
Pfaffenwald ring 5a
70569 Stuttgart

Bachelorarbeit

Inferring Other Agents' Goal in
Collaborative Environments Using

Graphs

Ruben Werbke

Studiengang: Softwaretechnik

1. Prüfer: Prof. Dr. Andreas Bulling

2. Prüfer:

Betreuer: Dr. Lei Shi, Matteo Bortoletto

begonnen am: 09.10.2023

beendet am: 09.04.2024

Universität Stuttgart

Institute for Visualization and Interactive Systems

Abstract

After the arrival of AI in smartphones, assistance systems and many Internet applications,
it slowly makes its way to embodied agents, for example, self-driving cars. While
physically manifested agents are uncommon and limited to special use cases, it is
important to investigate how agents can be implemented to successfully cooperate in
spaces with other participants. To test the social intelligence of agents, the Watch-and-
Help challenge was presented, in which AI agents work together with humans in shared
apartments. During the watch phase of this challenge, the agent must infer another
actor’s goal as they perform a common household task. Originally, the agent perceived
its environment using a transformer to encode the state of the apartment. In this work,
we tested if it was possible to replace the transformer with a Graph Neural Network,
which are capable of encoding environments. We further investigate how different
encoded relations in the environment graphs affect the capabilities of our new model,
discuss its current problems, and propose approaches how to deal with these.

3

Contents

1 Introduction 13

2 Motivation 15

3 Related Work 17
3.1 Collaborative Environments . 17
3.2 Graph Neural Networks . 19

4 Method 21
4.1 Overview . 21

5 Dataset 25
5.1 Watch-And-Help Data . 25
5.2 Our Data . 26

6 Experiments 29
6.1 Network Design and Hyper Parameters 29
6.2 Over Fitting . 32
6.3 Impact of Used Edges . 32

7 Discussion 35

8 Results 37

Bibliography 39

5

List of Figures

4.1 Overview of the Goal Inference Module 21

5.1 Environment at time step 0 . 27
5.2 Final data sample construct . 28

6.1 Loss Plot of first training attempts (smoothed) 31
6.2 Class distribution in training set explains the model’s tendency towards a

single class . 31
6.3 Loss of training and validation . 32
6.4 Training loss compared to different edges used during training (smoothed,

faded plots are unsmoothed data) . 33

7

List of Tables

4.1 Overview of data shape . 22

5.1 Features in the Final Data Set . 28

6.1 Main Network Layouts . 30
6.2 Test results for different used edge types 34
6.3 Testing with all edges on the train set . 34

9

List of Abbreviations

AI Artifical Intelligence. 15, 17

GIM Goal Inference Module. 21, 22, 29, 30, 32, 35, 37

GNN Graph Neural Network. 15, 21, 32, 35, 37

LSTM Long Short Term Memory. 21, 22, 29, 30, 32

MEG Multi Edge Graph Convolutional Network. 21, 22, 30, 32

PyG PyTorch Geometric. 22, 26, 32

WAH Watch-And-Help. 15, 16, 17, 18, 21, 23, 25, 26, 28, 29, 35, 37

11

1 Introduction

With the fast development of artificial intelligence, we can think of more and more
places where to use it. Over time, many “smart”-devices, that are connected to the
internet (of things), moved into everybody’s life. While in the beginning the devices
were mostly still following strict algorithms (for example a vacuuming robot cleaning a
flat), nowadays many devices involve some sort of artificial intelligence (like Google’s
Photo App or ChatGPT). Thinking further ahead, robotic assistants might help with
physical work in shared spaces alongside other robots or humans. To do so efficiently,
these robots can not only work on their own but require some sort of collaboration.
This becomes trickier if the agents in an environment are not all of the same type or if
the environment involves humans as well. Xavier Puig and his colleagues developed a
virtual environment in which it is possible to put different agents together (AI agents as
well as human players)[PRB+18]. These can then simulate living together in a shared
apartment which also involves a series of different chores that can be carried out. Based
on this simulator, Puig and his colleagues then proposed the Watch-and-Help challenge
[PSL+20], which consists of two phases. First, the watch phase in which an agent
watches another participant working on a task. During this phase, the agent tries to
infer what goal is trying to be achieved. Once the agent figured out the goal, it should
be able to help achieve this goal in the next phase – the help phase.

During this work, we focused solely on the watch phase and the “Goal Inference Module”
which is used in this phase. The Goal Inference Module from the original paper uses a
transformer to encode the state of the environment at each time step. One time step
denotes a single action like taking up a plate from a table or moving from one room to
another room. As environments can easily be described using an environment graph, we
thought of replacing the transformer with a graph neural network. This means, all the
entities in the flat are described as nodes and their relations as edges. By this, edges
could represent a “touching”, “on” or “under” relation as in the predicate: “The glass is
on the table”. While the main goal is to replace the transformer, we also take a look at
how different edge types affect the performance of the model.

13

2 Motivation

Artifical Intelligence (AI) is currently showing up in more and more spaces in everyday
life. While we need to learn how to work and live with AI, we also have to design
AI agents in a way that allows them to work with us - not only for us. Puig and his
colleagues came up with the Watch-And-Help (WAH) challenge [PSL+20], which yields
a baseline for collaborative environments in which AI agents and humans live and
work together. As we will see in the next section, there were more papers published
under the topic of collaborative environments for AI agents. All the selected papers
share the restriction that the "games" (or challenges) take place in partially observable
environments. For conceiving their environment, the different agents were implemented
using various techniques.

