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Abstract

This thesis addresses the challenging task of neural machine translation (NMT)

between various Arabic dialects, an area that has received limited focus in the field

of natural language processing. The primary aim is to explore and compare different

approaches to dialect-dialect translation, including models trained from scratch,

fine-tuning pre-trained monolingual models, and fine-tuning pre-trained multilingual

models.

A comprehensive analysis was conducted to evaluate the effectiveness of an

”Everything-to-Everything” model compared to models specifically trained for each

translation direction. Additionally, the impact of systematically introducing addi-

tional data during the training phase, such as various dialects and Modern Standard

Arabic (MSA), was examined. The performance of these models was evaluated using

a range of automated metrics (such as BLEU and chrF++) and human evaluation

of translation quality for a single target dialect. The study also investigates the

correlation between machine translation performance and the mutual intelligibility

among Arabic dialects based on a range of linguistic distance measures.

The research reveals that fine-tuning a pre-trained monolingual model, AraT5,

yields superior performance compared to other approaches, challenging common

beliefs about multilingual models in low-resource scenarios. Furthermore, it was

found that single-direction models outperform both the everything-to-everything

model and the models that incorporated additional data. Moreover, lexical overlap

on the type-level achieved higher correlation with the translation quality scores

compared to other distance measures.

Through human evaluation, the study validates the effectiveness of the developed

models. The findings contribute significant insights into the intricacies of NMT be-

tween Arabic dialects, providing a foundation for future research in this field.
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1 Introduction

1.1 Motivation

Arabic dialects are used by millions of people worldwide, and there is a growing

demand for automated translation systems that can facilitate communication and

understanding among the different dialects.

Unfortunately, all popular translation systems, such as Google Translate, SYS-

TRAN and Microsoft Translator, use Modern Standard Arabic (MSA) exclusively.

Moreover, most NLP research is in MSA; due to its standardisation, since Arabic

dialects are not standardised. In addition to that, most research on Arabic dialects

in NLP aims to normalise it to MSA. However, these dialects are not just variants

of language; they are repositories of rich cultural nuances, historical legacies, and

regional identities.

While MSA serves its purpose in formal contexts, its use can often strip com-

munication of the warmth and personal touch that dialects bring. It enables the

transmission of stories, traditions, and emotions that might be lost in the standard-

ized form (Wardhaugh and Fuller, 2015). By exclusively relying on MSA, we risk

diluting the richness of the Arabic language and culture, making interactions more

formal and less genuine. By preserving the flavour and authenticity inherent in Ara-

bic dialects, dialect-dialect translation ensures that the essence of communication

remains intact, allowing for meaningful and personal interactions, thereby promot-

ing linguistic diversity and inclusion. Thus, developing methods to deal with this

variation is an important area of research in NLP.

1.2 Research Questions

In this thesis project, we aim to explore neural machine translation between Arabic

dialects and attempt to answer the following research questions:

1. How does the performance of models trained from scratch, fine-tuned

pre-trained monolingual models, and fine-tuned pre-trained multilingual
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models compare against each other in the context of dialect-dialect trans-

lation?

This can help us gauge how much transfer learning can benefit dialect-dialect trans-

lation as well as comparing monolingual models and multilingual models. The fine-

tuned pre-trained monolingual model will be represented by AraT5 (Nagoudi et al.,

2022), and the fine-tuned pre-trained multilingual model will be represented by mT5

(Xue et al., 2021).

2. How does the performance of a comprehensive “Everything-to-Everything”

model compare against models specifically trained for each translation

direction?

To further explore multilinguality, we will create separate models, one for each trans-

lation direction we will deal with. This approach will help us understand how each

model performs when translating between specific dialect pairs. Additionally, we will

build another model that includes all dialects we are dealing with at once. This step

allows us to explore how well a single model can handle multiple dialects simulta-

neously, adding an extra layer to our research. It can help us see how multilingual

models cope with the complexities of Arabic dialects when they are all in one model,

given how closely related they are.

3. What is the impact of systematically introducing additional data dur-

ing the training phase on the performance of the models?

a) By using additional dialects.

b) By using MSA

This research question is divided into two parts. In the first part, we will investigate

the effect of introducing additional dialects. Our approach involves systematically

incorporating different dialects to determine which dialects, when added, contribute

positively to the training process. The second part involves introducing MSA dur-

ing training to measure the influence exerted by MSA on the translation models.

Detailed information can be found in Section 5.3.3.
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4. Can the translation quality scores reflect the mutual intelligibility

between Arabic dialects?

This research question seeks to explore whether the quality of the machine-generated

translations correlates with mutual intelligibility between different Arabic dialects

based on linguistic measures such as vocabulary overlap.

By addressing these research questions, our primary objective is to bridge signif-

icant gaps in the current body of research on Arabic dialect translation within the

field of NLP.

2 Background

2.1 Arabic and Arabic Dialects

The Arabic language is a member of the Semitic language group, which is part of the

larger Afro-Asiatic language family. It is the fifth most spoken language in the world,

with over 400 million speakers across the globe and a rich literary history spanning

over a millennium. However, the situation in Arabic-speaking countries is a diglossia,

which means that there are two varieties of the language used in different contexts:

the formal written language, known as Modern Standard Arabic (MSA), and Arabic

vernaculars, which include numerous dialects (Versteegh, 2014). MSA is used in

formal contexts, such as formal writing, literature, news, and education. Arabic

vernaculars pre-social media were mainly spoken; in day-to-day communication,

TV programs and movies. Post-social media, written Arabic vernaculars boomed

(Zaidan and Callison-Burch, 2014). Books written in Arabic vernaculars are also on

the rise.

The diglossic nature of Arabic presents a challenge for natural language process-

ing applications, such as machine translation, as the formal written language and the

vernaculars differ significantly phonologically, lexically, morphologically and syntac-

tically. While they simplify certain written Arabic rules, they also introduce new

rules.
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Furthermore, the Arabic vernaculars are not homogeneous. They do not only dif-

fer from MSA but also exhibit variations among themselves, even within the borders

of the same country (Owens, 2001). Numerous competing approaches to classifying

Arabic dialects have been proposed. Versteegh (2014) classified them geographi-

cally into five regions: Arabian Peninsular, Mesopotamian, Levantine, Egyptian and

Maghrebi. Although dialects are commonly categorized by country or region, such

as Egyptian, Nilo-Egyptian or Mashriqi, it is important to note that each Arabic-

speaking country has multiple varieties of dialects with specific linguistic features,

thus researchers often note the city variety of the dialect e.g. Cairene. In the 20th

century, we saw a trend where the dialect of a political or cultural capital became

the de facto national dialect, as observed in Morocco and Egypt, though less so in

countries like Syria, Iraq, or Jordan (Ratcliffe, 2021).

There is also a distinction between urban, rural, and nomadic Arabic dialects.

Modern speakers of these dialects are not necessarily confined to the traditional

lifestyles (e.g., farming or Bedouin life) (Ratcliffe, 2021).

The dialectal variation is a result of the geographical, historical, and social fac-

tors that have influenced the evolution of the Arabic language over time. Language

contact, a key aspect of these influences, has resulted in numerous variations in-

fluenced by ancient local tongues and other languages, such as European languages

(Versteegh, 2001; Lucas and Manfredi, 2019). Other than Peninsular dialects, Arabic

dialects are thought to be influenced by substrate languages, such as Berber in the

Maghreb, Coptic in Egypt, and Aramaic in the Levant and Iraq (Ratcliffe, 2021),

making many of these dialects mutually unintelligible and the degree of intelligibility

varies from one dialect pair to the other (Kaye and Rosenhouse, 1997).

In this thesis, we will be concerned with the following variants; Lebanese, Egyp-

tian, Gulf, Moroccan, and Tunisian. We will present a short description of each of

them.

• Lebanese Arabic: Lebanese is a variant of North Levantine Arabic that is

predominantly spoken in Lebanon. In everyday conversation, Lebanese people

often code-switch between Arabic, French, and English (Bassam, 2022). Within
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Lebanese Arabic, there are several regional varieties. We will focus on the

dialect of the capital city of Beirut, which will be abbreviated as BEI from

now on.

• Egyptian Arabic: The Egyptian dialect continuum is spoken by more than 100

million people in Egypt, making it the spoken variety with the biggest num-

ber of speakers. Due to Egyptian influence throughout the area, particularly

through Egyptian music and movies, Egyptian Arabic is also intelligible in

the majority of Arabic-speaking countries (Versteegh, 2014). The Coptic lan-

guage had an impact on the dialect’s phonetics, vocabulary and grammatical

structure (Bishai, 1962). Its vocabulary is additionally influenced by Turkish,

French, Italian, Greek, and English (Hinds and Badawi, 1986). Cairene Ara-

bic, the dialect from the capital city, Cairo is the most prominent dialect of

Egyptian Arabic. This Cairene variety will be our focus and will be referred

to as CAI from here on.

• Gulf Arabic: Gulf Arabic is a dialect continuum made up of several closely

related and somewhat mutually intelligible dialects, native to the Arabian

Peninsula. The dialects spoken in the Arabian Peninsula are closer to MSA

than elsewhere in the Arab world (Al-Kahtany, 1997). We will focus on a

Qatari variant from the capital city of Doha, referenced as DOH from now on.

• Moroccan Arabic: Moroccan Arabic is a variant within the Maghrebi Arabic

dialect continuum, with many regional dialects and accents. The majority

of other regional accents are overshadowed by the prominent dialect, which

is the one spoken in major cities and also dominates the media. Moroccan

has a significant amount of Berber loanwords as well as French and Spanish

loanwords (Ennaji, 2005). We will be focusing on the dialect spoken in Rabat,

the capital, referred to as RAB going forward.

• Tunisian Arabic: Tunisian is also another variant of Maghrebi Arabic, making

to a small extent mutually intelligible with Moroccan but only slightly intelli-

gible, if at all, with Egyptian, Levantine, or Gulf Arabic. There are loanwords
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Figure 1: World Map Section with Pinpointed Cities: This section of the world map

distinctly marks the geographical positions of BEI (1), CAI (2), DOH (3), RAB (4),

and TUN (5), each represented by a numbered pinpoint for easy identification.

from French, Berber, Turkish, and Italian in Tunisian Arabic. Tunisians also

frequently code-switch, primarily to French (S'hiri, 2013). We will focus on the

dialect of the Tunisian capital Tunis, henceforth referred to as TUN.

All the dialects we are dealing with are urban sedentary dialects. No Bedouin

varieties are included. Figure 1 shows the geographic location of these dialects.

According to the findings presented in Ratcliffe (2021), there exists a varying

degree of similarity between different dialects and MSA. Table 1 partly reproduces

Table 1 from this study, showcasing data relevant to the dialects we are examining.

While the original comparison in Ratcliffe (2021) does not encompass all the exact

cities in our study (with the exception of Cairo), it still offers a framework for

understanding the relative proximity of each dialect to MSA. We can observe that, as

previously mentioned, the Gulf variant is the closest to MSA, followed by Levantine

(represented in this case by Damascene), Maghrebi, and then Egyptian with almost

the same score as Maghrebi.

Table 2, also partly reproduces Table 3 from Ratcliffe (2021), which provides a

detailed lexical overlap comparison between Arabic dialects that are relevant to this
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Dialect Lex Phon Morph Synx Avg Rank

Gulf 82 88 87 84 85.25 1

Damascus 85 79 72 84 80 5

Morocco 77 79 68 86 77.5 7

Cairo 84 79 75 70 77 8

Table 1: Excerpt from Ratcliffe (2021) ranking of Arabic Dialects in terms of con-

servation to MSA across lexical, phonological, morphological, and syntactic features

Mor Cai Dms Glf

Mor - 72 76 76

Cai 72 - 83 79

Dms 76 83 - 83

Glf 76 79 83 -

Table 2: Excerpt from Ratcliffe (2021) representing the lexical overlap comparison

between Moroccan, Cairene, Damascene, and Gulf variants

study. The lexical overlap was based on the Swadesh list of each dialect. The data

reveals that the highest degree of lexical overlap is observed in two pairs: between

the Damascene and Cairo dialects, and between the Gulf and Damascene dialects.

This suggests a significant level of lexical similarity within these pairings. Conversely,

the table highlights the lowest lexical overlap between the Cairene and Moroccan

dialects, indicating a more distinct lexical divergence between these two regional

language variants.

2.2 Machine Translation

2.2.1 Basic Approaches to Machine Translation

Machine Translation (MT) is a computer application that enables the translation of

texts or speech from one natural language (known as the source) to another (known

as the target). The goal of MT is to generate a sentence in the target language that

conveys the meaning of the source sentence (Koehn, 2010).
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There are different approaches to MT, and one traditional approach is Rule-

Based MT. This approach relies on a set of linguistic rules and bilingual dictionaries.

These rules are meticulously crafted by language experts to ensure accurate trans-

lation between the source and target languages. The process involves analyzing the

source text, breaking it down into its syntactic and semantic components, and then

generating the target language text based on the corresponding rules and lexicon

entries (Nirenburg, 1989). While the rule-based approach has its merits, especially

in preserving linguistic nuances, it requires extensive manual effort in rule creation

and maintenance.

On the other hand, Statistical Machine Translation (SMT) relies on statistical

models that are trained on sentence-aligned parallel corpora. These models learn

the probability of a word or phrase in the source language being translated into a

word or phrase in the target language. The translation process involves searching

for the most probable translation given the source sentence and the trained model

(Koehn, 2010).

Neural Machine Translation (NMT) models, which employ neural networks,

have gained prominence and replaced SMT as the mainstream approach to MT

(Stahlberg, 2020; Koehn, 2020; Zakraoui et al., 2021). The evolution of NMT mod-

els began with the Recurrent Neural Network (RNN) architecture. In this approach,

the source language sentence is fed into the RNN encoder, which encodes it into a

fixed-length vector representation at each hidden state. The decoder then utilizes

this vector to generate the target language sentence word by word.

However, RNNs have limitations when it comes to translating long sentences.

One crucial drawback is their restricted ability to represent features effectively with

fixed-length vectors (Cho et al., 2014). Furthermore, RNNs face challenges in cap-

turing long-term dependencies within a sequence due to the vanishing and exploding

gradient problem.

To address these limitations, Long Short-Term Memory (LSTM) networks, a

special type of RNN, were used in NMT (Sutskever et al., 2014). LSTMs incorporate

memory cells that enable them to capture long-term dependencies more effectively.
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To provide additional word alignment information for translating long sentences

and overcome the shortcomings of RNNs, the attention mechanism was introduced

by Bahdanau et al. (2014). This mechanism dynamically determines word alignment

and allows the decoder to focus on different parts of the input sentence based on

the current context.

