
Task generality in relation
extraction

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart zur

Erlangung der Würde eines Doktors der
Naturwissenschaften (Dr. rer. nat.) genehmigte

Abhandlung

Vorgelegt von

Sean Papay
aus Santa Clara, Kalifornien, Vereinigte Staaten

Hauptberichter: Prof. Dr. Sebastian Padó
1. Mitberichter: PD Dr. Roman Klinger
2. Mitberichter: Dr. Vlad Niculae

Tag der mündlichen Prüfung: 2. Oktober, 2023

Institut für Maschinelle Sprachverarbeitung der
Universität Stuttgart

2024

Abstract

Relation extraction involves the identification of relations
between entities in text. Many distinct tasks in natural lan-
guage processing, including semantic role labeling, quo-
tation analysis, and event extraction, can be categorized
as instances of relation extraction, and share similar struc-
tures. However, despite the similarities between these
tasks, modeling approaches tend to show little overlap,
and model architectures designed for one type of relation
extraction task can rarely be applied to others. This situa-
tion stands in contrast to other task paradigms common
in natural language processing, such as text classification
and text generation, wherein existing architectures tend
to be highly generalizable to many distinct tasks within
their paradigms.

This dissertation investigates task generality for relation
extraction, that is, the ability or inability of relation ex-
traction model architectures to be successfully applied to
diverse relation extraction tasks. To this end, we make
a number of concrete contributions: First, we present a
formal description language for specifying the proper-
ties of different relation extraction tasks, and introduce a

3

software framework for developing model architectures
which can automatically account for these properties.
By delineating task-specific frontends from task-general
backends, this framework enables task-general architec-
tures to be easily adapted to the specifics of particular
tasks. Next, we investigate task generality for span ex-
traction, an important subtask of relation extraction. We
identify architecture design choices which facilitate task-
generality, and go on to statistically analyze how differ-
ent types of architectures generalize to different types
of tasks, gleaning insights into which task properties,
model properties, and interactions therebetween are im-
portant for generalization. Finally, we present a method
for enforcing regular-language constraints on the outputs
of a class of sequence labeling models. We show how
constraints can be constructed which capture the spe-
cific structures of relation extraction tasks, such that label
sequences can be interpreted as relations. Overall, this
dissertation works towards making relation extraction
more task-general, and we hope our contributions can
spur further work in this direction.

4

Zusammenfassung

Relationsextraktion beinhaltet die Identifizierung von
Relationen zwischen Entitäten in Texten. Viele verschie-
dene Aufgaben der natürlichen Sprachverarbeitung, ein-
schließlich semantischer Rollenzuweisung, Zitatanalyse
und Ereignisextraktion, können als Instanzen von Relati-
onsextraktion kategorisiert werden und weisen ähnliche
Strukturen auf. Trotz der Ähnlichkeiten zwischen diesen
Aufgaben zeigen Modellansätze tendenziell wenig Über-
schneidungen, und Modellarchitekturen, die für einen
bestimmten Typ von Relationsextraktionsaufgabe entwi-
ckelt wurden, können selten auf andere angewendet wer-
den. Diese Situation steht im Gegensatz zu anderen Auf-
gabenparadigmen in der natürlichen Sprachverarbeitung,
wie Textklassifikation und Textgenerierung, bei denen
bestehende Architekturen in der Regel für viele verschie-
dene Aufgaben innerhalb ihrer Paradigmen hochgradig
verallgemeinerbar sind.

Diese Dissertation untersucht die Aufgabengeneralität
für Relationsextraktion, d.h. die Fähigkeit oder Unfähig-
keit von Modellarchitekturen für Relationsextraktion, er-
folgreich auf verschiedene Relationsextraktionsaufgaben

5

angewendet zuwerden. Zu diesemZweck leistenwir eine
Reihe konkreter Beiträge: Zunächst präsentieren wir eine
formale Beschreibungssprache zur Spezifizierung der Ei-
genschaften verschiedener Relationsextraktionaufgaben,
und stellen ein Software-Framework vor, mit dem Mo-
dellarchitekturen entwickelt werden können, die automa-
tisch diese Eigenschaften berücksichtigen können. Durch
die Trennung von aufgabenspezifischen Frontends und
aufgabengenerellen Backends ermöglicht dieses Frame-
work, dass aufgabengenerelle Architekturen leicht an
die Spezifika bestimmter Aufgaben angepasst werden
können. Anschließend untersuchen wir die Aufgaben-
generalität für die Extraktion von Textabschnitten, eine
wichtige Teilaufgabe der Relationsextraktion. Wir iden-
tifizieren Architekturentwurfsentscheidungen, die die
Aufgabengeneralität fördern, und analysieren statistisch,
wie verschiedene Arten von Architekturen auf verschie-
dene Arten von Aufgaben verallgemeinerbar sind, um Er-
kenntnisse darüber zu gewinnen, welche Aufgabeneigen-
schaften, Modelleigenschaften und Wechselwirkungen
zwischen ihnen für die Verallgemeinerung wichtig sind.
Schließlich präsentieren wir eine Methode zur Durch-
setzung von Einschränkungen von regulären Sprachen

6

für die Ausgaben einer Klasse von Sequenzbeschriftungs-
modellen. Wir zeigen, wie Einschränkungen konstruiert
werden können, die die spezifischen Strukturen von Rela-
tionsextraktionsaufgaben erfassen, so dass Beschriftungs-
sequenzen als Relationen interpretiert werden können.
Insgesamt trägt diese Dissertation dazu bei, Relations-
extraktion auf eine aufgabengenerelle Art und Weise zu
gestalten, und wir hoffen, dass unsere Beiträge weitere
Arbeiten in diese Richtung anregen können.

7

Contents

1 Introduction 19
1.1 Task generality 21

1.1.1 Task generality in machine learning 22
1.1.2 Task general relation extraction . . 25

1.2 Contributions 26

2 Background 31
2.1 Machine learning and neural networks . . 32

2.1.1 Distributions and datasets 32
2.1.2 Models and model architectures . 33
2.1.3 Parameters and optimization . . . 36
2.1.4 Artificial neural networks 40
2.1.5 Pretrained embedding networks . 46

2.2 Relation extraction 51
2.2.1 Documents 52
2.2.2 Text 53
2.2.3 Entities 54
2.2.4 Relations 57

9

2.2.5 Relation structures, constraints, and
evaluation 58

2.2.6 Evaluation 59
2.3 Architectural motifs for relation extraction 61

2.3.1 Pipeline models 62
2.3.2 Sequence labeling for span extraction 63

2.4 Specific relation extraction tasks 65
2.4.1 TACRED 65
2.4.2 OntoNotes semantic role labeling . 68
2.4.3 GENIA event extraction 70

3 Formal specification of relation extraction tasks 73
3.1 Related Work 78
3.2 Framework design 80

3.2.1 Framework structure 81
3.2.2 Task schemata 82
3.2.3 Data files 85

3.3 Proof-of-concept system 86
3.3.1 Span extraction 87
3.3.2 Slot classification 89
3.3.3 Decoding 90
3.3.4 Evaluation and results 91
3.3.5 Technical details and availability . 93

10

3.4 Conclusion 94

4 Task-generality for span extraction 97

4.1 Corpus- and language-general quotation
detection 99
4.1.1 Related work: datasets and models 103
4.1.2 Neural Quotation Detection (NQD) 107
4.1.3 Experimental evaluation 110
4.1.4 Error analysis 115
4.1.5 Conclusion 119

4.2 Investigating task-generalizabilitywith per-
formance prediction 120
4.2.1 Tasks and datasets 123
4.2.2 Span type properties and hypotheses125
4.2.3 Model architectures 130
4.2.4 Meta-learning model 134
4.2.5 Experiment 137
4.2.6 Experimental procedure 137
4.2.7 Analysis 144
4.2.8 Related Work 149
4.2.9 Conclusion 152

11

5 Task-general jointmodelingwith regular-constrained
CRFs 155
5.1 Task properties as sequence labeling con-

straints . 156
5.2 Preliminaries and notation 158
5.3 Related work 162
5.4 Regular-constrained CRFs 165

5.4.1 Construction 166
5.4.2 Time and space efficiency 170
5.4.3 Interpretation as a weighted finite-

state transducer 173
5.5 Comparing constrained training to con-

strained decoding 174
5.6 Synthetic data experiments 178

5.6.1 Arbitrarily large differences in like-
lihood 180

5.6.2 Differences in MAP inference . . . 182
5.7 Real-world data experiment: semantic role

labeling . 184
5.7.1 Data 185
5.7.2 RegCCRF Models 186
5.7.3 CRF baselines 187
5.7.4 Results and analysis 188

12

5.8 Conclusion and future work 192

6 Conclusion 197
6.1 Persisting limitations 200

6.1.1 Extrinsic incompatibilities 201
6.1.2 Challenges with relation building 206
6.1.3 A poor understanding of interde-

pendencies 209
6.2 Future approaches to relation extraction . 215

6.2.1 Large language models 216
6.2.2 AutoML 220

Bibliography 223

A Investigating task-generalizability with per-
formance prediction 263
A.1 Training Models 263

A.1.1 Hardware 264
A.1.2 Tokenization 264
A.1.3 Hyperparameters 265
A.1.4 Optimizer and Training 266
A.1.5 Early Stopping 266
A.1.6 Features 267

13

B Task-general jointmodelingwith regular-constrained
CRFs 271
B.1 Experimental Design 271

B.1.1 CRFs 272
B.1.2 Synthetic data experiments – train-

ing procedure 273
B.1.3 Semantic role labeling – training

procedure 274
B.2 Construction as weighted FST 275

B.2.1 Transducer topology 276
B.2.2 Edge weights 277

B.3 Automaton construction for semantic role
labeling . 278

14

List of Figures

3.1 Example formalizations of two different
tasks in terms of frames, slots, and spans. 76

3.2 Structure of the DeRE framework. 81
3.3 A small but complete task schema for part

of the BioNLP shared task. 83
3.4 An example annotation in brat format. . . 86
3.5 Proof-of-concept pipeline: span identifica-

tion (1), slot classification (2), and decod-
ing into frames (3). 88

4.1 The NQD architecture 109
4.2 Scatter plot of actual vs. predicted 𝐹1 scores

for all 36 span types × 12model architectures142

5.1 Example for a RegCCRF, showing NFA
and unrolled factor graph. 167

5.2 Model output probabilities, andNLL losses,
plotted against sequence length. 180

15

List of Tables

3.1 Performance of the proof-of-concept sys-
tem for biomedical relation extraction. . . 93

3.2 Performance of the proof-of-concept sys-
tem for aspect based sentiment analysis. . 94

4.1 Results on parc3 (exact span match evalu-
ation) . 112

4.2 Results on stop (exact span match evalua-
tion) . 113

4.3 Results on rwg (sentence-level accuracy
evaluation) 113

4.4 A listing of all span types considered for
each dataset, along with their properties. 127

4.5 𝐹1 scores for each model architecture on
each span type. 140

4.6 Evaluation of performance predictionmod-
els. 141

17

4.7 Regression coefficients from performance
prediction model. 146

5.1 Output distributions for constrained de-
coding and constrained training, compared
to the target distribution 183

5.2 Results from our experiments, along with
selected reported results from recent liter-
ature. 188

5.3 Results for our models, broken down for
core and noncore roles. 191

A.1 Hand-crafted features used. 268
A.2 Hyperparameter choices 269

B.1 Summary of hyperparameters for ourmod-
els and experiments. 272

18

Chapter 1

Introduction

Relation extraction is a central step in obtaining struc-
tured information from unstructured text. At a

conceptual level, the task involves the identification of re-
lations between entities in a text. These relations generally
correspond to some sort of semantic relation conveyed by
the text, such as the relation between an organization and
its founder, or that between a quotation and its speaker,
although the specific interpretations of relations can be
quite varied. As complex structures can often be built
from individual relations between entities, relation ex-
traction forms the first step in pipelines for many tasks
with structured outputs. For instance, extracting relations
from text is a first and central step for building knowledge
graphs, as in Luan et al. (2018), or for analyzing political
discourse networks, as in Padó et al. (2019).

19

Structurally, relation extraction tasks can vary quite
significantly. We can examine this variety by exploring a
few concrete examples. In the case of coreference resolu-
tion tasks, such as the CoNLL-2012 shared task (Pradhan
et al., 2012), the relation we are interested in, corefer-
ence, might be formalized as a binary symmetric relation
between two mentions (in this case, the construction of
longer coreference chains would be formalized as a sec-
ond step in a pipeline). Meanwhile, tasks like TACRED
(Zhang et al., 2017) might be interested in semantic rela-
tions between entities, such as determining if a particular
person lives in a particular city. Such a lives-in rela-
tion would also be binary, but it would not be symmetric
(since a city cannot live in a person). Quotation analysis
tasks such as RiQuA (Papay and Padó, 2020) might con-
cern themselves with relations between more than two
entities, such as “who said what to whom”. When some
arguments are optional (e.g. the whom might not be men-
tioned in the text), relations might be variadic, taking a
variable number of entities. Quite commonly, a single
relation extraction task will have many different types of
relations, and these relation types might differ in their
structures.

20

As for the entities, these are usually spans of text, which
may either be explicitly marked in the input or unmarked
(or, not uncommonly, partially marked). As with rela-
tions, it is common for a relation extraction task to distin-
guish between many types of entities. These entity types
often restrict which types of relations an entity can take
part in – relations usually require a certain combination
of entity types. For instance, the binary lives-in relation
might expect one entity of type person and one of type
city, while the coreferent relation might expect two
entities of type reference.

1.1 Task generality

Relation extraction models are tasked with identifying
entities and relations between them from a text. A large
variety of modeling approaches exist, ranging from rule-
or knowledge-based systems (e.g. Ravikumar et al., 2017;
Mirza and Tonelli, 2016) to models based upon deep neu-
ral networks (e.g. Liu et al., 2013; Sui et al., 2023). While
not all models employ learning – rule-based systems, for
instance, often rely exclusively on hand-crafted rules –
this dissertation will focus specifically on machine learn-

21

ingmodels for relation extraction, i.e. modelswhich learn
to extract relations by generalizing from training data.

1.1.1 Task generality in machine learning

Let us briefly examine the process by which a machine
learning model is deployed for a given task. In the most
conceptually simple case, first a model architecture is se-
lected, then hyperparameters are given values, then model
parameters are learned from training data, and finally the
trained model is used to make predictions for unseen
data. In this setting, predictions are the result of factors
which depend on the training data (model parameters)
as well as factors which are specified a priori (model
architecture and hyperparameters).

For machine-learning models, we will define task gen-
erality to be a model architecture’s ability to be trained
and applied tomanydistinct but structurally-similar tasks.
For instance, a task-general model architecture applicable
for hate speech detection might be expected to work “out-
of-the-box” on the task of sentiment analysis – these two
tasks, though distinct, share the same basic structure, in
that they accept text as input and predict a sentence-level,

22

categorical output.
This notion of task generality is related to, but dis-

tinct from, the concept of model transferability in transfer
learning. While model transferability concerns the ability
of a model’s learned parameters to be adapted for a new
task (Ben-Akiva and Bolduc, 1987; Zamir et al., 2018; Bao
et al., 2019), task generality is only a property of a model
architecture, independent of any trained parameters.

While there is no reason that we should expect our
model architectures to be task-general a priori,1 for many
families of tasks, the common neural architectures gen-
eralize so consistently that this task generality goes as-
sumed and unstated. This task generality allows the re-
search community to make rapid progress in a large num-
ber of structurally-similar tasks – for instance, a novel
sequence labeling architecture might push forward the
state-of-the-art for named-entity recognition, shallowpars-
ing, part-of-speech tagging, and countless other sequence
labeling tasks.

Unfortunately, common models for relation extraction

1In fact, there is good reason to expect that they should not be – the
“no free lunch theorems” in optimization (Wolpert andMacready,
1997) tell us that a learning algorithm’s high performance at one
task must be offset by low performance on some other task.

23

do not display the extent of task generality seen for many
other categories of task (Adel et al., 2018). Model ar-
chitectures for a given relation extraction task generally
cannot be applied to other relation extraction tasks as-is,
and often resist attempts at being adapted to new tasks.
At a mechanical level, this lack of adaptability is usu-
ally the result of differing assumptions made by model
architectures, either about the structure of their input,
the structure of their output, or the patterns of indepen-
dencies and independencies between their inputs and
outputs.

Seeing the benefits that powerful, task-general archi-
tectures bring to other types of NLP tasks, it would be
desirable to pursue this type of task generality for relation
extraction architectures. As we have identified restric-
tive task-specific assumptions as the major hindrance to
task generality, it seems that we might find what we are
looking for by investigating models which make as few
assumptions as possible.

24

1.1.2 Task general relation extraction

Unfortunately, we find that the space of possible relation
structures explodes combinatorially as we dispense with
assumptions. For instance, if we take entities to be con-
tiguous spans of tokens, we find a document of length 𝑛
has quadratically many potential entities, as each entity is
defined by its starting and ending index. If we then con-
sider candidate relations between these entities, treating
relations as simple 𝑘-tuples of entities, we must consider
𝑂((𝑛2)𝑘) = 𝑂(𝑛2𝑘) potential relations. Finally, for our
model to account for mutual exclusivities, interdepen-
dencies, and interactions between relation candidates, it
cannot predict relations independently, but instead must
predict the whole relation structure for a document, i.e.
the set of all relations present within the document. This
leaves our model with an output space of 𝑂(2𝑛2𝑘) pos-
sible relation structures. The very assumptions that got
in the way of task generality are often responsible for
limiting this search space to a reasonable size.

25

1.2 Contributions

If task-specific assumptions limit architecture generaliz-
ability, but are nonetheless necessary for tractable, effec-
tive relation extraction models, what can we do to im-
prove architectures’ task generalizability? This is, in fact,
the central research question we will investigate in this
dissertation. Wewill argue that there is a richly populated
and under-explored “middle-ground” between the two
extremes of practical task-specific architectures and task-
general-yet-intractable models. This dissertation identi-
fies a number of directions in which this middle-ground
can be explored, and reports on what we have found
while exploring in these directions.

Firstly, a promising area for compromise is to not en-
tirely dispense with task-specific assumptions, but rather
to formalize them. By formally specifying tasks’ struc-
tural properties and models’ assumptions, we can better
understand when architectures might or might not be
applicable to new tasks. Additionally, if we can specify
tasks and their structures in a machine-interpretable way,
we open the door to a class of meta-architectures which
can automatically instantiate an appropriate architecture

26

incorporating the appropriate assumptions based solely
on the formal description of the task. Chapter 3 discusses
experiments to this end: We define a task specification
language, implement a software framework for designing
such meta-architectures, and propose a concrete baseline
system.

As the extraction of entity spans from text is a promi-
nent subtask of relation extraction, we decide to investi-
gate task generality for entity extraction in isolation. This
work is presented in Chapter 4 of this dissertation. We
first investigate corpus generality for quotation extraction,
a specific span extraction task. We observe that corpus
generality sharesmany of the same challenges as task gen-
erality, and develop amodel architecture capable of gener-
alizing across corpora of varying formalisms, modalities,
and languages, identifying a number of strategies for de-
veloping successful corpus-general models along the way.
We follow this up by investigating full task generality for
span extraction. Here, we collect a large “zoo” of span
extraction tasks and model architectures, and use perfor-
mance prediction to carry out a large-scale quantitative
analysis. This not only yields a performance prediction
model, which can predict how well a given model ar-

27

chitecture will perform on a given task, but also gleans
insight into the properties of models and tasks which
interact to affect generalizability.

For full relation extraction, if we want to work with
formally specified task structures, it becomes desirable
to find model architectures capable of handling a large
family of such structures. In Chapter 5, we discuss such
an architecture, based upon conditional random field
models and capable (with some caveats) of modeling
those task structures representable as regular languages.

This dissertation encompases work from the following
publications: The work presented in Chapter 3 is based
on work presented in (Adel et al., 2018), a demo paper
presented at EMNLP 2018. I was one of five authors for
this work – I participated in formalizing the structure of
task- andmodel-specifications, was responsible for imple-
menting the decoding procedure for the baseline model,
and contributed towriting themanuscript for publication.
Chapter 4 describes work from two separate publications:
Papay and Padó (2019), presented at RANLP 2019, and
Papay et al. (2020), presented at EMNLP 2020. I was the
lead author for both of these works, performing all imple-
mentation and experiments, and doing a majority of the

28

writing. Chapter 5 is based on work performed for Papay
et al. (2022), which was presented at ICLR 2021. I was
likewise the lead author for this work, and performed
all implementation, experiments, and a majority of the
writing.

29

Chapter 2

Background

In order to investigate task generality as it applies to
relation extraction, we would like to establish a solid

groundwork of background knowledge, and a consistent
scheme of notation and terminology for us to use later.
This chapter will seek to do exactly this. We start by dis-
cussing machine learning in general in Section 2.1, intro-
ducing useful notation and conventions, and briefly sum-
marizing common machine learning techniques which
we use persistently in this dissertation. The remaining
sections of this chapter will discuss relation extraction.
Section 2.2 establishes definitions for relation extraction
tasks which we will utilize throughout this dissertation
Section 2.3 will discuss common patterns in machine
learning models for relation extraction, and finally, Sec-
tion 2.4 will discus a small selection of specific relation

31

extraction tasks, and existing model architectures which
are commonly applied to those tasks.

2.1 Machine learning and neural
networks

This section will provide a brief overview of machine
learning and neural networks, focusing on the formalisms
and techniques which will be relevant to relation extrac-
tion.

2.1.1 Distributions and datasets

We will formalize machine learning in terms of prob-
ability distributions. In all cases, we start with a joint
distribution 𝑃(v1, v2, ⋯) over a set of random variables
{v1, v2, ⋯}. We will call this distribution our data distri-
bution. For notational brevity, we will take v to be the
sequence ⟨v1, v2, ⋯⟩, and may write the data distribution
as 𝑃(v). We normally have access to one or more finite
sets of samples from the data distribution – we call such

32

a set of samples a dataset.1 A common setting is to have
three such datasets: a training set, a development set, and
a validation set, although such a split is not universal. In
any case, for a dataset 𝐷, we can define �̃�𝐷(v) to be the
probability distribution obtained by uniformly randomly
selecting one datapoint from 𝐷. We might refer to this as
the dataset distribution of 𝐷.

For a specific machine learning task, we will partition
the set of random variables as a disjoint union of input
variables {x1, x2, ⋯} and output variables {y1,y2, ⋯}. Our
goal is to computationally model the conditional prob-
ability distribution 𝑃(y ∣ x) = 𝑃(y1,y2, ⋯ ∣ x1, x2, ⋯),
which we will call the target distribution.

2.1.2 Models and model architectures

We will use the word model to refer to a family of proba-
bility distributions comparable to the target distribution,
i.e. defined over and conditioned on the same output and

1Technically, as multiplicity is generally allowed in datasets, it
would be more accurate to call these datamultisets, or perhaps
databags. However, for most tasks and dataset sizes, it is un-
common to have any sample with multiplicity > 1, making the
distinction largely irrelevant, and so we will stick to the estab-
lished, if misleading, terminology.

33

input variables. Such models are parameterized by a pa-
rameter vector 𝜽 in some vector space Θ, such that each
value of 𝜽 ∈ Θ corresponds to an individual distribution
�̂�𝜽(y ∣ x). We will term such distributions model distribu-
tions. It is important to note that the target distribution
itself need not be one of these model distributions. In
this dissertation, we will always assume that Θ = ℝ𝑘 for
some (finite) 𝑘.

While any parameterized family of distributions can
be called a model, this dissertation will focus on those
families of distributions which can be efficiently repre-
sented and approximated algorithmically. Different types
of models might have different algorithmic representa-
tions, and some algorithms might only represent their
models implicitly. In general, though, for any particu-
lar model, we will usually have a particular algorithmic
representation in mind, to the point where we may at
times informally identify models with their associated
algorithms.

We will often need to work with a family of related
models. We will refer to such a family as a model architec-
ture, or often just an architecture for short. Just as models
are parameterized by a parameterization 𝜽, we parame-

34

terize architectures by a hyperparameterization 𝝀 ∈ Λ –
we notate the model yielded by hyperparameterization 𝝀
as �̂�𝝀, and we notate the individual model distribution
of that model for parameterization 𝜽 as �̂�𝝀

𝜽(y ∣ x). In
the case that the values of either 𝜽 or 𝝀 are clear from
context, or if their specific values are irrelevant, we may
omit subscripts or superscripts respectively.

While we stipulated that 𝜽 was a real-valued vector,
we will make no such assumption for 𝝀, allowing Λ to
be any well-defined set. In practice, a hyperparameteri-
zation is usually envisioned as a collection of individual
hyperparameters, with 𝝀 being a tuple of values for these
hyperparameters and Λ being the Cartesian product of
those hyperparameters’ configuration spaces.

Our definitions leave us some freedom with what we
call a parameter and what we call a hyperparameter. We
can always pick out and remove some dimension of our
parameter space Θ, and insert a real-valued hyperparam-
eter in its place. In the case where our hyperparameter-
ization is a tuple containing some real number, we can
do exactly the opposite, promoting that hyperparame-
ter to a parameter. While we will always keep a strict
dichotomy between model parameters and hyperparam-

35

eters, we may use this freedom to convert parameters to
hyperparameters and and vice versa.

2.1.3 Parameters and optimization

Optimization is the task of selecting the best value 𝜽∗

for a model’s parameter vector, according to some well-
defined sense of quality. As this is usually quite difficult,
it is normal to dispense with perfectionism, and use the
word optimization to refer to the task of merely finding
a good parameter value 𝜽∗. Usually, this is done with
the goal of making �̂�𝜽∗(y ∣ x) approximate the target
distribution as closely as possible. While this problem
is widely studied, with many different approaches, this
dissertation consistently relies on gradient-based opti-
mization. This section will therefore focus on parameter
optimization using gradient-based approaches.

Of course, if optimization involves looking for the best
parameterization 𝜽∗, it is natural to also consider the task
of selecting the best hyperparameterization 𝝀∗, i.e. the
hyperparameterization for which the best 𝜽∗ exists. This
task is termed hyperparameter optimization. As hyperpa-
rameter optimization notoriously relies on architecture-

36

specific intuitions and a good measure of “black magic”
(Anand et al., 2022), wewill only discuss hyperparameter
optimization in the context of specific architectures.

Gradient-based parameter optimization

Herewewill briefly describe gradient descent and related
parameter optimization algorithms. We formalize opti-
mization in terms of a loss function 𝐿(𝜽), a differentiable
real-valued function of 𝜽 that quantifies how “poorly”
the model distribution �̂�𝜽(y ∣ x) approximates the target
distribution 𝑃(y ∣ x). A common choice of loss function
is to approximate the cross entropy between the model
distribution and the target distribution by summing over
samples from a dataset distribution, but all that we will
require is that the loss function has a global minimum,
and that low values of loss correspond in some ill-defined
sense to “good models” of the target distribution.

The gradient descent algorithm (Cauchy et al., 1847;
Ruder, 2016) starts with an initial parameter value 𝜽0,
and iteratively updates the parameter value based on the
gradient of the loss function. 𝜽0 is selected randomly
from some distribution over the parameter space, usually
a zero-mean normal or uniform distribution. We then

37

define our sequence of updated parameters with the rule

𝜽𝑖+1 = 𝜽𝑖 − 𝛼 ⋅ ∇𝐿(𝜽𝑖)

where 𝛼 ∈ ℝ+, the learning rate, is an optimization meta-
parameter – that is, a free variable whose value affects the
optimization procedure.2 As long as 𝐿 is locally linear at
the length scale of the gradient update, each subsequent
parameter update should yield a lower loss value, and
the process should converge to some local minimum of
𝐿:

𝜽∗ = lim
𝑖→∞

𝜽𝑖

In practice, such limits aren’t computable, and in fact
often don’t exist depending on the loss function and our
choice of learning rate. Instead, we often take

𝜽∗ = 𝜽𝑘

for some 𝑘 ≫ 0.

2While learning rate and similar optimization metaparameters are
often labeled as hyperparameters in existing literature, such a
characterization would be inappropriate by our definitions, as
optimization metaparameters only affect the behavior of the opti-
mizer, and have no bearing on the model.

38

There exist a number of variations on vanilla gradi-
ent descent. One common approach, stochastic gradient
descent (SGD), uses small subsets (batches) of the full
dataset to approximate the loss function during each up-
date step. This drastically improves the efficiency of com-
puting the loss function, at the cost of accuracy – small
batches only provide an approximation of the true loss
function. Nonetheless, this turns out to be a blessing in
disguise, as these noisy approximations of the true loss
function can help optimizers escape suboptimal localmin-
ima and saddle points during optimization (Keskar et al.,
2016; Kleinberg et al., 2018). For modern gradient-based
models, SGD is ubiquitous.

Other approaches modulate gradient descent’s update
rule. In gradient descent with momentum (Polyak, 1964;
Sutskever et al., 2013), the optimizer keeps track of a
velocity vector. During each update step, the gradient up-
dates this velocity vector, and that velocity vector in turn
updates the parameter value – this approach is argued
to converge more quickly and to better local minima.

Finally, some techniques replace the static learning rate
with more sophisticated machinery to account for differ-
ent length-scales in different regions of the parameter

39

space, and along different directions. One well-known
algorithm, Adam (Kingma and Ba, 2015), keeps track of
dynamic estimates for the variance of each parameter’s
gradient, and uses these estimates to set parameter-wise
learning rates. Similar approaches in this category in-
clude AdaGrad (Duchi et al., 2011) and RMSProp (Tiele-
man and Hinton, 2012).

2.1.4 Artificial neural networks

Artificial neural networks (ANNs) have become a central
component of many prominent machine learning model
architectures. While it is hard to find agreement on their
exact definition, ANNs are amethod for representing and
computing diverse families of vector-valued functions of
a vector argument, with each such family parameterized
by a vector 𝜽. In this section, we shall use 𝑓𝜽 to notate the
function represented by some neural network for param-
eter 𝜽, with 𝒚 = 𝑓𝜽(𝒙). Importantly for gradient-based
optimization, 𝒚 is generally differentiable with respect to
𝜽.

While most models we will investigate have ANNs at
their core, it is not always straightforward to represent a

40

probability distribution using a neural network. Usually,
values of the random variable x are encoded as vectors
and identified with the vector 𝒙. In the case when the
target distribution has small sample space, the network’s
output vector 𝒚 can be interpreted directly as a probabil-
ity distribution over the possible values of the random
variable y, so long as care is taken to ensure the compo-
nents are non-negative and sum to unity. In other cases,
more sophisticated machinery will be needed – we will
discuss such details as they arise.

Artificial neural networks generally represent 𝑓𝜽 as a
composition of many layers 𝑙𝑖𝜽:

𝑓𝜽(𝒙) = (𝑙𝑘𝜽 ∘ 𝑙𝑘−1
𝜽 ∘ ⋯ ∘ 𝑙1𝜽) (𝒙)

These layers generally represent conceptually simple and
easy-to-compute functions – we will abuse notation and
also use 𝒙 and 𝒚 to refer to the inputs and outputs for a
single layer, respectively. Two of the most common layer
types are linear layers, which represent bilinear functions
of 𝒙 and 𝜽 3, and activation functions, which are usually

3In practice, this usually means building a matrix out of some
components of 𝜽, and multiplying the input vector 𝒙 by that
matrix.

41

simple non-linear functions applied componentwise to
the input vector. The composition of a linear layer with an
activation function is termed a feedforward layer. The sim-
plest category of ANNs, multi-layer perceptrons (MLPs),
are pure compositions of multiple feedforward layers,
but other, more complicated kinds of networks might be
appropriate for certain task settings.

A case of particular interest for natural language pro-
cessing iswhere 𝒙 and 𝒚 represent sequences of values. Of
course, when the sequence length is a constant 𝑘, we can
interpret these both to be concatenations of subvectors,
maintaining our vector-to-vector formalism:

𝒙 = 𝒙1 ⊕ 𝒙2 ⊕ ⋯ ⊕ 𝒙𝒌, 𝒚 = 𝒚1 ⊕ 𝒚2 ⊕ ⋯ ⊕ 𝒚𝒌

However, special care must be taken in designing neu-
ral networks which can learn to be sensitive to the se-
quence structure of their inputs and outputs. Such net-
works will often have the additional benefit of being well-
defined for variable sequence lengths 𝑘. In the following
sections, we will discuss common types of network for
this setting.

