
Institute of Software Engineering
Software Quality and Architecture

University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Bachelor’s Thesis

Eventual Consistent Issue
Synchronisation between Gropius

and Traditional Issue Management
Systems

Christian Kurz

Course of Study: Softwaretechnik

Examiner: Prof. Dr.-Ing. Steffen Becker

Supervisor: Sandro Speth, M.Sc.

Commenced: June 21, 2023

Completed: December 21, 2023

Abstract

Context. In the development of component-based systems, often issues affect multiple components or
must reference issues of a different component, resulting in the Cross-Component Issue Management
System, Gropius being invented. Gropius needs to synchronize issues with traditional per-component
Issue Management Systems (IMSs), e.g., GitHub or Jira, to have relations between issues on different
IMS.
Problem. The existing system can currently communicate exclusively with GitHub supporting only
a limited subset of the required features. It is susceptible to duplicating issues and timeline items
potentially infinite times due to missing identifying meta information.
Objective. We provide a redesign of the Gropius Sync, designed to be modular and able to host
multiple methods of duplicate detection.
Method. We implement the new Sync Framework, adapters for GitHub and Jira as representatives
for traditional IMSs and compare different methods for duplicate prevention.
Result. We succeeded with our plans to provide a new Sync that can both sync to GitHub and Jira
and thus demonstrate the feasibility of the sync. We successfully detect and prevent most previously
found issue duplication loops.
Conclusion. The new Gropius Sync allows synchronization between multiple IMS Projects without
runaway duplication of issues.

iii

Kurzfassung

Kontext. In der Entwicklung von komponentenbasierten Systemen betreffen Issues häufig mehrere
Komponenten oder müssen auf Issues anderer Komponenten referenzieren, weshalb das komponen-
tenübergreifende Issue Management System Gropius entworfen wurde. Gropius muss Issues mit
traditionellen, komponentenspezifischen Issue Management Systemen (IMSs), wie GitHub oder
Jira, synchronisieren, um Verbindungen zwischen Issues auf verschiedenen IMS zu haben.
Problem. Das bisherige System kann ausschließlich mit GitHub kommunizieren und unterstützt
nur eine limitierte Untermenge der benötigten Funktionen. Es ist anfällig für das potenziell
unendliche duplizieren von Issues und Timeline Items (Zeitstrahlobjekten) aufgrund von fehlenden
Metainformationen.
Ziel. Wir beabsichtigen eine Neuentwicklung des Gropius Sync, welche modular ist und Dup-
likatsverhinderhung unterstützt.
Methode. Wir implementieren den neuen Sync und die Unterstützung für Adapter zu GitHub und
Jira als Repräsentanten traditioneller Issue Management Systeme und vergleichen verschiedene
Methoden der Duplikatsverhinderung.
Resultat. Wir haben erfolgreich den neuen Sync erstellt, welcher sowohl GitHub als auch Jira
ansprechen kann und damit die Möglichkeit des Syncs demonstriert. Wir können erfolgreich die
meisten bisher gefunden Duplikationsschleifen detektieren und verhindern.
Schlussfolgerung. Der neue Gropius Sync ermöglicht die Synchronisation zwischen mehreren
Projekten ohne endlose Duplizierung von Issues.

v

Contents

1 Introduction 1

2 Foundations and Related Work 3
2.1 Foundations . 3
2.2 Related work . 8

3 Concept 11
3.1 Overview of the Concept . 11
3.2 Sync . 12
3.3 Issue Replicators . 13

4 Architecture & Implementation 21
4.1 Sync Module . 21
4.2 General building blocks . 23
4.3 Incoming . 24
4.4 Outgoing . 26
4.5 Sync Adapter . 27
4.6 Dereplicator . 27

5 Evaluation 29
5.1 RQ 1: Can the Sync keep a stable copy of a project? 29
5.2 RQ 2: Can issues be synchronized between multiple Issue Management System

(IMS) with different models? . 31
5.3 RQ 3: Which issue dereplicator can work on an external open source project

without false positives? . 32
5.4 RQ 4: Can issues be identified as originating from the same issue after reducing

them to their IMS representation? . 33
5.5 Discussion . 35
5.6 Threats to Validity . 35

6 Conclusion 37
6.1 Summary . 37
6.2 Benefits . 37
6.3 Limitations . 37
6.4 Lessons Learned . 38
6.5 Future Work . 38

Bibliography 39

vii

List of Figures

2.1 One Issue on the GitHub Issue Management System. 3

3.1 Example Sync Topology. 11
3.2 Common Sync example between multiple IMSs and Gropius. 11
3.3 Abstract example showing the duplication of an issue. 12
3.4 Minimum viable model. 13
3.5 Start of an Issue Replicator. 14
3.6 Example issue marked by invasive dereplicator. 16
3.7 Identical Dereplicator. 16
3.8 Heuristical Dereplicator. 17
3.9 Temporal dereplicator can merge issues that have been the same. 18

4.1 Architecture. 21
4.2 Example issue synced from GitHub to Gropius. 22

5.1 Sync Setup. 31
5.2 Example questionable issue flow. 34

ix

List of Tables

3.1 Overview of different dereplicators. 19

xi

Acronyms

API Application Programming Interface. 1

IDE Integrated development environment. 6

IMS Issue Management System. vii

JSON JavaScript Object Notation. 7

NLP Natural language processing. 18

REST Representational state transfer. 22

SLO Service-Level Objectives. 5

TOSCA Topology and Orchestration Specification for Cloud Applications. 6

UI User interface. 31

UUID Universally Unique Identifier. 15

xiii

1 Introduction

Component-based systems can have issues that affect more than one component. But often each
component uses a different IMS to track their issues. To work with this and manage issues that
affect multiple components, the Cross-Component Issue Management System, Gropius has been
designed. As not all stakeholders can be forced to switch to Gropius, it has been designed to sync
with conventional IMS. This allows Gropius to transparently work with components that do not use
Gropius as their main IMS and even allows stakeholders to access Gropius-managed projects via
conventional IMS.

In the current Gropius codebase, a Sync is included which only supports syncing issues from and
to GitHub1. Furthermore, as it is deeply integrated with the GitHub Application Programming
Interface (API) a port to different IMS has been deemed not feasible, as it exploits the similarity of
the models of Gropius and GitHub, which makes porting it to IMS with a different model basically
a rewrite. It only supports a limited subset of the required features and can in many cases duplicate
issues and timeline items that are not intended to be duplicated. This happens due to the conceptual
loss of some meta information and can even lead to the continuous generation of duplicates.

We provide a redesign of the Gropius Sync which fixes these issues. First, we provide an IMS
agnostic core framework and module set to allow easy building of new sync adapters. Next, we will
implement two different adapters, one for Jira2 and one for GitHub using this core framework. We
only target eventual consistency, as the IMS usually have rate limits that limit how much the Sync
can even interact with the IMS forcing it to drag out operations over multiple API limitation budgets,
as well as other limitations given by the network topologies. We incorporate it into the design to
be able to work with different methods of duplicate detection, as we have found no perfect way to
recover the meta information lost when syncing to an IMS to prevent merging of different issues
or timeline items or duplication of an issue or timeline item. We implement multiple alternative
methods of duplicate detection and evaluate these, as well as the Sync itself. Our evaluation also
shows if the Sync can work with real-world data and keep stable copies of projects ready for use in
Gropius.

We will provide a framework for the rapid development of new sync adapters, two adapters, and
multiple duplicate detection modules as well as an evaluation of the abilities of the Sync as well as
the duplicate detectors. This results in a Gropius Sync that allows synchronization between multiple
IMS Projects without runaway duplication of issues.

1https://github.com/
2https://www.atlassian.com/software/jira

1

https://github.com/
https://www.atlassian.com/software/jira

1 Introduction

Thesis Structure

The full structure of the thesis is as follows:

Chapter 2 – Foundations and Related Work: Introduces Gropius as well as all other concepts
and technologies needed to understand the thesis. Furthermore, we elaborate on related work
regarding synchronization of issues between different IMS.

Chapter 3 – Concept: This chapter describes the concept of our Sync and the basics of issue
replicators.

Chapter 4 – Architecture & Implementation: We detail the architecture and implementation of
the software.

Chapter 5 – Evaluation: Here, we evaluate our framework using real-world data and multiple
constructed test cases.

Chapter 6 – Conclusion We conclude our thesis and give an overview of our results and the
remaining future work.

2

2 Foundations and Related Work

In this chapter, we introduce the foundations required for the remaining thesis in Section 2.1, and
the related work with regards to the synchronization of issues in Section 2.2.

2.1 Foundations

This section describes the foundation needed to understand the thesis. First in Section 2.1.1, we
explain what issues are and how IMSs track them. Section 2.1.2 then describes the component-based
software architecture style. The combination of both is in Section 2.1.3 and how it creates the
Gropius method can be found in Section 2.1.4 with special focus on the Sync part in Section 2.1.5.

2.1.1 Issue Management System

Issues are a typical way to manage features, bugs and quality of software in a structured, searchable
and formal manner [CV85]. An issue usually consists of at least a title, a description, a state,
like open or closed/resolved, and a list of comments [BJS+08]. All issues concerning a piece of
software are then managed in one instance of IMSs. The IMS is the software that manages, saves
and displays the issues, popular ones being Jira or integrated parts of the Version Control System,

Title

Summary

State

Labels

Added Label

Comment

State Change (close)

Timeline

[example/docs] - Sidebar category headers
aren't clickable #385

Closed FredKSchott opened this issue on Jun 11, 2021 · 1 comment

Assignees

No one assigned

Labels

help wanted

Projects

None yet

Milestone

No milestone

Development

No branches or pull requests

1 participant

withastro / astro

Code Issues 129 Pull requests 30 Actions Projects Security

New issue

FredKSchott commented on Jun 11, 2021

Sometimes you'd want the category in the sidebar to be its

own page, but that's not currently possible.

https://github.com/snowpackjs/astro/blob/main/

examples/docs/src/components/SiteSidebar.astro

Member

FredKSchott added the help wanted label

on Jun 11, 2021

FredKSchott commented

on Jun 11, 2021

Assigned to @Hanawa02! (I can't select in sidebar for

some reason, will look into that when I'm back online)

Member Author

matthewp closed this as completed in 348d829

on Jun 11, 2021

Figure 2.1: One Issue on the GitHub Issue Management System.

3

2 Foundations and Related Work

like for GitHub [AMR20]. The title of an issue is usually written by the original author and serves
as a very short summary of the affected parts and a very rough indicator of which problem is being
discussed. The title is followed by a description in which the author is supposed to describe enough
of the context to understand why the issue exists and in case of bugs contains ideally the necessary
information to find and debug the issue. While both the title and description usually have to be
filled out by the original author of the issue, the following comments can then be commented on
by people working on the project or can be written by the original author as a way to provide
further information. This usually means that the list of comments provides a discussion between
the stakeholders involved in an issue, be it developers, quality assurance or sometimes even the
consumers of the software. Ideally, at some point, this leads to an issue being solved, which is
the point where the root problem that has resulted in the issue being opened has been repaired or
otherwise made irrelevant. This should then be reflected in the state of the issues, which is at least
an indicator between open, which means that the issue is not yet unsolved and closed meaning
the issue has been solved. Another important part of a single issue is the timeline, which logs all
changes to the issue and is usually interleaved with the comments to provide context for the order
and timing in which events related to the issue have happened.

