step 5 and 6 need a− 1
FLOPs each. Steps 8–10 are repeated ngn times. Step 8 and 10 need one FLOP. Step 9 needs 41 FLOPs (2 calls pow() and
one mul()). This leads to the estimate

COST = 2nb2 + 2na + 2n(a − 1) + 41nng + 2n = 2nb2 + n(4a + 41ng + 1) FLOP. (32)
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This estimate can be expanded for some specific mesh types, element and the grid size for Ostrowski exponents. The
Quad4R element with a regular mesh has the average bandwidth a= 75 and b= 27. For the grid size ng = 21 the overall
cost

COSTQuad4R,reg,ng=21 = 1891n FLOP. (33)

The Tri3R element with a regular unidirectional mesh has the average bandwidth a= 51 and b= 21. For the grid size
ng = 21 the overall cost

COSTTri3R,uni-dir,ng=21 = 1507n FLOP. (34)

Repeating this algorithm each time step is extremely inefficient. Thus, it should be executed at the beginning and at
a few intermediate time points of the simulation.

4 NUMERICAL EXAMPLES

In this section, the proposed construction of VSRMM and the novel time step estimate are tested for several finite elements
with Allman’s rotations. First, developments are assessed for triangular and quadrilateral elements for eigenfrequency
benchmark NAFEMS FV32.44 Second, the performance of the time step estimate is checked for a highly distorted mesh
in 2D. Third, a transient example based on the NAFEMS FV32 is computed using explicit time integration. Finally, an
example for the 4-node tetrahedron is considered.

All computations are performed with double precision. Stiffness stabilization with 𝛾1 = 10−6 and stabilization of the
consistent mass matrix 𝛾2 = 10−5 are used for all cases as described in Appendix C. Elemental time step estimate for LMM
uses the exact highest local eigenfrequency. It is a forced solution because there is no reliable reference for a characteristic
length of the element used in Courant–Friedrich–Levy estimate. The latter is used in most of the commercial codes and it
is not so tight as the exact local eigenfrequency estimate. Quadrature rules for each element type are specified in examples.
Mainly, the compatible strain field formulation is used for the computation of the stiffness matrix.

4.1 NAFEMS FV32 for Tri3R

The eigenfrequency benchmark FV32 from the NAFEMS collection of standard benchmarks44 considers a
two-dimensional free vibration problem of a tapered membrane with length L= 10 m, width at wide end W = 5 m
and width at the narrow end w= 1 m. The membrane is clamped at the wide end (ux = uy = 𝜃z = 0). The stan-
dard provides the six lowest eigenfrequencies with an accuracy of five digits. This solution is obtained using the
Rayleigh–Ritz method with global ansatz functions. The membrane is meshed with Tri3R elements under plane
stress assumption. Gauss–Radau quadrature rule with seven points is used for the computation of the stiffness
matrix and the reciprocal mass matrix. The stiffness matrix is computed via standard displacement-based formu-
lation. The VSRMM is computed with one customization parameter. The homogeneous isotropic material of the
membrane has the elasticity modulus E = 200 GPa, Poisson’s ratio 𝜈 = 0.3, and density 𝜌 = 8000 kg/m3. Two unidi-
rectional mapped meshes (nx ×ny) with 10× 5 and 20× 10 elements are considered. The VSRMM presented here is
used with three different values of parameter C21. Ostrowski’s estimate is computed with the number of sampling
points ng = 21.

Results for the six lowest eigenfrequencies and the highest eigenfrequency are presented in the upper part Table 1. A
starting guess of the free parameter is C21 = 0.66 ≈ 21

32
. This value is taken from dispersion analysis for the constant strain

triangle element Tri3 at infinite hexagonal mesh. It provides the best low frequency accuracy for the Tri3 element. As this
element is the basis for the translational part of the VSRMM construction, a good transfer of the results is expected for the
Tri3R element. VSRMM with C21 = 0.66 provides spectrum even more accurate than for the consistent mass matrix with
the highest frequency by 5% less than for LMM. Increasing the free parameter to 0.81 and 0.95 reduces the accuracy of the
eigenfrequencies and increases the potential speed-up to 11% and 16%, respectively. Figure 2 shows six physical eigen-
modes. The eigenmodes capture the physical behavior correctly and correspond to the reference modes. Both spectra of
LMM and VSRMM possess spurious modes in the range of computed frequencies. These modes are shown in Figure 3. A
pattern similar to fish scales is characteristic for the spurious modes in the unidirectional mesh considered here. These
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T A B L E 1 Six lowest eigenfrequencies and the highest eigenfrequency for the FV32 benchmark computed with
CMM, LMM, and VSRMM