42

Recurrent neural networks

One approach to processing sequences with neural net-
works involves repeated application of the same layer 𝑙𝑟𝜽.
For instance, let’s start by defining 𝒚0 = 0. We can then
define

𝒚𝑖 = 𝑙𝑟𝜽(𝒚𝑖−1 ⊕ 𝒙𝑖)

for 𝑖 ∈ J1⋅⋅𝑘K. In this way, the value of each 𝒚𝑖 depends on
the values of all input vectors 𝒙𝑗 where 𝑗 ≤ 𝑖, and the final
output vector 𝒚𝑘 depends on the entirety of 𝒙. We term
such layers recurrent layers, and networks which utilize
these are termed recurrent neural networks (RNNs).

It is important to note that RNNs are inherently direc-
tional – each output vector can depend only on previous
input vectors, and not on subsequent ones. While this
property may be desired in some tasks (for instance, in
autoregressive language modeling), other circumstances
may call call for 𝒚𝑖 vectors which depend on both preced-
ing and succeeding 𝒙𝑗 vectors. In these cases, bidirectional
RNNs can be applied. In a bidirectional recurrent layer,
two separate recurrent layers are employed: one applied
to the sequence ⟨𝒙1, 𝒙2, ⋯ , 𝒙𝑘⟩, and another applied to its
reversal ⟨𝒙𝑘, 𝒙𝑘−1, ⋯ , 𝒙1⟩. The outputs of these two recur-

43

rent layers can be combined (e.g. by vector concatenation)
for use as input to further layers in the neural network.

As an RNN’s prediction for 𝒚𝑖 can only depend on
distant 𝒙𝑗s “by proxy” of all of the intervening output
vectors 𝒚J𝑗+1⋅⋅𝑖−1K, modeling long range interactions often
degrades into a game of Chinese whispers over a noisy
channel – when viewed in terms of the update signal
provided by gradient descent, this is often termed the
vanishing gradient problem. Many proposals have been
made to partially alleviate this problem in RNNs, lead-
ing to a number of popular RNN layer types. The most
well-known among these is the LSTM (Hochreiter and
Schmidhuber, 1997), or long short-termmemory network,
which utilizes a notion of gates in order to allow informa-
tion to flow more directly between time steps. The GRU
(Cho et al., 2014), or gated recurrent unit, is a similar
variation on the same theme.

Self-attention and transformers

Transformers (Vaswani et al., 2017) are an alternate ap-
proach to sequence processing, based not on RNNs but
on self-attention layers. While we will relegate a complete
technical description of transformers to Vaswani et al.’s

44

paper, in this section we will discuss them at an informal
level and contrast them with RNNs-based networks.

Macroscopically, transformer networks consist of alter-
nating self-attention layers and token-wise feedforward
layers. As the self-attention layers are responsible for
all sequence processing, we will focus our discussion on
these.

In a self-attention layer, each output vector 𝒚𝑖 depends
directly on all input vectors 𝒙1, 𝒙2, ⋯ , 𝒙𝑘. This differs sig-
nificantly from RNNs, wherein each output vector can
only depend on distant input vectors indirectly. This is
achieved by means of an attention mechanism – for each
pair (𝒙𝑖, 𝒙𝑗) an attention score is calculated, and 𝒚𝑖 is rep-
resented as a weighted sum of contributions from each 𝒙𝑗,
with the weights of this sum deriving from the attention
scores.

This approach to sequence processing has a number of
consequences that make transformers vary significantly
from RNNs. Firstly, transformers are intrinsically bidirec-
tional – attention scores can be defined in such a way to
ensure that each 𝒚𝑖 can only attend to 𝒙𝑗 where 𝑗 ≤ 𝑖, but
this requires special effort. In fact, self-attention layers not
only aren’t directional, but aren’t sensitive to the sequence

45

structure of 𝒙 at all – as weighted sums are commutative,
self-attention layers are permutation invariant. This prop-
erty is actually detrimental in most NLP tasks, where we
would like models to be sensitive to the order of tokens –
for this reason, transformer networks utilize positional em-
beddings to explicitly encode within each 𝒙𝑖 information
about the value of 𝑖. While this allows transformers to be
sensitive to the order of its inputs, it is important to note
that transformers must “learn” to utilize this sequence
information – while RNNs are intrinsically more sensi-
tive to short-term interactions than to long-term ones,
transformers have no such inductive bias.

2.1.5 Pretrained embedding networks

A recent trend in NLP is increasing reliance on large,
pretrained neural networks to acquire word embeddings,
vector representations of words to be used as inputs to
further ANN layers. This section will discuss these pre-
trained models in roughly chronological order, outlining
their history and examining their applications in state-of-
the-art models.

46

Distributional semantics and and word embeddings

The concept of word embeddings grew out of the field of
distributional semantics. This field is interested in formal-
izing and representing the meanings of words in terms
of their statistical properties in a corpus of text. With this
goal, vectors turn out to be a natural way of summarizing
these statistical properties – the earliest approaches to
generating word embeddings generally consist of a fixed
pipeline of transformations applied to corpus frequencies
in order to obtain vectors.

Distributional semantics came to be linked to neural
networks in two ways. First, it was realized that neu-
ral networks could be used to obtain embedding vectors
– Bengio et al. (2000) describe the training of a neural
language model, and observe that some of the model’s
learned parameters can be interpreted as semantic rep-
resentations. Secondly, during their work on multitask
learning, Collobert and Weston (2008) note that embed-
dings learned from one task can be re-used to initialize a
new neural network to improve performance.

This second discovery in particular led to the prolifera-
tion of general-purpose word embeddings – embeddings
could be generated from a large corpus of unlabeled text,

47

and then published to be incorporated into neural models
for any number of NLP tasks. Word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014) are two widely
used frameworks for the generation of such pretrained
embeddings.

Contextualized embeddings

One limitation of traditional word embeddings is in deal-
ing with polysemy: as a single vector is assigned to each
unique word, words with multiple senses receive only a
single vector which must encompass all of these senses.
Contextualized embeddings emerged as a technique for
dealing with this problem. In the framework of contextu-
alized embeddings, instead of assigning an embedding
vector to each word, a sequence of embedding vectors is
assigned to each sequence of words. In this way, the value
of a specific embedding can depend on the context of its
corresponding word within a larger text. While tradi-
tional embeddings could be disseminated as a serialized
list of vectors for some finite vocabulary of words, con-
textualized embeddings must be calculated from scratch
for each sequence of words. Therefore, contextualized
embedding systems are usually distributed in the form

48

of a pretrained neural network which can be evaluated
for a user-provided input sequence.

While some early experiments with contextualized
word embeddings were carried out in Lee et al. (2017)
and McCann et al. (2017), the technique exploded in
popularity with the release of ELMo (Peters et al., 2018).
ELMo is an LSTM-based neural network that was trained
for language modeling, with the outputs of the network’s
internal layers then used as word embeddings. As lan-
guage modeling is an inherently directional task, ELMo
largely consists of two independent networks, one which
does left-to-right language modeling and one which does
right-to-left language modeling. Each network produces
embedding vectors, and these are concatenated to form
ELMo’s contextualized word representations.

From embeddings to transfer learning

When a neural network is used to generate contextual-
ized embeddings, and these embeddings are then used
as inputs for another neural network, it is possible to con-
sider the composition of these two ANNs as one large
network. From this perspective, it becomes natural to
consider optimizing the parameters of this composed net-

49

work jointly, updating the parameters in the embedding
network and learning parameters for the downstreamnet-
work concurrently. This places us squarely in the field of
transfer learning, wherein our embedding network was
first pretrained for one task, and subsequently fine-tuned
for a different, but related task. This transfer learning
approach has proven quite popular with contextualized
embedding networks.

While transfer learning is possible with ELMo, it is
not commonly employed. In their original publication,
Peters et al. recommend fine-tuning ELMo on its lan-
guage modeling pretraining task for new datasets, but
do not explore updating weights during training of the
main task. Peters et al. (2019) note inconsistent effects of
fine-tuning ELMo, with minor improvements on some
tasks but minor degradations on others. On the other
hand, shortly after the release of ELMo, a new family of
transformer-based embedding models appeared which
seemed much more amenable to fine-tuning.

BERT (Devlin et al., 2019a) was the first of these to
make significant waves. Apart from using a transformer
instead of LSTMs, BERT differs from ELMo in its pretrain-
ing task – while ELMo is pretrained as a pair of unidirec-

50

tional language models, BERT is pretrained primarily on
the cloze task (Taylor, 1953), or masked language modeling.
In this setting, some percentage of words are “masked”
out of a text, and BERT must predict which words were
masked. This allows for a fully non-directional embed-
dingmodel, as BERT can depend the left context, the right
context, and interactions between them when computing
the embedding for a particular word.

BERT ushered in a plethora of similar embedding mod-
els based on masked language modeling and transform-
ers. Some of the most salient of these include RoBERTa
(Liu et al., 2019), which improves upon the training pro-
cedure of BERT, DistilBERT (Sanh et al., 2019), a distilled
version of BERT which aims to preserve its performance
with lower computational requirements, and SpanBERT
(Joshi et al., 2020), with a focus on representing spans of
text.

2.2 Relation extraction

In order to discuss relation extraction in detail, it is desir-
able to establish an exact vocabulary of definitions and
formalisms. This is especially crucial given the conflicting

51

assumptions commonly made when working on different
tasks or datasets. Wewill therefore establish a vocabulary
as general as possible, with the hopes of being able to ac-
commodate as much of the existing literature as possible.

2.2.1 Documents

We assume that each dataset comprises a set of docu-
ments. In general, we will use the word document to refer
to the smallest self-contained unit of a dataset. Each doc-
ument has its own input text, and all relations “live” in
exactly one document – we disallow relations between
different documents. It should be possible to work with
individual documents separately – any relation extraction
model should be able to make predictions for a single
document of a larger dataset, and separate predictions
made for separate documents should always be made
independently from one another.

Concretely, the level of textual subdivision represented
by a document can vary considerably depending on the
task. Some tasksmight treat individual sentences as docu-
ments, while others might treat an entire novel as a single
document. When defining a document for a specific task,

52

we always choose the smallest level of subdivision which
has the independence properties we are interested in.

2.2.2 Text

All relation extraction tasks which we consider will take
text as their input. For our purposes, we consider a text
to be a finite-length sequence of tokens. Datasets are free
to define their own notion of tokens – some might treat
words or subwords as tokens, and comewith a predefined
vocabulary, while datasets which use raw text as input
can be interpreted as treating each character as a token.
Retokenization might be necessary when a dataset and
a model disagree about the meaning of a token – for
instance, it might be the case that a task defines tokens to
be individual characters, while a model uses subwords
as tokens. In these cases, such retokenization should
be regarded as an internal detail of the model, and the
model’s final output should be interpreted in terms of
the data set’s original tokenization.

Many datasets also make extra-textual input available
to models: for instance, datasets based on the Penn Tree-
bank (Marcinkiewicz, 1994) might also provide part-of-

53

speech tags or constituency parsings of the input text.
When this is the case, we will discuss specifically how
that input is treated.

2.2.3 Entities

We define an entity to be anything which can participate
in a relation. Specific relation extraction tasks are free to
define these entities however they would like, but we will
discuss a few common choices here.

We will stipulate that each entity has an entity type,
which comes from some task-defined finite set of possible
entity types. While individual tasks can define the exact
semantics of these types, entities of the same type will
generally be capable of engaging in the same types of
relations. Of course, for tasks with no useful notion of
different types of entities, we can simply assign all entities
the same singleton type.

Textual references and spans

By far the most common kind of entity (and in fact the
only choice that this dissertation will explore in much
detail), textual references are fragments of the input text

54

which act as entities. Usually, these fragments will be
textual realizations of some semantic objects – for exam-
ple, they might be noun phrases which refer to specific
physical objects. In the case that these fragments are con-
tiguous spans of text, we will refer to these entities as
spans.

For some tasks, some or all textual references may be
specified a priori. For instance, a task for extracting rela-
tions between named entities might come with named
entity mentions pre-identified. While these cases can
have major consequences for task difficulty and model-
ing approaches, for the sake of consistent nomenclature,
we will still consider these to be textual references that
models must “identify,” although this identification task
might be trivial (i.e. models must only copy these entities
from their input to their output).

Extratextual entities

Some tasks involve relations between entities which are
not textual references. While our novel contributions in
this dissertation do not address these cases thoroughly,
wewill list here a few possibilities for extratextual entities.

A common circumstance where extratextual entities

55

arise are in caseswherewe know some ontology of objects
a-priori. In these cases, we might be interested in finding
relations involving these entities themselves, rather than
textual references to them. This sort of structure arises
commonly across task domains: For instance, in literature
analysis, we might be interested in relations between
characters known a priori, as in Kim and Klinger (2019)
or Wiedmer et al. (2020).

In practice, such cases are often, but not always, mod-
eled as a pipeline, where the first step involves finding
relations between textual references, while the second
step involves aligning these textual references with extra-
textual entities.

Relations as entities

Some tasks allow for relations themselves to be entities in
higher-order relations. This sort of structure adds consid-
erable complexity to relation extraction tasks, allowing
for many difficult-to-model possibilities such as reference
cycles and self-referential relations, and admitting an
infinitude of possible relation structures for finite texts.
When relations are allowed as entities for a task, the task
will usually make other strict assumptions about which

56

structures are legal in order to limit the task complexity.

2.2.4 Relations

We define a relation to be a collection of entities, along
with additional structure to define how these entities are
related to one another. We represent this structure in
terms of roles, wherein each entity has a particular role in
each relation it participates in.

As with entities, each relation is assigned a relation
type from some finite task-defined set of possible relation
types.

Roles

We organize the entities which participate in a relation
in terms of roles. Each entity participating in a relation
has a role within that relation, where these roles come
from a finite set of possible roles, defined for each task
a priori. Of course, tasks with no natural notion of roles
can be formalized with one singleton role. It is possible
for multiple entities to participate in the same relation
with the same role, and it is likewise possible for the
same entity to participate in a relation multiple times

57

under different roles. It is therefore natural to treat the
participating entities for a relation as a set of (entity, role)
pairs.

2.2.5 Relation structures, constraints, and
evaluation

Periodically, we will refer to the relation structure of a
document – by this, we mean the set of all entities and
relations in a document taken together. Such a notion is
useful to formalize the task of relation extraction in the
notation we have established for machine learning – a
relation extraction task has a target distribution of the
form 𝑃(y ∣ x), where x varies over all possible documents
and y varies over all possible relation structures.

Constraints

Each task is free to define constraints on which sorts of
relation structures are allowed and which are disallowed.
These can correspond to local properties of particular rela-
tions (e.g. “Each relation must have exactly two entities”)
as well as global properties of relation structures (e.g.
“No entity can occur in more than two relations”). For

58

the sake of generality, we will formalize such constraints
as a task-defined legality predicate on relation structures.
However, we should be careful to define these predicates
in such a way so as to be sensitive to structure rather than
content – for instance, if we are modeling parent_of rela-
tions, our predicate might ensure that each such relation
has exactly two entities of type person, but it should not
be responsible for enforcing that the first entity is the
parent of the second – ensuring this would be the job of
a model for this task.

2.2.6 Evaluation

Evaluation is the process of quantitatively comparing
a model’s predictions to the true labels, yielding a nu-
meric evaluation score. Higher scores usually correspond
to higher quality predictions, but this is not always the
case (e.g. when scores represent error rates). Evaluation
takes place primarily at a per-document level, with per-
document evaluation scores aggregated across a dataset
to yield a final evaluation score for a model. While this
can in principle depend directly on the model distribu-
tion �̂�𝜽(y ∣ x), such a setting is rare in relation extraction.

59

Rather, for each (𝒙, 𝒚) pair in the dataset, evaluation usu-
ally proceeds by comparing the relation structure 𝒚 to
a model’s predicted structure ̂𝒚 = argmax𝒚′ �̂�(𝒚′ ∣ 𝒙),
and assigning a numerical score based on how well these
structures align.

The intended evaluation metric is usually specified
along with a particular task, and some metrics may only
be well-defined for certain tasks. We will discuss a few
common cases here, but leave specifics to our discussions
of particular tasks.

The simplest-to-define metric is document-wise accu-
racy, where we assign a score of one if ̂𝒚 = 𝒚, assign a
score of zero otherwise, and aggregate scores across the
dataset by simple averaging. This approach is not too
common in practice, as it can not assign “partial credit”
to distinguish between mostly-correct predictions and
catastrophic failures.

Relation-level metrics address this by counting each
relation separately, allowing for more fine-grained dis-
tinctions than document- level evaluation. One approach
here is relation-wise 𝐹1-score. Even this is often too
coarse-grained for many tasks, and metrics are often de-
fined which can account for partial matches between re-

60

lations and entities. This becomes especially important
when relations are non-binary. For 𝑛-ary relations, the
space of relation candidates grows quite large, and it
might be desirable to assign partial credit for predictions
which match in some, but not all, of the true entities. Ap-
proaches to accounting for partial relation matches often
reduce to representing 𝑛-ary relations as a collection of
binary relations, and evaluating all such binary relations
together. For example, the CoNLL 2005 shared task for
semantic role labeling (Carreras and Màrquez, 2005a),
which involves variadic relations between verbs and a
large number of other roles, evaluates by decomposing
these large relations into collections of verb-role binary
relations, and calculating 𝐹1-scores for these binary rela-
tions.

2.3 Architectural motifs for relation
extraction

While architectures for relation extraction are hugely var-
ied, and are often tuned to the specific task they target, a
number of motifs tend to recur across many architectures.

61

This section will briefly define and discuss a few of these
patterns. We will try to keep all discussions here abstract
and high-level, relegating more concrete discussions of
applications of these motifs to discussions of particular
architectures.

2.3.1 Pipeline models

Pipelines are a common motif wherein the full task is de-
composed into a sequence of subtasks, and these subtasks
are then carried out by a sequence of submodels in order
to obtain predictions, with the output of each submodel
being used as the input for subsequent submodels. It
should be noted that pipeline models are not specific to
relation extraction, and are in fact quite ubiquitous across
many areas in machine learning.

Formally, we can view pipelines as a way of factorizing
our target distribution: if we have a target distribution
over 𝑘 output variables y = ⟨y1, ⋯ ,y𝑘⟩, a pipeline model
uses the chain rule to represent this distribution in terms
of 𝑘 submodels, where each submodel is responsible for
only a single output variable:

�̂�𝜽(y ∣ x) = �̂�𝜽(y1 ∣ x) ⋅ �̂�𝜽(y2 ∣ x,y1) ⋯ �̂�𝜽(y𝑘 ∣ x,y1, ⋯ ,y𝑘−1)

62

In principle, search algorithms such as beam search
can be used to find high-likelihood assignments to all of
the output variables during prediction, but often times
simple greedy decoding is used, selecting the most likely
prediction for each submodel.

In relation extraction, pipeline models often factorize
the full task into two subtasks: entity extraction, which
is the task of identifying and type-labeling all entities
present given a text, and relation building, which involves
predicting a set of relations given the text and the set of all
entities present. Not uncommonly, these subtasks might
themselves be modeled as pipelines: for example, entity
extraction might be done by first extracting unlabeled
entities, and subsequently assigning entity types to them.

2.3.2 Sequence labeling for span extraction

When only text spans are considered as entities during
entity extraction, we may term this step as span extrac-
tion. As many relation extraction tasks only consider
relations between spans, span extraction is a ubiquitous
first step in pipeline models. While many approaches
exist, a common choice is to treat span extraction as a se-

63

quence labeling task, encoding the spans of a document
in terms of token-wise labels and tasking a model with
predicting these labels.

BIO labeling (Ramshaw and Marcus, 1999) is one com-
mon method of encoding a set of non-overlapping spans
in a document as a label sequence. Under this framework,
the first token of each span is assigned a begin-label (B),
all subsequent tokens in a span are assigned an inside-
label (I), and all tokens which are not part of any span
are assigned an outside-label (O). In this way, any set of
non-overlapping spans in a document can be uniquely
represented by a label sequence, and sequence labeling
models can be used for span extraction. In order to ac-
count for span types, B- and I-labels can be marked by
span type.

Other sequence-labeling approaches to span extraction
tend to be minor variations on BIO labeling. The most
common variant, BILOU labeling (Ratinov and Roth,
2009), extends BIO labeling by marking the last token of
each spanwith an L-label. This necessitates a new label, U,
to mark single-token spans. In general, sequence-labeling
based approaches are all limited in their ability to repre-
sent nested or overlapping spans, and generally assume

64

that no spans can share tokens.

2.4 Specific relation extraction tasks

We will now investigate a number of existing relation
extraction tasks from the literature in terms of the defini-
tions introduced in Section 2.2, and briefly discuss mod-
eling approaches used for these tasks. This will serve
three major purposes: First, this will provide concrete ex-
amples of how existing tasks can be formalized in terms
of the framework we have established. Secondly, by pur-
posely choosing a diverse set of tasks, this will act as a
review of the breadth of relation extraction tasks in exist-
ing literature. Finally, we will get a first concrete glimpse
at how existing models depend on task-specific features.

2.4.1 TACRED

TACRED (Zhang et al., 2017) is a corpus for relation ex-
traction over newswire text. TACRED defines 41 types of
binary relations between 23 types of entities; examples
include a city_of_death relation between a PERSON en-
tity and a CITY entity and a founded_by relation between

65

a ORGANIZATION entity and a PERSON entity.
TACRED makes a number of simplifying assumptions

in its task statement. Each document is a single sentence,
and is guaranteed to contain at most one relation between
two entity spans. These two spans, labeled by entity types,
are provided as model input. One of these is labeled as
the subject of the relation, and the other is labeled as
the object. As we will soon discuss, these assumptions
have significant implications for what kinds of model
architectures are successful for this task.

It is quite straightforward to describe TACRED in terms
of the definitions we have established. TACRED’s notion
of entity and relation types coincides exactly with our
definitions, and TACRED’s subjects and objects are nat-
urally interpreted in terms of our notion of roles. The
corpus comes tokenized at the word level. Evaluation is
done by micro-averaged relation 𝐹1-score.

TACRED’s constraints, formalized as a legality predi-
cate, would only admit relation structures meeting the
following criteria:

• The only entities present are the two spans present
in the input.

66

• There is at most one relation present.

• If there is a relation, it has exactly two entities –
those present in the input.

• If there is a relation, each entity’s role within that
relation is identical to that specified in the input.

When we consider modeling approaches within these
constraints, it becomes clear that there isn’t too much left
for a model to do that isn’t already provided in the input.
Since we already know the two entities and their roles, all
that is left for a model is to a) decide if there is a relation
present, and b) if so, decide that relation’s relation type.
In fact, almost all models for this task are ultimately just
classificationmodels (e.g. Zhang et al., 2017; Huang et al.,
2022; Baek and Choi, 2022), where the set of classes is the
set of relation types along with a separate “no-relation”
label. Most modeling complexity revolves not around the
output structure, but rather in representing the input text
and graceful handling of minority labels.

67

2.4.2 OntoNotes semantic role labeling

Semantic role labeling (SRL) can be informally described
as answering the question “Who does what to whom?”
in a sentence. This task is not usually characterized as an
instance of relation extraction, but it is easily accommo-
dated by our formalisms. As the task is defined differ-
ently for different datasets, we will focus on the task as it
is described for the CoNLL 2005 shared task (Carreras
and Màrquez, 2005b) for use with the OntoNotes corpus
(Weischedel et al., 2011).

In theCoNLL2005 shared task, all predicates aremarked
in the input, making SRL more a question of “Who does
𝑝 to whom?” for some known predicate 𝑝. Given each
𝑝 and its context in a sentence, models must identify all
arguments to that predicate, each fulfilling a “role”. In
general, each of these is a span, but a built-in notion of
continuation spans does allow for discontiguous argu-
ments. In our framework, it is natural to have one relation
for each predicate encompassing all of that predicate’s ar-
guments. As might be expected, the shared task’s notion
of roles coincides exactly with ours.

The CoNLL 2005 shared task specifies a system of
linguistically-motivated constraints basedupon roles. Roles

68

are characterized as being either core roles or non-core
roles. For each predicate, each core role can only occur up
to one time, while non-core roles can occur any number
of times. Additionally, the requirement that each relation
coincide one-to-one with a predicate could be taken as a
constraint.

The shared task published a script to use for evaluation.
The metric used is a per-argument 𝐹1-score, allowing
partial credit for relations based on the number of correct
arguments, but not assigning partial credit for partially-
overlapping argument spans.

Models for this dataset tend to be span extraction mod-
els at their core. Since predicates are known a priori, and
since each predicate correspondswith one relation, a com-
mon approach is to use a sentence with a single marked
predicate as input to a span extraction model, putting
all identified spans together with the predicate into one
relation. On top of this premise, individual architectures
distinguish themselves largely by how they handle the
task’s constraints. For example, He et al. (2017a) use A∗

search during decoding time to find span sets which con-
form with the constraints, while Papay et al. (2022) use
a CRF variant to enforce constraints during both training

69

and decoding.

2.4.3 GENIA event extraction

GENIA (Kim et al., 2003) is a corpus of biomedical text,
annotated with a number of structures. In 2009, a shared
task for event extractionwas announced using this corpus
(Kim et al., 2009). This task involves identifying descrip-
tions of biomedical events involving proteins, such as
instances of gene expression or protein phosphorylation.
Each event involves at least one protein, but may involve
additional proteins, mentions of binding sites, or other
events. All protein names are marked in the input, but
everything else must be predicted by models.

Despite the differing terminology, GENIA’s events can
be mapped directly to our notion of relations. Proteins
and binding sites are all realized as text spans, and the
various types of events can be represented by multiple re-
lation types. GENIA defines different types of arguments,
a notion which matches our notion of roles.

Similarly to SRL with OntoNotes, GENIA enforces con-
straints based on how often different roles can occur in
different events. Some roles are required exactly once in

70

an event, some are optional, and others may occur any
number of times in a single event. Interestingly, all events
are “triggered” by mentions of their name: in our ter-
minology, each relation type has a corresponding entity
type, and there must be a one-to-one mapping between
those entities and relations.

Perhaps the most structurally interesting aspect of GE-
NIA is the presence of higher-order relations – relations
can participate as entities in other relations. Such struc-
tures are allowed by our formalisms, but are somewhat
rare “in the wild.” Nonetheless, due to GENIA’s one-to-
one mapping between relations and trigger spans, the
presence of these higher-order relations does not lead to
too many complications, as any higher-order relation in-
volving another relation as an entity can be re-interpreted
as a first-order relation involving that other relation’s trig-
ger span.

The 2009 event extraction shared task defines a number
of evaluationmetrics for the task. All of these are relation-
level 𝐹1-scores, but differ in their assignment of partial
credit. While a strict evaluation mode requires relations
that match exactly, recursively checking equality of sub-
relations, other modes relax this recursive checking and

71

assign partial credit for partial span overlaps.
Due to the complexity of GENIA’s possible relation

structures, most approaches to this task tend to be pipelines,
which can decompose the complex structured prediction
task into manageable subtasks. For example, Buyko et al.
(2009) use a pipeline involving dependency parsing, trig-
ger span identification, and a number of graph pruning
steps to arrive at the final relations. Trieu et al. (2020) is a
more modern approach, using deep neural networks for
individual subtasks, and even training these components
jointly. However, the inference procedure still largely re-
sembles a pipeline model, with the predictions of early
subtasks being used as input for latter subtasks.

72

Chapter 3

Formal specification of
relation extraction tasks

In our quest towards task-general relation extraction
models, it might seem desirable to seek model archi-

tectures which are “agnostic” to the specifics of an indi-
vidual task. After all, we might expect a model which
has no knowledge of any task-specific properties to gen-
eralize well across tasks which differ in those properties.
This hypothesis, though intuitive, does not work well in
practice. From experience, we find that the best models
for different relation extraction tasks often achieve their
high performance by leveraging a priori knowledge about
their tasks. The lack of generalizability in such models is
precisely a consequence of this reliance on task-specific
properties.

73

Thus, if models can’t simply ignore task-specific prop-
erties, but at the same time a reliance on these properties
leads to a lack of generality, a fertile ground for compro-
mise becomes apparent in formal description of tasks’
properties and models’ assumptions. If we can formally
describe the structural properties of many diverse rela-
tion extraction tasks using the same descriptive language,
we can formalize what exactly makes tasks different, and
when exactly these differences influence the applicability
of model architectures. Furthermore, such formal de-
scriptions can allow architectures to adapt themselves to
a particular task, automatically selecting hyperparame-
ters to match the properties of the task at hand.

This chapter will study the formal specification of re-
lation extraction tasks, and how such specification can
facilitate the development of task-general relation extrac-
tion architectures. In order to investigate in this direction,
and as a concrete contribution in its own right, we de-
velop DeRE (Declarative Relation Extraction), a software
framework for specifying the structures of relation ex-
traction tasks, and developing architectures which can
account for tasks’ structures. With DeRE, we hope to en-
courage further research into task-general architectures

74

by providing a framework which separates task-specific
frontends from task-general backends.

DeRE enables users to

• specify (novel or established) relation extraction
tasks in terms of their structural properties and
assumptions in the frontend

• develop general architectures for relation extraction,
capable of instantiating models for specific tasks
based on the specification of those tasks’ structures
in the backend, and

• instantiate, train, and evaluate models for specific
relation extraction tasks.

DeRE achieves this by providing (a) a generalmechanism
to declaratively specify relation extraction tasks, and (b)
a shared processing framework that decouples frontend
and backend. For the cases where architectures do gener-
alize well, this allows users to easily select architectures
and tasks independently, disentangling the questions of
“What task do I have?” and “which model should I use?”.
Furthermore, when the generality of architectures isn’t
known, DeRE provides an attractive testbed for investi-
gating the generality of architectures, enabling users to

75

Figure 3.1: Example formalizations of two different tasks
in terms of frames, slots, and spans.

76

painlessly experiment with novel tasks, novel architec-
tures, and novel combinations therebetween.

The declarative specification of a task (which we call
a schema) describes a task’s structure in terms of frames
and spans, concepts which map almost directly to the no-
tions of relations and spans as introduced in Section 2.2.
Figure 3.1 shows the general structure of frames, and
two concrete instantiations for specific relation extraction
tasks, BioNLP event extraction and aspect-based senti-
ment analysis. Each frame is anchored (triggered) by a
span, e.g. a BioNLP event anchor, such as “regulation” or
“involves”, or a subjective evaluating phrase like “very
stylish.”

Frames hold a task-specific number of typed slots, filled
by relation arguments. The frames for ABSA have a slot
filled by the target (aspect) of the sentiment while the
frames for the BioNLP regulation event hold a Theme
slot and an optional Cause slot. While anchors are always
textual spans, slots can be filled by either spans or frames,
depending on the task specification. We argue that this
simple setup can model an interesting subset of relation
extraction tasks. Note that the framework poses no theo-
retical restrictions to the window from which frames are

77

extracted. Thus, it can model sentence-level, document-
level as well as multi-document tasks.

3.1 Related Work

The framework we present here is quite general, and
accommodates many common relation extraction tasks,
such as the BioNLP shared task (Kim et al., 2009), se-
mantic role labeling (Das et al., 2014), and (temporal)
slot filling (Surdeanu, 2013). However, as is the trend
for relation extraction tasks, all systems we are aware of
for solving these tasks are tailored to specific scenarios
(Angeli et al., 2016; Adel et al., 2016, i.a.). As a result, it is
not straightforward to apply them to other use cases. In
contrast, our framework is designed to enable the creation
of task- and domain-general architectures.

Clarke et al. (2012) develop an NLP component man-
ager which combines several existing NLP tools in a
pipeline. Similarly, Curran (2003) aims at a general NLP
infrastructure but only reports implementations of non-
relational sequence-tagging tasks. Examples of the few
available toolkits which are intended to provide users
with the possibility of automatically extracting informa-

78

tion from text data are Jet (Java Extraction Toolkit), GATE
(General Architecture for Text Engineering, Cunningham
et al., 2013), UIMA (Unstructured Information Manage-
ment Architecture, Ferrucci and Lally, 2004), FACTO-
RIE McCallum et al. (2009) and Stanbol, which inte-
grates other NLP frameworks, e.g. OpenNLP Morton
et al. (2005).

