
Citation: Beura, C.P.; Wolters, J.;

Tenbohlen, S. Application of

Pathfinding Algorithms in Partial

Discharge Localization in Power

Transformers. Sensors 2024, 24, 685.

https://doi.org/10.3390/s24020685

Academic Editor: Wilson Q. Wang

Received: 30 November 2023

Revised: 12 January 2024

Accepted: 19 January 2024

Published: 21 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Application of Pathfinding Algorithms in Partial Discharge
Localization in Power Transformers
Chandra Prakash Beura , Jorim Wolters and Stefan Tenbohlen *

Institute of Power Transmission and High Voltage Technology (IEH), University of Stuttgart,
70569 Stuttgart, Germany; cpbeura@gmail.com (C.P.B.); jorimwolters@gmail.com (J.W.)
* Correspondence: stefan.tenbohlen@ieh.uni-stuttgart.de

Abstract: The introduction of artificial intelligence (AI) to ultra-high-frequency (UHF) partial dis-
charge (PD) monitoring systems in power transformers for the localization of PD sources can help
create a robust and reliable system with high usability and precision. However, training the AI with
experimental data or data from electromagnetic simulation is costly and time-consuming. Further-
more, electromagnetic simulations often calculate more data than needed, whereas, for localization,
the signal time-of-flight information is the most important. A tailored pathfinding algorithm can
bypass the time-consuming and computationally expensive process of simulating or collecting data
from experiments and be used to create the necessary training data for an AI-based monitoring
system of partial discharges in power transformers. In this contribution, Dijkstra’s algorithm is used
with additional line-of-sight propagation algorithms to determine the paths of the electromagnetic
waves generated by PD sources in a three-dimensional (3D) computer-aided design (CAD) model of a
300 MVA power transformer. The time-of-flight information is compared with results from experi-
ments and electromagnetic simulations, and it is found that the algorithm maintains accuracy similar
to that of the electromagnetic simulation software, with some under/overestimations in specific
scenarios, while being much faster at calculations.

Keywords: power transformer; partial discharge; UHF; localization; condition monitoring;
pathfinding algorithm

1. Introduction

Power transformers are the nodes that regulate our electric grids, without which
modern society could not thrive in the way it has been doing for the past century. The
importance of these transformers is not to be underestimated. Though small transformers
failing is nothing but a nuisance, the prospect of failure in larger power transformers, like
the ones referred to in this paper, must be actively avoided. With these transformers being
the feed-in points for parts of cities and entire towns, catastrophic failure in one of them
could mean the halting of modern society for the subsequent part of the grid. For this
reason, monitoring of power transformers is an integral part of their design and functioning.
One of the key reasons for transformer failure is partial discharge (PD) activity; hence, such
activity must be detected and localized as soon as possible [1].

Various methods are available for PD monitoring, such as the conventional electrical
method based on IEC 60270 [2]. However, online monitoring methods such as the ultra-
high-frequency (UHF) method also have the advantage of localizing the PD sources [3–5].
One widely used localization method is the time difference of arrival (TDOA) of the
electromagnetic signals at the UHF sensors. However, there is an inaccuracy in localization
because of the complex propagation paths inside power transformers [6].

With the advent of artificial intelligence (AI), there is the possibility of improving and
automating PD localization and differentiating between different PD types [7]. Localization
is a type of regression problem where the TDOA information obtained from four sensors

Sensors 2024, 24, 685. https://doi.org/10.3390/s24020685 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24020685
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3044-9311
https://orcid.org/0000-0001-6610-6965
https://doi.org/10.3390/s24020685
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24020685?type=check_update&version=1

Sensors 2024, 24, 685 2 of 14

can be given as input to an artificial neural network (ANN) to predict the x, y, and z
coordinates of the PD source [8,9]. Additionally, localization errors from TDOA can also be
corrected by using multiple radial basis function (RBF) neural networks [10]. Determining
the type of PD, however, is a classification problem, and ANNs can be used to determine
the type of PD from data such as phase-resolved PD (PRPD) patterns [11,12].

However, such failure detection and prevention methods rely on significant amounts of
data to be trained [13]. These training data are difficult to come by, requiring vast amounts
of time to be collected experimentally or otherwise requiring the setup of computationally
expensive and laborious simulations to create such data [14]. In any case, gathering the
data needed for these machine learning models to succeed is a strenuous endeavor, often
accompanied by inaccuracies and variations depending on the testing platform.

Pathfinding algorithms can also obtain the TDOA information required to localize PD
sources using ANNs. Such algorithms find the shortest route between two points and are
generally used in games for AI [15]. However, they can also be used to find the shortest
path between the PD source and the UHF sensor in a transformer [16,17].

This paper explores the possibility of utilizing pathfinding algorithms to quickly
create the aforementioned data while being accurate enough for artificial intelligence to
use the data created. Research has been conducted on applying a time difference of arrival
(TDOA) database for localization [17]. First, a pathfinding algorithm is used on a three-
dimensional simulation model to calculate the TDOA of the signals from PD sources to
UHF sensors. Next, the TDOA information and the PD coordinates are stored in a database.
Subsequently, the TDOA database is used as a lookup table for TDOAs measured during
operation, thus predicting the coordinates of the PD sources. However, the research so far
has certain limitations and scope for improvement. First, using Dijkstra’s algorithm [18]
for pathfinding adds inaccuracy over longer propagation distances [19], as explained in
the following sections. Additionally, the simulation and experiments are carried out in test
tanks or smaller transformers. Most importantly, the database cannot be used to localize
PD occurring inside the winding. In this contribution, an improved pathfinding algorithm
is developed and tested using a three-dimensional computer-aided design (CAD) model
of a 300 MVA transformer, focusing on resolving the inability to localize PD occurring
inside the winding. The accuracy of the developed algorithm is then compared to the
experimental and simulation results obtained from the transformer and electromagnetic
simulations, respectively.

2. Experimental and Simulation Setup

In a previously conducted experiment, 24 holes were drilled into a 300 MVA, 420 kV
transmission transformer with tank dimensions of 900 cm × 400 cm × 260 cm. In each of
these holes, wire monopole antennas with a length of 10 cm each were installed. Holes
were drilled on the front, rear, and side tank walls to allow for complete coverage of the
tank. The oil was drained from the tank to drill holes, and testing was carried out in an
air-filled tank [20].

The positions of all monopole antennas are shown in Figure 1. A total of 4 antennas
were used as receiving sensors, and 21 were used as artificial PD sources, resulting in
84 measurements. In this case, following the best practices of sensor positioning and
according to the results of previous research [21], sensors 6, 13, 22, and 23 were used
as receivers, and the rest of the sensors were used as signal sources. An artificial pulse
generator [22] was used to generate the excitation pulse, as shown in Figure 2, which was
sent to the source monopole antenna. The pulse has a short rise time of approximately
80 ps and an impulse width of approximately 200 ps with a bandwidth of approximately
1 GHz. The time-domain waveform of the input pulse was recorded by connecting the
output of the pulse generator to a channel of a digital storage oscilloscope (DSO), and the
remaining channels of the DSO were used to record the signals from the receivers. More
information about the experiment can be found in [20].

Sensors 2024, 24, 685 3 of 14

Sensors 2024, 24, x FOR PEER REVIEW 3 of 15

channels of the DSO were used to record the signals from the receivers. More information
about the experiment can be found in [20].