Nevertheless, both RNNs and LSTMs process input sequences sequentially, which

can be computationally expensive for long sequences. In contrast, Convolutional

Neural Networks (CNNs) were suggested as an alternative, as they can process the

input sequence in parallel, resulting in faster computation (Gehring et al., 2017).

A significant shift in NMT architectures occurred with the advent of the Trans-

former model. The Transformer is a sequence-to-sequence model that uses self-

attention mechanisms in both its encoder and decoder to weigh the importance

of each word in context. Furthermore, the decoder employs a cross-attention mech-

anism that relates the input and output sentences during the translation process

(Vaswani et al., 2017). This architecture has become increasingly popular in NMT.

It has been adopted by current state-of-the-art NMT models as it not only improves

the performance of NMT but also speeds up the inference process. (Stahlberg, 2020)

2.2.2 Decoding Strategies

Decoding in machine translation is the process of determining which translation has

the highest score. Since there are exponentially many options at each step, even

for an input sentence of moderate length, it is computationally too expensive to

go through every potential translation, score it, and then select the best one. In

fact, decoding for machine translation models has been proven to be NP-complete.

Instead, heuristic search strategies are employed, which enable searching for the

optimal translation more effectively. While finding the best translation using these

strategies is not guaranteed every time, we do expect to find it frequently enough,

or at the very least, a translation that is really similar Koehn (2010). The decoding

process is pivotal in shaping the output text therefore, the selection of a decoding

strategy in machine translation is a decision that significantly impacts the transla-
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tion’s quality. Among the various strategies available, greedy decoding, beam search,

top-k sampling, and top-p (nucleus) sampling are prominent for their distinct ap-

proaches and resulting translations. We will briefly highlight the differences between

them.

The simplest decoding strategy is the greedy decoding strategy. This strategy

simply predicts the highest probability token at each position in the sequence. Al-

though this method is fast and computationally efficient because it makes a decision

at each step, it is not able to look ahead in the sequence and thus can not reevaluate

its choices later on. This means it can miss more contextually appropriate or more

coherent translations.

Beam search builds upon the basic idea of greedy search by considering several

translation possibilities at each step. Instead of selecting the single most probable

token at each step, beam search keeps track of a predetermined number of options

known as the beam width, and eventually chooses the sequence with the highest over-

all probability. Although this approach requires greater computational resources, it

often produces translations that are more accurate, since it assesses several transla-

tion options simultaneously, it provides an opportunity to rectify past token choices.

In top-K sampling, which was introduced by Fan et al. (2018), the K most likely

next words are filtered and the probability mass is redistributed among them and

then the next predicted word will be sampled from these K words only. One problem

with top-K sampling is that, because K is fixed, if the probability distribution of the

next word is extremely sharp, very unlikely words could be selected among these K

words.

To mitigate top-K’s issue, top-p sampling was introduced by Holtzman et al.

(2020). Rather than selecting the K most likely tokens, top-p sampling selects the

smallest set of tokens whose cumulative probability exceeds the probability p. As a

result, the size of the set of tokens to sample from can vary according to the next

token’s probability distribution.
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2.3 Low-Resource Languages

The performance of NMT significantly relies on large training data with millions

of training examples. NMT systems demonstrate a direct correlation between the

amount of data and translation accuracy (Ji et al., 2020). Thus, NMT’s performance

varies between high-resource and low-resource languages. High-resource languages,

with ample available data, tend to yield better results compared to low-resource lan-

guages (Koehn and Knowles, 2017). It is worth noting that even languages typically

categorized as high-resource can have low-resource domains, where supplementary

language resources, such as lexicons, can be utilized to increase effectiveness. How-

ever, such resources do not exist for many low-resource languages (Ranathunga et al.,

2023).

Although there is no universally agreed definition for low-resource languages, Ma-

gueresse et al. (2020) characterizes them as languages that are less studied, resource-

scarce, less computerized, less commonly taught, or low-density. NLP researchers

consider data availability and the presence of NLP tools as criteria for distinguish-

ing low-resource languages (Hedderich et al., 2021). Classification initiatives have

attempted to categorize languages based on these criteria. For example, Joshi et al.

(2020) classified over 2,000 languages into six groups based on the availability of raw

and annotated datasets per language.

MT stands apart from other NLP tasks due to its bilingual nature. The data

availability of a language pair in MT is primarily determined by the availability

of parallel sentences between the two languages. Therefore, even if a particular

language has a substantial number of monolingual corpora, if it possesses only a

limited parallel corpus with another language, that language pair is still considered

low-resource. However, there is no standard corpus size for classifying language pairs

as low-resource or extremely low-resource (Ranathunga et al., 2023). Early research

considered 1 million parallel sentences as indicative of low-resource status (Zoph

et al., 2016), while recent studies consider a language pair as low-resource if the

available parallel corpora consist of fewer than 0.5 million sentences and as extremely

low-resource if it contains fewer than 0.1 million sentences (Lakew et al., 2019;
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Zaremoodi et al., 2018).

One of the significant technical challenges in Arabic machine translation arises

from the aforementioned issue, the limited availability of datasets and lexical re-

sources that can serve as standardised benchmarks for conducting comprehensive

experiments (Zakraoui et al., 2021). Consequently, researchers often collect domain-

specific datasets and address Arabic’s linguistic complexities based on custom datasets.

This challenge becomes even more pronounced when dealing with Arabic dialects,

which are considered extremely low-resource languages (Sajjad et al., 2020).

To tackle the low-resource nature of languages, several techniques have been

studied. These techniques include leveraging monolingual data, pivoting, multilin-

gual NMT (Lakew et al., 2018b), and transfer learning and finetuning (Ji et al.,

2020; Gu et al., 2018). These approaches aim to mitigate resource limitations and

enhance the quality of translation for low-resource languages. We will now proceed

to present an overview of these techniques.

2.3.1 Leveraging Monolingual Language Models

Language Models (LMs) can be employed to initialize NMT models. This can be

done by initializing only the encoder with source embeddings as seen in Abdou

et al. (2017)’s study or by initializing both the encoder and decoder with the re-

spective LMs (Ramachandran et al., 2017). Expanding onto that, Zhu et al. (2020)

incorporate BERT finetuning for NMT.

2.3.2 Pivoting

Pivoting involves breaking down the translation process of a source-target language

pair (X-Z) into two stages: source-pivot (X-Y) and pivot-target (Y-Z). This approach

requires training two independent high-resource models: X-Y and Y-Z. Initially, the

source sentence is translated using the X-Y model, and then the output is further

translated using the Y-Z model to obtain the target sentence (Ranathunga et al.,

2023).
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While pivot-based models have long been considered a solution for low-resource

and zero-shot NMT, recent advancements in multilingual NMT models have sur-

passed the performance of pivot-based approaches (Arivazhagan et al., 2019).

2.3.3 Multilingual NMT

Multilingual NMT (MNMT) enables the use of a single model for translating be-

tween multiple language pairs (Ha et al., 2017) based on either the recurrent model

with attention (Johnson et al., 2017) or the Transformer-based model (Vaswani et al.,

2018), and the latter has been shown to be superior (Lakew et al., 2018c). Originally

introduced to eliminate the need for individual separate bilingual translation mod-

els, MNMT models show great promise in translating low-resource language pairs

(Ranathunga et al., 2023).

Multiple studies have demonstrated the superiority of multilingual models over

their bilingual counterparts, particularly when dealing with a small number of re-

lated languages (Lakew et al., 2018c; Tan et al., 2019). However, MNMT systems face

various challenges, such as the diverse characteristics of different languages, noise

in parallel data, data imbalance across languages, and the curse of multilinguality

(Ranathunga et al., 2023; Conneau et al., 2020).

According to Ranathunga et al. (2023) supervised MNMT architectures can be

broadly categorized into four paradigms. Firstly, the single encoder-decoder ap-

proach, where all source sentences are processed by a shared encoder, regardless

of the language, and the decoder can translate into any target language. Secondly,

the per-language encoder-decoder paradigm, where each source language has its own

encoder and each target language has its own decoder. Lastly, the shared encoder/

decoder at one side with per-language decoder/encoder on the other side.

The current state-of-the-art approach for large-scale MNMT implementations is

the adoption of a single encoder-decoder model for all languages (Arivazhagan et al.,

2019). This universal model offers advantages in terms of lower complexity and

parameter count compared to per-language encoder-decoder models (Ranathunga

et al., 2023). Furthermore, it has demonstrated the ability to learn an interlingua
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representation (Johnson et al., 2017). One major challenge in employing this archi-

tecture is enabling the decoder to correctly identify the target language. Common

practices include adding a language identification tag to the source sentence or in-

corporating the language name as an input feature (Ranathunga et al., 2023).

Extensive research has been conducted to explore the advantages and draw-

backs of different architectures. Research by Hokamp et al. (2019) demonstrated

that employing a unique decoder for each target language outperforms models with

fully shared decoder parameters. Additionally, Sachan and Neubig (2018) found that

partial parameter sharing in the Transformer model (Vaswani et al., 2018), yields

superior results compared to the full-parameter sharing recurrent model (Johnson

et al., 2017). However, the choice of the most suitable model depends on the specific

task requirements. In scenarios where hundreds of languages need to be accommo-

dated, maximum parameter sharing, as in Johnson et al. (2017), is preferred to

reduce model complexity Ranathunga et al. (2023).

2.3.4 Transfer Learning

Transfer Learning (TL) is a widely utilized technique in low-resource NLP. TL in-

volves leveraging an NMT model trained on a high-resource language pair to ini-

tialize a low-resource child model, thereby reducing training time, and improving

performance compared to training the child model from scratch, reducing the size re-

quirement on child training data. This approach aims to solve one task from another

different, yet related task. TL has demonstrated remarkable efficacy in the context

of MNMT, particularly for translating in or between low-resource language pairs

(Pan and Yang, 2010; Zoph et al., 2016; Ranathunga et al., 2023). TL consistently

outperforms training the child model from scratch when translating low-resource

language pairs, even for extremely low-resource children (Lakew et al., 2018a).

A notable case of MNMT-based TL involves finetuning large-scale multilingual

language models like mBART (Liu et al., 2020), using limited amounts of parallel

data (Cooper Stickland et al., 2021). The success of TL depends on various factors,

with the relationship between the languages employed in the parent and child models
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being of utmost importance (Dabre et al., 2017; Nguyen and Chiang, 2017; Zoph

et al., 2016). Greater relatedness between languages ensures a higher vocabulary

overlap when utilizing the surface form as input, resulting in more meaningful cross-

lingual embeddings (Ranathunga et al., 2023). This allows for the exploitation of

the proximity between an under-resourced language and the closest related resourced

language. This is particularly relevant in the context of standard languages and their

dialects. (Harrat et al., 2019).

3 Related Work

3.1 Pre-neural MT Work on Arabic Dialects

MT work on Arabic dialects has been limited. Most of the research in Arabic dialects

MT primarily focuses on translating dialects into either MSA or English. Very few

studies explore translating to a dialect as the target language (Harrat et al., 2019).

In fact, to the best of my knowledge, there has only been one study (Moukafih

et al., 2022) conducted on translating between different dialects in both the source

and target languages.

Rule-based approaches with morphological analysis and transfer rules to normal-

ize dialectal words into their MSA equivalent are widely used for translating between

MSA and dialects. On the other hand, the dominant methodology in the context of

translating Arabic dialects and English involves combining rule-based and statistical

approaches and typically depends on MSA as a pivot language. Other approaches

employ domain adaptation techniques, treating dialects as a domain adaptation

problem.

Abo-Bakr et al. (2008) proposed a system that combined both rule-based and

statistical approaches that employed morphological analysis on the input and an

Egyptian-MSA lexicon to map Egyptian Arabic to MSA.

Sawaf (2010) also proposed a hybrid MT system to normalize dialectal words.

The normalization process involved mapping the dialectal words at the character-

20



and morpheme-level. The normalized input was then translated to English using

either a hybrid or a statistical MT system using MSA as a pivot language.

Salloum and Habash (2011) also mapped dialectal Arabic to MSA specifically

to reduce out-of-vocabulary (out-of-vocabulary) words when translating between

Arabic and English using an Analyzer for Dialectal Arabic Morphology which they

called ADAM.

Furthermore, The Elissa system, also designed by Salloum and Habash (2012),

attempts to translate Arabic dialects (Levantine, Egyptian, Iraqi, Gulf) into MSA.

The system starts by identifying dialectal words within the source sentence. It then

utilizes the ADAM (Salloum and Habash, 2011), morphological transfer rules, and

dialect-MSA dictionaries to generate MSA paraphrases, which are then used to

construct an MSA lattice. The constructed lattice is subsequently subjected to n-

best decoding and selection using a language model, with the goal of identifying the

most suitable MSA translations.

Zbib et al. (2012) attempted to translate from Dialectal Arabic (Egyptian and

Levantine) to English directly, using a phrase-based hierarchical model while also

experimenting with pivoting on MSA. An interesting finding in the study was in-

corporating a 150M-word MSA corpus when using 200k words of dialectal data

the performance improves significantly. However, when the available dialectal data

exceeds 400k words, adding MSA training data no longer enhances performance;

instead, it has a negative impact.

Al-Gaphari and Al-Yadoumi (2010) used a rule-based approach to convert the

Sanaani dialect from Yemen to MSA. Similarly, another rule-based approach, which

was devised by Mohamed et al. (2012), focuses on the lesser-studied direction; pro-

ducing Egyptian Arabic from MSA.

Hamdi et al. (2013) introduced a translation system between MSA and Tunisian

dialect verbal forms. Their approach is based on a deep morphological represen-

tation based on A Morphological Analyzer and Generator for the Arabic Dialects

(MAGEAD) which was introduced by Habash and Rambow (2006).

Sajjad et al. (2013) presented an SMT system designed for translating Egyptian
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Arabic to English. Their approach involved converting Egyptian Arabic to MSA

through a character-level transformational model that encompassed various linguis-

tic aspects such as morphology, phonology, and spelling. This model was trained

using a collection of Egyptian-MSA word pairs.

Tachicart and Bouzoubaa (2014) employed a rule-based approach to translate

the Moroccan dialect to MSA. Their system utilized morphological analysis per-

formed with the Alkhalil morphological analyzer (Boudlal et al., 2010), in which

they incorporated Moroccan affixes and a bilingual dictionary, collected from tele-

vision productions scenarios and the web. However, no evaluation of this work was

provided.