Stanbol and OpenNLP, however, focus on tagging tasks
and do not provide tools for relation extraction. FACTO-
RIE is a general approach to formulate factor graphs for
arbitrary tasks. Our framework allows arbitrary model
paradigms to be used as backends, and is focused on
relation extraction, which enables the abstraction layers
introduced earlier. Jet, on the other hand, is an informa-
tion extraction engine developed specifically for the ACE
task specification.

GATE is most similar to our framework in scope. It
offers both a framework for programmers and an en-
vironment for language engineers and computational
linguists. However, it is a very general framework, and
working with it requires both domain and machine learn-
ing knowledge. In contrast, our framework provides end
users with an interface for training models on new tasks

79

without requiring any specific knowledge.

3.2 Framework design

As a software framework, DeRE is a useful tool both for
those wishing to develop new architectures, and to those
wishing to use existing architectures for a specific task.
For researchers and model developers, DeRE acts as a
convenient library for quickly developing task-general re-
lation extraction models. It provides a convenient API for
loading and saving corpora, representing and manipulat-
ing frames and spans, and evaluating model predictions.
Furthermore, we provide tools for reading and parsing
task schemata, so that developers can easily write archi-
tectures which automatically adapt to tasks’ structures.
For end-users, DeRE makes it straightforward to apply
architectures to new or existing tasks. As long as a user
can specify the task’s structure as a DeRE task schema,
they can apply any backend architecture they would like
to the task with no additional programming, andwithout
any knowledge of model internals.

80

Frontend: Backend:

Task schema
XML

Annotation Data
(BRAT/XML)

Text Data

XML schema

basis for

annotates

defines Baseline model Configuration

⋮

Other model
e.g. graphical model,
deep learning model

Configuration

High-level configuration

Figure 3.2: Structure of the DeRE framework.

3.2.1 Framework structure

Figure 3.2 illustrates the structure of the DeRE frame-
work. It is composed of two main components: The front-
end comprises the user specification of the task (“task
schema”), including the types of spans and entities to
be identified, and the possible relations that can exist
between them. It manages reading corpora and annota-
tion files and provides an interface for users. The backend
hosts the models that make actual predictions for spans,
frames, and slots, given the task schema, and their con-
figurations. DeRE backends follow a modular design,

81

wherein different backends, using different methods for
prediction, can be used interchangeably with minimal
changes to the frontend.

3.2.2 Task schemata

A task schema is DeRE’s formal specification of the struc-
tural properties of a task. One goal of DeRE’s design
is to concentrate all specifics about particular tasks into
these schemata – instead of incorporating task-specific
assumptions directly into model architecture code, task-
general architectures can be given a task schema as input,
and adapt themselves dynamically to the structure of a
specific task.

A task schema specifies possible relation structures
in terms of frames, spans, and slots. These concepts map
almost directly to the notions of relations, spans, and roles
respectively, as introduced in 2.2. Each frame has some
number of slots, as defined by its frame type, and each of
these slots can be filled by zero or more spans or other

82

<deREschema name="BioNLP-ST 2009" ver="0.01"
↪ auth="Klinger">

<spantypes>

<span name="Gene_expression" anchors=

↪ "Gene_expression" predict="True"/>
<span name="Binding" anchors="Binding"

↪ predict="True"/>
</spantypes>
<frames>

<frame name="Gene_expression">
<slot name="Theme" types="Protein"

↪ cardinality="1"/>
</frame>
<frame name="Binding">

<slot name="Theme" types="Protein"
↪ mincardinality="0"/>

</frame>
</frames>

</deREschema>

Figure 3.3: A small but complete task schema for part of
the BioNLP shared task. Three span types are
specified: Protein, Gene_expression, and
Binding. The latter two anchor frames of the
same name. Both frames possess a single slot
Theme which can be filled by Protein spans.
Gene_expression frames always have exactly
one Theme, while Binding frames may have
zero or more Themes.

83

frames. A task schema specifies:

• What frame types are present in the task
• What span types are present in the task
• Which spans and frames are present in the input,

and which must be predicted
• What slots each frame type has
• For each slot, what types of spans of frames can fill

it
• For each slot, how many spans or frames can fill it

Concretely, task schemata are written as XML files.
Figure 3.3 gives an example task schema file, for a subset
of the BioNLP shared task (Kim et al., 2009).

As task schemata allow users to specify which types
of relation structures are permitted or forbidden for a
particular relation extraction task, they can be viewed
as a specification language for task-specific constraints.
However, while we define constraints very broadly in
Section 2.2.5, task schemata are limited in their expressiv-
ity to type agreement and cardinality constraints within
individual relations. This leaves unrepresentable many
constraints for real tasks, such as the constraint that each

84

TACRED document contain at most one relation 1, or con-
straints which recquire some roles to co-occur with other
roles within OnotoNotes relations. Limiting expressibil-
ity was a conscious design decision – the more expressive
we make task schemata, the more difficult it becomes
to write a task-general architecture capable of respect-
ing those task schemata. In the end, we chose type and
cardinality constraints as these are particularly common
constraint types across tasks, and are simple enough that
many approaches to modeling should be able to enforce
them.

3.2.3 Data files

Annotated data, needed for trainingmodels, are provided
to DeRE as annotation files. We currently support anno-
tations in the brat (Stenetorp et al., 2012) format, which
represents spans and relations in separate files from the
text in terms of character offsets. brat’s formalismsmatch
quite closely with those of DeRE, allowing the represen-

1In fact, under the default known-entities setting for TACRED, this
constraint can be enforced by anchoring the relation frames to
one of the given arguments, but such an approach would not
work when entities must also be predicted.

85

tation of typed spans, and anchored relations between
arbitrarily many spans. cf. Figure 3.4 shows an example
of such a brat annotation file.

T1 Protein 1650 1655 IP-10

T2 Protein 951 955 PU.1

T3 Protein 1665 1670 ISG54

T4 Protein 978 992 CSF receptor

T5 Binding 932 937 binds

T6 Gene_expression 1634 1644 expression

E1 Binding:T5 Theme:T2 Theme2:T4

E2 Gene_expression:T6 Theme:T1

E3 Gene_expression:T6 Theme:T3

Figure 3.4: An example annotation in brat format, fol-
lowing the task specification from Figure 3.3.
The text-bound annotations T are the span an-
notations, the event annotations E define our
frames.

3.3 Proof-of-concept system

As a proof of concept, we implement a simple backend
architecture comprising a pipeline of traditional NLP

86

formalizations: First, spans relevant for the task are ex-
tracted. Then, a classifier decides for each pair of relevant
spans which slots of which frame they are likely to fill.
Finally, a heuristic decoding step compiles the results into
frames. Figure 3.5 illustrates this pipeline. The proof-of-
concept system only supports non-recursive structures:
slots of frames cannot be filled by other frames, but must
be filled by spans – i.e., the right-hand BioNLP frame
from Figure 3.1 could not be predicted in this implemen-
tation. Note that this is only a proof-of-concept baseline,
and that the framework is not limited to pipeline models.
Models which can cope with recursive structures, as well
as those which predict entities and relations jointly, can
also be implemented as DeRE backends.

3.3.1 Span extraction

Wecast the span extraction problemas a BIO-style sequence-
labeling task that predicts span boundaries. To model
overlapping spans, we train one model per span type
which outputs all spans of that type. Our proof-of-concept
system uses non-neural conditional random fields (Laf-
ferty et al., 2001). The feature set consists of the lower-

87

(1)

(2)

... migrating B2 complex contains both p50 and p55 ...
Localization Protein Protein

theme
theme

(3)

Localization
: migrating

theme: p50
theme: p55

−−−−→

Localization
: migrating

theme: p50

Localization
: migrating

theme: p55

Figure 3.5: Proof-of-concept pipeline: span identification
(1), slot classification (2), and decoding into
frames (3). : frame anchors (triggers)

cased words, their stems, their shape (orthographic case,
digits, punctuation), and a flag indicating whether the
word is included in a task-specific gazetteer. All features
(except the last one) are applicable to any NLP task. The
gazetteer feature is based on a simple lexicon of label-
specific words (e.g. positive words for detecting positive
spans for sentiment analysis) and can be instantiated
without any technical knowledge.

88

3.3.2 Slot classification

Once the spans are identified, the slot classifier is used to
predict which slots of which frame they are likely to fill.
We break this question down to a classification task at the
level of span pairs – one anchor span representing a frame,
and another span representing a potential argument. The
search space is restricted to those pairs with compatible
types according to the schema.

Formally, the classifier takes as input the set 𝑆 of all
spans identified previously, along with a task schema.
For each pair (𝑠𝑖, 𝑠𝑗) ∈ 𝑆2 of spans following the task
schema, our classifier produces as output either a single
relation label 𝑟𝑖𝑗, or NR (no relation)2 if the two spans are
unrelated. Conceptually, two spans 𝑠𝑖 and 𝑠𝑗 are related
iff 𝑠𝑖 anchors a frame, and 𝑠𝑗 fills a slot in that same frame.
Relation labels 𝑟𝑖𝑗 are pairs (𝑓𝑖, 𝑙𝑗), where 𝑓𝑖 is the frame
type anchored by 𝑠𝑖 and 𝑙𝑗 is the slot type in 𝑓𝑖 that 𝑠𝑗
fills. This enables us to model, e.g. in the task schema in
Figure 3.3, Binding.Theme and Gene_expression.Theme
as separate relations. A linear support vector machine
is used to predict the most likely relation label (or NR).

2We generate negative examples automatically.

89

Users can enable subsampling of negative examples.
As outlined in the introduction, the features we take

into account are included with the aim of being task-
agnostic. Intra-span features are types of identified spans
and the bag of words in both spans. Inter-span features
take into account context. We use the bag of words of to-
kens between the spans, and of the tokens on the shortest
path connecting the spans in a parsed dependency tree,
which we assume to accurately capture the relationship
expressed by the slot that links the two spans. Since spans
can contain multiple tokens, there can be several shortest
paths between tokens from the two spans. Under the as-
sumption that tokens in a span are closely related to each
other, we select the shortest of these paths. In addition,
we also use a bag of bigrams of alternating label-token
sequence on that same path. Finally, we measure the
length of the shortest path and the token distance.

3.3.3 Decoding

Once the slot classifier identifies all related span pairs,
the decoding step generates frames. Pairs of spans (𝑠𝑖, 𝑠𝑗)
that stand in a relation 𝑟 are first partitioned into equiv-

90

alence classes 𝐶ℎ according to their anchor span (i.e.,
(𝑠𝑖, 𝑠𝑗) ∈ 𝐶𝑖). It would be possible to produce one frame
for each equivalence class 𝐶ℎ, anchored by the common
anchoring span 𝑠ℎ, and with slots filled according to each
span pair’s relation label 𝑟. However, as equivalence
classes can be arbitrarily large, this would allow for each
slot to be filled by arbitrarily many spans (as illustrated in
the bottom-left of Figure 3.5). As the task schema might
impose cardinality constraints, further processing is re-
quired to ensure that all produced frames are consistent
with the task schema. For each equivalence class 𝐶ℎ, we
consider all possible legal frames – i.e., all frames that are
consistent with the task schema andwhose slots are filled
according to some subset of 𝐶ℎ. Of these legal frames, we
retain all maximally-filled legal frames (see bottom-right of
Figure 3.5).

3.3.4 Evaluation and results

To demonstrate the feasibility of our proof of concept, we
report results with this configuration on the 2009 BioNLP
shared task, for which we re-use the original evaluation
machinery. The evaluation calculates the 𝐹1 scores for

91

the individual frames (events in the BioNLP task) us-
ing a soft matching for anchor boundaries and approxi-
mate recursive matching. Table 3.1 provides the results
of our simple system on that task. Due to the restriction
of our proof of concept to non-recursive structures (cf.
Section 3.3), we only report on the BioNLP event types
where all slots are filled by spans. In comparison to the
second-ranked system, which also reports results on dev
(Buyko et al., 2009), our performance is slightly lower
(1 percentage point less for protein catabolism, 13pp less
for gene expression and phosphorylation, but 11pp more
for localization). This confirms the general usability of
our general method.

Due toDeRE’s separation of frontend and backend, this
same architecture can be directly applied to other tasks –
table 3.2 provides the results of applying it to the USAGE
corpus for aspect based sentiment analysis (Klinger and
Cimiano, 2014), with 10-fold cross validation on the En-
glish subset. In comparison to previous results, our num-
bers are very low. Previous work showed that joint infer-
ence had a large positive effect on performance (Klinger
and Cimiano, 2013; Yang and Cardie, 2013), an approach
not taken by our proof-of-concept system. However, this

92

Event Class Precision Recall F1

Gene_expression 68.12 57.30 62.25
Transcription 70.59 14.63 24.24
Protein_catabolism 64.00 76.19 69.57
Phosphorylation 65.85 57.45 61.36
Localization 78.57 41.51 54.32

SVT-TOTAL 68.46 50.27 57.97

Table 3.1: Performance of the proof-of-concept system for
biomedical relation extraction (BioNLP’09 dev
set).

proof-of-concept implementation of the same model al-
ready shows the reusability of our framework by only
changing the task schema specification. It motivates and
enables further research on reusable models across tasks
with different needs.

3.3.5 Technical details and availability

The framework is implemented in Python, following an
object-oriented design for frontend and backends to sup-
port easy interchangeability of components. The choice
of Python will also help with future integration of neu-
ral network models. For the proof-of-concept backend,

93

Sentiment Class Precision Recall F1

Positive 41.07 24.19 28.57
Negative 26.68 7.15 11.00
Neutral 5.83 4.50 5.08

Table 3.2: Performance of the proof-of-concept system for
aspect based sentiment analysis (10-fold cross-
validation on USAGE corpus).

we use scikit-learn for feature extraction and training Pe-
dregosa et al. (2011) with crfsuite and liblinear. Tokeniza-
tion and stemming is done with NLTK Loper and Bird
(2002), dependency features are extracted with spacy
Honnibal and Johnson (2015) and dependency graphs
are stored and processed using NetworkX Schult (2008).
The code is available under the Apache 2.0 License.3

3.4 Conclusion

This chapter introduced DeRE, a general framework for
doing task-general relation extraction, built on a notion
of formal specification of tasks. DeRE facilitates the de-

3http://www.ims.uni-stuttgart.de/forschung/ressourcen/
werkzeuge/DeRE.en.html

94

http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/DeRE.en.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/DeRE.en.html

velopment of task-general models, and makes it easy to
apply existing models to new tasks.

Fromamore theoretical perspective, DeRE acts as demon-
stration of the utility of formal task specifications for task
generality. By drawing a clear dividing line between a
task-general backend and a task-specific frontend, DeRE
allows architectures to rely on task-specific priors in away
that does not hinder those architectures’ generalizability.
By declaring task structures in a machine-readable way,
we can concentrate all of our task-specific assumptions
into our formal task specifications, leaving our model
code task-general. In fact, we use a similar pattern, al-
beit with a different specification language, for defining
task-general architectures in Chapter 5.

While formal specification of tasks allows for more gen-
eral architectures which can adapt themselves to the task
at hand, DeRE-like approaches only solve some of the
obstacles in the way of fully task-general architectures.
Many architectures which work well for some tasks are
fundamentally incompatible with the structures of oth-
ers, and no amount of formal specification will fix that.
While meta-architectures can be devised to pick the best
applicable architecture for a task at hand, the vast space

95

of potential task structures makes it difficult for such a
meta-architecture to cover a significant subset of tasks.
Furthermore, the approach to task-generality presented
in this chapter only accounts for those task properties
which are formally specifiable and specified. In the case
where an architecture’s applicability is dictated by prop-
erties not accounted for in a task schema, we are forced
to fall back to good old fashioned informal reasoning
and empirical trial and error. Nonetheless, DeRE pro-
vides an elegant framework for developing architectures
which can generalize to some extent, and applying those
architectures to tasks within their range or applicability.

96

Chapter 4

Task-generality for span
extraction

As span extraction models form critical components
of most relation extraction models, identifying task-

general architectures for span extraction is an important
step towards creating task-general relation extraction ar-
chitectures. Interestingly, while task-generality for full
relation extraction is complicated by the vast space of task
structures and corresponding structure-specific assump-
tions made by common architectures, the situation is
quite a bit simpler for span extraction. While there is still
a rich variety of task-specific properties in span extraction
tasks, most of these properties don’t directly conflict with
the hard constraints and assumptions employed by com-
mon span extraction architectures, and therefore don’t

97

limit the fundamental applicability of architectures to
tasks. In fact, when deciding if an architecture is applica-
ble for a task, the only two questions that usually need
to be answered are “Are nesting or overlapping spans
allowed?” and “Can spans be predicted independently
of one another?”

This chapter will focus on the cases where the answers
to these questions are “No.” and “Not really, butwemight
try to anyway.” 1 This limitation is general enough to
admit a wide range of tasks and datasets, while still spe-
cific enough to allow us to make direct comparisons be-
tween different architectures and between different tasks.
Within this space, while all of our architectures will be
applicable to all tasks, we certainly don’t expect them to be
equally performant: Certain architectures might be better-
suited to certain tasks, not due to any hard-constraints or
task-specific assumptions, but rather to subtler interac-
tions between the properties of the data distribution and

1More concretely, it is usually never ideal to treat spans as indepen-
dent of one another, but we will be focusing on tasks where doing
so doesn’t lose us too much. In fact, we will investigate archi-
tectures which do enforce some types of dependencies between
spans in a document, but the types of dependencies we will be
able to represent are rather limited (in general, only between
directly abutting spans).

98

the inductive biases of the architecture.
This chapter will comprise two sections. In Section 4.1,

we investigate corpus-generality for quotation extraction.
We find that designing architectures capable of generaliz-
ing well across different corpora faces many of the same
challenges as are seen in task-generality. We present an
architecture capable of generalizing well across different
corpora, languages, and modalities, and evaluate its per-
formance across four corpora. In Section 4.2, we discuss
a more systematic study of different architectures’ per-
formance across distinct tasks. We use performance pre-
diction to analyze which architecture components work
well for what kinds of tasks, and which generalize well
across tasks.

4.1 Corpus- and language-general
quotation detection

Quotation is a general notion that covers different kinds
of direct and indirect speech, thought, and writing in text
(Semino and Short, 2004). Quotations are a prominent
linguistic device used to express claims, assessments, or

99

attitudes attributed to speakers. Consequently, the analy-
sis of quotations is important in many areas of computa-
tional linguistics and digital humanities, providing evi-
dence for speaker relationships (Elson et al., 2010; Agar-
wal et al., 2012), inter-speaker sentiment (Nalisnick and
Baird, 2013), politeness (Faruqui and Pado, 2012), and
narrative structure (Jannidis et al., 2018).

As is often the case with semantic phenomena, man-
ual annotation of quotations has shown to be slow and
resource-intensive, in particular when undertaken in con-
junction with the annotation of speakers and information
quality (Brunner, 2013; Pareti, 2015). This provides the
rationale for automatic quotation extraction methods. As
quotations are generally contiguous spans of text, or are at
least made up of such spans, it is natural to conceptualize
quotation extraction as a span extraction task.

Not surprisingly, existing corpora differ substantially
across a number of relevant dimensions, including text
genre, annotation scheme, and theoretical assumptions.
For example, Pareti et al. (2013) focus exclusively on
newspaper text and focus on developing a uniform an-
notation schema that captures the shared properties of
all kinds of annotations. Thus, even though this corpus

100

contains direct, indirect, and mixed quotations, these are
not marked as instances of their specific subtypes. In
addition, each quote is assumed to be introduced by a
cue:

(1) Hillary Clinton on Saturday
cue
acknowledged

quote
the

state of the economy is good.

This assumption is generally true for newspaper text, and
simplifies the task of quotation detection.

The situation is rather different in the literary texts
considered by Semino and Short (2004). Cues are much
more varied, and are sometimes omitted entirely, such as
in this exchange from Dickens’ Christmas Carol:

(2)
quote
“Much!” – Marley’s voice, no doubt about it.
quote
“Who are you?”
quote
“Ask me who I was.”

The study follows a generally more differentiating ap-
proach. It develops and annotates a rich typology of
different subtypes of quotations to distinguish, e.g., di-
rect from indirect quotations, and speech from thoughts
from writing.

101

For the most part, existing models for quotation detec-
tion were developed for one specific corpus. This leads
to two problems:

1. The models inherit the corpora’s structural and the-
oretical assumptions, such as the presence of a cue
assumed by models for the Pareti et al. (2013) cor-
pus.

2. The models typically include domain-specific fea-
tures and knowledge sources that happened to be
available from the corpus, such as lists of likely cue
verbs or syntactic realizations of quotations.

In this section, we approach the question of corpus-
generality for quotation detection in much the same way
that we deal with task-generality elsewhere this disserta-
tion. We find that corpus generality acts as a microcosm
for the greater problem of task generality, and that de-
signing a corpus-general architecture for a specific task
faces many of the same challenges as are faced when de-
veloping task-general models. We present a neural model
architecture for automatic quotation detection that makes
as few assumptions as possible about the corpus to be

102

modeled, but is still expressive enough to deal with the
challenges inherent in quotation detection.

4.1.1 Related work: datasets and models

We now review the state of the art in automatic quotation
annotation, describing the three major quotation corpora
for English and German and the corresponding models.
We exclude corpora that focus on one specific quotation
subtype such as the Columbia Speech Attribution corpus
(Elson and McKeown, 2010) which only covers direct
speech.

PARC Dataset

Dataset. The Penn Attribution Relation Corpus (Pareti,
2015), version 3 (parc3) is a subset of the Penn Treebank,
annotated with quotations and attribution relations. It
consists of English newswire text from the Wall Street
Journal. Each attribution relation consists of a cue, op-
tionally a source (speaker), and content (quotation span),
all marked as text spans. As part of the Penn Treebank,
parc3 provides manually annotated tokenization, POS
tags, lemmas, and constituency parses.

103

Quotation spans are not labeled with more specific
types, but parc3 distinguishes informally (based on the
surface form) between direct quotations (starting and
ending with quotation marks), indirect quotations (with-
out any quotation marks), and mixed quotations (every-
thing else).

Pareti model. Pareti (2015), an extension of Pareti
et al. (2013), presents a pipeline architecture for quotation
annotation. It first applies a 𝑘-NN classifier to identify
quotation cues within the corpus. Then, a linear-chain
conditional random field (CRF) is used to identify quota-
tion spans in the vicinity of each cue. Both components
of the Pareti model rely on a corpus-specific feature set,
including a list of known roles, organizations, and titles,
and handcrafted features sensitive to punctuation con-
ventions in English newswire text.

Scheiblemodel. Scheible et al. (2016) retain the pipeline
architecture of Pareti (2015) and its feature set, but re-
place the components. Cue annotation is performed with
an averaged perceptron. More importantly, they replace
quotation annotation proper with a sampling-based pro-
cedure: a perceptron samples tokens as likely span bound-
aries, which are then combined into complete quotation

104

spans, using a semi-Markov model.

STOP Dataset

Semino and Short (2004) presents a corpus-based on-
tology of quotations in English text. It introduces two
dimensions: (a), speech vs. thought vs. writing; and
(b), direct vs. indirect vs. free indirect vs. reported,
yielding a Cartesian product of twelve quotation sub-
classes. These are used to annotate the Speech, Thought,
and Writing Presentation corpus (stop). It comprises 120
sections, split evenly across three genres (fiction, newspa-
per, and biographies), of about 2,000 words each (Total
size: 250,000 tokens; 8,000 quotations). The corpus has
no linguistic annotation: the only features available are
words’ surface forms. To our knowledge, there are no
other published models for this dataset.

Redewiedergabe Dataset

Dataset The Redewiedergabe (’reported speech’) corpus
(rwg) (Brunner, 2013) is a corpus of German narrative
text, comprising thirteen public-domain German narra-
tives from between 1787 and 1913. The quotation anno-

105

tations in rwg adopt the scheme by Semino and Short
(2004) and distinguish direct, indirect, free indirect, and
reported variants of speech, thought, and writing. The
total size of the corpus is 57,000 tokens, and 17,000 quo-
tation spans.

Unlike stop, rwg contains some linguistic information,
namely POS tags, lemmas, and morphological features
(case, number, gender). However, this information is not
manually annotated, but is obtained automatically using
various NLP systems.

Models. Brunner (2013) proposes two models for quo-
tation annotation on rwg. Both models work at the sen-
tence level and predict only the presence of absence of
quotations in sentences, and not the quotations’ exact
spans (even though this information is annotated). The
first model is rule-based (Brunner RB). It uses a set of
handcrafted rules to identify direct, indirect, reported,
and free indirect quotations. The secondmodel (Brunner
ML) is a simple classification model based on random
forests.

106

4.1.2 Neural Quotation Detection (NQD)

We now define a neural architecture, NQD, with the goal
of modeling the quotations in all three corpora described
in Section 4.1.1. We design our model to leverage the
commonalities across datasets, while not depending on
the features of any dataset in particular. As all datasets in-
volve long quotation spans with long-distance dependen-
cies, an LSTM-based approach was natural, given such
models’ ability to capture very long-distance dependen-
cies of up to 200 tokens (Khandelwal et al., 2018). Con-
versely, given the structural differences between corpora,
we found we could not benefit from a pipeline model
like those employed by Pareti (2015) and Scheible et al.
(2016), and thus predict quotations directly without first
looking for cues.

NQD frames quotation prediction as token classifica-
tion, classifying each token as either beginning a quota-
tion (begin), ending a quotation (end), or neither (neither).
Quotation spans then consist of all tokens starting with a
begin tag, up to (but not including) the next end or begin
tag, or the end of sequence. This model is not limited
to the sentence level: it is able to make predictions for
a whole document and in this manner can capture very

107

long quotation spans.

The input texts are represented as a sequence of tokens,
where each token is a bag of features. Each feature value
is represented as an 𝑛-dimensional continuous vector,
and each token is represented as the sum of these vec-
tors. This approach to feature representation allows our
model to workwith corpora with arbitrary types of token-
level features. In the simplest case, when only raw text is
present in the corpus, each token is given a single feature
for that token’s surface form. If other token-level features
are present, such as POS-tags, lemmas, or even parse tree
information, these can be incorporated as additional fea-
ture vectors, without requiring any changes to the model
architecture. Feature vectors can also be initialized to pre-
trained representations (e.g. word embeddings) when
these are available, or initialized randomly and learned
when they are not. Section 4.1.1 describes in detail which
features are used for the corpora we consider.

NQD uses sequence-to-sequence models to classify
each token as either beginning a quotation span (begin),
ending a quotation span (end), or neither of the two
(neither). This sequence-to-sequence model comprises a
2-layer bi-LSTM network, with the outputs of the sec-

108

“
H
el
lo

,
”

sh
e

sa
id

.

∘ ∘ ∘
∘ ∘ ∘

∘ ∘ ∘
∘ ∘ ∘

∘ ∘ ∘
∘ ∘ ∘

∘ ∘ ∘
∘ ∘ ∘

∘ ∘ ∘
∘ ∘ ∘

∘ ∘ ∘
∘ ∘ ∘

∘ ∘ ∘
∘ ∘ ∘

∘ ∘ ∘
∘ ∘ ∘

∘ ∘ ∘

+
+

+
+

+
+

+

bi
-L

ST
M

bi
-L

ST
M

bi
-L

ST
M

bi
-L

ST
M

bi
-L

ST
M

bi
-L

ST
M

bi
-L

ST
M

bi
-L

ST
M

bi
-L

ST
M

bi
-L

ST
M

bi
-L

ST
M

bi
-L

ST
M

bi
-L

ST
M

bi
-L

ST
M

be
gi
n

ne
it
he

r
ne

it
he

r
ne

it
he

r
en

d
ne

it
he

r
ne

it
he

r

Fi
gu

re
4.
1:

Th
e
N
Q
D

ar
ch

ite
ct
ur

e.
To

ke
ns

ar
e
re
pr

es
en

te
d

as
a
ba

g
of

fe
at
ur

e
em

be
dd

in
gs

,a
nd

ea
ch

to
ke

n
se

qu
en

ce
is

pr
oc

es
se

d
by

a
2-
la
ye

rb
i-

LS
TM

ne
tw

or
k,

be
fo
re

a
m
ax

-e
nt

ro
py

cl
as

si
fie

rl
ab

el
se

ac
h
to
ke

n.

109

ond bi-LSTM feeding into a 3-class softmax classifier.
Token sequences, represented as described above, are
the inputs to these sequence-to-sequence models, and
the outputs are a sequence of token labels. Figure 4.1
shows a schematic diagram of the NQD architecture. For
datasets with multiple quotation types, NQD uses a sep-
arate sequence-to-sequence model for each span type,
connecting them by weight sharing.

All code for NQD is available online at https://www.
ims.uni-stuttgart.de/en/research/resources/tools/
quote-detection/.

4.1.3 Experimental evaluation

We now train and test NQD on the three corpora and
compare against the state-of-the-art.

Experimental Setup

parc3. For parc3, we train a single classifier on the quote
content spans and ignore the cue and source spans. As
features, we use token surface forms, lemmas, POS tags,
as well as, for each token, the bags of constituents that
start with, end with, and contain it. These features are

110

https://www.ims.uni-stuttgart.de/en/research/resources/tools/quote-detection/
https://www.ims.uni-stuttgart.de/en/research/resources/tools/quote-detection/
https://www.ims.uni-stuttgart.de/en/research/resources/tools/quote-detection/

a subset of the features used by Scheible et al. (2016)
and Pareti (2015), and like these studies, we use gold
standard annotation. We initialize the features for word
surface forms with the default GloVe Wikipedia word
embeddings (Pennington et al., 2014). Our model makes
predictions on entire documents at a time. We use per-
formance on the corpus’s development set to guide early
stopping during training, andwe evaluate on the corpus’s
test set.

stop. For stop, we train four classifiers for the four
quote types (direct, indirect, free indirect, reported). We
train and evaluate our model on a per-document basis as
for parc3. We use word surface forms (and their GloVe
embeddings) as features, we used no other features in this
model. As the corpus contains no held-out development
or test sets, we used 10-fold cross validation to evaluate
our model, using 8 folds for training, 1 for development,
as 1 as for testing in each iteration.

rwg. For rwg, we adopt the same four-classifier setting
as for stop, using the word, lemma, POS, and morpholog-
ical features available. For the sake of comparability with
Brunner (2013), we train and evaluate on individual sen-
tences, as opposed to entire documents. We use 10-fold

111

Model Features Overall Direct Indirect Mixed

Rec Prec F1 Rec Prec F1 Rec Prec F1 Rec Prec F1

Pareti et al. (2013) W S D 63 80 71 88 94 91 56 78 65 60 67 63
Scheible et al. (2016) W S D 71 79 75 93 94 94 64 73 69 68 81 74
NQD W S 71 67 69 94 82 88 64 64 64 70 59 64
NQD W 61 61 61 90 84 87 53 56 54 60 54 57

Table 4.1: Results on parc3 (exact spanmatch evaluation)

cross validation again, randomly partitioning all corpus
sentences into 10 subsets. We use GloVe embeddings
pre-trained on the German Wikipedia.2

Evaluation. Previous studies on parc3 adopted an ex-
act span match setting, i.e., only those predicted spans
that exactlymatch a gold standard span count as true pos-
itives. We report precision, recall, and F1 in this setting
for parc3 and stop. For rwg, we report the sentence-level
accuracy used by Brunner (2013). In this mode, we train
and predict with our model as before, but for evaluation
we just record whether the model predicts the presence
of a quotation type in a sentence.

