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Abstract

Relation extraction involves the identification of relations
between entities in text. Many distinct tasks in natural lan-
guage processing, including semantic role labeling, quo-
tation analysis, and event extraction, can be categorized
as instances of relation extraction, and share similar struc-
tures. However, despite the similarities between these
tasks, modeling approaches tend to show little overlap,
and model architectures designed for one type of relation
extraction task can rarely be applied to others. This situa-
tion stands in contrast to other task paradigms common
in natural language processing, such as text classification
and text generation, wherein existing architectures tend
to be highly generalizable to many distinct tasks within
their paradigms.

This dissertation investigates task generality for relation
extraction, that is, the ability or inability of relation ex-
traction model architectures to be successfully applied to
diverse relation extraction tasks. To this end, we make
a number of concrete contributions: First, we present a
formal description language for specifying the proper-
ties of different relation extraction tasks, and introduce a



software framework for developing model architectures
which can automatically account for these properties.
By delineating task-specific frontends from task-general
backends, this framework enables task-general architec-
tures to be easily adapted to the specifics of particular
tasks. Next, we investigate task generality for span ex-
traction, an important subtask of relation extraction. We
identify architecture design choices which facilitate task-
generality, and go on to statistically analyze how differ-
ent types of architectures generalize to different types
of tasks, gleaning insights into which task properties,
model properties, and interactions therebetween are im-
portant for generalization. Finally, we present a method
for enforcing regular-language constraints on the outputs
of a class of sequence labeling models. We show how
constraints can be constructed which capture the spe-
cific structures of relation extraction tasks, such that label
sequences can be interpreted as relations. Overall, this
dissertation works towards making relation extraction
more task-general, and we hope our contributions can

spur further work in this direction.



Zusammenfassung

Relationsextraktion beinhaltet die Identifizierung von
Relationen zwischen Entitdten in Texten. Viele verschie-
dene Aufgaben der natiirlichen Sprachverarbeitung, ein-
schliefdlich semantischer Rollenzuweisung, Zitatanalyse
und Ereignisextraktion, konnen als Instanzen von Relati-
onsextraktion kategorisiert werden und weisen d@hnliche
Strukturen auf. Trotz der Ahnlichkeiten zwischen diesen
Aufgaben zeigen Modellansitze tendenziell wenig Uber-
schneidungen, und Modellarchitekturen, die fiir einen
bestimmten Typ von Relationsextraktionsaufgabe entwi-
ckelt wurden, konnen selten auf andere angewendet wer-
den. Diese Situation steht im Gegensatz zu anderen Auf-
gabenparadigmen in der natiirlichen Sprachverarbeitung,
wie Textklassifikation und Textgenerierung, bei denen
bestehende Architekturen in der Regel fiir viele verschie-
dene Aufgaben innerhalb ihrer Paradigmen hochgradig

verallgemeinerbar sind.

Diese Dissertation untersucht die Aufgabengeneralitiit
fiir Relationsextraktion, d.h. die Fahigkeit oder Unfihig-
keit von Modellarchitekturen fiir Relationsextraktion, er-

folgreich auf verschiedene Relationsextraktionsaufgaben



angewendet zu werden. Zu diesem Zweck leisten wir eine
Reihe konkreter Beitrdge: Zundchst prasentieren wir eine
formale Beschreibungssprache zur Spezifizierung der Ei-
genschaften verschiedener Relationsextraktionaufgaben,
und stellen ein Software-Framework vor, mit dem Mo-
dellarchitekturen entwickelt werden konnen, die automa-
tisch diese Eigenschaften beriicksichtigen konnen. Durch
die Trennung von aufgabenspezifischen Frontends und
aufgabengenerellen Backends ermdglicht dieses Frame-
work, dass aufgabengenerelle Architekturen leicht an
die Spezifika bestimmter Aufgaben angepasst werden
konnen. Anschlieflend untersuchen wir die Aufgaben-
generalitat fiir die Extraktion von Textabschnitten, eine
wichtige Teilaufgabe der Relationsextraktion. Wir iden-
tifizieren Architekturentwurfsentscheidungen, die die
Aufgabengeneralitit fordern, und analysieren statistisch,
wie verschiedene Arten von Architekturen auf verschie-
dene Arten von Aufgaben verallgemeinerbar sind, um Er-
kenntnisse dariiber zu gewinnen, welche Aufgabeneigen-
schaften, Modelleigenschaften und Wechselwirkungen
zwischen ihnen fiir die Verallgemeinerung wichtig sind.
Schliefslich préasentieren wir eine Methode zur Durch-

setzung von Einschrankungen von reguldren Sprachen



tiir die Ausgaben einer Klasse von Sequenzbeschriftungs-
modellen. Wir zeigen, wie Einschrankungen konstruiert
werden konnen, die die spezifischen Strukturen von Rela-
tionsextraktionsaufgaben erfassen, so dass Beschriftungs-
sequenzen als Relationen interpretiert werden kénnen.
Insgesamt trdgt diese Dissertation dazu bei, Relations-
extraktion auf eine aufgabengenerelle Art und Weise zu
gestalten, und wir hoffen, dass unsere Beitrdage weitere

Arbeiten in diese Richtung anregen kénnen.
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Chapter 1

Introduction

ELATION extraction is a central step in obtaining struc-
R tured information from unstructured text. At a
conceptual level, the task involves the identification of re-
lations between entities in a text. These relations generally
correspond to some sort of semantic relation conveyed by
the text, such as the relation between an organization and
its founder, or that between a quotation and its speaker,
although the specific interpretations of relations can be
quite varied. As complex structures can often be built
from individual relations between entities, relation ex-
traction forms the first step in pipelines for many tasks
with structured outputs. For instance, extracting relations
from text is a first and central step for building knowledge

graphs, as in|Luan et al.| (2018)), or for analyzing political

discourse networks, as in|[Pad¢ et al.| (2019)).
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Structurally, relation extraction tasks can vary quite
significantly. We can examine this variety by exploring a
few concrete examples. In the case of coreference resolu-
tion tasks, such as the CoNLL-2012 shared task
et all, ), the relation we are interested in, corefer-
ence, might be formalized as a binary symmetric relation
between two mentions (in this case, the construction of
longer coreference chains would be formalized as a sec-
ond step in a pipeline). Meanwhile, tasks like TACRED
(Zhang et al |2017)) might be interested in semantic rela-

tions between entities, such as determining if a particular
person lives in a particular city. Such a lives-in rela-
tion would also be binary, but it would not be symmetric

(since a city cannot live in a person). Quotation analysis

tasks such as RiQuA (Papay and Pad¢, [2020)) might con-

cern themselves with relations between more than two
entities, such as “who said what to whom”. When some
arguments are optional (e.g. the whom might not be men-
tioned in the text), relations might be variadic, taking a
variable number of entities. Quite commonly, a single
relation extraction task will have many different types of
relations, and these relation types might differ in their

structures.

20



As for the entities, these are usually spans of text, which
may either be explicitly marked in the input or unmarked
(or, not uncommonly, partially marked). As with rela-
tions, it is common for a relation extraction task to distin-
guish between many types of entities. These entity types
often restrict which types of relations an entity can take
part in — relations usually require a certain combination
of entity types. For instance, the binary 1ives-in relation
might expect one entity of type person and one of type
city, while the coreferent relation might expect two

entities of type reference.

1.1 Task generality

Relation extraction models are tasked with identifying
entities and relations between them from a text. A large

variety of modeling approaches exist, ranging from rule-

or knowledge-based systems (e.g. [Ravikumar et al., 2017}

Mirza and Tonelli, [2016)) to models based upon deep neu-

ral networks (e.g.|Liu et al, [2013}|Sui et al., 2023)). While

not all models employ learning — rule-based systems, for
instance, often rely exclusively on hand-crafted rules —

this dissertation will focus specifically on machine learn-

21



ing models for relation extraction, i.e. models which learn

to extract relations by generalizing from training data.

1.1.1 Task generality in machine learning

Let us briefly examine the process by which a machine
learning model is deployed for a given task. In the most
conceptually simple case, first a model architecture is se-
lected, then hyperparameters are given values, then model
parameters are learned from training data, and finally the
trained model is used to make predictions for unseen
data. In this setting, predictions are the result of factors
which depend on the training data (model parameters)
as well as factors which are specified a priori (model
architecture and hyperparameters).

For machine-learning models, we will define task gen-
erality to be a model architecture’s ability to be trained
and applied to many distinct but structurally-similar tasks.
For instance, a task-general model architecture applicable
for hate speech detection might be expected to work “out-
of-the-box” on the task of sentiment analysis — these two
tasks, though distinct, share the same basic structure, in

that they accept text as input and predict a sentence-level,

22



categorical output.

This notion of task generality is related to, but dis-
tinct from, the concept of model transferability in transfer
learning. While model transferability concerns the ability
of a model’s learned parameters to be adapted for a new
task (Ben-Akiva and Bolduc, 1987} Zamir et al., 2018} |Baoj

etal] [2019)), task generality is only a property of a model
architecture, independent of any trained parameters.

While there is no reason that we should expect our
model architectures to be task-general a priori[| for many
families of tasks, the common neural architectures gen-
eralize so consistently that this task generality goes as-
sumed and unstated. This task generality allows the re-
search community to make rapid progress in a large num-
ber of structurally-similar tasks — for instance, a novel
sequence labeling architecture might push forward the
state-of-the-art for named-entity recognition, shallow pars-
ing, part-of-speech tagging, and countless other sequence
labeling tasks.

Unfortunately, common models for relation extraction

*In fact, there is good reason to expect that they should not be — the
“no free lunch theorems” in optimization (Wolpert and Macready,
tell us that a learning algorithm’s high performance at one
task must be offset by low performance on some other task.

23



do not display the extent of task generality seen for many
other categories of task (Adel et al, 2018). Model ar-

chitectures for a given relation extraction task generally

cannot be applied to other relation extraction tasks as-is,
and often resist attempts at being adapted to new tasks.
At a mechanical level, this lack of adaptability is usu-
ally the result of differing assumptions made by model
architectures, either about the structure of their input,
the structure of their output, or the patterns of indepen-
dencies and independencies between their inputs and
outputs.

Seeing the benefits that powerful, task-general archi-
tectures bring to other types of NLP tasks, it would be
desirable to pursue this type of task generality for relation
extraction architectures. As we have identified restric-
tive task-specific assumptions as the major hindrance to
task generality, it seems that we might find what we are
looking for by investigating models which make as few

assumptions as possible.
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1.1.2 Task general relation extraction

Unfortunately, we find that the space of possible relation
structures explodes combinatorially as we dispense with
assumptions. For instance, if we take entities to be con-
tiguous spans of tokens, we find a document of length n
has quadratically many potential entities, as each entity is
defined by its starting and ending index. If we then con-
sider candidate relations between these entities, treating
relations as simple k-tuples of entities, we must consider
O((n?)*) = O(n?*) potential relations. Finally, for our
model to account for mutual exclusivities, interdepen-
dencies, and interactions between relation candidates, it
cannot predict relations independently, but instead must
predict the whole relation structure for a document, i.e.
the set of all relations present within the document. This
leaves our model with an output space of 0" pos-
sible relation structures. The very assumptions that got
in the way of task generality are often responsible for

limiting this search space to a reasonable size.
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1.2 Contributions

If task-specific assumptions limit architecture generaliz-
ability, but are nonetheless necessary for tractable, effec-
tive relation extraction models, what can we do to im-
prove architectures’ task generalizability? This is, in fact,
the central research question we will investigate in this
dissertation. We will argue that there is a richly populated
and under-explored “middle-ground” between the two
extremes of practical task-specific architectures and task-
general-yet-intractable models. This dissertation identi-
fies a number of directions in which this middle-ground
can be explored, and reports on what we have found
while exploring in these directions.

Firstly, a promising area for compromise is to not en-
tirely dispense with task-specific assumptions, but rather
to formalize them. By formally specifying tasks’ struc-
tural properties and models” assumptions, we can better
understand when architectures might or might not be
applicable to new tasks. Additionally, if we can specify
tasks and their structures in a machine-interpretable way,
we open the door to a class of meta-architectures which

can automatically instantiate an appropriate architecture
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incorporating the appropriate assumptions based solely
on the formal description of the task. Chapter 3|discusses
experiments to this end: We define a task specification
language, implement a software framework for designing
such meta-architectures, and propose a concrete baseline

system.

As the extraction of entity spans from text is a promi-
nent subtask of relation extraction, we decide to investi-
gate task generality for entity extraction in isolation. This
work is presented in Chapter |4 of this dissertation. We
first investigate corpus generality for quotation extraction,
a specific span extraction task. We observe that corpus
generality shares many of the same challenges as task gen-
erality, and develop a model architecture capable of gener-
alizing across corpora of varying formalisms, modalities,
and languages, identifying a number of strategies for de-
veloping successful corpus-general models along the way.
We follow this up by investigating full task generality for
span extraction. Here, we collect a large “zoo” of span
extraction tasks and model architectures, and use perfor-
mance prediction to carry out a large-scale quantitative
analysis. This not only yields a performance prediction

model, which can predict how well a given model ar-
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chitecture will perform on a given task, but also gleans
insight into the properties of models and tasks which

interact to affect generalizability.

For full relation extraction, if we want to work with
formally specified task structures, it becomes desirable
to find model architectures capable of handling a large
family of such structures. In Chapter 5, we discuss such
an architecture, based upon conditional random field
models and capable (with some caveats) of modeling

those task structures representable as regular languages.

This dissertation encompases work from the following
publications: The work presented in Chapter 3/is based

on work presented in (Adel et al}|2018]), a demo paper

presented at EMNLP 2018. I was one of five authors for
this work — I participated in formalizing the structure of
task- and model-specifications, was responsible for imple-
menting the decoding procedure for the baseline model,
and contributed to writing the manuscript for publication.

Chapter |4/ describes work from two separate publications:

Papay and Padé

(2019)), presented at RANLP 2019, and

IPapay et al.| (2020]), presented at EMNLP 2020. I was the

lead author for both of these works, performing all imple-

mentation and experiments, and doing a majority of the

28



writing. Chapter 5/is based on work performed for
(2022]), which was presented at ICLR 2021. I was

likewise the lead author for this work, and performed
all implementation, experiments, and a majority of the

writing.
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Chapter 2

Background

N order to investigate task generality as it applies to
I relation extraction, we would like to establish a solid
groundwork of background knowledge, and a consistent
scheme of notation and terminology for us to use later.
This chapter will seek to do exactly this. We start by dis-
cussing machine learning in general in Section |2.1} intro-
ducing useful notation and conventions, and briefly sum-
marizing common machine learning techniques which
we use persistently in this dissertation. The remaining
sections of this chapter will discuss relation extraction.
Section [2.2| establishes definitions for relation extraction
tasks which we will utilize throughout this dissertation
Section will discuss common patterns in machine
learning models for relation extraction, and finally, Sec-

tion [2.4/ will discus a small selection of specific relation
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extraction tasks, and existing model architectures which

are commonly applied to those tasks.

2.1 Machine learning and neural

networks

This section will provide a brief overview of machine
learning and neural networks, focusing on the formalisms
and techniques which will be relevant to relation extrac-

tion.

2.1.1 Distributions and datasets

We will formalize machine learning in terms of prob-
ability distributions. In all cases, we start with a joint
distribution P(v1,v2, ---) over a set of random variables
viv2, ...}, We will call this distribution our data distri-
butzon For notational brevity, we will take v to be the
sequence (vl,v2, ..y and may write the data distribution
as P(v). We normally have access to one or more finite

sets of samples from the data distribution — we call such
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a set of samples a dataset]'| A common setting is to have
three such datasets: a training set, a development set, and
a validation set, although such a split is not universal. In
any case, for a dataset D, we can define Pp(v) to be the
probability distribution obtained by uniformly randomly
selecting one datapoint from D. We might refer to this as
the dataset distribution of D.

For a specific machine learning task, we will partition
the set of random variables as a disjoint union of input
variables {x',x?,---} and output variables {y',y?,---}. Our
goal is to computationally model the conditional prob-
ability distribution P(y | x) = P(y!,y?, - | x},%x2, ),
which we will call the target distribution.

2.1.2 Models and model architectures

We will use the word model to refer to a family of proba-
bility distributions comparable to the target distribution,

i.e. defined over and conditioned on the same output and

"Technically, as multiplicity is generally allowed in datasets, it
would be more accurate to call these datamultisets, or perhaps
databags. However, for most tasks and dataset sizes, it is un-
common to have any sample with multiplicity > 1, making the
distinction largely irrelevant, and so we will stick to the estab-
lished, if misleading, terminology.

33



input variables. Such models are parameterized by a pa-
rameter vector 0 in some vector space ©, such that each
value of 8 € © corresponds to an individual distribution
Pg(y | x). We will term such distributions model distribu-
tions. It is important to note that the target distribution
itself need not be one of these model distributions. In
this dissertation, we will always assume that ® = R* for

some (finite) k.

While any parameterized family of distributions can
be called a model, this dissertation will focus on those
families of distributions which can be efficiently repre-
sented and approximated algorithmically. Different types
of models might have different algorithmic representa-
tions, and some algorithms might only represent their
models implicitly. In general, though, for any particu-
lar model, we will usually have a particular algorithmic
representation in mind, to the point where we may at
times informally identify models with their associated
algorithms.

We will often need to work with a family of related
models. We will refer to such a family as a model architec-
ture, or often just an architecture for short. Just as models

are parameterized by a parameterization 6, we parame-
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terize architectures by a hyperparameterization A € A -
we notate the model yielded by hyperparameterization A
as P}, and we notate the individual model distribution
of that model for parameterization 0 as Pg(y | x). In
the case that the values of either 6 or A are clear from
context, or if their specific values are irrelevant, we may

omit subscripts or superscripts respectively.

While we stipulated that 6 was a real-valued vector,
we will make no such assumption for A, allowing A to
be any well-defined set. In practice, a hyperparameteri-
zation is usually envisioned as a collection of individual
hyperparameters, with A being a tuple of values for these
hyperparameters and A being the Cartesian product of
those hyperparameters’ configuration spaces.

Our definitions leave us some freedom with what we
call a parameter and what we call a hyperparameter. We
can always pick out and remove some dimension of our
parameter space ©, and insert a real-valued hyperparam-
eter in its place. In the case where our hyperparameter-
ization is a tuple containing some real number, we can
do exactly the opposite, promoting that hyperparame-
ter to a parameter. While we will always keep a strict

dichotomy between model parameters and hyperparam-
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eters, we may use this freedom to convert parameters to
hyperparameters and and vice versa.

2.1.3 Parameters and optimization

Optimization is the task of selecting the best value 6*
for a model’s parameter vector, according to some well-
defined sense of quality. As this is usually quite difficult,
it is normal to dispense with perfectionism, and use the
word optimization to refer to the task of merely finding
a good parameter value 8*. Usually, this is done with
the goal of making Pg.(y | x) approximate the target
distribution as closely as possible. While this problem
is widely studied, with many different approaches, this
dissertation consistently relies on gradient-based opti-
mization. This section will therefore focus on parameter
optimization using gradient-based approaches.

Of course, if optimization involves looking for the best
parameterization 0%, it is natural to also consider the task
of selecting the best hyperparameterization A*, i.e. the
hyperparameterization for which the best 8* exists. This
task is termed hyperparameter optimization. As hyperpa-

rameter optimization notoriously relies on architecture-



4

specific intuitions and a good measure of “black magic’

(Anand etal.,|2022]), we will only discuss hyperparameter

optimization in the context of specific architectures.

Gradient-based parameter optimization

Here we will briefly describe gradient descent and related
parameter optimization algorithms. We formalize opti-
mization in terms of a loss function L(6), a differentiable
real-valued function of 6 that quantifies how “poorly”
the model distribution Py(y | x) approximates the target
distribution P(y | x). A common choice of loss function
is to approximate the cross entropy between the model
distribution and the target distribution by summing over
samples from a dataset distribution, but all that we will
require is that the loss function has a global minimum,
and that low values of loss correspond in some ill-defined

sense to “good models” of the target distribution.

The gradient descent algorithm (Cauchy et al., 1847}

) starts with an initial parameter value 6°,

and iteratively updates the parameter value based on the

gradient of the loss function. 6° is selected randomly
from some distribution over the parameter space, usually

a zero-mean normal or uniform distribution. We then
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define our sequence of updated parameters with the rule
0+l =0 —u-VL(O)

where « € R, the learning rate, is an optimization meta-
parameter — that is, a free variable whose value affects the
optimization procedure’| As long as L is locally linear at
the length scale of the gradient update, each subsequent
parameter update should yield a lower loss value, and
the process should converge to some local minimum of
L:
6* = lim 6’

i—)OO
In practice, such limits aren’t computable, and in fact
often don't exist depending on the loss function and our

choice of learning rate. Instead, we often take
0* = Bk

for some k > 0.

*While learning rate and similar optimization metaparameters are
often labeled as hyperparameters in existing literature, such a
characterization would be inappropriate by our definitions, as
optimization metaparameters only affect the behavior of the opti-
mizer, and have no bearing on the model.



