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A well-defined silica-supported cationic W imido alkylidene was prepared through surface organometallic
chemistry. This catalyst shows preferential activity towards α- over internal olefins, which is atypical for W-based
catalysts, but consistent with the strong σ-donating ability of the NHC ancillary ligand. Complementing the
studies on tungsten-based d0 metathesis catalysts, the silica-supported cationic W imido alkylidene displays the
highest activity among W imido catalysts for α-olefins and shows improved selectivity for this class of olefins
compared to Mo-based catalysts.
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Introduction

Alkene metathesis is a robust and atom-economic
synthetic method for the creation of carbon-carbon
double bonds; it has thus found ample use in both
academia and industry.[1–3] Over the last decades,
substantial efforts have been put in developing
efficient molecular catalysts,[4–15] but immobilized
analogs have received increasing attention because of
their benefits for process intensification[16,17] and their
improved performance with the development of well-
defined supported systems, mostly prepared through
surface organometallic chemistry (SOMC).[18–23] SOMC,
a molecular approach to generate well-defined hetero-
geneous catalysts, in which the surface is exploited as
a ligand to covalently anchor molecular complexes,

has been particularly successfully employed for the
preparation of silica-supported Schrock-type metathe-
sis catalysts of the general formula [(�SiO)
M(E)(=CHR)(X)] (M=Mo or W, E=NR or O), that display
high activity, selectivity and stability with perform-
ances often surpassing those of their homogeneous
counterparts (Scheme 1).[24–33] Yet, these metathesis
catalysts display pronounced reactivity differences
between terminal versus internal olefins, that depend
on the metal and the σ-donation ability of the X and E
ligands. For example, increased activity in the meta-
thesis of internal olefins is observed for weaker σ-
donating X-ligands in supported metathesis catalysts
bearing a donating imido ligand.[26,28,31] In contrast,
the metathesis of α-olefins proceeds more efficiently
with increasing σ-donor properties of the X-
ligands;[30,31] the latter has been associated with the
destabilization of the parent off-cycle metallacyclobu-
tane, which can be formed during the metathesis of α-
olefins as a consequence of the formation of
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ethylene.[27,34] In this regard, W-based metathesis
catalysts are significantly less active than their Mo
analogs for the metathesis of α-olefins owing to their
generally more stable metallacyclobutanes.[35] The
incorporation of a strong, neutral, σ-donating N-
heterocyclic carbene (NHC) ligand in a tetracoordi-
nated cationic species has emerged as a solution to
boost the activity in the metathesis of α-olefins.[34,36,37]

Noteworthy, the supported cationic W oxo alkylidene
NHC complex (X=NHC)–[(�SiO)W(=O)(NHC)(=CHR)]+

[B(3,5-(CF3)2C6H3)4]
� – not only showed very high

activity, but also appeared to be remarkably stable,
reaching TONs >1 million in the metathesis of
propene under flow conditions.

With the emergence of cationic W imido alkylidene
species with stabilizing NHC ligands,[12] we decided to
evaluate whether or not it would be possible to boost
the activity of W imido catalysts towards α-olefins,
which have so far shown comparably poor catalytic
activity towards these substrates.

Results and Discussion

The representative complex 1 was grafted on silica
partially dehydroxylated at 700 °C (SiO2-700), yielding
the corresponding supported species 1@SiO2
(Scheme 2).

Elemental analysis showed a tungsten loading of
1.34 wt% that corresponds to 0.07 mmol [W]/g, in
agreement with solution NMR quantification of the
remaining molecular precursor in solution after reac-

tion with silica. Both data show that grafting takes
place on ca. 30% of the surface silanols, consistent
with the IR data: IR spectroscopy shows that, while a
large amount of isolated silanols associated with the
band at 3747 cm� 1 are consumed upon grafting
(Figure S11), a broad absorption band around
3500 cm� 1 appears along with CH stretching bands
observed between 2800 and 3200 cm� 1. These bands
are consistent with the presence of unreacted OH
groups interacting with the ligands of the grafted
tungsten site. An additional band is observed at
2276 cm� 1, indicating the coordination of pivalonitrile
to the grafted tungsten sites as observed in the
molecular precursor. 1H magic angle spinning NMR
spectra of 1@SiO2 show a proton resonance at
12.4 ppm, associated with the alkylidene proton (Fig-
ure S9).[12] Additional resonances at 1.7 ppm can be
attributed to methyl protons of pivalonitrile, the neo-
phylidene, NHC and imido moieties, while the reso-
nance at 4.5 ppm corresponds to the protons on the
tertiary carbon of the isopropyl moieties. In order to
fully characterize the supported catalyst, the 13C-
enriched silica-supported neopentylidene compound
1*@SiO2 was prepared. The

13C cross-polarization MAS
spectrum shows a signal at δ=299.2 ppm, further
confirming the presence of the alkylidene ligand
(Figure S13). An extra signal at 78 ppm is also
observed, consistent with the formation of small
amounts of [(�SiO)W(NAriPr)(NHC)(CH2tBu)(OAr)(L)]

+

[B(3,5-(CF3)2C6H3)4]
� , likely due to the partial protona-

tion of the alkylidene.[26,38,39]

The catalytic activity (turnover frequency recorded
after 3 min–TOF3min) of both molecular and immobi-
lized complexes was evaluated in the homometathesis
of two prototypical substrates, namely cis-4-nonene,
yielding cis/trans 4-octenes and 5-decenes and 1-
nonene, yielding cis/trans-8-hexadecenes and
ethylene, respectively (Table 1, see Supporting Informa-
tion for more details). It is noteworthy that the activity
of 1@SiO2 towards α-olefins is higher than for internal

Scheme 1. a) General route describing the grafting of alkyli-
denes. b) Development of well-defined silica-supported tung-
sten alkylidenes since 2013 (state of the art) and this work.

Scheme 2. Immobilization of 1 on silica-700 (NHC=1,3-diiso-
propylimidazol-2-ylidene; OAr=OC6F5; L= tBuCN).
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ones (16 min� 1 vs. 5 min� 1), while the molecular
catalyst 1 performs slightly better than the grafted
counterpart with the same trend (52 min� 1 vs.
28 min� 1). In contrast to their molybdenum analogs,[37]

where induction periods of up to 10 h could be
observed with cis-4-nonene, the tungsten-based cata-
lysts are readily active. Furthermore, no isomerization
products, commonly found with molybdenum-based
catalysts, could be observed during the metathesis of
1-nonene.[31]

Note that, in sharp contrast, these catalysts are less
active towards internal olefins than the corresponding
neutral silica-supported W imido alkylidenes (Figure 1).
This is in line with the reactivity trend built over the
years, namely stronger σ-donating X ligand decrease
metathesis activity towards internal olefins, possibly
because of the over destabilization of the correspond-
ing substituted metallacyclobutane intermediates.

Conclusions

Overall, introducing an NHC-ligand in cationic tung-
sten imido alkylidene catalysts significantly boosts
their activity towards α-olefins, thus opening new
possibilities for W-based imido catalysts due to their
significantly higher selectivity (no olefin isomerization)
than their molybdenum analogs. We are currently
exploring such systems, in view of the tunability of the
imido and NHC ligands.
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