Usually, these basic features are not enough and a few common additions have become popular. The
most common additional features are labels, which are tags that can be attached to an issue and then
be searched for. Common labels are “bug” or “feature” allowing users to specifically filter for only
bugs or only feature requests. Another common feature is the mentioning of different issues which
allows one to specify other issues inside of a comment, which then puts a link the the original issue
on the timeline of the mentioned issue. This feature is usually only available inside of one IMS,
which restricts the targets that can be linked using this feature. One screenshot of an example issue
has been provided in Figure 2.1.

2.1.2 Component-Based Software

Large software cannot be a uniform substance anymore but instead consists of components [Crn03;
SGM02]. These components are usually designed before implementation and are then combined to
form the software. The components should have specified tasks and interfaces to interact with each
other [Nyg18]. Aside from bringing structure into software, components also provide a way of
splitting the software into parts which then can be worked on by multiple people or even multiple
groups. Another feature of software components is the ability to share them over multiple projects,
allowing to save time and thus development costs.

In recent years there has been a trend to even outsource the development of some components to
other companies [MK11]. This results in being able to have more specialized teams working on the
components and further fostering the interchangeability of the components.

If taken further and making each component into its own application the system architecture becomes
microservice architecture, meaning that the system is composed of of many interacting standalone
applications [RMBZ21; Thö15]. This greatly improves scalability on cloud platforms as it allows
to just start of more instances running the saturated services thus improving overall performance.
Another important improvement of the development of microservices is that a clear separation is
enforced by the concept [TLPJ17]. Also as each team is concerned with one microservice they can
more independently develop and test the chance of accidentally implementing features intended for

4

2.1 Foundations

other parts of the system is reduced significantly. The same independence also allows teams to use
their preferred tech stack to use previous knowledge instead of having to train in the use of different
technologies.

Another feature of component-based software is the ability to just buy access to a running instance
component instead of having to develop, host or maintain yourself [DW07]. This reuses not just the
code, but even the servers and the maintainers and allows the sellers to scale the software as one
instead of having to keep each instance continuously ready.

2.1.3 Issue Management in Component-Based Software

As the number of different teams or even companies involved in a project grows, the management
of issues gets more complex [BVGW10]. Usually, every project gets its project on an IMS, which is
often hosted independently and can even be a different software. This means that for example in
case of a single bug or feature request in one component having a single, easy-identifiable IMS
where it can be reported, sometimes the root cause lies in a different component tracking their issues
in a different IMS [MNH15; SG05].

This forces developers to pursue different methods of making connections between issues. The
most common way is to write a link to the other issue inside a comment. But this is tedious when
backtracking through the chain of linked issues and does not provide any other features that linked
issues should have. For example, closing the root issue does not notify the dependent issues and all
information is scattered over multiple issues. This usually leads to a problem that if an issue is
caused by a defect in a different project, linking to the original issue does not propagate the issue
back. This often leads to many open issues which are waiting for different projects that wait for
fixes that have already been incorporated and just not noticed.

Alternatives that have been observed in the wild are the use of third-party messengers, emails or
even in-person meetings [SBB20; Spe19].

2.1.4 Gropius

To solve this problem of linking issues between components, Gropius has been developed by Speth
et al. [SBB20; SBB21; SBK+23] and Speth [Spe19; Spe21]. Gropius is an IMS intended to link
and manage issues between different components. In addition to regular cross-component issue
management, software architects can use Gropius to iteratively and incrementally refine software
architectures [SSFB22]. In such a use case, feature requests often affect multiple components
and must be synchronized between these components’ underlying IMSs. Furthermore, DevOps
engineers can annotate Gropius architectures with information about Service-Level Objectives (SLO)
to analyze the impact of an SLO violation across the entire architecture and report explanations
of the violation cross-component issues via Gropius as validated by Speth et al. [SBSB23] via
experiments on the T2-Project microservice reference architecture [SSB22].

Gropius combines projects and components into trackables which represent everything that can
contain issues. Projects are intended to represent general projects and are intended to contain
mainly issues related to the whole architecture and new components that may be developed in the
future. Components are referenced by version from projects and should contain the issues that

5

2 Foundations and Related Work

concern this component of software in the final product. The issues themselves consist of a title,
the current snapshot and the timeline items that led to this snapshot. Example timeline items are a
state change timeline item which changes the state of the issue, for example from open to close,
assigned timeline item which assigns a user to the issue and the issue comment for the normal
comment containing markdown text. To show links between issues, issue relations can be used
to directionally specify a relation type for two issues. Issues can affect other parts in Gropius, for
example, projects or components. Based on a previous version of Gropius, Neumann [Neu20] and
Speth et al. [SKBB21] implemented a concept for an Integrated development environment (IDE)
integration of Gropius allowing cross-component issue management in a component-specific view
directly in the developer’s IDE.

Gropius is an IMS specialized for tracking issues of multiple components, linking between issues
and issues that affect multiple components. Contrary to traditional IMS, the issue cannot only lie
on a single component, but on multiple components, on interfaces that connect components and
the project itself. This allows issues to be transferred to the project responsible for the root cause
without removing it from the initial reporter, removing all of the hassle and mistakes that would
stem from having multiple issues for one problem.

Using templates, as specified later, Gropius has an extensible model that can represent or mimic
all necessary features of other IMS. Behaving as a superset of other IMS allows Gropius to
represent and work with data from external IMS, once they are imported using the Sync described
in Section 2.1.5.

Snapshot and Timeline

Each issue has a timeline and a current state, which we call a snapshot. We define the snapshot
of an issue as the current properties of an issue at one point in time. In the case of Gropius this
includes the title, the current list of labels and if the issue is open or closed. The timeline consists
of timeline items, which represent actions with a corresponding time that changes the snapshot.
These actions usually describe snapshot changes in the issue. For example, if the title of an issue is
changed, a corresponding title changed event is placed into the timeline. This allows the current
snapshot of an issue to be reconstructed using timeline items and any previous valid snapshot. For
this, the timeline items are designed to always specify the new value of their property. Recreating
the current snapshot can be done by taking any previous snapshot and applying all timeline items to
it. As each timeline item contains the new value of their property, this results in the current snapshot
after all changed properties have been replaced. If a timeline item which is older than the starting
snapshot is applied, this may result in an intermediate snapshot that has never happened, but after
applying all other timeline items, we still arrive at the current snapshot nonetheless. The original
snapshot is only necessary as a few values like the initial title not being saved in timeline items, so
unless the title has been changed it does not appear in the timeline.

Templates

For flexibility Gropius uses a templating system. Our templates are similar to Topology and
Orchestration Specification for Cloud Applications (TOSCA) node types, which define properties
for TOSCA nodes in a typed way [BBLS12]. This means that many nodes, for example, issues

6

2.1 Foundations

and IMS have a template associated. This template provides type-safe fields on the node. In the
case of issues, a field could be used to specify the amount of story points a given feature has
been assigned. As there is usually no template restriction, it is possible to tailor the fields of an
issue as close to the intended use-case as wanted. To keep order and safety, each field is specified
using a JavaScript Object Notation (JSON) schema. JSON schema specifies the type or schema a
JSON object can have, meaning it restricts the content of the object to the specified format, forcing
the objects to follow a given type descriptions [PRS+16]. This can be used for as simple tasks
as restricting a templated field to number values and can be as complex as needed for any other
possible data. The Sync only interacts very specifically with templated fields from nodes, which
leaves only the following list of nodes as having templated fields that are relevant for the Sync:
Issue, IMS, IMSIssue and, IMSProject.

Login Service

The Login Service takes care of the whole user management, including logging the user in and
connecting accounts from IMSs to Gropius. The Sync is then able to query API tokens for a given
user.

2.1.5 Gropius Sync

As mentioned before, some components may be acquired from external companies, resulting in
more complex support than in-house developed components. Assuming these components are
publicly using an IMS, it is necessary to somehow integrate their IMS as forcing them to use another
instance of Gropius is not viable [SBB20; Spe19]. This is where the Sync comes in: It mirrors the
contents of an IMS into Gropius and writes back changes. This also allows syncing a repo from
one IMS to another, for example keeping a GitHub issue tracker synchronized with a Jira issue
tracker.

This allows the full usage of Gropius features, like cross-referencing, issue annotating and more on
non-gropius repositories. When writing the newly created data back to the original IMS, Gropius
will use either a shared fake user or if possible the API access of a user who has connected their
account to Gropius. Gropius can also pretend to be a user if the repository is not public or does not
support access specific for this Gropius instance. If all users writing have connected accounts on
the original IMS with their accounts on Gropius, this allows Gropius to be completely invisible to
the original IMS.

The Sync should attempt to blend in as much as possible, to allow adding existing and public
repositories without damage. We consider damage in this context to be any unwanted change to
existing issues, for example, mass changes that tag the title of every issue with a Gropius generated
ID.

7

2 Foundations and Related Work

2.2 Related work

This section describes the related work of this thesis. In Section 2.2.1, we describe our Literature
Research Methodology. Section 2.2.2 discusses related research work and Section 2.2.3 describes
related industrial efforts to synchronize issues across the same or different issue management
systems.

2.2.1 Literature Research Methodology

Literature has mainly been collected by searching in Google Scholar1 for the terms “issue”,
“synchronization” and “software development”. For all terms, synonyms have also been tried, these
being “work item” instead of “issue” as they are similar in our use case and “transfer” instead of
“synchronization” for more unidirectional issue synchronization.

2.2.2 Literature Research Results

The thought of converting issues between different IMSs has been around for a long time. An early
example would be the criticism by Jakobsen et al. [JFC+09]. While they do not work with issues
specifically and instead use Work Items they seem comparable and can be taken as interchangeable
in our use case. At some point they seemed to have a similar problem, being able to export their
Work Items from Team Foundation Server to Excel but not back. Their resulting decision was to
create a platform and force all teams to use it to plan their work and did not try to transparently
keep the different IMS synchronized.

There also have been previous attempts at cross-platform issue synchronization [La17]. While not
technically an IMS, Polarion handles the whole Application Lifecycle Management, but can also
manage Work Items, which are in our case similar enough to issues. In this example, the Polarion
Connector family of Polarion extensions can each sync a different Application Lifecycle Manager,
which is their equivalent to IMS, to Polarion and back2. This is very similar to our Sync as both our
usage is similar. Especially notable is the configurability to specify details of the transformation
during synchronization and even limit the sync directions or even filter which items should be
synchronized.

2.2.3 Industrial

To manage issues over multiple components, different IMS communities recommend different
solutions: For Redmine users, if all components use the same Redmine project, the forums
recommend using a single overarching task with subtasks for each component it affects but do
not offer any useful methods if, as usual, the projects are on different Redmine projects3. Jira

1scholar.google.com
2https://extensions.polarion.com/extensions/190-polarion-connector-for-atlassian-jira
3https://www.redmine.org/boards/1/topics/21939

8

scholar.google.com
https://extensions.polarion.com/extensions/190-polarion-connector-for-atlassian-jira
https://www.redmine.org/boards/1/topics/21939

2.2 Related work

recommends the same4, but also offers a plugin for if all component projects are Jira based to use
the Structure5 plugin to combine multiple projects into a spreadsheet, but as this requires owner
permissions to all projects and forces them to be on the same Jira instance it also has limited
practical usage [SBB20]. Other Jira plugins6 offer more synchronization services, sometimes even
over multiple projects to Jira, but do not support different IMS. For GitHub, linking between issues
of different projects can either be done using ZenHub7 or in a limited fashion integrated in the form
of special markers in comments that leave a backlinking timeline item on the link target.