112

Model Features Overall Direct Indirect Free Indirect Reported

Rec Prec F1 Rec Prec F1 Rec Prec F1 Rec Prec F1 Rec Prec F1

NQD W 51 66 57 78 83 80 33 49 40 01 04 01 46 58 51

Table 4.2: Results on stop (exact span match evaluation)

Model Features Overall Direct Indirect Free Indirect Reported

Rec Prec F1 Rec Prec F1 Rec Prec F1 Rec Prec F1 Rec Prec F1

Brunner (2013) RB W S 71 67 69 87 81 84 62 81 71 44 24 31 64 51 57
Brunner (2013) ML W S 63 77 69 85 88 87 47 62 53 29 63 40 45 56 50
NQD W S 60 78 68 77 86 82 52 69 60 31 68 42 34 56 43
NQD W 59 73 65 77 83 80 40 69 50 14 62 23 41 50 45

Table 4.3: Results on rwg (sentence-level accuracy evalu-
ation)

Results

parc3. The results in Table 4.1 show that NQD cannot
beat the performance of Scheible et al. (2016), but does
almost as well as Pareti et al. (2013). Given that our
model is substantially simpler than either of these two
(both include a special cue classifier, dictionaries, etc.),
we see this as a success. Our model is competitive with
the Scheible et al. model with regard to recall, but shows
subpar precision for all quotation types, indicating a re-
mainingweakness in the input encoding: for direct quota-

2Available from deepset at https://deepset.ai/german-word-
embeddings

113

https://deepset.ai/german-word-embeddings
https://deepset.ai/german-word-embeddings

tions, quote characters should provide strong indicators
for quotation boundaries.

Note that these results, as well as the earlier studies
(Pareti et al., 2013; Scheible et al., 2016), use unrealistic
gold standard features. Therefore, we ran a second ver-
sion of NQD using only word features, but no tags or
structural information. The model is clearly worse, but
still surprisingly good at 61% F1. Not surprisingly, we
see the highest drop for indirect quotations, which are
most sensitive to syntactic structure.

STOP. To our knowledge, the results in Table 4.2 are
the first modeling results on stop. In comparison to parc3,
the results are noticeably lower. It is still the case that
direct quotations are easiest to find, but their F1 is some-
what lower than in parc3. Indirect quotations are much
more difficult, and free indirect quotations essentially
impossible. This involves multiple factors: (a) stop is sig-
nificantly smaller, but more varied, than parc3, providing
sparser training data; (b) stop covers a wider variety of
quotation types, some of these are intrinsically difficult
to model – in particular free indirect quotations (McHale,
2009).

RWG. The results in Table 4.3 show a picture that is

114

overall similar to parc3:3 NQD does not outperform the
state-of-the-art, but approximates it closely despite the
lack of corpus-specific tuning. As in stop, we see the
lowest results for free indirect quotations, showing that
this class is generally hard to classify. In general, even
though this resource’s size and annotation are similar to
stop, we see significantly higher numbers. This is mostly
due to the different evaluation we use for rwg to compare
to previous work: detecting the presence of quotes is
easier than identifying their spans.

On rwg, we also run a basic NQD with only word form
information. With this corpus and evaluation, this results
in a drop of merely 3 points F1 – due to losses in the
indirect and free indirect categories – which bolsters the
potential of this configuration.

4.1.4 Error analysis

To gain some insights into the failure modes of NQD, we
perform a brief qualitative analysis of the cases where
our model gave false predictions.

3Brunner (2013) does not report overall results. We compute them
as micro-averages over reported per-type results.

115

These errors can broadly be divided into three cate-
gories: cases where the model predicts the presence of
extraneous quotations (false positives), cases where the
model fails to identify existing quotations (false nega-
tives), and cases where the model correctly identified the
presence of a quote, but did not correctly determine its
boundaries (boundary mismatch, leading both false pos-
itives and false negatives in our exact span evaluation).
We focus our error analysis on PARC, the previously best-
explored of our three corpora.

False Positives

Among the false positives produced by our model was a
surprising number of quotations that are correct accord-
ing to PARC’s guidelines, but which are not annotated
in the corpus. As an example, our model correctly iden-
tifies the presence of an unannotated quotation in the
following sentence:

(3)
predicted
Britain’s retail price index rose 0.7% in September
from August and was up 7.6% for the year, the
Central Statistical Office said.

116

Outside of these cases, proper false positives seem to be
rare. Many of the false positives we foundwere boundary
mismatches, discussed separately below.

False Negatives

Among the false negatives we analyzed, we found that
the model is most likely to miss “tricky” quotations that
are unusual in their grammatical structure. In particular,
it tends to miss a class of quotations that are expressed
as short noun phrases or adjectival phrases embedded
within a non-quotation sentence such as

(4) Mandela, considered
gold
the most prominent leader

of the ANC remains in prison. But
gold
his release

within the next few months is widely expected.

According to the PARC guidelines, these are cases of quo-
tations since they are attributable statements, but they are
difficult for the model to retrieve since they are hard to
distinguish from “non-quotation” nominal phrases – in
particular in cases like this one, where there are not even
overly realized speakers. In STOP and RWG, these cases
might arguably not even be annotated as quotations.

117

Boundary Mismatches

A large proportion of the errors of NQD are boundary
errors, where the model identifies the presence of a quo-
tation, but fails to identify its exact boundaries. This can
happen when our model correctly predicts one quotation
boundary, but not the other.

For example, in the following sentence, our classifier
identified the first quotation’s beginning, but not its end,
causing the classifier to label the remainder of the docu-
ment as being part of the quote (it also failed to identify
the second quotation entirely – a false negative):

(5) He reiterated
gold
his opposition to such funding, but

expressed
gold
hope of a compromise.

This type of error occurs both for noun phrases and verb
phrases and embedded sentences, but for different rea-
sons: noun phrases are difficult to recognize since they
are not marked by punctuation as are almost all other
cases of quotation spans; verb phrases, on the other hand,
can become arbitrarily complex. In the case above, the
segmentation problems are exacerbated by the fact that
the noun phrase quotation span occurs in a complex syn-

118

tactic environment involving coordination.

4.1.5 Conclusion

Here we have argued that existing models for automatic
quotation detection suffer from the tight relation between
corpus annotation andmodel properties, suffering from a
corpus specificity similar to the task specificity discussed
elsewhere in this dissertation. As an alternative, we have
presented a general neural architecture, NQD, which can
be trained “as is” and which generalizes well to various
corpora that differ in terms of genre, structure, and lan-
guage. While the architecture does not reach the state of
the art on any particular corpus, it performs close to it
on all of them. Notably, the architecture is also able to
deal relatively graciously with the absence of linguistic
information.

As NQD makes independent predictions for each to-
ken, it cannot model correlations and mutual exclusions
between labels, and there is no guarantee for well-formed
output class sequences. In the next section, we will inves-
tigate models incorporating linear-chain CRF layers, and
show that these can lead to improvements, particularly

119

when spans are long as is typical in quotation detection.
The overall greatest challenge that NQD faces is data

scarcity — all existing corpora with manual annotation
are small, and our results show consistently bad perfor-
mance for infrequent quotation types. In this situation,
transfer learning seems like a natural proposition, and
our model makes it possible for the first time to apply
straightforward transfer learning to quotation annotation.

4.2 Investigating
task-generalizability with
performance prediction

Due to the rapid development of deep learning, an abun-
dance of model architectures is available for the imple-
mentation of span extraction tasks. These include isolated
token classification models (Berger et al., 1996; Chieu and
Ng, 2003), probabilistic models such as hidden Markov
models (Rabiner, 1989), maximum entropyMarkov mod-
els (McCallum et al., 2000), conditional random fields
(Lafferty et al., 2001), recurrent neural networks such as
LSTMs (Hochreiter and Schmidhuber, 1997), and trans-

120

formers such as BERT (Devlin et al., 2019b).

Though we have some understanding what each of
these models can and cannot learn, there is, to our knowl-
edge, littlework on systematically understanding the task-
generality and task-specificity of different architectures:
Are there model architectures that work well and gener-
alize well across tasks? When complete task-generality is
not possible, canwe identify properties of span extraction
tasks that can help us select suitable model architectures
on a task-by-task basis? Answers to these questions could
narrow the scope of architecture search for these tasks,
and could help with comparisons between existing meth-
ods and more recent developments.

In this section, we address these questions by apply-
ing meta-learning to span extraction (Vilalta and Drissi,
2002; Vanschoren, 2018). Meta-learning means “system-
atically observing how different machine learning ap-
proaches perform […] to learn new tasks much faster”
(Vanschoren, 2018), with examples such as architecture
search (Elsken et al., 2019) and hyperparameter optimiza-
tion (Bergstra and Bengio, 2012). Our specific approach
is to apply performance prediction to span extraction tasks,
using both task properties and model architectures as

121

features, in order to obtain a better understanding of
the differences among span extraction tasks and architec-
tures.

Our specific contributions are as follows: First, we col-
lect a set of English span extraction tasks, quantify key
properties of the tasks (such as how distinct the spans
are from their context, and how clearly their boundaries
are marked) and formulate hypotheses linking proper-
ties to performance (Section 4.2.1). Next, we describe
relevant neural model architectures for span extraction
(Section 4.2.3). We then train a linear regression model
as a meta-model to predict span extraction performance
based on model features and task metrics in an unseen-
task setting (Section 4.2.4). We find the best of these
architectures perform at or close to the state of the art,
and their success can be relatively well predicted by the
meta-model (Section 4.2.5). Finally, we carry out a de-
tailed analysis of the regression model’s parameters (Sec-
tion 4.2.7), gaining insight into the relationship between
span extraction tasks and different neural model architec-
tures. For example, we establish that spans that are not
very distinct from their context are consistently difficult
to identify, but that CRFs are specifically helpful for this

122

class of span extraction tasks.

4.2.1 Tasks and datasets

We work with five widely used English span extraction
datasets. All of them have non-overlapping spans from a
closed set of span types, and are thus amenable to BIO
labeling (which we will use for all architectures). In the
following, we discuss the datasets chosen, the span types
present in those datasets, and the properties of those span
types. Since the different span types within a dataset may
vary significantly in their distributional properties, the
remainder of this work will treat each span type as its
own span extraction task, allowing for a finer-grained
analysis of span types individually.

Quotation detection: parc and RiQuA.

We use two quotation detection datasets: The Penn Attri-
bution Relation Corpus (parc) version 3.0 (Pareti, 2016),
as we used in Section 4.1, and the Rich Quotation Attri-
bution Corpus (RiQuA, Papay and Padó, 2020). Both
datasets contain a mix of direct and indirect quotation
spans in text. The corpora cover articles from the Penn

123

Treebank (parc) and 19th century English novels (RiQuA),
respectively. Within each text, quotations are identified,
along with each quotation’s speaker (or source), and its
cue (an introducing word, usually a verb like “said”).
We model detection of quotations as well as cues. As
speaker and addressee identification are primarily rela-
tion extraction tasks, relying much more heavily on these
spans’ relations to quotations and cues rather than their
own intrinsic properties, we exclude these span types.

Chunking: CoNLL’00.

Chunking (shallow parsing) is an important preprocess-
ing step in a number of NLP applications. We use the
corpus from the 2000 CoNLL shared task on chunking
(CoNLL’00) (Tjong Kim Sang and Buchholz, 2000). Like
parc, this corpus consists of a subset of the PTB. This
dataset is labeled with non-overlapping chunks of eleven
phrase types. In this work, we will consider the seven
phrase types with more than 100 instances in the training
partition: ADJP, ADVP, NP, PP, PRT, SBAR, and VP.

124

NER: OntoNotes and ChemDNer.

For recognition and classification of proper names, we
use the NER layer of OntoNotes Corpus v5.0 (Weischedel
et al., 2011) and Biocreative’s ChemDNer corpus v1.0
(Krallinger et al., 2015). OntoNotes, a general language
NER corpus, is our largest dataset, with over 2.2 million
tokens. The NER layer comprises 18 span types, both
typical entity types such as Person and Organization as
well as numerical value types such as Date and Quantity.
We use all span types. ChemDNer is a NER corpus spe-
cific to chemical and drug names, comprising titles and
abstracts from 10,000 PubMed articles. It labels names of
chemicals and drugs and assigns them to eight classes,
corresponding to chemical name nomenclatures. We
use seven span types: Abbreviation, Family, Formula,
Identifier, Systematic, Trivial, and Multiple. We ex-
clude the class No class as infrequent (fewer than 100
instances).

4.2.2 Span type properties and hypotheses

While quotation detection, chunking, and named entity
recognition are all span extraction tasks, they vary quite

125

widely in their properties. As mentioned in the introduc-
tion, we knowof littlework on quantifying the similarities
and differences of span types, and thus, span extraction
tasks.

We now present four metrics which we propose should
capture the relevant characteristics of span types, and
make concrete our hypotheses regarding their effect on
model performance. Table 4.4 reports the value of each
metric for each span type across all datasets.

Frequency is the number of spans for a span type in the
dataset’s training corpus. It is well established that the
performance of a machine learning model benefits from
higher amounts of training data (Halevy et al., 2009).
Thus, we expect this property to be positively correlated
with performance. However, some architectural choices,
such as the use of transfer learning, are purported to
reduce the data requirements ofmachine learningmodels
(Pan and Yang, 2009), so we expect a smaller correlation
for architectures which incorporate transfer learning.

Span length is the geometric mean of spans’ lengths,
in tokens. Scheible et al. (2016) note that traditional CRF
models perform poorly at the identification of long spans
due to the strict Markov assumption they make Lafferty

126

Dataset Span type Freq. Length Span dist. Boundary dist.

parc content 17416 13.86 0.15 1.73
cue 15424 1.16 2.69 1.09

RiQuA cue 2325 1.05 4.04 1.37
quotation 4843 14.06 0.22 1.67

CoNLL’00

ADJP 2060 1.22 3.13 1.22
ADVP 4227 1.07 3.02 0.74
NP 55048 1.89 0.48 0.65
PP 21281 1.01 2.08 0.59
PRT 556 1.00 4.59 2.20
SBAR 2207 1.02 3.68 1.26
VP 21467 1.39 1.60 0.50

OntoNotes

cardinal 10901 1.20 3.45 0.90
date 18791 1.87 2.62 0.88
event 1009 2.65 3.15 1.32
facility 1158 2.33 3.54 1.22
GPE 21938 1.16 3.66 0.81
language 355 1.03 7.26 1.99
law 459 2.92 3.16 1.69
location 2160 1.69 4.14 1.10
money 5217 2.61 3.87 1.41
NORP 9341 1.04 4.85 0.98
ordinal 2195 1.00 5.99 1.39
organization 24163 1.93 2.22 0.74
percent 3802 2.30 4.35 1.50
person 22035 1.51 3.54 1.24
product 992 1.51 4.58 1.65
quantity 1240 2.25 3.79 1.35
time 1703 1.95 3.50 1.24
work_of_art 1279 2.77 2.15 1.67

ChemDNer

abbreviation 4536 1.17 3.85 0.94
family 4089 1.44 3.15 0.99
formula 4445 1.98 2.50 0.99
identifier 672 2.59 3.61 1.43
multiple 202 6.49 2.10 1.60
systematic 6654 2.17 2.14 0.98
trivial 8832 1.15 3.64 0.86

Table 4.4: All span types considered for each dataset,
with frequency, mean span length, span dis-
tinctiveness, and boundary distinctiveness.

127

et al. (2001). Thus, we expect architectures which rely on
such assumptions and which have no way to model long
distance dependencies to perform poorly on span types
with a high average span length, while LSTMs or trans-
formers should do better on long spans (Khandelwal
et al., 2018; Vaswani et al., 2017).

Span distinctiveness is a measure of how distinctive
the text that comprises spans is compared to the overall
text of the corpus. Formally, we define it as the KL di-
vergence 𝐷KL(�̃�span ∥ �̃�), where �̃� is the unigram word
distribution of the corpus, and �̃�span is the unigram distri-
bution of tokens within a span. A high span distinctive-
ness indicates that different words are used inside spans
compared to the rest of the text, while a low span distinc-
tiveness indicates that the word distribution is similar
inside and outside of spans.

We expect this property to be positively correlatedwith
model performance. Furthermore, we hypothesize that
span types with a high span distinctiveness should be
able to rely more heavily on local features, as each token
carries strong information about spanmembership, while
low span distinctiveness calls for sequence information.
Consequently, we expect that architectures incorporating

128

sequence models such as CRFs, LSTMs, and transformers
should perform better at low-distinctive span types.

Boundary distinctiveness is a measure of how dis-
tinctive the starts and ends of spans are. We formal-
ize this in terms of a KL-divergence as well, namely as
𝐷KL(�̃�boundary ∥ �̃�) between the unigram word distribu-
tion (�̃�) and the distribution of boundary tokens (�̃�boundary),
where boundary tokens are those which occur immedi-
ately before the start of a span, or immediately after the
end of a span. A high boundary distinctiveness indicates
that the start and end points of spans are easy to spot,
while low distinctiveness indicates smooth transitions.

We expect boundary distinctiveness to be positively
correlated with model performance, based on studies
that obtained improvements from specifically modeling
the transition between span and context Todorovic et al.
(2008); Scheible et al. (2016). As sequence information is
required to utilize boundary information, high boundary
distinctiveness should improve performance more for
LSTMs, CRFs, or transformers.

129

Task profiles

As Table 4.4 shows, themetrics we propose appear to cap-
ture the task structure of the span types well: quotations
have long spans with low span distinctiveness (anything
can be said) but high boundary distinctiveness (punctua-
tion, cues). In chunking, the more common chunk types
have notably lower span distinctiveness, as these chunks
comprise a significant portion of the entire corpus, and
NER spans show high distinctiveness (semantic classes)
but are short and have somewhat indistinct boundaries
as well.

4.2.3 Model architectures

For span extraction, weuse the BIO framework (Ramshaw
andMarcus, 1999), framing span extraction as a sequence
labeling task. As each span type has its own B and I la-
bels, and there is one O label, a dataset with 𝑛 span types
leads to a (2𝑛 + 1)-label classification problem for each
token.

We investigate a set of sequence labeling models, rang-
ing from baselines to state-of-the-art architectures. We
group our models by common components, and build

130

complex models through combination of simpler mod-
els. Except for the models using BERT, all architectures
assume one 300-dimensional GloVe embedding (Pen-
nington et al., 2014) per token as input.

Baseline

As a baseline model, we use a simple token-level classi-
fier. This architecture labels each token using a softmax
classifier without access to sequence information (neither
at the label level nor at the feature level).

CRF

This model uses a linear-chain conditional random field
(CRF) to predict token label sequences (Lafferty et al.,
2001). It can access neighboring labels in the sequence of
predictions.

LSTM and LSTM+CRF

These architectures incorporate Bi-directional LSTMs (biL-
STMs) (Hochreiter and Schmidhuber, 1997; Schuster and
Paliwal, 1997) as components. The simplest architecture,

131

LSTM, passes the inputs through a 2-layer biLSTM net-
work, and then predicts token labels using a softmax
layer. The LSTM+CRF architecture combines the biLSTM
network with a CRF layer, training all weights simulta-
neously. These models can learn to combine sequential
input and labeling information.

BERT and BERT+CRF

These architectures include the pre-trained BERT lan-
guage model (Devlin et al., 2019b) as a component. The
simplest architecture in this category, BERT, comprises
a pre-trained BERT encoder and a softmax output layer,
which is trained while the BERT encoder is fine-tuned.
BERT+CRF combines a BERT encoder with a linear-chain
CRF output layer, which directly uses BERT’s output em-
beddings as inputs. In this architecture, the CRF layer is
first trained to convergencewhile BERT’sweights are held
constant, and then both models are jointly fine-tuned to
convergence. As BERT uses WordPiece tokenization (Wu
et al., 2016), the input must be re-tokenized for BERT
architectures.

132

BERT+LSTM+CRF

This architecture combines all components previously
mentioned. It first uses a pre-trained BERT encoder to
generate a sequence of contextualized embeddings. These
embeddings are projected to 300 dimensions using a
linear layer, yielding a sequence of vectors, which are
then used as input for a LSTM+CRF network. As with
BERT+CRF, we first train the non-BERT parameters to
convergence while holding BERT’s parameters fixed, and
subsequently fine-tune all parameters jointly.

Handcrafted features

Some studies have shown marked increases in perfor-
mance by adding hand-crafted features (e.g. Shimaoka
et al., 2017). We develop such features for our tasks
and treat these to be an additional architecture compo-
nent. For architectures with this component, a bag of
features is extracted for each token (the exact features
used for each dataset are enumerated in Table A.1 in the
Appendix). For each feature, we learn a 300-dimensional
feature embedding which is averaged with the GloVe or
BERT embedding to obtain a token embedding. Hand-

133

crafted features can be used with the Baseline, LSTM,
LSTM+CRF, and BERT+LSTM+CRF architectures. BERT
and BERT+CRF cannot utilize manual features, as they
have no way of accepting token embeddings as input.

4.2.4 Meta-learning model

Recall that our meta-learning model is a model for pre-
dicting the performance of the model architectures from
Section 4.2.3 when applied to span extraction tasks from
Section 4.2.1. We model this task of performance predic-
tion as linear regression, a well established framework for
the statistical analysis of language data (Baayen, 2008).
The predictors are task properties, model architecture
properties, and their interactions, and the dependent vari-
able is (scaled) 𝐹1 score.

While a linear model is not powerful enough to capture
the full range of interactions, its weights are immediately
interpretable, it can be trained on limited amounts of data,
and it does not overfit easily (see Section 4.2.6). All three
properties make it a reasonable choice for meta-learning.

134

Predictors and interactions

As predictors for our performance prediction task, we use
the span type properties described above, and a number
of binary model properties. For the span type properties
[freq] and [span length], we use the logarithms of these
values as predictors. The two distinctiveness properties
are already logarithms, and so we used them as-is. For
model properties, we used four binary predicates: The
presence of handcrafted features, of a CRF output layer,
of a bi-LSTM layer, and of a BERT layer.

In addition to main effects of properties of models and
corpora on performance (does a CRF layer help?), we are
also interested in interactions of these properties (does a
CRF layer help in particular for longer spans?). As such
interactions are not captured automatically in a linear
regression model, we encode them as predictors. We
include interactions between span type and model prop-
erties, as well as among model properties.

All predictors (including interactions) are standard-
ized so as to have a mean of zero and standard deviation
of one.

135

Scaling the predicted performance

Instead of directly predicting the 𝐹1 score, we instead
make our predictions in a logarithmic space, which eases
the linearity requirements of linear regression. We cannot
directly use the logit function to transform 𝐹1 scores into

𝐹′ = logit(
𝐹1
100)

since the presence of zeros in our 𝐹1 scores makes this
process ill-defined. Instead, we opted for a “padded”
logit transformation

𝐹′ = logit((1 − 𝛼) ⋅
𝐹1
100 + 𝛼 ⋅

100 − 𝐹1
100)

with a hyperparameter 𝛼 ∈ [0, 0.5). This rescales the
argument of the logit function from [0, 1] to the smaller
interval [𝛼, 1 − 𝛼], avoiding the zero problem of a bare
logit. Through cross-validation (cf. Section 4.2.6), we set
𝛼 = 0.2. We use the inverse of this transformation to scale
the output of our prediction as an 𝐹1 score, clamping the
result to [0, 100].

136

4.2.5 Experiment

4.2.6 Experimental procedure

Ourmeta-learning experiment comprises two steps: span
extraction model training, and meta-model training.

Span extraction model training

We begin by training and subsequently evaluating each
model architecture on each dataset five times, using differ-
ent random initializations. With 12 model architectures
and 5 datasets under consideration, this procedure yields
12 × 5 × 5 = 300 individual experiments.

For each dataset, we use the established train/test par-
tition. Since RiQuA does not come with such a partition,
we use cross-validation, partitioning the dataset by its six
authors and holding out one author per cross-validation
step.

Weuse early stopping for regularization, stopping train-
ing once the (micro-averaged) performance on a valida-
tion set reaches its maximum. To prevent overfitting, all
models utilize feature dropout – during training, each
feature in a token’s bag of input features is dropped with

137

a probability of 50%. At evaluation time, all features are
used.

Meta-learning model training

This step involves training our performance prediction
model on the 𝐹1 scores obtained from the first step. For
each (architecture, span type) pair of the 12 model ar-
chitectures and 36 span types, we already obtained 5 𝐹1
scores. This yields a total of 12 × 36 × 5 = 2160 input-
output pairs to train our performance prediction model.

We investigate both 𝐿1 and 𝐿2 regularization in an elas-
tic net setting (Zou and Hastie, 2005) but consistently
find best cross-validation performance with no regular-
ization whatsoever. Thus, we use ordinary least squares
regression.

To ensure that our performance predictions generalize,
we use a cross-validation setup when generating model
predictions. To generate performance predictions for a
particular span type, we train our meta-model on data
from all other span types, holding out the span type for
which we want a prediction. We repeat this for all 36
span types, holding out a different span type each time,
in order to collect performance predictions for each span

138

type.

Span extraction results

After training and evaluating our span extraction models,
we have 5 evaluation 𝐹1 scores for each (architecture, span
type) pair. This section summarizes the main findings.
Table 4.5 lists the performance of each model architecture
on eachdataset. Unsurprisingly, BERT+Feat+LSTM+CRF,
the model with the most components, performs best on a
plurality of 16 span types. This provides strong evidence
that this maximal architecture can generalize well across
many tasks. However, this dominance is not absolute:
BERT+CRF and Feat+LSTM+CRF each perform best on
7 span types, and BERT+LSTM+CRF on 6 span types.
Thus, ‘bespoke’ modeling of span types can evidently
improve results.

Even though our architectures are task-agnostic, and
not tuned to particular tasks or datasets, our best architec-
tures still perform quite competitively. For instance, on
CoNLL’00, our BERT+Feat+LSTM+CRF model comes
within 0.12 𝐹1 points of the best published model’s 𝐹1
score of 97.62 (Akbik et al., 2018). For parc, existing liter-
ature focuses only on 𝐹1 scores for content span detection.

139

Ba
se

lin
e

Fe
at
+
Ba

se
lin

e

C
RF

Fe
at
+
C
RF

LS
TM

Fe
at
+
LS

TM

LS
TM

+
C
RF

Fe
at
+
LS

TM
+
C
RF

BE
RT

BE
RT

+
C
RF

BE
RT

+
LS

TM
+
C
RF

BE
RT

+F
ea

t+
LS

TM
+C

RF

pa
rc content 0.0 1.6 15.5 40.0 50.3 70.4 69.1 77.2 71.7 76.6 77.8 78.1

cue 68.0 64.9 69.1 68.5 77.1 83.3 82.2 86.3 84.4 85.8 86.7 86.4

Ri
Q
uA cue 64.6 49.0 58.4 47.4 73.9 74.5 81.9 80.8 78.8 83.1 83.9 84.3

quotation 0.0 0.0 5.6 6.0 76.5 90.2 89.0 92.3 90.3 90.6 90.0 90.2

C
oN

LL
’0
0

ADJP 29.1 22.8 47.0 61.9 56.6 72.8 66.3 77.2 82.4 84.2 83.6 83.5
ADVP 51.8 58.0 66.9 74.0 70.4 76.0 76.8 81.2 85.3 86.2 86.4 86.3
NP 59.5 64.3 79.7 86.0 88.8 92.8 91.4 94.9 97.0 97.1 97.2 97.3
PP 57.5 56.6 90.4 94.5 94.4 96.5 96.0 97.4 98.5 98.6 98.6 98.6
PRT 40.9 41.0 64.3 63.0 66.4 68.7 73.8 75.1 84.3 83.3 84.6 84.6
SBAR 33.2 63.3 67.1 73.8 81.4 86.1 67.1 65.1 94.2 94.3 94.2 94.5
VP 49.3 56.6 74.8 89.2 84.8 92.7 88.6 94.4 96.6 96.6 96.5 96.7

O
nt

oN
ot
es

cardinal 25.8 19.0 57.1 55.3 53.1 60.9 72.8 81.0 80.8 80.9 79.9 79.2
date 38.6 29.0 65.6 69.0 63.1 68.3 79.5 84.3 85.5 85.9 85.9 85.7
event 0.0 0.0 29.4 40.7 0.9 0.0 39.0 46.4 63.2 65.0 60.5 64.9
facility 0.0 0.0 7.1 17.8 0.0 0.0 30.6 45.6 62.0 64.7 64.7 72.8
GPE 60.8 44.5 75.0 76.7 69.5 72.0 85.2 91.6 93.4 94.1 94.0 94.7
language 0.0 0.0 29.0 33.2 0.0 0.0 47.5 40.5 72.0 76.5 71.6 70.8
law 0.0 0.0 19.1 17.9 0.0 0.0 44.7 52.1 61.5 64.8 55.7 67.2
location 11.4 0.0 38.6 42.1 19.4 9.0 54.2 67.1 65.8 67.1 66.8 70.8
money 9.8 32.5 67.9 79.2 64.5 76.1 82.6 90.1 87.8 88.7 89.4 88.9
NORP 66.6 48.0 78.9 80.0 66.4 73.9 81.4 91.0 89.1 89.8 90.3 91.5
ordinal 55.6 0.4 50.9 56.0 33.1 46.8 69.3 83.3 79.2 79.8 78.3 76.8
organization 27.3 19.1 49.1 60.6 46.3 58.6 72.5 84.0 83.8 85.4 85.6 88.6
percent 30.1 18.8 80.0 85.8 73.8 81.3 83.3 88.6 88.3 87.6 88.5 88.1
person 25.9 15.3 52.6 71.8 64.7 70.1 79.4 87.6 92.8 93.7 93.3 93.6
product 0.0 0.0 43.0 35.1 11.4 4.6 47.3 50.8 59.6 64.1 62.4 64.9
quantity 0.0 0.0 38.0 49.8 25.9 0.0 64.5 68.0 67.0 66.7 59.2 60.6
time 2.9 0.0 40.4 33.6 26.7 13.0 49.1 63.7 61.5 61.3 60.7 61.8
work_of_art 0.0 0.0 6.0 7.3 0.5 17.3 29.3 57.2 55.2 59.0 57.0 62.4

C
he

m
D
N
er

abbreviation 50.0 12.0 54.7 54.5 51.6 48.3 62.7 71.3 78.2 79.1 78.2 77.1
family 47.4 3.8 57.9 56.6 53.7 13.8 64.5 68.8 77.6 78.6 78.9 79.1
formula 31.4 10.8 46.3 53.8 48.2 47.4 72.4 76.3 76.9 80.2 81.3 81.8
identifier 0.0 0.0 44.1 37.7 38.1 0.7 69.1 66.2 79.5 83.1 82.5 81.8
multiple 0.0 0.0 5.1 3.0 0.0 0.0 35.5 53.4 57.8 64.6 65.6 69.0
systematic 50.5 25.4 54.6 59.7 60.5 49.7 76.3 79.1 86.2 87.4 87.9 87.8
trivial 61.3 30.2 66.6 65.0 65.0 52.6 75.0 77.9 90.2 91.0 91.2 91.1

Table 4.5: 𝐹1 scores for each model architecture on each
span type. Each entry is averaged over five
runs.

140

MAE 𝑟2

Full model 11.38 0.73
No interactions 14.00 0.61
Only architecture predictors 18.88 0.37
Only task predictors 20.87 0.22
Empty model 23.78 N/A

Table 4.6: Evaluation of performance prediction models.

In this case, we find that our BERT+Feat+LSTM+CRF
model beats the existing state of the art on this span type,
achieving an 𝐹1 score of 78.1, compared to the score of 75
reported in Scheible et al. (2016).

Meta-learning Results

The result of Step 2 is our performance prediction model.
Table 4.6 shows both mean absolute error (MAE), which
is directly interpretable as the mean difference between
predicted and actual F1 score for each data point, and 𝑟2,
which provides the amount of variance accounted for by
the model. The full performance prediction model, in-
cluding both span type and model architecture features,
accounts for 73% of the variance, with an MAE of about
11. We see this as an acceptable model fit. To validate the

141

0 20 40 60 80 100

Actual F1 score

0

20

40

60

80

100

P
re

di
ct

ed
F
1

sc
or

e

Baseline
Feat+Baseline
CRF
Feat+CRF
LSTM
Feat+LSTM

LSTM+CRF
Feat+LSTM+CRF
BERT
BERT+CRF
BERT+LSTM+CRF
BERT+Feat+LSTM+CRF

1

Figure 4.2: Scatter plot of actual vs. predicted 𝐹1 scores
for all 36 span types × 12 model architectures

142

usefulness of the predictor groups and interaction terms,
we carry out ablation experiments wherein these are ex-
cluded, including a model with no interaction terms, a
model with only span type-predictors, a model with only
architecture predictors, and an empty model, which only
predicts the average of all F1 scores. The reduced models
do better than the empty model,4 but show marked in-
creases in MAE and corresponding drops in 𝑟2 compared
to the full model. While the usefulness of the architec-
ture predictors is expected, this also constitutes strong
evidence for the usefulness of the span type predictors
we have proposed in Section 4.2.1.