C21 f 1, Hz f 2, Hz f 3, Hz f 4, Hz f 5, Hz f 6, Hz f spur, Hz f max , Hz f ∗max

f LMM
max

Reference – 44.623 130.03 162.70 246.05 379.90 391.44 – – –

CMM – 45.045 132.40 163.16 253.25 395.32 396.30 – 25463 1.41

LMM – 44.516 129.04 162.60 241.90 369.06 388.63 276.55 18061 1.00

VSRMM 0.66 44.651 130.64 162.89 247.96 384.79 392.65 261.24 17103 0.95

VSRMM 0.81 44.407 127.78 162.39 237.04 356.76 385.79 260.98 16117 0.89

VSRMM 0.95 44.127 124.22 161.87 222.54 318.62 378.22 260.82 15226 0.84

Tri3+LMM – 47.887 142.58 163.40 278.30 397.83 442.32 – 15576 0.86

Tri3+LMM+ h
2

– 45.499 133.55 162.89 255.37 393.16 398.56 – 32179 1.78

Note: Mesh: 10× 5 Tri3R elements. The spurious frequency f spur is given for LMM and RMM.

:2:1 3:

:5:4 6:

F I G U R E 2 The six lowest eigenmodes for the FV32 benchmark computed with the Tri3R finite elements using VSRMM with
C21 = 0.66 and mesh 20× 10

F I G U R E 3 Spurious eigenmodes
for the FV32 benchmark computed with
the Tri3R finite elements with mesh
20× 10 using VSRMM C21 = 0.66 (left)
and LMM (right)

spurious modes are represented mainly by vertex rotations and their frequency is almost independent of the free parame-
ter C21. Increasing the stiffness stabilization parameter 𝛾1 to 5 ⋅ 10−4 shifts the spurious frequencies from the range of the
considered frequencies to a higher frequency range.

The bottom part of Table 1 presents the six lowest eigenmodes obtained with a competing finite element formu-
lation with nodal displacements only: the constant strain triangle Tri3. The Tri3 element uses the row-sum lumping
procedure. The 6-node quadrilateral element Tri6 is omitted from the consideration because of a poor quality of the
lumped mass matrix (row-sum lumping yields zero inertia at corner nodes and Hinton–Rock–Zienkiewicz (HRZ)
procedure45 lead to high eigenfrequency error). The error in the lowest eigenmodes for the Tri3R element with
VSRMM with C21 = 0.66 is much smaller than for the competing formulation even if the refined mesh is used. The
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F I G U R E 4 Convergence of eigenfrequencies for the FV32 benchmark computed with the Tri3R finite elements using VSRMM with
C21 = 0.66 (left), VSRMM with C21 = 0.95 (middle) and LMM (right)

T A B L E 2 Comparison of the estimated time steps for the FV32 benchmark, C21 = 0.95

Relative tightness 𝚫test
crit

∕𝚫tVSRMM
crit

Relative improvement Speed-up

Use of S 𝜼 Row Gersh. Col. Gersh. Ostrowski’s
𝚫tO

crit
−max(𝚫tGR

crit
,𝚫tGC

crit
)

𝚫tRMM
crit

𝜷opt 𝚫tO
crit

∕𝚫tLMM
crit

No – 0.330 0.260 0.668 33.8% 0.35 0.978

Noa – 0.011 0.009 0.128 11.8% 0.45 0.188

Yes 1.0 0.836 0.596 0.846 1.0% 0.40 1.237

Yes 2.0 0.787 0.683 0.858 7.1% 0.35 1.255

Yes 4.0 0.710 0.743 0.819 7.5% 0.30 1.197

Yes 6.0 0.767 0.652 0.781 1.4% 0.30 1.142

Yes 8.0 0.780 0.607 0.780 0.0% 1 1.141

Note: Mesh: 20× 10 Tri3R elements. The exact critical time step for VSRMM is ΔtVSRMM
crit = 10.33 μs. The reference elemental value of the critical

time step for LMM is ΔtLMM
crit = 7.06 μs using exact local eigenfrequencies.

ageometrically scaled by factor 10−3

error in the lowest eigenmodes for the Tri3R element with VSRMM with C21 = 0.81 is similar to one obtained with
the refined mesh. Furthermore, the highest frequency for the Tri3R element with VSRMM with C21 = 0.81 is only a
half of the value for the refined mesh with the Tri3. This illustrates the advantage of the proposed formulation at
coarse meshes.