In recent years, new IMS have been conceived which provide a Sync to allow for a soft migration by
using both IMS at the same time, like for example for Plane8 or even for Github to and from Jira9.

Plane is a new IMS that is intended to manage whole projects instead of just components. Contrary
to Gropius, while it allows a workspace to consist out of multiple projects, that are similar to our
components, it does not seem to support better linking between issues or other Gropius core features.
The plane GitHub sync supports keeping a single plane project in sync with a GitHub repo. We did
not find any signs of dereplication to combat duplicate issues caused by more complex topologies.

The mentioned Jira-GitHub sync is part of Unito10. It presents itself as a platform allowing a user
to create custom rules of what is synced where. Using it with a GitHub and a Jira module allows
bidirectional sync between GitHub and Jira. While it allows Sync between more than two projects,
we think the docs imply that it requires all parts to be synced by a single Unito instance being the
only Sync between the projects.

All syncs we found map between two IMS with hard rules specifying what to sync and do not
support a single repository involving more complex topologies than a single chain by syncing from
a synced repo.

4https://community.atlassian.com/t5/Jira-Software-questions/Share-one-issue-quot-ticket-quot-across-
multiple-projects-and/qaq-p/407534

5https://community.atlassian.com/t5/Jira-questions/How-do-others-work-with-issues-affecting-multiple-
projects/qaq-p/399950

6https://marketplace.atlassian.com/apps/1211709/multi-project-picker?hosting=server&tab=overview, https:
//www.k15t.de/software/backbone-issue-sync-for-jira

7https://www.zenhub.com/
8https://docs.plane.so/integrations/github
9https://unito.io/integrations/github-jira/

10https://unito.io

9

https://community.atlassian.com/t5/Jira-Software-questions/Share-one-issue-quot-ticket-quot-across-multiple-projects-and/qaq-p/407534
https://community.atlassian.com/t5/Jira-Software-questions/Share-one-issue-quot-ticket-quot-across-multiple-projects-and/qaq-p/407534
https://community.atlassian.com/t5/Jira-questions/How-do-others-work-with-issues-affecting-multiple-projects/qaq-p/399950
https://community.atlassian.com/t5/Jira-questions/How-do-others-work-with-issues-affecting-multiple-projects/qaq-p/399950
https://marketplace.atlassian.com/apps/1211709/multi-project-picker?hosting=server&tab=overview
https://www.k15t.de/software/backbone-issue-sync-for-jira
https://www.k15t.de/software/backbone-issue-sync-for-jira
https://www.zenhub.com/
https://docs.plane.so/integrations/github
https://unito.io/integrations/github-jira/
https://unito.io

3 Concept

Figure 3.1: Example Sync Topology.

We plan to write a common core part for the Sync and two sync adapters that synchronize issues
between Gropius and IMSs, as seen in Figure 3.1. First, we detail the concept of the Sync and the
high-level summary of what an issue replicator is in Section 3.1. The sync adapters should mainly
contain code specific to their IMS while the common core contains all relevant building blocks, as
described in Section 3.2. Our previous simple synchronization algorithm tends to duplicate issues
and timeline items, which we further investigate in Section 3.3.

3.1 Overview of the Concept

The cross-component issue management system, Gropius is intended to manage issues for multiple
components. As existing third-party components already use their own technology stack and issue
management system, we cannot expect them to use a joint Gropius instance instead, which we solve
by using the Gropius Sync to import and keep synchronized with external IMSs. The Sync keeps
the issues on a project or component in Gropius as similar as possible to a counterpart on an IMS.
We do this by synchronizing issues and the timeline items the issues consist of. As we can assume
issues and timeline items continue existing after they have been observed once, we do this by adding
issues and timeline items wherever they are missing, ensuring an eventual consistent state on all
participants. This allows Gropius not only to keep one component or project synchronized with an
external IMS, but also keep two external IMS synchronized by using Gropius as intermediate, as
demonstrated in Figure 3.2. We currently target GitHub and Jira as our first two adapters.

Figure 3.2: Common Sync example between multiple IMSs and Gropius.

11

3 Concept

Figure 3.3: Abstract example showing the duplication of an issue.

One big challenge we have to face when it comes to synchronizing the same issue between multiple
components’ IMS projects is identifying the issues of the different IMS projects as the same. While
we are able to retrieve the IMS projects’ IDs for the issues and store them within Gropius, this is
no longer feasible when multiple Gropius instances come into play. This might happen especially
for open source components when two different companies use their private Gropius instances but
include the same components in their projects. As a result, each instance manages the issue IDs
themselves. If now one Gropius instance synchronizes a new issue to the other component, the
other Gropius does neither store nor have access to the IDs of the issues, thus, missing the equality
and synchronizing the newly synchronized issue back to the original component where it will again
be synchronized by the first Gropius instance and so on. We call this behavior issue replicators.
Unfortunately, managing the IDs of the issues shared over all Gropius instances is not feasible, e.g.,
due to a company’s data privacy regulations. Hence, we require a solution to prevent or at least stop
such issue replications early. In general, we developed one invasive and five non-invasive methods
to avoid issue replications for issues in total and issue comments only by identifying issue equality
without sharing the issue IDs with other Gropius instances.

3.2 Sync

The Sync should keep the Gropius and the target IMS consistent.

To support the querying of as many IMS as possible, the Sync should only use available APIs of the
target IMS, to allow adding any IMS required by developers. We decided to accept the limitations of
having to adhere to rate limits, multiple user accounts and missing out on multiple deeper features,
over alternative options. The features we are thus unable to implement usually concern changing
histories, meaning that all items will display the timestamp of the Sync that synced them instead of
the original time as displayed in Gropius. This can lead to blocks of timeline items that all bear the
identical date of a single sync cycle if multiple Timeline Items have been queued up inside the Sync.
The main alternative would have been to access the database directly, which would limit us to only
self-hosted IMS and introduce versioning incompatibilities and security risks. As our first target is
GitHub, which is usually used as a service in the cloud, the choice was necessarily made to restrict
ourselves to public APIs only.

To support rate limits the Sync has to be able to send the requests for data by spoofing as multiple
user accounts. For this, the Sync has to figure out which account to get data from but can be
balanced over multiple user accounts.

12

3.3 Issue Replicators

Figure 3.4: Minimum viable model.

The Sync requires a preset bot user, preferably a common user to fall back on in case a specific user
is not available, some for fetching data and writing user-independent data. This role does not have
to be fulfilled by a separate user and can be taken on by any account, we refer to it as a bot user
because it is used for the tasks one would usually expect from a maintenance bot.

If a user has a linked account that is viable, the Sync should use it to simulate the action taken by
the user indistinguishably. For example, if a user has an account linked and comments on an issue,
we will create the comment with this account resulting in the user showing up on the target IMS.
If the user has no linked account, we have to fall back to the bot user. It is important that, once a
comment has been worked on by one user, we should be able to restrict all further actions to the
same user, as many IMSs do not necessarily allow us to edit comments by different users. From the
login service1 the Sync can request for a user an account list and the respective login tokens.

As we want to be able to eventually support as many IMS as possible, we decided to force minimal
restrictions on the target IMS. Conceptually, to be able to be interfaced with the Sync, we require on
the remote side an equivalent of issues with a unique identifier and a title. Each of these issues must
consist of timeline items, each having a unique identifier and a creation date as demonstrated in
Figure 3.4. The last requirement for the remote model we demand is that at least one TimelineItem
is the equivalent of our IssueComment, meaning that it contains a text body.

Conceptually the sync consists of two phases, first having an Incoming phase in which it acquires,
processes and integrates the current state of the remote IMS, followed by an Outgoing phase in
which it tries to modify the remote IMS to be as close as possible to the local changes.

3.3 Issue Replicators

We usually lose all meta information about an issue once we sync it to an IMS. This can result in
duplicates as different Gropius instances cannot communicate the chain of identical issues over
multiple syncs.

For example, take the very common webshop example software with a “cart” service and an “order”
service [BMCG20; HNSC21; WTEK20]. Now due to some bug in “cart” service, the “order”
service does not get selected items. As this bug affects both the “order” service and the “cart”
service, the developers put the issue in Gropius on both the “order” service and the “cart” service.
As long as it is only one Gropius, here the Shop Gropius, the Sync can internally keep track of the
IDs and thus does not duplicate any comments.

1https://ccims.github.io/gropius-backend-docs/login

13

https://ccims.github.io/gropius-backend-docs/login

3 Concept

(a) Initial Situation.

(b) First cycle of the GitHub Sync.

(c) Edit Comment in Shop Gropius.

(d) Sync of Shop Gropius.

(e) Incoming Sync Step of Contractor Gropius.

Figure 3.5: Start of an Issue Replicator.

14

3.3 Issue Replicators

After extending this example with a contractor who is supposed to write the “cart” service without
us, we can construct a fully defective architecture. The contractor also pulls the issue onto both
components in their Gropius instance. For example, assume someone creates a comment with
mediocre helpful content on a cart issue Cart, which is maintained on Github as seen in Figure 3.5a.
During the first Sync both Gropius instances simply sync the comment to gropius as expected, as
seen in Figure 3.5b. While not strictly necessary for this example, assume that someone edits the
comment in the Shop Gropius to a more sensible value, like in Figure 3.5c. Further slowing down
time, assume that the Shop Gropius syncs first to Jira, sending the edited comment to Jira leaves us
at the snapshot of Figure 3.5d. Now the fatal error occurs in Figure 3.5e: While trying to integrate
the newly fetched information from Jira, the Sync now encounters a brand new comment. But from
the perspective of the whole example we know that the comment is just an edited version of the one
we got from GitHub, but the Sync has no way of knowing that.

We have worked out five solution approaches, described in detail later, but all of them share a few
common properties: All of the following methods only work on the linking of issues, otherwise
known as marking issues as originating from the same issue, not on the unlinking. Take for example
two issues with accidentally identical titles and bodies: Once Gropius has synced these they are
linked forever. If now one of the issues gets renamed and edited to hold the intended content,
Gropius still considers it identical to the other one and forces these changes on the first issue. This
results in the issues being synced until both hold identical content. For an example of the damage
this creates: If two issues with identical titles and descriptions are merged together, but afterwards a
maintainer marks one issue as a duplicate of the other results in Gropius marking the first issue also
as duplicate, resulting in two issues which are closed as duplicates instead of one of them carrying
the relevant content. In case the Gropius user has different permissions this can even be abused by
intentionally creating duplicates: If a malicious attacker manages to get their manipulated issues
marked as the same as a different one, they gain effectively all permissions the Gropius bot user has
on the target issue.

In the following, we describe our five solution approaches in detail and discuss their limitations.