Figure 4.2 shows a scatter plot of predicted and actual
𝐹1 scores. Our meta-learning model generally predicts
high performances better than low performances. The
largest cluster of errors occurs for experiments with an
actual 𝐹1 score of exactly zero, arguably an uninteresting
case. Thus, we believe that the overall MAE underesti-
mates rather than overestimates the quality of the perfor-
mance prediction for practical purposes.

4For the empty model, 𝑟2 is undefined because the variance of the
predictions is zero.

143

4.2.7 Analysis

We now investigate the linear regression coefficients of
our performance prediction model to assess our hypothe-
ses from Section 4.2.1. To obtain a singlemodel to analyze,
we retrain our regression model on all data points, with
no cross-validation.

Table 4.7 shows the resulting coefficients. Using Bon-
ferroni correction at 𝛼 = 0.05, we consider a coefficient
significant if p<0.002. Non-significant coefficients are
shown in parentheses. Due to the scaling of 𝐹1 scores
performed as described in section 4.2.4, the coefficients
cannot be directly interpreted in terms of linear change
on the 𝐹1 scale. However, as we standardized all pre-
dictors, we can compare coefficients with one another.
Coefficients with a greater magnitude have larger effects
on 𝐹1 score, with positive values indicating an increase,
and negative values a decrease.

When analyzing these coefficients, one must consider
main effects and interactions together. E.g., the main ef-
fect coefficient for LSTMs is negative, which seems to
imply that adding an LSTM will hurt performance. How-
ever, the LSTM × [freq] and LSTM × [boundary distinct-
ness] interactions are both strongly positive, so LSTMs

144

should help on frequent span types with high boundary
distinctiveness. Our main observations are the following:

Frequency helps, length hurts. The main effects of
our span type predictors show mostly an expected pat-
tern. Frequency has a strong positive effect (frequent
span types are easier to learn), while length has an even
stronger negative effect (long span types are difficult).
More distinct boundaries help performance aswell. More
surprising is the negative sign of the span distinctiveness
predictor, whichwouldmean thatmore distinct spans are
more difficult to recognize. However, this might be due
to the negative correlation between span distinctiveness
and frequency (𝑟 = −0.46 in standardized predictors):
Less frequent spans are, by virtue of their rarity, more
distinctive.

BERT is good for performance, especially with few
examples. The presence of a BERT component is the
highest-impact positive predictor for model performance,
with a positive coefficient of 1. This finding is not entirely
surprising, given the recent popularity of BERT-based

145

Model predictors

Handcrafted (−0.11)
CRF 0.50
LSTM −0.35
BERT 1.00

Span type predictors

freq 0.40
length −0.49
span distinct. −0.22
boundary distinct. 0.16

Model–span type interactions

Handcrafted ×

freq (0.05)
length (−0.04)
span distinct. (−0.09)
boundary distinct. (0.09)

CRF ×

freq −0.33
length 0.19
span distinct. 0.34
boundary distinct. −0.30

LSTM ×

freq 0.47
length 0.08
span distinct. (−0.09)
boundary distinct. 0.22

BERT ×

freq −0.43
length 0.13
span distinct. (0.04)
boundary distinct. (−0.05)

Model–model interactions

Handcrafted ×
CRF 0.10
LSTM 0.05
BERT −0.05

CRF × LSTM (−0.05)
BERT −0.24

LSTM × BERT −0.17

Table 4.7: Regression coefficients from performance pre-
diction model. Coefficients not statistically sig-
nificant at 𝑝 < 0.002 (as per Bonferroni correc-
tion) in parentheses.

146

models for span extraction problems Li et al. (2020); Hu
et al. (2019). Furthermore, the strong negative value of
the (BERT × [freq]) predictor shows that BERT’s bene-
fits are strongest when there are few training examples,
validating our hypothesis about transfer learning. BERT
is also robust: largely independent of span or boundary
distinctiveness effects.

LSTMs require a lot of data. While the main effect of
LSTMs is negative, this effect is again modulated by the
high positive coefficient of the (LSTM × [freq]) interac-
tion. This means that their performance is highly depen-
dent on the amount of training data. Also, LSTMs lead to
improvements for long span types and those with distinct
boundaries – properties that LSTMs arguably can pick
up well but that other models struggle with.

CRFs help. After BERT, the presence of a CRF shows
the second-most positive main effect on model perfor-
mance. Given the strong correlation between adjacent
tags in a BIO label sequence, it makes sense that a model
capable of enforcing correlations in its output sequence
would perform well. CRFs can also exploit span dis-

147

tinctiveness well, presumably by the same mechanism.
Surprisingly, CRFs show reduced effectiveness for highly
frequent spans with distinct boundaries. We believe that
this pattern is best considered as a relative statement: for
frequent, well-separated span types CRFs gain less than
other model types.

Handcrafted features are complicated. Looking purely
at our regression coefficients, handcrafted features don’t
seem to matter much: we find neither a significant main
effect of handcrafted features, nor any significant interac-
tions with span type predictors. Interactions with model
predictors are significant, but rather small. However, it
is easy to find specific cases where handcrafted features
seem to help quite a bit: For instance, the Feat+LSTM+CRF
architecture outperforms the LSTM+CRF architecture on
all but four span types. We suspect that, while hand-
crafted features can be important, their effect on 𝐹1-score
may be subject to a number of nonlinear interactions
which our meta-learning model is unable to capture.

Combining model components shows diminishing re-
turns. All interactions between LSTM, CRF, and BERT

148

are negative. This demonstrates an overlap in these com-
ponents’ utility. In fact, a simple “maximal” combination
does not always perform best, as Table 4.5 confirms.

4.2.8 Related Work

Meta-learning and performance prediction are umbrella
terms which comprise a variety of approaches and for-
malisms in the literature. We focus on the literature most
relevant to our work and discuss the relationship.

Performance Prediction for Trained Models. In NLP, a
number of studies investigate predicting the performance
of models that have been trained previously on novel
input. An example is Chen (2009) which develops a
general method to predict the performance of a family
of language models. Similar ideas have been applied
more recently to machine translation (Bojar et al., 2017),
and automatic speech recognition Elloumi et al. (2018),
among others. While these approaches share our goal of
performance prediction, they predict performance for the
same task and model on new data, while we generalize
across tasks and architectures. Thus, these approaches

149

are better suited to estimating confidence at prediction
time, while our meta-learning approach can predict a
model’s performance before it is trained.

AutoML. Automated machine learning, or AutoML,
aims at automating various aspects of machine learning
model creation, including hyperparameter selection, ar-
chitecture search, and feature engineering (Yao et al.,
2018; He et al., 2021) While the task of performance pre-
diction does not directly fall within this research area, a
model for predicting performance is directly applicable to
architecture search. WithinAutoML, the auto-sklearn sys-
tem (Feurer et al., 2015) takes an approach rather similar
to ours, wherein they identify meta-features of datasets,
and select appropriatemodel architectures based on those
meta-features. However, auto-sklearn does not predict
absolute performance as we do, but instead simply selects
good candidate architectures via a 𝑘-nearest-neighbors
approach inmeta-feature space. Other related approaches
in AutoML use Bayesian optimization, including the com-
bined model selection and hyperparameter optimization
of Auto-WEKA (Thornton et al., 2013) and the neural
architecture search of Auto-keras (Jin et al., 2019).

150

Model Interpretability. A number of works have inves-
tigated how to analyze and explain the decisions made by
machine learningmodels. LIME (Ribeiro et al., 2016) and
Anchors (Ribeiro et al., 2018) are examples of systems
for explaining a model’s decisions for specific training
instances. Other works seek to explain and summarize
howmodels perform across an entire dataset. This can be
achieved e.g. through comparison of architecture perfor-
mances, as in Nguyen and Guo (2007), or through meta-
modeling of trained models, as was done in Weiss et al.
(2018). Our present work falls into this category, includ-
ing both a comparison of architectures across datasets
and a meta-learning task of model performance.

Meta-learning for One- and Few-shot Learning. A re-
cent trend is the application of meta-learning to models
for one- or few-shot learning. In this setting, a meta-
learning approach is used to train models on many dis-
tinct tasks, such that they can subsequently be rapidly
fine-tuned to a particular task Finn et al. (2017); Santoro
et al. (2016). While such approaches use the same meta-
learning framework aswe do, their task andmethodology
are substantially different. They focus on learning with

151

very few training examples, while we focus on optimizing
performance with normally sized corpora. Additionally,
these models selectively train preselected model architec-
tures, while we are concerned with comparisons between
architectures.

Model and Corpus Comparisons in Survey Papers. In
a broad sense, our goal of comparison between existing
corpora and modeling approaches is shared with many
existing survey papers. Surveys include quantitative com-
parisons of existing systems’ performances on common
tasks, producing a results matrix very similar to ours (Li
et al., 2020; Yadav and Bethard, 2018; Bostan and Klinger,
2018, i.a.). However, most of these surveys limit them-
selves to collecting results across models and datasets
without performing a detailed quantitative analysis of
these results to identify recurring patterns, as we do with
our performance prediction approach.

4.2.9 Conclusion

Here we systematically investigated task generality for
span extraction tasks. By collecting a large set of span ex-

152

traction tasks and a large set of compatible architectures,
and by training and evaluating on the full Cartesian prod-
uct of these sets, we were able to obtain large amounts of
data on architecture performance for specific tasks. We
then used meta-learning to analyze these data, and were
able to glean specific, interpretable insights into when
we might expect an architecture to generalize well to a
new task, and when we might not. In the process of do-
ing so, we identified four easily-quantified properties of
span extraction tasks which seem to be highly informa-
tive for determining when a particular architecture might
be applicable.

Given the success of this approach to span extraction,
it seems desirable to apply similar techniques to full rela-
tion extraction. While this isn’t a bad idea, there are some
caveats that must be considered. For span extraction, we
were able to start with minimal limiting assumptions (no
overlapping spans, and no arbitrary dependencies be-
tween spans), and then collect a diverse variety of tasks
and architectures compatible with these assumptions.
The same is not possible for relation extraction – for ex-
ample, any reasonable architecture for TACRED (Zhang
et al., 2017) should assume that only one relation can

153

occur in each input sentence, and that it must relate the
two entities provided, but an architecture making these
assumptions would be inapplicable to relation extrac-
tion tasks like GENIA event extraction (Kim et al., 2013),
where the total number of relations is unknown, and a
large portion of the task’s difficulty involves determining
how exactly to group the identified entities together into
cohesive relations.

154

Chapter 5

Task-general joint
modeling with
regular-constrained CRFs

As we discussed in Chapter 3, one promising direc-
tion towards task generality for relation extraction

lies in formal specification of tasks and their constraints.
However, this approach depends upon the availability of
architectures which can accept and utilize task specifica-
tions as hyperparameters. It thus becomes desirable to
search for architectures capable of accommodating awide
range of possible task structures. This chapter presents
one specific architecture, based upon linear-chain con-
ditional random fields, which is capable (with caveats)

155

of capturing any task structure specifiable as a regular
language.

5.1 Task properties as sequence
labeling constraints

Suppose we would like to extract a single relation from a
text. While we have explored pipeline-based approaches
wherein we first identify entity spans, and then predict
relations between those entities we found, we could also
try to do everything “all in one go” – we ask a span ex-
traction model to produce a set of labeled spans, and take
the whole output to be a single relation. Individual span
labels can specify both the entity type and the role each
entity span plays in the relation. Of course, to extract mul-
tiple relations, we can simply ask the model to produce
output multiple times, as long as we somehow notate
in the input which relation we are interested in for each
prediction.

One problem with this approach is that, with a stan-
dard span extraction model, we have no way of ensur-
ing that the model predicts the right number of entities

156

with the correct combination of types for the relation.
While span extraction models don’t usually pick spans
entirely independently from one another, the dependen-
cies are almost always local effects, such as BIO-based ap-
proaches requiring that no spans overlap, or CRF-based
approaches modeling agreement between directly ad-
jacent tokens. On the other hand, constraints like type
agreement for relation extraction are global properties
that entire relations must satisfy, properties which can-
not be learned as local dependencies in standard span
extraction models.

This chapter will formalize relation extraction in terms
of sequence labeling with global constraints. We intro-
duce a novel method for enforcing regular-language con-
straints on CRF sequence labeling models – the resulting
regular-constrained CRF (RegCCRF) functions identi-
cally to a standard model, except that it is guaranteed
to only produce outputs in an a-priori-specified regu-
lar language ℒ. In conjunction with BIO-labeling, this
provides us exactly the machinery we need for relation
extraction, allowing us to extract sets of spans subject to
user-specified global constraints.

We investigate the resultingRegCCRF architecture from

157

both a theoretical and empirical perspective. Theoreti-
cally, we will investigate some mathematical properties
of the distributions a RegCCRF can learn, and will use
synthetic data to contrast models’ performance under
different training and inference settings. Empirically, we
apply our a RegCCRF model to Semantic Role Labeling,
a relation extraction task with variadic relations and a
highly nontrivial set of constraints. We show modest yet
significant improvements on this task when using a Reg-
CCRF model, validating our theoretical arguments and
attesting to the practical utility of the architecture.

5.2 Preliminaries and notation

As our construction involves finite-state automata and
conditional random fields, we define these here and spec-
ify the notation we will use in the remainder of this sec-
tion.

Finite-state automata. All automata are taken to be non-
deterministic finite-state automata (NFAs) without ep-
silon transitions. Let such an NFA be defined as a 5-tuple
(Σ, 𝑄, 𝑞1, 𝐹, 𝐸), where

158

• Σ = {𝑎1, 𝑎2, ..., 𝑎|Σ|} is a finite alphabet of symbols,

• 𝑄 = {𝑞1, 𝑞2, ..., 𝑞|𝑄|} is a finite set of states,

• 𝑞1 ∈ 𝑄 is the sole starting state,

• 𝐹 ⊆ 𝑄 is a set of accepting states,

• and 𝐸 ⊆ 𝑄 × Σ × 𝑄 is a set of directed, symbol-
labeled edges between states. The edges define the
NFA’s transition function Δ ∶ 𝑄 × Σ → 2𝑄, with
𝑟 ∈ Δ(𝑞, 𝑎) ↔ (𝑞, 𝑎, 𝑟) ∈ 𝐸.

An automaton is said to accept a string 𝒔 ∈ Σ∗ iff there
exists a contiguous path of edges from 𝑞1 to some accept-
ing state whose edge labels are exactly the symbols of
𝒔. The language defined by an automaton is the set of all
such accepted strings. A language is regular if and only if
it is the language of some NFA.

Linear-chain conditional random fields. Linear-chain
conditional random fields (CRFs) Lafferty et al. (2001)
are an architecture for sequence labeling models. Pa-
rameterized by 𝜽, CRFs represent their model distribu-
tion �̂�𝜽(y ∣ x), a distribution over label sequences 𝒚 =

159

⟨𝑦1, ⋯ , 𝑦𝑡⟩ conditioned on input sequences 𝒙 = ⟨𝑥1, ⋯ , 𝑥𝑡⟩,
as

�̂�𝜽(𝒚 ∣ 𝒙) ∝ exp∑
𝑗

𝑓 𝑗
𝜽(𝒙, 𝒚) ,

with individual observations 𝑥𝑖 coming from some obser-
vation space 𝑋, and outputs 𝑦𝑖 coming from some finite
alphabet 𝑌. In this work, we use CRFs for sequence label-
ing problems, but the dataset labels do not correspond
directly to the CRF’s outputs 𝑦𝑖. In order to avoid ambi-
guity, and since the term “state” already has a meaning
for NFAs, we call 𝒚 the CRF’s tag sequence, and each 𝑦𝑖

a tag. The terms label sequence and label will thus unam-
biguously refer to the original dataset labels.

Each 𝑓 𝑗
𝜽 is a potential function of 𝒙 and 𝒚, parameterized

by 𝜽. Importantly, in a linear-chain CRF, these potential
functions are limited to two kinds: The transition function
𝑔𝜽(𝑦𝑖, 𝑦𝑖+1) assigns a potential to each pair (𝑦𝑖, 𝑦𝑖+1) of
adjacent tags in 𝒚, and the emission function ℎ𝜽(𝑦𝑖, 𝒙, 𝑖)
assigns a potential to each possible output tag 𝑦𝑖 given
the observation sequence 𝒙 and its position 𝑖. With these,

160

the distribution defined by a CRF is

�̂�𝜽(𝒚 ∣ 𝒙) ∝ exp⎛⎜
⎝

𝑡−1
∑
𝑖=1

𝑔𝜽(𝑦𝑖, 𝑦𝑖+1) +
𝑡

∑
𝑖=1

ℎ𝜽(𝒙, 𝑦𝑖, 𝑖)⎞⎟
⎠

.

(5.1)

Limiting our potential functions in this way imposes a
Markov assumption on our model, as potential functions
can only depend on a single tag or a single pair of adja-
cent tags. This makes learning and inference tractable:
the forward algorithm (Jurafsky and Martin, 2009) can
calculate negative log-likelihood (NLL) loss during train-
ing, and the Viterbi algorithm (Viterbi, 1967; Jurafsky
and Martin, 2009) can be used for inference. Both are
linear in 𝑡, and quadratic in |𝑌| in both time and space.

In practice, the transition function 𝑔𝜽 is usually rep-
resented explicitly as a |𝑌| × |𝑌| parameter matrix, and
the emission function ℎ𝜽 can be an arbitrary learnable
function – increasingly commonly represented as a deep
neural network.

161

5.3 Related work

We identify three modeling approaches in the field of
structured prediction that are relevant to the current
work: constrained decoding, which can enforce output
constraints at decoding time, techniques for weakening
the Markov assumption of CRFs to learn long-distance
dependencies, and weight-learning in finite-state trans-
ducers.

Constrained decoding. A common approach to enforc-
ing constraints in model output is constrained decoding:
Models are trained in a standard fashion, and decoding
ensures that the model output satisfies the constraints.
This almost always corresponds to finding or approximat-
ing a version of the model’s distribution conditionalized
on the output obeying the specified constraints. This ap-
proach is useful if constraints are not available at training
time, such as in the interactive information extraction task
of Kristjansson et al. (2004). They present constrained con-
ditional random fields, which can enforce that particular
tokens are or are not assigned particular labels (posi-
tive and negative constraints, respectively). Formally,

162

our work is a strict generalization of this approach, as
position-wise constraints can be formulated as a regular
language, but regular languages go beyond position-wise
constraints. Other studies treat decodingwith constraints
as a search problem, searching for the most probable de-
coding path which satisfies all constraints. For example,
He et al. (2017b) train a neural network to predict token-
wise output probabilities for semantic role labeling fol-
lowing the BIO label-alphabet (Ramshaw and Marcus,
1999), and then use exact A* search to ensure that the
output forms a valid BIO sequence and that particular
task-specific constraints are satisfied. For autoregressive
models, constrained beam search (Hokamp andLiu, 2017;
Anderson et al., 2017; Hasler et al., 2018) can enforce
regular-language constraints during search. We further
discuss constrained decoding as it relates to RegCCRFs
in Section 5.5.

Markov relaxations. While our approach can relax the
Markov assumption of CRFs through nonlocal hard con-
straints, another strand of work has developed models
which can directly learn nonlocal dependencies in CRFs:
Semi-Markov CRFs (Sarawagi and Cohen, 2004) relax the

163

Markov property to the semi-Markov property. In this
setting, CRFs are tasked with segmentation, where indi-
vidual segments may depend only on their immediate
neighbors, but model behavior within a particular seg-
ment need not be Markovian. As such, semi-Markov
CRFs are capable of capturing nonlocal dependencies
between output variables, but only to a range of one seg-
ment and inside of a segment. Skip-chain CRFs (Sutton
and McCallum, 2004) change the expressiveness of CRFs
by relaxing the assumption that only the linear structure
of the input matters: they add explicit dependencies be-
tween distant nodes in an otherwise linear-chain CRF.
These dependencies are picked based on particular prop-
erties, e.g., input variables of the same value or which
share other properties. In doing so, they add loops to the
model’s factor graph, which makes exact training and in-
ference intractable, and leads to the use of approximation
techniques such as loopy belief propagation and Gibbs
sampling.

Weight learning for finite-state transducers. While our
approach focuses on the task of constraining the CRF dis-
tribution to a known regular language, a related task is

164

that of learning a weighted regular language from data.
This task is usually formalized as learning the weights of
a weighted finite-state transducer (FST), as in e.g. Eisner
(2002) with directly parameterized weights and Rastogi
et al. (2016) with weights parameterized by a neural net-
work. Despite the difference in task-setting, this task is
quite similar to ours in the formal sense, and in fact our
proposal can be viewed as a particularly well-behaved
special case of FST weight learning for an appropriately
chosen transducer architecture and parameterization. We
discuss this connection further in Section 5.4.3.

5.4 Regular-constrained CRFs

Here we will present our approach to enforcing regular-
language constrains on a CRF. Given a regular language
ℒ, we would like to constrain a CRF to ℒ. We formalize
this notion of constraint with conditional probabilities –
a CRF constrained to ℒ is described by a (further) con-
ditionalized version of that CRF’s distribution �̂�𝜽(y ∣ x),
conditioned on the event that the tag sequence 𝒚 is in
ℒ – that is, the distribution �̂�𝜽(y = 𝒚 ∣ x = 𝒙;y ∈ ℒ).
We will refer to this distribution as �̂�𝜽(y ∣ x; ℒ) for short,

165

noting that

�̂�𝜽(𝒚 ∣ 𝒙; ℒ) =
⎧{
⎨{⎩

𝛼 ⋅ �̂�𝜽(𝒚 ∣ 𝒙) if 𝒚 ∈ ℒ

0 otherwise ,
(5.2)

with 𝛼 ≥ 1 defined as 𝛼−1 = ∑𝒚∈ℒ �̂�𝜽(𝒚 ∣ 𝒙).
In order to utilize this distribution formachine learning,

we need to be able to compute NLL losses and perform
MAP inference. As discussed in Section 5.2, both of these
are efficiently computable for CRFs. Thus, if we can con-
struct a separate CRF whose output distribution can be
interpreted as �̂�𝜽(y ∣ x; ℒ), both of these operations will
be available. We do this in the next section.

5.4.1 Construction

Let 𝑀 = (Σ, 𝑄, 𝑞1, 𝐹, 𝐸) be an NFA that describes ℒ. We
assume that 𝑀 is unambiguous – i.e., every string in ℒ
is accepted by exactly one path through 𝑀. As every
NFA can be transformed into an equivalent unambigu-
ous NFA (Mohri, 2012), this assumption involves no loss
of generality. Our plan is to represent �̂�𝜽(y ∣ x; ℒ) by con-
structing a separate CRF with a distinct tag set, whose

166

𝑞1
st
ar

t
𝑞2

𝑞3
𝑞4

O

B

I O

O

B

B

B

I

O

(𝑞
1 −→ B

𝑞2)
(𝑞

2 −
→ O

𝑞4)
(𝑞

4 −→ B
𝑞3)

(𝑞
3 −→

I
𝑞3)

𝒙

ℎ 𝜽
(𝒙

,B
,1

)

ℎ 𝜽
(𝒙

,O
,2

)
ℎ 𝜽

(𝒙
,B

,3
)

ℎ 𝜽
(𝒙

,I
,4

)

𝑔 𝜽
(B

,O
)

𝑔 𝜽
(O

,B
)

𝑔 𝜽
(B

,I
)

𝑌
′

=
{(

𝑞1 −
→ O

𝑞1)
,(

𝑞1 −→ B
𝑞2)

,(
𝑞2 −→

I
𝑞2)

,(
𝑞2 −→ B

𝑞3)
,(

𝑞2 −
→ O

𝑞4)
,(

𝑞3 −
→ O

𝑞1)
,(

𝑞3 −→ B
𝑞2)

,(
𝑞3 −→

I
𝑞3)

,(
𝑞4 −→ B

𝑞3)
,(

𝑞4 −
→ O

𝑞4)
}

Fi
gu

re
5.
1:

Ex
am

pl
e
fo
r
a
Re

gC
C
RF

,s
ho

w
in
g
N
FA

an
d

un
ro

lle
d

fa
ct
or

gr
ap

h.
ℒ

de
sc
ri
be

s
th

e
la
ng

ua
ge

(O
∣
BI

∗ O
∗ B

I∗)∗ ,
th

e
la
ng

ua
ge

of
va

lid
BI

O
se

qu
en

ce
s
fo
r
an

ev
en

nu
m
be

r
of

sp
an

s.
W

e
w
ou

ld
lik

e
to

ca
lc
ul

at
e𝑃

𝜽(
y

∣x
;ℒ

)
fo
r𝒚

=
⟨B

,O
,B

,I
⟩.

W
e
sh

ow
an

un
am

bi
gu

ou
s

au
to
m
at
on

𝑀
fo
rℒ

(l
ef
t)
,a

nd
a
fa
ct
or

gr
ap

h
(r
ig
ht

)
fo
rt

he
au

xi
lia

ry
C
RF

co
m
pu

tin
g

𝑃 𝜽
(𝒚

′
∣𝒙

),
w
he

re
𝑦′

∈
𝑌

′∗
co

rr
es

po
nd

s
to

th
e
so

le
ac

ce
pt

in
g
pa

th
of

𝒚
th

ro
ug

h
𝑀

(m
ar
ke

d)
.

167

output sequences can be interpreted directly as paths
through 𝑀. As 𝑀 is unambiguous, each label sequence
in ℒ corresponds to exactly one such path. We parame-
terize this auxiliary CRF identically to our original CRF –
that is, with label-wise (not tag-wise) transition and emis-
sion functions. Thus, for all parameterizations 𝜽, both
distributions �̂�𝜽(y ∣ x) and �̂�𝜽(y ∣ x; ℒ) are well defined.

There are many ways to construct such a CRF. As CRF
training and inference are quadratic in the size of the tag
set𝑌, wewould prefer a constructionwhichminimizes |𝑌|.
However, for clarity, we will first present a conceptually
simple construction, and discuss approaches to reduce |𝑌|
in Section 5.4.2. We start with our original CRF, param-
eterized by 𝜽, with tag set 𝑌 = Σ, transition function 𝑔𝜽,
and emission function ℎ𝜽, describing the probability dis-
tribution �̂�𝜽(y ∣ x), where y varies over sequences in Σ∗.
From this, we construct a new CRF, also parameterized
by the same 𝜽, but with tag set 𝑌′, transition function 𝑔′

𝜽,
and emission function ℎ′

𝜽. This auxiliary CRF describes
the distribution �̂�′

𝜽(y′ ∣ x) (with y′ varying over 𝑌′∗),
which we will be able to interpret as �̂�𝜽(y ∣ x; ℒ). The

168

construction is as follows:

𝑌′ = 𝐸 (5.3)

𝑔′
𝜽 ((𝑞, 𝑎, 𝑟), (𝑞′, 𝑎′, 𝑟′)) =

⎧{
⎨{⎩

𝑔𝜽(𝑎, 𝑎′) if 𝑟 = 𝑞′

−∞ otherwise
(5.4)

ℎ′
𝜽 (𝒙, (𝑞, 𝑎, 𝑟), 𝑖) =

⎧{{{
⎨{{{⎩

−∞ if 𝑖 = 1, 𝑞 ≠ 𝑞1

−∞ if 𝑖 = 𝑡, 𝑟 ∉ 𝐹

ℎ𝜃(𝒙, 𝑎, 𝑖) otherwise

(5.5)

This means that the tags of our new CRF are the edges
of 𝑀, the transition function assigns zero probability to
transitions between edges which do not pass through a
shared NFA state, and the emission function assigns zero
probability to tag sequences which do not begin at the
starting state or end at an accepting state. Apart from
these constraints, the transition and emission functions
depend only on edge labels, and not on the edges them-
selves, and agreewith the standard CRF’s 𝑔𝜽 and ℎ𝜽 when
no constraints are violated.

As 𝑀 is unambiguous, every tag sequence 𝒚 corre-
sponds to a single path through 𝑀, representable as an
edge sequence 𝝅 = ⟨𝜋1, 𝜋2, ..., 𝜋𝑡⟩, 𝜋𝑖 ∈ 𝐸. Since this

169

path is a tag sequence for our auxiliary CRF, we can di-
rectly calculate the auxiliary CRF’s �̂�′

𝜽(𝝅 ∣ 𝒙). From the
construction of 𝑔′

𝜽 and ℎ′
𝜽, this must be equal to �̂�𝜽(𝒚 ∣

𝒙; ℒ), as it is proportional to �̂�𝜽(𝒚 ∣ 𝒙) for 𝒚 ∈ ℒ, and zero
(or, more correctly, undefined) otherwise. Figure 5.1 il-
lustrates this construction with a concrete example.

5.4.2 Time and space efficiency

As the Viterbi and forward algorithms are quadratic in
|𝑌|, very large tag sets can lead to performance issues,
possibly making training or inference intractable in ex-
treme cases. Thus, we would like to characterize under
which conditions a RegCCRF can be used tractably, and
identify techniques for improving performance. As 𝑌
corresponds to the edges of 𝑀, we would like to select
our unambiguous automaton 𝑀 to have as few edges as
possible. For arbitrary languages, this problem is NP-
complete (Jiang and Ravikumar, 1991), and, assuming
P ≠ NP, is not even efficiently approximable (Gruber and
Holzer, 2007). Nonetheless, for many common classes
of languages, there exist approaches to obtain a tractably
small automaton.

170

One straightforward method is to construct 𝑀 directly
froma short unambiguous regular expression. Brüggemann-
Klein and Wood (1992) present a simple algorithm for
constructing an unambiguous automaton from an unam-
biguous regular expression, with |𝑄| linear in the length
of the expression. Using this method to construct 𝑀, the
time- and space-complexity of Viterbi are polynomial in
the length of our regular expression, with a worst-case
of quartic complexity when the connectivity graph of 𝑀
is dense.

For many other tasks, a reasonable approach is to lever-
age a priori knowledge about the constraints to manually
construct a small unambiguous automaton. For example,
if the constraints require that a particular label occurs
exactly 𝑛 times in the output sequence, an automaton
could be constructed manually to count occurrences of
that label. Multiple constraints of this type can then be
composed via automaton union and intersection.

Without making changes to 𝑀, we can also reduce the
size of |𝑌| by adjusting our construction. Instead of mak-
ing each edge of𝑀 a tag, we can adopt equivalence classes
of edges. Reminiscent of standard NFA minimization,
we define (𝑞, 𝑎, 𝑟) ∼ (𝑞′, 𝑎′, 𝑟′) ↔ (𝑞, 𝑎) = (𝑞′, 𝑎′). When

171

constructing our CRF, whenever a transition would have
been allowed between two edges, we allow a transition
between their corresponding equivalence classes. We do
the same to determine which classes are allowed as initial
or final tags. As each equivalence class corresponds (non-
uniquely) to a single symbol 𝑎, we can translate between
tag sequences and strings of ℒ just as before.

Finally, when other approaches for reducing the size
of 𝑀 are not enough, it is always possible to simplify the
constraint language ℒ to a language which only approx-
imates the desired constraints, but which is expressible
with a smaller automaton. Of note, this doesn’t neces-
sarily involve making the constraints more permissive
– stricter constraints might lead to a smaller automaton,
at the expense of excluding some valid predictions. In
practice, such simplifications should be carried out with a
good understanding of the dataset and domain, such that
the simplified language will only lead to degraded perfor-
mance on a small minority of predictions. In Section 5.7.2,
we will describe the use of these sorts of simplifications
in practice.

172

5.4.3 Interpretation as a weighted finite-state
transducer

While we present our model as a variation of a standard
CRF which enforces regular-language constraints, an al-
ternate characterization is as a weighted finite-state trans-
ducer with the transducer topology and weight param-
eterization chosen so as to yield the distribution �̂�𝜽(y ∣
x; ℒ). In order to accommodate CRF transition weights,
such an approach involves weight-learning in an auxil-
iary automaton whose edges correspond to edge-pairs in
𝑀 – we give a full construction in Appendix B.2.