The convergence of the six lowest eigenfrequencies for the FV32 benchmark for the standard LMM and the pro-
posed VSRMM with C21 = 0.66 and C21 = 0.95 is presented in Figure 4. The spurious eigenfrequency is excluded from
the ordering. The reference values for the frequencies are taken from the NAFENS standard. The default NAG eigen-
value solver with double precision is used for the computation of the generalized eigenvalue problem within a Maple
implementation. The number of elements along the x-axis of the model and the absolute relative error in the frequen-
cies are used for the abscissa and for the ordinate, respectively. The eigenfrequencies show an asymptotic convergence
rate close to quadratic. The error constant at the two lowest eigenfrequencies for the LMM is twice larger than for
VSRMM with C21 = 0.66 but it is only 1

6
of the value for C21 = 0.95. Thus, the trade-off between the error constant (increase

by factor 12) and maximum eigenfrequency (reduction only by 9%) is relatively bad for the proposed construction of
the VSRMM.

The performance of the proposed time step estimator for the FV32 benchmark is illustrated in Table 2. The estimator
is inefficient if the similarity transformation is omitted especially in the case where the geometry of the model is scaled by
factor 10−3. Using the best of rowwise or columnwise Gershgorin’s estimators with the similarity transformation leaves a
gap of 22.0% to the exact feasible time step. This gap is reduced to 14.2% for the Ostrowski’s estimator for the best choice



TKACHUK 1413

T A B L E 3 Six lowest eigenfrequencies and the highest eigenfrequency for the FV32 benchmark computed with CMM, LMM,
and VSRMM

C21 C22 f 1, Hz f 2, Hz f 3, Hz f 4, Hz f 5, Hz f 6, Hz f spur, Hz f max, Hz f ∗max

f LMM
max

Reference – – 44.623 130.03 162.70 246.05 379.90 391.44 – – –

CMM – – 44.724 131.12 162.88 250.02 389.83 395.41 – 13653 1.27

LMM – – 44.274 127.79 162.37 238.94 362.75 385.46 223.59 10781 1.00

VSRMM 0.55 0 44.428 129.62 162.70 246.15 381.84 389.94 200.48 11100 1.12

VSRMM 0.55 0.3 44.425 129.57 162.69 245.74 380.34 389.73 200.48 10416 0.97

VSRMM 0.55 0.4 44.424 129.55 162.69 245.58 379.67 389.65 200.48 9928 0.92

VSRMM 0.69 0 44.237 127.40 162.31 237.51 359.97 384.61 200.47 10877 1.01

VSRMM 0.83 0 44.030 124.88 161.91 227.51 334.22 378.96 200.44 9686 0.90

VSRMM 0.83 0.12 44.028 124.84 161.90 227.18 332.96 378.74 200.44 9028 0.84

Quad4+LMM – – 45.022 131.48 162.41 247.66 377.48 387.32 – 6665 0.62

Quad4+LMM+ h
2

– – 44.726 130.42 162.63 246.53 379.42 390.40 – 14475 1.34

Quad4E4+LMM – – 44.370 128.78 162.33 241.17 366.46 386.74 – 6608 0.61

Quad4E4+LMM+ h
2

– – 44.559 129.72 162.61 244.81 376.36 390.26 – 14408 1.34

Quad8+LMM – – 42.816 123.17 160.77 231.96 357.45 382.55 – 25198 2.33

Note: Mesh: 10× 5 Quad4R elements. The spurious frequency f spur is given for LMM and VRMM.

of the dimensionless parameter 𝜂 = 2.0. This is usually an optimal value for 𝜂 for regular meshes. Moreover, the obtained
feasible time step is 25.5% larger than the feasible time step for LMM obtained from elemental estimators using exact local
eigenfrequencies. Finally, different exponents 𝛽 yield the best estimates. Using a grid with 21 sampling points seems to
be sufficient.

4.2 NAFEMS FV32 for Quad4R

Now the problem from the previous subsection is solved with the Quad4R elements. 3× 3 Gauss quadrature rule is used
for the computations of the stiffness matrix and the variationally scaled reciprocal mass matrix. The stiffness matrix is
computed via the standard displacement-based formulation. The reciprocal mass matrix is computed with up to two
customization parameters.