A framework for translating Tunisian dialect text from social media into MSA

was presented by Sadat et al. (2014). Their word-based approach relied on a bilingual

lexicon and grammatical mapping rules, with disambiguation performed using an

MSA language model.

Jeblee et al. (2014) introduced an MT system that, like the one by Mohamed

et al. (2012), delves into the lesser explored direction by translating from English

to a dialect through the use of MSA as a pivot. The system is built upon an MT

model trained on an English-MSA parallel corpus. The output is then further trans-

lated into Egyptian by employing both dialect and domain adaptation techniques.

The study’s main finding highlights the potential for improving machine translation

quality by leveraging domain adaptation between MSA and the Egyptian dialect.

Al-Mannai et al. (2014) put forward an unsupervised approach of morphological

segmentation for Arabic dialects, to enhance the quality of SMT from Qatari Arabic

to English.

Durrani et al. (2014) focused on improving the translation quality from Egyptian

to English by addressing out-of-vocabulary words. They employed a large monolin-

gual language model to score MSA candidates for Egyptian out-of-vocabulary words.

The candidates were generated through spelling correction and synonym suggestions

based on the context. The MSA results were then translated into English using an

SMT system.
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Aminian et al. (2014) also addressed the challenge of out-of-vocabulary words

in Dialectal-to-English SMT. They approached this issue by normalizing dialectal

words to their MSA equivalents using AIDA and MADAMIRA, which are tools

developed by Elfardy et al. (2014) and Pasha et al. (2014) respectively.

3.2 NMT Work on Arabic Dialects

There is very limited research for NMT for Arabic dialects. In Shapiro and Duh

(2019) study, the authors examine the advantages of performing dialect identifi-

cation for Arabic to English NMT using Transformers (Vaswani et al., 2017) as

opposed to using a general system that covers all dialects. They also investigate the

impact of the quality of dialect identification by introducing random noise to re-

duce language identification accuracy. The results indicate that there is a cross-over

point where the error rate of dialect identification is less than 20%. At this point,

the pipelined approach outperforms the integrated, multilingual approach in terms

of BLEU scores.

Tawfik et al. (2019) explore the role of word segmentation in NMT for Arabic

dialects (Egyptian, Levantine & Gulf) to English. They focus specifically on com-

paring morphology-aware dialectal Arabic word segmentation with other approaches

such as Byte Pair Encoding (BPE) and Sub-word Regularization (SR). The results

demonstrate that incorporating sufficiently accurate morphology-aware segmenta-

tion in combination with BPE or SR yields superior performance. This concludes

that morphology-aware word segmentation offers advantages over language-agnostic

methods, particularly when leveraging parallel data from a resource-rich language

to enhance the machine translation of a related low-resource language.

Al-Ibrahim and Duwairi (2020) presents a framework for translating Jordanian

into MSA using an RNN encoder-decoder model. The experiments were divided into

word-level and sentence-level translations.

In the paper by Nagoudi et al. (2021), the focus is on translating code-mixed

text, specifically a combination of MSA and Egyptian, which they call MSAEA, into

English. The authors develop models under different conditions, employing both
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standard seq-to-seq Transformers (Vaswani et al., 2017) trained from scratch and

pre-trained seq-to-seq language models. The models achieve reasonable performance

using only MSA-EN parallel data with the models trained from scratch. Addition-

ally, finetuning LMs on data from various Arabic dialects proves beneficial for the

MSAEA-EN translation task. The study concludes that training models on MSA

data proves useful for the MSAEA-to-English task in the zero-shot Egyptian Arabic

setting. It also highlights the utility of pre-trained language models like mT5 (Xue

et al., 2021) and mBART (Liu et al., 2020) in code-mixing tasks.

The previously mentioned study by Moukafih et al. (2022) adopted a different

approach, leveraging the linguistic proximity between Arabic dialects. They imple-

mented a neural multi-task learning framework to enable simultaneous translations

of multiple dialect pairs.

Slim et al. (2022) present a study on a transductive transfer learning approach

for low-resource NMT applied to the Algerian dialect. This approach relies on a

finetuning transfer learning strategy that transfers knowledge from a parent model

to a child model, aiming to overcome the learning problem associated with limited

parallel corpora. The study tests this approach on a sequence-to-sequence model

with and without the Attention mechanism (Vaswani et al., 2017). Initially, the

models are trained on the parallel multi-dialectal Arabic corpus MADAR (Bouamor

et al., 2018) and subsequently switched to a low-resource dataset, PADIC (Meftouh

et al., 2015), which includes the Algerian dialect. The paper also explores the impact

of transductive transfer learning on Algerian dialect translation from various per-

spectives. The findings demonstrate that the transductive transfer learning strategy

improves the translation performance of the NMT model, irrespective of whether

the attention mechanism is employed or not.

24



4 Datasets

4.1 MADAR

The primary dataset for this research was the Multilingual Arabic Dialect Appli-

cations and Resources (MADAR) dataset (Bouamor et al., 2018). The creation of

this corpus involved the translation of a selection of sentences from the Basic Trav-

eling Expression Corpus (BTEC) (Takezawa et al., 2007), which is a multilingual

spoken language corpus containing tourism-related phrases commonly found in trav-

ellers’ phrasebooks into various Arabic dialects by their native speakers. BTEC is

particularly applicable due to its conversational style that features dialogues be-

tween tourists and guides. This aspect makes it especially relevant, as it mirrors the

primary contexts in which these dialects are typically used.

MADAR is widely recognized as a comprehensive resource for Arabic dialects,

offering a 26-way parallel data structure that includes MSA and 25 city dialects.

The breadth of this dataset makes it an ideal choice for our experiments. However,

there is a significant variation in the volume of data available for each dialect within

the MADAR dataset. Five dialects - Cairo (Egyptian), Beirut (Lebanese), Doha

(Qatari), Rabat (Moroccan), and Tunis (Tunisian) - have 12,000 sentences each,

while the remaining dialects only have 2,000 sentences each. Given this disparity,

our experiments will primarily focus on the five dialects with larger datasets to

ensure robustness in our models’ training and finetuning processes

A recent paper by Facebook (Team et al., 2022) also utilized the MADAR

dataset, mapping 16 of its dialects to the 8 Arabic dialects in their NLLB-200 multi-

lingual model. However, the specifics of this mapping were not detailed in the paper.

Indeed, many of the dialects can be collapsed into coarser macro-dialects which may

generalize the smaller differences across cities. However, given the potential for larger

city dialects to overpower smaller ones in the model, and the risk of adding noise

through the inclusion of essentially identical sentences from different cities, we have

decided to use the MADAR city-dialect variant with the cities that have 12,000

sentences without collapsing other cities into them.
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Lang Total Types Total Tokens

Doha 9967 64096

Cairo 12724 69695

Tunis 12911 66005

Beirut 12970 63854

MSA 13296 81783

Rabat 13653 72175

Table 3: Total types and tokens for the relevant Arabic Dialects and MSA, sorted

ascendingly by the total types

TUN RAB CAI BEI DOH MSA

TUN - 0.1904 0.1716 0.1604 0.1731 0.1490

RAB 0.1904 - 0.1703 0.1572 0.1696 0.1675

CAI 0.1716 0.1703 - 0.2143 0.2365 0.2080

BEI 0.1604 0.1572 0.2143 - 0.2156 0.1662

DOH 0.1731 0.1696 0.2365 0.2156 - 0.2122

MSA 0.1490 0.1675 0.2080 0.1662 0.2122 -

Table 4: Jaccard similarity of lexical types between pairs of dialects and MSA.

The dataset identifies the split for each sentence, allowing for division into train-

ing, validation, and testing sets. It includes 9,000 sentences intended for training,

1,000 for validation, and 2,000 designated for testing purposes.

Table 3 describes how many types and tokens there are for each of our relevant

dialects in the entire corpus. To dive further into corpora statistics, we also mea-

sure lexical overlap between the dialects using both Jaccard similarity and Jenssen-

Shannon divergence.

Jaccard similarity measures similarity between finite sample sets and is defined

as the size of the intersection divided by the size of the union of the sample sets,

illustrated in Equation 1. In our case, the set is the types in the dialect. The results

are shown in Table 4.
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TUN RAB CAI BEI DOH MSA

TUN - 0.3951 0.4175 0.4358 0.4295 0.4588

RAB 0.3951 - 0.4176 0.4484 0.4223 0.4486

CAI 0.4175 0.4176 - 0.3666 0.3283 0.3990

BEI 0.4358 0.4484 0.3666 - 0.3854 0.4548

DOH 0.4295 0.4223 0.3283 0.3854 - 0.4103

MSA 0.4588 0.4486 0.3990 0.4548 0.4103 -

Table 5: Jenssen-Shannon divergence of lexical types between pairs of dialects and

MSA.

(1) J(A,B) =
|A ∩B|
|A ∪B|

Jensen-Shannon Divergence is used to measure the similarity between two prob-

ability distributions. It is based on the Kullback-Leibler divergence, with the key

difference that it is symmetric. For two probability distributions P and Q, the Jensen-

Shannon divergence is defined as shown in Equation 2, where M is the mean of P

and Q, and KL is the Kullback-Leibler divergence as defined in Equation 3. In our

case, P and Q were relative frequencies of tokens in different dialects. The results

are shown in Table 5.

(2) JSD(P,Q) =
1

2
KL(P ∥ M) +

1

2
KL(Q ∥ M)

(3) KL(P ∥ Q) =
∑
i

P (i) log

(
P (i)

Q(i)

)

We employed two distinct approaches for analyzing lexical similarities since one

is a type-level method and the other is a token-level method. Both methods yielded
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relatively consistent results, concurring that CAI and DOH exhibit the greatest

similarity, whereas MSA and TUN are the most dissimilar.

Echoing the findings of Ratcliffe (2021), our results in Table 4 similarly suggest

a high degree of similarity between DOH and MSA. However, some of our other

findings do not completely align with those reported in Ratcliffe (2021) as we saw in

Table 2. This divergence is not unexpected and can be attributed to the differences

in the data sets and methodologies used in our respective studies. Such variance

highlights the inherent complexity in dialectal analysis and emphasizes how method-

ological choices can significantly influence research outcomes. We will compare the

different matrices against the empirical data from our translation experiments, in

order to identify the matrix that offers the best explanation and alignment with the

experimental results.

4.2 PADIC

Another dataset called PADIC (Meftouh et al., 2015) is also relevant for translation

between Arabic dialects. The PADIC dataset is much smaller than the MADAR

dataset and comprises approximately 6000 parallel sentences for MSA and the fol-

lowing dialects: Algiers, Annaba, Syrian, Palestinian, Sfax, and Moroccan. While

these dialects do not directly align with our intended translation directions, the

dataset offers valuable opportunities for conducting additional zero-shot testing. To

effectively conduct zero-shot evaluations, viable scenarios are limited to those where

MSA is the target language, as this provides access to a gold standard reference.

Our approach will include a zero-shot assessment of the “everything-to-everything”

model, alongside the evaluation of the single-direction model where the source is the

dialect most closely related for each dialect in PADIC.
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5 Methodology and Experimental Setup

5.1 Overview

We present an overview of the experiments we hold in Figure 2.

Figure 2: Diagram showcasing our experiments

We describe these steps in the following subsections.
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5.2 Model Selection

5.2.1 Training from scratch

Despite the limited training data of 9,000 sentence pairs, training from scratch may

serve as a baseline for the transfer learning approach to evaluate how well NMT

models can learn to translate between Arabic dialects, which can be thought of

as closely-related low-resource languages, without leveraging models pretrained on

a vast amount of MSA data. This can also be used to measure how much the

performance will improve when implementing more elaborate methods.

Using PyTorch’s dynamic features and comprehensive documentation, we cre-

ated a vanilla Transformer model from scratch, adhering to Vaswani et al. (2017)’s

framework. The process of building from scratch provided us the flexibility to imple-

ment custom features, therefore, in an effort to enhance the model’s comprehension

of Arabic syntax and semantics, we took a step further and included a morphological

tokenizer to handle Arabic dialects more effectively.

However, unfortunately, as we had anticipated, the lack of sufficient sentence

pairs in our dataset presented the model with difficulties, leading to repetition in

the outputs and a BLEU score of 0.

5.2.2 Finetuning Models

The next step would be employing transfer learning by finetuning both the AraT5

model Nagoudi et al. (2022) and the mT5 model Xue et al. (2021) for each trans-

lation direction. AraT5 is a monolingual model while mT5 is a multilingual model.

Both models were pretrained on Arabic data, which is primarily MSA mixed with

some dialectal data. Finetuning offers an opportunity to leverage the pre-existing

knowledge of MSA in these models, adapting the models to individual dialects, to

improve the performance of translating between Arabic dialects.

The finetuning process will be carried out using the transformers Python library

provided by HuggingFace. Following the recommendation of AraT5’s authors, We
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will be finetuning the model for 22 epochs, as that is indeed when the model con-

verges and the training loss stabilizes. Throughout this process, the default Adam

optimizer will be employed.

The selection of the optimal model will be based on achieving the highest BLEU

score on the validation set, ensuring the best possible performance in terms of lan-

guage translation accuracy. This approach entails that the decoding strategy em-

ployed during validation in the training stage will directly influence the end model’s

performance. Although greedy is the default setting, beam search has proven to

be the best performing in the context of machine translation (Wiher et al., 2022).

Consequently, we opted to use a beam width of 4. This decision is based on the

observation that while wider beam widths offer marginal improvements in perfor-

mance, they also lead to a disproportionate increase in computational time, thereby

making a beam width of 4 an optimal balance between efficiency and translation

accuracy. To thoroughly evaluate the influence of different decoding strategies, we

will conduct additional testing on the saved models using top-K and top-p sampling

methods.

In the initial phase of our experimentation, we systematically evaluated the

model’s performance across various batch sizes. Our investigation began with smaller

batch sizes, specifically 8, and incrementally increased to 16, 32, and finally 64. The

progression beyond a batch size of 64 was not feasible due to memory limitations

inherent in our setup. Based on these constraints and the performance outcomes ob-

served, we decided to proceed further in our experiments using the two most optimal

batch sizes identified: 32 and 64.

We will also incorporate mixed precision training, which strategically combines

different numerical precisions within the training process. This approach is designed

to optimize computational efficiency while maintaining model accuracy by utiliz-

ing the speed benefits of lower-precision arithmetic and counterbalancing it with

higher-precision formats, where necessary to ensure stability and accuracy in model

performance.
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In the preliminary stages of our experiments, we initially trained models using

the fp16 precision setting, widely regarded as a reasonable default value. However,

this approach resulted in unstable results for T5-based models, a finding not explic-

itly documented in the available literature or guidelines. Further experimentation,

supported by discussions on the Hugging Face forum, revealed that bf16 precision

aligns more closely with the original training protocols of T5 models and there-

fore is more stable and better performing. We therefore use bf16 throughout our

experiments.