3.3.1 Invasive

The most secure method would be to tag every differing issue or comment with a unique identifier.
Now if one comment should be integrated and another one with an identical tag already exists, it is
guaranteed that both are intended to be the same comment. If both are tagged with different tags,
Gropius has the guarantee that they are different comments. Only if one is tagged and the other one
is not, any guessing is needed. This works identically with issues. This method requires that items
be modified at least at some point during the Sync.

For marking issues we intend to use Universally Unique Identifiers (UUIDs), as they are per
definition globally unique. We save this marking either in the title or description of an issue to
identify issues and, at the end of the comment for comments. To avoid confusion with different
content that matches the UUID pattern, we also enclose the raw UUID in square brackets.

15

3 Concept
Jump to bottom

Articles lost during Checkout
[ecb16671-2fcb-4112-8024-45f8310a3715] #1

Open chriku opened this issue 10 minutes ago · 1 comment

chriku /

order

Code Issues 1 Pull requests Actions

Edit New issue

chriku commented 10 minutes ago

Some names cause stuff to get lost

kurzcn changed the title Articles lost during Checkout Articles lost during Checkout

[ecb16671-2fcb-4112-8024-45f8310a3715] 8 minutes ago

kurzcn commented 8 minutes ago •

It has something to do with whitespace

[6ca88ad4-3aea-41df-b42c-acd5f5e8ed8f]

edited

Articles lost during Checkout · Issue #1 · chriku/order https://github.com/chriku/order/issues/1

1 of 2 10/12/2023, 12:57

Figure 3.6: Example issue marked by invasive dereplicator.

The invasive dereplicator can either be used in an eager mode where it marks all issues as soon
as possible as well as a lazy mode in which it marks issues only when syncing them as outgoing
issues. The eager mode can lead to a more unified appearance in the issue tracker, which only marks
issues when they are synced to somewhere else, which means that markings are mostly invisible for
existing issues on the source IMS and only appear when Gropius creates issues.

3.3.2 Identical

(a) It works often.

(b) But fails even at small changes.

Figure 3.7: Identical Dereplicator.

16

3.3 Issue Replicators

Another simple, but noninvasive method would be to simply merge all identical items from different
sources. While this would successfully prevent duplicate items from duplicating after the first time,
edits as shown in Figure 3.5c can still introduce sporadical duplication. But as it only duplicates
after user action, we still consider this a valid strategy to look at.

For issues, this means that during the incoming phase of the Sync, the Sync simply looks through all
existing issues and looks for identical titles, authors and descriptions. If these match, the issues get
merged. The process for comments is identical, just as there is no title, only content and author can
be matched. As all dates are erased by the user-like API calls, considering them for matching is not
relevant.

In the example of Figure 3.7a, we compare the author and the body of the comment, as these are
identical to the comment we already know we mark it as connected and leave it. In the other
example, namely Figure 3.7b, the user had to be replaced by the bot user and thus is different. Here
we cannot notice it as identical and have to treat it as a new comment, this seems not noteworthy but
as we have the issue now from both possible user accounts, this prevents us from duplicating it any
further.

3.3.3 Heuristical

(a) Can work with small changes.

(b) But fails when all fields differ.

Figure 3.8: Heuristical Dereplicator.

Our heuristic dereplicator works similarly to identical but accepts minor changes. As the Sync
often introduces small changes due to the limitations of API access, we set a threshold for which
issues count as identical. For comments this would usually mean that the user is ignored and only
the content is matched, as demonstrated in Figure 3.8a: While the bot user is a different user, as
the body is identical we treat it as a duplicate and merge it together. For issues this can work

17

3 Concept

even better, as we have three fields guaranteed, that is title, author and description sometimes even
additional fields can be matched to check for similarity. Of course, this does not work when all
fields are different, as shown in Figure 3.8b. While the content seems similar, as this dereplicator
only evaluates identical fields, no way of knowing that it has already a comment is possible. This
results in a duplicate. It is important to calculate the threshold not evenly, different features have
to be weighted fittingly: For example, a different author suggests a Gropius bot user, but different
content with the same user is more likely to be a second, intended comment.

3.3.4 Natural language processing (NLP)

The heuristical dereplicator only considers identical fields, it is also possible to compare many
fields a bit more precisely. For example, using NLP to check the similarity of bodies of issues
allows changes that do not affect the meaning of the issue to contribute to the match. Text similarity
may yield a score that describes the difference between two texts [II08]. This can be applied, for
example, between the titles and descriptions of two issues to let the content weigh in with more
precision than “equal” or “not equal”, similar to when used to detect duplicate issues [AHS13;
HAS15; NNN+12].

However, within the scope of this thesis, we could not further develop this method due to time
constraints.

3.3.5 Temporal

Figure 3.9: Temporal dereplicator can merge issues that have been the same.

Similar to heuristical, we compare the snapshots at different points in time with as much historical
information as available to try and find matches where the issues may have been identical at some
point in time. As most issue trackers and Gropius itself collect timelines for issues, this additional
information should be used. Of course, this also does not account for lost information, like usage of
the fallback user but should be able to work with higher thresholds due to not requiring both states
to be in sync.

Another advantage of considering the timestamps is that a threshold can be implemented for issues
to be similarly new. This can at least prevent some harmful issue takeovers, as crafting new issues
to take over old ones has a limited time span where the attack is feasible.

18

3.3 Issue Replicators

feature invasive identical heuristic NLP temporal

modifies issues yes no no no no
merges identical issues with marker yes yes yes yes yes
merges different issues with same marker yes no no no no
merges identical issues without marker no yes yes yes yes
merges similar issues with same spelling no no yes yes yes
merges similar issues with different spelling no no no yes yes
merges once similar issues no no no no yes

Table 3.1: Overview of different dereplicators.

In the example of Figure 3.9 this means, that we see in the history of the issue tracker that there has
been a version where the comments have been identical before being edited, so Gropius can mark
the comments as same and transfer the change as a new change back into the timeline. As Gropius
does not hold a comment history, this only works if the IMS-side comments are newer or for issues
where both timelines are available.

3.3.6 Comparison

As seen in the table, the heuristical dereplicator is just a refined version of the identical dereplicator
as the temporal dereplicator is the heuristic dereplicator with more comparisons. This results in
them sharing the same flaws of being able to mistakenly identify duplicates and then merge them.
The worst case can easily be reached with a misconfigured heuristical (or temporal) dereplicator:
if the threshold is too low all issues are merged, resulting in Gropius trying to get all issues in
this instance of the IMS to the most similar state possible. This would usually force a rollback (if
possible) or manual labor to remove everything Gropius did as this would remove any sense of the
issues.

A different danger coming from all three non-invasive variants is that they merge accidentally
identical issues. This can be solved by the temporal and heuristic dereplicator by enforcing matching
timeline items as additional markers. This can prevent issues with default or otherwise intended
identical titles and/or descriptions from being merged. But this approach is vulnerable against
repeating duplicates, for which an identical dereplicator modified to only stop after a certain number
of identical issues are found can be used. This opens a whole new slew of combinations for these
dereplicators to prevent more scenarios as they are thought up.

The invasive, marking dereplicator forces changes as soon as possible. While this means that it does
not have the same issues as the non-invasive, changing all issue titles in an existing, public repo will
usually have its own consequences. This makes this dereplicator useful for in-house projects but
basically unusable for public projects with open development, as changing the title will probably
not be allowed or seen as vandalism.

19

4 Architecture & Implementation

In this chapter, we lay out the architecture we want to build. First, we discuss the general architecture
of the Sync in Section 4.1. Then, we dive deeper into the provided building blocks in Section 4.2.
Finally, we round this chapter up with the two Sync phases, Incoming in Section 4.3 and Outgoing in
Section 4.4. Our implemented version of this can be found at https://github.com/ccims/gropius-
backend.

Figure 4.1: Architecture.

4.1 Sync Module

As syncing Gropius to different IMSs can be very different depending on the IMS, we have decided
to follow a very modular approach. We make the Sync for each IMS a completely independent
application and only premake building blocks to ease the creation of new sync modules [LSW87].
This allows full freedom in programming the main sync module while being sped up by allowing
the usage of many premade building blocks that provide often-used functions. Thus each Sync can
be built completely as needed, but in this chapter, we will address the intended way.

Each sync module has to interact with Gropius. For this two methods are theoretically possible:
Either the use of one of the backends to provide a networked API or by directly accessing the
database. As we already have structured access to the database using the classes that make up the

21

https://github.com/ccims/gropius-backend
https://github.com/ccims/gropius-backend

4 Architecture & Implementation

normal backend, we can simply import the Gropius data module and use it to comfortably access
the database via GraphGlue. Furthermore, this allows us to access features that are usually blocked
by the frontend, such as inserting old timestamps and avoiding restrictive permission checks.

Each sync module has to interface with the IMS in some way. We usually make use of the publicly
provided APIs, for example, the GitHub GraphQL API and the Jira Representational state transfer
(REST) API. This allows us to pretend to be normal users and access the data without having to
request permission and avoid the resulting security dangers.

As a sync module needs to keep a complex internal state containing mappings between users,
timeline items and sometimes even a whole mirror of the original repository, we recommend each
module to use a separate database. For our building blocks, we use MongoDB which we have
copied over from the previous Sync and recommend that the rest of the sync module should also
use it as the database for Sync data. For the previous Sync, we decided on MongoDB, as it allows
compact and comfortable storage from our codebase, while also providing a concise view of objects
during debugging purposes. As these considerations have not changed with the new Sync, we see
no reason to change it. Another consideration was to allow mixing the Sync data with the login
service in one PostgreSQL database, but we specifically have decided against supporting that due to
security concerns. While it would theoretically be possible to use the main Gropius database for
our metadata, we have decided against that to avoid polluting the productive data with external data
and ease the addition or removal of sync modules.

[example/docs] - Sidebar category headers
aren't clickable #385

Closed FredKSchott opened this issue on Jun 11, 2021 · 1 comment

Assignees

No one assigned

Labels

help wanted

Projects

None yet

Milestone

No milestone

Development

No branches or pull requests

1 participant

withastro / astro

Code Issues 129 Pull requests 30 Actions Projects Security

New issue

FredKSchott commented on Jun 11, 2021

Sometimes you'd want the category in the sidebar to be its

own page, but that's not currently possible.

https://github.com/snowpackjs/astro/blob/main/

examples/docs/src/components/SiteSidebar.astro

Member

FredKSchott added the help wanted label

on Jun 11, 2021

FredKSchott commented

on Jun 11, 2021

Assigned to @Hanawa02! (I can't select in sidebar for

some reason, will look into that when I'm back online)

Member Author

matthewp closed this as completed in 348d829

on Jun 11, 2021

(a) Issue on GitHub.

/

[example/docs] - Sidebar category
headers aren't clickable
Opened by FredKSchott 2 years ago · last updated 5 seconds ago

󰚸 astro Home Details Issues 󰖙

󰏫

Type

type

󰏫

State 󰏫

closed

Labels 󰏫

help wanted

Assignments 󰏫

Outgoing Relations 󰏫

Incoming Relations

Affects 󰏫

FredKSchott commented 2 years

ago

Sometimes you'd want the

category in the sidebar to be its

own page, but that's not currently

possible. https://github.com/

snowpackjs/astro/blob/main/

examples/docs/src/components/

SiteSidebar.astro

FredKSchott added

2 years ago
󰌕

help wanted

FredKSchott commented 2 years

ago

Assigned to @hanawa02! (I can't

select in sidebar for some reason,

will look into that when I'm back

online)

matthewp changed the

state from to

2 years ago

󰏫 open closed

(b) Issue in Gropius.