The results for the six lowest eigenfrequencies and the largest eigenfrequency are presented in the upper part of
Table 3. First, parameters of the VSRMM are selected to obtain a better accuracy in the lowest eigenmodes. A starting
guess is an optimized value of C21 = 0.55 ≈ 5

9
shown to give superconvergent results for longitudinal vibration problems

for a 2-node rod in Reference 31. The Quad4 element uses tensor product shape functions of the 2-node rod. The VSRMM
with C21 = 0.55 and three different values for C22 provides a spectrum even more accurate than for the CMM. Extremely
good results are observed for the longitudinal modes of the tapered plate (3 and 6). Selecting C22 = 0.4 reduces the largest
eigenfrequency to about 8% below the one for LMM. VSRMM with larger values for C21, like 0.69 or 0.83, decreases the
accuracy of the eigenfrequencies substantially for only moderate speed-up up to 16% with respect to LMM. The eigen-
modes capture the physical behavior correctly and correspond to the reference modes. Both spectra of LMM and VSRMM
possess spurious modes with a chevron pattern, shown in Figure 5. The frequency of spurious eigenmodes with VSRMM
is almost independent of the free parameters C21 and C22. The bottom part of the Table 3 presents the six lowest eigen-
modes obtained with three competing finite element formulations with nodal displacements only: 8-node serendipity
quadrilateral element Quad8 with HRZ lumping, fully integrated and enhanced assumed strain 4-node quadrilateral ele-
ments Quad4 and Quad4E4,46 respectively. Both 4-node elements use the row-sum lumping procedure. The error in the
lowest eigenmodes for the Quad4R with C21 = 0.55 and C22 = 0.4 is twice smaller than for the 4-node elements with the
same mesh and comparable for the double refined mesh. The highest eigenfrequency for the double refined mesh is by
42% larger than for the Quad4R with C21 = 0.55 and C22 = 0.4. The 8-node element with LMM yield an extremely high
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F I G U R E 5 Spurious eigenmode for the
FV32 benchmark computed with Quad4R finite
elements with mesh 10× 5 using VSRMM with
C21 = 0.55 and C22 = 0.4 (left) and LMM (right)

F I G U R E 6 Convergence of eigenfrequencies for the FV32 benchmark computed with the Quad4R finite elements using VSRMM with
C21 = 0.55 and C22 = 0.4 (left) and LMM (right)

error in the lowest eigenmodes and a twice larger highest eigenfrequency w.r.t. Quad4R. This direct comparison shows
that the Quad4R with C21 = 0.55 and C22 = 0.4 provides a good trade-off for accuracy and the highest eigenfrequency and
it outperforms the three considered competing formulations. The Quad4R with C21 = 0.55 and C22 = 0.4 is used in further
benchmarks.

The convergence of the six lowest eigenfrequencies excluding the spurious eigenfrequency for the FV32 benchmark
for the standard LMM and the proposed VSRMM with C21 = 0.55 and C22 = 0.4 is shown in Figure 6. The plot setup and
the reference values are identical to the convergence plot for the Tri3R element. The eigenfrequencies show an asymptotic
convergence rate close to quadratic. The error constant for LMM is twice larger than for VSRMM with C21 = 0.55 and
C22 = 0.4.

The performance of the proposed time step estimator for the Quad4R finite element is illustrated in Table 4. The
proposed estimator provides the gap to the exact feasible time step of 21.5%, which outperforms the best of the rowwise
or the columnwise Gershgorin’s estimators with a gap of 27.6%. The best choice of the dimensionless parameter 𝜂 is close
to 2.0. Moreover, the obtained estimator can provide a speed-up of about 8.0% with respect to the feasible time step for
LMM obtained from elemental estimators.

4.3 Highly distorted mesh in 2D

In this example, the tightness of the estimators is tested for the highly distorted mesh proposed in Reference 34. The
problem setup for two element types is shown in Figure 7. Several values of the dimensionless parameter 𝜂 for the simi-
larity transformation are tested. One and two customization parameters are used for the reciprocal mass matrix of Tri3R
and Quad4R, respectively. Ostrowski’s estimator is computed with the number of sampling points ng = 21.

The performance of the proposed time step estimators is presented in Table 5. The proposed estimator outperforms
the best of the rowwise or the columnwise Gershgorin’s estimators. However, the tightness of the estimator is much more
sensitive to the choice of the dimensionless parameter 𝜂 for similarity matrix 𝜂 for meshes with Tri3R and Quad4R. The
mesh with Quad4R requires values below 0.3 to get any speed-up compared to the model with LMM. This illustrates that
an alternative selection of 𝜂 (uniform in mesh or nonuniform) is needed for nonregular meshes.
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T A B L E 4 Comparison of the estimated time steps for the FV32 benchmark, C21 = 0.83, C22 = 0.12

Relative tightness 𝚫test
crit

∕𝚫tVSRMM
crit

Relative improvement Speed-up

Use of S 𝜼 Row Gersh. Col. Gersh. Ostrowski’s
𝚫tO

crit
−max(𝚫tGR

crit
,𝚫tGC

crit
)