The initial results from the monolingual model AraT5 were quite promising.

However, when we transitioned to the multilingual model mT5, we observed signif-

icant differences. It is important to note that mT5 was not only also pretrained on

Arabic but it was pretrained on a much larger Arabic dataset than AraT5, encom-

passing 57 billion tokens, in contrast to AraT5’s 29 billion tokens. This means that

mT5 was trained on 96.55% more tokens than AraT5.

Despite this substantial data advantage, the data we finetuned it with was not

sufficient to overturn the pretraining, as it continued to generate non-Arabic tokens,

and it yielded a disheartening BLEU score of zero. We attributed these shortcomings

to the fact that mT5’s pretraining relied solely on the mC4 corpus without any

supervised training.

Consequently, it became evident that mT5 required further fine-tuning before it

could be effectively employed in downstream tasks. One potential solution considered

was to continue pretraining it with additional Arabic data. However, this approach

might have nudged it towards the characteristics of AraT5. We ultimately decided

to proceed with AraT5 for our experimental work.

5.3 Training Approaches

We aim to investigate the impact of different training approaches and strategies on

the quality of translations between Arabic dialects. We consider three approaches

to further understand how these dialects interact:
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1. Single-Direction Translation

2. Everything-to-Everything Translation

3. Augmented-Source Translation

Our first approach is a monolingual approach where each direction has its own

monolingual encoder and decoder. The second approach follows the first super-

vised MNMT paradigm mentioned above in Section 2.3.3, where there is a single

shared encoder-decoder. Finally, the third approach follows the third paradigm with

a shared encoder for source languages and a per-language decoder for target lan-

guages. These approaches are more deeply described in the following subsections.

5.3.1 Single-Direction Translation

In this approach, we will create NMT models for each translation direction. For

example, if we have dialects A, B, and C, we will train separate models for A-B,

B-A, A-C, C-A, B-C, and C-B. Given that our research encompasses five distinct

dialects in addition to MSA this creates a total of 30 unique translation directions,

and thus 30 different models.

5.3.2 Everything-to-Everything Translation

In this approach, a single NMT model will be trained to translate between all di-

alects. This can help us gauge how Arabic dialects benefit from multilinguality given

how closely related the languages are. The model will be fed with parallel sentences

from all possible translation pairs and trained to learn the translations. The source

sentence will have a tag prepended to it, which represents the target dialect the

model should translate to. These dialect tags are special tokens that are initially

added to the tokenizer’s vocabulary and then the size of the token embeddings in

the pre-trained model is adjusted to align with the new length of the tokenizer’s

vocabulary.
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We will execute our approach in two distinct phases to assess the impact of

including MSA in our translation models. Initially, we will conduct experiments with

all five dialects without incorporating MSA. Subsequently, we will repeat the process,

this time adding MSA to the mix of source dialects. This methodology is relevant

considering that the majority of linguistic resources, especially parallel corpora, are

in MSA. By comparing the outcomes of these two phases, we aim to determine

whether the inclusion of MSA leads to an improvement in translation quality. This

will not only shed light on the practical utility of MSA in multilingual translation

scenarios but also help in optimizing the use of available linguistic resources.

5.3.3 Augmented-Source Translation

To further delve into multilinguality, our methodological approach involves training

separate models for each combination of source dialects, targeting a specific dialect.

For each target dialect, we will create a unique model for every possible combination

of the four remaining source vernaculars. This results in a total number of 11 models

per target dialect calculated using the n-choose-k formula:
(
4
2

)
+

(
4
3

)
+

(
4
4

)
. This

approach was chosen to gain a comprehensive understanding of how individual and

combined contributions of each source dialect influence the translation process.

To eliminate ordering bias, we have decided against the incremental training

models with different source dialects one at a time. Instead, we will train each

combination independently. This method aims to eliminate any potential biases that

might arise from the sequence in which dialects are introduced during the training

phase since the combined source sentences will be pre-shuffled before training.

To further illustrate the approach; a practical example of it is training a model

for the combination A and B as sources, targeting dialect C. Once trained, this

model will be tested and assessed on two distinct translation directions: A to C

and B to C. These tests will reveal the model’s performance on each language pair,

providing valuable insights into its capabilities.

By implementing this process for various dialect combinations, we aim to deeply

understand the complex dynamics inherent in multilingual machine translation, par-

34



ticularly when involving Arabic dialects. This approach will help identify which

specific dialects or combinations that most significantly enhance translation per-

formance for each direction. Ultimately, our goal is to determine the effect of each

dialect’s addition on the quality of the translations produced.

Additionally, mirroring the approach we adopted with the “everything-to-everything”

variant, we plan to explore the potential of adding MSA alongside the source and

evaluate its impact on the model’s performance to gauge how it affects the transla-

tion direction, thereby providing valuable insights into its role as a linguistic inter-

mediary.

5.4 Data Prepration

In the MADAR dataset, each city is represented by a TSV file, with the following

structure: ID, split, language, and sentence. Initially, we divide each city file into

three separate files for the train, validation, and test splits. We then align sentences

by their unique identifiers for each translation direction, resulting in three files for

each direction. Subsequently, we convert these files into JSON format, with a single

JSON array; each element within this array consists of a JSON object that repre-

sents parallel sentences where the keys are language codes, and the values are the

corresponding sentences.

In the case of single-direction translations, we prepare the data so that each

element contains two dialects. However, for the everything-to-everything variant, we

include all five dialects and MSA in each element, iterating over the combinations

of input and output sentences during training.

Regarding the augmentation process, we create JSON split files for every possible

combination of source dialects to each target dialect. Since the source language varies

during training, the key for the input sentences is designated as a string representing

the combinatory source, while the key for the output remains the target language’s

code. The key names used in the training data are indeed irrelevant to the actual

training process and are purely a design choice.
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The PADIC dataset comprises a single XML file containing 6411 “sentence”

elements. Each “sentence” element includes sub-elements for different dialects, each

representing the same sentence in a specific dialect. The dialects in PADIC, namely;

Algiers, Annaba, Syrian, Palestinian, Sfax, and Moroccan are coded as ALG, ANB,

SYR, PAL, TUN and MAR respectively. We had to change the code for Sfax to

SFX to avoid confusion with the TUN dialect from Tunis in the MADAR dataset.

The dialects will be henceforth, referred to by their code. To unify structures across

datasets we took the same approach as we did with MADAR. We isolated sentences

of each dialect into one text file and then aligned them for our intended directions.

Since we are only utilizing this dataset for testing purposes we created a singular

JSON file for each direction.

6 Evaluation

6.1 Evaluation Datasets

We will evaluate the effectiveness of our proposed approaches using several datasets.

The MADAR dataset Bouamor et al. (2018), which includes separate train, develop-

ment, and test splits, will serve as our primary dataset for assessing the performance

of our models. Specifically, the test set within the MADAR dataset will provide a

rigorous evaluation of our models’ performance.

As previously outlined in Section 4.2, our approach entails conducting zero-shot

testing across the entire PADIC dataset, encompassing both the “everything to

everything” model and the single-direction models. This comprehensive evaluation

enables us to assess our model’s zero-shot capabilities and its capacity to generalize

effectively across previously unseen dialects.

6.2 Automatic Evaluation

The performance of our models can be assessed through manual or automatic meth-

ods. One of the most widely used automatic methods is the Bilingual Evaluation
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Understudy (BLEU) metric, introduced by Papineni et al. (2002).

BLEU is a precision-oriented metric that measures the closeness of the candidate

output of a machine translation system to one or more reference translations. It does

this by comparing n-grams (contiguous sequences of n items from a given sample of

text or speech) in the machine-generated translations to the n-grams in the reference

translations, and counting the number of matches. The scores range from 0 to 1,

with 1 being a perfect match to the reference translation.

While BLEU is language-independent and has been widely adopted due to its

simplicity and correlation with human judgment, it has limitations, especially when

dealing with languages with rich morphology like Arabic. To address this, the AL-

BLEU metric Bouamor et al. (2014) was introduced, which extends the standard

BLEU to better handle the rich morphology of the Arabic language. AL-BLEU

incorporates morphological analysis into the evaluation process, providing a better

assessment of translation quality for Arabic. Despite the availability of these adapted

metrics, many researchers still use the standard BLEU. Only a few have utilized

metrics specifically adapted for the Arabic language. We will report both values for

comparability.

6.3 Human Evaluation

In order to further assess our translation models’ reliability, we plan to conduct

human evaluation experiments. For this purpose, we enlisted the help of seven vol-

unteers from Cairo to review the translations in the Cairene dialect. The decision

to use Cairene for evaluation was influenced solely by the ready availability of na-

tive speakers. Our methodology involved randomly sampling 200 sentences from the

2000 sentences in the MADAR test split, and pairing each group of 40 sentences with

one of the source languages. Corresponding translations into Cairene were generated

using the single-direction model that was finetuned for that specific language pair.

We constructed four questions for each sentence, resulting in a total of 800 ques-

tions. Our evaluation process was designed to thoroughly compare the quality of

generated translations with their respective reference translations. To achieve this,

37



we formulated a set of questions, each targeting a specific aspect of the translation.

This included one question to assess the fluency of the generated translation and

another to evaluate the fluency of the reference translation. Similarly, we included a

question to measure the accuracy of the generated translation and another to judge

the accuracy of the reference translation. The purpose of this dual assessment was

to enable a comprehensive analysis of both the quality of the translations produced

by our model and the quality of the dataset itself, facilitating a direct comparison

between the two.

To ensure an unbiased evaluation, the questions were randomized such that no

consecutive questions were derived from the same source language or sentence. Each

question was presented on a separate page to minimize any potential bias from

previous questions. For the fluency evaluation, participants were shown a single

sentence and asked to rate its fluency on a Likert scale ranging from 1 (not fluent) to

5 (very fluent). Similarly, for accuracy assessment, participants were presented with

both the original source sentence along with its source language and the translated

Cairene sentence. They were then asked to rate the accuracy of the translation on

a Likert scale from 1 (not accurate) to 5 (very accurate).

Acknowledging that the source sentences may not always be easily understood by

our participants, we provided them with the MSA equivalents as references. However,

since MADAR was originally translated from English or French to all dialects, rather

than directly from MSA, there might be some inconsistencies between the MSA

equivalent and the original source sentences. Therefore, the participants were asked

to read the source in the original language first, even if they do not fully understand

it and if there are clear discrepancies between the original source sentence and the

MSA equivalent, then the original source sentence takes precedence in evaluating

the output. Furthermore, the participants were also asked not to be guided by their

knowledge of MSA grammar and spelling in order to not bias their evaluation and

to take acceptable spelling variations into account.

We utilized Google Forms for this evaluation due to its efficient features like, cre-

ating questions programmatically and the ability to import questions from spread-

sheets using Google Apps Script. This approach streamlined the process of setting

38



up the evaluation. However, due to limitations of Google Forms, we had to segment

the questions, grouping every 100 into a separate form.

7 Results

7.1 Single-Direction

Table 6 shows the results of the translation quality for each translation direction

as indicated by BLEU using the setup with a batch size of 32. The scores varied

significantly depending on the source and target dialect pairs. At first glance, it is

obvious that DOH as a target dialect achieved remarkably higher scores than its

counterparts. The highest BLEU score was observed when translating from BEI

to DOH, scoring 29.66, followed closely by CAI to DOH with a score of 29.01. The

lowest scores were found in translations from RAB to TUN, and from MSA to RAB,

with scores of 8.35 and 10.58, respectively. The AL-BLEU score for MSA output

was consistently lower than its corresponding BLEU score. In another light, we

also evaluated using the ChrF++ metric, a character-based evaluation method that

should theoretically be more sensitive to the morphological aspects of the language.

However, with this metric, we did not observe any consistent pattern or advantage

over using BLEU. One example is shown in Table 7.

Moving on to the setup with a batch size of 64, training with a batch size of

64 achieved better BLEU scores as shown in Table 8 with the highest score being

30.05 for the CAI-DOH direction followed by 29.64 for BEI-DOH, and the lowest

score being 10.99 for the MSA-TUN direction, followed by 11.30 for the RAB-TUN

direction. Most language directions saw an increase in BLEU scores. The average

BLEU score in the first setup is 16.28 while it is 17.20 for the second setup. This

means there is an average increase of 0.92 BLEU points per direction when switching

from a batch size of 32 to a batch size of 64. This trend was maintained throughout

all experiments therefore we will only report the variant with a batch size of 64 for

the rest of the experiments. All results with a batch size of 32 can be found in the

appendix.
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Target

TUN RAB CAI BEI DOH MSA
BLEU

MSA
AL-BLEU

TUN 10.75 11.34 14.96 22.39 16.13 11.18

RAB 8.35 11.70 14.98 24.06 15.87 11.10

CAI 10.80 10.54 18.84 29.01 19.41 14.49

BEI 13.62 13.39 17.23 29.66 18.10 13.12

DOH 12.40 13.53 14.52 16.54 19.78 14.52

S
ou

rc
e

MSA 10.58 11.43 14.38 15.55 28.56

Table 6: Results of the single-direction models with a batch size of 32 and beam

search decoding strategy

Target

TUN RAB CAI BEI DOH MSA

TUN 33.24 33.95 37.91 43.93 35.97

RAB 29.03 35.52 38.49 45.37 36.33

CAI 33.31 33.21 42.87 51.20 40.69

BEI 37.65 37.28 41.24 51.35 39.48

DOH 36.49 36.95 39.44 41.11 41.53

S
ou

rc
e

MSA 34.45 33.86 38.54 40.09 51.18

Table 7: Results of the single-direction models with a batch size of 32 and beam

search decoding strategy using the ChrF++ metric
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Target

TUN RAB CAI BEI DOH MSA
BLEU

MSA
AL-BLEU

TUN 11.95 13.49 15.05 24.02 13.27 8.90

RAB 11.30 12.78 15.56 26.43 17.04 11.42

CAI 13.31 13.65 19.67 30.05 20.77 15.10

BEI 12.28 14.45 17.74 29.64 17.80 12.78

DOH 12.54 14.09 16.31 16.57 21.10 15.80

S
ou

rc
e

MSA 10.99 14.39 15.21 15.69 28.71

Table 8: Results of the single-direction models with a batch size of 64 and beam

search decoding strategy

Next, we present the results of different decoding strategies. Table 9 and Table 10

show the results of the top-K and top-p decoding strategies respectively. The top-

p strategy outperformed top-K; with an average BLEU score of 15.17, compared

to 14.51 for top-K. However, it still performs much worse than the original setup

with beam search, with a drop of 2.03 BLEU score. This trend was also reinforced

throughout all our experiments. Thus, we will only report the original beam search

variant for the remainder of the experiments. The rest of the decoding strategies

results can be found in the appendix.