This interpretation enables direct comparison to stud-
ies on weight learning in finite-state transducers, such
as Rastogi et al. (2016). While RegCCRFs can be viewed
as special cases of neural-weighted FSTs, they inherit a
number of useful properties from CRFs not possessed by
neural-weighted automata in general. Firstly, as |𝒚| is nec-
essarily equal to |𝒙|, the partition function ∑𝑦∈ℒ �̂�𝜽(𝒚 ∣
𝒙; ℒ) is guaranteed to be finite, and �̂�𝜽(y ∣ x; ℒ) is a well-
defined probability distribution for all 𝜽, which is not true
for weighted transducers in general, which may admit
paths with unbounded lengths and weights. Secondly,

173

as 𝑀 is assumed to be unambiguous, string probabili-
ties correspond exactly to path probabilities, allowing
for exact MAP inference with the Viterbi algorithm. In
contrast, finding the most probable string in the highly
ambiguous automata used when learning edge weights
for an unknown language is NP-Hard (Casacuberta and
de la Higuera, 1999), necessitating approximation meth-
ods such as crunching (May and Knight, 2006). Finally,
as each RegCCRF can be expressed as a CRFwith a partic-
ular parameterization, the convexity guarantees of stan-
dard CRFs carry over, in that the loss is convex with
respect to emission and transition scores. In contrast,
training losses in general weighted finite-state transduc-
ers are usually nonconvex (Rastogi et al., 2016).

5.5 Comparing constrained training
to constrained decoding

Our construction suggests two possible use cases for a
RegCCRF: constrained decoding, where a CRF is trained
without constraints, and the learned weights are then
used in a RegCCRF at decoding time, and constrained

174

training, where a RegCCRF is both trained and decoded
with constraints. In this section, we compare between
these two approaches and a standard, unconstrained CRF.
We assume we have a data distribution 𝑃(x, 𝒚) over (𝒙, 𝒚)
pairs with each 𝒙 ∈ 𝑋∗, and each 𝒚 of matching length in
some regular language ℒ ⊆ Σ∗. We wish to model our
target distribution 𝑃(y ∣ x) with either a CRF or a Reg-
CCRF, byway ofmaximizing themodel’s (log) likelihood
given the data distribution. This section will investigate
the best-case performance of CRFs and RegCCRFs, and
will assume perfect optimization. Latter sections will
compare the two architectures empirically using more
realistic optimization settings.

The unconstrained CRF corresponds to a CRF that has
been trained, without constraints, on samples from 𝑃,
and is used directly for inference: It makes no use of the
languageℒ. Themodel’s output distribution is �̂�𝜽∗

u
(y ∣ x),

with parameter vector 𝜽∗
u minimizing the NLL objective:

𝜽∗
u = argmin

𝜽
𝐸𝒙,𝒚∼𝑃 [− ln �̂�𝜽(𝒚 ∣ 𝒙)] (5.6)

In constrained decoding, a CRF is trained unconstrained,
but its weights are used in a RegCCRF at decoding time.

175

The output distribution of such a model is �̂�𝜽∗
u
(𝒚 ∣ 𝒙; ℒ).

It is parameterized by the same parameter vector 𝜽∗
u as the

unconstrained CRF, as the training procedure is identical,
but the output distribution is conditioned on the event
y ∈ ℒ.

Constrained training involves directly optimizing a
RegCCRF’s output distribution, avoiding any asymmetry
between training and decoding time. In this case, the
output distribution of the model is �̂�𝜽∗

c
(𝒚 ∣ 𝒙; ℒ), where

𝜽∗
c = argmin

𝜽
𝐸𝒙,𝒚∼𝑃 [− ln �̂�𝜽(𝒚 ∣ 𝒙; ℒ)] (5.7)

is the parameter vector which minimizes the NLL of the
RegCCRF’s constrained distribution.

We will demonstrate that these three approaches form
a hierarchy in terms of their ability to match the data
distribution:

𝐿unconstrained ≥ 𝐿constrained decoding ≥ 𝐿constrained training,
(5.8)

with each 𝐿 corresponding to the negative log-likelihood
assigned by each model to the data. This suggests that,
all other factors notwithstanding, we should prefer the

176

constrained training regimen to best model the target
distribution. Here we will prove this inequality.

Theorem 1. For arbitrary 𝜽:
𝐸𝒙,𝒚∼𝑃 [− ln �̂�𝜽(𝒚 ∣ 𝒙)] ≥ 𝐸𝒙,𝒚∼𝑃 [− ln �̂�𝜽(𝒚 ∣ 𝒙; ℒ)]

Here we compare the distributions �̂�𝜽(𝒚 ∣ 𝒙) and �̂�𝜽(𝒚 ∣
𝒙; ℒ). We wish to demonstrate that �̂�𝜽(𝒚 ∣ 𝒙) can never
achieve lower NLL than �̂�𝜽(𝒚 ∣ 𝒙; ℒ), and that the two
distributions achieve identical NLL only when �̂�𝜽(𝒚 ∣
𝒙) = �̂�𝜽(𝒚 ∣ 𝒙; ℒ) i.e. when constraints have no effect. Of
note, this proof is valid for all parameterizations 𝜽, and
not just for 𝜽∗

u.

Proof. Since every 𝒚 in 𝑃 is in ℒ,

�̂�𝜽(𝒚 ∣ 𝒙; ℒ) = 𝛼 ⋅ �̂�𝜽(𝒚 ∣ 𝒙), (5.9)

with 𝛼 ≥ 1. Thus, the NLL of the regular-constrained
CRF is

𝐸𝒙,𝒚∼𝑃 [− ln �̂�𝜽(𝒚 ∣ 𝒙; ℒ)] = 𝐸𝒙,𝒚∼𝑃 [− ln �̂�𝜽(𝒚 ∣ 𝒙)]− ln 𝛼.
(5.10)

This differs from the NLL of the unconstrained CRF only
by the term − ln 𝛼. As 𝛼 ≥ 1, the regular-constrained

177

CRF’s NLL is less than or equal to that of the uncon-
strained CRF, with equality only when 𝛼 = 1 and there-
fore �̂�𝜽(𝒚 ∣ 𝒙) = �̂�𝜽(𝒚 ∣ 𝒙; ℒ).

Theorem 2.
𝐸𝒙,𝒚∼𝑃 [− ln �̂�𝜽∗

u
(𝒚 ∣ 𝒙; ℒ)] ≥ 𝐸𝒙,𝒚∼𝑃 [− ln �̂�𝜽∗

c
(𝒚 ∣ 𝒙; ℒ)]

In this case, we compare the distributions �̂�𝜽∗
u
(𝒚 ∣ 𝒙; ℒ)

and �̂�𝜽∗
c
(𝒚 ∣ 𝒙; ℒ). We will demonstrate that the former

cannot achieve a lower NLL against the data distribution
than the latter.

Proof. This follows directly from our definitions, as we
define 𝜽∗

c to minimize the NLL of �̂�𝜽(𝒚 ∣ 𝒙; ℒ) against the
data distribution. Thus, �̂�𝜽∗

u
(𝒚 ∣ 𝒙; ℒ) could never yield

a lower NLL than �̂�𝜽∗
c
(𝒚 ∣ 𝒙; ℒ), as that would contradict

our definition of 𝜽∗
c .

5.6 Synthetic data experiments

While constrained training cannot underperform con-
strained decoding, the conditions where it is strictly bet-
ter depend on exactly how the transition and emission
functions are parameterized, and are not easily stated

178

in general terms. We now empirically show two sim-
ple experiments on synthetic data where the two are not
equivalent.

The procedure is similar for both experiments. We spec-
ify a regular language ℒ, an observation alphabet 𝑋, and
a data distribution 𝑃(𝒙, 𝒚) over observation sequences in
𝑋∗ and label sequences in ℒ. We then train two mod-
els, one with a RegCCRF, parameterized by 𝜽∗

c , and one
with an unconstrained CRF, parameterized by 𝜽∗

u. For
each model, we initialize parameters randomly, then use
stochastic gradient descent tominimize theNLL objective.
We directly generate samples from 𝑃 to use as training
data. After optimizing 𝜽∗

c and 𝜽∗
u, we construct a Reg-

CCRF with 𝜽∗
u for use as a constrained-decoding model,

and we compare the constrained-training distribution
�̂�𝜽∗

c
(y ∣ x; ℒ) with the constrained-decoding distribution

�̂�𝜽∗
u
(y ∣ x; ℒ).

We use a simple architecture for our models, with both
the transition functions 𝑔𝜽 and emission functions ℎ𝜽 rep-
resented as parameter matrices. We list training hyper-
parameters in Appendix B.1.

179

5 10 15 20
0

0.2

0.4

0.6

0.8

1

𝑘

𝑃(
(a

c)
𝑘)

Constrained decoding
Constrained training
Data distribution

5 10 15 20

1

2

3

4

5

𝑘

N
eg

at
iv
e
lo
g-

lik
el
ih
oo

d Constrained decoding
Constrained training
Data distribution entropy

Figure 5.2: Model output probabilities, and NLL losses,
plotted against sequence length 𝑘. As 𝑘 in-
creases, constrained decoding becomes a pro-
gressively worse approximation for the data
distribution, while constrained training is con-
sistently able to match the data distribution.

5.6.1 Arbitrarily large differences in
likelihood

We would like to demonstrate that, when comparing
constrained training to constrained decoding in terms
of likelihood, constrained training can outperform con-
strained decoding by an arbitrary margin. We choose
ℒ = (ac)∗ ∣ (bc)∗ to make conditional independence par-
ticularly relevant – as every even-indexed label is c, an
unconstrained CRF must model odd-indexed labels inde-
pendently, while a constrainedCRF can use its constraints

180

to account for nonlocal dependencies. For simplicity, we
hold the input sequence constant, with 𝑋 = {o}.

Our approach is to construct sequences of various lengths.
For 𝑘 ∈ ℕ, we let our data distribution be

𝑃(o2𝑘, (ac)𝑘) =
3
4 ;

𝑃(o2𝑘, (bc)𝑘) =
1
4 .

(5.11)

As the marginal distributions for odd-indexed characters
are not independent, an unconstrained CRF cannot ex-
actly represent the target distribution 𝑃(y ∣ x). We train
and evaluate individual models for each sequence length
𝑘. Figure 5.2 plots model probabilities and NLL losses
for various 𝑘. We see that, regardless of 𝑘, �̂�𝜃𝑐

(y ∣ x; ℒ)
is able to match 𝑃(y ∣ x) almost exactly, with only small
deviations due to sampling noise in SGD. On the other
hand, as sequence length increases, �̂�𝜃𝑢

(y ∣ x; ℒ) be-
comes progressively “lop-sided”, assigning almost all of
its probability mass to the string (ac)𝑘. This behavior is
reflected in the models’ likelihoods – constrained train-
ing stays at near-constant likelihood for all 𝑘, while the
negative log-likelihood of constrained decoding grows
linearly with 𝑘.

181

5.6.2 Differences in MAP inference

We show here that constrained training and constrained
decoding can disagree about which label sequence they
deem most likely. Furthermore, in this case, MAP infer-
ence agrees with the data distribution’s mode for con-
strained training, but not for constrained decoding. To
do this, we construct a fixed-length output language
ℒ = acd ∣ bcd ∣ bce, where an unconstrained CRF is lim-
ited by the Markov property to predict 𝒚’s prefix and suf-
fix independently, and choose a data distribution which
violates this independence assumption. We select our
data distribution,

𝑃(ooo, acd) = 0.4;

𝑃(ooo, bcd) = 0.3;

𝑃(ooo, bce) = 0.3 ,

(5.12)

to be close to uniform, but with one label sequence hold-
ing the slight majority, and we ensure that the majority
label sequence is not the label sequence with both the ma-
jority prefix and the majority suffix (i.e. bcd). As before,
we hold the observation sequence as a constant (ooo).
We train a constrained and an unconstrained CRF to con-

182

𝒚 𝑃(𝒚 ∣ 𝒙) �̂�𝜽∗
u
(𝒚 ∣ 𝒙; ℒ) �̂�𝜽∗

c
(𝒚 ∣ 𝒙; ℒ)

acd 0.4 0.32 0.40
bcd 0.3 0.48 0.30
bce 0.3 0.20 0.30

Table 5.1: Output distributions for constrained decod-
ing (�̂�𝜽∗

u
(𝒚 ∣ 𝒙; ℒ)) and constrained training

(�̂�𝜽∗
c
(𝒚 ∣ 𝒙; ℒ)), compared to the target distri-

bution 𝑃(𝒚 ∣ 𝒙). Constrained decoding cannot
learn the target distribution exactly, and yields
a mode which disagrees with that of the target
distribution.

vergence, and compare �̂�𝜽∗
u
(y ∣ x; ℒ) to �̂�𝜽∗

c
(y ∣ x; ℒ).

Table 5.1 shows �̂�𝜽∗
u
(y ∣ x; ℒ) and �̂�𝜽∗

c
(y ∣ x; ℒ) as they

compare to 𝑃(y ∣ x). We find that, while the mode of
𝑃(y ∣ x) is acd, with probability of 0.4, the mode of con-
strained decoding distribution �̂�𝜽∗

u
(y ∣ x; ℒ) is bcd, the

string with the majority prefix and the majority suffix,
to which the model assigns a probability of 0.48. Con-
versely, the constrained training distribution �̂�𝜽∗

c
(y ∣ x; ℒ)

matches the data distribution almost exactly, and predicts
the correct mode.

183

5.7 Real-world data experiment:
semantic role labeling

As a final experiment, we apply our RegCCRF to the
relation extraction task of semantic role labeling (SRL) in
the popular PropBank framework (Palmer et al., 2005).
We use our architecture to extract relations corresponding
to events, with each relation containing a predicate and all
of its arguments as spans. In line with previous work, we
adopt the known-predicate setting, where event predicates
are given and the task is to mark token spans as event
participants, labeled by their (semantic) roles. PropBank
assumes 7 semantic core roles (ARG0 through ARG5 plus
ARGA) plus 21 non-core roles for modifiers such as times or
locations. For example, in

ARG0
Peter saw

ARG1
Paul

ARGM-TMP
yesterday,

the argument labels informuswhodoes the seeing (ARG0),
who is seen (ARG1), and when the event took place (ARGM-
TMP). In addition, role spans may be labeled as continu-
ations of previous role spans, or as references to another
role span in the sentence. SRL can be framed naturally
as a sequence labeling task (He et al., 2017b). However,

184

the task comes with a number of hard constraints that
are not automatically satisfied by standard CRFs:

1. Each core role may occur at most once per event.

2. For continuations, the corresponding span type
must occur previously in the sentence.

3. For references, the corresponding span type must
occur elsewhere in the sentence (before or after).

5.7.1 Data

In line with previous work (Ouchi et al., 2018), we work
with the OntoNotes corpus as used in the CoNLL 2012
shared task1 (Weischedel et al., 2011; Pradhan et al., 2012),
whose training set comprises 66 roles (7 core roles, 21
non-core roles, 19 continuation types, and 19 reference
types).

1As downloaded from https://catalog.ldc.upenn.edu/
LDC2013T19, and preprocessed according to https:
//cemantix.org/data/ontonotes.html

185

https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
https://cemantix.org/data/ontonotes.html
https://cemantix.org/data/ontonotes.html

5.7.2 RegCCRF Models

To encode the three constraints listed above in a Reg-
CCRF, we define a regular language describing valid BIO
sequences (Ramshaw andMarcus, 1999) over the 66 roles.
Aminimal unambiguous NFA for this language has more
than 22 ⋅ 319 states, which is too large to run the Viterbi
algorithm on our hardware. However, as many labels are
very rare, we can shrink our automaton by discarding
them at the cost of imperfect recall. We achieve further
reductions in size by ignoring constraints on reference
roles, treating them identically to non-core roles. Our fi-
nal automaton recognizes 5 core role types (ARG0 through
ARG4), 17 non-core / reference roles, and one continua-
tion role type (for ARG1). This automaton has 672 states,
yielding a RegCCRF with 2592 tags. A description of our
procedure for constructing this automaton can be found
in Appendix B.3.

Our model is given by this RegCCRF, with emission
scores provided by a linear projection of the output of a
pretrained RoBERTa network (Liu et al., 2019). In order
to provide the model with event information, the given
predicates are prefixed by a special reserved token in
the input sequence. RoBERTa parameters are fine-tuned

186

during the learning of transition scores and projection
weights. We perform experiments with both constrained
training and constrained decoding settings – wewill refer
to these as ConstrTr and ConstrDec respectively. A full
description of the training procedure, including training
times, is provided in Appendix B.1.

As RegCCRF loss is only finite for label sequences in ℒ,
we must ensure that our training data do not violate our
constraints. We discard some roles, as described above,
by simply removing the offending labels from the training
data. In six cases, training instances directly conflict with
the constraints specified — all cases involve continuation
roles missing a valid preceding role. We discard these
instances for ConstrTr.

5.7.3 CRF baselines

As baseline models, we use the same architecture, but
with a standard CRF replacing the RegCCRF. Since we
are not limited by GPU memory for CRFs, we are op-
tionally able to include all role types present in the train-
ing set, using the complete training set. We present two
CRF baseline models: CRF-full, which is trained on all

187

Model Precision(rank) Recall(rank) 𝐹1
(rank)

Our
models

CRF (CRF-full) 86.89(2) 87.81(1) 87.35(2)

CRF (CRF-reduced) 86.92(2) 87.35(2) 87.13(3)

RegCCRF (ConstrDec) 87.05(1.5) 87.38(2) 87.21(2.5)

RegCCRF (ConstrTr) 87.31(1) 87.76(1) 87.53(1)

Results
from
literature

He et al. (2017b) — — 85.5
Ouchi et al. (2018) 87.1 85.3 86.2
Ouchi et al. (2018) Ensemble 88.5 85.5 87.0
Li et al. (2019) 85.7 86.3 86.0

Table 5.2: Results from our experiments (averaged over
twelve trials), along with selected reported re-
sults from recent literature. We rank of our
models by precision, recall, and 𝐹1 score – there
exists a significant difference between two com-
parable values if and only if their rankings dif-
fer by one or more. Statistical significance is
reported at 𝑝 < 0.05 (two-tailed), as measured
by a permutation test.

role-types from the training set, and CRF-reduced, which
includes the same subset of roles as the RegCCRFmodels.
For CRF-reduced, we use the same learned weights as for
ConstrDec, but we decode without constraints.

5.7.4 Results and analysis

We evaluate our models on the evaluation partition, and
measure performance using 𝐹1 score for exact spanmatches.

188

For comparability with prior work, we use the evaluation
script2 for the CoNLL-2005 shared task (Carreras and
Màrquez, 2005b). These results, averaged over twelve
trials, are presented in Table 5.2.

All of our models outperformed the ensemble model
of (Ouchi et al., 2018), which represented the state of the
art for this task at the time of original publication of this
work. We ascribe this improvement over the existing liter-
ature to our use of RoBERTa – prior work in SRL relies on
ELMo (Peters et al., 2018), which tends to underperform
transformer-based models on downstream tasks (Devlin
et al., 2019a).

Of our models, ConstrTr significantly3 outperforms the
others in 𝐹1 score and yields a new SOTA for SRL on
OntoNotes, in line with expectations from theoretical
analysis and on synthetic data. For our unconstrained
models, CRF-full and CRF-reduced, the constraints speci-
fied in our automaton are violated in 0.81% and 0.84% of
all output sequences respectively.4

2As available from https://www.cs.upc.edu/~srlconll/soft.
html.

3All significance results are at the 𝑝 < 0.05 level (two-tailed), as
measured by a permutation test over the twelve trials of each
model.

4For CRF-full, we only count violations of constraints for those roles

189

https://www.cs.upc.edu/~srlconll/soft.html
https://www.cs.upc.edu/~srlconll/soft.html

Among our four models, we see interesting trade-offs
between precision and recall. For precision, while not all
comparisons reach statistical significance, models with
constraints seem to outperform those without. This is not
surprising at all: the purpose of constraints is to prevent
models from making predictions we know to be false a
priori, and so we should expect constrained models to be
more precise overall.

For recall, we observe two clusters: CRF-full and Constr-
Tr both perform a bit better, while CRF-reduced and Constr-
Dec both perform a bit worse. As CRF-full is the only
model using the full tag set, and thus the only one capa-
ble of predicting rare role types, its high recall is to be
expected. Our other three models show an interesting
pattern with regards to recall: CRF-reduced and ConstrDec
perform about at parity, with ConstrTr showing signifi-
cant improvements. This behavior turns out to be quite
intuitive: CRF-reduced and ConstrDec were trained iden-
tically, and only differ in their decoding procedure. The
decoding-time constraints of ConstrDec largely work to
prevent spurious predictions, and so we shouldn’t expect
these models to differ much in the number of true roles

that our automaton accounts for.

190

Model Precision(rank) Recall(rank) 𝐹1
(rank)

Core
roles

CRF (CRF-full) 89.81(1.5) 90.62(2) 90.21(2)

CRF (CRF-reduced) 89.79(2) 90.59(2) 90.19(2)

RegCCRF (ConstrDec) 90.01(1.5) 90.56(2) 90.28(2)

RegCCRF (ConstrTr) 90.11(1) 90.92(1) 90.51(1)

Non-
core
roles

CRF (CRF-full) 80.70(2) 81.84(1) 81.27(1)

CRF (CRF-reduced) 80.75(1.5) 80.44(3) 80.59(2)

RegCCRF (ConstrDec) 80.71(1.5) 80.59(3) 80.65(2)

RegCCRF (ConstrTr) 81.29(1) 81.03(2) 81.16(1)

Table 5.3: Results for our models, broken down for core
and noncore roles. Rankings and significance
tests are calculated identically as in Table 5.2.

they predict. On the other hand, since ConstrTr is trained
with constraints, it can learn to be less “cautious,” with its
predictions, as its constraints will automatically prevent
many false positives. Thus, at evaluation time, ConstrTr
finds more roles that were avoided by CRF-reduced and
ConstrDec.

Looking at individual roles, we find that ConstrTr im-
proves upon both ConstrDec and CRF-reduced on both
core- and noncore roles, as is shown in Table 5.3. This is
somewhat surprising, as noncore roles are not themselves
subject to any constraints, and so we might expect that
model constraints shouldn’t affect performance on this
class. Nonetheless, as we demonstrated in Section 5.6.2,

191

constraints during training can help models select the
correct alternative during inference even when none of
those alternatives violate the constraints. We suspect a
similar effect is at play here.

5.8 Conclusion and future work

In this chapter, we presented amethod for joint entity and
relation extraction based on enforcing regular-language
constraints on a CRF sequence labeling model. We in-
vestigated the resulting RegCCRF architecture both theo-
retically and empirically. From the theoretical perspec-
tive, we examined how constraints interact with training
– while existing approaches allow constraints to be en-
forced at prediction time, our construction also permits
constraints to be used during training. We demonstrate
conclusively that training-time constraints can better cap-
ture the target distribution, and should be preferred. Em-
pirically, we use our proposed model for semantic role
labeling, showing that our proposal is a practical and
effective approach to joint entity and relation extraction.

Considering task-general relation extraction as a whole,
RegCCRFs represent a promising approach to jointly

192

modeling entities and relations, and provide an elegant
formalism for encoding task constraints. However, de-
spite their success at SRL, RegCCRFs posses a number
of limitations that prevent their use as stand-alone task-
general architectures. We propose that they are best seen
not as an all-in-one architecture, but as a useful build-
ing block for use within task-general architectures. Here,
we will briefly discuss how RegCCRFs could be incorpo-
rated into architectures which are applicable for wider
classes of tasks, framing this discussion in terms of their
limitations as stand-alone architectures.

Themost immediately apparent limitation of RegCCRFs
is their inability to enforce non-regular constraints. Some-
what surprisingly, this turns out to not limit us verymuch,
as the vast majority of relation extraction tasks seem to
have constraints that are expressible as a regular language.
Nonetheless, there are cases when a more expressive lan-
guage for constraints is desired – for instance, in tasks
that allow relations to be entities in super-relations, re-
lations may take on a tree structure, and might neces-
sitate context-free constraints. Nonetheless, even here,
RegCCRFs could be used along with regular-language
approximations of the true constraints – in the context

193

free case, for instance, such approximations are easily
computable and well-studied (Nederhof, 2000; Mohri
and Nederhof, 2001; Egecioglu, 2009). An architecture
for such tasks could incorporate a RegCCRF to enforce
depth-limited constraints, with some post-processing to
ensure that predictions abide by the full constraints.

A more subtle, yet much more relevant shortcoming
involves how RegCCRFs model long-distance dependen-
cies. While the CRF can learn arbitrary local interactions
between adjacent labels, the long-distance dependencies
introduced by constraints can only be specified a priori,
not learned. Thus, a pure RegCCRF-based model for
relation extraction cannot learn arbitrary interactions be-
tween the different spans of a relation. In practice, in a
document containing multiple relations, a RegCCRF has
no way of partitioning the spans it finds into multiple
cohesive relations. For example, if a document contains
two distinct binary relations of the same type (involv-
ing four distinct spans), a pure RegCCRF would have
no mechanism for preferring the two true relations over
the two false relations by taking one entity from each
true relation. In the case of SRL, since predicates are
marked in the input, the RegCCRF is capable of learning

194

interactions between all spans and the predicate – these
interactions prove sufficient for this task.

One promising approach to tackling this shortcoming
involves using RegCCRFs as the second stage of a pipeline
architecture based around anchor spans, similar to those
discussed in Chapter 3. For many tasks, there is a sin-
gle span type that exists in a one-to-one relation with
relations – each occurrence of such an anchor span corre-
sponds to a single occurrence of a relation containing that
span as an entity. For SRL, predicates act as anchor spans,
albeit ones that are given in the input. For any task that
has anchor spans, we could devise a pipeline architecture
wherein the first step involves identifying these anchor
spans, and the second step uses a RegCCRF to build re-
lations for each anchor span. As the anchor spans will
be marked in the input of the RegCCRF, it will be able to
learn arbitrary interactions between these anchor spans
and all other spans.

Overall, we hope that RegCCRFs can be a valuable
tool in building further task-general relation extraction
architectures.

195

Chapter 6

Conclusion

This dissertation has focused on task generality as
it applies to relation extraction tasks and architec-

tures. Task generality, as we define it, is an oft-overlooked
property of model architectures which describes how
well those architectures will generalize when separately
trained and evaluated on diverse tasks. If a model archi-
tecture is highly task-general, we would expect to be able
to instantiate specificmodels for many diverse tasks, such
that each model can be successfully trained to yield good
performance. Conversely, an architecture which is less
task-general may only allow us to instantiate models for
a narrow category of tasks, or at least the models of that
architecture might only show empirical success on such
a narrow subset. Unlike model transferability, a concept

197

for describing the generalization of a specific model’s
already-learned parameters to other tasks, task generality
deals with models’ ability to learn successful parameters
when they are trained from scratch on tasks.

Wenote that task generality is of particular difficulty for
relation extraction. While this is partially due to conflict-
ing definitions for different relation extraction tasks, such
conceptual mismatches can be addressed. Indeed, in Sec-
tion 2.2, we present a general framework of definitions for
relation extraction tasks which can accommodate most
existing relation extraction tasks. However, while we can
describe most existing relation extraction tasks using a
general framework, modeling such diverse tasks using a
general architecture proves much less straightforward.
This can be viewed as a consequence of the large space
of possible relation structures, and a lack of of univer-
sally applicable limiting independence assumptions: Our
general definitions lead to a combinatorial explosion in
possible relation structures for models to predict, and
there is no obvious, task-general way of breaking things
up into smaller, tractable subtasks. Instead, specific lim-
iting assumptions are applicable for specific tasks, and
models which incorporate such task-specific assumptions

198

are not capable of being applied to tasks for which those
assumptions don’t hold.

This dissertation has investigated how we can work
towards task generality for relation extraction in light
of these challenges. To this end, we have identified a
number of directions for progress in which we havemade
contributions:

In Chapter 3, we explored the use of formal specifica-
tion in order to facilitate task generality in architectures.
We developed a specification language capable of captur-
ing much of the variety in relation extraction tasks, and
incorporated this as part of DeRE, a software framework
for developing and using task-general relation extraction
architectures.

In Chapter 4, we focused only on the subtask of span
extraction. Under this context, we investigated corpus
generality in Section 4.1, where we identified many of
the same difficulties as are found with task generality,
and proposed a model architecture capable of general-
izing to the different corpora’s assumptions about input
features, language, and output structure. Section 4.2
then investigated the use of performance prediction as
a tool for investigating task generality. We found that

199

the task of predicting an architecture’s performance on a
task, based on the properties of the task, the properties
of the architecture, and their interactions, is a powerful
tool for understanding the circumstances under which
architectures might be expected to generalize well to new
tasks.

Finally, Chapter5 investigated relation extraction as
span extraction with global constraints. We propose Reg-
CCRFs, a method of enforcing global regular-language
constraints on the output of linear-chain CRFs. After in-
vestigating the architecture’s theoretical properties, we
demonstrate that such models can be used directly for
relation extraction by applying a RegCCRF to semantic
role labeling, using the constraint language to encode
information about the task structure for the model.

6.1 Persisting limitations

While we were able to make progress towards more task-
general architectures, there is still an enormous amount
of work to be done before we might start approaching the
levels of task generality found in task paradigms such
as text classification and text generation. In this section,

200

we will highlight a few outstanding issues which we con-
sider to be the main stumbling blocks towards more task-
general architectures, and discuss how these limitations
might be addressed in the future.

6.1.1 Extrinsic incompatibilities

While there are many deep, theoretical challenges to task-
generality in relation extraction, it is important not to
understate the more surface-level hurdles. Perhaps due
to a lack of established consensus about relation extrac-
tion formalisms, many task pairs for which architectures
should be mutually compatible have subtle differences
in formalisms which make task-generality not impossi-
ble, but simply annoying. Such persistent annoyances
can discourage research into the task-generality of archi-
tectures before it begins. More nefariously, some mis-
matches in assumptions, while conceptually trivial, leave
no straightforwardway to “bridge the gap,” and preclude
fair comparisons between architectures which disagree
about those assumptions. This section will outline some
concrete examples of this sort of extrinsic incompatibility,
and discuss how such problems may be avoided in the

201

future.

Tokenization mismatches

As we note in Section 2.2.2, different tasks may make
different decisions regarding if and how the input text
should be broken up into tokens. While many tasks, such
as GENIA Event Extraction (Kim et al., 2013) and Ri-
QuA Quotation Analysis (Papay and Padó, 2020), treat
their input text as a pure character sequence, with no
notion of tokenization, others, such as parc quotation
attribution (Pareti, 2016) and OntoNotes semantic role
labeling (Weischedel et al., 2011), come with their in-
put text pre-tokenized, according to some tokenization
scheme. Model architectures usually require their text to
be tokenized in someway, and those based on pre-trained
language models require text be tokenized in the same
way as it was during pre-training. This is usually inconsis-
tent with corpus-provided tokenizations, requiring such
models to retokenize their input text.

While tokenization woes are ubiquitous in natural lan-
guage processing, the central role of text spans in most
relation extraction tasks makes tokenization mismatches
particularly painful. In tasks which define tokenizations,

202

all spans will align with the task’s token boundaries, and
most commonmodels can only predict spans which align
with the model’s tokenization. When amodel has a token
boundary where none is present in the corpus, the model
misses out on a useful hint that it should not predict a
span boundary there. When a corpus has a token bound-
ary where none is present for the model, the model is
entirely incapable of predicting spans beginning or end-
ing at that boundary.

An idealistic solution to these problems might be to
hope for someuniversally applicable tokenization scheme,
according to which all datasets can be tokenized and
which all models can accommodate. This is impractical –
datasets of different languages, and even different modal-
ities, have drastically different requirements for their tok-
enizations in order to ensure the representability of their
spans, and even the optimal tokenization scheme formod-
els can depend on the language of the text (Domingo
et al., 2023). Instead, we would propose that relation
extraction tasks should not specify any tokenization, and
architectures should be responsible for tokenizing text
“at their own risk.” Such a proposal wouldn’t directly
lead to task-general architectures, as many tokenization

203

schemes don’t generalizewell tomany tasks. For instance,
a model tokenizer which splits on whitespace may work
well for RiQuA, where quotation boundaries generally
coincide with spaces, but not for GENIA, where protein
names might be embedded in longer chemical formulæ.
Nonetheless, this convention would clearly delineate the
responsibilities of datasets and model architectures, and
could pave the road to future research into how architec-
tures can perform tokenization in a task-general manner.
It would furthermore allow for fairer comparisons be-
tween architectures with differing tokenization schemes
– at present, architectures capable of using a dataset’s
tokenization as-is have an unfair advantage over those
which must retokenize the text.