(a) (b)

(c) (d)

Figure 1. Sensor placement of all 24 sensors utilized in the experiment, the simulation, and the test-
ing of the algorithm on the (a) front tank wall; (b) left tank wall; (c) rear tank wall; (d) right tank
wall [20].

(a) (b)

Figure 2. Artificial PD pulse in the (a) time-domain; (b) frequency-domain (FFT) [20].

A simulation model of the transformer has been validated in previous research
[20,23]. The model was built in CST Microwave Studio to study the signal propagation
and attenuation characteristics. The simulation was conducted in an air-filled tank, with
the input pulse shown in Figure 2, to maintain parity with the measurements. Individual
discs of the HV winding were modeled so that PD occurring in each disc of the HV wind-
ing could be localized. The monopoles were positioned at the same locations as in the
experiment.

3. Pathfinding Algorithm
The pathfinding procedure consists of multiple steps. First, the three-dimensional

simulation model of the transformer is voxelized to create the voxel grid required for the
pathfinding algorithms. A voxel can be considered to be the three-dimensional equivalent
of a pixel. The voxelization of the input 3D models resulted in difficulty, especially given
the size of the models introduced. Voxelizing a 3D environment is a complex process, and

Figure 1. Sensor placement of all 24 sensors utilized in the experiment, the simulation, and the testing
of the algorithm on the (a) front tank wall; (b) left tank wall; (c) rear tank wall; (d) right tank wall [20].

Sensors 2024, 24, x FOR PEER REVIEW 3 of 15

channels of the DSO were used to record the signals from the receivers. More information
about the experiment can be found in [20].

(a) (b)

(c) (d)

Figure 1. Sensor placement of all 24 sensors utilized in the experiment, the simulation, and the test-
ing of the algorithm on the (a) front tank wall; (b) left tank wall; (c) rear tank wall; (d) right tank
wall [20].

(a) (b)

Figure 2. Artificial PD pulse in the (a) time-domain; (b) frequency-domain (FFT) [20].

A simulation model of the transformer has been validated in previous research
[20,23]. The model was built in CST Microwave Studio to study the signal propagation
and attenuation characteristics. The simulation was conducted in an air-filled tank, with
the input pulse shown in Figure 2, to maintain parity with the measurements. Individual
discs of the HV winding were modeled so that PD occurring in each disc of the HV wind-
ing could be localized. The monopoles were positioned at the same locations as in the
experiment.

3. Pathfinding Algorithm
The pathfinding procedure consists of multiple steps. First, the three-dimensional

simulation model of the transformer is voxelized to create the voxel grid required for the
pathfinding algorithms. A voxel can be considered to be the three-dimensional equivalent
of a pixel. The voxelization of the input 3D models resulted in difficulty, especially given
the size of the models introduced. Voxelizing a 3D environment is a complex process, and

Figure 2. Artificial PD pulse in the (a) time-domain; (b) frequency-domain (FFT) [20].

A simulation model of the transformer has been validated in previous research [20,23].
The model was built in CST Microwave Studio to study the signal propagation and attenu-
ation characteristics. The simulation was conducted in an air-filled tank, with the input
pulse shown in Figure 2, to maintain parity with the measurements. Individual discs of the
HV winding were modeled so that PD occurring in each disc of the HV winding could be
localized. The monopoles were positioned at the same locations as in the experiment.

3. Pathfinding Algorithm

The pathfinding procedure consists of multiple steps. First, the three-dimensional
simulation model of the transformer is voxelized to create the voxel grid required for the
pathfinding algorithms. A voxel can be considered to be the three-dimensional equivalent
of a pixel. The voxelization of the input 3D models resulted in difficulty, especially given
the size of the models introduced. Voxelizing a 3D environment is a complex process,
and the Python libraries utilized proved either too slow or inaccurate. For this reason,
a voxelizer created by Arjan Westerdiep [24], which includes a web app for testing, was
chosen for utilization. This voxelizer created accurate representations of the 3D models
inserted in a timely and computationally cheap manner. The variety of export options for
the voxelated environment enabled the testing of various formats to create the utilized

Sensors 2024, 24, 685 4 of 14

environment, of which, ultimately, a .txt file was utilized, which allowed for quick imports
and exports due to its small size and unparalleled ease of use. The resulting voxelized
3D models corresponded to an accurate representation of the power transformer with
1 cm × 1 cm × 1 cm sized voxels spanning the shell of each closed object in the space.

As a result of the voxelization process, the obtained array contains closed but hollow
objects voxelized to the desired degree. The shell of these bodies is marked with a different
value than the rest of the array, so a Boolean array is output with “True” values for the shell
and “False” values for the empty space. All occupied cells will be practically impassable
for the pathfinding algorithm, corresponding to cells that the signal waves cannot traverse.
Because the algorithm will try to find a path from each of the starting points (in this case,
one of the four sensors) towards every ending point (in this case, every “free” voxel not
marked as impassable), all paths searching for an ending voxel inside of a shell will be
caught in a loop trying to find a path towards an unreachable end. In the same way, if a
signal is started from within a shell trying to find a path out, the path will bounce inside
the shell until it has traversed all possible elements inside the shell.

To solve this problem and account for the fact that the signal waves cannot originate
inside impassable objects but rather on their surfaces, a small algorithm was designed to
“fill” these empty shells with impassable voxels. This algorithm takes the same approach
as the expanding wave that Dijkstra’s algorithm uses to expand the open list. This wave
starts in a known empty voxel inside the power transformer’s tank but outside every
other component and expands towards the neighboring voxels. Once a neighboring voxel
containing a “full” value is found, the wave will not expand beyond that neighbor. This
results in a mapping wave traversing every voxel inside the power transformer’s tank and
bouncing off every wall it encounters. Voxels touched by this expanding wave correspond
to the voxels containing oil inside the power transformer’s tank, and voxels not marked as
oil cannot be traversed by PD signal waves. The wave algorithm then marks every non-oil
voxel as impassable, converting the aforementioned shells into solids. The voxelized form
of the 3D model is shown in Figure 3. The individual disks of the HV winding are modeled
in each winding block. Hence, the time-of-flight information for PD sources inside the
winding blocks can also be calculated.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 15

the Python libraries utilized proved either too slow or inaccurate. For this reason, a
voxelizer created by Arjan Westerdiep [24], which includes a web app for testing, was
chosen for utilization. This voxelizer created accurate representations of the 3D models
inserted in a timely and computationally cheap manner. The variety of export options for
the voxelated environment enabled the testing of various formats to create the utilized
environment, of which, ultimately, a .txt file was utilized, which allowed for quick imports
and exports due to its small size and unparalleled ease of use. The resulting voxelized 3D
models corresponded to an accurate representation of the power transformer with 1 cm ×
1 cm × 1 cm sized voxels spanning the shell of each closed object in the space.

As a result of the voxelization process, the obtained array contains closed but hollow
objects voxelized to the desired degree. The shell of these bodies is marked with a different
value than the rest of the array, so a Boolean array is output with “True” values for the
shell and “False” values for the empty space. All occupied cells will be practically impass-
able for the pathfinding algorithm, corresponding to cells that the signal waves cannot
traverse. Because the algorithm will try to find a path from each of the starting points (in
this case, one of the four sensors) towards every ending point (in this case, every “free”
voxel not marked as impassable), all paths searching for an ending voxel inside of a shell
will be caught in a loop trying to find a path towards an unreachable end. In the same
way, if a signal is started from within a shell trying to find a path out, the path will bounce
inside the shell until it has traversed all possible elements inside the shell.