Figure 4.2: Example issue synced from GitHub to Gropius.

The Sync communicates with the login service for tokens required to access the API and to match
the users found on an IMS to the users known in Gropius.

In summary, each sync module is a standalone application only interacting with its database, Gropius
itself and the login service providing flexible development, maintenance and hosting capabilities.

22

4.2 General building blocks

Usually, the Sync is executed in cycles, which are started by running the applications. In the case of
a cluster. this provides the ability to execute a sync module on a free node while also allowing the
setup to be as simple as executing it in a timed loop.

The core framework tries to stay as close the the existing Sync implementation as possible. This
means that conceptually most sync modules should consist of two halves: the incoming and the
outgoing halve. The incoming part fetches the data and integrates it, while the outgoing part’s job
is to sync local data from Gropius to the IMS. This structure is recommended, as this is what the
following building blocks were planned for.

4.2 General building blocks

All core components were written to support as many IMS as possible and are to ease the parts we
think will be common during Sync implementation.

4.2.1 User Mapping

The User Mapping building block provides the mapping between a user-id, username or other
identifier on the IMS side to one IMSUser in Gropius. This allows the behavior e.g. the combining
and account searching for users with multiple IMS accounts for a given IMS to be centralized. This
block will also contain the future integration with the login service, as soon as it is implemented.
This mapping is stored locally for simplicity of use and is automatically kept in sync with Gropius.
This module also provides a helper for the use of these users that for example keeps track of which
user a comment has been created. In this example, if a comment has been created with the default
user it usually can only be edited by the exact user and the Sync may not switch to the account on
the IMS side, even if the user adds a token as the comment is owned by another user.

4.2.2 Labels Mapping

The Labels Mapping building block provides features for mapping remote labels to Gropius labels.
It can be simply dropped in, filled with data and then mapped with the labels. It contains premade
database access for the mapping and mostly just provides a safer and easier interface than using the
database manually. This helps to normalize working with labels even if some info, for example,
color, is currently unknown. While it does not do much work itself, it reduces the work needed
for mapping labels to single function calls instead of having to work with at least one class for the
database. For this, it provides a function that either takes an existing one or creates a new one given
the IMS-side ID and all other available information. For reverse, it provides a function to look up
the IMS-side ID or a given label or the advice to create a new one if no mapping is known. A
function to register a newly created mapping is also provided.

23

4 Architecture & Implementation

4.2.3 Login Service Integration

The Login Service integration manages access to user tokens and other login service-related tasks.
The main task is to get the closest token from the login service for a given user. While this is usually
a simple task that only involves an IMSUser lookup, this can get often much more complex. As users
can link multiple accounts together even at a later time, this also incorporates holding a mapping
from previously used users for a given action to the current user. For example, if a comment has
been synced to GitHub from the fallback user and someone later adds their GitHub account, the
fallback user has to be used for edits to that comment as the true account has no permission to edit
the comment. Another functionality this module implements is creating the IMSUsers if new users
are encountered in the IMS.

As this block depends on interaction with the login service, which we were unable to implement
due to time constraints, this block is not implemented in a usable fashion.

4.2.4 Notification Handling

In case of an error, an involved user has to be notified that the issue has errors during sync. The
potential errors can range from a simple authentication error if a user has connected an invalid
token to disk full for the Sync database to errors in the Sync itself. As a notification system for
Gropius is currently only in the earliest stages of planning, this results in saving the message in
specific templated files for a frontend to retrieve. As soon as frontend implements displaying this
information, this should result in visible notifications on either the issue or the project depending on
the specified target.

4.2.5 Template Matcher

The Sync needs an entry where to search for IMSProjects that could be synced. For this, the Sync
searches first all IMSs that can represent it. To do this there is the Template Matcher component
ready-made to search through all templates. It takes a set of template specifications (one each of
IMSTemplate, IMSProjectTemplate and IMSUserTemplate) and then searches for all connected
IMSTemplate, IMSProjectTemplate and IMSUserTemplate which can be interpreted as the specified
template. The implementation checks for identical titles to ensure that only templates for the right
Sync can be matched. Currently, the “specified” means only identical templates, but as soon as
Gropius has the logic for editing the type of templated fields, the function should support edited
templates that describe more specific fields than the current templates. If no templates are found, it
automatically creates a fresh set of templates using the original specifications to allow users the
easy and comfortable creation of new IMS.

4.3 Incoming

During the incoming phase, two main steps are usually performed: Fetching new data and integrating
the new data into Gropius.

24

4.3 Incoming

4.3.1 Fetching

The Sync has to request all new data since the last sync cycle. For this, we wrote a few helper classes
to help with page-based APIs, but otherwise, the fetching step is too dependent on the peer IMS to
generally help with.

Paginator

As most of these APIs are made for human consumption, data is usually provided as pages. Pages
mean that a specific number of items of the result are grouped, usually with the intention that the
user only gets displayed this subset and can switch to different pages. As we usually need all items
of a query, we provide a Helper to automatically iterate through all pages using the Load Balancer.
We do this by implementing it for a cursor-based API, meaning an API that returns the cursor which
can be used to retrieve the next page. Usually page-based APIs can be handled like cursor-based
APIs with the cursor for the next page being the current page added to the size of the current page,
which is usually either one or the number of items on the page.

Load Balancer

As we talk as API consumer to the IMS, we usually have to observe rate limits. The Load Balancer
building block works on queries, which have an identifier that should stay the same even over
multiple sync cycles, an executor, a base priority and an estimated cost. It allows simply specifying a
list of queries and does the scheduling depending on rate limits and estimated query costs. Currently,
we implement a simple priority-based scheduler, which increases priority for not executed queries for
the next sync cycle by saving it in the database, but intend to upgrade it to the practical specifications
derived from future work. We currently do not support adding new items to the queue after starting,
resulting in e.g. new issues needing a second sync cycle for the content to appear.

4.3.2 Integrating

During the integration step, all of the fetched data has to be integrated into Gropius. As Gropius
is flexible enough, this results in simply adding the new timeline items to the timeline and then
recalculating the new properties. As described in Section 2.1.4, we do this by applying all timeline
items on all modified issues in order of creation.

Before inserting a timeline item into the respective issue and before creating an issue, we attach
the main entry hook of the dereplicators here: Before saving the issue to the database, we select
the corresponding dereplicator as specified on the IMSProject and give it the issue. Invasive
dereplicators can now insert timeline items that insert the required tags or other needed data.
Afterwards, we ask the dereplicator if we should insert timeline items or create the issue. In case
the dereplicator disallows adding, because it has found a previous match the new issue is a duplicate
of, we add the remote issue as synced and link it to the original issue. Identically for timeline items,
we simply add another remote to our mapping causing it to be synced to this one if new information
is available in the future.

25

4 Architecture & Implementation

4.4 Outgoing

The outgoing phase is usually less clearly separated into steps. The usual steps for syncing outgoing
data are collecting items, either timeline items or issues, that need to be synced, sending these items
and then marking the successfully synced items as synced. These steps may sometimes be easier if
applied to each item before starting the next.

4.4.1 Collecting

The Collecting phase searches for items that need to be synced. This is as simple as finding all issues
without remote ID and of the existing issues all timeline items without known IMS counterpart
of conflicting TimelineItem. Conflicting TimelineItems happen, for example, if someone adds a
label and then immediately removes it without a sync cycle in between. In this case, we judged
it unnecessary to add a label on the remote just to remove it, as that would clutter their timeline
unnecessarily and not provide any practical information. This may also catch accidental label
additions, as long as they are noticed before the next sync cycle. This system does not influence
anything that stayed a full successful sync cycle, as it only checks the most recent, unsynced items.

4.4.2 Pushing

The second extremely Sync-specific section, the pushing phase just transfers the changes to the
remote IMS and is expected to consist mostly of IMS-specific network calls.

This usually requires interaction with the load balancer from the Incoming Step, as described
in Section 4.3, as the quote is expected to be shared between these steps, thus any rate limit
notifications need to be forwarded and combined to ensure being able to push changes to the IMS.
If this interaction does not happen, the Sync will continue using up the API budget during the
Incoming phase and starve the Outgoing phase.

4.4.3 Marking

After an item has been pushed, marking is usually as simple as setting the remote ID of the given
database entry which usually will be queried during the write. This step contains very important
error handling, as errors here can involve complex interactions with different systems. For example,
a “permission denied” error when syncing an item may need to notify the Login Service that a
given token is invalid. Contrary an error for reaching a rate limiter quota may need to inform the
incoming load balancer to reduce the amount queried, to push out the changed data. Differently
from the incoming error handling, mistakes here will lead to unfixable remnants on the timeline of
IMSs, which should be avoided whenever possible as this could confuse unaware users and may
even lead to being restricted due to claims of vandalism.

26

4.5 Sync Adapter

4.5 Sync Adapter

We implemented both sync adapters as separate projects.

4.5.1 GitHub

GitHub’s model was a main inspiration for Gropius and is thus very similar. While issues consist of
timeline items and current values, reading only timeline items and a base state can successfully be
used to reconstruct an issue, as described for Gropius before. This model does offer very limited
flexibility but makes it up by the number of timeline items which cover most situations.

We were able to transfer much code from the existing Sync implementation. This resulted in us
being able to take the fetch step, break it into pieces, and add it into the load balancer. For this, we
balance a query for the list of issues as well as a timeline and a comment query for each issue that
has not been marked as finished since the last change. The comment query as well as the cautious
syncing is necessary as GitHub can be asked to give timeline items after a given point in time, but
this does not include comments changed after that point in time. Thus the Sync has to query each
issue with a new date for each comment to check if it may have been changed. While this results in
a huge overhead until the issues have been marked as done, it is necessary to not miss updates in
comments.

4.5.2 Jira

Jira instead has basically no fixed content in an issue and instead makes most things part of fields.
This means that most actions on an issue just change fields of an issue, which are then saved in the
changelog. This also allows the reconstruction of issues from a list of comments and field changes
but keeps most data generalized as fields.

The Jira Sync was also relatively easy, as the changelog items have unique IDs and can thus be
simply mapped by the field they change. The main issue for our Sync for Jira came from the fact that
it does not return the changelog ID after doing a change, this means that during the next Incoming
phase, the Sync does not know which changelog entries are caused by a given action and which
were done separately. This results in the Sync being unable to mark a given timeline item to be
connected to the corresponding changelog item, which currently results in the Sync duplicating
every comment synced to Jira. While this may sometimes be handled by dereplicators, the fact that
the fallback to bot user may change the author of the comment or changelog item, does also not
have a perfect solution.