There exist a number of variations on vanilla gradi-
ent descent. One common approach, stochastic gradient
descent (SGD), uses small subsets (batches) of the full
dataset to approximate the loss function during each up-
date step. This drastically improves the efficiency of com-
puting the loss function, at the cost of accuracy — small
batches only provide an approximation of the true loss
function. Nonetheless, this turns out to be a blessing in
disguise, as these noisy approximations of the true loss
function can help optimizers escape suboptimal local min-

ima and saddle points during optimization (Keskar et al.|

2016} Kleinberg et al |2018)). For modern gradient-based

models, SGD is ubiquitous.

Other approaches modulate gradient descent’s update

rule. In gradient descent with momentum (Polyak, 1964;

Sutskever et al [2013)), the optimizer keeps track of a

velocity vector. During each update step, the gradient up-
dates this velocity vector, and that velocity vector in turn
updates the parameter value — this approach is argued

to converge more quickly and to better local minima.

Finally, some techniques replace the static learning rate
with more sophisticated machinery to account for differ-

ent length-scales in different regions of the parameter
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space, and along different directions. One well-known

algorithm, Adam (Kingma and Ba) |2015)), keeps track of

dynamic estimates for the variance of each parameter’s
gradient, and uses these estimates to set parameter-wise

learning rates. Similar approaches in this category in-
clude AdaGrad (Duchi et al., 2011)) and RMSProp (Tiele;

man and Hinton, [2012)).

2.1.4 Artificial neural networks

Artificial neural networks (ANNSs) have become a central
component of many prominent machine learning model
architectures. While it is hard to find agreement on their
exact definition, ANNSs are a method for representing and
computing diverse families of vector-valued functions of
a vector argument, with each such family parameterized
by a vector 6. In this section, we shall use fy to notate the
function represented by some neural network for param-
eter 8, with y = fy(x). Importantly for gradient-based
optimization, y is generally differentiable with respect to
0.

While most models we will investigate have ANNs at

their core, it is not always straightforward to represent a
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probability distribution using a neural network. Usually,
values of the random variable x are encoded as vectors
and identified with the vector x. In the case when the
target distribution has small sample space, the network’s
output vector y can be interpreted directly as a probabil-
ity distribution over the possible values of the random
variable y, so long as care is taken to ensure the compo-
nents are non-negative and sum to unity. In other cases,
more sophisticated machinery will be needed — we will
discuss such details as they arise.

Artificial neural networks generally represent f4 as a
composition of many layers I

o) = (et o) 0

These layers generally represent conceptually simple and
easy-to-compute functions — we will abuse notation and
also use x and y to refer to the inputs and outputs for a
single layer, respectively. Two of the most common layer
types are linear layers, which represent bilinear functions

of x and 6P| and activation functions, which are usually

3In practice, this usually means building a matrix out of some
components of 8, and multiplying the input vector x by that
matrix.
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simple non-linear functions applied componentwise to
the input vector. The composition of a linear layer with an
activation function is termed a feedforward layer. The sim-
plest category of ANNs, multi-layer perceptrons (MLPs),
are pure compositions of multiple feedforward layers,
but other, more complicated kinds of networks might be
appropriate for certain task settings.

A case of particular interest for natural language pro-
cessing is where x and y represent sequences of values. Of
course, when the sequence length is a constant k, we can
interpret these both to be concatenations of subvectors,

maintaining our vector-to-vector formalism:

x=x'ox?e® - @xk y=yloy’ e oy

However, special care must be taken in designing neu-
ral networks which can learn to be sensitive to the se-
quence structure of their inputs and outputs. Such net-
works will often have the additional benefit of being well-
defined for variable sequence lengths k. In the following
sections, we will discuss common types of network for

this setting.
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Recurrent neural networks

One approach to processing sequences with neural net-
works involves repeated application of the same layer [,
For instance, let’s start by defining y° = 0. We can then
define

y' = Iy~ @)

fori € [1--k]. In this way, the value of each y’ depends on
the values of all input vectors x/ where j < i, and the final
output vector y* depends on the entirety of x. We term
such layers recurrent layers, and networks which utilize

these are termed recurrent neural networks (RNNs).

It is important to note that RNNs are inherently direc-
tional — each output vector can depend only on previous
input vectors, and not on subsequent ones. While this
property may be desired in some tasks (for instance, in
autoregressive language modeling), other circumstances
may call call for y' vectors which depend on both preced-
ing and succeeding ¥’ vectors. In these cases, bidirectional
RNNs can be applied. In a bidirectional recurrent layer,
two separate recurrent layers are employed: one applied
to the sequence (x1,x2,... x%y, and another applied to its

reversal (x*, xk=1 ... x1). The outputs of these two recur-
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rent layers can be combined (e.g. by vector concatenation)
for use as input to further layers in the neural network.
As an RNN's prediction for y’ can only depend on
distant /s “by proxy” of all of the intervening output
vectors yU*1#=1] modeling long range interactions often
degrades into a game of Chinese whispers over a noisy
channel — when viewed in terms of the update signal
provided by gradient descent, this is often termed the
vanishing gradient problem. Many proposals have been
made to partially alleviate this problem in RNNs, lead-
ing to a number of popular RNN layer types. The most
well-known among these is the LSTM (Hochreiter and|
Schmidhuber, , or long short-term memory network,

which utilizes a notion of gates in order to allow informa-

tion to flow more directly between time steps. The GRU

(Cho et al) |2014)), or gated recurrent unit, is a similar

variation on the same theme.

Self-attention and transformers

Transformers (Vaswani et al.,2017)) are an alternate ap-

proach to sequence processing, based not on RNNs but
on self-attention layers. While we will relegate a complete

technical description of transformers to|Vaswani et al.s
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paper, in this section we will discuss them at an informal

level and contrast them with RNNs-based networks.

Macroscopically, transformer networks consist of alter-
nating self-attention layers and token-wise feedforward
layers. As the self-attention layers are responsible for
all sequence processing, we will focus our discussion on
these.

In a self-attention layer, each output vector y* depends

1L x2 ... ,xk. This differs sig-

directly on all input vectors x
nificantly from RNNSs, wherein each output vector can
only depend on distant input vectors indirectly. This is
achieved by means of an attention mechanism — for each
pair (x!,x/) an attention score is calculated, and yi is rep-
resented as a weighted sum of contributions from each x/,
with the weights of this sum deriving from the attention

scores.

This approach to sequence processing has a number of
consequences that make transformers vary significantly
from RNN:Ss. Firstly, transformers are intrinsically bidirec-
tional — attention scores can be defined in such a way to
ensure that each y' can only attend to x/ where j < i, but
this requires special effort. In fact, self-attention layers not

only aren’t directional, but aren’t sensitive to the sequence

45



structure of x at all — as weighted sums are commutative,
self-attention layers are permutation invariant. This prop-
erty is actually detrimental in most NLP tasks, where we
would like models to be sensitive to the order of tokens —
for this reason, transformer networks utilize positional em-
beddings to explicitly encode within each x’ information
about the value of i. While this allows transformers to be
sensitive to the order of its inputs, it is important to note
that transformers must “learn” to utilize this sequence
information — while RNNs are intrinsically more sensi-
tive to short-term interactions than to long-term ones,

transformers have no such inductive bias.

2.1.5 Pretrained embedding networks

A recent trend in NLP is increasing reliance on large,
pretrained neural networks to acquire word embeddings,
vector representations of words to be used as inputs to
further ANN layers. This section will discuss these pre-
trained models in roughly chronological order, outlining
their history and examining their applications in state-of-
the-art models.



Distributional semantics and and word embeddings

The concept of word embeddings grew out of the field of
distributional semantics. This field is interested in formal-
izing and representing the meanings of words in terms
of their statistical properties in a corpus of text. With this
goal, vectors turn out to be a natural way of summarizing
these statistical properties — the earliest approaches to
generating word embeddings generally consist of a fixed
pipeline of transformations applied to corpus frequencies
in order to obtain vectors.

Distributional semantics came to be linked to neural
networks in two ways. First, it was realized that neu-

ral networks could be used to obtain embedding vectors

—Bengio et al.| (2000]) describe the training of a neural

language model, and observe that some of the model’s
learned parameters can be interpreted as semantic rep-

resentations. Secondly, during their work on multitask

learning, (Collobert and Weston| (2008 note that embed-

dings learned from one task can be re-used to initialize a
new neural network to improve performance.

This second discovery in particular led to the prolifera-
tion of general-purpose word embeddings — embeddings

could be generated from a large corpus of unlabeled text,
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and then published to be incorporated into neural models
for any number of NLP tasks. Word2vec (Mikolov et al.,
and GloVe (Pennington et al} [2014)) are two widely
used frameworks for the generation of such pretrained

embeddings.

Contextualized embeddings

One limitation of traditional word embeddings is in deal-
ing with polysemy: as a single vector is assigned to each
unique word, words with multiple senses receive only a
single vector which must encompass all of these senses.
Contextualized embeddings emerged as a technique for
dealing with this problem. In the framework of contextu-
alized embeddings, instead of assigning an embedding
vector to each word, a sequence of embedding vectors is
assigned to each sequence of words. In this way, the value
of a specific embedding can depend on the context of its
corresponding word within a larger text. While tradi-
tional embeddings could be disseminated as a serialized
list of vectors for some finite vocabulary of words, con-
textualized embeddings must be calculated from scratch
for each sequence of words. Therefore, contextualized

embedding systems are usually distributed in the form



of a pretrained neural network which can be evaluated
for a user-provided input sequence.

While some early experiments with contextualized

word embeddings were carried out in|Lee et al.| (2017)

and [McCann et al| (2017)), the technique exploded in

popularity with the release of ELMo (Peters et al., 2018]).
ELMo is an LSTM-based neural network that was trained

for language modeling, with the outputs of the network’s

internal layers then used as word embeddings. As lan-
guage modeling is an inherently directional task, ELMo
largely consists of two independent networks, one which
does left-to-right language modeling and one which does
right-to-left language modeling. Each network produces
embedding vectors, and these are concatenated to form

ELMo’s contextualized word representations.

From embeddings to transfer learning

When a neural network is used to generate contextual-
ized embeddings, and these embeddings are then used
as inputs for another neural network, it is possible to con-
sider the composition of these two ANNSs as one large
network. From this perspective, it becomes natural to

consider optimizing the parameters of this composed net-
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work jointly, updating the parameters in the embedding
network and learning parameters for the downstream net-
work concurrently. This places us squarely in the field of
transfer learning, wherein our embedding network was
tirst pretrained for one task, and subsequently fine-tuned
for a different, but related task. This transfer learning
approach has proven quite popular with contextualized

embedding networks.

While transfer learning is possible with ELMo, it is
not commonly employed. In their original publication,
recommend fine-tuning ELMo on its lan-
guage modeling pretraining task for new datasets, but

do not explore updating weights during training of the

main task. Peters et al.| (2019|) note inconsistent effects of

fine-tuning ELMo, with minor improvements on some
tasks but minor degradations on others. On the other
hand, shortly after the release of ELMo, a new family of
transformer-based embedding models appeared which

seemed much more amenable to fine-tuning.

BERT (Devlin et al., 2019al) was the first of these to
make significant waves. Apart from using a transformer
instead of LSTMs, BERT differs from ELMo in its pretrain-

ing task — while ELMo is pretrained as a pair of unidirec-
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tional language models, BERT is pretrained primarily on
the cloze task (Taylor} [1953)), or masked language modeling.
In this setting, some percentage of words are “masked”
out of a text, and BERT must predict which words were
masked. This allows for a fully non-directional embed-
ding model, as BERT can depend the left context, the right
context, and interactions between them when computing
the embedding for a particular word.

BERT ushered in a plethora of similar embedding mod-
els based on masked language modeling and transform-

ers. Some of the most salient of these include RoBERTa

(Liu et al., 2019)), which improves upon the training pro-
cedure of BERT, DistilBERT (Sanh et al,,|2019)), a distilled
version of BERT which aims to preserve its performance

with lower computational requirements, and SpanBERT

(Joshi et al., 2020]), with a focus on representing spans of

text.

2.2 Relation extraction

In order to discuss relation extraction in detail, it is desir-
able to establish an exact vocabulary of definitions and

formalisms. This is especially crucial given the conflicting
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assumptions commonly made when working on different
tasks or datasets. We will therefore establish a vocabulary
as general as possible, with the hopes of being able to ac-
commodate as much of the existing literature as possible.

2.2.1 Documents

We assume that each dataset comprises a set of docu-
ments. In general, we will use the word document to refer
to the smallest self-contained unit of a dataset. Each doc-
ument has its own input text, and all relations “live” in
exactly one document — we disallow relations between
different documents. It should be possible to work with
individual documents separately — any relation extraction
model should be able to make predictions for a single
document of a larger dataset, and separate predictions
made for separate documents should always be made
independently from one another.

Concretely, the level of textual subdivision represented
by a document can vary considerably depending on the
task. Some tasks might treat individual sentences as docu-
ments, while others might treat an entire novel as a single

document. When defining a document for a specific task,
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we always choose the smallest level of subdivision which
has the independence properties we are interested in.

2.2.2 Text

All relation extraction tasks which we consider will take
text as their input. For our purposes, we consider a text
to be a finite-length sequence of tokens. Datasets are free
to define their own notion of tokens — some might treat
words or subwords as tokens, and come with a predefined
vocabulary, while datasets which use raw text as input
can be interpreted as treating each character as a token.
Retokenization might be necessary when a dataset and
a model disagree about the meaning of a token — for
instance, it might be the case that a task defines tokens to
be individual characters, while a model uses subwords
as tokens. In these cases, such retokenization should
be regarded as an internal detail of the model, and the
model’s final output should be interpreted in terms of
the data set’s original tokenization.

Many datasets also make extra-textual input available

to models: for instance, datasets based on the Penn Tree-

bank (Marcinkiewicz, 1994)) might also provide part-of-
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speech tags or constituency parsings of the input text.
When this is the case, we will discuss specifically how

that input is treated.

2.2.3 Entities

We define an entity to be anything which can participate
in a relation. Specific relation extraction tasks are free to
define these entities however they would like, but we will
discuss a few common choices here.

We will stipulate that each entity has an entity type,
which comes from some task-defined finite set of possible
entity types. While individual tasks can define the exact
semantics of these types, entities of the same type will
generally be capable of engaging in the same types of
relations. Of course, for tasks with no useful notion of
different types of entities, we can simply assign all entities

the same singleton type.

Textual references and spans

By far the most common kind of entity (and in fact the
only choice that this dissertation will explore in much

detail), textual references are fragments of the input text
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which act as entities. Usually, these fragments will be
textual realizations of some semantic objects — for exam-
ple, they might be noun phrases which refer to specific
physical objects. In the case that these fragments are con-
tiguous spans of text, we will refer to these entities as
spans.

For some tasks, some or all textual references may be
specified a priori. For instance, a task for extracting rela-
tions between named entities might come with named
entity mentions pre-identified. While these cases can
have major consequences for task difficulty and model-
ing approaches, for the sake of consistent nomenclature,
we will still consider these to be textual references that
models must “identify,” although this identification task
might be trivial (i.e. models must only copy these entities
from their input to their output).

Extratextual entities

Some tasks involve relations between entities which are
not textual references. While our novel contributions in
this dissertation do not address these cases thoroughly,
we will list here a few possibilities for extratextual entities.

A common circumstance where extratextual entities
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arise are in cases where we know some ontology of objects
a-priori. In these cases, we might be interested in finding
relations involving these entities themselves, rather than
textual references to them. This sort of structure arises
commonly across task domains: For instance, in literature

analysis, we might be interested in relations between

characters known a priori, as in Kim and Klinger| (2019))

or Wiedmer et al| (2020)).

In practice, such cases are often, but not always, mod-
eled as a pipeline, where the first step involves finding
relations between textual references, while the second
step involves aligning these textual references with extra-

textual entities.

Relations as entities

Some tasks allow for relations themselves to be entities in
higher-order relations. This sort of structure adds consid-
erable complexity to relation extraction tasks, allowing
for many difficult-to-model possibilities such as reference
cycles and self-referential relations, and admitting an
infinitude of possible relation structures for finite texts.
When relations are allowed as entities for a task, the task

will usually make other strict assumptions about which



structures are legal in order to limit the task complexity.

2.2.4 Relations

We define a relation to be a collection of entities, along
with additional structure to define how these entities are
related to one another. We represent this structure in
terms of roles, wherein each entity has a particular role in
each relation it participates in.

As with entities, each relation is assigned a relation

type from some finite task-defined set of possible relation

types.

Roles

We organize the entities which participate in a relation
in terms of roles. Each entity participating in a relation
has a role within that relation, where these roles come
from a finite set of possible roles, defined for each task
a priori. Of course, tasks with no natural notion of roles
can be formalized with one singleton role. It is possible
for multiple entities to participate in the same relation
with the same role, and it is likewise possible for the

same entity to participate in a relation multiple times
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under different roles. It is therefore natural to treat the
participating entities for a relation as a set of (entity, role)

pairs.

2.2.5 Relation structures, constraints, and

evaluation

Periodically, we will refer to the relation structure of a
document — by this, we mean the set of all entities and
relations in a document taken together. Such a notion is
useful to formalize the task of relation extraction in the
notation we have established for machine learning — a
relation extraction task has a target distribution of the
form P(y | x), where x varies over all possible documents

and y varies over all possible relation structures.

Constraints

Each task is free to define constraints on which sorts of
relation structures are allowed and which are disallowed.
These can correspond to local properties of particular rela-
tions (e.g. “Each relation must have exactly two entities”)
as well as global properties of relation structures (e.g.

“No entity can occur in more than two relations”). For



the sake of generality, we will formalize such constraints
as a task-defined legality predicate on relation structures.
However, we should be careful to define these predicates
in such a way so as to be sensitive to structure rather than
content — for instance, if we are modeling parent_of rela-
tions, our predicate might ensure that each such relation
has exactly two entities of type person, but it should not
be responsible for enforcing that the first entity is the
parent of the second — ensuring this would be the job of
a model for this task.

2.2.6 Evaluation

Evaluation is the process of quantitatively comparing
a model’s predictions to the true labels, yielding a nu-
meric evaluation score. Higher scores usually correspond
to higher quality predictions, but this is not always the
case (e.g. when scores represent error rates). Evaluation
takes place primarily at a per-document level, with per-
document evaluation scores aggregated across a dataset
to yield a final evaluation score for a model. While this
can in principle depend directly on the model distribu-

tion Pg(y | x), such a setting is rare in relation extraction.
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Rather, for each (x, y) pair in the dataset, evaluation usu-
ally proceeds by comparing the relation structure y to
a model’s predicted structure §j = arg max,, P(y’ | x),
and assigning a numerical score based on how well these

structures align.

The intended evaluation metric is usually specified
along with a particular task, and some metrics may only
be well-defined for certain tasks. We will discuss a few
common cases here, but leave specifics to our discussions

of particular tasks.

The simplest-to-define metric is document-wise accu-
racy, where we assign a score of one if §j = y, assign a
score of zero otherwise, and aggregate scores across the
dataset by simple averaging. This approach is not too
common in practice, as it can not assign “partial credit”
to distinguish between mostly-correct predictions and

catastrophic failures.

Relation-level metrics address this by counting each
relation separately, allowing for more fine-grained dis-
tinctions than document- level evaluation. One approach
here is relation-wise Fj-score. Even this is often too
coarse-grained for many tasks, and metrics are often de-

fined which can account for partial matches between re-
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lations and entities. This becomes especially important
when relations are non-binary. For n-ary relations, the
space of relation candidates grows quite large, and it
might be desirable to assign partial credit for predictions
which match in some, but not all, of the true entities. Ap-
proaches to accounting for partial relation matches often
reduce to representing n-ary relations as a collection of
binary relations, and evaluating all such binary relations
together. For example, the CoNLL 2005 shared task for

semantic role labeling (Carreras and Marquez, |2005a),

which involves variadic relations between verbs and a
large number of other roles, evaluates by decomposing
these large relations into collections of verb-role binary
relations, and calculating F;-scores for these binary rela-
tions.

2.3 Architectural motifs for relation
extraction
While architectures for relation extraction are hugely var-

ied, and are often tuned to the specific task they target, a

number of motifs tend to recur across many architectures.
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This section will briefly define and discuss a few of these
patterns. We will try to keep all discussions here abstract
and high-level, relegating more concrete discussions of
applications of these motifs to discussions of particular

architectures.

2.3.1 Pipeline models

Pipelines are a common motif wherein the full task is de-
composed into a sequence of subtasks, and these subtasks
are then carried out by a sequence of submodels in order
to obtain predictions, with the output of each submodel
being used as the input for subsequent submodels. It
should be noted that pipeline models are not specific to
relation extraction, and are in fact quite ubiquitous across
many areas in machine learning.

Formally, we can view pipelines as a way of factorizing
our target distribution: if we have a target distribution
over k output variables y = wt, -, yk>, a pipeline model
uses the chain rule to represent this distribution in terms
of k submodels, where each submodel is responsible for
only a single output variable:

Po(y Ix) = Poyl | %) - Po(y? I x,y1) - Po(y* | x,yt, -, y* 1)
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In principle, search algorithms such as beam search
can be used to find high-likelihood assignments to all of
the output variables during prediction, but often times
simple greedy decoding is used, selecting the most likely
prediction for each submodel.