To solve this problem and account for the fact that the signal waves cannot originate
inside impassable objects but rather on their surfaces, a small algorithm was designed to
“fill” these empty shells with impassable voxels. This algorithm takes the same approach
as the expanding wave that Dijkstra’s algorithm uses to expand the open list. This wave
starts in a known empty voxel inside the power transformer’s tank but outside every other
component and expands towards the neighboring voxels. Once a neighboring voxel con-
taining a “full” value is found, the wave will not expand beyond that neighbor. This re-
sults in a mapping wave traversing every voxel inside the power transformer’s tank and
bouncing off every wall it encounters. Voxels touched by this expanding wave correspond
to the voxels containing oil inside the power transformer’s tank, and voxels not marked
as oil cannot be traversed by PD signal waves. The wave algorithm then marks every non-
oil voxel as impassable, converting the aforementioned shells into solids. The voxelized
form of the 3D model is shown in Figure 3. The individual disks of the HV winding are
modeled in each winding block. Hence, the time-of-flight information for PD sources in-
side the winding blocks can also be calculated.

Figure 3. Voxelized 3D model of the transformer. Figure 3. Voxelized 3D model of the transformer.

In the next step, the starting point for the pathfinding algorithm is specified, i.e., the
coordinates of the UHF sensor, e.g., sensor 6. Then, an algorithm developed by Amanatides
and Woo is used to determine the voxels that have a direct line-of-sight to the starting point.
Although not impossible, and possibly even being a more accurate approximation to the

Sensors 2024, 24, 685 5 of 14

true traveled distances, the usage of curves within a voxelized environment makes the
calculations and implementation in code very difficult. Using straight lines to approximate
a curve is, in a basic way, very similar to the approximation made by an integration.
However, using straight lines in an equidistant grid is extremely easy and fast, especially
with the introduction of Amanatides and Woo’s raytracing algorithm [25], as shown in
Figure 4a. With the help of this fast voxel-traversing algorithm, a new concept can be
introduced: the “Line of Sight”. A line-of-sight is a simple binary check of whether a
traversed voxel can “see” another traversed voxel, meaning that a straight line between both
voxels is uninterrupted by obstacle voxels. This simple line-of-sight check is implemented
by the Amanatides and Woo algorithm, which can quickly traverse every voxel along
a straight line that connects two arbitrary points in the space without excluding small
interactions between edges of the voxels and the traversed line. The optimization that
this algorithm brings to the table is not to be underestimated, yet its process is simple.
Based on Amanatides and Woo’s algorithm, a raytracing algorithm was coded as a simple
Boolean line-of-sight check, returning True if the line-of-sight exists and False if it does not.
A line-of-sight exists if the raytracing algorithm can finish traversing from start to finish
without encountering a voxel that is marked as an obstacle.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 15

In the next step, the starting point for the pathfinding algorithm is specified, i.e., the
coordinates of the UHF sensor, e.g., sensor 6. Then, an algorithm developed by Ama-
natides and Woo is used to determine the voxels that have a direct line-of-sight to the
starting point. Although not impossible, and possibly even being a more accurate approx-
imation to the true traveled distances, the usage of curves within a voxelized environment
makes the calculations and implementation in code very difficult. Using straight lines to
approximate a curve is, in a basic way, very similar to the approximation made by an
integration. However, using straight lines in an equidistant grid is extremely easy and
fast, especially with the introduction of Amanatides and Woo’s raytracing algorithm [25],
as shown in Figure 4a. With the help of this fast voxel-traversing algorithm, a new concept
can be introduced: the “Line of Sight”. A line-of-sight is a simple binary check of whether
a traversed voxel can “see” another traversed voxel, meaning that a straight line between
both voxels is uninterrupted by obstacle voxels. This simple line-of-sight check is imple-
mented by the Amanatides and Woo algorithm, which can quickly traverse every voxel
along a straight line that connects two arbitrary points in the space without excluding
small interactions between edges of the voxels and the traversed line. The optimization
that this algorithm brings to the table is not to be underestimated, yet its process is simple.
Based on Amanatides and Woo’s algorithm, a raytracing algorithm was coded as a simple
Boolean line-of-sight check, returning True if the line-of-sight exists and False if it does
not. A line-of-sight exists if the raytracing algorithm can finish traversing from start to
finish without encountering a voxel that is marked as an obstacle.

(a) (b)

Figure 4. (a) True shortest path (in green) using Amanatides and Woo’s algorithm; (b) a represen-
tation of the line-of-sight check, where points obscured by the cube will not be visible from the
origin [26].

In the same way, a line-of-sight does not exist if the raytracing algorithm traverses
through a voxel previously marked as an obstacle. The ray-casting algorithm takes the
input start and end voxels and proceeds to implement Amanatides and Woo’s algorithm
but with the added condition of checking the traversed voxels for their material. If an
impassable voxel is encountered along the ray, the raytracing algorithm breaks early and
marks the line-of-sight between these voxels as False. Otherwise, if it finds the ending
voxel, the resulting line-of-sight exists. A visual representation of the line-of-sight check
is shown in Figure 4b.

Subsequently, Dijkstra’s algorithm is used for pathfinding to the voxels that do not
have a direct line-of-sight to the starting point, and the resultant path is the baseline on
which optimizations are made since Dijkstra’s algorithm adds an error over long propa-
gation distances. Dijkstra’s algorithm is one of the prime algorithms used in computer

Figure 4. (a) True shortest path (in green) using Amanatides and Woo’s algorithm; (b) a representation
of the line-of-sight check, where points obscured by the cube will not be visible from the origin [26].

In the same way, a line-of-sight does not exist if the raytracing algorithm traverses
through a voxel previously marked as an obstacle. The ray-casting algorithm takes the
input start and end voxels and proceeds to implement Amanatides and Woo’s algorithm
but with the added condition of checking the traversed voxels for their material. If an
impassable voxel is encountered along the ray, the raytracing algorithm breaks early and
marks the line-of-sight between these voxels as False. Otherwise, if it finds the ending
voxel, the resulting line-of-sight exists. A visual representation of the line-of-sight check is
shown in Figure 4b.

Subsequently, Dijkstra’s algorithm is used for pathfinding to the voxels that do not
have a direct line-of-sight to the starting point, and the resultant path is the baseline
on which optimizations are made since Dijkstra’s algorithm adds an error over long
propagation distances. Dijkstra’s algorithm is one of the prime algorithms used in computer
science for finding the shortest path between nodes in a graph. Due to its long existence,
it has frequently been used as one of the bases on which to create further algorithms. It
is named after its creator, Edsger W. Dijkstra [18], a Dutch computer scientist, and was
published in 1959.