4.6 Dereplicator

We hooked the dereplicators into the Incoming, more precisely the Integrating part of the issues. If
it finds the original issue, we can then merge it together otherwise leave the ID null to let GraphGlue
create a new node for us. We then implemented both base dereplicators as base classes of the

27

4 Architecture & Implementation

interface, with the invasive variant just inserting a new timeline item that changes the title. The
heuristical dereplicator takes the thresholds as arguments, which allowed us to implement the
identical dereplicator as an inheriting class that sets the parameters to 1.

28

5 Evaluation

In this chapter we examine our four research questions: “RQ 1: Can the Sync keep a stable copy of
a project?” in Section 5.1, “RQ 2: Can issues be synchronized between multiple IMS with different
models?” in Section 5.2, “RQ 3: Which issue dereplicator can work on an external open source
project without false positives?” in Section 5.3 and “RQ 4: Can issues be identified as originating
from the same issue after reducing them to their IMS representation?” in Section 5.4. We then
examine the results of all these combined in Section 5.5 before examining the threats to the validity
of our answers in Section 5.6.

5.1 RQ 1: Can the Sync keep a stable copy of a project?

The main function of the Sync is to keep the issues of an IMS synchronized with the issues on
Gropius. We define a Gropius issue as similar to an issue on an IMS if a stakeholder could work
with both versions without getting interference from our Sync. To work with an issue effectively, no
information may be lost or false. We compare all supported parts of the issues, which are titles,
comments, labels, and, the open/close state. As our Sync is only eventually consistent, due to API
limits and the possibility of editing the issues while the Sync is running, we have to introduce a
time component after which this may be true, which due to the current implementation is done if
the Sync has the resources available and can run without other obstacles for two full successful
invocations for a given issue. Also, we have to go around the rate limits themselves as we cannot
work with the IMS faster, resulting in us having to use “full successful sync cycles” which we define
as full successful invocations without error or running into rate limits. We have to give ourselves
here a larger margin for error by increasing the number of sync cycles to three, to allow the Sync to
handle the setbacks given by running into rate limits and other obstacles. We also enforce the result
to be stable, meaning that the Sync neither needs to do nor does any changes to the issue once all
relevant information has been copied over until new changes are introduced to the issue. While we
currently do not utilize it, we consider changes on the issue level, meaning that a single changed
timeline item may carry additional changes to other parts of the issue. This results in our hypothesis
being that H1: “A synced project contains equivalent issues/timeline items as the original after
three full successful sync cycles”.

To test this we choose a few suitable repositories on both GitHub and Jira and sync each project to
a local Gropius instance into different, independent projects. For each project, we do this three
times, once for each implemented dereplicator configuration. We currently have to limit ourselves
to smaller projects as Gropius itself does currently expose multiple bugs when going above an
unknown and content-dependent number of issues, which we estimate is somewhere around 4000
issues in our cases, after which the backend did not allow us to view the issue list, which we have
been assured will be fixed soon, and the Sync itself was outside of tolerable initialization times,
which we set to 6 hours for this project. As our first GitHub project, we took a relatively new web

29

5 Evaluation

framework called astro1, as they have a sizeable number of issues, at the time of writing more than
3500, and had on average 4.6 issues per day during the last month. As the second project, we chose
Mojang Web2 due to being relatively sizeable, hosted on Jira and containing many very similar
issues to due management policies. For this project, we had to limit our Sync to the first three
pages of issues to comply with rate limits and limit the number of issues to something reasonable.
Finally, we chose two other projects with high activity, named mojo3 and bun4 due to the high rate
of new issues while still being in our range of working issue counts. We then instructed the Sync to
sync each project to our Gropius instance for 24 hours. As the Sync runs in cycles, we first run
the Sync in intervals forced upon us by the rate limit until we have imported the existing data and
afterwards switch over to running it periodically with 10 min pause, which we think is a reasonable
delay until a stakeholder can be expected to know about new events on the IMS, between runs. We
deem that a reasonable compromise between faster updates and more API usage. Afterwards, we
compare 20 randomly selected issues as well as all new and edited ones since starting the experiment
between the original on the IMS and the synced ones in Gropius according to the previous criteria.
Incompletely synced issues, meaning issues that have been edited after the third to last sync cycle
are ignored for this experiment.

5.1.1 Results

After running the Sync through the initial passes, many issues were visible in the project overview.
The number of issues, when synced with the identical dereplicator also matches the number
displayed on the source IMS for each project, excepting the lowered number for the limited project.
With the heuristic dereplicator, we had fewer issues than expected, this being 50 of 9121 missing for
two identical features and 7163 missing with one identical feature which we further researched in
Section 5.3. These issues were missing since the first full successful sync cycle of the experiment
and were not synced, no issues vanished once they had been on Gropius. Each compared issue
matched the original version, except for knowingly unimplemented features. None of the falsely
dereplicated issues was under our compared issues, but we examine one of the broken issues in
Section 5.3. Watching for further changes, no unexpected changes were observed, the only changes
happening are content changes and new, but empty issues after the next sync cycle with the content
for these empty issues appearing one sync cycle later.

5.1.2 Discussion

All in all, we think the Sync can function for this task with the identical dereplicator. Of course,
this does not absolve it from the yet unimplemented features, as working with the bare minimum
is not ideal. But the implemented features work as intended, we hold a stable copy of the source.
With this, we accept the hypothesis, that our project contains equivalent issues/timeline items as the
original after three full successful sync cycles. Thus we answer RQ 1: “Can the Sync keep a stable
copy of a large project?” with a clear “yes”.

1https://github.com/withastro/astro
2https://bugs.mojang.com/projects/WEB
3https://github.com/modularml/mojo
4https://github.com/oven-sh/bun

30

https://github.com/withastro/astro
https://bugs.mojang.com/projects/WEB
https://github.com/modularml/mojo
https://github.com/oven-sh/bun

5.2 RQ 2: Can issues be synchronized between multiple IMS with different models?

5.2 RQ 2: Can issues be synchronized between multiple IMS with
different models?

A second integral function of the Sync is to map between different IMSs. As these IMSs have
different models two issues cannot be easily compared, thus evaluating the similarity is not trivial.
Thus we evaluate it based on the perspective of a user: We try to find out if all information that
has been put into the original issue is also represented in the synced issue. For this, we consider
only user-modifiable information, excluding for example dates and users to evaluate as similar
as possible to if a user had tried to recreate the issue manually. Also irrelevant for our use case
is internal management information, thus we evaluate purely on what is presented to the user
using the normal User interface (UI). Combining that gives the hypothesis H2: “Every user-facing,
user-modifiable information written in the original issue has after syncing an equivalent information
in the destination issue”

Figure 5.1: Sync Setup.

To evaluate this, we set up two independent projects: The first one syncs one project from GitHub
over Gropius to Jira and with a different project in Gropius to a different project on GitHub.
The second one does the same but with GitHub and Jira switched. We then create issues with
differentiable inputs for all user fields allowing user input and comparing the original issue, after the
Sync has stabilized, with the synced one. We disable all dereplication features, as this experiment is
only intended to test the model conversion.

5.2.1 Results

Currently, most operations the Sync supports, this being titles, descriptions, and comments use a
similar enough model in Gropius, GitHub and Jira, which allows the Sync to convert them losslessly.
As assignments are not fully implemented in the Sync, they were not synced at all. Labels on
GitHub are nodes with specific IDs, while on Jira they are just texts. If multiple, identically named
labels were available on GitHub the Sync did not necessarily add the same label as the original
but used any similarly named label on GitHub. Similar to that, duplicate identical labels were lost
as well. On the other direction, as all GitHub labels contain a name that contains everything that

31

5 Evaluation

makes a Jira label, syncing labels from Jira over GitHub to Jira did not lose any information. The
open/close state of the issues was not synced to Jira and stripped down to only the bare open/close
value when going from Jira to GitHub. As is a known bug due to the Jira API, many timeline items
synced to Jira were duplicated, but have been deleted for this experiment, as this issue should be
fixed in the near future. Other features on GitHub and Jira are currently not implemented and thus
are not synced.

5.2.2 Discussion

While we deem the current functionality good enough for basic usage, we currently have a great
amount of loss when using advanced features. Aside from the assignments, which we had to cut due
to time constraints, our main worry is the open/close state. While Jira enforces a strict workflow
an issue has to go through, GitHub does not. Even assuming the mapping to be done, on GitHub
simply closing an issue is always a possibility, which may not be in line with the Jira issue workflow.
The Sync would have to transition the issue through possibly multiple states to reach a state that
matches the state on GitHub. Otherwise, most features are mostly for convenience and we can
imagine working with issues without them, so while they would be nice to have do not block usage
of the Sync.

As this only mentions implemented features, we are far from being able to sync every user-facing or
user-modifiable information in an issue, forcing us to reject the hypothesis. We have ideas to use
comments to document timeline items unsupported by the target IMS, but these are future work.
The open/close state may be approximated, by knowing and following the workflow graph or can be
mitigated manually by changing the workflow to allow state changes, which may disrupt the normal
work. In conclusion, we do not see it as possible to fully sync everything perfectly between the
models as imagined in RQ 2, but it should be possible to come close enough for practical usage
with much more development work.

5.3 RQ 3: Which issue dereplicator can work on an external open
source project without false positives?

As previously established in Section 3.3, false positives in the dereplicators can be harmful, knowing
the expected rate is necessary to trust the Sync to not damage repositories. A false positive in this
case means that a dereplicator merges two issues that were not intended to be the same issue. To
estimate practical conditions, we consider projects that do not have any knowledge of Gropius
and practically work with the issues they create. This allows us to estimate the failure rates when
used for practical results, instead of laboratorially crafted issues that specifically target the known
weaknesses of our concepts. Resulting in the hypothesis H3: “It is possible to design an issue
dereplicator that does not erroneously merge different issues”.

For this, we modify the Sync to log errors instead of merging issues when a dereplicator finds a
match. As all our known replicators need multiple connections or duplicate issues, we assume
that normal activity on these issue trackers does not contain any automatically duplicated issues.
If any dereplicators find matches anyway, we categorize it as a falsely dereplicated issue. We are
not willing to break existing projects, this test can only be used with non-invasive dereplicators,

32

5.4 RQ 4: Can issues be identified as originating from the same issue after reducing them to
their IMS representation?

as we neither have permission to nor would be willing to vandalize all issues by unnecessarily
editing every issue. We have decided that missing out on the invasive dereplicator does not change
anything, as it would qualify all newly encountered, markerless issues as different anyway. As
these additions only write the attempted actions to a log and do not change any behavior of the
Sync, we introduce these small additions into the experiment from Section 5.1. In the log, we have
the identical dereplicator and the heuristic with thresholds of one and two. The thresholds are the
number of features compared, meaning that on two more than two items out of the title, the author
and summary have to be identical for an issue to be merged.

5.3.1 Results

The identical dereplicator did not match any issues. Further investigation is that in the GitHub
projects most issues had a different title. Contrary, the Mojang Web had many issues sharing the
title “Delete my account”, but always had different authors. Combined all repositories, only 0.5%
of all issues shared two features with a previous issue, while 78% shared at least one feature with a
previously synced issue.