𝚫tVSRMM
crit

𝜷opt 𝚫tO
crit

∕𝚫tLMM
crit

No – 0.433 0.358 0.698 26.5% 0.35 0.959

Yes 1.2 0.724 0.666 0.774 1.0% 0.50 1.065

Yes 2.4 0.631 0.658 0.785 12.7% 0.80 1.080

Yes 4.8 0.504 0.493 0.758 24.7% 0.70 1.033

Yes 7.2 0.411 0.430 0.721 29.1% 0.65 0.990

Yes 9.6 0.381 0.360 0.672 29.1% 0.65 0.924

Note: Mesh: 10× 5 Quad4R elements. The exact critical time step for VSRMM is ΔtVSRMM
crit = 35.26 μs. The reference elemental value of the

critical time step for LMM is ΔtLMM
crit = 25.65 μs using exact local eigenfrequencies.

F I G U R E 7 Setup for the highly
distorted meshes with Tri3R (above) and
Quad4R (below)

E = 210 e + 3

ν = 0 .3

ρ = 7 .81e − 9

plane strain case

all dimensions in mm

T A B L E 5 Comparison of the estimated time steps for the highly distorted mesh example

Relative tightness 𝚫test
crit

∕𝚫tVSRMM
crit

Relative improvement Speed-up

C21 C22 𝜼 Row Gersh. Col. Gersh. Ostrowski’s
𝚫tO

crit
−max(𝚫tGR

crit
,𝚫tGC

crit
)

𝚫tVSRMM
crit

𝜷opt 𝚫tO
crit

∕𝚫tLMM
crit

Tri3R 0.81 0.0 1.0 0.239 0.336 0.684 34.8% 0.35 1.23

0.81 0.0 2.0 0.173 0.239 0.612 37.3% 0.35 1.10

0.81 0.0 4.0 0.124 0.170 0.522 35.2% 0.45 0.94

Quad4R 0.55 0.4 0.15 0.502 0.336 0.734 23.2% 0.45 1.16

0.55 0.4 0.3 0.374 0.244 0.651 27.7% 0.45 1.03

0.55 0.4 0.6 0.272 0.175 0.564 29.2% 0.50 0.89

0.55 0.4 1.2 0.195 0.125 0.487 29.1% 0.50 0.77

0.83 0.0 0.15 0.519 0.345 0.735 21.6% 0.45 1.13

0.83 0.0 0.3 0.386 0.251 0.680 29.4% 0.45 1.05

0.83 0.0 0.6 0.280 0.180 0.602 32.7% 0.45 0.94

0.83 0.0 1.2 0.201 0.128 0.522 32.1% 0.45 0.81

Note: The reference elemental value of the critical time step for LMM are ΔtLMM
crit = 10.3 ns and ΔtLMM

crit = 29.2 ns for Tri3R and Quad4R, respectively.
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F I G U R E 8 History of
displacement uy of the tip of the tapered
membrane under an abrupt load
computed with Tri3R element with
mesh 10× 5

x

z

y

E = 1500

ν = 0 .25

ρ = 1

F I G U R E 9 Setup for a cantilever beam modeled with Tet4R finite elements.6

Dimensions: lx × ly × lz = 1× 1× 10

4.4 Transient problem for a tapered membrane with Tri3R

Consider a transient problem based on the FV32 NAFEMS benchmark modeled with Tri3R elements and a mapped mesh
10× 5 elements. The motion due to an abrupt load of F = 10, 000 N in y-direction applied at the right upper corner node is
studied at the first 0.1 s, which corresponds to 4.5 periods of the first frequency of the structure. Zero initial displacements
and velocities are assumed. All solutions are obtained with the central difference method with a time step being 90% of
the feasible value. The feasible time step is obtained by the proposed approach with ng = 21 and 𝜂 = 2.0 and elemental
estimates for VSRMM and LMM, respectively. The reference solution is obtained with an overkill mesh 64× 32 elements
with the Tri3 using the lumped mass matrix.

The time history of the displacement in y−direction at the location of the applied force is compared in Figure 8. The
VSRMM with C21 = 0.66 and C21 = 0.95 needs 3% and 21% less time steps than the LMM, respectively. These numbers of
time steps are in good agreement with the ratios of the highest eigenfrequencies (global estimates) given in Table 1. The
VSRMM with C21 = 0.66 yields results very close to the reference solution. The results with LMM are less accurate. Least
accurate results are obtained for the VSRMM with C21 = 0.95. These result are in good agreement with the accuracy of
the first mode presented in Table 1.