Sensors 2024, 24, 685 6 of 14

The algorithm begins at a designated starting node and iteratively explores its neigh-
boring nodes until it reaches the target node, while keeping track of the shortest distance
traveled to each node. It assigns a tentative distance value to every node in the graph,
which starts at infinity for all unexplored nodes. The starting node counts as an already
explored node; therefore, its calculated distance to itself is zero. The algorithm then expands
its calculation onto the neighboring unexplored nodes and assigns a tentative distance to
each one. Its specific workings can be visualized as an expanding wave that starts at the
starting node and travels away, marking every node visited and calculating the distance
traveled along the graph to reach them. In reality, this happens with the help of an “open
list”, which contains every node at the edge of the expansion. When the algorithm has
finished assigning tentative distances to the nodes in the open list, a new expansion step
is initiated. The algorithm traverses to its neighbors for every node in the expansion list,
calculating the distance traveled to these new nodes and adding them to the open list. If
an already expanded node is found to have a shorter path if traveled via a different path
than the one already established, its tentative distance to the start and the distances of all
other nodes connected to it are updated. In this way, Dijkstra’s algorithm always finds the
shortest possible path to every node in the graph [27].

One of the strengths of Dijkstra’s algorithm is that it does not rely on a grid to perform
its calculations but can also work based on a graph or a list of connected nodes. Also,
a key feature is its ability to work with graphs with different weights. The connections
between the nodes are called edges, which possess a weight, a cost that must be paid to
travel through that connection. One notable limitation of his pathfinding algorithm is that
it cannot work with negative values because it would end up causing an infinite loop. The
weights of the edges, also called vertices, must always be non-negative values.

Reiterating the prime example of pathfinding algorithms, Google Maps assigns a
different weight to each street based on the time it takes to traverse it and the distance
traveled along that street. Closed streets are allocated a value of infinity because they
cannot be traversed, while free and large streets receive small values, making them the
preferred method of traveling. The time complexity of a pathfinding algorithm is measured
as a function of its edges and vertices (or nodes), which makes algorithm comparisons
possible and not reliant on a certain type or size of graph. Dijkstra’s algorithm works with
a time complexity of O(|E| + |V|log|V|), where |E| is the number of edges and |V| is
the number of vertices in the graph [28].

Path smoothing is performed on the baseline to increase accuracy. Path smoothing
is carried out in two steps: first, a binary jump search algorithm determines the farthest
voxels between which a direct line of sight exists. Now, the algorithm will start the search
at voxel n + 2. If the line-of-sight check returns True, the next check will be performed
at voxel n + 4. After encountering a blocked line-of-sight, the process is analogous to the
previous example, where the jumps are halved until the longest straight line along the
path is found. This new search algorithm always converges in 2 × ceil(log2(l)) with l ∈ N
steps or, in the case that the exception is found where all line-of-sight checks fail, in
2 × ceil(log2(l)) + 1 with l ∈ N steps with l being the length of the path to be traversed until
an obstructed line-of-sight is found. This new method allows the algorithm to quickly
find the longest straight unobstructed lines between voxels in convoluted spaces and skip
unnecessary voxels in open unobstructed spaces, making it the preferred method for this
use case. A representation of the binary jump search is shown in Figure 5.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 15

Figure 5. Binary jump search algorithm.

Next, the Amanatides and Woo algorithm determines the shortest path between
these voxels, resulting in a more accurate path between the starting point and destination.
Additionally, the process of pathfinding is parallelized to increase the speed. The com-
plete process flowchart is shown in Figure 6.

Figure 6. Process flowchart of the pathfinding algorithm.

4. Results
4.1. Optimizations for Increased Speed

First, a line-of-sight test was performed for each of the four receiving sensors; namely,
sensors 6, 13, 22, and 23. Table 1 displays the number of voxels within the line of sight of
each sensor and the corresponding number of hidden voxels. The preprocessing step to
find the field of view for each sensor not only increases the accuracy over Dijkstra’s algo-
rithm, but Table 1 shows that it also saves significant time compared to running full path-
finding and optimization for the full array.

It is important to note that the full simulation was an approximation, an average time
for several tests where only one slice of the array was traversed instead of the whole power
transformer’s array. This allowed for randomized and targeted tests for the slices with the
longest runtimes and those with the shortest.

It is also important to highlight that in this test, the pathfinding was performed with
an unoptimized version of Dijkstra’s algorithm, which explored all nodes anew for every
new target passed to it. This is not to be underestimated, given the number of nodes ex-
panded each time. The unoptimized version of Dijkstra refers to the implementation of
Dijkstra for the array without the postprocessing to the output path. This path was
smoothed afterward to receive a much more accurate distance to the target. In addition,
the field of view was not left unoptimized, meaning it did not utilize Amanatides and
Woo’s algorithm for its completion but utilized a shorter and faster version of the line-of-
sight algorithm to save time and show the potential for optimization. The line-of-sight
algorithm utilized for the field-of-view creation was implemented fully in Python, with-
out utilizing any other programming language and being written in a Pythonic manner.

Figure 5. Binary jump search algorithm.

Sensors 2024, 24, 685 7 of 14

Next, the Amanatides and Woo algorithm determines the shortest path between
these voxels, resulting in a more accurate path between the starting point and destination.
Additionally, the process of pathfinding is parallelized to increase the speed. The complete
process flowchart is shown in Figure 6.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 15

Figure 5. Binary jump search algorithm.

Next, the Amanatides and Woo algorithm determines the shortest path between
these voxels, resulting in a more accurate path between the starting point and destination.
Additionally, the process of pathfinding is parallelized to increase the speed. The com-
plete process flowchart is shown in Figure 6.

Figure 6. Process flowchart of the pathfinding algorithm.

4. Results
4.1. Optimizations for Increased Speed

First, a line-of-sight test was performed for each of the four receiving sensors; namely,
sensors 6, 13, 22, and 23. Table 1 displays the number of voxels within the line of sight of
each sensor and the corresponding number of hidden voxels. The preprocessing step to
find the field of view for each sensor not only increases the accuracy over Dijkstra’s algo-
rithm, but Table 1 shows that it also saves significant time compared to running full path-
finding and optimization for the full array.

It is important to note that the full simulation was an approximation, an average time
for several tests where only one slice of the array was traversed instead of the whole power
transformer’s array. This allowed for randomized and targeted tests for the slices with the
longest runtimes and those with the shortest.

It is also important to highlight that in this test, the pathfinding was performed with
an unoptimized version of Dijkstra’s algorithm, which explored all nodes anew for every
new target passed to it. This is not to be underestimated, given the number of nodes ex-
panded each time. The unoptimized version of Dijkstra refers to the implementation of
Dijkstra for the array without the postprocessing to the output path. This path was
smoothed afterward to receive a much more accurate distance to the target. In addition,
the field of view was not left unoptimized, meaning it did not utilize Amanatides and
Woo’s algorithm for its completion but utilized a shorter and faster version of the line-of-
sight algorithm to save time and show the potential for optimization. The line-of-sight
algorithm utilized for the field-of-view creation was implemented fully in Python, with-
out utilizing any other programming language and being written in a Pythonic manner.

Figure 6. Process flowchart of the pathfinding algorithm.

4. Results
4.1. Optimizations for Increased Speed

First, a line-of-sight test was performed for each of the four receiving sensors; namely,
sensors 6, 13, 22, and 23. Table 1 displays the number of voxels within the line of sight
of each sensor and the corresponding number of hidden voxels. The preprocessing step
to find the field of view for each sensor not only increases the accuracy over Dijkstra’s
algorithm, but Table 1 shows that it also saves significant time compared to running full
pathfinding and optimization for the full array.

Table 1. Impact of the time saved with the implementation of the field-of-view preprocessing for the
entire power transformer.