In relation extraction, pipeline models often factorize
the full task into two subtasks: entity extraction, which
is the task of identifying and type-labeling all entities
present given a text, and relation building, which involves
predicting a set of relations given the text and the set of all
entities present. Not uncommonly, these subtasks might
themselves be modeled as pipelines: for example, entity
extraction might be done by first extracting unlabeled

entities, and subsequently assigning entity types to them.

2.3.2 Sequence labeling for span extraction

When only text spans are considered as entities during
entity extraction, we may term this step as span extrac-
tion. As many relation extraction tasks only consider
relations between spans, span extraction is a ubiquitous
tirst step in pipeline models. While many approaches

exist, a common choice is to treat span extraction as a se-
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quence labeling task, encoding the spans of a document
in terms of token-wise labels and tasking a model with
predicting these labels.

BIO labeling (Ramshaw and Marcus) [1999)) is one com-

mon method of encoding a set of non-overlapping spans
in a document as a label sequence. Under this framework,
the first token of each span is assigned a begin-label (B),
all subsequent tokens in a span are assigned an inside-
label (I), and all tokens which are not part of any span
are assigned an outside-label (0). In this way, any set of
non-overlapping spans in a document can be uniquely
represented by a label sequence, and sequence labeling
models can be used for span extraction. In order to ac-
count for span types, B- and I-labels can be marked by

span type.

Other sequence-labeling approaches to span extraction
tend to be minor variations on BIO labeling. The most

common variant, BILOU labeling (Ratinov and Roth,
2009)), extends BIO labeling by marking the last token of
each span with an L-label. This necessitates a new label, U,

to mark single-token spans. In general, sequence-labeling
based approaches are all limited in their ability to repre-

sent nested or overlapping spans, and generally assume
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that no spans can share tokens.

2.4 Specific relation extraction tasks

We will now investigate a number of existing relation
extraction tasks from the literature in terms of the defini-
tions introduced in Section 2.2, and briefly discuss mod-
eling approaches used for these tasks. This will serve
three major purposes: First, this will provide concrete ex-
amples of how existing tasks can be formalized in terms
of the framework we have established. Secondly, by pur-
posely choosing a diverse set of tasks, this will act as a
review of the breadth of relation extraction tasks in exist-
ing literature. Finally, we will get a first concrete glimpse

at how existing models depend on task-specific features.

2.4.1 TACRED

TACRED (Zhang et al.||2017)) is a corpus for relation ex-

traction over newswire text. TACRED defines 41 types of
binary relations between 23 types of entities; examples
include a city_of_death relation between a PERSON en-
tity and a CITY entity and a founded_by relation between
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a ORGANIZATION entity and a PERSON entity.

TACRED makes a number of simplifying assumptions
in its task statement. Each document is a single sentence,
and is guaranteed to contain at most one relation between
two entity spans. These two spans, labeled by entity types,
are provided as model input. One of these is labeled as
the subject of the relation, and the other is labeled as
the object. As we will soon discuss, these assumptions
have significant implications for what kinds of model

architectures are successful for this task.

It is quite straightforward to describe TACRED in terms
of the definitions we have established. TACRED’s notion
of entity and relation types coincides exactly with our
definitions, and TACRED's subjects and objects are nat-
urally interpreted in terms of our notion of roles. The
corpus comes tokenized at the word level. Evaluation is
done by micro-averaged relation F;-score.

TACRED's constraints, formalized as a legality predi-
cate, would only admit relation structures meeting the
following criteria:

e The only entities present are the two spans present
in the input.
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e There is at most one relation present.

o If there is a relation, it has exactly two entities —

those present in the input.

o If there is a relation, each entity’s role within that

relation is identical to that specified in the input.

When we consider modeling approaches within these
constraints, it becomes clear that there isn’t too much left
for a model to do that isn't already provided in the input.
Since we already know the two entities and their roles, all
that is left for a model is to a) decide if there is a relation
present, and b) if so, decide that relation’s relation type.
In fact, almost all models for this task are ultimately just

classification models (e.g.|Zhang et al.,|2017;|Huang et al.,

12022; Baek and Choi, [2022]), where the set of classes is the

7

set of relation types along with a separate “no-relation’
label. Most modeling complexity revolves not around the
output structure, but rather in representing the input text

and graceful handling of minority labels.



2.4.2 OntoNotes semantic role labeling

Semantic role labeling (SRL) can be informally described
as answering the question “Who does what to whom?”
in a sentence. This task is not usually characterized as an
instance of relation extraction, but it is easily accommo-
dated by our formalisms. As the task is defined differ-

ently for different datasets, we will focus on the task as it
is described for the CoNLL 2005 shared task (Carreras|

and Marquez, [2005b)) for use with the OntoNotes corpus
(Weischedel et al, 2011)).

In the CoNLL 2005 shared task, all predicates are marked

in the input, making SRL more a question of “Who does
p to whom?” for some known predicate p. Given each
p and its context in a sentence, models must identify all
arguments to that predicate, each fulfilling a “role”. In
general, each of these is a span, but a built-in notion of
continuation spans does allow for discontiguous argu-
ments. In our framework, it is natural to have one relation
for each predicate encompassing all of that predicate’s ar-
guments. As might be expected, the shared task’s notion
of roles coincides exactly with ours.

The CoNLL 2005 shared task specifies a system of

linguistically-motivated constraints based upon roles. Roles
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are characterized as being either core roles or non-core
roles. For each predicate, each core role can only occur up
to one time, while non-core roles can occur any number
of times. Additionally, the requirement that each relation
coincide one-to-one with a predicate could be taken as a

constraint.

The shared task published a script to use for evaluation.
The metric used is a per-argument F;-score, allowing
partial credit for relations based on the number of correct
arguments, but not assigning partial credit for partially-

overlapping argument spans.

Models for this dataset tend to be span extraction mod-
els at their core. Since predicates are known a priori, and
since each predicate corresponds with one relation, a com-
mon approach is to use a sentence with a single marked
predicate as input to a span extraction model, putting
all identified spans together with the predicate into one
relation. On top of this premise, individual architectures

distinguish themselves largely by how they handle the

task’s constraints. For example, |He et al.| (2017a]) use A*

search during decoding time to find span sets which con-

form with the constraints, while Papay et al. (2022)) use

a CRF variant to enforce constraints during both training
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and decoding.

2.4.3 GENIA event extraction

GENIA (Kim et al.,|2003)) is a corpus of biomedical text,

annotated with a number of structures. In 2009, a shared

task for event extraction was announced using this corpus

(Kim et al.} |2009)). This task involves identifying descrip-

tions of biomedical events involving proteins, such as
instances of gene expression or protein phosphorylation.
Each event involves at least one protein, but may involve
additional proteins, mentions of binding sites, or other
events. All protein names are marked in the input, but
everything else must be predicted by models.

Despite the differing terminology, GENIA’s events can
be mapped directly to our notion of relations. Proteins
and binding sites are all realized as text spans, and the
various types of events can be represented by multiple re-
lation types. GENIA defines different types of arguments,
a notion which matches our notion of roles.

Similarly to SRL with OntoNotes, GENIA enforces con-
straints based on how often different roles can occur in

different events. Some roles are required exactly once in
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an event, some are optional, and others may occur any
number of times in a single event. Interestingly, all events
are “triggered” by mentions of their name: in our ter-
minology, each relation type has a corresponding entity
type, and there must be a one-to-one mapping between

those entities and relations.

Perhaps the most structurally interesting aspect of GE-
NIA is the presence of higher-order relations — relations
can participate as entities in other relations. Such struc-
tures are allowed by our formalisms, but are somewhat
rare “in the wild.” Nonetheless, due to GENIA’s one-to-
one mapping between relations and trigger spans, the
presence of these higher-order relations does not lead to
too many complications, as any higher-order relation in-
volving another relation as an entity can be re-interpreted
as a first-order relation involving that other relation’s trig-

ger span.

The 2009 event extraction shared task defines a number
of evaluation metrics for the task. All of these are relation-
level F;-scores, but differ in their assignment of partial
credit. While a strict evaluation mode requires relations
that match exactly, recursively checking equality of sub-

relations, other modes relax this recursive checking and
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assign partial credit for partial span overlaps.

Due to the complexity of GENIA’s possible relation
structures, most approaches to this task tend to be pipelines,
which can decompose the complex structured prediction
task into manageable subtasks. For example,
(2009)) use a pipeline involving dependency parsing, trig-
ger span identification, and a number of graph pruning
steps to arrive at the final relations. Trieu et al.| (2020)) is a

more modern approach, using deep neural networks for
individual subtasks, and even training these components
jointly. However, the inference procedure still largely re-
sembles a pipeline model, with the predictions of early

subtasks being used as input for latter subtasks.
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Chapter 3

Formal specification of

relation extraction tasks

N our quest towards task-general relation extraction
models, it might seem desirable to seek model archi-
tectures which are “agnostic” to the specifics of an indi-
vidual task. After all, we might expect a model which
has no knowledge of any task-specific properties to gen-
eralize well across tasks which differ in those properties.
This hypothesis, though intuitive, does not work well in
practice. From experience, we find that the best models
for different relation extraction tasks often achieve their
high performance by leveraging a priori knowledge about
their tasks. The lack of generalizability in such models is
precisely a consequence of this reliance on task-specific

properties.
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Thus, if models can’t simply ignore task-specific prop-
erties, but at the same time a reliance on these properties
leads to a lack of generality, a fertile ground for compro-
mise becomes apparent in formal description of tasks’
properties and models” assumptions. If we can formally
describe the structural properties of many diverse rela-
tion extraction tasks using the same descriptive language,
we can formalize what exactly makes tasks different, and
when exactly these differences influence the applicability
of model architectures. Furthermore, such formal de-
scriptions can allow architectures to adapt themselves to
a particular task, automatically selecting hyperparame-
ters to match the properties of the task at hand.

This chapter will study the formal specification of re-
lation extraction tasks, and how such specification can
facilitate the development of task-general relation extrac-
tion architectures. In order to investigate in this direction,
and as a concrete contribution in its own right, we de-
velop DERE (Declarative Relation Extraction), a software
framework for specifying the structures of relation ex-
traction tasks, and developing architectures which can
account for tasks’ structures. With DERE, we hope to en-

courage further research into task-general architectures
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by providing a framework which separates task-specific
frontends from task-general backends.

DeRE enables users to

e specity (novel or established) relation extraction
tasks in terms of their structural properties and

assumptions in the frontend

e develop general architectures for relation extraction,
capable of instantiating models for specific tasks
based on the specification of those tasks’ structures
in the backend, and

e instantiate, train, and evaluate models for specific

relation extraction tasks.

DEeRE achieves this by providing (a) a general mechanism
to declaratively specify relation extraction tasks, and (b)
a shared processing framework that decouples frontend
and backend. For the cases where architectures do gener-
alize well, this allows users to easily select architectures
and tasks independently, disentangling the questions of
“What task do I have?” and “which model should T use?”.
Furthermore, when the generality of architectures isn't
known, DeRE provides an attractive testbed for investi-

gating the generality of architectures, enabling users to
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Figure 3.1: Example formalizations of two different tasks
in terms of frames, slots, and spans.



painlessly experiment with novel tasks, novel architec-

tures, and novel combinations therebetween.

The declarative specification of a task (which we call
a schema) describes a task’s structure in terms of frames
and spans, concepts which map almost directly to the no-
tions of relations and spans as introduced in Section [2.2]
Figure [3.1) shows the general structure of frames, and
two concrete instantiations for specific relation extraction
tasks, BioNLP event extraction and aspect-based senti-
ment analysis. Each frame is anchored (triggered) by a
span, e.g. a BloNLP event anchor, such as “regulation” or
“involves”, or a subjective evaluating phrase like “very
stylish.”

Frames hold a task-specific number of typed slots, filled
by relation arguments. The frames for ABSA have a slot
filled by the target (aspect) of the sentiment while the
frames for the BioNLP regulation event hold a Theme
slot and an optional Cause slot. While anchors are always
textual spans, slots can be filled by either spans or frames,
depending on the task specification. We argue that this
simple setup can model an interesting subset of relation
extraction tasks. Note that the framework poses no theo-

retical restrictions to the window from which frames are
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extracted. Thus, it can model sentence-level, document-

level as well as multi-document tasks.

3.1 Related Work

The framework we present here is quite general, and
accommodates many common relation extraction tasks,
such as the BioNLP shared task (Kim et al., |2009)), se-
mantic role labeling (Das et al, |2014)), and (temporal)

slot filling (Surdeanu, 2013]). However, as is the trend

for relation extraction tasks, all systems we are aware of
for solving these tasks are tailored to specific scenarios
(Angeli et al.,|2016;|Adel et al.,|2016} i.a.). As a result, it is
not straightforward to apply them to other use cases. In

contrast, our framework is designed to enable the creation

of task- and domain-general architectures.

Clarke et al.| (2012]) develop an NLP component man-

ager which combines several existing NLP tools in a

pipeline. Similarly, Curran| (2003)) aims at a general NLP

infrastructure but only reports implementations of non-
relational sequence-tagging tasks. Examples of the few
available toolkits which are intended to provide users

with the possibility of automatically extracting informa-



tion from text data are Jet (Java Extraction Toolkit), GATE
(General Architecture for Text Engineering,
etal] [2013), UIMA (Unstructured Information Manage-
ment Architecture, |[Ferrucci and Lally), [2004)), FACTO-
RIE McCallum et al| (2009|) and Stanbol, which inte-
grates other NLP frameworks, e.g. OpenNLP

(2005).

Stanbol and OpenNLP, however, focus on tagging tasks

and do not provide tools for relation extraction. FACTO-
RIE is a general approach to formulate factor graphs for
arbitrary tasks. Our framework allows arbitrary model
paradigms to be used as backends, and is focused on
relation extraction, which enables the abstraction layers
introduced earlier. Jet, on the other hand, is an informa-
tion extraction engine developed specifically for the ACE
task specification.

GATE is most similar to our framework in scope. It
offers both a framework for programmers and an en-
vironment for language engineers and computational
linguists. However, it is a very general framework, and
working with it requires both domain and machine learn-
ing knowledge. In contrast, our framework provides end

users with an interface for training models on new tasks
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without requiring any specific knowledge.

3.2 Framework design

As a software framework, DERE is a useful tool both for
those wishing to develop new architectures, and to those
wishing to use existing architectures for a specific task.
For researchers and model developers, DERE acts as a
convenient library for quickly developing task-general re-
lation extraction models. It provides a convenient API for
loading and saving corpora, representing and manipulat-
ing frames and spans, and evaluating model predictions.
Furthermore, we provide tools for reading and parsing
task schemata, so that developers can easily write archi-
tectures which automatically adapt to tasks’ structures.
For end-users, DERE makes it straightforward to apply
architectures to new or existing tasks. As long as a user
can specify the task’s structure as a DERE task schema,
they can apply any backend architecture they would like
to the task with no additional programming, and without

any knowledge of model internals.
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Figure 3.2: Structure of the DeERE framework.

3.2.1 Framework structure

Figure illustrates the structure of the DERE frame-
work. It is composed of two main components: The front-
end comprises the user specification of the task (“task
schema”), including the types of spans and entities to
be identified, and the possible relations that can exist
between them. It manages reading corpora and annota-
tion files and provides an interface for users. The backend
hosts the models that make actual predictions for spans,
frames, and slots, given the task schema, and their con-

tigurations. DERE backends follow a modular design,
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wherein different backends, using different methods for
prediction, can be used interchangeably with minimal

changes to the frontend.

3.2.2 Task schemata

A task schema is DERE’s formal specification of the struc-
tural properties of a task. One goal of DERE’s design
is to concentrate all specifics about particular tasks into
these schemata — instead of incorporating task-specific
assumptions directly into model architecture code, task-
general architectures can be given a task schema as input,
and adapt themselves dynamically to the structure of a

specific task.

A task schema specifies possible relation structures
in terms of frames, spans, and slots. These concepts map
almost directly to the notions of relations, spans, and roles
respectively, as introduced in Each frame has some
number of slots, as defined by its frame type, and each of

these slots can be filled by zero or more spans or other
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<deREschema name="BioNLP-ST 2009" wver="0.01"

< auth="Klinger">
<spantypes>
<span name="Protein" predict="False"/>
<span name="Gene_expression" anchors=
< "Gene_expression" predict="True"/>
<span name="Binding" anchors="Binding"
— predict="True"/>
</spantypes>
<frames>
<frame name="Gene_expression'>
<slot name="Theme" types="Protein"
< cardinality="1"/>
</frame>
<frame name="Binding">
<slot name="Theme" types="Protein"
< mincardinality="0"/>
</frame>
</frames>

</deREschema>

Figure 3.3: A small but complete task schema for part of

the BioNLP shared task. Three span types are
specified: Protein, Gene_expression, and
Binding. The latter two anchor frames of the
same name. Both frames possess a single slot
Theme which can be filled by Protein spans.
Gene_expression frames always have exactly
one Theme, while Binding frames may have
zero or more Themes.
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frames. A task schema specifies:

What frame types are present in the task

What span types are present in the task

Which spans and frames are present in the input,
and which must be predicted

What slots each frame type has

For each slot, what types of spans of frames can fill
it

For each slot, how many spans or frames can fill it

Concretely, task schemata are written as XML files.
Figure|3.3|gives an example task schema file, for a subset
of the BioNLP shared task (Kim et al.| 2009)).

As task schemata allow users to specify which types

of relation structures are permitted or forbidden for a
particular relation extraction task, they can be viewed
as a specification language for task-specific constraints.
However, while we define constraints very broadly in
Section|2.2.5, task schemata are limited in their expressiv-
ity to type agreement and cardinality constraints within
individual relations. This leaves unrepresentable many

constraints for real tasks, such as the constraint that each
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TACRED document contain at most one relation[Y, or con-
straints which recquire some roles to co-occur with other
roles within OnotoNotes relations. Limiting expressibil-
ity was a conscious design decision — the more expressive
we make task schemata, the more difficult it becomes
to write a task-general architecture capable of respect-
ing those task schemata. In the end, we chose type and
cardinality constraints as these are particularly common
constraint types across tasks, and are simple enough that
many approaches to modeling should be able to enforce
them.

3.2.3 Data files

Annotated data, needed for training models, are provided

to DERE as annotation files. We currently support anno-

tations in the BraT (Stenetorp et al [2012)) format, which

represents spans and relations in separate files from the
text in terms of character offsets. BraT’s formalisms match

quite closely with those of DeRE, allowing the represen-

In fact, under the default known-entities setting for TACRED, this
constraint can be enforced by anchoring the relation frames to
one of the given arguments, but such an approach would not
work when entities must also be predicted.
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tation of typed spans, and anchored relations between

arbitrarily many spans. cf. Figure 3.4/ shows an example

of such a BraT annotation file.

T1
T2
T3
T4
T5
T6
E1l
E2
E3

Protein 1650 1655 IP-10
Protein 951 955 PU.1
Protein 1665 1670 ISG54

Protein 978 992 CSF receptor

Binding 932 937 binds
Gene_expression 1634 1644 expression
Binding:T5 Theme:T2 Theme2:T4
Gene_expression:T6 Theme:T1

Gene_expression:T6 Theme:T3

Figure 3.4: An example annotation in Brar format, fol-

lowing the task specification from Figure
The text-bound annotations T are the span an-
notations, the event annotations E define our

frames.

3.3 Proof-of-concept system

As a proof of concept, we implement a simple backend

architecture comprising a pipeline of traditional NLP
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formalizations: First, spans relevant for the task are ex-
tracted. Then, a classifier decides for each pair of relevant
spans which slots of which frame they are likely to fill.
Finally, a heuristic decoding step compiles the results into
frames. Figure 3.5/illustrates this pipeline. The proof-of-
concept system only supports non-recursive structures:
slots of frames cannot be filled by other frames, but must
be filled by spans — i.e., the right-hand BioNLP frame
from Figure [3.1/could not be predicted in this implemen-
tation. Note that this is only a proof-of-concept baseline,
and that the framework is not limited to pipeline models.
Models which can cope with recursive structures, as well
as those which predict entities and relations jointly, can
also be implemented as DeRE backends.

3.3.1 Span extraction

We cast the span extraction problem as a BIO-style sequence-
labeling task that predicts span boundaries. To model
overlapping spans, we train one model per span type
which outputs all spans of that type. Our proof-of-concept
system uses non-neural conditional random fields (Laf}

ferty et al],[2001]). The feature set consists of the lower-
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Figure 3.5: Proof-of-concept pipeline: span identification
(1), slot classification (2), and decoding into
frames (3). } : frame anchors (triggers)

cased words, their stems, their shape (orthographic case,
digits, punctuation), and a flag indicating whether the
word is included in a task-specific gazetteer. All features
(except the last one) are applicable to any NLP task. The
gazetteer feature is based on a simple lexicon of label-
specific words (e.g. positive words for detecting positive
spans for sentiment analysis) and can be instantiated

without any technical knowledge.
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3.3.2 Slot classification

Once the spans are identified, the slot classifier is used to
predict which slots of which frame they are likely to fill.
We break this question down to a classification task at the
level of span pairs — one anchor span representing a frame,
and another span representing a potential argument. The
search space is restricted to those pairs with compatible

types according to the schema.