Target

TUN RAB CAI BEI DOH MSA
BLEU

MSA
AL-BLEU

TUN 10.35 12.68 13.76 22.46 12.63 8.21

RAB 9.86 7.83 14.68 24.96 11.68 7.29

CAI 11.65 12.26 18.70 28.56 14.21 9.88

BEI 10.78 12.68 13.93 27.71 11.69 7.63

DOH 11.31 13.06 11.41 13.34 14.29 9.47

S
ou

rc
e

MSA 8.22 9.63 8.94 15.01 27.08

Table 9: Results of the single-direction models with a batch size of 64 and top-K

decoding strategy
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Target

TUN RAB CAI BEI DOH MSA
BLEU

MSA
AL-BLEU

TUN 10.83 13.16 14.22 22.84 12.78 8.69

RAB 10.45 8.72 14.83 25.48 12.88 8.39

CAI 12.23 12.74 19.09 29.19 15.46 10.52

BEI 11.27 12.99 14.91 28.77 12.69 8.79

DOH 11.60 13.28 12.01 14.24 16.09 11.10

S
ou

rc
e

MSA 8.88 10.92 9.40 15.40 27.77

Table 10: Results of the single-direction models with a batch size of 64 and top-p

decoding strategy

7.2 Everything-to-Everything

Regarding the Everything-to-Everything model, the results are shown in Table 11.

This table is concerned with the variant that did not include MSA in its languages.

Similar to the single-direction model, the highest score belongs to the CAI-DOH

direction while the lowest score belongs to the RAB-TUN direction, 25.44 and 11.13

respectively. The average BLEU score across all directions is 15.09.

Likewise, the results in Table 12 show the Everything-to-Everything model vari-

ant that incorporates MSA. It also closely follows the single-direction models with

the highest score also belonging to CAI-DOH at 25.78 BLEU points and the lowest

scoring direction is MSA-TUN at 10.78. When not considering MSA, the average

score of all the other directions is 14.84. This is 0.25 BLEU points lower than the

variant that excludes MSA. The only directions that benefit from adding MSA to

the Everything-to-Everything setup are TUN-BEI, RAB-BEI, DOH-BEI, CAI-DOH

and BEI-DOH. Only directions with BEI or DOH as a target language seem to show

some improvement, indicating that these specific dialects are more receptive to en-

hancements involving MSA.

42



Target

TUN RAB CAI BEI DOH

TUN 12.36 11.42 12.41 22.21

RAB 11.13 11.71 13.05 23.14

CAI 11.67 13.57 14.77 25.44

BEI 11.70 13.48 14.34 25.23

S
ou

rc
e

DOH 11.94 14.24 13.66 14.41

Table 11: Results of the Everything-to-Everything model without MSA, a batch size

of 64 and beam search decoding strategy

Target

TUN RAB CAI BEI DOH MSA
BLEU

MSA
AL-BLEU

TUN 11.98 11.18 13.07 21.82 15.89 10.98

RAB 10.98 10.97 13.66 22.22 16.26 11.24

CAI 11.09 12.92 14.57 25.78 18.60 13.36

BEI 11.09 13.05 13.76 25.37 17.79 12.49

DOH 11.36 13.62 13.23 15.08 18.77 13.57

S
ou

rc
e

MSA 10.78 13.18 12.95 13.84 25.19

Table 12: Results of the Everything-to-Everything model with MSA, a batch size of

64 and beam search decoding strategy

7.3 Augmentation

We now shift our focus to the augmentation setup. The data is organized such that

there is a dedicated table presenting the results for each target dialect to specifically

highlight the impact of source augmentation on different target dialects. Table 13

shows the results of source augmentation on the target dialect TUN. We can see

that there are various improvements across different evaluation directions. Notably

the highest improvement is an increase of 0.26 BLEU points for the DOH-TUN

evaluation direction when augmenting DOH with BEI in the source.

In contrast, only one direction showed improvement in the target dialect RAB,
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Evaluation Direction RAB-TUN CAI-TUN BEI-TUN DOH-TUN

Reference Score 11.30 13.31 12.28 12.54

BEI+CAI 12.18 12.48

BEI+DOH 11.84 12.8

BEI+RAB 7.44 8.38

CAI+DOH 11.44 11.17

CAI+RAB 11.5 11.91

DOH+RAB 9.26 9.35

BEI+CAI+DOH 11.17 11.24 12.09

BEI+CAI+RAB 3.09 3.24 3.53

BEI+DOH+RAB 11.44 11.18 11.23

CAI+DOH+RAB 11.54 11.06 12.04

C
om

b
in

at
io

n
S

ou
rc

e

BEI+CAI+DOH+RAB 10.37 10.57 10.41 10.33

Table 13: Results of the augmentation models for TUN as a target language with a

batch size of 64 and beam search decoding strategy

namely the TUN-RAB direction, as shown in Table 14. The largest improvement

occurred when augmenting TUN with DOH in the source, attaining an increase of

0.41 BLEU points. However, the augmentation approach does not yield improve-

ments across all target dialects. Specifically, when the target dialects are CAI, BEI,

or DOH, there were no improvements observed in any evaluation direction. This is

evident from the data presented in Tables 15, 16, and 17, respectively.

Advancing to the next approach, where we augment MSA to the source of every

translation direction; the results are exhibited in Table 18. When compared with the

results in Table 8 we can see that the results are worsened for almost all translation

directions. The only translation direction that improved was RAB-TUN by only 0.08

BLEU points and this can be considered negligible.
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Evaluation Direction TUN-RAB CAI-RAB BEI-RAB DOH-RAB

Reference Score 11.95 13.65 14.45 14.09

BEI+CAI 11.94 11.45

BEI+DOH 12.67 13.26

BEI+TUN 12.15 12.48

CAI+DOH 13.04 14.04

CAI+TUN 11.68 12.63

DOH+TUN 12.36 13.45

BEI+CAI+DOH 12.76 13.21 13.71

BEI+CAI+TUN 12.21 12.28 12.88

BEI+DOH+TUN 12.11 12.4 13.49

CAI+DOH+TUN 12.13 12.81 12.95

C
om

b
in

at
io

n
S

ou
rc

e

BEI+CAI+DOH+TUN 7.66 8.35 8.15 8.31

Table 14: Results of the augmentation models for RAB as a target language with a

batch size of 64 and beam search decoding strategy

Evaluation Direction TUN-CAI RAB-CAI BEI-CAI DOH-CAI

Reference Score 13.49 12.78 17.74 16.31

BEI+DOH 15.26 14.91

BEI+RAB 11.75 15.41

BEI+TUN 11.29 15.56

DOH+RAB 11.3 14.46

DOH+TUN 10.8 13.04

RAB+TUN 11.89 11.74

BEI+DOH+RAB 9.92 13.19 12.02

BEI+DOH+TUN 10.93 14.41 14.37

BEI+RAB+TUN 10.36 10.29 12.83

DOH+RAB+TUN 11.29 11.66 14.18

C
om

b
in

at
io

n
S

ou
rc

e

BEI+DOH+RAB+TUN 5.84 5.89 7.11 7.08

Table 15: Results of the augmentation models for CAI as a target language with a

batch size of 64 and beam search decoding strategy

45



Evaluation Direction TUN-BEI RAB-BEI CAI-BEI DOH-BEI

Reference Score 15.05 15.56 19.67 16.57

CAI+DOH 15.93 15.18

CAI+RAB 14.74 16.69

CAI+TUN 13.03 15.87

DOH+RAB 12.31 12.45

DOH+TUN 11.47 13.52

RAB+TUN 13.08 13.92

CAI+DOH+RAB 12.39 14.53 14.17

CAI+DOH+TUN 11.98 15.04 14.56

CAI+RAB+TUN 10.69 11.85 12.89

DOH+RAB+TUN 11.32 11.61 13.29

C
om

b
in

at
io

n
S

ou
rc

e

CAI+DOH+RAB+TUN 10.43 10.26 12.44 12.53

Table 16: Results of the augmentation models for BEI as a target language with a

batch size of 64 and beam search decoding strategy

Evaluation Direction TUN-DOH RAB-DOH CAI-DOH BEI-DOH

Reference Score 24.02 26.43 30.05 29.64

BEI+CAI 28.64 28.39

BEI+RAB 24.19 26.12

BEI+TUN 23.21 27.31

CAI+RAB 24.14 26.99

CAI+TUN 23.53 27.88

RAB+TUN 22.44 22.76

BEI+CAI+RAB 22.37 26.48 26.97

BEI+CAI+TUN 21.96 24.59 25.1

BEI+RAB+TUN 21.49 21.63 24.1

CAI+RAB+TUN 22.1 22.78 26.82

C
om

b
in

at
io

n
S

ou
rc

e

BEI+CAI+RAB+TUN 20.28 21.43 23.61 23.26

Table 17: Results of the augmentation models for DOH as a target language with a

batch size of 64 and beam search decoding strategy
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Target

TUN RAB CAI BEI DOH

TUN+MSA 11.8 11.76 13.33 23.34

RAB+MSA 11.38 10.65 13.96 23.54

CAI+MSA 10.74 12.69 15.79 28.36

BEI+MSA 11.53 13.61 15.31 27.6

S
ou

rc
e

DOH+MSA 11.18 12.51 15.01 15.31

Table 18: Results of adding MSA to the source language for each direction with a

batch size of 64 and beam search decoding strategy

7.4 Zero-Shot Testing

We conducted zero-shot testing on the comprehensive everything-to-everything model

and have presented the resulting findings in Table 19. Among the tested languages,

the highest BLEU score was achieved by PAL, reaching 2.55 BLEU points, while

the lowest score was observed for ANB, with a BLEU score of 0.72.

Initially, our plan was to exclusively perform testing on the single-direction model

whose source language is most related to the unseen source dialect. However, to

gain a broader understanding and uncover potential unexpected trends, we decided

to expand our scope to include all single-direction models. The outcomes of this

expanded analysis can be found in Table 20.

Interestingly, the CAI-MSA model consistently outperformed others, regardless

of the source language used as input. For instance, when testing with the CAI-MSA

model, PAL yielded the highest BLEU score at 9.55 points, whereas the lowest score

was a 0.08 BLEU score, attributed to the MAR language tested with the TUN-MSA

model.

The CAI-MSA model’s strong performance across various source languages con-

tradicts our initial expectations. We initially assumed that, for instance, the TUN-

MSA model would excel with SFX input, given that they come from two Tunisian

cities, implying high similarity in input. However, our findings revealed a different

trend.
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Direction BLEU

ALG-MSA 0.81

ANB-MSA 0.72

MAR-MSA 1.58

PAL-MSA 2.55

SFX-MSA 1.54

SYR-MSA 1.97

Table 19: Results of zero-shot testing on the Everything-to-Everything model

Unseen Source

ALG ANB MAR PAL SFX SYR

T
es

ti
n

g
D

ir
ec

ti
on TUN-MSA 0.72 0.58 0.08 1.79 1.39 1.16

RAB-MSA 1.50 1.42 3.26 5.18 2.37 3.20

CAI-MSA 2.29 1.78 3.53 9.55 3.62 5.57

BEI-MSA 0.95 0.69 1.30 3.82 1.43 2.99

DOH-MSA 1.87 1.52 2.74 8.41 2.85 5.10

Table 20: Results of zero-shot testing on our single-direction models

7.5 Human Evaluation

As we mentioned above, the single-direction models with a batch size of 64 and

beam search decoding strategy performed the best and thus were chosen for human

evaluation. Only the models where CAI was the target language were evaluated.

The outcomes of the human evaluation of the generated Cairene translations are

presented in Table 21. The accuracy rankings of the generated outputs are as fol-

lows: TUN, RAB, BEI, MSA, DOH. Notably, these rankings align perfectly with the

BLEU scores obtained by our models. While the reference translations undeniably

achieve higher accuracy on average compared to the generated translations, it is im-

portant to observe that the actual accuracy of these machine-generated translations

is more reliable than what is suggested by their corresponding BLEU scores.
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Source

TUN RAB BEI DOH MSA

Fluency of Generated 4.77 4.88 4.80 4.80 4.72

Fluency of Reference 4.86 4.86 4.94 4.91 4.89

Accuracy of Generated 3.97 4.05 4.34 4.44 4.36

Accuracy of Reference 4.66 4.75 4.79 4.76 4.67

Table 21: Average human evaluated scores of fluency and accuracy of the generated

and reference outputs for each source language

8 Discussion

In this chapter, we further analyse the results and attempt to answer our research

questions which were:

1. How does the performance of models trained from scratch, fine-tuned pre-

trained monolingual models, and fine-tuned pre-trained multilingual models

compare against each other in the context of dialect-dialect translation?

2. How does the performance of a comprehensive “Everything-to-Everything”

model compare against models specifically trained for each translation direc-

tion?

3. What is the impact of systematically introducing additional data during the

training phase on the performance of the models?

a) By using additional dialects.

b) By using MSA

4. Can the translation quality scores reflect the mutual intelligibility between

Arabic dialects?
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8.1 Model Selection

In addressing our first research question, we discovered that: fine-tuning a pre-

trained monolingual model, specifically AraT5, yielded better performance than

either training a model from scratch or fine-tuning mT5, a pre-trained multilingual

model. This outcome defied our initial expectations. We had anticipated that mT5

would be superior, primarily because it was pre-trained on a considerably larger

Arabic corpus, approximately 96.6% more tokens than that used for AraT5, and

because typically multilingual models are believed to perform better in low-resource

language scenarios.

Although our results contradict these assumptions, they aligned with the findings

from the study conducted by Nagoudi et al. (2022). Their research, which also com-

pared AraT5 and mT5 across various tasks, predominantly favoured AraT5. This

surprising superiority of AraT5 suggests that there might be specific challenges as-

sociated with mT5, possibly linked to tokenization, given that mT5’s vocabulary en-

compasses a significantly larger number of languages compared to AraT5, suggesting

the need for further exploration with diverse models and architectural approaches.