Sensor Voxels within the
Field of View

Voxels within the
Field of View as a

Percentage of Total
Voxels to Traverse

Number of
Hidden Voxels

Time Taken for
Field-of-View

Calculation

Approximate Time
Saved against
Unoptimized

Dijkstra’s Algorithm

Sensor 6 12,216,151 17.241% 58,639,051 4525.13 s
(75.4 min) 2450 h

Sensor 13 8,904,782 12.56% 60,528,490 7688.4 s
(128 min) 1786 h

Sensor 22 19,568,884 27.618% 51,286,318 2891.8 s
(48.2 min) 3924 h

Sensor 23 11,704,256 16.518% 59,150,946 4157.8 s
(69.3 min) 2347 h

It is important to note that the full simulation was an approximation, an average time
for several tests where only one slice of the array was traversed instead of the whole power
transformer’s array. This allowed for randomized and targeted tests for the slices with the
longest runtimes and those with the shortest.

It is also important to highlight that in this test, the pathfinding was performed with
an unoptimized version of Dijkstra’s algorithm, which explored all nodes anew for every

Sensors 2024, 24, 685 8 of 14

new target passed to it. This is not to be underestimated, given the number of nodes
expanded each time. The unoptimized version of Dijkstra refers to the implementation
of Dijkstra for the array without the postprocessing to the output path. This path was
smoothed afterward to receive a much more accurate distance to the target. In addition, the
field of view was not left unoptimized, meaning it did not utilize Amanatides and Woo’s
algorithm for its completion but utilized a shorter and faster version of the line-of-sight
algorithm to save time and show the potential for optimization. The line-of-sight algorithm
utilized for the field-of-view creation was implemented fully in Python, without utilizing
any other programming language and being written in a Pythonic manner.

One last important note on this test is that all algorithms were run on one thread of
the previously mentioned processor, creating room for improvement via multithreading,
which depends on the type and model of the processor used. In this case, allowing for
preprocessing not only yielded the most accurate results possible for the nodes within the
field of view but saved a significant amount of time compared to the full unoptimized
implementation of Dijkstra’s algorithm. The impact of these optimizations is shown
in Table 1.

4.2. Speed Comparison against Simulation and Experiment

Calculation speed is an important factor for data retrieval; with faster calculations,
more data can be produced and processed. The speed comparison presented here can only
be applied to the algorithm and the simulation, for the time to run an experiment is variable
and dependent on several external factors. Thus, only the algorithm and the simulation
can be compared, both running until completion on the same setup.

It is important to note that the simulation does not only calculate distances, as is the
case with the algorithm, but distances are the only data being extracted from it for this use
case. One run for the simulation consists of selecting one source and simulating a PD UHF
wave, which will expand until it reaches the sensors. For this, the sensors must be modeled
in 3D space and imported as part of the transformer. This way, the PD from one source can
be traced towards as many sensors as modeled. This simulation takes, on average, 4.5 days
to complete one run.

In addition, the algorithm traces a path from all free voxels towards one sensor. This
process constitutes one run for the algorithm. The algorithm has to be run as many times
as there are UHF sensors, i.e., four in this case. Each run for the algorithm takes, on
average, 2.5 days, which means 10 days for all four sensors to compare their speed to the
simulation directly.

Although the simulation seems to be faster, i.e., 4.5 days compared to 10 days of
processing, the simulation only traces the path between one source and the four sensors.
However, the algorithm traces the path from all available free voxels, where each voxel
is a possible PD source, towards the four sensors, thus resulting in an overall speedup in
comparison to the simulation.

4.3. Accuracy Comparison against Simulation and Experiment

Finally, the accuracy of the measurements obtained from all three methods can be
compared. This section compares the results from utilizing four sensors as signal receivers
and the rest as signal emitters. The total travel distance was measured for each sensor
and each measuring method. Due to the high level of information available, the following
results are presented in terms of total traveled distance in cm, as opposed to time differences
of arrival, as is common in these kinds of measurements. The results can be converted
into time of flight by multiplying the distance by the speed of light in the corresponding
dielectric medium. Due to the homogeneity of the medium and, therefore, its properties
throughout the traveled space, all signals travel at the same speed, making the traversed
paths of equal cost throughout the transformer. Therefore, and because of the ease of
visualization of the traveled distance and traversed path, the total traveled distances and
their differences will be utilized to assert the accuracies of the given methods.

Sensors 2024, 24, 685 9 of 14

Figure 7 shows the results of these measurements for all given receiving sensors. As
can be seen, discrepancies between all methods are present, but the trends of the signal
propagation observed in the experimental data are well replicated in the algorithm and
simulation. The electromagnetic simulation carried out in CST can over- or underestimate
propagation distance when compared to the experiment. Meanwhile, the algorithm, most
probably due to the low level of precision of the underlying voxelized model, namely
voxels of 1 cm3, measured shorter distances overall than the simulation and experiment.
All Euclidian distance measurements by the algorithm have travel distances shorter or
equal to the ones measured by the simulation and the experiment, averaging −1.48 cm,
proving that the algorithm possesses an accurate measuring capability and the voxelized
environment is a good representation of the 3D model of the transformer in question. Three
different types of signal propagation were considered to compare sections more precisely:
a signal with a line-of-sight distance (direct propagation), a signal originating from the
front of the transformer and traversing to the back or vice versa (indirect propagation), and
finally, a signal traversing the whole transformer on its longest side (lateral propagation).
As can be seen in Figure 7 and comparing with the utilized sensors, all signals received
from sensors 1–9 and traveling towards sensor 6, signals originating from sensors 10–14
and traveling towards sensor 13, and the combinations 21–22 and 23–24 have a direct line
of sight, and these are direct propagations. Signal combinations 22–23, 22–24, 21–23, and
21–24 are lateral propagations, spanning the largest distance between signal emitter and
receiver. The rest of the signals are categorized as indirect propagations, which must follow
a path through the winding blocks between the front and rear tank walls of the transformer.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 15

Figure 7. Comparison of travel distances for the pathing from the given sensors towards the respec-
tive receiving sensor for the algorithm, simulation, and experiment.

As can be observed from receiving sensor 6, the first few points on the chart have a
good correlation and low discrepancy among the algorithm, simulation, and experiment,
which happens with direct propagation, as seen with combinations 23–24 and 21–22. Lat-
eral propagation, in the case of combination 22–23, displays an inverse behavior, with the
algorithm overestimating the travel distances instead of underestimating them the way it
generally does. This behavior can easily be explained by the inaccuracy of the underlying
path taken (in this case, pathing with a traditional pathfinding algorithm), which can
measure the same distance when taking two different paths but with one of them having
a longer true distance. This inaccuracy is more pronounced the longer the path is, thus
leading to overestimations of distance. Similarly, the inaccuracies from indirect propaga-
tions can be explained by the increased complexity of the path taken, as shown in the chart
for sensor 13 in Figure 7. Increased inaccuracy can be observed, especially for signals from
sources 3 to 9, where the algorithm measures a much smaller travel distance than the other
two methods.

Figure 8 compares the results of the algorithm and simulation to the results of the
experiment and to each other by showing the difference in distance traveled by the signals
from each source across the three methods. On comparing the algorithm with the simula-
tion, as previously observed, the travel distances from the algorithm are almost always
shorter than the ones from the simulation. On average, the distances traveled by the sig-
nals in the algorithm are 48.58 cm shorter. Additionally, the standard deviation of the
distance difference is 𝑠𝑡𝑑𝑒𝑣Algo-Sim = 55.81 cm.