4.5 Sze’s beam with Tet4R

The next example considers a beam with square cross-section discretized with 12 tetrahedral elements Tet4R.
The problem setup is shown in Figure 9. Quadrature rule with 15 points by Felippa47 is used for the
computation of the stiffness matrix and the reciprocal mass matrix. The stiffness matrix is computed via hybrid-stress
formulation with 18 stress modes by Sze.6 Ostrowski’s estimator is computed with the number of sampling points ng = 21.

The results for the tightness of the estimators are given in Table 6. The performance of the estimator is less sensitive to
𝜂 than in the previous examples. Values in the range [2..6] are acceptable. The obtained estimate can provide a speed-up
of 11.5% with respect to the feasible time step for LMM obtained from elemental estimators. Similar performance for the
compatible-strain formulation of the stiffness matrix are obtained.

5 DISCUSSION

The proposed construction of variationally scaled reciprocal mass matrices for elements with Allman’s rotation meets
requirements (M1–M5) stated in the introduction. First, the formulation preserves translational inertia and it is assem-
blable from the local matrices. Second, the number of nonzero entries of the proposed VSRMM is less than for CMM
due to diagonal inertia for the rotary part and decoupled terms between translational and rotary parts. Third, the feasible
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T A B L E 6 Comparison of the estimated time steps for Sze beam modeled with Tet4R elements, C21 = 0.99

Relative tightness 𝚫test
crit

∕𝚫tVSRMM
crit

Relative improvement Speed-up

𝜼 Row Gersh. Col. Gersh. Ostrowski’s
𝚫tO

crit
−max(𝚫tGR

crit
,𝚫tGC

crit
)

𝚫tVSRMM
crit

𝜷opt 𝚫tO
crit

∕𝚫tLMM
crit

1.0 0.428 0.554 0.723 16.9% 0.25 1.077

2.0 0.509 0.714 0.746 3.2% 0.20 1.113

4.0 0.572 0.698 0.748 5.0% 0.20 1.115

6.0 0.599 0.683 0.738 5.5% 0.20 1.100

8.0 0.614 0.670 0.727 5.7% 0.80 1.083

Note: The exact critical time step for VSRMM is ΔtVSRMM
crit = 8.385 ⋅ 10−3. The reference elemental value of the critical time step for LMM is

ΔtLMM
crit = 5.623 ⋅ 10−3 using exact local eigenfrequencies.

time step computed with the proposed nodal time step estimator is larger than for LMM for considered examples. Spe-
cial instances of VSRMM can also provide more accurate lowest eigenfrequencies then LMM, for example, Tri3R with
C21 = 0.66 and Quad4R with C21 = 0.55 and C21 = 0.4. Finally, the construction uses a minimal number of free parameters:
two for the quadrilateral and one for triangle and tetrahedron.

The series of numerical examples illustrates correctness of the novel construction. Potential speed-up with
respect to LMM is between 8% and 23%, which is considered as a moderate success. Partially, it is explained
by the used elemental time step estimate for LMM that computes the exact highest local eigenfrequency
and provides tighter result that the standard one, for example, based on Courant–Friedrich–Levy criterion.
Courant–Friedrich–Levy estimate was not possible to apply due to missing reliable reference for a characteristic length of
the element.

Second-order convergence rate is obtained for lowest eigenfrequencies for LMM and proposed VSRMM. This is in
agreement with the fact that the elements with Allman’s rotations use truncated quadratic polynomials. The special
instances of VSRMM mentioned above improve the error constant by a factor two w.r.t. one for LMM. An additional
feature of the elements with Allman’s rotations is presence of spurious modes, which is shown in various benchmarks
with LMM and VSRMM. The spurious modes possess fish scale and chevron patterns of deformation for triangular and
quadrilateral elements, respectively. They can be neglected because it is difficult to activate them with the standard load
cases.

The proposed estimator for a feasible time step meets requirements (T1–T3). First, the estimator is conservative
because it has a solid basis in Ostrowski’s circle theorem. Second, the estimator uses absolute sum in row and col-
umn of the special matrix constructed from VSRMM and the stiffness matrix. Therefore, it is a local estimator using
nodal information only. Moreover, Ostrowski’s circle theorem includes Gershgorin’s circle theorem as a special case,
thus the novel estimator always improves the best of rowwise and columnwise Gershgorin’s estimates. In most of the
considered examples, this improvement is by 5%–15% relative to the exact feasible time step. To reach this improve-
ment, usage of 11 to 21 grid points for exponents in the Ostrowski’s estimator is proposed. Third, the tightness for
elements with Allman’s rotations is additionally increased by a diagonal similarity transformation that takes into
account mismatch of physical units for nodal displacements and Allman’s rotations. This similarity transformation uses
only one dimensionless parameter 𝜂 and local geometrical information from the mesh. Optimal values of 𝜂 for reg-
ular meshes is about two. However, an example with highly distorted mesh indicates that low values of 𝜂 should be
used to get desirable tightness or even nonuniform values for different nodes may be applied. This issue should be
investigated further.