Differing input and feature assumptions

While relation extraction is primarily conceptualized as
the extraction of relations from text, it is not uncommon
for particular relation extraction datasets to come with
non-textual input. The nature of such input can vary from
simple textual annotations, such as the part-of-speech and
constituency information present for input texts in parc
(Pareti, 2016), to entirely non-textual modalities, such as

204

in the MNRE multimodal relation extraction task (Zheng
et al., 2021), wherein relations are illustrated with accom-
panying images which models can use to help make their
decisions. When two tasks make different assumptions
about what extratextual information is provided as input
for models, task-general architectures must either antic-
ipate all possible variations on model input, or simply
ignore some task-specific inputs, hindering performance
on those tasks.

Inmany cases, this problem cannot, andperhaps should
not, be solved. For instance, multi-modal relation extrac-
tion was introduced as a task specifically to investigate
howmodels can combine textual and visual cues – model
architectures for this task are designed to incorporate
visual information as a central component, and we would
not expect models designed for non-visual tasks to gen-
eralize well here. On the other hand, for extra-textual
information such as part-of-speech tags, we might ex-
pect architectures to make use of these as features when
present, while still working well when they are absent.

In this case, we feel that the path towards more task-
generality looks very different from the perspective of
architectures and from the perspective of tasks. For ar-

205

chitectures, we suggest designs which can easily incorpo-
rate optional information, while working fine when such
information is absent. For example, the bag-of-feature
approach to token representation we use for NQD in Sec-
tion 4.1 allows us to elegantly account for the variety in
tasks’ features. While it is impossible for architecture
designers to anticipate all types of features that tasks
might make available, simply allowing for arbitrary per-
token and per-document features is a good start. On the
other hand, for new tasks, we recommend that no extra-
textual information be provided unless it is central to the
task. Not only is this formalism generally more realis-
tic (deployed relation extraction models will rarely have
access to gold-standard parse trees, for instance), it also
greatly eases model comparisons, and precludes unfair
comparisons between feature-aware and feature-agnostic
architectures.

6.1.2 Challenges with relation building

Apart from these extrinsic hurdles to task-generality, there
exist more fundamental, theoretical challenges that limit
the task-generality of model architectures for relation

206

extraction. Throughout the works presented in this dis-
sertation, a common theme has been that task-general en-
tity extraction seems attainable, while fully task-general
architectures for end-to-end relation extraction remain
out of grasp. For instance, in Section 4.2, while we do
observe significant differences in how each span extrac-
tion architecture performs on different tasks, our higher-
performing architectures tend to performadequately across
all tasks, and seem to satisfy our practical needs for task-
general span extraction systems. On the other hand, the
two end-to-end relation extraction systems we present,
the DeRE baseline model from Chapter 3 and the Reg-
CCRF architecture presented in Chapter 5, are both quite
limited not even in their performance across tasks, but
in their applicability to diverse tasks: the DeRE baseline
can only be applied to tasks where relations are anchored
by a particular span type, and the RegCCRF architecture
can only be applied to tasks whose relation structures can
be represented as a regular language. A large scale com-
parison between full relation extraction models across
tasks, similar to that presented in Section 4.2 for span
extraction, would not be possible, as we never identified
any relation extraction models which could be broadly

207

applied across tasks.

We argue that this is largely a consequence of two fac-
tors: differences in the combinatorics of span extraction
and relation building, and the availability of broadly-
relevant simplifying assumptions for the former but not
for the latter. Combinatorically, it is easily observable
that the number of possible span structures for a docu-
ment of length 𝑛, 𝑂 (2𝑛2), is dwarfed by the number of
possible relation structures (assuming one 𝑘-ary relation
type between spans), 𝑂 (2𝑛2𝑘), making end-to-end rela-
tion extraction an intrinsically harder task than simple
span extraction. However, span extraction is further facil-
itated by broad acceptability of two critical simplifying
assumptions: a) Spans cannot overlap, and b) Distant
span candidates can be considered independently from
one another. While these two assumptions are not true
across all possible span extraction tasks, they are appli-
cable across a sizeable core of many diverse tasks. Im-
portantly, these allow span extraction to be reduced to
sequence labeling, a task paradigm for which an abun-
dance of powerful model architectures exist. On the other
hand, we were unable to identify such a broadly applica-
ble and helpful suite of simplifying assumptions which

208

can be used for relation building. Relation candidates
commonly compete with one another, precluding broad
independence assumptions between different candidates,
and often share entities between them, preventing us
from disallowing overlaps. Even if we could identify a set
of such assumptions for relation building, there are no
obvious choices for model architectures that could take
advantage of such assumptions equivalent to sequence
labeling architectures for span extraction. While the situ-
ation for task-general relation building may never be as
simple as that for span extraction, one way forward in-
volves a better understanding of the simplifying assump-
tions that are applicable to different classes of relation
extraction tasks, and of the model architecutures that are
available which can leverage these assumptions.

6.1.3 A poor understanding of
interdependencies

An formal investigation of this sort of simplifying as-
sumption is best understood in terms of dependency re-
lations between random variables in the data and model
distributions. We propose that much of the “mystery”

209

surrounding the generalizability or architectures comes
down to the independence assumptions of these architec-
tures, which can either hold, approximately hold, or not
hold for different tasks. Given this, we feel that a better
understanding and consistent treatment of the indepen-
dencies between variables of different tasks is essential
to furthering our understanding of architecture general-
izability.

(In)dependencies known a priori

In some cases, we will know a priori for a certain task that
certain output variables are to be treated as independent,
or conversely that they depend on one another in a certain
well-defined way. As a trivial example, almost all tasks
assume independence across documents, such that pre-
dictions for each document can be made independently
from other documents. As for dependencies, an example
might be the core role types in Semantic role labeling for
OntoNotes (Weischedel et al., 2011), wherein at most one
of each may occur for a given predicate – models should
ideally respect the dependency relations between the can-
didates for each core role in order to avoid predicting
more than one of them.

210

This dependency information can be interpreted as
“promises” particular task descriptions make about their
data distributions, wherein we might either be promised
that two variables are independent, or conversely that
a well-defined relationship exists between the values of
some variables. 1 When we are given such a promise,
there are benefits in selecting an architecturewhichmakes
similar promises about its model distributions. Asmodel-
ing variables independently is generallymuch easier than
modeling dependencies between them, a priori knowl-
edge of independencies can allow us to make “safe” sim-
plifying independence assumptions inmodels. Conversely,
if we can ensure an architecture will respect a known rela-
tion between output variables, we can reduce the search
space of our task “for free.”

In order to make better use of a priori dependency
information, it would be advantageous to create and cat-
alogue more model architectures which can directly ac-
count known dependencies and independencies via hy-
perparameters. This dissertation has proposed two such

1Of course, these promises might not be true – for instance, data
collection procedures for many datasets introduce dependencies
across documents. Nonetheless, we will consider the setting
where we would like to accept these promises without question

211

architectures: The baseline architecture for DeRE, pre-
sented in Chapter 3, takes task specifications, including
cardinality constraints for spans, as a hyperparameter,
and the RegCCRF architecture, presented in Chapter 5,
accepts as a hyperparameter a regular language encod-
ing a task’s hard constraints. However, both of these are
quite limited in their scope of applicability, and for most
relation extraction tasks, prior dependency knowledge
can only be utilized by bespoke architectures. We hope
that future research can develop further architectures
capable of being adapted to the known dependencies of
tasks, such that a broader range of tasks can be modeled
by adapting existing architectures.

Learnable dependencies and independence
assumptions

In contrast to the dependency knowledge discussed above,
many tasks have interdependencies between output vari-
ables which are not directly specified in task descriptions,
but rather arise as a consequence of the particulars of
the data. For instance, the RiQuA quotation detection
task does not constrain how distant a cue can be from a
quotation span, but empirically, a vast majority of cues

212

occur within ten tokens of their corresponding quotation
(Papay and Padó, 2020). This represents a dependency
between the textual position of these two entities within
a relation – models which attempt to predict quotations
and cues independently would be unable to to model this
preference for nearby spans.

This particular example was chosen to be as explicit as
possible, but also vastly understates the importance of
this sort of dependency. In fact, capturing these depen-
dencies is arguably the core of relation extraction – mod-
els need to account for dependencies between entities in
order to ensure that those entities are actually in a relation
with one another. However, as discussed in Section 1.1.2,
if models try to account for all interdependencies that
might be important, the space of model outputs explodes
combinatorially, making modeling intractable.

Many of the task-specific assumptions seen in contem-
porary model architectures can be viewed as independence
assumptions, wherein models assume that two variables
can be predicted independently of one another. For exam-
ple, in the CRF-based entity extractors seen in Chapters 3
and 4, the Markov assumption assumes independence of
distant tags (when conditioned on an intervening tag).

213

For relation building, we have discussed twomodels with
quite similar independence assumptions: In Chapter 3,
our baseline model assumes independence between pairs
of non-anchor spans in each relation, and in Chapter 5,
our RegCCRF model for semantic role labeling assumes
(Markov) independence between the different roles of
each predicate. 2

A major limitation we face in the development of more
task-general models is a lack of nuanced understanding
of when such independence assumptionsmight be appro-
priate. Very rarely are these independence assumptions
fully justified. For instance, in the GENIA event extrac-
tion task, there is no reason we should expect non-anchor
spans not to interact. Nonetheless, as architecture devel-
opers, we need to make some independence assumptions
in order to produce a tractable model architecture, and
assuming independence between non-anchor spans in
each relation seems to work “well enough.” However,
as we had no deep, theoretical reason for making this
2In actuality, both of these cases are complicated by other factors:

for the DeRE baseline model, the heuristic decoding step intro-
duces dependencies between competing role candidates, as do
the constraints of our RegCCRF. Nonetheless, these dependencies
are all hard constraints specified a priori, and these models are
incapable of learning dependencies between these variables.

214

assumption for this task, we have no insight into how
well this assumption might generalize to other tasks.

In the future, we might hope for a more powerful the-
oretical framework for justifying such independence as-
sumptions. This might involve the identification of spe-
cific dataset statistics which can adequately “summarize”
the variety in tasks’ dependency structures, such that the
values of these statistics can provide information about
which simplifying model assumptions might be appro-
priate. Such an approach would be similar to our work
for span extraction in Section 4, but we suspect that we
would need to account for many more task properties,
as relation extraction tasks seem much more varied than
span extraction tasks.

6.2 Future approaches to relation
extraction

Apart from addressing these shortcomings to existing
approaches, future work for relation extraction might
progress in entirely new directions. This section will
briefly discuss some ways the field might move forward

215

which were not already explored in the work presented
in this dissertation.

6.2.1 Large language models

During the completion of this dissertation, the state of
the art of language modeling advanced considerably, dis-
rupting many disparate areas of machine learning in a
similar manner that BERT and deep contextual embed-
ding systems did earlier. While this disruption arguably
began with the publication of GPT-2 in 2018 (Radford
et al., 2019), subsequent language models such as GPT-3
(Brown et al., 2020), PaLM (Chowdhery et al., 2022),
and LLaMA (Touvron et al., 2023) have continued to
push the limits of what is deemed possible for autoregres-
sive language modeling. Such language models, often
termed large language models (LLMs), don’t represent a
fundamental departure from existing paradigms of lan-
guage modeling; rather these models take advantage of
the scalability of transformer-based architectures, train-
ing billions of parameters on billions of tokens of text. By
scaling to such extremes in parameter count and corpus
size, LLMS are capable of generating high-quality, coher-

216

ent text, often indistinguishable from human-generated
text (Brown et al., 2020).

It has been demonstrated that LLMs can be adapted
for use for a wide range of tasks in NLP. One surprisingly
effective approach, termed prompt-based learning, in-
volves reframing tasks in terms of natural-language com-
pletion, encoding input as a prompt and polling a large
language model for a completion, which is interpreted
as the output. This approach takes advantage of LLMs’
text-completion abilities as-is, without any fine-tuning.
Prompt-based learning has been applied quite success-
fully to a number of NLP tasks which would traditionally
require task-specific supervised training. For instance,
in their initial publication on the GPT-3 model, Brown
et al. (2020) report competitive results in tasks such as
question answering, machine translation, and natural lan-
guage inference from a prompt-based approach. A large
number of variations on this approach exist; Liu et al.
(2023) provides a detailed overview of many common
techniques.

Given our focus on task-generality in this dissertation,
LLMs’ amenability to being adapted to somany disparate
tasks certainly warrants our attention. In fact, this behav-

217

ior does not quite coincide with task-generality as we
define it: as LLMs can be adapted to new tasks with only
a change of prompt, and without any retraining, the be-
havior exhibited is closer to transfer learning. On the
other hand, as fine tuning of LLM weights is often in-
feasible for practitioners, an alternative perspective is to
treat the pretrained LLM weights as hyperparameters,
and to vary the choice of prompt as if that were the model
parameterization.3 From this perspective, the behavior
exhibited by LLMs matches our notion of task generality
quite well.

An obvious direction for future research lies in apply-
ing LLMs to relation extraction tasks, and investigating
their task-generality. As LLMs seem capable of general-
izing across entirely distinct tasks in NLP, it is natural
to hope that they might also be capable of generalizing
across different types of relation extraction. Some re-
search has already been done in this direction: Wan et al.

3As prompts are usually treated to be token sequences, and not
proper parameter vectors, this should be treated only as a fruit-
ful metaphor, and not a literal equivalence. However, under
formalisms involving vector-valued prompts, such as the contin-
uous prompts discussed in Liu et al. (2023), it is entirely correct,
according to our formalisms, to treat LLM weights as hyperpa-
rameters and the prompt as the parameter.

218

(2023) use a GPT-3-based model to achieve competitive
results across four relation extraction tasks. However, as
all four of these tasks take a known-entity setting, and
involve predicting a single relation type for a known en-
tity pair, this is arguably an “uninteresting” setting from
our perspective, as supervised classification models can
already generalize well across such tasks. Wadhwa et al.
(2023) present another promising approach, using GPT-
3 for four distinct relation extraction tasks, all of which
require the identification of both entities and relations.
While they report very good qualitative performance,
they note that it is difficult to get models to generate the
exact gold-standard answer, and rely on human annota-
tion of model predictions for evaluation. As such, this
approach cannot be directly compared to any existing ar-
chitectures, and it is unclear exactly how well this model
is generalizing across tasks.

While LLMs do seem to be promising candidates for a
new class of task-general relation extraction architectures,
we see good reason to temper our expectations. As gen-
erative models, LLMs do a superb job at approximating
the task of sampling from the target distribution – that is,
generating texts with probabilities which align well to the

219

data. However, for relation extraction, most evaluation
settings are interested in models’ ability to exactly match
gold-standard labels. Even if these gold standard labels
correspond to an LLM’s highest-probability string, the
task of producing such strings, termed MAP inference, is
intractable for autoregressive language models, andmust
be approximated with techniques such as beam search
(Meister et al., 2020). Thus, even with powerful language
models, the underlying difficulty of selecting the single
most probable relation structure remains, and must be
addressed at decoding time.

6.2.2 AutoML

Despite the desirability of a single, simple architecture
compatible with all relation extraction tasks, no such
silver bullet has yet shown itself. On the contrary, our
research into task generality has driven us to making
finer distinctions between the peculiarities of different
tasks, and has begun to shed light on the sensitivities of
different architectures to these particulars. It seems plau-
sible that research into task-general relation extraction
will continue this way, not with the discovery of highly

220

task-general monolithic architectures, but rather with a
furthering understanding of the circumstances different
architectures need to work well. In this case, automated
machine learning, or AutoML, represents a promising
path towards practical task-generality.

AutoML, as it is generally conceived, involves auto-
mated construction of a machine learning pipeline for a
task (He et al., 2021). While such pipelines involve ev-
erything from data processing to feature engineering, we
are particularly interested in the automated selection of
model architectures and hyperparameters. In principle,
if we were to gain a good understanding of how different
architectures depend on different data properties, and
if we collected a high-coverage library of architectures,
an AutoML system could automatically analyze a new
relation extraction task and select an appropriate archi-
tecture based on that task’s properties. This approach
is so far underexplored for relation extraction – to our
knowledge, there is no existing work investigating Au-
toML specifically for relation extraction.

A concrete scheme for automatic architecture selec-
tion could proceed quite straightforwardly from a per-
formance prediction paradigm as was proposed for span

221

extraction in Section 4. When choosing an architecture
for a new task, structural and statistical properties of that
task would first be determined, either automatically from
data, or by user specification. These properties could
then be used to identify a set of plausible candidate archi-
tectures, ones whose assumptions aren’t fundamentally
violated. Finally, performance prediction, based on the
known task properties, could be used to estimate which
architecture is expected to work best for the particular
task at hand. This entire process could be envisioned as
a single, task-general “meta-architecture,” with all archi-
tecture search being considered an internal detail. From
the perspective of an end user, such a meta-architecture
would obey the same interface as any other architecture.

As we come to address more of the limitations dis-
cussed in Section 6.1, AutoML will become a more viable
approach to task-general relation extraction architectures.
A better understanding of the interactions between task
peculiarities and model assumptions, and a broader col-
lection of models with differing assumptions, are crucial
components to the success of this approach. Through
AutoML, improvements in these areas can directly lead
to more task-general (meta-)architectures.

222

Bibliography

Heike Adel, Benjamin Roth, and Hinrich Schütze. Com-
paring convolutional neural networks to traditional
models for slot filling. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, pages 828–838, San Diego, California, June 2016.
Association for Computational Linguistics.

Heike Adel, Laura Ana Maria Bostan, Sean Papay, Se-
bastian Padó, and Roman Klinger. DERE: A task and
domain-independent slot filling framework for declar-
ative relation extraction. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing,
Brussels, Belgium, 2018.

Apoorv Agarwal, Augusto Corvalan, Jacob Jensen, and
Owen Rambow. Social network analysis of Alice
in Wonderland. In Proceedings of the NAACL-HLT
2012 Workshop on Computational Linguistics for Literature,

223

pages 88–96, Montréal, Canada, June 2012. Association
for Computational Linguistics.

Alan Akbik, Duncan Blythe, and Roland Vollgraf. Con-
textual string embeddings for sequence labeling. In
Proceedings of the 27th International Conference on Com-
putational Linguistics, pages 1638–1649, Santa Fe, New
Mexico, USA, August 2018. Association for Computa-
tional Linguistics.

Kanav Anand, Ziqi Wang, Marco Loog12, and Jan van
Gemert. Black magic in deep learning: How human
skill impacts network training. In 31st British Machine
Vision Conference, 2022.

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. Guided open vocabulary image cap-
tioning with constrained beam search. In Proceedings
of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 936–945, Copenhagen, Den-
mark, September 2017. Association for Computational
Linguistics.

G Angeli, V Zhong, D Chen, A Chaganty, J Bolton,
MJ Premkumar, P Pasupat, S Gupta, and CD Manning.

224

Bootstrapped self training for knowledge base popula-
tion. In TAC, 2016.

R. H. Baayen. Analyzing Linguistic Data: A Practical In-
troduction to Statistics using R. Cambridge University
Press, 2008.

Hyeong-Ryeol Baek and Yong-Suk Choi. Enhancing tar-
geted minority class prediction in sentence-level rela-
tion extraction. Sensors, 22(13):4911, 2022.

Yajie Bao, Yang Li, Shao-Lun Huang, Lin Zhang, Lizhong
Zheng, Amir Zamir, and Leonidas Guibas. An
information-theoretic approach to transferability in
task transfer learning. In 2019 IEEE International Confer-
ence on Image Processing (ICIP), pages 2309–2313, 2019.

Moshe Ben-Akiva and Denis Bolduc. Approaches to model
transferability and updating: the combined transfer esti-
mator. Département d’économique, Université Laval,
1987.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A
neural probabilistic languagemodel. Advances in neural
information processing systems, 13, 2000.

225

Adam L. Berger, Stephen A. Della Pietra, and Vincent J.
Della Pietra. A maximum entropy approach to natural
language processing. Computational Linguistics, 22(1):
39–71, 1996.

James Bergstra and Yoshua Bengio. Random search for
hyper-parameter optimization. J. Mach. Learn. Res., 13:
281–305, February 2012.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Matt Post,
Raphael Rubino, Lucia Specia, and Marco Turchi. Find-
ings of the 2017 conference on machine translation
(WMT17). In Proceedings of the Second Conference on
Machine Translation, pages 169–214, Copenhagen, Den-
mark, September 2017. Association for Computational
Linguistics.

Laura-Ana-Maria Bostan and Roman Klinger. An analy-
sis of annotated corpora for emotion classification in
text. In Proceedings of the 27th International Conference
on Computational Linguistics, pages 2104–2119, Santa

226

Fe, New Mexico, USA, August 2018. Association for
Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, TomHenighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learn-
ers. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, editors, Advances in Neural Infor-
mation Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc., 2020.

Anne Brüggemann-Klein and Derick Wood. Determin-
istic regular languages. In Alain Finkel and Matthias
Jantzen, editors, STACS 92, pages 173–184, Berlin, Hei-
delberg, 1992. Springer Berlin Heidelberg.

Annelen Brunner. Automatic recognition of speech,
thought, and writing representation in German nar-

227

rative texts. Literary and Linguistic Computing, 28(4):
563–575, 2013.

Ekaterina Buyko, Erik Faessler, Joachim Wermter, and
Udo Hahn. Event extraction from trimmed depen-
dency graphs. In BioNLP’09 Shared Task on Event Ex-
traction, 2009.

X Carreras and L Màrquez. Introduction to the CoNLL-
2005 shared task: Semantic role labeling. In CoNLL,
2005a.

Xavier Carreras and Lluís Màrquez. Introduction to the
CoNLL-2005 shared task: Semantic role labeling. In
Proceedings of the Ninth Conference on Computational Nat-
ural Language Learning (CoNLL-2005), pages 152–164,
AnnArbor,Michigan, June 2005b. Association for Com-
putational Linguistics.

F. Casacuberta and C. de la Higuera. Optimal linguistic
decoding is a difficult computational problem. Pattern
Recognition Letters, 20(8):813–821, January 1999.

Augustin Cauchy et al. Méthode générale pour la réso-
lution des systemes d’équations simultanées. Comp.
Rend. Sci. Paris, 25(1847):536–538, 1847.

228

Stanley Chen. Performance prediction for exponential
language models. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Lin-
guistics, pages 450–458, Boulder, Colorado, June 2009.
Association for Computational Linguistics.

Hai Leong Chieu and Hwee Tou Ng. Named entity recog-
nition with a maximum entropy approach. In Proceed-
ings of the Seventh Conference on Natural Language Learn-
ing at HLT-NAACL 2003, pages 160–163, 2003.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. On the properties of neural
machine translation: Encoder–decoder approaches. In
Proceedings of SSST-8, Eighth Workshop on Syntax, Seman-
tics and Structure in Statistical Translation, pages 103–111,
Doha, Qatar, October 2014. Association for Computa-
tional Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, HyungWonChung, Charles Sutton, Sebastian
Gehrmann, et al. PaLM: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

229

J Clarke, V Srikumar, M Sammons, and D Roth. An NLP
curator (or: How i learned to stop worrying and love
NLP pipelines). In LREC, 2012.

RonanCollobert and JasonWeston. Aunified architecture
for natural language processing: Deep neural networks
with multitask learning. In Proceedings of the 25th inter-
national conference on Machine learning, pages 160–167,
2008.

H Cunningham, V Tablan, A Roberts, and K Bontcheva.
Getting more out of biomedical documents with
GATE’s full lifecycle open source text analytics. PLOS
Computational Biology, 9(2), 2013.

JR Curran. Blueprint for a high performance NLP in-
frastructure. In Workshop on software engineering and
architecture of language technology systems, 2003.

D Das, D Chen, A Martins, N Schneider, and NA Smith.
Frame-semantic parsing. Computational Linguistics, 40:
9–56, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional

230

transformers for language understanding. In Proceed-
ings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota, June 2019a.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceed-
ings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, pages 4171–4186, Minneapolis,
Minnesota, June 2019b. Association for Computational
Linguistics.

Miguel Domingo, Mercedes García-Martínez, Alexandre
Helle, Francisco Casacuberta, and Manuel Herranz.
How much does tokenization affect neural machine
translation? In Alexander Gelbukh, editor, Computa-
tional Linguistics and Intelligent Text Processing, pages
545–554, Cham, 2023. Springer Nature Switzerland.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive
subgradient methods for online learning and stochastic

231

optimization. J. Mach. Learn. Res., 12(null):2121–2159,
jul 2011.

Ömer Egecioglu. Strongly regular grammars and regu-
lar approximation of context-free languages. In Devel-
opments in Language Theory, pages 207–220. Springer,
2009.

Jason Eisner. Parameter estimation for probabilistic finite-
state transducers. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics, pages
1–8, Philadelphia, Pennsylvania, USA, July 2002. Asso-
ciation for Computational Linguistics.

Zied Elloumi, Laurent Besacier, Olivier Galibert, Juliette
Kahn, and Benjamin Lecouteux. ASR performance
prediction on unseen broadcast programs using convo-
lutional neural networks. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5894–5898. IEEE, 2018.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. Journal ofMachine
Learning Research, 20(55):1–21, 2019.

232

David Elson and Kathleen McKeown. Automatic attribu-
tion of quoted speech in literary narrative. In Proceed-
ings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

David Elson, Nicholas Dames, and Kathleen McKeown.
Extracting social networks from literary fiction. In Pro-
ceedings of the Annual Meeting of the Association for Com-
putational Linguistics, pages 138–147, Uppsala, Sweden,
2010.

Manaal Faruqui and Sebastian Pado. Towards a model
of formal and informal address in English. In Proceed-
ings of the 13th Conference of the European Chapter of the
Association for Computational Linguistics, pages 623–633,
Avignon, France, 2012.

D Ferrucci and A Lally. UIMA: An architectural approach
to unstructured information processing in the corpo-
rate research environment. Natural Language Engineer-
ing, 10(3–4):327–348, 2004.

Matthias Feurer, Aaron Klein, Katharina Eggensperger,
Jost Springenberg, Manuel Blum, and Frank Hutter.
Efficient and robust automated machine learning. In

233

Advances in neural information processing systems, pages
2962–2970, 2015.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep net-
works. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1126–1135, 2017.

Hermann Gruber and Markus Holzer. Inapproximabil-
ity of nondeterministic state and transition complexity
assuming P≠ NP. In International Conference on Devel-
opments in Language Theory, pages 205–216. Springer,
2007.

Alon Halevy, Peter Norvig, and Fernando Pereira. The
unreasonable effectiveness of data. IEEE Intelligent
Systems, 24(2):8–12, 2009.

Eva Hasler, Adrià de Gispert, Gonzalo Iglesias, and Bill
Byrne. Neural machine translation decoding with ter-
minology constraints. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 506–512, New Orleans,

234

Louisiana, June 2018. Association for Computational
Linguistics.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. Deep semantic role labeling: What works and
what’s next. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pages 473–483, Vancouver, Canada, July
2017a. Association for Computational Linguistics.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. Deep semantic role labeling: What works and
what’s next. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pages 473–483, Vancouver, Canada, July
2017b. Association for Computational Linguistics.

Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A
survey of the state-of-the-art. Knowledge-Based Systems,
212:106622, 2021.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

235

Chris Hokamp andQun Liu. Lexically constrained decod-
ing for sequence generation using grid beam search. In
Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pages 1535–1546, Vancouver, Canada, July 2017. Asso-
ciation for Computational Linguistics.

M Honnibal and M Johnson. An improved non-
monotonic transition system for dependency parsing.
In EMNLP, September 2015.

Matthew Honnibal and Ines Montani. spaCy 2: Natural
language understanding with Bloom embeddings, con-
volutional neural networks and incremental parsing,
2017.

Minghao Hu, Yuxing Peng, Zhen Huang, Dongsheng Li,
and Yiwei Lv. Open-domain targeted sentiment anal-
ysis via span-based extraction and classification. In
Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 537–546, Florence,
Italy, July 2019. Association for Computational Linguis-
tics.

James Y. Huang, Bangzheng Li, Jiashu Xu, and Muhao

236

Chen. Unified semantic typing with meaningful label
inference. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages
2642–2654, Seattle, United States, July 2022. Associa-
tion for Computational Linguistics.

Fotis Jannidis, Albin Zehe, Leonard Konle, Andreas
Hotho, and Markus Krug. Analysing direct speech
in German novels. In Proceedings of DhD, Cologne, Ger-
many, 2018.

Tao Jiang and Bala Ravikumar. Minimal NFA problems
are hard. In International Colloquium on Automata, Lan-
guages, and Programming, pages 629–640. Springer, 1991.

Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An
efficient neural architecture search system. In Proceed-
ings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1946–1956.
ACM, 2019.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. SpanBERT: Im-
proving pre-training by representing and predicting

237

spans. Transactions of the Association for Computational
Linguistics, 8:64–77, 2020.

Daniel Jurafsky and JamesH.Martin. Speech and Language
Processing (2nd Edition). Prentice-Hall, Inc., USA, 2009.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-
cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
On large-batch training for deep learning: Generaliza-
tion gap and sharp minima. CoRR, abs/1609.04836,
2016.

Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky.
Sharp nearby, fuzzy far away: How neural language
models use context. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 284–294, Melbourne,
Australia, July 2018. Association for Computational
Linguistics.

Evgeny Kim and Roman Klinger. Frowning Frodo, winc-
ing Leia, and a seriously great friendship: Learning to
classify emotional relationships of fictional characters.
In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics:

238

Human Language Technologies, Volume 1 (Long and Short
Papers), pages 647–653, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics.

J-D Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi Tsujii.
GENIA corpus—a semantically annotated corpus for
bio-textmining. Bioinformatics, 19(suppl_1):i180–i182,
2003.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshinobu
Kano, and Jun’ichi Tsujii. Overview of BioNLP’09
shared task on event extraction. In BioNLP, 2009.

Jin-Dong Kim, Yue Wang, and Yamamoto Yasunori.
The Genia event extraction shared task, 2013 edition-
overview. In Proceedings of the BioNLP Shared Task 2013
Workshop, pages 8–15, 2013.

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann
LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alter-
native view: When does SGD escape local minima?

239

In International Conference on Machine Learning, pages
2698–2707. PMLR, 2018.

R Klinger and P Cimiano. Joint and pipeline probabilistic
models for fine-grained sentiment analysis: Extract-
ing aspects, subjective phrases and their relations. In
ICDMW, 2013.

R Klinger and P Cimiano. The USAGE review corpus for
fine grained multilingual opinion analysis. In LREC,
2014.

Martin Krallinger, Obdulia Rabal, Florian Leitner, Miguel
Vazquez, David Salgado, Zhiyong Lu, Robert Leaman,
Yanan Lu, Donghong Ji, Daniel M Lowe, et al. The
CHEMDNER corpus of chemicals and drugs and its
annotation principles. Journal of Cheminformatics, 7(1):
1–17, 2015.

Trausti Kristjansson, Aron Culotta, Paul Viola, and An-
drew McCallum. Interactive information extraction
with constrained conditional random fields. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
pages 412–418, 2004.

240

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. Conditional RandomFields: ProbabilisticMod-
els for Segmenting and Labeling Sequence Data. In
Proceedings of the Eighteenth International Conference on
Machine Learning (ICML 2001), pages 282–289, 2001.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. End-to-end neural coreference resolution. In
Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 188–197, Copen-
hagen, Denmark, September 2017.Association forCom-
putational Linguistics.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. A
survey on deep learning for named entity recognition.
IEEE Transactions on Knowledge and Data Engineering,
2020.

Zuchao Li, Shexia He, Hai Zhao, Yiqing Zhang, Zhu-
osheng Zhang, Xi Zhou, and Xiang Zhou. Dependency
or span, end-to-end uniform semantic role labeling.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 33(01):6730–6737, Jul. 2019.