Formally, the classifier takes as input the set S of all
spans identified previously, along with a task schema.
For each pair (s;, sj) e §2 of spans following the task
schema, our classifier produces as output either a single

relation label r;;, or NR (no relation)P|if the two spans are

ijs
unrelated. Coriceptually, two spans s; and s; are related
iff s; anchors a frame, and s; fills a slot in that same frame.
Relation labels r;j are pairs (f;, l]-), where f; is the frame
type anchored by s; and /; is the slot type in f; that s;
fills. This enables us to model, e.g. in the task schema in
Figure BinpDinG. THEME and GENE_EXPRESSION. THEME
as separate relations. A linear support vector machine

is used to predict the most likely relation label (or NR).

>We generate negative examples automatically.
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Users can enable subsampling of negative examples.

As outlined in the introduction, the features we take
into account are included with the aim of being task-
agnostic. Intra-span features are types of identified spans
and the bag of words in both spans. Inter-span features
take into account context. We use the bag of words of to-
kens between the spans, and of the tokens on the shortest
path connecting the spans in a parsed dependency tree,
which we assume to accurately capture the relationship
expressed by the slot that links the two spans. Since spans
can contain multiple tokens, there can be several shortest
paths between tokens from the two spans. Under the as-
sumption that tokens in a span are closely related to each
other, we select the shortest of these paths. In addition,
we also use a bag of bigrams of alternating label-token
sequence on that same path. Finally, we measure the
length of the shortest path and the token distance.

3.3.3 Decoding

Once the slot classifier identifies all related span pairs,
the decoding step generates frames. Pairs of spans (s;, s;)

that stand in a relation r are first partitioned into equiv-
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alence classes C;, according to their anchor span (i.e.,
(si,87) € C;). It would be possible to produce one frame
for each equivalence class Cj,, anchored by the common
anchoring span s;, and with slots filled according to each
span pair’s relation label . However, as equivalence
classes can be arbitrarily large, this would allow for each
slot to be filled by arbitrarily many spans (as illustrated in
the bottom-left of Figure[3.5)). As the task schema might
impose cardinality constraints, further processing is re-
quired to ensure that all produced frames are consistent
with the task schema. For each equivalence class C;,, we
consider all possible legal frames —i.e., all frames that are
consistent with the task schema and whose slots are filled
according to some subset of Cj,. Of these legal frames, we
retain all maximally-filled legal frames (see bottom-right of

Figure[3.5).

3.3.4 Evaluation and results

To demonstrate the feasibility of our proof of concept, we
report results with this configuration on the 2009 BioNLP
shared task, for which we re-use the original evaluation

machinery. The evaluation calculates the F; scores for
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the individual frames (events in the BioNLP task) us-
ing a soft matching for anchor boundaries and approxi-
mate recursive matching. Table 3.1/ provides the results
of our simple system on that task. Due to the restriction
of our proof of concept to non-recursive structures (cf.
Section [3.3]), we only report on the BioNLP event types
where all slots are filled by spans. In comparison to the
second-ranked system, which also reports results on dev

(Buyko et al., |2009)), our performance is slightly lower

(1 percentage point less for protein catabolism, 13pp less
for gene expression and phosphorylation, but 11pp more
for localization). This confirms the general usability of

our general method.

Due to DERE’s separation of frontend and backend, this
same architecture can be directly applied to other tasks —
table [3.2|provides the results of applying it to the USAGE
corpus for aspect based sentiment analysis
Cimiand, [2014]), with 10-fold cross validation on the En-

glish subset. In comparison to previous results, our num-
bers are very low. Previous work showed that joint infer-

ence had a large positive effect on performance
and Cimiang, 2013} |Yang and Cardie} [2013)), an approach

not taken by our proof-of-concept system. However, this
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Event Class Precision Recall F1

Gene_expression 68.12 57.30 62.25
Transcription 70.59 14.63 24.24
Protein_catabolism 64.00 76.19 69.57
Phosphorylation 65.85 57.45 61.36
Localization 78.57 41.51 54.32
SVT-TOTAL 68.46 50.27 5797

Table 3.1: Performance of the proof-of-concept system for
biomedical relation extraction (BioNLP’0og9 dev
set).

proof-of-concept implementation of the same model al-
ready shows the reusability of our framework by only
changing the task schema specification. It motivates and
enables further research on reusable models across tasks

with different needs.

3.3.5 Technical details and availability

The framework is implemented in Python, following an
object-oriented design for frontend and backends to sup-
port easy interchangeability of components. The choice
of Python will also help with future integration of neu-

ral network models. For the proof-of-concept backend,
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Sentiment Class Precision Recall F1

Positive 41.07 2419 28.57
Negative 26.68 715 11.00
Neutral 5.83 450 5.08

Table 3.2: Performance of the proof-of-concept system for
aspect based sentiment analysis (10-fold cross-
validation on USAGE corpus).

we use scikit-learn for feature extraction and training

(2011 with crfsuite and liblinear. Tokeniza-
tion and stemming is done with NLTK [Loper and Bird|

(2002]), dependency features are extracted with spacy

IHonnibal and Johnson| (2015|) and dependency graphs
are stored and processed using NetworkX (2008)).

The code is available under the Apache 2.0 License |

3.4 Conclusion

This chapter introduced DeRE, a general framework for
doing task-general relation extraction, built on a notion
of formal specification of tasks. DeRE facilitates the de-

3http://www.ims.uni-stuttgart.de/forschung/ressourcen/ |
| werkzeuge/DeRE.en.html
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velopment of task-general models, and makes it easy to
apply existing models to new tasks.

From a more theoretical perspective, DERE acts as demon-
stration of the utility of formal task specifications for task
generality. By drawing a clear dividing line between a
task-general backend and a task-specific frontend, DERE
allows architectures to rely on task-specific priors in a way
that does not hinder those architectures” generalizability.
By declaring task structures in a machine-readable way,
we can concentrate all of our task-specific assumptions
into our formal task specifications, leaving our model
code task-general. In fact, we use a similar pattern, al-
beit with a different specification language, for defining

task-general architectures in Chapter

While formal specification of tasks allows for more gen-
eral architectures which can adapt themselves to the task
at hand, DeRE-like approaches only solve some of the
obstacles in the way of fully task-general architectures.
Many architectures which work well for some tasks are
fundamentally incompatible with the structures of oth-
ers, and no amount of formal specification will fix that.
While meta-architectures can be devised to pick the best

applicable architecture for a task at hand, the vast space
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of potential task structures makes it difficult for such a
meta-architecture to cover a significant subset of tasks.
Furthermore, the approach to task-generality presented
in this chapter only accounts for those task properties
which are formally specifiable and specified. In the case
where an architecture’s applicability is dictated by prop-
erties not accounted for in a task schema, we are forced
to fall back to good old fashioned informal reasoning
and empirical trial and error. Nonetheless, DERE pro-
vides an elegant framework for developing architectures
which can generalize to some extent, and applying those
architectures to tasks within their range or applicability.



Chapter 4

Task-generality for span

extraction

span extraction models form critical components

f most relation extraction models, identifying task-
general architectures for span extraction is an important
step towards creating task-general relation extraction ar-
chitectures. Interestingly, while task-generality for full
relation extraction is complicated by the vast space of task
structures and corresponding structure-specific assump-
tions made by common architectures, the situation is
quite a bit simpler for span extraction. While there is still
arich variety of task-specific properties in span extraction
tasks, most of these properties don't directly conflict with
the hard constraints and assumptions employed by com-

mon span extraction architectures, and therefore don't
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limit the fundamental applicability of architectures to
tasks. In fact, when deciding if an architecture is applica-
ble for a task, the only two questions that usually need
to be answered are “Are nesting or overlapping spans
allowed?” and “Can spans be predicted independently
of one another?”

This chapter will focus on the cases where the answers
to these questions are “No.” and “Not really, but we might
try to anyway.” |'| This limitation is general enough to
admit a wide range of tasks and datasets, while still spe-
cific enough to allow us to make direct comparisons be-
tween different architectures and between different tasks.
Within this space, while all of our architectures will be
applicable to all tasks, we certainly don’t expect them to be
equally performant: Certain architectures might be better-
suited to certain tasks, not due to any hard-constraints or
task-specific assumptions, but rather to subtler interac-

tions between the properties of the data distribution and

"More concretely, it is usually never ideal to treat spans as indepen-
dent of one another, but we will be focusing on tasks where doing
so doesn’t lose us too much. In fact, we will investigate archi-
tectures which do enforce some types of dependencies between
spans in a document, but the types of dependencies we will be
able to represent are rather limited (in general, only between
directly abutting spans).



the inductive biases of the architecture.

This chapter will comprise two sections. In Section [4.1]
we investigate corpus-generality for quotation extraction.
We find that designing architectures capable of generaliz-
ing well across different corpora faces many of the same
challenges as are seen in task-generality. We present an
architecture capable of generalizing well across different
corpora, languages, and modalities, and evaluate its per-
formance across four corpora. In Section 4.2, we discuss
a more systematic study of different architectures’ per-
formance across distinct tasks. We use performance pre-
diction to analyze which architecture components work
well for what kinds of tasks, and which generalize well
across tasks.

4.1 Corpus- and language-general

quotation detection

Quotation is a general notion that covers different kinds
of direct and indirect speech, thought, and writing in text

(Semino and Short, [2004)). Quotations are a prominent

linguistic device used to express claims, assessments, or
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attitudes attributed to speakers. Consequently, the analy-
sis of quotations is important in many areas of computa-

tional linguistics and digital humanities, providing evi-

dence for speaker relationships (Elson et al., |2010; |Agar+

wal etall, [2012]), inter-speaker sentiment (Nalisnick and]
Baird, [2013)), politeness (Faruqui and Pado} [2012)), and

narrative structure (Jannidis et al., 2018)).

As is often the case with semantic phenomena, man-
ual annotation of quotations has shown to be slow and
resource-intensive, in particular when undertaken in con-

junction with the annotation of speakers and information

quality (Brunner, |2013; [Pareti, |2015). This provides the

rationale for automatic quotation extraction methods. As
quotations are generally contiguous spans of text, or are at
least made up of such spans, it is natural to conceptualize

quotation extraction as a span extraction task.

Not surprisingly, existing corpora differ substantially
across a number of relevant dimensions, including text

genre, annotation scheme, and theoretical assumptions.

For example, [Pareti et al| (2013 focus exclusively on

newspaper text and focus on developing a uniform an-
notation schema that captures the shared properties of

all kinds of annotations. Thus, even though this corpus
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contains direct, indirect, and mixed quotations, these are
not marked as instances of their specific subtypes. In
addition, each quote is assumed to be introduced by a
cue:

cue uote
(1)  Hillary Clinton on Saturday acknowledged| @
state of the economy is good|

This assumption is generally true for newspaper text, and
simplifies the task of quotation detection.

The situation is rather different in the literary texts

considered by |Semino and Short (2004)). Cues are much

more varied, and are sometimes omitted entirely, such as

in this exchange from Dickens’ Christmas Carol:

quote
(2) — Marley’s voice, no doubt about it.

quote
“Who are you?”

quote

[”Ask me who I was.”}

The study follows a generally more differentiating ap-
proach. It develops and annotates a rich typology of
different subtypes of quotations to distinguish, e.g., di-
rect from indirect quotations, and speech from thoughts

from writing.
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For the most part, existing models for quotation detec-
tion were developed for one specific corpus. This leads

to two problem:s:

1. The models inherit the corpora’s structural and the-

oretical assumptions, such as the presence of a cue

assumed by models for the |Pareti et al, (2013)) cor-

pus.

2. The models typically include domain-specific fea-
tures and knowledge sources that happened to be
available from the corpus, such as lists of likely cue

verbs or syntactic realizations of quotations.

In this section, we approach the question of corpus-
generality for quotation detection in much the same way
that we deal with task-generality elsewhere this disserta-
tion. We find that corpus generality acts as a microcosm
for the greater problem of task generality, and that de-
signing a corpus-general architecture for a specific task
faces many of the same challenges as are faced when de-
veloping task-general models. We present a neural model
architecture for automatic quotation detection that makes

as few assumptions as possible about the corpus to be
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modeled, but is still expressive enough to deal with the
challenges inherent in quotation detection.

4.1.1 Related work: datasets and models

We now review the state of the art in automatic quotation
annotation, describing the three major quotation corpora
for English and German and the corresponding models.
We exclude corpora that focus on one specific quotation

subtype such as the Columbia Speech Attribution corpus

(Elson and McKeown), |2010)) which only covers direct

speech.

PARC Dataset

Dataset. The Penn Attribution Relation Corpus (Pareti,
2015)), version 3 (pArc3) is a subset of the Penn Treebank,
annotated with quotations and attribution relations. It
consists of English newswire text from the Wall Street
Journal. Each attribution relation consists of a cue, op-
tionally a source (speaker), and content (quotation span),
all marked as text spans. As part of the Penn Treebank,
PARC3 provides manually annotated tokenization, POS

tags, lemmas, and constituency parses.
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Quotation spans are not labeled with more specific
types, but parc3 distinguishes informally (based on the
surface form) between direct quotations (starting and
ending with quotation marks), indirect quotations (with-
out any quotation marks), and mixed quotations (every-
thing else).

Pareti model. (2015)), an extension of
(2013)), presents a pipeline architecture for quotation
annotation. It first applies a k-NN classifier to identify

quotation cues within the corpus. Then, a linear-chain
conditional random field (CRF) is used to identify quota-
tion spans in the vicinity of each cue. Both components
of the Pareti model rely on a corpus-specific feature set,
including a list of known roles, organizations, and titles,
and handcrafted features sensitive to punctuation con-

ventions in English newswire text.

Scheible model. [Scheible et al.| (2016]) retain the pipeline

architecture of (2015)) and its feature set, but re-

place the components. Cue annotation is performed with

an averaged perceptron. More importantly, they replace
quotation annotation proper with a sampling-based pro-
cedure: a perceptron samples tokens as likely span bound-

aries, which are then combined into complete quotation
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spans, using a semi-Markov model.

STOP Dataset

Semino and Short| (2004)) presents a corpus-based on-

tology of quotations in English text. It introduces two
dimensions: (a), speech vs. thought vs. writing; and
(b), direct vs. indirect vs. free indirect vs. reported,
yielding a Cartesian product of twelve quotation sub-
classes. These are used to annotate the Speech, Thought,
and Writing Presentation corpus (stop). It comprises 120
sections, split evenly across three genres (fiction, newspa-
per, and biographies), of about 2,000 words each (Total
size: 250,000 tokens; 8,000 quotations). The corpus has
no linguistic annotation: the only features available are
words’ surface forms. To our knowledge, there are no
other published models for this dataset.

Redewiedergabe Dataset

Dataset The Redewiedergabe (‘reported speech’) corpus

(rwa) (Brunner, 2013)) is a corpus of German narrative

text, comprising thirteen public-domain German narra-

tives from between 1787 and 1913. The quotation anno-
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tations in rRwc adopt the scheme by |Semino and Short|

2004]) and distinguish direct, indirect, free indirect, and
reported variants of speech, thought, and writing. The
total size of the corpus is 57,000 tokens, and 17,000 quo-

tation spans.

Unlike sTop, RwG contains some linguistic information,
namely POS tags, lemmas, and morphological features
(case, number, gender). However, this information is not
manually annotated, but is obtained automatically using

various NLP systems.

Models. Brunner| (2013|) proposes two models for quo-

tation annotation on rwc. Both models work at the sen-
tence level and predict only the presence of absence of
quotations in sentences, and not the quotations” exact
spans (even though this information is annotated). The
first model is rule-based (Brunner RB). It uses a set of
handcrafted rules to identify direct, indirect, reported,
and free indirect quotations. The second model (Brunner
ML) is a simple classification model based on random

forests.
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4.1.2 Neural Quotation Detection (NQD)

We now define a neural architecture, NQD, with the goal
of modeling the quotations in all three corpora described
in Section We design our model to leverage the
commonalities across datasets, while not depending on
the features of any dataset in particular. As all datasets in-
volve long quotation spans with long-distance dependen-
cies, an LSTM-based approach was natural, given such
models’ ability to capture very long-distance dependen-
cies of up to 200 tokens (Khandelwal et al., 2018)). Con-

versely, given the structural differences between corpora,
we found we could not benefit from a pipeline model
like those employed by [Pareti| (2015)) and [Scheible et al ]
(2016)), and thus predict quotations directly without first
looking for cues.

NQD frames quotation prediction as token classifica-
tion, classifying each token as either beginning a quota-
tion (BEGIN), ending a quotation (END), or neither (NEITHER).
Quotation spans then consist of all tokens starting with a
BEGIN tag, up to (but not including) the next END or BEGIN
tag, or the end of sequence. This model is not limited
to the sentence level: it is able to make predictions for

a whole document and in this manner can capture very
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long quotation spans.

The input texts are represented as a sequence of tokens,
where each token is a bag of features. Each feature value
is represented as an n-dimensional continuous vector,
and each token is represented as the sum of these vec-
tors. This approach to feature representation allows our
model to work with corpora with arbitrary types of token-
level features. In the simplest case, when only raw text is
present in the corpus, each token is given a single feature
for that token’s surface form. If other token-level features
are present, such as POS-tags, lemmas, or even parse tree
information, these can be incorporated as additional fea-
ture vectors, without requiring any changes to the model
architecture. Feature vectors can also be initialized to pre-
trained representations (e.g. word embeddings) when
these are available, or initialized randomly and learned
when they are not. Section describes in detail which

features are used for the corpora we consider.

NQD uses sequence-to-sequence models to classify
each token as either beginning a quotation span (BEGIN),
ending a quotation span (EnD), or neither of the two
(NerTHER). This sequence-to-sequence model comprises a
2-layer bi-LSTM network, with the outputs of the sec-
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ond bi-LSTM feeding into a 3-class softmax classifier.
Token sequences, represented as described above, are
the inputs to these sequence-to-sequence models, and
the outputs are a sequence of token labels. Figure
shows a schematic diagram of the NQD architecture. For
datasets with multiple quotation types, NQD uses a sep-
arate sequence-to-sequence model for each span type,
connecting them by weight sharing.

All code for NQD is available online at

ims.uni-stuttgart.de/en/research/resources/tools/

guote-detection/|.

4.1.3 Experimental evaluation

We now train and test NQD on the three corpora and

compare against the state-of-the-art.

Experimental Setup

PARC3. For parc3, we train a single classifier on the quote
content spans and ignore the cue and source spans. As
features, we use token surface forms, lemmas, POS tags,
as well as, for each token, the bags of constituents that

start with, end with, and contain it. These features are
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a subset of the features used by Scheible et al.| (2016])

and (2015)), and like these studies, we use gold

standard annotation. We initialize the features for word

surface forms with the default GloVe Wikipedia word

embeddings (Pennington et al.}|2014)). Our model makes

predictions on entire documents at a time. We use per-
formance on the corpus’s development set to guide early
stopping during training, and we evaluate on the corpus’s

test set.

stopr. For stop, we train four classifiers for the four
quote types (direct, indirect, free indirect, reported). We
train and evaluate our model on a per-document basis as
for parc3. We use word surface forms (and their GloVe
embeddings) as features, we used no other features in this
model. As the corpus contains no held-out development
or test sets, we used 10-fold cross validation to evaluate
our model, using 8 folds for training, 1 for development,

as 1 as for testing in each iteration.

rRwG. For rwg, we adopt the same four-classifier setting
as for stop, using the word, lemma, POS, and morpholog-
ical features available. For the sake of comparability with

Brunner| (2013)), we train and evaluate on individual sen-

tences, as opposed to entire documents. We use 10-fold
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Overall Direct Indirect Mixed
Rec Prec F; Rec Prec F; Rec Prec F; Rec Prec F;

Paretietal|(2013) WSD 63 8071 8 9491 56 7865 60 67 63
cheible etal[(2016) WSD 71 7975 93 9494 64 7369 68 8174
NQD WS 71 6769 94 8288 64 6464 70 59 64
NQD w 61 6161 90 8487 53 5654 60 5457

Model Features

Table 4.1: Results on parc3 (exact span match evaluation)

cross validation again, randomly partitioning all corpus
sentences into 10 subsets. We use GloVe embeddings
pre-trained on the German Wikipedia/?|

Evaluation. Previous studies on rarc3 adopted an ex-
act span match setting, i.e., only those predicted spans
that exactly match a gold standard span count as true pos-
itives. We report precision, recall, and F; in this setting
for rarc3 and stop. For rwg, we report the sentence-level

accuracy used by Brunner| (2013)). In this mode, we train

and predict with our model as before, but for evaluation
we just record whether the model predicts the presence

of a quotation type in a sentence.
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Overall Direct Indirect  Free Indirect Reported
Rec Prec F; Rec Prec F; Rec Prec F; Rec Prec F; Rec Prec F,
NQD W 51 6657 78 8380 33 4940 01 04 01 46 58 51

Model Features

Table 4.2: Results on stor (exact span match evaluation)

Overall Direct Indirect Free Indirect Reported
Model Features
Rec Prec F; Rec Prec F; Rec Prec F; Rec Prec F; Rec Prec F;
Brunner| (2013) RB W S 71 6769 87 8184 62 8171 44 24 31 64 5157
Brunner| (2013) ML W S 63 7769 8 8887 47 6253 29 63 40 45 5650
QD WS 60 7868 77 8682 52 6960 31 68 42 34 5643
NQD w 59 7365 77 8380 40 6950 14 62 23 41 5045

Table 4.3: Results on rwG (sentence-level accuracy evalu-
ation)

Results

rarc3. The results in Table [4.1] show that NQD cannot
beat the performance of [Scheible et al.| (2016]), but does

almost as well as [Pareti et al| (2013)). Given that our

model is substantially simpler than either of these two
(both include a special cue classifier, dictionaries, etc.),
we see this as a success. Our model is competitive with
the Scheible et al. model with regard to recall, but shows
subpar precision for all quotation types, indicating a re-

maining weakness in the input encoding: for direct quota-

2Available from deepset at https://deepset.ai/german-word+
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tions, quote characters should provide strong indicators
for quotation boundaries.