The starting point for the proposed estimator for the feasible time step is an unsymmetric eigenvalue problem (14).
Alternatively, a symmetric reduction of the problem can be exploited as suggested in Reference 34. This reduction requires
Cholesky decomposition of the reciprocal mass matrix with C◦ =LTL and it leads to a symmetric eigenvalue problem
with the same spectrum

(A − 𝜆iI)𝝋i = 0 with 𝜆i = 𝜔2
i and A = LTKL. (35)

Each entry of the matrix has now the correct physical unit of m2/s2. Therefore, Gershgorin’s estimate can be directly
applied and similarity transformation from Fan’s trick may be avoided here. The estimate is not considered for two
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following reasons. First, preliminary tests showed that it leaves a larger gap to the exact eigenvalue in comparison with
the proposed estimator. Second, the additional overhead for computing and storing of Cholesky decomposition is much
higher than for storing the matrix products in the proposed estimator.

6 CONCLUSIONS

In this article, a construction of variationally scaled reciprocal mass matrices for elements with Allman’s rotations
and a novel estimator for feasible time step have been presented. The proposed construction uses a variational
approach for displacement DOF’s and an algebraic construction with diagonal values for Allman’s rotation. This
construction is assemblable from local matrices and can be included in a standard finite element code. Eigenvalue
benchmarks prove good accuracy of the lowest eigenfrequencies and a moderate speed-up with respect to LMM.
Both LMM and VSRMM exhibit spurious eigenmodes in the lower range of the spectrum for small values of the
stiffness stabilization parameter. The proposed time step estimate is based on Ostrowski’s circle theorem and a
diagonal similarity transformation. This combination proves to be extremely useful for elements with Allman’s rota-
tions. The conservativeness of the proposed estimator is confirmed by all examples with regular as well as highly
distorted meshes.

Possible future steps include extensions of the feasible time step estimators to systems with penalty contact and damp-
ing, like Rayleigh damping. The standard central difference scheme reduces the stability limit for activated penalty contact
pairs and increasing critical damping ratio.48 Furthermore, the similarity transformation for distorted meshes may get an
alternative construction.
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APPENDIX A. SELECTION OF ROTARY INERTIA FOR LUMPED MASS MATRIX

Different strategies are available for computation of rotary inertia for LMM in case of element with Allman’s rotations.
Common approaches group around equation

mLMM
𝜃,jj = 𝛼∫Ωe

𝜌NT
𝜃,jN𝜃,j dV (A1)

and differ in selected value of the scaling parameter 𝛼. Uniform values in the complete mesh and values adjusted at
each element are possible. In the context of dispersion minimization, a uniform value of 𝛼 = 1 is used for the scal-
ing parameter.49 Unfortunately, this value restricts the critical time step significantly. An opposite approach is proposed
in Reference 16, where the value is increased until the critical time step of the element with Allman’s rotations is
equal to critical time-step of the equal-sized low-order element. These value destroy accuracy of the lowest eigenmodes
as reported in Reference 17. A compromise value of 5

4
is used here uniformly. It improves the critical time step by

approximately 10% w.r.t. 𝛼 = 1 and preserves the accuracy in the lowest modes. Table A1 illustrates the influence of the
scaling parameter 𝛼 on the highest frequency for single elements with different shapes. Two main observation can be
deduced from it. First, bad aspect ratios lead to relatively high eigenfrequencies w.r.t. equal-sized low order element. Sec-
ond, reduction of the eigenfrequencies from 45% to 71% is achieved with 𝛼 = 5

4
for all shapes w.r.t. the base quadratic

element.

APPENDIX B. TRANSFORMATION MATRICES FOR TRI3R AND QUAD4R ELEMENTS

Allman-type interpolation is defined by a transformation matrix from the shape function of the base quadratic element,
see Equation (1). 4-node tetrahedron Tet4R uses the transformation matrix given by Sze in Reference 6. It is not repro-
duced here for space reasons. Triangular element Tri3R uses the transformation matrix given by Allman in Reference 2
with

T A B L E A1 Influence of the scaling parameter of rotary inertia on the maximum frequency of elements with
Allman’s rotations

Tri3R for shapes Quad4R for shapes

𝜶

1.00 1.41 (0.40) 1.51 (0.40) 2.31 (0.61) 1.29 (0.36) 1.91 (0.51) 1.23 (0.32) 1.32 (0.34)