To
ta

l d
is

ta
nc

e
tra

ve
lle

d
by

 s
ig

na
l in

 c
m

Signal-emitting sensor in order of increasing line-of-sight distance from receiver

Figure 7. Comparison of travel distances for the pathing from the given sensors towards the respective
receiving sensor for the algorithm, simulation, and experiment.

As can be observed from receiving sensor 6, the first few points on the chart have a
good correlation and low discrepancy among the algorithm, simulation, and experiment,

Sensors 2024, 24, 685 10 of 14

which happens with direct propagation, as seen with combinations 23–24 and 21–22.
Lateral propagation, in the case of combination 22–23, displays an inverse behavior, with
the algorithm overestimating the travel distances instead of underestimating them the
way it generally does. This behavior can easily be explained by the inaccuracy of the
underlying path taken (in this case, pathing with a traditional pathfinding algorithm),
which can measure the same distance when taking two different paths but with one of
them having a longer true distance. This inaccuracy is more pronounced the longer the
path is, thus leading to overestimations of distance. Similarly, the inaccuracies from indirect
propagations can be explained by the increased complexity of the path taken, as shown
in the chart for sensor 13 in Figure 7. Increased inaccuracy can be observed, especially for
signals from sources 3 to 9, where the algorithm measures a much smaller travel distance
than the other two methods.

Figure 8 compares the results of the algorithm and simulation to the results of the
experiment and to each other by showing the difference in distance traveled by the signals
from each source across the three methods. On comparing the algorithm with the simu-
lation, as previously observed, the travel distances from the algorithm are almost always
shorter than the ones from the simulation. On average, the distances traveled by the signals
in the algorithm are 48.58 cm shorter. Additionally, the standard deviation of the distance
difference is stdevAlgo-Sim = 55.81 cm.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 15

Figure 8. Comparison of travel distance differences for the pathing of the algorithm and simulation
with respect to the experiment and each other. The y = 0 line signifies no difference in signal travel
distance between each method.

The experiment is the closest data to the real-world scenario. However, measurement
errors can still occur and the results should not be taken as absolute or perfect measure-
ments. The lack of stability of the algorithm’s data can be seen in the extremes, where the
algorithm always presents the largest absolute distance difference. When comparing the
sum of the differences from all sensors, the standard deviation and the average deviation
presented by the algorithm are 45% higher than the simulation; namely, 𝑠𝑡𝑑𝑒𝑣Algo-Exp =
81.34 cm and 𝑠𝑡𝑑𝑒𝑣Sim-Exp = 56.14 cm. However, the average of the algorithm’s data, at 21.28
cm, is much lower than the average of the simulation’s data, at 70.4 cm. This discrepancy
can also be explained by the algorithm’s extremes, where correcting these leads to a lower
standard deviation and average deviation than the simulation, which is precisely the case
for sensors 22 and 23 when correcting for the extreme values in their data.

Next, the different PD sources were localized using the TDOA method with infor-
mation obtained from the algorithm, experiment, and simulation, and the results are
shown in Table 2. Additionally, the localization error was calculated using the distance
formula, where the distance d between two points A (x1, y1, z1) and B (x2, y2, z2) is given
by the following formula [29]. 𝑑 = (𝑥 − 𝑥) + (𝑦 − 𝑦) + (𝑧 − 𝑧) (1)

It can be observed that the algorithm has a lower average localization error of 107.81
cm compared to the other two methods, which have average localization errors of more
than 180 cm. The reason for the difference in the average localization error could be at-
tributed to the larger deviation observed in the algorithm when compared to the experi-
ment and simulation in the case of sensor 13, as shown in Figures 7 and 8. Another reason
could be the fact that the signals consistently travel shorter distances in the algorithm than
in the other two methods.

The algorithm was the least accurate in localizing PD source 21, with a localization
error of 308.34 cm, whereas the experiment and simulation were least accurate in

D
iff

er
en

ce
 in

 s
ig

na
l t

ra
ve

l d
is

ta
nc

e
in

 c
m

Signal-emitting sensor in order of increasing line-of-sight distance from receiver

Figure 8. Comparison of travel distance differences for the pathing of the algorithm and simulation
with respect to the experiment and each other. The y = 0 line signifies no difference in signal travel
distance between each method.

The experiment is the closest data to the real-world scenario. However, measure-
ment errors can still occur and the results should not be taken as absolute or perfect
measurements. The lack of stability of the algorithm’s data can be seen in the extremes,
where the algorithm always presents the largest absolute distance difference. When com-

Sensors 2024, 24, 685 11 of 14

paring the sum of the differences from all sensors, the standard deviation and the aver-
age deviation presented by the algorithm are 45% higher than the simulation; namely,
stdevAlgo-Exp = 81.34 cm and stdevSim-Exp = 56.14 cm. However, the average of the algo-
rithm’s data, at 21.28 cm, is much lower than the average of the simulation’s data, at
70.4 cm. This discrepancy can also be explained by the algorithm’s extremes, where correct-
ing these leads to a lower standard deviation and average deviation than the simulation,
which is precisely the case for sensors 22 and 23 when correcting for the extreme values in
their data.

Next, the different PD sources were localized using the TDOA method with informa-
tion obtained from the algorithm, experiment, and simulation, and the results are shown
in Table 2. Additionally, the localization error was calculated using the distance formula,
where the distance d between two points A (x1, y1, z1) and B (x2, y2, z2) is given by the
following formula [29].

Table 2. Localization errors of the algorithm, experiment, and simulation.

PD Source Actual
Coordinates

Localization from
Algorithm

Localization from
Experiment

Localization from
Simulation

Coordinates Error
in cm Coordinates Error

in cm Coordinates Error
in cm

1 685, −48.75, 270 699.36, −129.83, 328.05 100.75 694.94, −187.16, 331.35 151.72 699.13, −188.51, 299.32 143.5
2 740, −48.75, 270 788.06, −129.08, 283.97 94.64 758.02, −198.32, 361.33 176.17 792.53, −245.48, 382.51 232.64
3 830, −48.75, 270 866.66, −120.18, 309.9 89.66 853.51, −274.78, 431.81 278.97 887.69, −246.7, 406.23 247.13
4 685, −48.75, 211 700.78, −119.7, 250.65 82.79 710.77, −202.28, 323.67 192.18 730.4, −185.76, 151.72 156.03
5 740, −48.75, 211 761.83, −116.6, 246.06 79.43 753.83, −220.39, 357.39 226.01 770.93, −274.1, 402.86 297.57 2

7 685, −48.75, 142 718.55, −60.82, 106.35 50.42 1 698.66, −227.69, 358.45 281.17 709.93, −247.35, 209.17 211.12
8 740, −48.75, 142 799.7, −7.26, 87.52 90.84 755.2, −207.35, 336.41 251.36 792.16, −204.99, 138.38 164.76
9 830, −48.75, 142 834.83, −100.5, 170.46 59.26 843.44, −256.96, 422.1 349.27 2 885.59, −216.57, 294.19 233.28