Furthermore, when considering the outcomes in more depth, it becomes evident

that while the overall scores may appear modest at first glance, the findings presented

by Nagoudi et al. (2022) when translating from MSA to English, two significantly

more resource-rich languages, and evaluating on the MADAR dataset, the mT5

model achieved 11.84 BLEU points, while the AraT5 model achieved 10.57 BLEU

points. These results demonstrate that the outcomes obtained in our current research

fall well within the expected range of performance, reaffirming the validity of our

findings.

8.2 AL-BLEU

As we mentioned before, we observed that the AL-BLEU score for MSA output was

consistently lower than its corresponding BLEU score. This finding is intriguing,

especially considering the theoretical underpinnings and expectations surrounding
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the AL-BLEU metric.

AL-BLEU is an adaptation of the standard BLEU metric, which is designed to

address some of the limitations of BLEU, particularly in the context of languages

with complex morphology like Arabic, where it tends to heavily penalize translations.

Unlike BLEU, which only focuses on exact matches, AL-BLEU provides partial

credit for translations that are close in terms of morphological and syntactic features,

as well as stem-matching.

Theoretically, this means that AL-BLEU scores should be higher than BLEU

scores for the same set of sentences, as AL-BLEU is more lenient. This expectation

is demonstrated by the data presented in Table 2 in Bouamor et al. (2014), partially

reproduced here in Table 22. However, our results diverged from this expectation,

consistently showing lower AL-BLEU scores compared to BLEU for the same MSA

outputs.

One potential explanation for this discrepancy is that AL-BLEU may be more

sensitive to word order. As shown in Table 22, the first hypothesis’s AL-BLEU score

is significantly higher than the rest, a trend not observed with the standard BLEU

metric.
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Source: France plans to attend ASEAN emergency summit.

Reference:
�
é

KPA¢Ë@

	
àAJ
�

�
B@

�
éÔ
�
¯ Pñ

	
�mÌ A�

	
�Q
	
¯ Ð

	Q��ª
�
Kð

And-intends France to-attend summit the-ASEAN the-emergency

Hypothesis Rank BLEU AL-BLEU
�
é

KPA¢Ë@

	
àAJ
�

�
B@

�
éÔ
�
¯ Pñ

	
�mÌ A�

	
�Q
	
¯ ¡¢

	
m�
�
'ð

2 0.0047 0.4816
And-plans France to-attend summit the-ASEAN the-emergency
	
àAJ
�


B@

�
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�
¯ Pñ
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�Q
	
¯ ¡¢
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�
'ð

3 0.0037 0.0840
And-plans France to-attend summit the-ASEAN
	
àAJ
�


CË

�
é

KPA¢Ë@

�
éÒ
�
®Ë @ Pñ

	
�mÌ ¡¢

	
m�
�
' A�

	
�Q
	
¯

1 0.0043 0.0940
France plans to-attend the-summit the-emergency for-the-ASEAN

øP@ñ¢Ë@
	
àAJ
�

�
@
�
éÔ
�
¯ Pñ

	
�mÌ A�

	
�Q
	
¯ ¡¢

	
k

5 0.0043 0.0604
Plans France to-attend summit ASEAN the-emergencies

øP@ñ¢Ë@ ¡¢
	
k

	
àAJ
�B@

�
éÔ
�
¯ Pñ

	
�mÌ A�

	
�Q
	
¯

4 0.0178 0.0826
France to-attend summit the-ASEAN plans the-emergencies

Table 22: Partly reproduced table from Table 2 in Bouamor et al. (2014) showing

an example of MT output evaluated by BLEU and AL-BLEU

8.3 Dialects as Sources and Targets

The examination of the results of the single-direction models, illustrated in Tables

6 and 8, revealed an intriguing observation. We can see that the results from trans-

lation directions are not at all symmetric. This asymmetry means that the quality

of translation in one direction, for instance from RAB to DOH, does not mirror

the quality of translation in the reverse direction, from DOH to RAB. This non-

symmetric characteristic in translation quality indicates that the performance of

our translation models is significantly influenced by two independent variables: the

source language and the target language.

As we previously mentioned, it is obvious at first glance that DOH, as a target

language, outperforms others significantly. In addition to that there seems to be a

consistent pattern in the performance of both source and target languages across

various experiments, for a certain batch size. We will first examine the effect of
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Langs Src Avg (32) Src Avg (64) Diff Tgt Avg (32) Tgt Avg (64) Diff

TUN 15.11 15.56 0.44 11.15 12.08 0.93

RAB 14.99 16.62 1.63 11.93 13.71 1.78

CAI 17.72 19.49 1.77 13.83 15.11 1.27

BEI 18.40 18.38 -0.02 16.17 16.51 0.33

DOH 15.35 16.12 0.77 26.74 27.77 1.03

MSA 16.10 17.00 0.90 17.86 18.00 0.14

AVG 16.28 17.20 0.91 16.28 17.20 0.92

Table 23: Impact of increasing the batch size on the languages as source and as

targets

increasing batch sizes on these languages, both as sources and targets. The results

are outlined in Table 23. This table illustrates that CAI, as a source language,

experiences the most substantial improvement when we increase the batch size from

32 to 64, showing an average gain of 1.77 BLEU points. Conversely, RAB sees the

most notable enhancement as a target language due to the batch size increment, with

an average increase of 1.78 BLEU points. These improvements are notably higher

than the average gains of 0.91 and 0.92 for source languages and target languages

respectively.

The performance of target languages, ranked from lowest to highest, follows a

consistent sequence across batch sizes: TUN, RAB, CAI, BEI, MSA, and DOH. How-

ever, the ranking for source languages shows variability with batch size changes. Ini-

tially, for a batch size of 32, the order is TUN, RAB, MSA, CAI, DOH, and BEI. This

shifts to TUN, RAB, MSA, DOH, BEI, and CAI when the batch size is increased,

primarily due to CAI’s significant performance enhancement as a source language.

Additionally, DOH and BEI consistently exhibit comparable performances, often

tying in their rankings.

It is crucial to note that these rankings are not derived merely by ordering the

average scores from Table 23. Such an approach would unfairly disadvantage DOH

as a source language. This is because there is no direct DOH-DOH translation, and

DOH’s performance as a target language significantly surpasses others, which would
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Target

TUN RAB CAI BEI DOH MSA AVG

TUN 2.00 1.00 1.00 1.00 2.00 1.40

RAB 1.00 2.00 2.00 2.00 1.00 1.60

CAI 3.00 1.00 5.00 4.00 4.00 3.40

BEI 5.00 4.00 5.00 5.00 3.00 4.40

DOH 4.00 5.00 4.00 4.00 5.00 4.40

S
ou

rc
e

MSA 2.00 3.00 3.00 3.00 3.00 2.80

Table 24: Ranking of languages as sources in the single-direction models with a batch

size of 32, where higher is better

Target

TUN RAB CAI BEI DOH MSA AVG

TUN 1.00 2.00 1.00 1.00 1.00 1.20

RAB 2.00 1.00 2.00 2.00 2.00 1.80

CAI 5.00 2.00 5.00 5.00 4.00 4.20

BEI 3.00 5.00 5.00 4.00 3.00 4.00

DOH 4.00 3.00 4.00 4.00 5.00 4.00

S
ou

rc
e

MSA 1.00 4.00 3.00 3.00 3.00 2.80

Table 25: Ranking of languages as sources in the single-direction models with a batch

size of 64, where higher is better

skew its average score and not accurately reflect its true performance. To address

this, the ranking is based on the performance of each source language for every

target direction, and then the average rank is calculated, as illustrated in Tables 24

and 25.

When comparing target languages, the differences in performance are less pro-

nounced. Thus, simply ordering the averages provides a reliable representation of

their relative performance. This yields consistent results with those obtained by

ranking each performance before averaging, as demonstrated in Tables 26 and 27.
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Target

TUN RAB CAI BEI DOH MSA

TUN 1.00 2.00 3.00 5.00 4.00

RAB 1.00 2.00 3.00 5.00 4.00

CAI 2.00 1.00 3.00 5.00 4.00

BEI 2.00 1.00 3.00 5.00 4.00

DOH 1.00 2.00 3.00 4.00 5.00

S
ou

rc
e

MSA 1.00 2.00 3.00 4.00 5.00

AVG 1.40 1.40 2.60 3.40 5.00 4.20

Table 26: Ranking of languages as targets in the single-direction models with a batch

size of 32, where higher is better

Target

TUN RAB CAI BEI DOH MSA

TUN 1.00 3.00 4.00 5.00 2.00

RAB 1.00 2.00 3.00 5.00 4.00

CAI 1.00 2.00 3.00 5.00 4.00

BEI 1.00 2.00 3.00 5.00 4.00

DOH 1.00 2.00 3.00 4.00 5.00

S
ou

rc
e

MSA 1.00 2.00 3.00 4.00 5.00

AVG 1.00 1.80 2.80 3.60 5.00 3.80

Table 27: Ranking of languages as targets in the single-direction models with a batch

size of 64, where higher is better
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8.4 Everything-to-Everything Model

In our study, the everything-to-everything model consistently underperformed the

single-direction models, providing further evidence of the challenges associated with

multilinguality in machine translation for the dialects relevant to us. This difference

in performance is evident in the average BLEU scores: the single direction models

achieve an average of 17.04, excluding MSA and 17.2 when including MSA. On the

other hand, the everything-to-everything model’s average BLEU scores are lower, at

15.09 excluding MSA and 15.34 including MSA, resulting in a decrease of 1.95 and

1.86 BLEU points, respectively. It is noteworthy that only two translation direc-

tions showed improvement with the everything-to-everything model. When MSA is

excluded, the TUN to RAB direction experienced an increase of 0.41 BLEU points,

and the DOH to RAB direction improved by 0.15 BLEU points. When MSA is in-

cluded, the TUN to MSA direction exhibited the largest gain, with an increase of 2.62

BLEU points, followed by a slight increase of 0.03 BLEU points in the TUN-RAB di-

rection. The TUN-RAB direction benefited from the everything-to-everything model

in both scenarios. These findings answer our second research question comprehen-

sively, shedding light on the specific contexts where an everything-to-everything

model can offer advantages, though limited, compared to the generally more robust

performance of single-direction models in most translation directions.

8.5 Augmentation

Addressing our third research question, we explored the impact of augmenting source

dialectal data on the translation performance. Our findings suggest a clear pattern:

the lower the initial reference score of a translation direction, the more likely it is to

benefit from dialect augmentation. Specifically, all translation directions with initial

reference scores up to and including 12.54 exhibited improvement at least once

when augmented with additional dialects. Among these, TUN to RAB direction

stood out, showing the most significant improvement both in terms of frequency

and degree. This observation is consistent with our previous results where the TUN-

RAB direction was also one of those that benefited from the everything-to-everything
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model scenario.

However, our research indicates that adding more source languages does not nec-

essarily lead to better performance. In fact, the most effective results were achieved

when adding only one or two languages. This trend suggests diminishing returns with

increasing language augmentation and provides insight into why the everything-to-

everything model showed limited effectiveness.

Another important aspect to consider is that the improvement in performance

through language augmentation does not necessarily correlate with the genealogi-

cal or geographical proximity of the augmented language to the evaluation source.

Rather, the improvement is often attributable to the augmentation of languages

that are inherently better performing as source languages in our experiments, such

as DOH, BEI, and CAI. Expanding upon the previously identified trend, our sub-

sequent experiment focused on adding MSA. Notably, MSA is recognized as a rela-

tively weak source language in our research. Consistent with this characterization,

we observed that adding MSA did not yield significant improvements in translation

quality.

We earlier observed that in the everything-to-everything model variant incorpo-

rating MSA, certain translation directions showed improvements, particularly where

BEI and DOH were the target languages. However, the absence of similar improve-

ments in scenarios where MSA was augmented to the source leads us to hypothesize

that the enhancements noted in the everything-to-everything model may be a unique

interaction.

8.6 Human Evaluation

While analysing the human evaluation results, we noticed that the accuracy of the

CAI references when TUN and MSA were the source languages was lower compared

to when other languages were the source languages. This observation suggests a

potential incongruence in the parallel dataset, where some sentences were translated

one way in some languages and another way in other languages, particularly between

MSA and CAI, and TUN and CAI. Evidence of these inconsistencies is visible in
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MSA: ? ø


ðP úÍ@


Xñª

�
K è

	
Yë Éë , ñËAë CAI: ?ø



ðP èX ñë ,Cë


@

English: Hello, does this belong to Roy? English: Hello, Is this Roy?

MSA: .H. ðQå
	
�Ó ��
Ëð , 	Pð 	QêÓ CAI: .

�
é
�
®ÊªÖß.

�
�Ó , 	QêËAK.  ñÊ

	
m× èX

English: Shaken, and not blended English It is mixed by shaking, not with a spoon.

TUN: ?
�
é¢m× Q

	
k@ ø




	
XAë CAI: ? AîD


	
¯

	


�
®
	
K èQÓ Q

	
k

@ éK
X

English: Is this the last station? English: Is this the last time we stop?

TUN: . ø


XA
	
«

�
é»ñë


@ �ÓA

	
mÌ'@ l .

×A
	
KQ�. Ë @ CAI: . ¼A

	
Jë

�
é�Ô

	
g 	

J
�P

English: The fifth program is over there. English: Platform five is over there.

Table 28: Sample of discrepancies between reference sentences in MADAR.

several examples listed in Table 28, and similar instances are found across all dialect

pairs.

A likely explanation for these inconsistencies stems from the translation method-

ology used in the MADAR dataset. Unlike typical approaches that might use MSA

as a primary source for translation into various dialects, MADAR translations were

directly derived from English or French. This approach, as explained in Bouamor

et al. (2018), was intentionally chosen to avoid the potential bias that might arise

from using MSA as a starting point. While this decision had its rationale in main-

taining the authenticity and diversity of dialects, it appears to have introduced these

inconsistencies that pose challenges for effective machine translation across Arabic

dialects.

As we already mentioned, the generated CAI translations were judged to be more

reliable than how the BLEU reflects it to be. Typically, BLEU scores are judged to

be satisfactory when they exceed 30%. Scores below this threshold are generally not

associated with high-quality translations. However, in the case we are discussing,

despite the BLEU scores being significantly lower than 30%, the translations are

receiving high human evaluation accuracy scores, specifically in the range of 4 and

5, in contrast to the 1 or 2 that would normally be expected for such low BLEU

scores.