1.25 1.30 (0.36) 1.36 (0.36) 2.10 (0.55) 1.18 (0.33) 1.76 (0.47) 1.14 (0.29) 1.23 (0.32)

1.50 1.21 (0.34) 1.30 (0.34) 1.95 (0.51) 1.11 (0.31) 1.66 (0.44) 1.08 (0.28) 1.18 (0.30)

1.75 1.15 (0.32) 1.26 (0.33) 1.84 (0.48) 1.05 (0.29) 1.57 (0.42) 1.04 (0.27) 1.14 (0.29)

Note: The relative numbers w.r.t. equal-sized low order element and the base quadratic element (in brackets) are given.
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 Tri3R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 1∕2 0 0 0 1∕2 0
0 1 0 0 0 0 0 1∕2 0 0 0 1∕2
0 0 1 0 0 0 1∕2 0 1∕2 0 0 0
0 0 0 1 0 0 0 1∕2 0 1∕2 0 0
0 0 0 0 1 0 0 0 1∕2 0 1∕2 0
0 0 0 0 0 1 0 0 0 1∕2 0 1∕2
0 0 0 0 0 0 −y21∕8 x21∕8 0 0 y13∕8 −x13∕8
0 0 0 0 0 0 y21∕8 −x21∕8 −y32∕8 x32∕8 0 0
0 0 0 0 0 0 0 0 y32∕8 −x32∕8 −y13∕8 x13∕8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B1)

where the differences between nodal coordinates are defined with xij = xi − xj and yij = yi − yj. Ordering of the local degrees
of freedom follows the ordering of nodes giving first all displacements and continued by Allman’s rotations, for example,
[ux1,uy1,ux2, · · · ,uyx, 𝜃z1, 𝜃z2, 𝜃z3]. The quadrilateral element Quad4R relies on the transformation matrix given by Sze in
Reference 10 with

 Quad4R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 1∕2 0 0 0 0 0 1∕2 0
0 1 0 0 0 0 0 0 0 1∕2 0 0 0 0 0 1∕2
0 0 1 0 0 0 0 0 1∕2 0 1∕2 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1∕2 0 1∕2 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1∕2 0 1∕2 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1∕2 0 1∕2 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1∕2 0 1∕2 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1∕2 0 1∕2
0 0 0 0 0 0 0 0 −y21∕8 x21∕8 0 0 0 0 y14∕8 −x14∕8
0 0 0 0 0 0 0 0 y21∕8 −x21∕8 −y32∕8 x32∕8 0 0 0 0
0 0 0 0 0 0 0 0 0 0 y32∕8 −x32∕8 −y43∕8 x43∕8 0 0
0 0 0 0 0 0 0 0 0 0 0 0 y43∕8 −x43∕8 −y14∕8 x14∕8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B2)

APPENDIX C. SPURIOUS ZERO-ENERGY MODES AND ASSOCIATED STABILIZATION
MATRICES

Spurious zero-energy modes were identified in early developments for the finite element with Allman’s rotations, for
example, one for triangular and quadrilateral element.2,10 These modes reed

𝝓Tri3R
1 =

[
0 0 0 0 0 0 1 1 1

]
, 𝝓

Quad4R
1 =

[
0 0 0 0 0 0 0 1 1 1 1

]
. (C1)

Complete set of four spurious zero-energy modes for tetrahedral elements which were given by Sze in Reference 6 read

𝝓Tet4R
1 =

[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x21 y21 z21 x31 y31 z31 x41 y41 z41

]
, (C2)

𝝓Tet4R
2 =

[
0 0 0 0 0 0 0 0 0 0 0 0 x21 y21 z21 0 0 0 −x32 −y32 −z32 −x42 −y42 −z42

]
,

(C3)
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𝝓Tet4R
3 =

[
0 0 0 0 0 0 0 0 0 0 0 0 x31 y31 z31 x32 y32 z32 0 0 0 −x43 −y43 −z43

]
,

(C4)

𝝓Tet4R
4 =

[
0 0 0 0 0 0 0 0 0 0 0 0 x41 y41 z41 x42 y42 z42 x43 y43 z43 0 0 0

]
, (C5)

where the differences between nodal coordinates are defined as in a previous subsection with xij = xi − xj, yij = yi − yj and
zij = zi − zj. Stabilization of the stiffness matrix and the consistent mass matrix is performed for all elements according to
Sze6 for all nZEM zero energy modes

Kstab = 𝛾1GV
nZEM∑
j=1

𝝓T
j 𝝓j, Mstab = 𝛾2𝜌V

nZEM∑
j=1

𝝓T
j 𝝓j. (C6)