10 718, 208.75, 207 816.6, 261.32, 98.74 155.58 795.59, 294.55, 143.37 132.03 1 760.37, 325.05, 147.98 137.13
11 718, 208.75, 110 759.21, 290.12, 97.45 92.07 773.46, 355.12, 146.26 160.67 760.99, 318.97, 16.57 150.75
12 623, 208.75, 110 680.78, 325.18, 84.36 132.48 665.25, 330.38, 79.13 132.41 666.3, 361.68, 132.28 160.5
14 241, 208.75, 110 191.68, 264.12, 121.47 75.03 94.69, 378.74, 169.3 232 115.87, 359.31, 133.03 197.12
21 0.05, 118.5, 333 −38.46, 15.61, 44.89 308.34 2 −103.68, 104.89, 44.34 307.03 −95.78, 127.39, 279.39 110.17 1

24 949.95, 111.5, 225 1039.87, 100.32, 187.68 98 1075.33, 160.99, 164.68 147.67 1134.01, 183.15, 141.11 214.59
Average error in cm 107.81 215.62 189.73
1 Minimum localization error; 2 Maximum localization error.

d =

√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2 (1)

It can be observed that the algorithm has a lower average localization error of 107.81 cm
compared to the other two methods, which have average localization errors of more than
180 cm. The reason for the difference in the average localization error could be attributed
to the larger deviation observed in the algorithm when compared to the experiment and
simulation in the case of sensor 13, as shown in Figures 7 and 8. Another reason could be
the fact that the signals consistently travel shorter distances in the algorithm than in the
other two methods.

The algorithm was the least accurate in localizing PD source 21, with a localization
error of 308.34 cm, whereas the experiment and simulation were least accurate in localizing
PD sources 9 and 5, respectively, with localization errors of 349.27 cm and 297.57 cm,
respectively. It is also apparent on analyzing each coordinate of the calculated locations
that the x coordinates in all three methods are more accurate than the y and z coordinates.
The calculated positions of the PD sources obtained from all three methods are plotted
with the actual positions in Figure 9a, and the increased error along the y and z axes can
be observed. Additionally, the localization errors of the PD sources obtained from each
method are plotted in Figure 9b, along with the average localization error of each method.
The lower error of the algorithm can be clearly observed.

Sensors 2024, 24, 685 12 of 14

Sensors 2024, 24, x FOR PEER REVIEW 12 of 15

localizing PD sources 9 and 5, respectively, with localization errors of 349.27 cm and
297.57 cm, respectively. It is also apparent on analyzing each coordinate of the calculated
locations that the x coordinates in all three methods are more accurate than the y and z
coordinates. The calculated positions of the PD sources obtained from all three methods
are plotted with the actual positions in Figure 9a, and the increased error along the y and
z axes can be observed. Additionally, the localization errors of the PD sources obtained
from each method are plotted in Figure 9b, along with the average localization error of
each method. The lower error of the algorithm can be clearly observed.

(a) (b)

Figure 9. (a) Coordinates of PD sources calculated from the algorithm, experiment, and simulation
against the actual coordinates; (b) localization error for each PD source obtained from each method
along with the average error.

Z
C

oo
rd

in
at

e
in

 c
m

Figure 9. (a) Coordinates of PD sources calculated from the algorithm, experiment, and simulation
against the actual coordinates; (b) localization error for each PD source obtained from each method
along with the average error.

5. Conclusions and Outlook

With the importance of power transformer PD monitoring and the rise of AI appli-
cations, it is necessary to quickly generate large amounts of data while being accurate.
Although powerful and precise, current software cannot process the amount of data an
AI needs for its training and validation sets. This paper introduces the idea of utilizing
pathfinding algorithms to create TDOA data for use in training ANNs.

While it is true that the utilization of voxelized 3D environments in combination
with traditional pathfinding algorithms introduces vast amounts of inaccuracies, when
compared to real-world measurements, the simple introduction of Amanatides and Woo’s
fast voxel-traversing algorithm helps to minimize these problems. Its utilization can not
only be within the context of line-of-sight paths but can also smooth and adjust the path
given by a traditional pathfinding algorithm.

The algorithm was tested on a voxelized 3D model of a 300 MVA transformer, and
the results of the proposed algorithm were also compared with the results obtained from
electromagnetic simulations and experiments. It was found that while the algorithm still
over/underestimates certain paths, its accuracy is comparable to the accuracy of the simu-
lation and, in some cases, even surpasses it. Comparisons to the data from the experiment
and the simulation reveal that the algorithm in its current state can provide precise enough
data in most situations. However, the spread of its data points must still be optimized.
Overall, the algorithm has sufficient accuracy to reproduce the experimental results up to
certain propagation distances, with the accuracy decreasing as the distance increases.

The localization error of the algorithm was compared with those of the experiment
and simulation, and it was observed that the algorithm is more accurate than the other two
methods. The reason for the lower localization error was the shorter distance traveled by
the signal in the algorithm.

The algorithm’s accuracy was not achieved at the expense of speed. Certain opti-
mizations and its modular design allow for even shorter runtimes. Being faster than the
simulation while having comparable accuracy, this algorithm certainly has the potential
to be useful for power transformer monitoring and may allow for AI tools to be created
for this purpose. However, the deviation from the experiment and the simulation could
be improved by using a mesh or a non-uniform grid instead of a voxelized environment.
The use of a more accurate environment would, in turn, improve the accuracy of the path’s
length by improving the algorithm’s pathing. As a result, new pathing possibilities emerge,
such as the use of curves to define the path taken around an obstacle, like a cylinder,
instead of stacking straight lines in a row. This demonstrates that improving one part of the

Sensors 2024, 24, 685 13 of 14

system could open possibilities for further improvement that were not previously available
or useful.

Author Contributions: Conceptualization, C.P.B. and J.W.; methodology, C.P.B. and J.W.; validation,
C.P.B. and J.W.; investigation, C.P.B. and J.W.; resources, C.P.B.; data curation, C.P.B. and J.W.;
writing—original draft preparation, C.P.B.; writing—review and editing, C.P.B. and S.T.; visualization,
C.P.B. and J.W.; supervision, S.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available (subject to applicable
restrictions) on request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hussain, M.R.; Refaat, S.S.; Abu-Rub, H. Overview and Partial Discharge Analysis of Power Transformers: A Literature Review.

IEEE Access 2021, 9, 64587–64605. [CrossRef]
2. CIGRÉ. Guidelines for Partial Discharge Detection Using Conventional (IEC 60270) and Unconventional Methods; CIGRÉ: Paris, France,

2016; ISBN 978-2-85873-365-1.
3. Judd, M.D.; Yang, L.; Hunter, I. Partial discharge monitoring of power transformers using UHF sensors. Part I: Sensors and signal

interpretation. IEEE Electr. Insul. Mag. 2005, 21, 5–14. [CrossRef]
4. Judd, M.D.; Yang, L.; Hunter, I. Partial discharge monitoring for power transformer using UHF sensors. Part 2: Field experience.