In Table 29, we highlight examples that achieved high accuracy scores by our
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participants but a relatively low BLEU score. In the first sentence, both “hðQ
	
�g”

(h. nrūh. ) and “ 	á�
m
�'

 @P A

	
Jk@” (eh. nā raih. ı̄n) translate to “we are going” using different

syntactic structures, both of which are correct and natural. Moreover, the word for

‘bus’ is spelt differently: once as “��
 K. ñ
�
KB@” (elotōb̄ıs) and once as “��
 K. ñ

�
KðB@”

(elōtōb̄ıs). Since dialects are not standardised and this is a loan word, both spellings

can be considered correct. However, this sentence suffers the most in BLEU score

since there is no exact match.

In the second sentence, both the generated and reference texts convey the same

overall meaning. The reference skips the noun adjunct ‘reservation’, but the meaning

is implied in the context. The reference also adds ‘and’; however, it is commonly

used as an interjection, so it does not affect the meaning. The word “ AJ
Ë” (leya) is

used in the reference sentence to imply possession, in contrast to using “ø


Y
	
J«” (Qnd̄ı)

that was generated by the model, which is in fact more common. The generated

output dropped the subject ‘I’. This is common not just in the vernaculars but also

in MSA. In fact, the source sentence, which is in MSA, also dropped the subject.

In sentence number three, the reference included a detail (snowstorm) that was

not originally in the source sentence. Furthermore, the reference sentence implies

the future tense rather than the past tense by using the word “É�ñ
�
Jk” (h. tws.l)

rather than the word “ �
IÊ�ð”(ws.lt).

There is a clear mismatch between the reference and the source in the fourth sen-

tence; the verb “looking for” was swapped with ‘wear’ which was correctly translated

by the model. The word “½J

�
�” (sh̄ık), however, is more natural in Cairene than

“
�
éJ

�
¯@P” (raqya), both meaning elegant/chic.

The fifth sentence shows us a case of synonymous words/phrases that are pe-

nalised by BLEU since there is only one reference sentence per source sentence. Both
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“ �
IjÖÞ� ñË” (lw samh. t) and “½Ê 	�

	
¯ 	áÓ” (mn fd. lk) are phrases that mean “please”.

This specific synonymous phrase pair occurs very frequently in both directions and

is penalised when one is generated rather than the other.

The reference and the generated are very similar in the sixth sentence, with the

generated version adding “ø


X” (d̄ı) which translates to ‘this’ making it “in this

tour” instead of just “in the tour”. A few orthographic differences occur between

them. The first word “ éK
 @” (ēh) in the generated sentence has a hamza “Z” underneath

the first (right-most) letter “ @” (alif). The fourth word “ é
	
¯ñ

�
�

@” (ashūfū) also has a

hamza above its alif. This represents a glottal stop. Although essential in MSA, in

Cairene it is omitted in certain cases, as done in the reference. However, if it exists,

it is not considered wrong. It is important to note that it is clear that it is not the

intention of the original translator of MADAR to always omit unnecessary hamzas,

as we still see it in the reference in “ A 	K

@” (anā) in the first sentence and in “ @

	
X @

” (eza)

in the seventh sentence. Unfortunately, we cannot normalise all alifs to be without

hamzas since they are still needed in some cases. Another orthographic difference is

also in the word “
�
é
	
¯ñ

�
�@” (ashūfū) as written in the reference and “ é

	
¯ñ

�
�

@” (ashūfū) as

written in the generated sentence. We already discussed the hamza; we now discuss

the difference in the last (left-most) letter “ é�” vs. “
�
é�”. Essentially these are two

different letters, the haa and the tied-taa, respectively. If this was written in MSA,

it would be considered wrong to exchange the two letters; in our case, the reference

would be wrong and the generated text would be right. However, a word that ends

in a tied-taa is pronounced like a haa with an H-sound if the speaker stops at the

word, and it is pronounced with a T-sound if the speaker connects the word to the

following word. So in some cases, these two letters are uttered in the same manner.

Therefore, it is a common mistake to swap the two letters. However, it remains
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understandable. With dialectal orthography not set in stone, it is hard to judge

whether the reference is wrong or just different; it will depend on each person’s

point of view. These orthographic differences prohibit an exact match, and thus the

BLEU score becomes lower.

Other than the already highlighted spelling error in the reference, the last sen-

tence has yet another synonymous “please” issue. We can also see a mismatch where

the reference introduces an extra detail, ‘orange’, but the source did not imply what

type of juice it was.

Most of these issues would not be solved when using other metrics such as AL-

BLEU. The core of the matter doesn’t depend solely on BLEU; rather, the com-

plexity arises from the inherent challenge of automatically evaluating translations

in languages with non-standard orthographies and spelling.

8.7 Zero-Shot Testing

In our study, we also conducted a comparative analysis of zero-shot translation re-

sults between our model and the NLLB-200 model. We see the results of the zero-shot

testing on the NLLB-200 model in Table 30. While the NLLB-200 model exhibited

superior scores, the margin of improvement was not overwhelmingly large. This

similarity in performance suggests that both models face challenges in generalizing

effectively to a broader range of contexts. In our case, the limited generalizability can

be attributed to two main factors. Firstly, the amount of data available for training

our model was relatively small. Secondly, the MADAR dataset, which formed the

basis of our training material, is somewhat domain-specific, focusing primarily on

touristic sentences. This specificity likely restricts the models’ ability to adapt to a

wider variety of linguistic contexts.

A notable limitation in our comparative analysis was the inability to use our

test set for a direct comparison with NLLB-200. This constraint arises from the

likelihood that NLLB-200 had been trained on segments of our MADAR test split.

Consequently, using this test data could potentially compromise the validity of the

comparison due to the potential data leak in the NLLB-200 model.
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Unseen Source

ALG ANB MAR PAL SFX SYR

T
es

ti
n

g
D

ir
ec

ti
on

Mesopotamian-MSA 2.92 1.91 5.50 10.37 5.18 7.54

Ta’izzi-Adeni-MSA 2.90 2.16 5.27 10.19 5.06 7.12

Tunisian-MSA 2.65 1.75 4.50 8.42 4.52 5.80

South Levantine-MSA 2.72 2.16 5.23 10.01 4.88 7.34

North Levantine-MSA 2.86 1.92 4.95 10.12 4.95 7.13

Najdi-MSA 2.92 2.00 5.38 10.58 5.16 7.47

Moroccan-MSA 2.84 2.17 5.14 9.06 4.82 6.11

Egyptian-MSA 4.65 3.21 7.97 16.92 7.91 11.22

Table 30: Results of zero-shot testing on the NLLB-200 model

Interestingly, the NLLB-200 model displayed a consistent pattern in its zero-shot

translation results that aligned well with the zero-shot evaluation of our models:

the Egyptian source direction consistently outperformed others, irrespective of the

input source language. This trend aligns with our findings, where CAI emerged as

the best overall source language in our evaluations. Thus, it is not surprising that

models trained with CAI/Egyptian as a source language yield the most effective

results in zero-shot scenarios.

8.8 Interpretation

To interpret our research findings, we initiated a comparative analysis of three dis-

tinct matrices representing relationships between the varieties. The first matrix

is based on data from Ratcliffe (2021). The second matrix calculates the Jenson-

Shannon divergence, which measures the variation in relative token frequencies of

each dialect within the MADAR corpora. The third matrix employs the Jaccard sim-

ilarity index to quantify the lexical overlap of each dialect represented in MADAR.

Among these, the Jaccard Similarity matrix demonstrated the highest correlation

with our results, achieving an overall absolute correlation of 0.696. The other two

matrices recorded lower correlations of 0.318 and 0.550, respectively. This finding
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Lang Correlation Coefficient

TUN 0.158

RAB -0.939

CAI 0.846

BEI 0.782

DOH 0.910

MSA 0.951

Table 31: Correlation coefficient of scores of languages as targets with their lexical

overlap

is significant as it suggests that, while the data from Ratcliffe (2021) might reflect

phylogenetic linguistic relationships, the trends within our specific dataset, MADAR,

play a crucial role in shaping the outcomes of our translation tasks.

Moreover, we observed a strong correlation between the language that shares

the highest lexical overlap with all other languages and the average ranking of that

language as a source in our translations. This correlation was quantified with a

coefficient of 0.937, indicating a robust relationship between these two aspects.

Addressing our final research question, we explored whether translation scores

correlate with mutual intelligibility, as indicated by lexical overlap. We calculated the

correlation coefficient across languages, focusing on their roles as translation targets.

The findings, detailed in Table 31, reveal that the correlation between translation

scores and lexical overlap is particularly strong only for specific languages, namely:

MSA, DOH, CAI and BEI. There is a strong negative correlation for RAB. This is

likely anomalous since its scores are very close together.

The pretraining data of AraT5 has also significantly influenced our results. Fig-

ure 3, reproduced from Nagoudi et al. (2022), reveals the dialect distribution that

AraT5 was trained on. A huge portion, approximately 60.74%, of the dialectal data

comes from Gulf countries such as Saudi Arabia, Bahrain, Kuwait, Qatar, the United

Arab Emirates, and Oman. This heavy representation of Gulf dialects, which closely

align with DOH, offers a plausible explanation for DOH’s exceptional performance

64



Figure 3: Excerpt from Nagoudi et al. (2022) showing the geographic distribution

of the dialectal part of their training data

as a target language in our experiments.

Additionally, the considerable representation of data from Palestine in AraT5’s

training corpus may account for the superior performance of the Palestinian dialect

as a source language in our zero-shot testing.

Conversely, the relatively small percentage of North African languages, includ-

ing Moroccan, Algerian, and Tunisian dialects, within the pretraining data, sheds

light on why our models exhibited challenges when dealing with these specific di-

alects. The underrepresentation of these dialects in the training corpus likely led to

less effective learning outcomes for these languages, resulting in poorer translation

performance.
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9 Conclusion

This thesis has embarked on an exploratory journey into the domain of NMT be-

tween Arabic dialects. Through comprehensive experiments and analyses, it has

uncovered valuable insights into the dynamics of dialect-dialect translation, paving

the way for future advancements in the field.

Our exploration began with an evaluation of various models trained from scratch,

alongside fine-tuned pre-trained monolingual and multilingual models. The results

clearly indicated that fine-tuning a pre-trained monolingual model, particularly

AraT5, outperformed other methods. This finding emphasizes the potential of mono-

lingual models in handling Arabic dialects, which can be considered low-resource

languages, over multilingual models.

The investigation into the “Everything-to-Everything” model versus specific trans-

lation direction models revealed that the latter generally provided more accurate

translations. This suggests that while multilingual models offer the convenience of

handling multiple dialects, they may not always capture the subtle linguistic features

as effectively as models dedicated to specific translation pairs.

Our study also delved into the impact of systematically introducing additional

data during the training phase. We discovered that the inclusion of more dialects or

MSA did not consistently enhance translation performance.

Intriguingly, one of the most compelling findings of this thesis was the identi-

fication of a consistent order of effectiveness for both source and target languages

in translations. This pattern underscores the fact that certain dialects inherently

perform better as either source or target languages in the context of machine trans-

lation. This consistency in language performance order was likely due to how close

that dialect is to the majority of the rest of the dialects based on lexical overlap.

Alternatively, this could result from the disparity in the amount of pre-training data

for each language.

Another aspect of this research was the exploration of the correlation between

machine translation quality scores and mutual intelligibility among Arabic dialects.
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The findings suggest that while there is a correlation, it varies significantly across

different dialect pairs. This implies that linguistic similarities and differences play a

role in determining the effectiveness of NMT models for Arabic dialects.

The human evaluation of our models further validated their effectiveness in terms

of fluency and accuracy. However, discrepancies in reference translations need to be

first resolved to ensure the reliability of NMT systems.

In conclusion, this thesis has made significant strides in understanding the com-

plexities of NMT between Arabic dialects. It lays a solid foundation for future re-

search, which could explore more sophisticated model architectures and advanced

training techniques. The goal of achieving fluent and accurate dialect-dialect trans-

lation in Arabic remains a challenging yet attainable endeavour.
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Appendix

Target

TUN RAB CAI BEI DOH

TUN 10.99 11.13 11.12 21.46

RAB 10.10 11.33 13.03 21.79

CAI 10.79 12.16 13.16 24.21

BEI 11.11 12.77 13.74 24.53

S
ou

rc
e

DOH 11.01 12.71 13.51 13.62

Table 32: Results of the Everything-to-Everything model without MSA, a batch size

of 32 and beam search decoding strategy

Target

TUN RAB CAI BEI DOH MSA
BLEU

MSA
AL-BLEU

TUN 11.05 10.29 11.81 21.99 14.90 9.87

RAB 10.57 10.70 12.60 22.18 15.71 10.58

CAI 10.52 11.86 13.26 25.66 17.62 12.27

BEI 11.03 12.31 12.53 24.74 17.08 11.46

DOH 10.88 12.91 12.50 14.03 17.63 12.51

S
ou

rc
e

MSA 10.19 12.01 11.54 13.02 24.15

Table 33: Results of the Everything-to-Everything model with MSA, a batch size of

32 and beam search decoding strategy
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Evaluation Direction RAB-TUN CAI-TUN BEI-TUN DOH-TUN

Reference Score 8.35 10.80 13.62 12.40

BEI+CAI 11.23 11.15

BEI+DOH 9.84 10.20

BEI+RAB 10.19 10.96

CAI+DOH 11.24 11.73

CAI+RAB 9.67 9.76

DOH+RAB 10.10 10.22

BEI+CAI+DOH 10.28 10.54 10.97

BEI+CAI+RAB 8.87 9.19 9.06

BEI+DOH+RAB 8.18 8.02 8.13

CAI+DOH+RAB 9.64 9.24 10.50

C
om

b
in

at
io

n
S

ou
rc

e

BEI+CAI+DOH+RAB 9.88 10.03 9.42 9.71

Table 34: Results of the augmentation models for TUN as a target language with a

batch size of 32 and beam search decoding strategy

Evaluation Direction TUN-RAB CAI-RAB BEI-RAB DOH-RAB

Reference Score 10.75 10.54 13.39 13.53

BEI+CAI 12.06 11.29

BEI+DOH 12.14 12.71

BEI+TUN 10.85 11.44

CAI+DOH 11.71 11.86

CAI+TUN 11.14 12.26

DOH+TUN 11.25 12.35

BEI+CAI+DOH 11.40 10.79 12.51

BEI+CAI+TUN 10.52 11.51 11.51

BEI+DOH+TUN 11.07 12.06 12.84

CAI+DOH+TUN 11.25 11.59 12.72

C
om

b
in

at
io

n
S

ou
rc

e

BEI+CAI+DOH+TUN 9.55 10.34 10.41 10.24

Table 35: Results of the augmentation models for RAB as a target language with a

batch size of 32 and beam search decoding strategy
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Evaluation Direction TUN-CAI RAB-CAI BEI-CAI DOH-CAI