Note that these results, as well as the earlier studies

(Pareti et al., |2013};|Scheible et al} |[2016]), use unrealistic

gold standard features. Therefore, we ran a second ver-
sion of NQD using only word features, but no tags or
structural information. The model is clearly worse, but
still surprisingly good at 61% F;. Not surprisingly, we
see the highest drop for indirect quotations, which are
most sensitive to syntactic structure.

STOP. To our knowledge, the results in Table |4.2|are
the first modeling results on stop. In comparison to Parc3,
the results are noticeably lower. It is still the case that
direct quotations are easiest to find, but their F; is some-
what lower than in parc3. Indirect quotations are much
more difficult, and free indirect quotations essentially
impossible. This involves multiple factors: (a) stop is sig-
nificantly smaller, but more varied, than rarc3, providing
sparser training data; (b) stop covers a wider variety of

quotation types, some of these are intrinsically difficult
to model — in particular free indirect quotations

[2009).
RWG. The results in Table [4.3/show a picture that is
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overall similar to rarc33 NQD does not outperform the
state-of-the-art, but approximates it closely despite the
lack of corpus-specific tuning. As in stop, we see the
lowest results for free indirect quotations, showing that
this class is generally hard to classify. In general, even
though this resource’s size and annotation are similar to
sToP, we see significantly higher numbers. This is mostly
due to the different evaluation we use for RwG to compare
to previous work: detecting the presence of quotes is
easier than identifying their spans.

On rwg, we also run a basic NQD with only word form
information. With this corpus and evaluation, this results
in a drop of merely 3 points F; — due to losses in the
indirect and free indirect categories — which bolsters the

potential of this configuration.

4.1.4 Error analysis

To gain some insights into the failure modes of NQD, we
perform a brief qualitative analysis of the cases where

our model gave false predictions.

(2013) does not report overall results. We compute them

as micro-averages over reported per-type results.
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These errors can broadly be divided into three cate-
gories: cases where the model predicts the presence of
extraneous quotations (false positives), cases where the
model fails to identify existing quotations (false nega-
tives), and cases where the model correctly identified the
presence of a quote, but did not correctly determine its
boundaries (boundary mismatch, leading both false pos-
itives and false negatives in our exact span evaluation).
We focus our error analysis on PARC, the previously best-
explored of our three corpora.

False Positives

Among the false positives produced by our model was a
surprising number of quotations that are correct accord-
ing to PARC’s guidelines, but which are not annotated
in the corpus. As an example, our model correctly iden-
tifies the presence of an unannotated quotation in the

following sentence:

predicted
(3)  [Britain’s retail price index rose 0.7% in September

from August and was up 7.6% for the year) the
Central Statistical Office said.
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Outside of these cases, proper false positives seem to be
rare. Many of the false positives we found were boundary

mismatches, discussed separately below.

False Negatives

Among the false negatives we analyzed, we found that
the model is most likely to miss “tricky” quotations that
are unusual in their grammatical structure. In particular,
it tends to miss a class of quotations that are expressed
as short noun phrases or adjectival phrases embedded

within a non-quotation sentence such as

gold

(4) Mandela, considered the most prominent leader
gold

of the ANC remains in prison. But his release

within the next few months is widely expected.

According to the PARC guidelines, these are cases of quo-
tations since they are attributable statements, but they are
difficult for the model to retrieve since they are hard to
distinguish from “non-quotation” nominal phrases —in
particular in cases like this one, where there are not even
overly realized speakers. In STOP and RWG, these cases

might arguably not even be annotated as quotations.
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Boundary Mismatches

A large proportion of the errors of NQD are boundary
errors, where the model identifies the presence of a quo-
tation, but fails to identify its exact boundaries. This can
happen when our model correctly predicts one quotation
boundary, but not the other.

For example, in the following sentence, our classifier
identified the first quotation’s beginning, but not its end,
causing the classifier to label the remainder of the docu-
ment as being part of the quote (it also failed to identify
the second quotation entirely — a false negative):

gold
(5)  He reiterated his opposition to such funding, but
gold
expressed hope of a compromise.

This type of error occurs both for noun phrases and verb
phrases and embedded sentences, but for different rea-
sons: noun phrases are difficult to recognize since they
are not marked by punctuation as are almost all other
cases of quotation spans; verb phrases, on the other hand,
can become arbitrarily complex. In the case above, the
segmentation problems are exacerbated by the fact that

the noun phrase quotation span occurs in a complex syn-
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tactic environment involving coordination.

4.1.5 Conclusion

Here we have argued that existing models for automatic
quotation detection suffer from the tight relation between
corpus annotation and model properties, suffering from a
corpus specificity similar to the task specificity discussed
elsewhere in this dissertation. As an alternative, we have
presented a general neural architecture, NQD, which can
be trained “as is” and which generalizes well to various
corpora that differ in terms of genre, structure, and lan-
guage. While the architecture does not reach the state of
the art on any particular corpus, it performs close to it
on all of them. Notably, the architecture is also able to
deal relatively graciously with the absence of linguistic
information.

As NQD makes independent predictions for each to-
ken, it cannot model correlations and mutual exclusions
between labels, and there is no guarantee for well-formed
output class sequences. In the next section, we will inves-
tigate models incorporating linear-chain CRF layers, and

show that these can lead to improvements, particularly
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when spans are long as is typical in quotation detection.

The overall greatest challenge that NQD faces is data
scarcity — all existing corpora with manual annotation
are small, and our results show consistently bad perfor-
mance for infrequent quotation types. In this situation,
transfer learning seems like a natural proposition, and
our model makes it possible for the first time to apply

straightforward transfer learning to quotation annotation.

4.2 Investigating
task-generalizability with

performance prediction

Due to the rapid development of deep learning, an abun-
dance of model architectures is available for the imple-

mentation of span extraction tasks. These include isolated

token classification models (Berger et al., 1996} Chieu and|
Ng, [2003)), probabilistic models such as hidden Markov

models 1989)), maximum entropy Markov mod-

els (McCallum et al., [2000)), conditional random fields

(Lafferty et al, [2001)), recurrent neural networks such as
LSTMs (Hochreiter and Schmidhuber| 1997)), and trans-
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formers such as BERT (Devlin et al., |2019b)).

Though we have some understanding what each of
these models can and cannot learn, there is, to our knowl-
edge, little work on systematically understanding the task-
generality and task-specificity of different architectures:
Are there model architectures that work well and gener-
alize well across tasks? When complete task-generality is
not possible, can we identify properties of span extraction
tasks that can help us select suitable model architectures
on a task-by-task basis? Answers to these questions could
narrow the scope of architecture search for these tasks,
and could help with comparisons between existing meth-

ods and more recent developments.

In this section, we address these questions by apply-

ing meta-learning to span extraction (|Vilalta and Drissi,

12002} |Vanschoren), 2018)). Meta-learning means “system-

atically observing how different machine learning ap-

4

proaches perform |[...] to learn new tasks much faster’

(Vanschoren, |2018)), with examples such as architecture

search (Elsken et al.,|2019|) and hyperparameter optimiza-

tion (Bergstra and Bengio, [2012)). Our specific approach

is to apply performance prediction to span extraction tasks,
using both task properties and model architectures as
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features, in order to obtain a better understanding of
the differences among span extraction tasks and architec-

tures.

Our specific contributions are as follows: First, we col-
lect a set of English span extraction tasks, quantify key
properties of the tasks (such as how distinct the spans
are from their context, and how clearly their boundaries
are marked) and formulate hypotheses linking proper-
ties to performance (Section [4.2.1]). Next, we describe
relevant neural model architectures for span extraction
(Section[4.2.3]). We then train a linear regression model
as a meta-model to predict span extraction performance
based on model features and task metrics in an unseen-
task setting (Section [4.2.4]). We find the best of these
architectures perform at or close to the state of the art,
and their success can be relatively well predicted by the
meta-model (Section [4.2.5). Finally, we carry out a de-
tailed analysis of the regression model’s parameters (Sec-
tion[4.2.7]), gaining insight into the relationship between
span extraction tasks and different neural model architec-
tures. For example, we establish that spans that are not
very distinct from their context are consistently difficult

to identify, but that CRFs are specifically helpful for this
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class of span extraction tasks.

4.2.1 Tasks and datasets

We work with five widely used English span extraction
datasets. All of them have non-overlapping spans from a
closed set of span types, and are thus amenable to BIO
labeling (which we will use for all architectures). In the
following, we discuss the datasets chosen, the span types
present in those datasets, and the properties of those span
types. Since the different span types within a dataset may
vary significantly in their distributional properties, the
remainder of this work will treat each span type as its
own span extraction task, allowing for a finer-grained

analysis of span types individually.

Quotation detection: pArRc and RiQuA.

We use two quotation detection datasets: The Penn Attri-

bution Relation Corpus (parc) version 3.0 (Pareti,[2016]),

as we used in Section 4.1, and the Rich Quotation Attri-
bution Corpus (RiIQUA, [Papay and Padd, 2020). Both
datasets contain a mix of direct and indirect quotation

spans in text. The corpora cover articles from the Penn
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Treebank (parc) and 19" century English novels (RIQUA),
respectively. Within each text, quotations are identified,
along with each quotation’s speaker (or source), and its
cue (an introducing word, usually a verb like “said”).
We model detection of quotations as well as cues. As
speaker and addressee identification are primarily rela-
tion extraction tasks, relying much more heavily on these
spans’ relations to quotations and cues rather than their

own intrinsic properties, we exclude these span types.

Chunking: CoNLL oo.

Chunking (shallow parsing) is an important preprocess-
ing step in a number of NLP applications. We use the
corpus from the 2000 CoNLL shared task on chunking
(CoNLL0o) (Tjong Kim Sang and Buchholz, |2000]). Like
PARC, this corpus consists of a subset of the PTB. This

dataset is labeled with non-overlapping chunks of eleven
phrase types. In this work, we will consider the seven
phrase types with more than 100 instances in the training
partition: ADJP, ADVP, NP, PP, PRT, SBAR, and VP.
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NER: OntoNotes and ChemDNer.

For recognition and classification of proper names, we
use the NER layer of OntoNotes Corpus v5.0 (Weischedel,
et all, 2011]) and Biocreative’s ChemDNer corpus v1.0
(Krallinger et al., 2015]). OntoNotes, a general language

NER corpus, is our largest dataset, with over 2.2 million
tokens. The NER layer comprises 18 span types, both
typical entity types such as Person and Organization as
well as numerical value types such as Date and Quantity.
We use all span types. ChemDNer is a NER corpus spe-
cific to chemical and drug names, comprising titles and
abstracts from 10,000 PubMed articles. It labels names of
chemicals and drugs and assigns them to eight classes,
corresponding to chemical name nomenclatures. We
use seven span types: Abbreviation, Family, Formula,
Identifier, Systematic, Trivial, and Multiple. We ex-
clude the class No class as infrequent (fewer than 100

instances).
4.2.2 Span type properties and hypotheses

While quotation detection, chunking, and named entity

recognition are all span extraction tasks, they vary quite
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widely in their properties. As mentioned in the introduc-
tion, we know of little work on quantifying the similarities
and differences of span types, and thus, span extraction
tasks.

We now present four metrics which we propose should
capture the relevant characteristics of span types, and
make concrete our hypotheses regarding their effect on
model performance. Table |4.4|reports the value of each
metric for each span type across all datasets.

Frequency is the number of spans for a span type in the
dataset’s training corpus. It is well established that the

performance of a machine learning model benefits from

higher amounts of training data (Halevy et al, |2009)).

Thus, we expect this property to be positively correlated
with performance. However, some architectural choices,
such as the use of transfer learning, are purported to

reduce the data requirements of machine learning models

(Pan and Yang) 2009)), so we expect a smaller correlation

for architectures which incorporate transfer learning.
Span length is the geometric mean of spans’ lengths,
in tokens. |Scheible et al.| (2016|) note that traditional CRF

models perform poorly at the identification of long spans
due to the strict Markov assumption they make
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Dataset Span type Freq. Length Spandist. Boundary dist.

PARC content 17416 13.86 0.15 1.73
cue 15424 1.16 2.69 1.09
cue 2325 1.05 4.04 1.37
RiQuA quotation 4843 14.06 0.22 1.67
ADJP 2060 1.22 3.13 1.22
ADVP 4227 1.07 3.02 0.74
NP 55048 1.89 0.48 0.65
CoNLL00 PP 21281 1.01 2.08 0.59
PRT 556 1.00 4.59 2.20
SBAR 2207 1.02 3.68 1.26
VP 21467 1.39 1.60 0.50
cardinal 10901 1.20 3.45 0.90
date 18791 1.87 2.62 0.88
event 1009 2.65 3.15 1.32
facility 1158 2.33 3.54 1.22
GPE 21938 1.16 3.66 0.81
language 355 1.03 7.26 1.99
law 459 292 3.16 1.69
location 2160 1.69 4.14 1.10
money 5217 2.61 3.87 1.41
OntoNotes  yogp 9341 104 485 0.98
ordinal 2195 1.00 5.99 1.39
organization 24163 1.93 222 0.74
percent 3802 2.30 4.35 1.50
person 22035 1.51 3.54 1.24
product 992 1.51 4.58 1.65
quantity 1240 2.25 3.79 1.35
time 1703 1.95 3.50 1.24
work_of_art 1279 2.77 2.15 1.67
abbreviation 4536 1.17 3.85 0.94
family 4089 1.44 3.15 0.99
formula 4445 1.98 2.50 0.99
ChemDNer identifier 672 2.59 3.61 143
multiple 202 6.49 2.10 1.60
systematic 6654 217 2.14 0.98
trivial 8832 1.15 3.64 0.86

Table 4.4: All span types considered for each dataset,
with frequency, mean span length, span dis-
tinctiveness, and boundary distinctiveness.
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(2001)). Thus, we expect architectures which rely on

such assumptions and which have no way to model long
distance dependencies to perform poorly on span types
with a high average span length, while LSTMs or trans-

formers should do better on long spans (Khandelwal
etall, 2018 Vaswani et al.} 2017)).

Span distinctiveness is a measure of how distinctive

the text that comprises spans is compared to the overall
text of the corpus. Formally, we define it as the KL di-
vergence DKL(Pspan | P), where P is the unigram word
distribution of the corpus, and P, is the unigram distri-
bution of tokens within a span. A high span distinctive-
ness indicates that different words are used inside spans
compared to the rest of the text, while a low span distinc-
tiveness indicates that the word distribution is similar

inside and outside of spans.

We expect this property to be positively correlated with
model performance. Furthermore, we hypothesize that
span types with a high span distinctiveness should be
able to rely more heavily on local features, as each token
carries strong information about span membership, while
low span distinctiveness calls for sequence information.

Consequently, we expect that architectures incorporating
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sequence models such as CRFs, LSTMs, and transformers
should perform better at low-distinctive span types.

Boundary distinctiveness is a measure of how dis-
tinctive the starts and ends of spans are. We formal-
ize this in terms of a KL-divergence as well, namely as
DKL(Pboundary I P) between the unigram word distribu-
tion (P) and the distribution of boundary tokens (Ppoundary)-
where boundary tokens are those which occur immedi-
ately before the start of a span, or immediately after the
end of a span. A high boundary distinctiveness indicates
that the start and end points of spans are easy to spot,

while low distinctiveness indicates smooth transitions.

We expect boundary distinctiveness to be positively
correlated with model performance, based on studies

that obtained improvements from specifically modeling

the transition between span and context Todorovic et al.|

(2008);Scheible et al.| (2016]). As sequence information is

required to utilize boundary information, high boundary
distinctiveness should improve performance more for
LSTMs, CRFs, or transformers.
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Task profiles

As Table[4.4/shows, the metrics we propose appear to cap-
ture the task structure of the span types well: quotations
have long spans with low span distinctiveness (anything
can be said) but high boundary distinctiveness (punctua-
tion, cues). In chunking, the more common chunk types
have notably lower span distinctiveness, as these chunks
comprise a significant portion of the entire corpus, and
NER spans show high distinctiveness (semantic classes)
but are short and have somewhat indistinct boundaries

as well.

4.2.3 Model architectures

For span extraction, we use the BIO framework (Ramsha
and Marcus, [1999)), framing span extraction as a sequence
labeling task. As each span type has its own B and I la-
bels, and there is one O label, a dataset with n span types
leads to a (2n + 1)-label classification problem for each
token.

We investigate a set of sequence labeling models, rang-
ing from baselines to state-of-the-art architectures. We

group our models by common components, and build
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complex models through combination of simpler mod-
els. Except for the models using BERT, all architectures
assume one 300-dimensional GloVe embedding (Pen}

Ringfon et al), 2014) per token as input.

Baseline

As a baseline model, we use a simple token-level classi-
tier. This architecture labels each token using a softmax
classifier without access to sequence information (neither

at the label level nor at the feature level).

CRF

This model uses a linear-chain conditional random field

(CRF) to predict token label sequences (Lafferty et al.,

2001)). It can access neighboring labels in the sequence of
predictions.

LSTM and LSTM+CRF

These architectures incorporate Bi-directional LSTMs (biL-
STMs) (Hochreiter and Schmidhuber)| 1997; Schuster and|

Paliwal, [1997|) as components. The simplest architecture,
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LSTM, passes the inputs through a 2-layer biLSTM net-
work, and then predicts token labels using a softmax
layer. The LSTM+CREF architecture combines the biLSTM
network with a CRF layer, training all weights simulta-
neously. These models can learn to combine sequential

input and labeling information.

BERT and BERT+CRF

These architectures include the pre-trained BERT lan-

guage model (Devlin et al.,|2019b]) as a component. The

simplest architecture in this category, BERT, comprises
a pre-trained BERT encoder and a softmax output layer,
which is trained while the BERT encoder is fine-tuned.
BERT+CRF combines a BERT encoder with a linear-chain
CRF output layer, which directly uses BERT’s output em-
beddings as inputs. In this architecture, the CRF layer is
first trained to convergence while BERT’s weights are held
constant, and then both models are jointly fine-tuned to
convergence. As BERT uses WordPiece tokenization (Wul
et all, [2016)), the input must be re-tokenized for BERT

architectures.
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BERT+LSTM+CRF

This architecture combines all components previously
mentioned. It first uses a pre-trained BERT encoder to
generate a sequence of contextualized embeddings. These
embeddings are projected to 300 dimensions using a
linear layer, yielding a sequence of vectors, which are
then used as input for a LSTM+CRF network. As with
BERT+CRE, we first train the non-BERT parameters to
convergence while holding BERT’s parameters fixed, and

subsequently fine-tune all parameters jointly.

Handcrafted features

Some studies have shown marked increases in perfor-

mance by adding hand-crafted features (e.g.

et all, 2017). We develop such features for our tasks
and treat these to be an additional architecture compo-

nent. For architectures with this component, a bag of
features is extracted for each token (the exact features
used for each dataset are enumerated in Table |A.1/in the
Appendix). For each feature, we learn a 300-dimensional
feature embedding which is averaged with the GloVe or
BERT embedding to obtain a token embedding. Hand-
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crafted features can be used with the Baseline, LSTM,
LSTM+CREF, and BERT+LSTM+CRF architectures. BERT
and BERT+CRF cannot utilize manual features, as they
have no way of accepting token embeddings as input.

4.2.4 Meta-learning model

Recall that our meta-learning model is a model for pre-
dicting the performance of the model architectures from
Section when applied to span extraction tasks from
Section [4.2.1,. We model this task of performance predic-
tion as linear regression, a well established framework for
the statistical analysis of language data (Baayen) 2008)).
The predictors are task properties, model architecture
properties, and their interactions, and the dependent vari-
able is (scaled) F; score.