5.3.2 Discussion

As seen from LLVM, with a moderated project and high-quality issues, comparing the title and
author is enough to avoid any false positives. On the other hand, having a policy like Mojang that
creates many similar issues leads to us confusing them together with a threshold lower than three,
which would include any issues created in the future and thus merge them into one gargantuan
issue. This would not only allow a malicious attacker to get the Sync to create an enormous amount
but also lead to multiple copies of the one merged issue in accidents. Of course, the invasive
dereplicator is as vulnerable, as using a marker that has already been used can have the same effect.
But restricting it to identical issues does not lead to false positives while still restricting the Sync
from syncing already duplicated issues, as we have seen in Section 5.2 that the Sync creates as
identical as possible issues and all unrepeatable differences have been already removed during the
first pass. As we have found a, albeit limited but safe method, we can accept H3: “It is possible to
design an issue dereplicator that does not erroneously merge different issues”. To conclude this, we
can answer RQ 3: “Which issue dereplicator can work on an external open source project without
false-positives?” with the identical and the invasive dereplicator.

5.4 RQ 4: Can issues be identified as originating from the same
issue after reducing them to their IMS representation?

This question assumes the following setup of Gropius instances and projects on IMSs: Assume
at least one Gropius instance has already synced to multiple IMSs. Each issue on the IMSs may
have an issue on each Gropius instance, but each Gropius issue can sync to multiple issues on the
IMSs. Now the question is if a different, newly setup Gropius instance with no knowledge about
the other Gropius instances can piece together which issues on the different IMSs are represented
in the original Gropius instances by the same issues and which are different issues. With this, we

33

5 Evaluation

Figure 5.2: Example questionable issue flow.

arrive at the hypothesis H4: “A new Gropius instance syncing from an existing set of IMSs with
projects synced to by different Gropius instances can identify which issues are intended to be the
same issue.”

We test this by setting up two Gropius projects and one project on each of the two supported IMSs.
We then create issues matching the implemented timeline items and the settings of the dereplicators
in the first Gropius project. As for the issues created, we include two with the same marker in
their title. The first is for the invasive dereplicator to identify them as identical, and the second is
to examine the damage caused by erroneous marking. A third issue with an identical title, but a
modified description is used to attempt to trick the heuristic dereplicator into an erroneous merge.
After the creations, we let the Sync run for this project until it has stabilized to sync the issues onto
the IMSs. Once the issues are confirmed present we run the Sync on the second Gropius instance
with each dereplicator configuration we select and then check if it has been merged or has been
synced as two issues.

5.4.1 Results

As expected, the invasive dereplicator merges both issues with the same marker and combines
them, even though they were different issues on the original. The heuristic dereplicator and the
identical dereplicator merge the issue with identical titles, descriptions and authors. Also, the
heuristic dereplicator on settings of two out of three and below also merges the one with the changed
description into the mixed issue.

5.4.2 Discussion

As seen in the experiment, the dereplicators can be easily tricked into merging issues together. We
have not found any kind of implicit marker to identify issues safely as same or different, only if
we explicitly add one ourselves into visible fields we can uniquely mark issues. Thus we have to
reject H4: “A new Gropius instance syncing from an existing set of IMSs with projects synced to by
different Gropius instances can identify which issues are intended to be the same issue.” and try to
approach the solution using statistical and unreliable methods. We lose too much information about
the issues, so RQ 4: “Can issues be identified as originating from the same issue after reducing
them to their IMS representation?” currently does not seem possible.

34

5.5 Discussion

5.5 Discussion

In conclusion, we think we have made a workable base for future Sync versions. We can sync most
basic features which we think allows working with a project through the Sync. Of our dereplicators,
only the identical dereplicator did not falsely merge issues together. The heuristical dereplicator,
with both thresholds, combined issues erroneously, which would have damaged the issues in question
on the IMS if outgoing had been enabled. All dereplicators stop issues from replicating infinitely, so
we judge it reasonable to run on servers without continuous supervision. Overall, until something
new has been found, we recommend using only the identical dereplicator and manually dealing with
duplicates that were not caught by the dereplicator. On the other hand, adding the missing features,
not just including the missing timeline items but also the support for mapping unsupported timeline
items to comments for IMS that lack native support was outside the scope of this thesis. While we
were able to lay much-needed groundwork for future versions of the Sync and provide a codebase to
develop from, we are not able to provide a Sync that can be used without limiting the users. We hope
that future work can fix all of these issues and maybe even find a solution for issue replication.

5.6 Threats to Validity

There are four aspects of validity according to Runeson and Höst [RH09], these being construct,
internal, and external validity, and reliability. For internal threats, we only tested both parts, the
Sync and the dereplicators, together and thus does not know if the dereplicators work differently
with another implementation of the Sync or if the dereplicators affected any result of the Sync itself.
But as we are not aware of any other Gropius Sync and tried to generalize the results over the
dereplicators, we do not think it has affected any results, except the ones that are describing our
implementation anyway. We had to limit our choice of test repos to match the current abilities of
the involved systems, which due to the current performance of the Sync and per-query memory
limitations of the backend meant that we had to specifically search for high-activity but low issue
count projects, which lead us to mostly test on the issues of JavaScript frameworks. While this may
present an external threat to validity, we still think these projects are managed differently enough
to generalize our results. For the other experiments, we only generated the test issues ourselves,
but as the only requirement that affected the results experiments was to touch all fields, we do not
think that there is any chance different issues change the results. As for construct threats, we did not
ensure that all dereplicators always got exactly the same data, as issues may have been edited during
different parts of the runs, leading to minor discrepancies. However, even though we tested with a
high number of issues overall, the results included a very limited number of edits. Therefore, we
think the influence of these edits may have had on the resulting numbers is negligible. We only
compared issues for identicality ourselves, which may be a threat to the reliability. As we have
declared the relevant parts identically, we do not assume that any understanding different enough to
notably change the results is possible.

35

6 Conclusion

6.1 Summary

We were able to build a set of base modules that can be used to build new sync adapters with much
more ease than starting at nothing. We used these modules to provide two sync adapters, one for
Jira and one for GitHub, both proving the concept as well as uncovering challenges that have to be
solved in the future and can be planned within future modules. The dereplicator problem, while not
solved fully, has been reduced to a state where creating a Sync topology can be built that does not
replicate issues infinitely, thus allowing the Sync to be run with less supervision. We evaluated
multiple approaches to dereplicate issues, giving an initial overview of what we can expect from
dereplicators and where the limits should be expected.

6.2 Benefits

We were able to provide Gropius with a functioning Sync, which should allow further evaluation of
all of Gropius as a more complete project. Instead of relying solely on manually created test data,
now it should be possible to just sync in external projects, allowing software architects to relate
issues and software developers to link duplicates together.

6.3 Limitations

Our Sync currently only supports basic features and is thus unable to handle more complex features,
like assignments, that are expected of it. This limits the Sync’s usage in practical applications, as
not even seeing missing items may lead to wrong conclusions when looking at issues. Furthermore,
Jira has limited functionality due to time constraints, making issues synced to Jira stuck in the open
state with the current Jira Sync being unable to walk the state graph. This greatly limits even basic
usage of the Sync for practical projects, as marking issues as closed is necessary for keeping an
overview of all issues.

For dereplicators, we were unable to implement and thus evaluate the more complex NLP and
temporal dereplicators and thus cannot give any estimation about their practicality. Also as Gropius
has currently unavoidable limits to the issue count we were only able to evaluate on a comparatively
small dataset.

37

6 Conclusion

6.4 Lessons Learned

We greatly underestimated the time it would take to integrate a completely different IMS, in this
case, Jira. We expected a much easier task, as with GitHub and did not note how much Gropius
was designed to be similar to GitHub and the amount of ease this introduced for syncing to GitHub.
For example, we copied GitHub’s lax issue-state model, of which each state can transition to any
other state with a single action, while Jira has a workflow, that specifies the possible transitions,
which we have to follow if we want to transition an issue to another state using the Sync.

We were unaware of how niche the use case of our more complex dereplicators is, as they do more
harm by merging different issues instead of finding duplicates. We expected real-world issues to
be far more varied and thus created elaborate, but irrelevant use cases during planning which the
dereplicators may solve but do not happen outside of laboratory conditions.

6.5 Future Work

To properly use the Sync, it is necessary to add many of the missing timeline items. Furthermore,
due to the state of the Gropius ecosystem, we were unable to implement the connection to the login
service, which needs to be added to allow the Sync to simulate being different users to the IMS. Our
implementation was heavily influenced by our management of the limited time, resulting in the
codebase needing more work and testing before being used for more complicated tasks.

For the issue dereplicator problem, we were able to find methods to contain uncontrolled, infinite
duplication but struggle with the limited duplication of issues the first time, until the Sync made
an identical copy of the issue. We hope that future work on the topic of dereplicators is able to
somehow find a way to reliably merge issues that have originated from the same issue without
causing as much potential damage. We see our work as a foundation and hope that future work may
be able to build something great on that.

38

Bibliography

[AHS13] A. Alipour, A. Hindle, E. Stroulia. “A contextual approach towards more accurate
duplicate bug report detection”. In: 2013 10th Working Conference on Mining Software
Repositories (MSR). IEEE, May 2013. doi: 10.1109/msr.2013.6624026 (cit. on p. 18).

[AMR20] J. A. Añel, D. P. Montes, J. Rodeiro Iglesias. “Cloud and Serverless Computing for
Scientists: A Primer”. In: (2020). doi: 10.1007/978-3-030-41784-0 (cit. on p. 4).

[BBLS12] T. Binz, G. Breiter, F. Leymann, T. Spatzier. “Portable Cloud Services Using
TOSCA”. In: IEEE Internet Computing 16.03 (May 2012), pp. 80–85. doi: http:
//doi.ieeecomputersociety.org/10.1109/MIC.2012.43 (cit. on p. 6).

[BJS+08] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, T. Zimmermann. “What
makes a good bug report?” In: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering. SIGSOFT ’08/FSE-16. ACM,
Nov. 2008. doi: 10.1145/1453101.1453146 (cit. on p. 3).

[BMCG20] B. Benni, S. Mosser, J.-P. Caissy, Y.-G. Guéhéneuc. “Can microservice-based online-
retailers be used as an SPL?: a study of six reference architectures”. In: Proceedings
of the 24th ACM Conference on Systems and Software Product Line: Volume A -
Volume A. SPLC ’20. ACM, Oct. 2020. doi: 10.1145/3382025.3414979 (cit. on p. 13).

[BVGW10] D. Bertram, A. Voida, S. Greenberg, R. Walker. “Communication, collaboration, and
bugs: the social nature of issue tracking in small, collocated teams”. In: Proceedings
of the 2010 ACM conference on Computer supported cooperative work. CSCW ’10.
ACM, Feb. 2010. doi: 10.1145/1718918.1718972 (cit. on p. 5).

[Crn03] I. Crnkovic. “Component-based software engineering - new challenges in software
development”. In: ITI-03 (2003), pp. 9–18. doi: 10.1109/iti.2003.1225314 (cit. on
p. 4).

[CV85] R. E. Crable, S. L. Vibbert. “Managing issues and influencing public policy”. In: Public
Relations Review 11.2 (June 1985), pp. 3–16. doi: 10.1016/s0363-8111(82)80114-8
(cit. on p. 3).

[DW07] A. Dubey, D. Wagle. “Delivering software as a service”. In: The McKinsey Quarterly
6.2007 (2007), p. 2007 (cit. on p. 5).