IEEE Electr. Insul. Mag. 2005, 21, 5–13. [CrossRef]
5. Sikorski, W.; Walczak, K.; Gil, W.; Szymczak, C. On-Line Partial Discharge Monitoring System for Power Transformers Based on

the Simultaneous Detection of High Frequency, Ultra-High Frequency, and Acoustic Emission Signals. Energies 2020, 13, 3271.
[CrossRef]

6. Chan, J.Q.; Raymond, W.J.K.; Illias, H.A.; Othman, M. Partial Discharge Localization Techniques: A Review of Recent Progress.
Energies 2023, 16, 2863. [CrossRef]

7. Lu, S.; Chai, H.; Sahoo, A.; Phung, B.T. Condition Monitoring Based on Partial Discharge Diagnostics Using Machine Learning
Methods: A Comprehensive State-of-the-Art Review. IEEE Trans. Dielect. Electr. Insul. 2020, 27, 1861–1888. [CrossRef]

8. Taha, I.B.; Dessouky, S.S.; Ghaly, R.N.; Ghoneim, S.S. Enhanced partial discharge location determination for transformer insulating
oils considering allocations and uncertainties of acoustic measurements. Alex. Eng. J. 2020, 59, 4759–4769. [CrossRef]

9. Gonçalves Júnior, A.M.; de Paula, H.; do Couto Boaventura, W. Practical partial discharge pulse generation and location within
transformer windings using regression models adjusted with simulated signals. Electr. Power Syst. Res. 2018, 157, 118–125.
[CrossRef]

10. Zhou, N.; Luo, L.; Chen, J.; Sheng, G.; Jiang, X. Error correction method based on multiple neural networks for UHF partial
discharge localization. IEEE Trans. Dielect. Electr. Insul. 2017, 24, 3730–3738. [CrossRef]

11. Barrios, S.; Buldain, D.; Comech, M.P.; Gilbert, I.; Orue, I. Partial Discharge Classification Using Deep Learning Methods—Survey
of Recent Progress. Energies 2019, 12, 2485. [CrossRef]

12. Mas’ud, A.; Albarracín, R.; Ardila-Rey, J.; Muhammad-Sukki, F.; Illias, H.; Bani, N.; Munir, A. Artificial Neural Network
Application for Partial Discharge Recognition: Survey and Future Directions. Energies 2016, 9, 574. [CrossRef]

13. Florkowski, M. Classification of Partial Discharge Images Using Deep Convolutional Neural Networks. Energies 2020, 13, 5496.
[CrossRef]

14. Nobrega, L.; Costa, E.; Serres, A.; Xavier, G.; Aquino, M. UHF Partial Discharge Location in PowerTransformers via Solution of
the Maxwell Equations in a Computational Environment. Sensors 2019, 19, 3435. [CrossRef] [PubMed]

15. Cui, X.; Shi, H. A*-based Pathfinding in Modern Computer Games. Int. J. Comput. Sci. Netw. Secur. 2011, 11, 125–130.
16. Hua, X.; Mu, H.; Zheng, Y.; Zhan, J.; Shao, X.; Jin, L.; Qian, P.; Zhang, G. A novel localization methodology for partial discharge

in power transformer considering internal structure. In Proceedings of the 22nd International Symposium on High Voltage
Engineering (ISH 2021), Hybrid Conference, Xi’an, China, 21–26 November 2021; pp. 1108–1112, ISBN 978-1-83953-605-2.

17. Xue, N.; Yang, J.; Shen, D.; Xu, P.; Yang, K.; Zhuo, Z.; Zhang, L.; Zhang, J. The Location of Partial Discharge Sources Inside Power
Transformers Based on TDOA Database with UHF Sensors. IEEE Access 2019, 7, 146732–146744. [CrossRef]

18. Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. In Edsger Wybe Dijkstra: His Life, Work, and Legacy, 1st ed.; Apt,
K.R., Ed.; ACM: New York, NY, USA, 2022; pp. 287–290. ISBN 9781450397735.

19. Suwanda, R.; Syahputra, Z.; Zamzami, E.M. Analysis of Euclidean Distance and Manhattan Distance in the K-Means Algorithm
for Variations Number of Centroid K. J. Phys. Conf. Ser. 2020, 1566, 12058. [CrossRef]

https://doi.org/10.1109/ACCESS.2021.3075288
https://doi.org/10.1109/MEI.2005.1412214
https://doi.org/10.1109/MEI.2005.1437603
https://doi.org/10.3390/en13123271
https://doi.org/10.3390/en16062863
https://doi.org/10.1109/TDEI.2020.009070
https://doi.org/10.1016/j.aej.2020.08.041
https://doi.org/10.1016/j.epsr.2017.12.013
https://doi.org/10.1109/TDEI.2017.006764
https://doi.org/10.3390/en12132485
https://doi.org/10.3390/en9080574
https://doi.org/10.3390/en13205496
https://doi.org/10.3390/s19153435
https://www.ncbi.nlm.nih.gov/pubmed/31387324
https://doi.org/10.1109/ACCESS.2019.2945893
https://doi.org/10.1088/1742-6596/1566/1/012058

Sensors 2024, 24, 685 14 of 14

20. Beura, C.P.; Beltle, M.; Wenger, P.; Tenbohlen, S. Experimental Analysis of Ultra-High-Frequency Signal Propagation Paths in
Power Transformers. Energies 2022, 15, 2766. [CrossRef]

21. Jangjoo, M.A.; Allahbakhshi, M.; Mirzaei, H.R. UHF sensors positioning on the power transformer tank to enhance the partial
discharge localization accuracy. Electr. Power Syst. Res. 2023, 218, 109174. [CrossRef]

22. BSS Hochspannungstechnik GmbH. HFIG-600 VHF/UHF High Power Impulse Generator. Available online: https://www.bss-
hochspannungstechnik.de/pdf/Datasheet%20HFIG-600.pdf (accessed on 20 February 2022).

23. Beura, C.P.; Beltle, M.; Tenbohlen, S. Attenuation of UHF Signals in a 420 kV Power Transformer Based on Experiments and
Simulation. In Proceedings of the 21st International Symposium on High Voltage Engineering; Németh, B., Ed.; Springer International
Publishing: Cham, Switzerland, 2020; pp. 1276–1285. ISBN 978-3-030-31679-2.

24. drububu.com. Online Html5 Voxelizer. Available online: https://drububu.com/miscellaneous/voxelizer/?out=obj (accessed on
23 December 2023).

25. Amanatides, J.; Woo, A. A fast voxel traversal algorithm for ray tracing. Eurographics 1987, 87, 3–10.
26. Goldstein, R.; Walmsley, K.; Bibliowicz, J.; Tessier, A.; Breslav, S.; Khan, A. Path Counting for Grid-Based Navigation. J. Artif.

Intell. Res. 2022, 74, 917–955. [CrossRef]
27. Javaid, M.A. Understanding Dijkstra Algorithm. 2013. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=

2340905 (accessed on 23 December 2023).
28. Understanding Time Complexity Calculation for Dijkstra Algorithm. Baeldung on Computer Science. 7 June 2021. Available

online: https://www.baeldung.com/cs/dijkstra-time-complexity (accessed on 23 December 2023).
29. Tabak, J. Geometry; Chelsea: New York, NY, USA, 2008; ISBN 978-0-8160-6876-0.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/en15082766
https://doi.org/10.1016/j.epsr.2023.109174
https://www.bss-hochspannungstechnik.de/pdf/Datasheet%20HFIG-600.pdf
https://www.bss-hochspannungstechnik.de/pdf/Datasheet%20HFIG-600.pdf
https://drububu.com/miscellaneous/voxelizer/?out=obj
https://doi.org/10.1613/jair.1.13544
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340905
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340905
https://www.baeldung.com/cs/dijkstra-time-complexity

	Introduction
	Experimental and Simulation Setup
	Pathfinding Algorithm
	Results
	Optimizations for Increased Speed
	Speed Comparison against Simulation and Experiment
	Accuracy Comparison against Simulation and Experiment

	Conclusions and Outlook
	References