While a linear model is not powerful enough to capture
the full range of interactions, its weights are immediately
interpretable, it can be trained on limited amounts of data,

and it does not overfit easily (see Section|4.2.6]). All three
properties make it a reasonable choice for meta-learning.
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Predictors and interactions

As predictors for our performance prediction task, we use
the span type properties described above, and a number
of binary model properties. For the span type properties
[freq] and [span length], we use the logarithms of these
values as predictors. The two distinctiveness properties
are already logarithms, and so we used them as-is. For
model properties, we used four binary predicates: The
presence of handcrafted features, of a CRF output layer,
of a bi-LSTM layer, and of a BERT layer.

In addition to main effects of properties of models and
corpora on performance (does a CRF layer help?), we are
also interested in interactions of these properties (does a
CREF layer help in particular for longer spans?). As such
interactions are not captured automatically in a linear
regression model, we encode them as predictors. We
include interactions between span type and model prop-

erties, as well as among model properties.

All predictors (including interactions) are standard-
ized so as to have a mean of zero and standard deviation

of one.
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Scaling the predicted performance

Instead of directly predicting the F; score, we instead
make our predictions in a logarithmic space, which eases
the linearity requirements of linear regression. We cannot

directly use the logit function to transform F; scores into

— losit [ L2
%8\ T00

since the presence of zeros in our F; scores makes this
process ill-defined. Instead, we opted for a “padded”

logit transformation

F 100 — F
—log1t<(1—oc) L —1>

100 T4 100

with a hyperparameter « € [0,0.5). This rescales the
argument of the logit function from [0, 1] to the smaller
interval [a,1 — a], avoiding the zero problem of a bare
logit. Through cross-validation (cf. Section [4.2.6]), we set
a = 0.2. We use the inverse of this transformation to scale
the output of our prediction as an F; score, clamping the
result to [0, 100].
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4.2.5 Experiment

4.2.6 Experimental procedure

Our meta-learning experiment comprises two steps: span

extraction model training, and meta-model training.

Span extraction model training

We begin by training and subsequently evaluating each
model architecture on each dataset five times, using differ-
ent random initializations. With 12 model architectures
and 5 datasets under consideration, this procedure yields
12 x 5 x 5 = 300 individual experiments.

For each dataset, we use the established train/test par-
tition. Since RIQUA does not come with such a partition,
we use cross-validation, partitioning the dataset by its six
authors and holding out one author per cross-validation
step.

We use early stopping for regularization, stopping train-
ing once the (micro-averaged) performance on a valida-
tion set reaches its maximum. To prevent overfitting, all
models utilize feature dropout — during training, each

feature in a token’s bag of input features is dropped with
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a probability of 50%. At evaluation time, all features are
used.

Meta-learning model training

This step involves training our performance prediction
model on the F; scores obtained from the first step. For
each (architecture, span type) pair of the 12 model ar-
chitectures and 36 span types, we already obtained 5 F;
scores. This yields a total of 12 x 36 x 5 = 2160 input-
output pairs to train our performance prediction model.

We investigate both L! and L? regularization in an elas-

tic net setting (Zou and Hastie, |2005|) but consistently

find best cross-validation performance with no regular-
ization whatsoever. Thus, we use ordinary least squares
regression.

To ensure that our performance predictions generalize,
we use a cross-validation setup when generating model
predictions. To generate performance predictions for a
particular span type, we train our meta-model on data
from all other span types, holding out the span type for
which we want a prediction. We repeat this for all 36
span types, holding out a different span type each time,
in order to collect performance predictions for each span
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type.

Span extraction results

After training and evaluating our span extraction models,
we have 5 evaluation F; scores for each (architecture, span
type) pair. This section summarizes the main findings.
Table |4.5|lists the performance of each model architecture
on each dataset. Unsurprisingly, BERT+Feat+LSTM+CRF,
the model with the most components, performs best on a
plurality of 16 span types. This provides strong evidence
that this maximal architecture can generalize well across
many tasks. However, this dominance is not absolute:
BERT+CRF and Feat+LSTM+CRF each perform best on
7 span types, and BERT+LSTM+CRF on 6 span types.
Thus, ‘bespoke” modeling of span types can evidently
improve results.

Even though our architectures are task-agnostic, and
not tuned to particular tasks or datasets, our best architec-
tures still perform quite competitively. For instance, on
CoNLL 00, our BERT+Feat+LSTM+CRF model comes
within o0.12 F; points of the best published model’s F;

score of 97.62 (Akbik et al.,2018]). For parc, existing liter-

ature focuses only on F; scores for content span detection.
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g content 00 16 155 400 503 704 69.1 772 717 766 77.8 78.1
£ cue 680 649 69.1 685 77.1 833 822 863 844 858 86.7 864
< cue 64.6 49.0 584 474 739 745 819 80.8 788 83.1 839 843
g quotation 00 00 56 60 765 902 89.0 923 90.3 90.6 90.0 90.2
ADJP 29.1 228 470 619 56.6 728 663 772 824 842 83.6 835

° ADVP 51.8 58.0 669 740 704 760 768 812 853 862 864 86.3
S NP 59.5 643 79.7 86.0 88.8 928 914 949 970 971 972 973
— PP 575 56.6 904 945 944 965 96.0 974 985 98.6 98.6 98.6
% PRT 409 410 643 630 664 687 73.8 751 843 833 84.6 84.6
U sBAR 332 633 671 738 814 86.1 67.1 651 942 943 942 94.5
VP 493 56.6 748 89.2 84.8 927 88.6 944 96.6 96.6 965 96.7
cardinal 258 19.0 571 553 531 609 728 81.0 80.8 809 799 79.2
date 38.6 290 65.6 69.0 63.1 683 79.5 843 855 859 859 857
event 0.0 00 294 407 09 00 390 464 632 650 605 64.9
facility 00 00 71 178 0.0 0.0 30.6 456 620 647 64.7 728
GPE 60.8 445 750 76.7 695 720 852 91.6 934 941 940 94.7
language 0.0 00 290 332 00 0.0 475 405 720 765 716 70.8
law 00 00 191 179 00 0.0 447 521 615 648 557 67.2

$ location 114 00 386 421 194 9.0 542 67.1 658 67.1 66.8 70.8
E money 9.8 325 679 792 645 76.1 826 90.1 87.8 887 894 889
S NORP 66.6 480 789 800 664 739 814 91.0 89.1 89.8 903 91.5
8 ordinal 55,6 04 509 56.0 331 468 693 833 792 79.8 783 76.8
organization 27.3 19.1 49.1 60.6 463 586 725 840 838 854 856 88.6
percent 30.1 18.8 80.0 85.8 738 813 833 88.6 883 87.6 885 88.1
person 259 153 526 718 647 701 794 87.6 928 93.7 933 93.6
product 00 0.0 430 351 114 46 473 508 59.6 641 624 649
quantity 0.0 00 38.0 498 259 00 645 68.0 67.0 66.7 592 60.6
time 29 00 404 336 267 130 49.1 63.7 615 613 60.7 61.8
work_of_art 00 00 60 73 05 173 293 572 552 59.0 570 624
abbreviation 50.0 12.0 54.7 545 51.6 483 627 713 782 791 782 77.1

5 family 474 38 579 566 537 138 645 688 776 786 789 79.1
7 formula 314 10.8 463 53.8 482 474 724 763 769 80.2 813 81.8
DE identifier 0.0 00 441 377 381 0.7 691 662 795 83.1 825 81.8
2 multiple 00 00 51 30 00 0.0 355 534 578 646 65.6 69.0
O systematic 50.5 254 546 59.7 605 49.7 763 79.1 862 874 87.9 87.8
trivial 61.3 302 66.6 650 650 526 750 779 902 91.0 912 91.1

Table 4.5: F; scores for each model architecture on each
span type. Each entry is averaged over five
runs.
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MAE r2

Full model 11.38 0.73
No interactions 14.00 0.61
Only architecture predictors 18.88  0.37
Only task predictors 20.87 0.22
Empty model 23.78 N/A

Table 4.6: Evaluation of performance prediction models.

In this case, we find that our BERT+Feat+LSTM+CRF
model beats the existing state of the art on this span type,
achieving an F; score of 78.1, compared to the score of 75

reported in |Scheible et al.| (2016)).

Meta-learning Results

The result of Step 2 is our performance prediction model.
Table |4.6/shows both mean absolute error (MAE), which
is directly interpretable as the mean difference between
predicted and actual F; score for each data point, and 72,
which provides the amount of variance accounted for by
the model. The full performance prediction model, in-
cluding both span type and model architecture features,
accounts for 73% of the variance, with an MAE of about

11. We see this as an acceptable model fit. To validate the
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Figure 4.2: Scatter plot of actual vs. predicted F; scores
for all 36 span types x 12 model architectures
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usefulness of the predictor groups and interaction terms,
we carry out ablation experiments wherein these are ex-
cluded, including a model with no interaction terms, a
model with only span type-predictors, a model with only
architecture predictors, and an empty model, which only
predicts the average of all F; scores. The reduced models
do better than the empty model ¥ but show marked in-
creases in MAE and corresponding drops in 72
to the full model. While the usefulness of the architec-

ture predictors is expected, this also constitutes strong

compared

evidence for the usefulness of the span type predictors
we have proposed in Section
Figure |4.2[shows a scatter plot of predicted and actual

Fy scores. Our meta-learning model generally predicts
high performances better than low performances. The
largest cluster of errors occurs for experiments with an
actual F; score of exactly zero, arguably an uninteresting
case. Thus, we believe that the overall MAE underesti-
mates rather than overestimates the quality of the perfor-
mance prediction for practical purposes.

4For the empty model, 72 is undefined because the variance of the
predictions is zero.
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4.2.7 Analysis

We now investigate the linear regression coefficients of
our performance prediction model to assess our hypothe-
ses from Section|4.2.1. To obtain a single model to analyze,
we retrain our regression model on all data points, with
no cross-validation.

Table |4.7/shows the resulting coefficients. Using Bon-
ferroni correction at « = 0.05, we consider a coefficient
significant if p<o0.002. Non-significant coefficients are
shown in parentheses. Due to the scaling of F; scores
performed as described in section [4.2.4) the coefficients
cannot be directly interpreted in terms of linear change
on the F; scale. However, as we standardized all pre-
dictors, we can compare coefficients with one another.
Coefficients with a greater magnitude have larger effects
on F; score, with positive values indicating an increase,
and negative values a decrease.

When analyzing these coefficients, one must consider
main effects and interactions together. E.g., the main ef-
tect coefficient for LSTMs is negative, which seems to
imply that adding an LSTM will hurt performance. How-
ever, the LSTM x [freq] and LSTM x [boundary distinct-

ness| interactions are both strongly positive, so LSTMs
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should help on frequent span types with high boundary
distinctiveness. Our main observations are the following;:

Frequency helps, length hurts. The main effects of
our span type predictors show mostly an expected pat-
tern. Frequency has a strong positive effect (frequent
span types are easier to learn), while length has an even
stronger negative effect (long span types are difficult).
More distinct boundaries help performance as well. More
surprising is the negative sign of the span distinctiveness
predictor, which would mean that more distinct spans are
more difficult to recognize. However, this might be due
to the negative correlation between span distinctiveness
and frequency (r = —0.46 in standardized predictors):
Less frequent spans are, by virtue of their rarity, more

distinctive.

BERT is good for performance, especially with few
examples. The presence of a BERT component is the
highest-impact positive predictor for model performance,
with a positive coefficient of 1. This finding is not entirely

surprising, given the recent popularity of BERT-based
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Model predictors

Handcrafted (—0.11)
CRF 0.50
LSTM —-0.35
BERT 1.00
Span type predictors
freq 0.40
length —0.49
span distinct. —0.22
boundary distinct. 0.16
Model-span type interactions
freq (0.05)
length (—0.04)
Handcrafted x span distinct. (—0.09)
boundary distinct. ~ (0.09)
freq -0.33
length 0.19
CREx span distinct. 0.34
boundary distinct.  —0.30
freq 0.47
length 0.08
LSTM x span distinct. (—0.09)
boundary distinct. 0.22
freq -0.43
length 0.13
BERT x span distinct. (0.04)
boundary distinct.  (—0.05)
Model-model interactions
CRF 0.10
Handcrafted x LSTM 0.05
BERT —-0.05
LSTM (—0.05)
CRE BERT —0.24
LSTM x BERT -0.17

Table 4.7: Regression coefficients from performance pre-
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tion) in parentheses.



models for span extraction problemsLi et al.| (2020]); Hu|

(2019)). Furthermore, the strong negative value of
the (BERT x [freq]) predictor shows that BERT’s bene-

tits are strongest when there are few training examples,

validating our hypothesis about transfer learning. BERT
is also robust: largely independent of span or boundary

distinctiveness effects.

LSTMs require a lot of data. While the main effect of
LSTMs is negative, this effect is again modulated by the
high positive coefficient of the (LSTM x [freq]) interac-
tion. This means that their performance is highly depen-
dent on the amount of training data. Also, LSTMs lead to
improvements for long span types and those with distinct
boundaries — properties that LSTMs arguably can pick
up well but that other models struggle with.

CRFs help. After BERT, the presence of a CRF shows
the second-most positive main effect on model perfor-
mance. Given the strong correlation between adjacent
tags in a BIO label sequence, it makes sense that a model
capable of enforcing correlations in its output sequence

would perform well. CRFs can also exploit span dis-
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tinctiveness well, presumably by the same mechanism.
Surprisingly, CRFs show reduced effectiveness for highly
frequent spans with distinct boundaries. We believe that
this pattern is best considered as a relative statement: for
frequent, well-separated span types CRFs gain less than
other model types.

Handcrafted features are complicated. Looking purely
at our regression coefficients, handcrafted features don't
seem to matter much: we find neither a significant main
effect of handcrafted features, nor any significant interac-
tions with span type predictors. Interactions with model
predictors are significant, but rather small. However, it
is easy to find specific cases where handcrafted features
seem to help quite a bit: For instance, the Feat+LSTM+CRF
architecture outperforms the LSTM+CREF architecture on
all but four span types. We suspect that, while hand-
crafted features can be important, their effect on F;-score
may be subject to a number of nonlinear interactions

which our meta-learning model is unable to capture.

Combining model components shows diminishing re-
turns. All interactions between LSTM, CRF, and BERT
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are negative. This demonstrates an overlap in these com-
ponents” utility. In fact, a simple “maximal” combination

does not always perform best, as Table [4.5 confirms.

4.2.8 Related Work

Meta-learning and performance prediction are umbrella
terms which comprise a variety of approaches and for-
malisms in the literature. We focus on the literature most

relevant to our work and discuss the relationship.

Performance Prediction for Trained Models. In NLP, a
number of studies investigate predicting the performance
of models that have been trained previously on novel
input. An example is (2009)) which develops a
general method to predict the performance of a family
of language models. Similar ideas have been applied

more recently to machine translation (Bojar et al.,[2017)),

and automatic speech recognition [Elloumi et al.| (2018)),

among others. While these approaches share our goal of
performance prediction, they predict performance for the
same task and model on new data, while we generalize

across tasks and architectures. Thus, these approaches
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are better suited to estimating confidence at prediction
time, while our meta-learning approach can predict a
model’s performance before it is trained.

AutoML. Automated machine learning, or AutoML,
aims at automating various aspects of machine learning
model creation, including hyperparameter selection, ar-

chitecture search, and feature engineering (Yao et al)
2018; He et al.,|2021]) While the task of performance pre-

diction does not directly fall within this research area, a
model for predicting performance is directly applicable to
architecture search. Within AutoML, the auto-sklearn sys-

tem (Feurer et al, 2015) takes an approach rather similar

to ours, wherein they identify meta-features of datasets,
and select appropriate model architectures based on those
meta-features. However, auto-sklearn does not predict
absolute performance as we do, but instead simply selects
good candidate architectures via a k-nearest-neighbors
approach in meta-feature space. Other related approaches
in AutoML use Bayesian optimization, including the com-
bined model selection and hyperparameter optimization
of Auto-WEKA (Thornton et al., |2013)) and the neural

architecture search of Auto-keras (Jin et al 2019)).
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Model Interpretability. A number of works have inves-
tigated how to analyze and explain the decisions made by

machine learning models. LIME (Ribeiro et al.,2016]) and

Anchors (Ribeiro et al., |2018)) are examples of systems

for explaining a model’s decisions for specific training
instances. Other works seek to explain and summarize
how models perform across an entire dataset. This can be

achieved e.g. through comparison of architecture perfor-

mances, as in Nguyen and Guo| (2007)), or through meta-

modeling of trained models, as was done in Weiss et al.
(2018). Our present work falls into this category, includ-
ing both a comparison of architectures across datasets

and a meta-learning task of model performance.

Meta-learning for One- and Few-shot Learning. A re-
cent trend is the application of meta-learning to models
for one- or few-shot learning. In this setting, a meta-
learning approach is used to train models on many dis-

tinct tasks, such that they can subsequently be rapidly

fine-tuned to a particular task [Finn et al.| (2017]); Santoro|
(2016)). While such approaches use the same meta-

learning framework as we do, their task and methodology

are substantially different. They focus on learning with
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very few training examples, while we focus on optimizing
performance with normally sized corpora. Additionally,
these models selectively train preselected model architec-
tures, while we are concerned with comparisons between
architectures.

Model and Corpus Comparisons in Survey Papers. In
a broad sense, our goal of comparison between existing
corpora and modeling approaches is shared with many
existing survey papers. Surveys include quantitative com-
parisons of existing systems’ performances on common
tasks, producing a results matrix very similar to ours (Li
et al], 2020; Yadav and Bethard, 2018;Bostan and Klinger),
i.a.). However, most of these surveys limit them-
selves to collecting results across models and datasets

without performing a detailed quantitative analysis of
these results to identify recurring patterns, as we do with

our performance prediction approach.
4.2.9 Conclusion

Here we systematically investigated task generality for

span extraction tasks. By collecting a large set of span ex-
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traction tasks and a large set of compatible architectures,
and by training and evaluating on the full Cartesian prod-
uct of these sets, we were able to obtain large amounts of
data on architecture performance for specific tasks. We
then used meta-learning to analyze these data, and were
able to glean specific, interpretable insights into when
we might expect an architecture to generalize well to a
new task, and when we might not. In the process of do-
ing so, we identified four easily-quantified properties of
span extraction tasks which seem to be highly informa-
tive for determining when a particular architecture might

be applicable.

Given the success of this approach to span extraction,
it seems desirable to apply similar techniques to full rela-
tion extraction. While this isn’t a bad idea, there are some
caveats that must be considered. For span extraction, we
were able to start with minimal limiting assumptions (no
overlapping spans, and no arbitrary dependencies be-
tween spans), and then collect a diverse variety of tasks
and architectures compatible with these assumptions.
The same is not possible for relation extraction — for ex-
ample, any reasonable architecture for TACRED

et all, should assume that only one relation can
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occur in each input sentence, and that it must relate the
two entities provided, but an architecture making these

assumptions would be inapplicable to relation extrac-

tion tasks like GENIA event extraction (Kim et al.,|2013]),

where the total number of relations is unknown, and a
large portion of the task’s difficulty involves determining
how exactly to group the identified entities together into
cohesive relations.
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Chapter 5

Task-general joint
modeling with

regular-constrained CRFs

we discussed in Chapter (3, one promising direc-

ion towards task generality for relation extraction
lies in formal specification of tasks and their constraints.
However, this approach depends upon the availability of
architectures which can accept and utilize task specifica-
tions as hyperparameters. It thus becomes desirable to
search for architectures capable of accommodating a wide
range of possible task structures. This chapter presents
one specific architecture, based upon linear-chain con-

ditional random fields, which is capable (with caveats)
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of capturing any task structure specifiable as a regular
language.

5.1 Task properties as sequence

labeling constraints

Suppose we would like to extract a single relation from a
text. While we have explored pipeline-based approaches
wherein we first identify entity spans, and then predict
relations between those entities we found, we could also
try to do everything “all in one go” — we ask a span ex-
traction model to produce a set of labeled spans, and take
the whole output to be a single relation. Individual span
labels can specify both the entity type and the role each
entity span plays in the relation. Of course, to extract mul-
tiple relations, we can simply ask the model to produce
output multiple times, as long as we somehow notate
in the input which relation we are interested in for each
prediction.

One problem with this approach is that, with a stan-
dard span extraction model, we have no way of ensur-
ing that the model predicts the right number of entities
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with the correct combination of types for the relation.
While span extraction models don’t usually pick spans
entirely independently from one another, the dependen-
cies are almost always local effects, such as BIO-based ap-
proaches requiring that no spans overlap, or CRF-based
approaches modeling agreement between directly ad-
jacent tokens. On the other hand, constraints like type
agreement for relation extraction are global properties
that entire relations must satisfy, properties which can-
not be learned as local dependencies in standard span

extraction models.

This chapter will formalize relation extraction in terms
of sequence labeling with global constraints. We intro-
duce a novel method for enforcing regular-language con-
straints on CRF sequence labeling models — the resulting
regular-constrained CRF (RegCCRF) functions identi-
cally to a standard model, except that it is guaranteed
to only produce outputs in an a-priori-specified regu-
lar language L. In conjunction with BIO-labeling, this
provides us exactly the machinery we need for relation
extraction, allowing us to extract sets of spans subject to
user-specified global constraints.