Reference Score 11.34 11.70 17.23 14.52

BEI+DOH 14.79 14.37

BEI+RAB 11.14 14.92

BEI+TUN 11.21 13.21

DOH+RAB 11.23 13.69

DOH+TUN 10.66 14.00

RAB+TUN 9.80 9.49

BEI+DOH+RAB 9.80 13.78 13.37

BEI+DOH+TUN 10.1 13.51 12.67

BEI+RAB+TUN 8.45 8.39 10.48

DOH+RAB+TUN 10.65 10.56 13.03

C
om

b
in

at
io

n
S

ou
rc

e

BEI+DOH+RAB+TUN 9.26 8.68 11.42 11.17

Table 36: Results of the augmentation models for CAI as a target language with a

batch size of 32 and beam search decoding strategy

Evaluation Direction TUN-BEI RAB-BEI CAI-BEI DOH-BEI

Reference Score 14.96 14.98 18.84 16.54

CAI+DOH 15.32 14.11

CAI+RAB 13.43 15.73

CAI+TUN 13.34 16.09

DOH+RAB 11.98 13.09

DOH+TUN 11.80 12.75

RAB+TUN 11.53 12.13

CAI+DOH+RAB 11.98 13.25 13.29

CAI+DOH+TUN 11.23 13.89 13.88

CAI+RAB+TUN 11.21 11.38 12.80

DOH+RAB+TUN 10.87 11.86 13.42

C
om

b
in

at
io

n
S

ou
rc

e

CAI+DOH+RAB+TUN 11.00 11.19 13.28 13.74

Table 37: Results of the augmentation models for BEI as a target language with a

batch size of 32 and beam search decoding strategy
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Evaluation Direction TUN-DOH RAB-DOH CAI-DOH BEI-DOH

Reference Score 22.39 24.06 29.01 29.66

BEI+CAI 26.93 26.41

BEI+RAB 22.33 24.60

BEI+TUN 21.69 24.75

CAI+RAB 22.48 25.56

CAI+TUN 22.26 25.59

RAB+TUN 21.10 22.21

BEI+CAI+RAB 20.31 24.22 24.16

BEI+CAI+TUN 20.37 23.72 23.05

BEI+RAB+TUN 20.33 21.06 23.94

CAI+RAB+TUN 18.67 18.10 20.55

C
om

b
in

at
io

n
S

ou
rc

e

BEI+CAI+RAB+TUN 18.93 19.77 23.25 21.98

Table 38: Results of the augmentation models for DOH as a target language with a

batch size of 32 and beam search decoding strategy

Target

TUN RAB CAI BEI DOH

TUN+MSA 11.13 10.80 12.00 22.17

RAB+MSA 9.31 9.65 12.99 21.80

CAI+MSA 10.87 11.91 13.72 26.95

BEI+MSA 11.01 12.15 14.75 24.81

S
ou

rc
e

DOH+MSA 10.40 11.28 13.76 14.44

Table 39: Results of adding MSA to the source language for each direction with a

batch size of 32 and beam search decoding strategy
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Target

TUN RAB CAI BEI DOH

TUN 6.70 7.09 7.65 14.89

RAB 6.40 7.19 8.08 15.62

CAI 6.17 7.00 8.65 17.49

BEI 6.34 7.36 8.49 17.05

S
ou

rc
e

DOH 5.91 8.12 7.98 8.53

Table 40: Results of the Everything-to-Everything model without MSA, a batch size

of 64 and top-K decoding strategy

Target

TUN RAB CAI BEI DOH MSA
BLEU

MSA
AL-BLEU

TUN 6.95 6.84 8.35 14.85 9.78 6.13

RAB 6.35 7.30 8.72 15.58 11.11 7.07

CAI 6.28 7.44 9.26 16.83 12.04 7.60

BEI 5.87 7.17 7.97 17.30 11.55 7.53

DOH 6.53 7.55 8.83 9.72 12.10 7.85

S
ou

rc
e

MSA 6.13 7.26 7.73 8.77 16.91

Table 41: Results of the Everything-to-Everything model with MSA, a batch size of

64 and top-K decoding strategy
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Evaluation Direction RAB-TUN CAI-TUN BEI-TUN DOH-TUN

Reference Score 9.86 11.65 10.78 11.31

BEI+CAI 7.93 8.10

BEI+DOH 6.63 7.24

BEI+RAB 6.90 7.81

CAI+DOH 10.46 10.04

CAI+RAB 10.95 10.90

DOH+RAB 8.21 8.17

BEI+CAI+DOH 7.01 7.29 7.67

BEI+CAI+RAB 2.89 2.72 3.02

BEI+DOH+RAB 6.61 7.02 6.96

CAI+DOH+RAB 7.51 7.85 7.45

C
om

b
in

at
io

n
S

ou
rc

e

BEI+CAI+DOH+RAB 5.82 5.86 5.99 6.21

Table 42: Results of the augmentation models for TUN as a target language with a

batch size of 64 and top-K decoding strategy

Evaluation Direction TUN-RAB CAI-RAB BEI-RAB DOH-RAB

Reference Score 10.35 12.26 12.68 13.06

BEI+CAI 5.72 5.78

BEI+DOH 7.75 8.78

BEI+TUN 11.09 11.92

CAI+DOH 7.83 8.93

CAI+TUN 6.75 7.66

DOH+TUN 7.31 8.57

BEI+CAI+DOH 8.72 8.72 9.00

BEI+CAI+TUN 7.68 8.20 8.14

BEI+DOH+TUN 7.38 7.88 8.37

CAI+DOH+TUN 7.74 8.08 8.64

C
om

b
in

at
io

n
S

ou
rc

e

BEI+CAI+DOH+TUN 7.06 7.09 7.67 8.15

Table 43: Results of the augmentation models for RAB as a target language with a

batch size of 64 and top-K decoding strategy
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Evaluation Direction TUN-CAI RAB-CAI BEI-CAI DOH-CAI

Reference Score 12.68 7.83 13.93 11.41

BEI+DOH 10.21 9.96

BEI+RAB 7.07 8.68

BEI+TUN 7.56 9.72

DOH+RAB 6.48 9.01

DOH+TUN 7.62 9.95

RAB+TUN 7.07 6.07

BEI+DOH+RAB 7.28 9.55 8.82

BEI+DOH+TUN 6.00 7.48 8.53

BEI+RAB+TUN 6.71 5.97 8.11

DOH+RAB+TUN 6.87 6.53 9.38

C
om

b
in

at
io

n
S

ou
rc

e

BEI+DOH+RAB+TUN 6.04 5.81 7.33 6.88

Table 44: Results of the augmentation models for CAI as a target language with a

batch size of 64 and top-K decoding strategy

Evaluation Direction TUN-BEI RAB-BEI CAI-BEI DOH-BEI

Reference Score 13.76 14.68 18.70 13.34

CAI+DOH 11.53 11.12

CAI+RAB 10.30 12.76

CAI+TUN 11.25 13.66

DOH+RAB 11.27 11.44

DOH+TUN 7.74 8.82

RAB+TUN 9.61 9.89

CAI+DOH+RAB 8.82 10.07 10.61

CAI+DOH+TUN 8.50 9.05 9.73

CAI+RAB+TUN 7.36 8.20 8.96

DOH+RAB+TUN 7.60 7.57 8.30

C
om

b
in

at
io

n
S

ou
rc

e

CAI+DOH+RAB+TUN 7.16 7.18 8.31 8.49

Table 45: Results of the augmentation models for BEI as a target language with a

batch size of 64 and top-K decoding strategy
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Evaluation Direction TUN-DOH RAB-DOH CAI-DOH BEI-DOH

Reference Score 22.46 24.96 28.56 27.71

BEI+CAI 27.42 27.16

BEI+RAB 21.30 23.76

BEI+TUN 21.72 26.26

CAI+RAB 23.51 25.69

CAI+TUN 22.61 27.01

RAB+TUN 20.82 21.03

BEI+CAI+RAB 16.49 19.83 19.59

BEI+CAI+TUN 20.70 24.01 24.17

BEI+RAB+TUN 15.72 15.66 17.65

CAI+RAB+TUN 15.82 16.62 19.96

C
om

b
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n
S
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e

BEI+CAI+RAB+TUN 15.66 16.26 17.75 16.58

Table 46: Results of the augmentation models for DOH as a target language with a

batch size of 64 and top-K decoding strategy

Target

TUN RAB CAI BEI DOH

TUN+MSA 7.51 6.32 12.49 22.29

RAB+MSA 10.67 7.53 10.06 17.06

CAI+MSA 6.37 7.78 12.18 26.90

BEI+MSA 6.84 8.94 9.72 27.03

S
ou

rc
e

DOH+MSA 7.89 9.71 9.43 14.61

Table 47: Results of adding MSA to the source language for each direction with a

batch size of 64 and top-K decoding strategy
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Target

TUN RAB CAI BEI DOH

TUN 6.64 7.80 8.06 16.49

RAB 6.84 8.16 9.17 16.95

CAI 6.80 7.75 10.52 18.66

BEI 7.25 8.15 9.01 18.74

S
ou

rc
e

DOH 7.68 8.54 8.68 9.23

Table 48: Results of the Everything-to-Everything model without MSA, a batch size

of 64 and top-p decoding strategy

Target

TUN RAB CAI BEI DOH MSA
BLEU

MSA
AL-BLEU

TUN 8.13 7.93 9.02 16.48 11.41 6.99

RAB 6.90 7.49 8.74 16.65 11.42 7.19

CAI 6.44 7.74 9.57 18.69 12.91 8.42

BEI 6.48 8.48 8.48 19.10 12.41 8.09

DOH 7.22 8.82 9.07 10.72 13.48 9.04

S
ou

rc
e

MSA 6.26 8.25 9.02 9.58 19.27

Table 49: Results of the Everything-to-Everything model with MSA, a batch size of

64 and top-p decoding strategy
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Evaluation Direction RAB-TUN CAI-TUN BEI-TUN DOH-TUN

Reference Score 10.45 12.23 11.27 11.60

BEI+CAI 8.58 8.66

BEI+DOH 7.54 7.61

BEI+RAB 7.45 7.65

CAI+DOH 10.69 10.64

CAI+RAB 11.00 11.21

DOH+RAB 8.43 8.94

BEI+CAI+DOH 7.82 7.26 8.18

BEI+CAI+RAB 3.30 2.95 3.08

BEI+DOH+RAB 7.22 7.74 7.65

CAI+DOH+RAB 7.85 8.71 8.43
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BEI+CAI+DOH+RAB 6.05 6.73 6.37 6.35

Table 50: Results of the augmentation models for TUN as a target language with a

batch size of 64 and top-p decoding strategy

Evaluation Direction TUN-RAB CAI-RAB BEI-RAB DOH-RAB

Reference Score 10.83 12.74 12.99 13.28

BEI+CAI 6.41 6.21

BEI+DOH 8.87 8.74

BEI+TUN 11.51 12.13

CAI+DOH 8.31 9.39

CAI+TUN 7.34 8.19

DOH+TUN 8.20 9.54

BEI+CAI+DOH 8.95 9.29 9.51

BEI+CAI+TUN 8.43 8.38 8.43

BEI+DOH+TUN 8.01 8.31 9.24

CAI+DOH+TUN 8.74 8.80 9.37

C
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BEI+CAI+DOH+TUN 7.20 7.46 8.02 8.20

Table 51: Results of the augmentation models for RAB as a target language with a

batch size of 64 and top-p decoding strategy
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Evaluation Direction TUN-CAI RAB-CAI BEI-CAI DOH-CAI

Reference Score 13.16 8.72 14.91 12.01

BEI+DOH 11.01 10.87

BEI+RAB 7.40 9.66

BEI+TUN 8.22 11.27

DOH+RAB 6.92 9.76

DOH+TUN 8.59 10.66

RAB+TUN 7.35 6.98

BEI+DOH+RAB 7.70 10.42 9.89

BEI+DOH+TUN 6.08 7.94 9.09

BEI+RAB+TUN 7.27 7.03 8.88

DOH+RAB+TUN 7.46 7.63 10.03

C
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BEI+DOH+RAB+TUN 5.85 5.92 6.99 7.21

Table 52: Results of the augmentation models for CAI as a target language with a

batch size of 64 and top-p decoding strategy

Evaluation Direction TUN-BEI RAB-BEI CAI-BEI DOH-BEI

Reference Score 14.22 14.83 19.09 14.24

CAI+DOH 12.64 12.14

CAI+RAB 11.41 13.51

CAI+TUN 11.92 14.24

DOH+RAB 11.25 11.26

DOH+TUN 7.51 10.12

RAB+TUN 10.16 10.85

CAI+DOH+RAB 9.30 9.86 9.96

CAI+DOH+TUN 8.68 10.56 10.88

CAI+RAB+TUN 7.94 8.71 8.67

DOH+RAB+TUN 7.80 8.38 9.30

C
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CAI+DOH+RAB+TUN 7.91 7.72 9.25 9.60

Table 53: Results of the augmentation models for BEI as a target language with a

batch size of 64 and top-p decoding strategy
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Evaluation Direction TUN-DOH RAB-DOH CAI-DOH BEI-DOH

Reference Score 22.84 25.48 29.19 28.77

BEI+CAI 27.33 27.59

BEI+RAB 21.74 24.49

BEI+TUN 21.91 26.30

CAI+RAB 23.83 26.63

CAI+TUN 23.12 27.07

RAB+TUN 20.69 22.19

BEI+CAI+RAB 18.27 21.40 21.38

BEI+CAI+TUN 21.24 24.13 23.41

BEI+RAB+TUN 16.34 16.89 19.24

CAI+RAB+TUN 17.33 17.55 20.98

C
om

b
in

at
io

n
S

ou
rc

e

BEI+CAI+RAB+TUN 16.19 17.35 18.95 18.70

Table 54: Results of the augmentation models for DOH as a target language with a

batch size of 64 and top-p decoding strategy

Target

TUN RAB CAI BEI DOH

TUN+MSA 8.02 7.43 12.70 22.45

RAB+MSA 10.83 8.05 10.70 17.91

CAI+MSA 6.69 8.49 12.45 27.85

BEI+MSA 7.06 9.87 10.53 27.18

S
ou

rc
e

DOH+MSA 8.05 10.03 10.51 14.47

Table 55: Results of adding MSA to the source language for each direction with a

batch size of 64 and top-p decoding strategy
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