ChunYang Liu, WenBo Sun, WenHan Chao, and Wanx-

241

iang Che. Convolution neural network for relation
extraction. In Advanced Data Mining and Applications:
9th International Conference, ADMA 2013, Hangzhou,
China, December 14-16, 2013, Proceedings, Part II 9, pages
231–242. Springer, 2013.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hi-
roaki Hayashi, and Graham Neubig. Pre-train, prompt,
and predict: A systematic survey of prompting meth-
ods in natural language processing. ACMComput. Surv.,
55(9), jan 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. RoBERTa: A ro-
bustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

E Loper and S Bird. Nltk: The natural language toolkit. In
Workshop on Effective Tools and Methodologies for Teaching
NLP and CL, 2002.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. Multi-task identification of entities, rela-
tions, and coreference for scientific knowledge graph

242

construction. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages
3219–3232, Brussels, Belgium, October-November 2018.
Association for Computational Linguistics.

Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Using Large
Corpora, 273, 1994.

JonathanMay andKevin Knight. A better n-best list: Prac-
tical determinization of weighted finite tree automata.
In Proceedings of the Human Language Technology Con-
ference of the NAACL, Main Conference, pages 351–358,
New York City, USA, June 2006. Association for Com-
putational Linguistics.

A McCallum, K Schultz, and S Singh. Factorie: Proba-
bilistic programming via imperatively defined factor
graphs. In NIPS, 2009.

Andrew McCallum, Dayne Freitag, and Fernando C. N.
Pereira. Maximum entropy Markov models for infor-
mation extraction and segmentation. In Proceedings of
the Seventeenth International Conference onMachine Learn-

243

ing, ICML ’00, page 591–598, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. Learned in translation: Contextualized
word vectors. Advances in neural information processing
systems, 30, 2017.

Brian McHale. Speech representation. In Peter Hühn,
John Pier, Wolf Schmid, and Jörg Schönert, editors,
Handbook of Narratology. De Gruyter, 2009.

Clara Meister, Ryan Cotterell, and Tim Vieira. If beam
search is the answer, what was the question? In Proceed-
ings of the 2020Conference on EmpiricalMethods inNatural
Language Processing (EMNLP), pages 2173–2185, On-
line, November 2020. Association for Computational
Linguistics.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jef-
frey Dean. Efficient estimation of word representations
in vector space. In International Conference on Learning
Representations, 2013.

ParamitaMirza and Sara Tonelli. Catena: Causal and tem-
poral relation extraction from natural language texts.

244

In The 26th international conference on computational lin-
guistics, pages 64–75. ACL, 2016.

Mehryar Mohri. A disambiguation algorithm for finite
automata and functional transducers. In International
Conference on Implementation and Application of Automata,
pages 265–277. Springer, 2012.

Mehryar Mohri and Mark-Jan Nederhof. Regular approx-
imation of context-free grammars through transforma-
tion. In Robustness in language and speech technology,
pages 153–163. Springer, 2001.

T Morton, J Kottmann, J Baldridge, and
G Bierner. OpenNLP: A Java-based NLP toolkit.
http://opennlp.sourceforge.net, 2005.

Eric T. Nalisnick and Henry S. Baird. Character-to-
character sentiment analysis in Shakespeare’s plays. In
Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers),
pages 479–483, Sofia, Bulgaria, August 2013. Associa-
tion for Computational Linguistics.

Mark-Jan Nederhof. Practical experiments with regular

245

approximation of context-free languages. Computa-
tional Linguistics, 26(1):17–44, 2000.

Nam Nguyen and Yunsong Guo. Comparisons of se-
quence labeling algorithms and extensions. In Pro-
ceedings of the 24th International Conference on Machine
learning, pages 681–688, 2007.

Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto. A
span selection model for semantic role labeling. In
Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1630–1642, Brus-
sels, Belgium, October-November 2018. Association for
Computational Linguistics.

Sebastian Padó, Andre Blessing, Nico Blokker, Erenay
Dayanik, Sebastian Haunss, and Jonas Kuhn. Who
sides with whom? Towards computational construc-
tion of discourse networks for political debates. In Pro-
ceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2841–2847, Florence,
Italy, July 2019. Association for Computational Linguis-
tics.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. The

246

Proposition Bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1):71–106, 2005.

Sinno Jialin Pan and Qiang Yang. A survey on trans-
fer learning. IEEE Transactions on knowledge and data
engineering, 22(10):1345–1359, 2009.

Sean Papay and Sebastian Padó. Quotation detection and
classification with a corpus-agnostic model. In Proceed-
ings of the International Conference on Recent Advances
in Natural Language Processing (RANLP 2019), pages
888–894, Varna, Bulgaria, September 2019. INCOMA
Ltd.

Sean Papay and Sebastian Padó. Riqua: A corpus of
rich quotation annotation for english literary text. In
Proceedings of The 12th Language Resources and Evaluation
Conference, pages 835–841, Marseille, France, May 2020.
European Language Resources Association.

Sean Papay, Roman Klinger, and Sebastian Padó. Dis-
secting span identification tasks with performance pre-
diction. In Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP),

247

pages 4881–4895, Online, November 2020. Association
for Computational Linguistics.

Sean Papay, Roman Klinger, and Sebastian Pado. Con-
straining linear-chain CRFs to regular languages. In In-
ternational Conference on Learning Representations, 2022.

Silvia Pareti. Attribution: A Computational Approach. PhD
thesis, University of Edinburgh, 2015.

Silvia Pareti. PARC 3.0: A corpus of attribution relations.
In Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC’16), pages
3914–3920, Portorož, Slovenia, May 2016. European
Language Resources Association (ELRA).

Silvia Pareti, Tim O’Keefe, Ioannis Konstas, James R. Cur-
ran, and Irena Koprinska. Automatically detecting and
attributing indirect quotations. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Pro-
cessing, pages 989–999, Seattle, WA, 2013.

F Pedregosa et al. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:
2825–2830, 2011.

248

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. Glove: Global vectors for word representa-
tion. In Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, 2014.

Matthew Peters, MarkNeumann, Mohit Iyyer, Matt Gard-
ner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer. Deep contextualized word representations. In
Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers),
pages 2227–2237, New Orleans, Louisiana, June 2018.
Association for Computational Linguistics.

Matthew E. Peters, Sebastian Ruder, and Noah A. Smith.
To tune or not to tune? adapting pretrained representa-
tions to diverse tasks. In Proceedings of the 4th Workshop
on Representation Learning for NLP (RepL4NLP-2019),
pages 7–14, Florence, Italy, August 2019. Association
for Computational Linguistics.

Boris T Polyak. Some methods of speeding up the con-
vergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 4(5):1–17, 1964.

249

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. CoNLL-2012
shared task: Modeling multilingual unrestricted coref-
erence in OntoNotes. In Joint Conference on EMNLP and
CoNLL - Shared Task, pages 1–40, Jeju Island, Korea, July
2012. Association for Computational Linguistics.

Lawrence R. Rabiner. A tutorial on hidden Markov mod-
els and selected applications in speech recognition. Pro-
ceedings of the IEEE, 77(2):257–286, 1989.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. 2019.

Lance Ramshaw and Mitchell Marcus. Text chunking us-
ing transformation-based learning. InNatural Language
Processing Using Very Large Corpora, pages 157–176.
Springer Netherlands, Dordrecht, 1999.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
Weighting finite-state transductions with neural con-
text. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 623–633,

250

San Diego, California, June 2016. Association for Com-
putational Linguistics.

Lev Ratinov and Dan Roth. Design Challenges and Mis-
conceptions inNamed Entity Recognition. In Proc. of the
Conference on Computational Natural Language Learning
(CoNLL), 6 2009.

KE Ravikumar, Majid Rastegar-Mojarad, and Hongfang
Liu. Belminer: adapting a rule-based relation extrac-
tion system to extract biological expression language
statements from bio-medical literature evidence sen-
tences. Database, 2017, 2017.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
“Why should I trust you?”: Explaining the predictions
of any classifier. In Proceedings of the 22nd ACMSIGKDD
International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, August 13-17, 2016,
pages 1135–1144, 2016.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
Anchors: High-precision model-agnostic explanations.
In Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

251

Sebastian Ruder. An overview of gradient descent opti-
mization algorithms. arXiv preprint arXiv:1609.04747,
2016.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter. In NeurIPS EMC2

Workshop, 2019.

Adam Santoro, Sergey Bartunov, Matthew Botvinick,
Daan Wierstra, and Timothy Lillicrap. Meta-learning
with memory-augmented neural networks. In Interna-
tional conference on machine learning, pages 1842–1850,
2016.

Sunita Sarawagi and William W Cohen. Semi-Markov
conditional random fields for information extraction.
Advances in neural information processing systems, 17:
1185–1192, 2004.

Christian Scheible, Roman Klinger, and Sebastian Padó.
Model architectures for quotation detection. In Pro-
ceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages

252

1736–1745, Berlin, Germany, August 2016. Association
for Computational Linguistics.

DA Schult. Exploring network structure, dynamics, and
function using networkx. InPython in Science Conference,
2008.

Mike Schuster and Kuldip Paliwal. Bidirectional recur-
rent neural networks. Signal Processing, IEEE Transac-
tions on, 45:2673 – 2681, 12 1997.

Elena Semino and Michael Short. Corpus Stylistics: Speech,
Writing And Thought Presentation In A Corpus Of English
Writing. Routledge Advances In Corpus Linguistics.
Routledge, London, 2004.

Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and Se-
bastian Riedel. Neural architectures for fine-grained
entity type classification. In Proceedings of the 15th
Conference of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers, pages
1271–1280, Valencia, Spain, April 2017. Association for
Computational Linguistics.

P Stenetorp, S Pyysalo, G Topić, T Ohta, S Ananiadou,

253

and J Tsujii. brat: a web-based tool for NLP-assisted
text annotation. In EACL, 2012.

Dianbo Sui, Xiangrong Zeng, Yubo Chen, Kang Liu, and
Jun Zhao. Joint entity and relation extraction with
set prediction networks. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

M Surdeanu. Overview of the TAC2013 knowledge base
population evaluation: English slot filling and tempo-
ral slot filling. In TAC, 2013.

Ilya Sutskever, James Martens, George Dahl, and Geof-
frey Hinton. On the importance of initialization and
momentum in deep learning. In International conference
on machine learning, pages 1139–1147. PMLR, 2013.

Charles Sutton and Andrew McCallum. Collective seg-
mentation and labeling of distant entities in informa-
tion extraction. InProceedings of the ICML 2004Workshop
on Statistical Relational Learning, 2004.

Wilson L Taylor. “Cloze procedure”: A new tool for mea-
suring readability. Journalism quarterly, 30(4):415–433,
1953.

254

Chris Thornton, Frank Hutter, Holger H. Hoos, and
Kevin Leyton-Brown. Auto-weka: Combined selec-
tion and hyperparameter optimization of classification
algorithms. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, KDD ’13, page 847–855, New York, NY, USA,
2013. Association for Computing Machinery.

Tijmen Tieleman and Geoffrey Hinton. Neural networks
for machine learning, lecture 6.5. Lecture notes, 2012.

Erik F. Tjong Kim Sang and Sabine Buchholz. Introduc-
tion to the CoNLL-2000 Shared Task: Chunking. In
Proceedings of the 2nd Workshop on Learning Language
in Logic and the 4th Conference on Computational Natu-
ral Language Learning, page 127–132, Lisbon, Portugal,
2000. Association for Computational Linguistics.

Branimir T Todorovic, Svetozar R Rancic, Ivica M
Markovic, Edin H Mulalic, and Velimir M Ilic. Named
entity recognition and classification using context hid-
den Markov model. In 2008 9th Symposium on Neu-
ral Network Applications in Electrical Engineering, pages
43–46. IEEE, 2008.

255

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. LLaMA: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

Hai-Long Trieu, Thy Thy Tran, Khoa N A Duong, Anh
Nguyen, Makoto Miwa, and Sophia Ananiadou. Deep-
EventMine: end-to-end neural nested event extrac-
tion from biomedical texts. Bioinformatics, 36(19):
4910–4917, 06 2020.

Joaquin Vanschoren. Meta-learning: A survey. arXiv
preprint arXiv:1810.03548, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Ad-
vances in neural information processing systems, 30, 2017.

Ricardo Vilalta and Youssef Drissi. A perspective view
and survey of meta-learning. Artificial intelligence re-
view, 18(2):77–95, 2002.

Andrew Viterbi. Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm.

256

IEEE Transactions on Information Theory, 13(2):260–269,
1967.

Somin Wadhwa, Silvio Amir, and Byron C Wallace. Re-
visiting relation extraction in the era of large language
models. arXiv preprint arXiv:2305.05003, 2023.

Zhen Wan, Fei Cheng, Zhuoyuan Mao, Qianying Liu,
Haiyue Song, Jiwei Li, and Sadao Kurohashi. Gpt-re:
In-context learning for relation extraction using large
language models. arXiv preprint arXiv:2305.02105, 2023.

Ralph Weischedel, Eduard Hovy, Mitchell Marcus,
Martha Palmer, Robert Belvin, Sameer Pradhan, Lance
Ramshaw, and Nianwen Xue. OntoNotes: A large
training corpus for enhanced processing. In Hand-
book of Natural Language Processing and Machine Transla-
tion: DARPA Global Autonomous Language Exploitation.
Springer, 2011.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Extract-
ing automata from recurrent neural networks using
queries and counterexamples. In Jennifer Dy and An-
dreas Krause, editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of Pro-

257

ceedings of Machine Learning Research, pages 5247–5256,
Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.
PMLR.

Nathalie Wiedmer, Janis Pagel, and Nils Reiter. Romeo,
Freund des Mercutio: Semi-Automatische Extraktion
von Beziehungen zwischen dramatischen Figuren. In
Proceedings of the 7th Conference of the Organization ”Dig-
ital Humanities im deutschsprachigen Raum” (DHd 2020).
Zenodo, February 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, AnthonyMoi, Pierric Cistac,
Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davi-
son, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine
Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexan-
der M. Rush. Huggingface’s transformers: State-of-the-
art natural language processing. ArXiv, abs/1910.03771,
2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, AnthonyMoi, Pierric Cistac,
Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davi-
son, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine

258

Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexan-
der M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online, October
2020. Association for Computational Linguistics.

D.H. Wolpert and W.G. Macready. No free lunch theo-
rems for optimization. IEEETransactions on Evolutionary
Computation, 1(1):67–82, 1997.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Ja-
son Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation.
CoRR, abs/1609.08144, 2016.

259

Vikas Yadav and Steven Bethard. A survey on recent ad-
vances in named entity recognition from deep learning
models. In Proceedings of the 27th International Conference
on Computational Linguistics, pages 2145–2158, Santa Fe,
New Mexico, USA, August 2018. Association for Com-
putational Linguistics.

Bishan Yang and Claire Cardie. Joint inference for fine-
grained opinion extraction. In Proceedings of the 51st
Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1640–1649, Sofia,
Bulgaria, August 2013. Association for Computational
Linguistics.

Quanming Yao, Mengshuo Wang, Yuqiang Chen,
Wenyuan Dai, Hu Yi-Qi, Li Yu-Feng, Tu Wei-Wei, Yang
Qiang, and Yu Yang. Taking the human out of learning
applications: A survey on automatedmachine learning.
arXiv preprint arXiv:1810.13306, 2018.

Amir R. Zamir, Alexander Sax, William B. Shen,
Leonidas J. Guibas, Jitendra Malik, and Silvio Savarese.
Taskonomy: Disentangling task transfer learning. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). IEEE, 2018.

260

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D. Manning. Position-aware attention
and supervised data improve slot filling. In Proceedings
of the 2017 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2017), pages 35–45, 2017.

Changmeng Zheng, Junhao Feng, Ze Fu, Yi Cai, Qing Li,
and Tao Wang. Multimodal relation extraction with
efficient graph alignment. InProceedings of the 29thACM
International Conference onMultimedia, pages 5298–5306,
2021.

Hui Zou and Trevor Hastie. Regularization and variable
selection via the elastic net. Journal of the Royal statistical
society: series B (Statistical methodology), 67(2):301–320,
2005.

261

Appendix A

Investigating
task-generalizability with
performance prediction

This appendix provides additional details to the content
presented in Section 4.

A.1 Training Models

All code used for training span extraction and perfor-
mance predictionmodels is available for download at our
project website: https://www.ims.uni-stuttgart.de/
data/span-id-meta-learning. All text logs generated
during training of span extraction models are included.

263

https://www.ims.uni-stuttgart.de/data/span-id-meta-learning
https://www.ims.uni-stuttgart.de/data/span-id-meta-learning

A.1.1 Hardware

All span extraction models were trained using GeForce
GTX 1080 Ti GPUs. Training time varied considerably
across architectures – exact training times for individual
experiments are found in the corresponding training logs.

The performance prediction model was trained on a
CPU in a few seconds.

A.1.2 Tokenization

For parc, OntoNotes, and CoNLL’00, which include to-
kenization information, and we use the datasets’ tok-
enizations directly For RiQuA, we use spaCy (Honni-
bal and Montani, 2017) to word-tokenize the text. We
found that spaCy’s tokenization performed particularly
poorly for ChemDNer, and so for this corpus we treated
all sequences of alphabetic characters as a token, all se-
quences of numbers as a token, and all other characters
as single-character tokens. For ChemDNer, we found
that some spans within the corpus still did not align with
token boundaries. In these cases, we excluded the spans
entirely from the training data, and treated them as an
automatic false-negative for evaluation purposes.

264

For models including a BERT component, tokens were
sub-tokenized using word-piece tokenization (Wu et al.,
2016) so as to be compatible with BERT. The same bag
of token features was given to each word piece. Models
predicted BIO sequences for these sub-tokens, and spans
were only evaluated as correct when their boundaries
matched exactly with the originally-tokenized corpus.

A.1.3 Hyperparameters

Due to the large number of experiments run, it was infea-
sible to do a full grid-search for hyperparameters for each
architecture-dataset combination. As such, we tried to
pick reasonable values for hyperparameters, motivated
by existing literature, prior research, and implementation
defaults of existing libraries. For BERT-based models,
our choice of pre-trained model – ‘bert-base-uncased’
as provided by the HuggingFace Transformers library
Wolf et al. (2019) – fixed some of these hyperparameters
for us. Table A.2 enumerates the hyperparameter values
used for our architectures.

265

A.1.4 Optimizer and Training

Allmodelswere trainedwith theAdamoptimizer (Kingma
and Ba, 2015). For BERT+CRF and BERT+LSTM+CRF,
we train the non-BERTparameters as a first training phase,
and then fine-tune all parameters jointly as a second train-
ing phase. In these cases, Adam was re-initialized be-
tween two training phases. For training all non-BERT ar-
chitectures, and for first training phase in the BERT+CRF
and BERT+LSTM+CRF architectures, an initial learn-
ing rate of 0.001 was used. For BERT, and for the second
training phase in the BERT+CRF and BERT+LSTM+CRF
architectures, an initial learning rate of 2 × 10−5 was used.

A.1.5 Early Stopping

To guide early stopping, micro-averaged 𝐹1 scores on the
development set were computed after every epoch. These
were computed for all span types, including those which
were subsequently excluded from our meta-model. For
datasets which had no dedicated development partition,
a portion of the training set was held out for this pur-
pose. After each epoch, model parameters were saved
to disk if the development-set 𝐹1 score exceeded the best

266

seen so far. An exponential moving average of these
𝐹1 scores was kept, and training terminated when an
epoch’s 𝐹1 score fell below this average. For BERT+CRF
and BERT+LSTM+CRF, this same early stopping proce-
dure was used for both training phases. The training logs
list development set performance at each epoch for each
experiment.

A.1.6 Features

Table A.1 lists all manual features that were used in mod-
els with the “Feat” component.

267

parc Token POS tag
Token lemma

Constituents containing token
Constituents starting at token
Constituents ending at token

RiQuA Token POS tag †
Token lemma †

Is token a quotation mark?
Is token a quotation mark?

Is token capitalized?
Is token all caps?

CoNLL’00 Token POS tag †

OntoNotes Token POS tag
Is token capitalized?

Is token all caps?
Character bi- and trigrams

Constituents containing token
Constituents starting at token
Constituents ending at token

ChemDNer Token POS tag †
Token lemma †

Is token capitalized?
Is token all caps?

Is token purely alphabetic?
Is token all digits?

Table A.1: Hand-crafted features used. Entries marked
with a dagger (†) were predicted using spaCy
(Honnibal andMontani, 2017) – otherswere ei-
ther manually annotated, or were exactly spec-
ified by the tokens’ surface forms268

Hyperparameter Value

Input dimensionality 300
LSTM units 300
Softmax output layer units 300
CRF units 300
LSTM layers 2
LSTM dropout probability 0.5
Learning rate (non-BERT) 1 × 10−3

Learning rate (BERT) 2 × 10−5

Table A.2: Hyperparameter choices

269

Appendix B

Task-general joint
modeling with
regular-constrained CRFs

This appendix provides additional details to the content
presented in Chapter 5.

B.1 Experimental Design

Here we detail the training procedures and hyperparam-
eter choices for our experiments. These are summarized
in Table B.1. Full code for all experiments, along with
training logs, are also included in the supplementary
materials.

271

CRFs Transition score initialization 𝒩(0, 0.1)

Synthetic data
experiments

Emission score initialization PyTorch default
Optimizer SGD
Training iterations 5000
Batch size 50
Initial learning rate 1.0
Learning rate decay 10% every 100 steps

SRL
experiments

RoBERTa weights roberta-base
Projection weight and bias initialization PyTorch default
Optimizer Adam
Learning rate 10−5

Batch size 2
Gradient accumulation 4 batches

Table B.1: Summary of hyperparameters for our models
and experiments.

B.1.1 CRFs

For all CRFs andRegCCRFs, transition potentialswere ini-
tialized randomly from a normal distribution with mean
zero and standard deviation 0.1. No CRFs or RegCCRFs
employed special start- or end-transitions – that is, we did
not insert any additional beginning-of-sequence or end-
of-sequence tags for the Viterbi or forward algorithms.

272

B.1.2 Synthetic data experiments – training
procedure

For both synthetic data experiments, the emission po-
tentials were represented explicitly for each position as
trainable parameters – since the observation sequence
was constant in all experiments, these did not depend on
𝒙.

Parameters were initialized randomly using PyTorch
default initialization, and optimized using stochastic gra-
dient descent. To ensure fast convergence to a stable
distribution, we employed learning rate decay – learning
rate was initially set to 1.0, and reduced by 10% every 100
training steps.

We trained all models for a total of 5000 steps with
a batch size of 50. All models were trained on CPUs.
For the experiment described in Section 6.1, we trained
separate models for each 𝑘 – the total training time for
this experiment was approximately 35 minutes. The ex-
periment described in Section 6.2 completed training in
approximately 30 seconds.

273

B.1.3 Semantic role labeling – training
procedure

In the semantic role labeling (SRL) experiments, we in-
corporated a pretrained RoBERTa network (Liu et al.,
2019) – the implementation and weights for this model
were obtained using the roberta-base model from the
Hugging Face transformers library (Wolf et al., 2020).
RoBERTa embeddings were projected down to transmis-
sion scores using a linear layer with a bias – projection
weights and biases were initialized using the PyTorch
default initialization.

Input tokens were sub-tokenized using RoBERTa’s tok-
enizer. The marked predicate in each sentence was pre-
fixed by a special <unk> token. During training, for ef-
ficiency reasons, we excluded all sentences with 120 or
more subtokens – this amounted to 0.23% of all train-
ing instances. We nonetheless predicted on all instances,
regardless of length.

Weoptimizedmodels using theAdamoptimizer (Kingma
and Ba, 2015) with a learning rate of 10−5. We fine-tune
RoBERTa parameters and learn the projection and Reg-
CCRF weights jointly. For performance reasons, batch

274

size was set to 2, but we utilized gradient accumulation
over groups of 4 batches to simulate a batch size of 8.

We utilized early stopping to avoid overfitting. Every
5000 training steps, we approximated our model’s 𝐹1
score against a subset of the provided development par-
tition, using a simplified reimplementation of the official
evaluation script. Each time we exceeded the previous
best 𝐹1 score for a model, we saved all model weights to
disk. After 50 such evaluations with no improvement,
we terminated training, and used the last saved copy of
model weights for final evaluation.

We performed all SRL experiments on GeForce GTX
1080 Ti GPUs. Each experiment used a single GPU. Train-
ing took an average of 88 hours for RegCCRF models
with constrained training, 23 hours for RegCCRF with
constrained decoding, and 24 hours for CRF baseline
models. All training logs with timestamps are included
in the supplementary materials.

B.2 Construction as weighted FST

Here we present a construction of the RegCCRF as a
weighted finite-state transducer with weight sharing. We

275

do this by first specifying the transducer topology used,
and then specifying how edge weights are parameterized
in terms of 𝜽. The resulting transducer yields an identical
distribution to that of the CRF-based construction, �̂�𝜽(𝒚 ∣
𝒙; ℒ).

B.2.1 Transducer topology

Starting from ℒ, we define ̈ℒ to be the regular language
of bigram sequences for the strings in ℒ, i.e.,

̈ℒ = {⟨(𝑠1, 𝑠2), (𝑠2, 𝑠3), ..., (𝑠|𝒔−1|, 𝑠|𝒔|), (𝑠|𝒔|, $)⟩ ∣ 𝒔 ∈ ℒ} ,
(B.1)

with $ acting as a end-of-string symbol. We let �̈� be
an unambiguous FSA for the language ̈ℒ, and choose to
interpret this automaton as a finite-state transducer by
stipulating that all edges should accept any symbol in the
input language (but only one symbol per transition, and
without allowing epsilon transitions). This unweighted
transducer will be used as the topology for our weighted
finite-state transducer.

276

B.2.2 Edge weights

In line with Rastogi et al. (2016), we would like to assign
weights to the edges of our transducer �̈� with a neural
network. In order to obtain the same distribution as from
our CRF-based construction, these weights must be pa-
rameterized in terms of our transition function 𝑔𝜽 and
emission function ℎ𝜽. For each edge in �̈�, the weight
depends only on the emitted bigram, the input sequence,
and the index of the current input symbol – the weight
does not depend on the FST states. For a symbol bigram
(𝑎, 𝑏), input sequence 𝒙, and index 𝑖, the edge weight is
equal to

𝑊𝑎,𝑏 =
⎧{
⎨{⎩

exp (𝑔𝜽(𝑎, 𝑏) + ℎ𝜽(𝒙, 𝑎, 𝑖)) 𝑏 ≠ $

exp (ℎ𝜽(𝒙, 𝑎, 𝑖)) otherwise
(B.2)

Each string in ℒ corresponds bijectively to exactly one
bigram sequence in ̈ℒ, which corresponds bijectively to
exactly one accepting path in �̈� – this path’s weight is
equal to the unscaled probability produced by our CRF
construction, and so the weighted FST, interpreted as a
probability distribution, yields the distribution �̂�𝜽(𝒚 ∣
𝒙; ℒ).

277

B.3 Automaton construction for
semantic role labeling

Here we describe how we generate the automaton archi-
tecture for our semantic role labeling experiments. While
our experiments used 5 core-roles, 17 non-core roles, and
one continuation role, we discuss here a generalized set-
ting with arbitrary sets of core, noncore, and continua-
tions of core roles.

Algorithm 1 provides pseudocode for our construction.
The core idea is to use subsets of core roles as NFA states,
so that we can keep track of which core roles have already
ocurred. Additional states are used in order to ensure all
strings are valid BIO sequences.

278

Σ ← {Outside} ∪ ({Begin, Inside} × (ℛcore ∪
ℛnoncore ∪ ℛcontinuation));

𝑄 ← ∅;
𝑞1 ← ∅;
𝐹 ← ∅;
𝐸 ← ∅;
for 𝑝 ∈ 2ℛcore do

𝑄 ← 𝑄 ∪ {𝑝};
𝐹 ← 𝐹 ∪ {𝑝};
𝐸 ← 𝐸 ∪ {(𝑝,Outside, 𝑝)};
for 𝑟 ∈ ℛnoncore do

𝑠 ← (𝑟, 𝑝);
𝑄 ← 𝑄 ∪ {𝑠};
𝐸 ← 𝐸 ∪ {(𝑝, (Begin, 𝑟), 𝑝), (𝑝, (Begin, 𝑟), 𝑠)};
𝐸 ← 𝐸 ∪ {(𝑟, (Inside, 𝑟), 𝑠), (𝑟, (Inside, 𝑟), 𝑝)};

end
for 𝑟 ∈ ℛcontinuation do

if The core role corresponding to 𝑟 is in 𝑝 then
𝑠 ← (𝑟, 𝑝);
𝑄 ← 𝑄 ∪ {𝑠};
𝐸 ←
𝐸 ∪ {(𝑝, (Begin, 𝑟), 𝑝), (𝑝, (Begin, 𝑟), 𝑠)};

𝐸 ←
𝐸 ∪ {(𝑟, (Inside, 𝑟), 𝑠), (𝑟, (Inside, 𝑟), 𝑝)};

end
end

279

for 𝑟 ∈ (ℛcore ∖ 𝑝) do
𝑠 ← (𝑟, 𝑝);
𝑡 ← 𝑝 ∪ {𝑟};
𝑄 ← 𝑄 ∪ {𝑠};
𝐸 ← 𝐸 ∪ {(𝑝, (Begin, 𝑟), 𝑠), (𝑝, (Begin, 𝑟), 𝑡)};
𝐸 ← 𝐸 ∪ {(𝑠, (Inside, 𝑟), 𝑠), (𝑠, (Inside, 𝑟), 𝑡)};

end
end
return (Σ, 𝑄, 𝑞1, 𝐹, 𝐸)

Algorithm 1: Construction of an FSA from given
sets of core, noncore, and continuation roles. To
represent BIO labels, we use tuples of the form
(Begin, <roleType>) for B labels, tuples of the form
(Inside, <roleType>) for I labels, and the symbol
Outside for the sole O label.

280

	Introduction
	Task generality
	Task generality in machine learning
	Task general relation extraction

	Contributions

	Background
	Machine learning and neural networks
	Distributions and datasets
	Models and model architectures
	Parameters and optimization
	Artificial neural networks
	Pretrained embedding networks

	Relation extraction
	Documents
	Text
	Entities
	Relations
	Relation structures, constraints, and evaluation
	Evaluation

	Architectural motifs for relation extraction
	Pipeline models
	Sequence labeling for span extraction

	Specific relation extraction tasks
	TACRED
	OntoNotes semantic role labeling
	GENIA event extraction

	Formal specification of relation extraction tasks
	Related Work
	Framework design
	Framework structure
	Task schemata
	Data files

	Proof-of-concept system
	Span extraction
	Slot classification
	Decoding
	Evaluation and results
	Technical details and availability

	Conclusion

	Task-generality for span extraction
	Corpus- and language-general quotation detection
	Related work: datasets and models
	Neural Quotation Detection (NQD)
	Experimental evaluation
	Error analysis
	Conclusion

	Investigating task-generalizability with performance prediction
	Tasks and datasets
	Span type properties and hypotheses
	Model architectures
	Meta-learning model
	Experiment
	Experimental procedure
	Analysis
	Related Work
	Conclusion

	Task-general joint modeling with regular-constrained CRFs
	Task properties as sequence labeling constraints
	Preliminaries and notation
	Related work
	Regular-constrained CRFs
	Construction
	Time and space efficiency
	Interpretation as a weighted finite-state transducer

	Comparing constrained training to constrained decoding
	Synthetic data experiments
	Arbitrarily large differences in likelihood
	Differences in MAP inference

	Real-world data experiment: semantic role labeling
	Data
	RegCCRF Models
	CRF baselines
	Results and analysis

	Conclusion and future work

	Conclusion
	Persisting limitations
	Extrinsic incompatibilities
	Challenges with relation building
	A poor understanding of interdependencies

	Future approaches to relation extraction
	Large language models
	AutoML

	Bibliography
	Investigating task-generalizability with performance prediction
	Training Models
	Hardware
	Tokenization
	Hyperparameters
	Optimizer and Training
	Early Stopping
	Features

	Task-general joint modeling with regular-constrained CRFs
	Experimental Design
	CRFs
	Synthetic data experiments – training procedure
	Semantic role labeling – training procedure

	Construction as weighted FST
	Transducer topology
	Edge weights

	Automaton construction for semantic role labeling