We investigate the resulting RegCCRF architecture from
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both a theoretical and empirical perspective. Theoreti-
cally, we will investigate some mathematical properties
of the distributions a RegCCRF can learn, and will use
synthetic data to contrast models” performance under
different training and inference settings. Empirically, we
apply our a RegCCRF model to Semantic Role Labeling,
a relation extraction task with variadic relations and a
highly nontrivial set of constraints. We show modest yet
significant improvements on this task when using a Reg-
CCRF model, validating our theoretical arguments and
attesting to the practical utility of the architecture.

5.2 Preliminaries and notation

As our construction involves finite-state automata and
conditional random fields, we define these here and spec-
ify the notation we will use in the remainder of this sec-
tion.

Finite-state automata. All automata are taken to be non-
deterministic finite-state automata (NFAs) without ep-
silon transitions. Let such an NFA be defined as a 5-tuple
(%,Q, ql,F, E), where
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e ¥ = {a',a?,...,a*} is a finite alphabet of symbols,

Q = {9, 4% ...,q'¥} is a finite set of states,

ql € Qs the sole starting state,

e F C Qis a set of accepting states,

and E C Q x X x Q is a set of directed, symbol-
labeled edges between states. The edges define the
NFA’s transition function A : Q x ¥ — 29, with
re A(g,a) < (g,a,r) € E.

An automaton is said to accept a string s € X% iff there
exists a contiguous path of edges from g' to some accept-
ing state whose edge labels are exactly the symbols of
s. The language defined by an automaton is the set of all
such accepted strings. A language is regular if and only if
it is the language of some NFA.

Linear-chain conditional random fields. Linear-chain

conditional random fields (CRFs) [Lafferty et al| (2001

are an architecture for sequence labeling models. Pa-
rameterized by 8, CRFs represent their model distribu-

tion Py(y | x), a distribution over label sequences y =
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(y!,--,y") conditioned on input sequences x = (x1, -, x),
as

Po(y | x) o exp Zfé(x,y) y
j

with individual observations x’ coming from some obser-
vation space X, and outputs y' coming from some finite
alphabet Y. In this work, we use CRFs for sequence label-
ing problems, but the dataset labels do not correspond
directly to the CRF’s outputs y'. In order to avoid ambi-
guity, and since the term “state” already has a meaning
for NFAs, we call y the CRF’s tag sequence, and each v’
a tag. The terms label sequence and label will thus unam-
biguously refer to the original dataset labels.

Each f(], is a potential function of x and y, parameterized
by 6. Importantly, in a linear-chain CRF, these potential
functions are limited to two kinds: The transition function
go(y',y'*1) assigns a potential to each pair (y/,y'*1) of
adjacent tags in y, and the emission function hg(yi,x,i)
assigns a potential to each possible output tag y' given

the observation sequence x and its position i. With these,
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the distribution defined by a CRF is

t—1 t
Pg(y | x)  exp (Zg(a(yi,yi“) + th;(x,yi,i)) :
i=1 i=1
(51)

Limiting our potential functions in this way imposes a
Markov assumption on our model, as potential functions
can only depend on a single tag or a single pair of adja-

cent tags. This makes learning and inference tractable:

the forward algorithm (Juratsky and Martin, |2009)) can

calculate negative log-likelihood (NLL) loss during train-
ing, and the Viterbi algorithm (Viterbi, 1967} Jurafsky|
and Martin, can be used for inference. Both are

linear in ¢, and quadratic in |Y| in both time and space.

In practice, the transition function g is usually rep-
resented explicitly as a |Y]| x |Y| parameter matrix, and
the emission function /iy can be an arbitrary learnable
function — increasingly commonly represented as a deep

neural network.
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5.3 Related work

We identify three modeling approaches in the field of
structured prediction that are relevant to the current
work: constrained decoding, which can enforce output
constraints at decoding time, techniques for weakening
the Markov assumption of CRFs to learn long-distance
dependencies, and weight-learning in finite-state trans-

ducers.

Constrained decoding. A common approach to enforc-
ing constraints in model output is constrained decoding:
Models are trained in a standard fashion, and decoding
ensures that the model output satisfies the constraints.
This almost always corresponds to finding or approximat-
ing a version of the model’s distribution conditionalized
on the output obeying the specified constraints. This ap-
proach is useful if constraints are not available at training

time, such as in the interactive information extraction task

of Kristjansson et al.| (2004|). They present constrained con-

ditional random fields, which can enforce that particular
tokens are or are not assigned particular labels (posi-

tive and negative constraints, respectively). Formally,
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our work is a strict generalization of this approach, as
position-wise constraints can be formulated as a regular
language, but regular languages go beyond position-wise
constraints. Other studies treat decoding with constraints
as a search problem, searching for the most probable de-

coding path which satisfies all constraints. For example,

IHe et al.| (2017b)) train a neural network to predict token-

wise output probabilities for semantic role labeling fol-
lowing the BIO label-alphabet (Ramshaw and Marcus,
[1999)), and then use exact A* search to ensure that the
output forms a valid BIO sequence and that particular

task-specific constraints are satisfied. For autoregressive

models, constrained beam search (Hokamp and Liu, 2017}

/Anderson et al., 2017 [Hasler et al., [2018) can enforce

regular-language constraints during search. We further
discuss constrained decoding as it relates to RegCCRFs
in Section 5.5,

Markov relaxations. While our approach can relax the
Markov assumption of CRFs through nonlocal hard con-
straints, another strand of work has developed models
which can directly learn nonlocal dependencies in CRFs:

Semi-Markov CRFs (Sarawagi and Cohen| [2004)) relax the
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Markov property to the semi-Markov property. In this
setting, CRFs are tasked with segmentation, where indi-
vidual segments may depend only on their immediate
neighbors, but model behavior within a particular seg-
ment need not be Markovian. As such, semi-Markov
CRFs are capable of capturing nonlocal dependencies
between output variables, but only to a range of one seg-
ment and inside of a segment. Skip-chain CRFs (Sutton|
and McCallum, 2004]) change the expressiveness of CRFs
by relaxing the assumption that only the linear structure

of the input matters: they add explicit dependencies be-
tween distant nodes in an otherwise linear-chain CRF.
These dependencies are picked based on particular prop-
erties, e.g., input variables of the same value or which
share other properties. In doing so, they add loops to the
model’s factor graph, which makes exact training and in-
ference intractable, and leads to the use of approximation
techniques such as loopy belief propagation and Gibbs

sampling.

Weight learning for finite-state transducers. While our
approach focuses on the task of constraining the CRF dis-

tribution to a known regular language, a related task is
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that of learning a weighted regular language from data.
This task is usually formalized as learning the weights of
a weighted finite-state transducer (FST), as in e.g.

(2002)) with directly parameterized weights and
(2016) with weights parameterized by a neural net-

work. Despite the difference in task-setting, this task is
quite similar to ours in the formal sense, and in fact our
proposal can be viewed as a particularly well-behaved
special case of FST weight learning for an appropriately
chosen transducer architecture and parameterization. We
discuss this connection further in Section

5.4 Regular-constrained CRFs

Here we will present our approach to enforcing regular-
language constrains on a CRF. Given a regular language
L, we would like to constrain a CRF to L. We formalize
this notion of constraint with conditional probabilities —
a CRF constrained to L is described by a (further) con-
ditionalized version of that CRF’s distribution Pg(y | %),
conditioned on the event that the tag sequence y is in
L — that is, the distribution Py(y = ylx=xy e ).
We will refer to this distribution as Pg(y | x; L) for short,
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noting that

R a-Py(y|x) ifye L
Polylx; L) = . 0t Y (5.2)

otherwise,

with « > 1 defined as a~! = Zyaﬁ Pe(y | x).

In order to utilize this distribution for machine learning,
we need to be able to compute NLL losses and perform
MAP inference. As discussed in Section|5.2} both of these
are efficiently computable for CRFs. Thus, if we can con-
struct a separate CRF whose output distribution can be
interpreted as Pg(y | x; L), both of these operations will
be available. We do this in the next section.

5.4.1 Construction

LetM = (%,Q, ql,F, E) be an NFA that describes .L. We
assume that M is unambiguous — i.e., every string in L
is accepted by exactly one path through M. As every
NFA can be transformed into an equivalent unambigu-
ous NFA (Mohri} [2012]), this assumption involves no loss
of generality. Our plan is to represent Py (y | x; L) by con-

structing a separate CRF with a distinct tag set, whose

166



‘(payrewr) py ySnoxyy A jo yred Sundedoe
910s a3 03 spuodsariod ,, { D A a1ym ‘(x | A)8g Sunndwod 1D
Arerxne a3 10§ (3ySu) ydeid 1030ej € pue ‘(353]) ¥ 10§ N Uoyewoyne
snon3iqureun ue Moys dap (1'q‘O’d) = A 103 (7r x| A)P garemored
0} I pPnom apy  “sueds jo Iaquinu usAd ue 10§ sadusnbas Org
pirea jo aden3uef ay} “,(,19,0,Id | O) 23en3ue] oy} saquIdsap ¥
ydeid 103083 parjorun pue YN 3urmoys ‘D39 e 10§ adwrexy

:1°G om3r

{(b2) (b2 ob) " (bereh) (b eb) (b2 eb) (b2 gb) (cbdob) (hergh) (b b) (b2 b)) = &

F1%)0%

O
T@m
d
(0]
d
O

I

167



output sequences can be interpreted directly as paths
through M. As M is unambiguous, each label sequence
in L corresponds to exactly one such path. We parame-
terize this auxiliary CRF identically to our original CRF -
that is, with label-wise (not tag-wise) transition and emis-
sion functions. Thus, for all parameterizations 6, both
distributions Pg(y | x) and Pg(y | x; L) are well defined.

There are many ways to construct such a CRF. As CRF
training and inference are quadratic in the size of the tag
set Y, we would prefer a construction which minimizes |Y].
However, for clarity, we will first present a conceptually
simple construction, and discuss approaches to reduce |Y|
in Section [5.4.2} We start with our original CRF, param-
eterized by 0, with tag set Y = %, transition function g,
and emission function hg, describing the probability dis-
tribution Pg(y | x), where y varies over sequences in >*.
From this, we construct a new CREF, also parameterized
by the same 6, but with tag set Y’, transition function g,
and emission function /. This auxiliary CRF describes
the distribution Pj(y’ | x) (with y’ varying over Y'*),
which we will be able to interpret as Pg(y | x; L). The
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construction is as follows:

Y'=E (5-3)
) L Qe(a,a") ifr=4q
g (@ an), @, a,r)) ="  (54)
—0 otherwise
—co ifi=1,9+q"
hy (x,(q,a,1),i) = {—cc ifi=tre&F (5.5)

hg(x,a,i) otherwise

This means that the tags of our new CRF are the edges
of M, the transition function assigns zero probability to
transitions between edges which do not pass through a
shared NFA state, and the emission function assigns zero
probability to tag sequences which do not begin at the
starting state or end at an accepting state. Apart from
these constraints, the transition and emission functions
depend only on edge labels, and not on the edges them-
selves, and agree with the standard CRF’s g4 and 1o when

no constraints are violated.

As M is unambiguous, every tag sequence y corre-

sponds to a single path through M, representable as an

2

edge sequence t = (7!, 72, ..., '), ' € E. Since this
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path is a tag sequence for our auxiliary CRF, we can di-
rectly calculate the auxiliary CRF’s 132,(71' | x). From the
construction of g, and j, this must be equal to Py(y |
x; L), as it is proportional to Py(y | x) for y € L, and zero
(or, more correctly, undefined) otherwise. Figure |5.1il-
lustrates this construction with a concrete example.

5.4.2 Time and space efficiency

As the Viterbi and forward algorithms are quadratic in
Y|, very large tag sets can lead to performance issues,
possibly making training or inference intractable in ex-
treme cases. Thus, we would like to characterize under
which conditions a RegCCRF can be used tractably, and
identify techniques for improving performance. As Y
corresponds to the edges of M, we would like to select
our unambiguous automaton M to have as few edges as

possible. For arbitrary languages, this problem is NP-

complete (Jiang and Ravikumar) 1991)), and, assuming

P # NP, is not even efficiently approximable (Gruber and
Holzet, 2007)). Nonetheless, for many common classes

of languages, there exist approaches to obtain a tractably

small automaton.
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One straightforward method is to construct M directly

from a short unambiguous regular expression. [Briiggemahn-
Klein and Wood (1992)) present a simple algorithm for
constructing an unambiguous automaton from an unam-

biguous regular expression, with |Q] linear in the length
of the expression. Using this method to construct M, the
time- and space-complexity of Viterbi are polynomial in
the length of our regular expression, with a worst-case
of quartic complexity when the connectivity graph of M

is dense.

For many other tasks, a reasonable approach is to lever-
age a priori knowledge about the constraints to manually
construct a small unambiguous automaton. For example,
if the constraints require that a particular label occurs
exactly n times in the output sequence, an automaton
could be constructed manually to count occurrences of
that label. Multiple constraints of this type can then be

composed via automaton union and intersection.

Without making changes to M, we can also reduce the
size of Y| by adjusting our construction. Instead of mak-
ing each edge of M a tag, we can adopt equivalence classes
of edges. Reminiscent of standard NFA minimization,
we define (g,a,7) ~ (¢',a',7") & (g,a) = (¢',a"). When
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constructing our CRF, whenever a transition would have
been allowed between two edges, we allow a transition
between their corresponding equivalence classes. We do
the same to determine which classes are allowed as initial
or final tags. As each equivalence class corresponds (non-
uniquely) to a single symbol a4, we can translate between
tag sequences and strings of .L just as before.

Finally, when other approaches for reducing the size
of M are not enough, it is always possible to simplify the
constraint language L to a language which only approx-
imates the desired constraints, but which is expressible
with a smaller automaton. Of note, this doesn’t neces-
sarily involve making the constraints more permissive
— stricter constraints might lead to a smaller automaton,
at the expense of excluding some valid predictions. In
practice, such simplifications should be carried out with a
good understanding of the dataset and domain, such that
the simplified language will only lead to degraded perfor-
mance on a small minority of predictions. In Section|5.7.2}
we will describe the use of these sorts of simplifications

in practice.
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5.4.3 Interpretation as a weighted finite-state

transducer

While we present our model as a variation of a standard
CRF which enforces regular-language constraints, an al-
ternate characterization is as a weighted finite-state trans-
ducer with the transducer topology and weight param-
eterization chosen so as to yield the distribution Py(y |
x; L). In order to accommodate CRF transition weights,
such an approach involves weight-learning in an auxil-
iary automaton whose edges correspond to edge-pairs in
M —we give a full construction in Appendix

This interpretation enables direct comparison to stud-
ies on weight learning in finite-state transducers, such
as Rastogi et al.| (2016]). While RegCCRFs can be viewed

as special cases of neural-weighted FSTs, they inherit a

number of useful properties from CRFs not possessed by
neural-weighted automata in general. Firstly, as |y| is nec-
essarily equal to |x|, the partition function Zye £P9(y |
x; L) is guaranteed to be finite, and Pe(y | x; L) is a well-
defined probability distribution for all 8, which is not true
for weighted transducers in general, which may admit
paths with unbounded lengths and weights. Secondly,
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as M is assumed to be unambiguous, string probabili-
ties correspond exactly to path probabilities, allowing
for exact MAP inference with the Viterbi algorithm. In
contrast, finding the most probable string in the highly

ambiguous automata used when learning edge weights

for an unknown language is NP-Hard (Casacuberta and|

de Ia Higuera, [1999)), necessitating approximation meth-
ods such as crunching (May and Knight| 2006]). Finally,

as each RegCCREF can be expressed as a CRF with a partic-
ular parameterization, the convexity guarantees of stan-
dard CRFs carry over, in that the loss is convex with
respect to emission and transition scores. In contrast,

training losses in general weighted finite-state transduc-

ers are usually nonconvex (Rastogi et al., 2016]).

5.5 Comparing constrained training

to constrained decoding
Our construction suggests two possible use cases for a
RegCCREF: constrained decoding, where a CRF is trained

without constraints, and the learned weights are then

used in a RegCCRF at decoding time, and constrained
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training, where a RegCCREF is both trained and decoded
with constraints. In this section, we compare between
these two approaches and a standard, unconstrained CRF.
We assume we have a data distribution P(x, y) over (x,y)
pairs with each x € X*, and each y of matching length in
some regular language L C X*. We wish to model our
target distribution P(y | x) with either a CRF or a Reg-
CCREF, by way of maximizing the model’s (log) likelihood
given the data distribution. This section will investigate
the best-case performance of CRFs and RegCCRFs, and
will assume perfect optimization. Latter sections will
compare the two architectures empirically using more

realistic optimization settings.

The unconstrained CRF corresponds to a CRF that has
been trained, without constraints, on samples from P,
and is used directly for inference: It makes no use of the
language L. The model’s output distribution is PH{; (y1x),

with parameter vector 8, minimizing the NLL objective:
0y = argminE, , p[—InPy(y | x)] (5.6)
0

In constrained decoding, a CRF is trained unconstrained,

but its weights are used in a RegCCRF at decoding time.
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The output distribution of such a model is Pe;; (y | x;L).
It is parameterized by the same parameter vector 6} as the
unconstrained CREF, as the training procedure is identical,
but the output distribution is conditioned on the event
y e L.

Constrained training involves directly optimizing a
RegCCRF’s output distribution, avoiding any asymmetry
between training and decoding time. In this case, the

output distribution of the model is 139é (y | x; L), where
0; = argminE, , p[—InPy(y | x;L)] (5.7)
0

is the parameter vector which minimizes the NLL of the
RegCCRF’s constrained distribution.

We will demonstrate that these three approaches form
a hierarchy in terms of their ability to match the data
distribution:

L >L

unconstrained = Lcons’crained decoding = “constrained training’

(5-8)
with each L corresponding to the negative log-likelihood
assigned by each model to the data. This suggests that,

all other factors notwithstanding, we should prefer the
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constrained training regimen to best model the target
distribution. Here we will prove this inequality.

Theorem 1. For arbitrary 6:
Evyop[—InPo(y |X)] 2 E,pyp [ InPy(y | x; L)]

Here we compare the distributions Pg(y | x) and Pe (y |
x; L). We wish to demonstrate that Pg(y | x) can never
achieve lower NLL than Pg(y | x; L), and that the two
distributions achieve identical NLL only when Pg(y |
xX) = Pg(y | x; L) i.e. when constraints have no effect. Of
note, this proof is valid for all parameterizations 6, and
not just for 6;;.

Proof. Since every y in Pisin .(,
Pg(ylx,oe) ZIXPQ(]/UC)/ (59)

with « > 1. Thus, the NLL of the regular-constrained
CRFis

Eyyp[—InPo(y | x; L)] = Eyyop[—InPy(y | x)] —Ina.

(5.10)
This differs from the NLL of the unconstrained CRF only

by the term —Ina. As a > 1, the regular-constrained
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CRF’s NLL is less than or equal to that of the uncon-
strained CRF, with equality only when & = 1 and there-
fore Pg(y | x) = Pg(y | x; L). O

Theorem 2.
Eyy-p[—InPo(y|x;L)] > Eypp [—lnpgg(y | x;L)]

In this case, we compare the distributions Pe; (y | x; L)
and 139; (y | x; L). We will demonstrate that the former
cannot achieve a lower NLL against the data distribution
than the latter.

Proof. This follows directly from our definitions, as we
define 6 to minimize the NLL of Py(y | x; L) against the
data distribution. Thus, Pga(y | x; L) could never yield
a lower NLL than 139; (y | x; L), as that would contradict

our definition of 67. O

5.6 Synthetic data experiments

While constrained training cannot underperform con-
strained decoding, the conditions where it is strictly bet-
ter depend on exactly how the transition and emission

functions are parameterized, and are not easily stated
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in general terms. We now empirically show two sim-
ple experiments on synthetic data where the two are not
equivalent.

The procedure is similar for both experiments. We spec-
ify a regular language L, an observation alphabet X, and
a data distribution P(x,y) over observation sequences in
X* and label sequences in L. We then train two mod-
els, one with a RegCCRF, parameterized by 67, and one
with an unconstrained CRF, parameterized by 6;;. For
each model, we initialize parameters randomly, then use
stochastic gradient descent to minimize the NLL objective.
We directly generate samples from P to use as training
data. After optimizing 6% and 6, we construct a Reg-
CCREF with 0}, for use as a constrained-decoding model,
and we compare the constrained-training distribution
ng (y | x; L) with the constrained-decoding distribution
Pg: (y 1 %; L).

We use a simple architecture for our models, with both
the transition functions gy and emission functions hg rep-
resented as parameter matrices. We list training hyper-
parameters in Appendix

179



5 Constrained decoding
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Figure 5.2: Model output probabilities, and NLL losses,
plotted against sequence length k. As k in-
creases, constrained decoding becomes a pro-
gressively worse approximation for the data
distribution, while constrained training is con-
sistently able to match the data distribution.