[HAS15] A. Hindle, A. Alipour, E. Stroulia. “A contextual approach towards more accurate
duplicate bug report detection and ranking”. In: Empirical Software Engineering 21.2
(June 2015), pp. 368–410. doi: 10.1007/s10664-015-9387-3 (cit. on p. 18).

[HNSC21] S. G. Haugeland, P. H. Nguyen, H. Song, F. Chauvel. “Migrating monoliths to
microservices-based customizable multi-tenant cloud-native apps”. In: 2021 47th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA).
IEEE. 2021, pp. 170–177. doi: 10.1109/seaa53835.2021.00030 (cit. on p. 13).

39

https://doi.org/10.1109/msr.2013.6624026
https://doi.org/10.1007/978-3-030-41784-0
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/MIC.2012.43
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/MIC.2012.43
https://doi.org/10.1145/1453101.1453146
https://doi.org/10.1145/3382025.3414979
https://doi.org/10.1145/1718918.1718972
https://doi.org/10.1109/iti.2003.1225314
https://doi.org/10.1016/s0363-8111(82)80114-8
https://doi.org/10.1007/s10664-015-9387-3
https://doi.org/10.1109/seaa53835.2021.00030

Bibliography

[II08] A. Islam, D. Inkpen. “Semantic text similarity using corpus-based word similarity
and string similarity”. In: ACM Transactions on Knowledge Discovery from Data 2.2
(July 2008), pp. 1–25. doi: 10.1145/1376815.1376819 (cit. on p. 18).

[JFC+09] M. R. Jakobsen, R. Fernandez, M. Czerwinski, K. Inkpen, O. Kulyk, G. G. Robertson.
“WIPDash: Work Item and People Dashboard for Software Development Teams”. In:
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009, pp. 791–804.
doi: 10.1007/978-3-642-03658-3_83 (cit. on p. 8).

[La17] S. La. “Defects management in Embedded Systems”. In: (2017) (cit. on p. 8).

[LSW87] M. Lenz, H. Schmid, P. Wolf. “Software Reuse through Building Blocks”. In: IEEE
Software 4.4 (July 1987), pp. 34–42. doi: 10.1109/ms.1987.231062 (cit. on p. 21).

[MK11] S. Mahmood, A. Khan. “An industrial study on the importance of software component
documentation: A system integrator’s perspective”. In: Information Processing Letters
111.12 (June 2011), pp. 583–590. doi: 10.1016/j.ipl.2011.03.012 (cit. on p. 4).

[MNH15] S. Mahmood, M. Niazi, A. Hussain. “Identifying the challenges for managing
component-based development in global software development: Preliminary results”.
In: 2015 Science and Information Conference (SAI). IEEE, July 2015. doi: 10.1109/
sai.2015.7237254 (cit. on p. 5).

[Neu20] T. Neumann. “IDE Support of Issue Management for Component-based Architectures”.
Bachelor’s Thesis. University of Stuttgart, 2020. doi: 10.18419/opus-11608 (cit. on
p. 6).

[NNN+12] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, C. Sun. “Duplicate bug report
detection with a combination of information retrieval and topic modeling”. In:
Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering. ASE’12. ACM, Sept. 2012. doi: 10.1145/2351676.2351687 (cit. on
p. 18).

[Nyg18] M. Nygard. “Release it!: design and deploy production-ready software”. In: Release
It! (2018), pp. 1–376 (cit. on p. 4).

[PRS+16] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, D. Vrgoč. “Foundations of JSON
Schema”. In: Proceedings of the 25th International Conference on World Wide Web.
WWW ’16. International World Wide Web Conferences Steering Committee, Apr.
2016. doi: 10.1145/2872427.2883029 (cit. on p. 7).

[RH09] P. Runeson, M. Höst. “Guidelines for conducting and reporting case study research
in software engineering”. In: Empir. Softw. Eng. 14.2 (2009), pp. 131–164. doi:
10.1007/s10664-008-9102-8 (cit. on p. 35).

[RMBZ21] F. Ramirez, C. Mera-Gomez, R. Bahsoon, Y. Zhang. “An Empirical Study on
Microservice Software Development”. In: 2021 IEEE/ACM Joint 9th International
Workshop on Software Engineering for Systems-of-Systems and 15th Workshop on
Distributed Software Development, Software Ecosystems and Systems-of-Systems
(SESoS/WDES). IEEE, June 2021. doi: 10.1109/sesos-wdes52566.2021.00008 (cit. on
p. 4).

40

https://doi.org/10.1145/1376815.1376819
https://doi.org/10.1007/978-3-642-03658-3_83
https://doi.org/10.1109/ms.1987.231062
https://doi.org/10.1016/j.ipl.2011.03.012
https://doi.org/10.1109/sai.2015.7237254
https://doi.org/10.1109/sai.2015.7237254
https://doi.org/10.18419/opus-11608
https://doi.org/10.1145/2351676.2351687
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/sesos-wdes52566.2021.00008

Bibliography

[SBB20] S. Speth, U. Breitenbücher, S. Becker. “Gropius — A Tool for Managing Cross-
component Issues”. In: Software Architecture. Ed. by H. Muccini, P. Avgeriou,
B. Buhnova, J. Camara, M. Caporuscio, M. Franzago, A. Koziolek, P. Scandurra,
C. Trubiani, D. Weyns, U. Zdun. Cham: Springer International Publishing, 2020,
pp. 82–94. doi: 10.1007/978-3-030-59155-7_7 (cit. on pp. 5, 7, 9).

[SBB21] S. Speth, S. Becker, U. Breitenbücher. “Cross-Component Issue Metamodel and
Modelling Language”. In: Proceedings of the 11th International Conference on
Cloud Computing and Services Science. SCITEPRESS - Science and Technology
Publications, 2021. doi: 10.5220/0010497703040311 (cit. on p. 5).

[SBK+23] S. Speth, U. Breitenbücher, N. Krieger, P. Wippermann, S. Becker. “Integrating
Issue Management Systems of Independently Developed Software Components”. In:
Agile Processes in Software Engineering and Extreme Programming. Springer Nature
Switzerland, 2023, pp. 3–19. doi: 10.1007/978-3-031-33976-9_1 (cit. on p. 5).

[SBSB23] S. Speth, U. Breitenbücher, S. Stieß, S. Becker. “Dromi: A Tool for Automatically
Reporting the Impacts of Sagas Implemented in Microservice Architectures on the
Business Processes”. In: Enterprise Design, Operations, and Computing. EDOC 2022
Workshops. Ed. by T. P. Sales, H. A. Proper, G. Guizzardi, M. Montali, F. M. Maggi,
C. M. Fonseca. Cham: Springer International Publishing, 2023, pp. 326–331. doi:
10.1007/978-3-031-26886-1_20 (cit. on p. 5).

[SG05] R. J. Sandusky, L. Gasser. “Negotiation and the coordination of information and
activity in distributed software problem management”. In: Proceedings of the 2005
international ACM SIGGROUP conference on Supporting group work - GROUP ’05.
GROUP ’05. ACM Press, 2005. doi: 10.1145/1099203.1099238 (cit. on p. 5).

[SGM02] C. Szyperski, D. Gruntz, S. Murer. Component software: beyond object-oriented
programming. Pearson Education, 2002. isbn: 0201745720 (cit. on p. 4).

[SKBB21] S. Speth, N. Krieger, U. Breitenbücher, S. Becker. “Gropius-VSC: IDE Support
for Cross-Component Issue Management”. In: Companion Proceedings of the 15th
European Conference on Software Architecture, CEUR (October 2021). 2021 (cit. on
p. 6).

[Spe19] S. Speth. “Issue management for multi-project, multi-team microservice architectures”.
MA thesis. 2019. doi: 10.18419/opus-10646 (cit. on pp. 5, 7).

[Spe21] S. Speth. “Semi-automated Cross-Component Issue Management and Impact Anal-
ysis”. In: 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, Nov. 2021. doi: 10.1109/ase51524.2021.9678830 (cit. on
p. 5).

[SSB22] S. Speth, S. Stieß, S. Becker. “A Saga Pattern Microservice Reference Architecture
for an Elastic SLO Violation Analysis”. In: 2022 IEEE 19th International Conference
on Software Architecture Companion (ICSA-C). IEEE. 2022, pp. 116–119. doi:
10.1109/ICSA-C54293.2022.00029 (cit. on p. 5).

[SSFB22] S. Speth, S. Stieß, S. Frank, S. Becker. “Iterative and incremental refinement of
microservice-based architectures and SLOs”. In: (2022). doi: 10.18419/opus-12208
(cit. on p. 5).

[Thö15] J. Thönes. “Microservices”. In: IEEE Software 32.1 (Jan. 2015), pp. 116–116. doi:
10.1109/ms.2015.11 (cit. on p. 4).

41

https://doi.org/10.1007/978-3-030-59155-7_7
https://doi.org/10.5220/0010497703040311
https://doi.org/10.1007/978-3-031-33976-9_1
https://doi.org/10.1007/978-3-031-26886-1_20
https://doi.org/10.1145/1099203.1099238
https://doi.org/10.18419/opus-10646
https://doi.org/10.1109/ase51524.2021.9678830
https://doi.org/10.1109/ICSA-C54293.2022.00029
https://doi.org/10.18419/opus-12208
https://doi.org/10.1109/ms.2015.11

[TLPJ17] D. Taibi, V. Lenarduzzi, C. Pahl, A. Janes. “Microservices in agile software devel-
opment: a workshop-based study into issues, advantages, and disadvantages”. In:
Proceedings of the XP2017 Scientific Workshops. XP ’17 Workshops. ACM, May
2017. doi: 10.1145/3120459.3120483 (cit. on p. 4).

[WTEK20] L. Wu, J. Tordsson, E. Elmroth, O. Kao. “MicroRCA: Root Cause Localization of
Performance Issues in Microservices”. In: NOMS 2020 - 2020 IEEE/IFIP Network
Operations and Management Symposium. IEEE, Apr. 2020. doi: 10.1109/noms47738.
2020.9110353 (cit. on p. 13).

All links were last followed on December 19, 2023.

https://doi.org/10.1145/3120459.3120483
https://doi.org/10.1109/noms47738.2020.9110353
https://doi.org/10.1109/noms47738.2020.9110353

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Foundations and Related Work
	2.1 Foundations
	2.2 Related work

	3 Concept
	3.1 Overview of the Concept
	3.2 Sync
	3.3 Issue Replicators

	4 Architecture & Implementation
	4.1 Sync Module
	4.2 General building blocks
	4.3 Incoming
	4.4 Outgoing
	4.5 Sync Adapter
	4.6 Dereplicator

	5 Evaluation
	5.1 RQ 1: Can the Sync keep a stable copy of a project?
	5.2 RQ 2: Can issues be synchronized between multiple ims with different models?
	5.3 RQ 3: Which issue dereplicator can work on an external open source project without false positives?
	5.4 RQ 4: Can issues be identified as originating from the same issue after reducing them to their ims representation?
	5.5 Discussion
	5.6 Threats to Validity

	6 Conclusion
	6.1 Summary
	6.2 Benefits
	6.3 Limitations
	6.4 Lessons Learned
	6.5 Future Work

	Bibliography