5.6.1 Arbitrarily large differences in
likelihood

We would like to demonstrate that, when comparing
constrained training to constrained decoding in terms
of likelihood, constrained training can outperform con-
strained decoding by an arbitrary margin. We choose
L = (ac)* | (bc)* to make conditional independence par-
ticularly relevant — as every even-indexed label is ¢, an
unconstrained CRF must model odd-indexed labels inde-

pendently, while a constrained CRF can use its constraints
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to account for nonlocal dependencies. For simplicity, we

hold the input sequence constant, with X = {o}.

Our approach is to construct sequences of various lengths.
For k € N, we let our data distribution be

4

P(o%, (ac)k) =
(5.11)
P(o%, (bc)F) =

B> = =] W

As the marginal distributions for odd-indexed characters
are not independent, an unconstrained CRF cannot ex-
actly represent the target distribution P(y | x). We train
and evaluate individual models for each sequence length
k. Figure [5.2| plots model probabilities and NLL losses
for various k. We see that, regardless of k, 1396 (y | x;L)
is able to match P(y | x) almost exactly, with only small
deviations due to sampling noise in SGD. On the other
hand, as sequence length increases, Pgu(y | x; L) be-
comes progressively “lop-sided”, assigning almost all of
its probability mass to the string (ac)¥. This behavior is
reflected in the models’ likelihoods — constrained train-
ing stays at near-constant likelihood for all k, while the
negative log-likelihood of constrained decoding grows

linearly with k.
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5.6.2 Differences in MAP inference

We show here that constrained training and constrained
decoding can disagree about which label sequence they
deem most likely. Furthermore, in this case, MAP infer-
ence agrees with the data distribution’s mode for con-
strained training, but not for constrained decoding. To
do this, we construct a fixed-length output language
L = acd | bcd | bce, where an unconstrained CRF is lim-
ited by the Markov property to predict y’s prefix and suf-
fix independently, and choose a data distribution which
violates this independence assumption. We select our
data distribution,

P(000,acd) = 0.4;
P(000,bcd) = 0.3; (5.12)
P(000,bce) = 0.3,

to be close to uniform, but with one label sequence hold-
ing the slight majority, and we ensure that the majority
label sequence is not the label sequence with both the ma-
jority prefix and the majority suffix (i.e. bcd). As before,
we hold the observation sequence as a constant (000).

We train a constrained and an unconstrained CRF to con-
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y  Pylx) Pe(ylx; L) Po(ylx; L)

acd 04 0.32 0.40
bcd 0.3 0.48 0.30
bce 0.3 0.20 0.30

Table 5.1: Output distributions for constrained decod-
ing (Pes(y | x;.L)) and constrained training
(1395 (y | x;L)), compared to the target distri-
bution P(y | x). Constrained decoding cannot
learn the target distribution exactly, and yields
a mode which disagrees with that of the target
distribution.

vergence, and compare Pgs(y | x; L) to 1595 (y | x;L).

Table 5.1/ shows Pe;;(y | x; L) and ng (Y | x; L) as they
compare to P(y | x). We find that, while the mode of
P(y | x) is acd, with probability of 0.4, the mode of con-
strained decoding distribution Pga(y | x; L) is bed, the
string with the majority prefix and the majority suffix,
to which the model assigns a probability of 0.48. Con-
versely, the constrained training distribution Pgé (yIx;L)
matches the data distribution almost exactly, and predicts

the correct mode.
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5.7 Real-world data experiment:

semantic role labeling

As a final experiment, we apply our RegCCREF to the

relation extraction task of semantic role labeling (SRL) in

the popular PropBank framework (Palmer et al., 2005]).

We use our architecture to extract relations corresponding
to events, with each relation containing a predicate and all
of its arguments as spans. In line with previous work, we
adopt the known-predicate setting, where event predicates
are given and the task is to mark token spans as event
participants, labeled by their (semantic) roles. PropBank
assumes 7 semantic core roles (ARGO through ARG5S plus
ARGA) plus 21 non-core roles for modifiers such as times or

locations. For example, in

ARGO ARG1 ARGM-TMP

[Peter| saw [Paul| yesterday,

the argument labels inform us who does the seeing (ARGO),
who is seen (ARG1), and when the event took place (ARGM-
TMP). In addition, role spans may be labeled as continu-
ations of previous role spans, or as references to another
role span in the sentence. SRL can be framed naturally

as a sequence labeling task (He et al.,|2017b)). However,
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the task comes with a number of hard constraints that
are not automatically satistied by standard CRFs:

1. Each core role may occur at most once per event.

2. For continuations, the corresponding span type

must occur previously in the sentence.

3. For references, the corresponding span type must

occur elsewhere in the sentence (before or after).

5.7.1 Data

In line with previous work (Ouchi et al.}|2018)), we work

with the OntoNotes corpus as used in the CoNLL 2012
shared task| (Weischedel et al}, 2011} [Pradhan et al.| 2012)),
whose training set comprises 66 roles (7 core roles, 21

non-core roles, 19 continuation types, and 19 reference

types).

'As downloaded from |https://catalog.ldc.upenn.edu
[ IDC2013TI3, and preprocessed according to |https

| //cemantix.org/data/ontonotes.html
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5.7.2 RegCCRF Models

To encode the three constraints listed above in a Reg-
CCREF, we define a regular language describing valid BIO

sequences (Ramshaw and Marcus,|1999) over the 66 roles.

A minimal unambiguous NFA for this language has more
than 22 - 319 states, which is too large to run the Viterbi
algorithm on our hardware. However, as many labels are
very rare, we can shrink our automaton by discarding
them at the cost of imperfect recall. We achieve further
reductions in size by ignoring constraints on reference
roles, treating them identically to non-core roles. Our fi-
nal automaton recognizes 5 core role types (ARGO through
ARG4), 17 non-core / reference roles, and one continua-
tion role type (for ARG1). This automaton has 672 states,
yielding a RegCCRF with 2592 tags. A description of our
procedure for constructing this automaton can be found
in Appendix

Our model is given by this RegCCRF, with emission
scores provided by a linear projection of the output of a

pretrained RoBERTa network (Liu et al., 2019)). In order

to provide the model with event information, the given
predicates are prefixed by a special reserved token in

the input sequence. RoBERTa parameters are fine-tuned
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during the learning of transition scores and projection
weights. We perform experiments with both constrained
training and constrained decoding settings — we will refer
to these as ConstrTr and ConstrDec respectively. A full
description of the training procedure, including training
times, is provided in Appendix

As RegCCREF loss is only finite for label sequences in .,
we must ensure that our training data do not violate our
constraints. We discard some roles, as described above,
by simply removing the offending labels from the training
data. In six cases, training instances directly conflict with
the constraints specified — all cases involve continuation
roles missing a valid preceding role. We discard these

instances for ConstrTr.

5.7.3 CRF baselines

As baseline models, we use the same architecture, but
with a standard CRF replacing the RegCCRF. Since we
are not limited by GPU memory for CRFs, we are op-
tionally able to include all role types present in the train-
ing set, using the complete training set. We present two
CRF baseline models: CRF-full, which is trained on all
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Model Precision(™k)  Recall(rank) F, (rank)

o CRF (CRF-full) 86.89) 87.81(M 87.35(
“2 | CRE (CRF-reduced) 86.92(2) 87.352 87.13®
MOAelS  RegCCRF (ConstrDec) 87.05(1:5) 87.382 87.2125

RegCCRF (ConstrTr) 87.311) 87.76) 87.53(1)
Resul He et al.|(2017b — — 85.5
fesu tS |Suchi et al] (2018 87.1 85.3 86.2
l?'om Ouchi et al.| (2018)) Ensemble 88.5 85.5 87.0
iterature |FTr AT 2019 85.7 863 86.0

Table 5.2: Results from our experiments (averaged over
twelve trials), along with selected reported re-
sults from recent literature. We rank of our
models by precision, recall, and F; score —there
exists a significant difference between two com-
parable values if and only if their rankings dif-
fer by one or more. Statistical significance is
reported at p < 0.05 (two-tailed), as measured
by a permutation test.

role-types from the training set, and CRF-reduced, which

includes the same subset of roles as the RegCCRF models.

For CRF-reduced, we use the same learned weights as for

ConstrDec, but we decode without constraints.

5.7.4 Results and analysis

We evaluate our models on the evaluation partition, and

measure performance using F; score for exact span matches.
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For comparability with prior work, we use the evaluation
script?| for the CoNLL-2005 shared task (Carreras and|
Marquez, [2005b)). These results, averaged over twelve
trials, are presented in Table

All of our models outperformed the ensemble model
of (Ouchi et al |2018)), which represented the state of the
art for this task at the time of original publication of this

work. We ascribe this improvement over the existing liter-

ature to our use of RoBERTa — prior work in SRL relies on

ELMo (Peters et al., |2018]), which tends to underperform
transformer-based models on downstream tasks (Devlin|

etall, [2019a).

Of our models, ConstrTr significantl outperforms the

others in F; score and yields a new SOTA for SRL on
OntoNotes, in line with expectations from theoretical
analysis and on synthetic data. For our unconstrained
models, CRF-full and CRF-reduced, the constraints speci-
fied in our automaton are violated in 0.81% and 0.84% of

all output sequences respectivelyl*|

2As available from https://www.cs.upc.edu/~srlconll/soft!

3All significance results are at the p < 0.05 level (two-tailed), as
measured by a permutation test over the twelve trials of each
model.

4For CRF-full, we only count violations of constraints for those roles
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Among our four models, we see interesting trade-offs
between precision and recall. For precision, while not all
comparisons reach statistical significance, models with
constraints seem to outperform those without. This is not
surprising at all: the purpose of constraints is to prevent
models from making predictions we know to be false a
priori, and so we should expect constrained models to be
more precise overall.

For recall, we observe two clusters: CRF-full and Constr-
Tr both perform a bit better, while CRF-reduced and Constr-
Dec both perform a bit worse. As CRF-full is the only
model using the full tag set, and thus the only one capa-
ble of predicting rare role types, its high recall is to be
expected. Our other three models show an interesting
pattern with regards to recall: CRF-reduced and ConstrDec
perform about at parity, with ConstrTr showing signifi-
cant improvements. This behavior turns out to be quite
intuitive: CRF-reduced and ConstrDec were trained iden-
tically, and only differ in their decoding procedure. The
decoding-time constraints of ConstrDec largely work to
prevent spurious predictions, and so we shouldn’t expect
these models to differ much in the number of true roles

that our automaton accounts for.
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Model Precision(™%)  Recall(ank)  F, (rank)

CRF (CRF-full) 89.81(15) 90.62@ 90212
Core CRF (CRF-reduced) 89.79@) 90.592 90.19@
roles  RegCCRF (ConstrDec) 90.01(1-5 90.56  90.28
RegCCRF (ConstrTr) 90.11M 90.92(M 90.51M
CRF (CRF-full) 80.70) 81.841  81.27)
Non- ~RF (CRF-reduced) 80.75(1-5 80.44®  80.59@
core RegCCRF (ConstrDec) 80.71(1:5 80.59®  80.652
roles  ReeCCRE (ConstrTr) 81.291) 81.032 81160

Table 5.3: Results for our models, broken down for core
and noncore roles. Rankings and significance
tests are calculated identically as in Table

they predict. On the other hand, since ConstrTr is trained
with constraints, it can learn to be less “cautious,” with its
predictions, as its constraints will automatically prevent
many false positives. Thus, at evaluation time, ConstrTr
finds more roles that were avoided by CRF-reduced and
ConstrDec.

Looking at individual roles, we find that ConstrTr im-
proves upon both ConstrDec and CRF-reduced on both
core- and noncore roles, as is shown in Table This is
somewhat surprising, as noncore roles are not themselves
subject to any constraints, and so we might expect that
model constraints shouldn’t affect performance on this
class. Nonetheless, as we demonstrated in Section|5.6.2}
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constraints during training can help models select the
correct alternative during inference even when none of
those alternatives violate the constraints. We suspect a
similar effect is at play here.

5.8 Conclusion and future work

In this chapter, we presented a method for joint entity and
relation extraction based on enforcing regular-language
constraints on a CRF sequence labeling model. We in-
vestigated the resulting RegCCRF architecture both theo-
retically and empirically. From the theoretical perspec-
tive, we examined how constraints interact with training
— while existing approaches allow constraints to be en-
forced at prediction time, our construction also permits
constraints to be used during training. We demonstrate
conclusively that training-time constraints can better cap-
ture the target distribution, and should be preferred. Em-
pirically, we use our proposed model for semantic role
labeling, showing that our proposal is a practical and
effective approach to joint entity and relation extraction.

Considering task-general relation extraction as a whole,

RegCCRFs represent a promising approach to jointly
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modeling entities and relations, and provide an elegant
formalism for encoding task constraints. However, de-
spite their success at SRL, RegCCRFs posses a number
of limitations that prevent their use as stand-alone task-
general architectures. We propose that they are best seen
not as an all-in-one architecture, but as a useful build-
ing block for use within task-general architectures. Here,
we will briefly discuss how RegCCRFs could be incorpo-
rated into architectures which are applicable for wider
classes of tasks, framing this discussion in terms of their

limitations as stand-alone architectures.

The most immediately apparent limitation of RegCCRFs
is their inability to enforce non-regular constraints. Some-
what surprisingly, this turns out to not limit us very much,
as the vast majority of relation extraction tasks seem to
have constraints that are expressible as a regular language.
Nonetheless, there are cases when a more expressive lan-
guage for constraints is desired — for instance, in tasks
that allow relations to be entities in super-relations, re-
lations may take on a tree structure, and might neces-
sitate context-free constraints. Nonetheless, even here,
RegCCRFs could be used along with regular-language
approximations of the true constraints — in the context
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free case, for instance, such approximations are easily
computable and well-studied (Nederhof, |2000; Mohri
and Nederhof, 2001} Egecioglul 2009)). An architecture

for such tasks could incorporate a RegCCRF to enforce
depth-limited constraints, with some post-processing to

ensure that predictions abide by the full constraints.

A more subtle, yet much more relevant shortcoming
involves how RegCCRFs model long-distance dependen-
cies. While the CRF can learn arbitrary local interactions
between adjacent labels, the long-distance dependencies
introduced by constraints can only be specified a priori,
not learned. Thus, a pure RegCCRF-based model for
relation extraction cannot learn arbitrary interactions be-
tween the different spans of a relation. In practice, in a
document containing multiple relations, a RegCCRF has
no way of partitioning the spans it finds into multiple
cohesive relations. For example, if a document contains
two distinct binary relations of the same type (involv-
ing four distinct spans), a pure RegCCRF would have
no mechanism for preferring the two true relations over
the two false relations by taking one entity from each
true relation. In the case of SRL, since predicates are

marked in the input, the RegCCRF is capable of learning
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interactions between all spans and the predicate — these
interactions prove sufficient for this task.

One promising approach to tackling this shortcoming
involves using RegCCRFs as the second stage of a pipeline
architecture based around anchor spans, similar to those
discussed in Chapter |3, For many tasks, there is a sin-
gle span type that exists in a one-to-one relation with
relations — each occurrence of such an anchor span corre-
sponds to a single occurrence of a relation containing that
span as an entity. For SRL, predicates act as anchor spans,
albeit ones that are given in the input. For any task that
has anchor spans, we could devise a pipeline architecture
wherein the first step involves identifying these anchor
spans, and the second step uses a RegCCRF to build re-
lations for each anchor span. As the anchor spans will
be marked in the input of the RegCCREF, it will be able to
learn arbitrary interactions between these anchor spans
and all other spans.

Overall, we hope that RegCCRFs can be a valuable
tool in building further task-general relation extraction

architectures.
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Chapter 6

Conclusion

His dissertation has focused on task generality as
T it applies to relation extraction tasks and architec-
tures. Task generality, as we define it, is an oft-overlooked
property of model architectures which describes how
well those architectures will generalize when separately
trained and evaluated on diverse tasks. If a model archi-
tecture is highly task-general, we would expect to be able
to instantiate specific models for many diverse tasks, such
that each model can be successfully trained to yield good
performance. Conversely, an architecture which is less
task-general may only allow us to instantiate models for
a narrow category of tasks, or at least the models of that
architecture might only show empirical success on such

a narrow subset. Unlike model transferability, a concept
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for describing the generalization of a specific model’s
already-learned parameters to other tasks, task generality
deals with models’ ability to learn successful parameters
when they are trained from scratch on tasks.

We note that task generality is of particular difficulty for
relation extraction. While this is partially due to conflict-
ing definitions for different relation extraction tasks, such
conceptual mismatches can be addressed. Indeed, in Sec-
tion[2.2| we present a general framework of definitions for
relation extraction tasks which can accommodate most
existing relation extraction tasks. However, while we can
describe most existing relation extraction tasks using a
general framework, modeling such diverse tasks using a
general architecture proves much less straightforward.
This can be viewed as a consequence of the large space
of possible relation structures, and a lack of of univer-
sally applicable limiting independence assumptions: Our
general definitions lead to a combinatorial explosion in
possible relation structures for models to predict, and
there is no obvious, task-general way of breaking things
up into smaller, tractable subtasks. Instead, specific lim-
iting assumptions are applicable for specific tasks, and

models which incorporate such task-specific assumptions
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are not capable of being applied to tasks for which those
assumptions don’t hold.

This dissertation has investigated how we can work
towards task generality for relation extraction in light
of these challenges. To this end, we have identified a
number of directions for progress in which we have made

contributions:

In Chapter 3, we explored the use of formal specifica-
tion in order to facilitate task generality in architectures.
We developed a specification language capable of captur-
ing much of the variety in relation extraction tasks, and
incorporated this as part of DERE, a software framework
for developing and using task-general relation extraction

architectures.

In Chapter |4, we focused only on the subtask of span
extraction. Under this context, we investigated corpus
generality in Section where we identified many of
the same difficulties as are found with task generality,
and proposed a model architecture capable of general-
izing to the different corpora’s assumptions about input
features, language, and output structure. Section
then investigated the use of performance prediction as

a tool for investigating task generality. We found that
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the task of predicting an architecture’s performance on a
task, based on the properties of the task, the properties
of the architecture, and their interactions, is a powerful
tool for understanding the circumstances under which
architectures might be expected to generalize well to new
tasks.

Finally, Chapters| investigated relation extraction as
span extraction with global constraints. We propose Reg-
CCRFs, a method of enforcing global regular-language
constraints on the output of linear-chain CRFs. After in-
vestigating the architecture’s theoretical properties, we
demonstrate that such models can be used directly for
relation extraction by applying a RegCCRF to semantic
role labeling, using the constraint language to encode
information about the task structure for the model.

6.1 Persisting limitations

While we were able to make progress towards more task-
general architectures, there is still an enormous amount
of work to be done before we might start approaching the
levels of task generality found in task paradigms such

as text classification and text generation. In this section,
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we will highlight a few outstanding issues which we con-
sider to be the main stumbling blocks towards more task-
general architectures, and discuss how these limitations
might be addressed in the future.

6.1.1 Extrinsic incompatibilities

While there are many deep, theoretical challenges to task-
generality in relation extraction, it is important not to
understate the more surface-level hurdles. Perhaps due
to a lack of established consensus about relation extrac-
tion formalisms, many task pairs for which architectures
should be mutually compatible have subtle differences
in formalisms which make task-generality not impossi-
ble, but simply annoying. Such persistent annoyances
can discourage research into the task-generality of archi-
tectures before it begins. More nefariously, some mis-
matches in assumptions, while conceptually trivial, leave
no straightforward way to “bridge the gap,” and preclude
fair comparisons between architectures which disagree
about those assumptions. This section will outline some
concrete examples of this sort of extrinsic incompatibility,

and discuss how such problems may be avoided in the
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future.

Tokenization mismatches

As we note in Section different tasks may make
different decisions regarding if and how the input text
should be broken up into tokens. While many tasks, such
as GENIA Event Extraction (Kim et al), |2013]) and Ri-
QuA Quotation Analysis (Papay and Pado,

2020)), treat

their input text as a pure character sequence, with no

notion of tokenization, others, such as parc quotation

attribution (Pareti,[2016]) and OntoNotes semantic role

labeling (Weischedel et al., [2011)), come with their in-

put text pre-tokenized, according to some tokenization
scheme. Model architectures usually require their text to
be tokenized in some way, and those based on pre-trained
language models require text be tokenized in the same
way as it was during pre-training. This is usually inconsis-
tent with corpus-provided tokenizations, requiring such
models to retokenize their input text.

While tokenization woes are ubiquitous in natural lan-
guage processing, the central role of text spans in most
relation extraction tasks makes tokenization mismatches

particularly painful. In tasks which define tokenizations,
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all spans will align with the task’s token boundaries, and
most common models can only predict spans which align
with the model’s tokenization. When a model has a token
boundary where none is present in the corpus, the model
misses out on a useful hint that it should not predict a
span boundary there. When a corpus has a token bound-
ary where none is present for the model, the model is
entirely incapable of predicting spans beginning or end-

ing at that boundary.

An idealistic solution to these problems might be to
hope for some universally applicable tokenization scheme,
accordi