On the other hand, all the research projects we found preliminary to our own research,
were using transformers to encode their environments. Depending on the environment
encoding, a transformer is very well suited for that job. However, in many cases, the
environment is already encoded as a graph. Graphs are a way to represent data in
a broad variety of topics [FGS98]. They allow to encode a lot of information into
their topology while still being intuitive. From describing chemical compounds over
visualizing social interactions in groups to depicting maps as a data structure, graphs
have taken place in many different applications [FGS98]. For many applications, a
benefit of graphs is the simple representation of meaningful relations between entities.
For example, to render a scene, binary tree search in a scene graph allows one to
quickly determine which objects are relevant for the current calculation and which can
be ignored as they are out of view [Zac77]. Chemical compounds and molecules are
naturally encoded in graphs. Not only is it possible to infer properties of a molecule
knowing only the structure with the help of a Graph Neural Network (GNN). Successful
experiments have shown that a GNN can build a chemical compound upon a given
prompt, which will have all demanded properties.

As GNNs proved themselves as a powerful type of neural network and have success-
fully been used, we were wondering if it was possible (and beneficial) to replace the
transformer that is used in the WAH papers’ goal inference module with a GNN. We
could encode different information of the environment into a graph such as the type and
state of an entity and its relation to its geometrical neighbors. With the use of GNNs we

15

2 Motivation

could work on either node-focused or graph-focused level. In terms of WAH, we could
either solely encode the state of the flat, as it was done in the original paper with the
transformer, or infer the performed task from the global state of the GNN.

16

3 Related Work

3.1 Collaborative Environments

A lot of research has gone into collaborative environments for AI agents, where they
interact with each other, the environment, or both. We find significant differences in
how the challenges are posed and, as a result, widely varying ways how agents are
implemented. AI-AI collaboration is a field of ongoing research where many different
branches have been explored. Putting AI agents into video games is a common way to
train and test them either for working together as a team or to challenge each other as
opponents [SDIM19] [LWT+17].

In [SRD+19], Samvelyan and his colleagues use the video game StarCraft as an envi-
ronment to train and test their agents. StarCraft is a real-time strategy game in which
one faction fights another faction. For this, every faction has several units which can be
controlled individually. This defines the agent’s goal: fight members of the other faction
until there are no more. Every agent was given control over one individual unit. In
the game world, each agent only has a restricted field of view, limited in range but not
obscured by objects in the environment. They did not have any knowledge about foes or
team members outside their view range. The policy for the agents yielded rewards for
taking out enemies and punished getting hit. This means the degree of collaboration
between agents of one team is very limited. Looking at the policy, it could be considered
a greedy approach to winning the game without having a global plan that would require
any further collaboration between the individual units. However, the perception of the
agents is similar to what the agents in WAH were given.

More interaction between different units can be found in [SDIM19]. For this paper,
Suarez and his colleagues built a game to investigate large-scale multi-agent interaction.
The goal of each agent is, to survive as long as possible. This requires an agent to collect
water and food in regular intervals, with food being a limited resource and water being
only available in a few spaces. Agents are capable of attacking other agents to fight
for food. In different experiments, they either had all agents sharing the same model
parameters or had them organized into species. The latter shared model parameters
only within the species. Each agent had a limited view range but was able to create its
own map of the environment from places it had visited. While this environment does

17

3 Related Work

not make the agents engage in teamwork, the results prove that agents adjust to what
other agents do. This manifests in heat maps illustrating what areas are more or less
frequently visited, showing that agents tend to explore more and venture further away
from denser populated areas than they would do otherwise.

We see the most collaboration between AI agents in [BKM+19], where agents played
hide-and-seek in teams of up to three. The goal for the hider team is to stay undetected
for the limited time of the game and hence, the seekers must find at least one hider
to win the game. Different from the former two publications but similar to WAH, here
the agents were also capable of using entities of the world in a more complex way than
removing them (as picking up food in [SDIM19]). They were able to move entities
or lock them in place, which led to different behavior in both teams, depending on
what members of the other team did to the environment. Similar to the WAH agents,
agents didn’t have global knowledge about the environment during training however,
for optimization, an encoded state of the entire world was used without masking. All
agents of one team shared the same policy parameters but acted differently due to their
individual observations.

On a slightly different note, we find [LPB+19] exploring a way how to learn an activity
from watching its execution. The goal is to extract the essence of a task from watching
it or having a high-level description of it so that later an agent would be able to execute
the tasks again, potentially also in a different environment. The agent therefore needs
to first understand the basic steps required to perform the task and then adapt these in a
different environment. An environmental graph is used to describe the flat at every time
step, where every edge represents a spatial relationship between the objects in the flat.
To encode the environment, this graph is fed into a GNN, capturing object relations and
allowing it to infer a state for further processing.

Besides [LPB+19], most research focuses on collaboration between AI agents rather
than how those agents work aside humans. The absence of research into this direction
was also noticed in [MFB+21]. Möller and her colleagues explore how robots in real life,
physically in the same space as a human, and not simulated in an virtual environment,
have to be designed to ensure a safe and useful coexistence. They state that, to have
robots physically exist alongside humans, many different challenges have to be tackled.
However, these challenges belong to a broad bandwidth of research topics, which is why
they focus on navigation for socially compliant robots. Even though this sounds very
specific, the approaches presented in the paper can be of interest to any kind of socially
compliant robot, as they involve understanding human behavior and acting upon it.

18

3.2 Graph Neural Networks

3.2 Graph Neural Networks

First introduced in [GMS05], GNNs were a new way to work directly on a graph without
further preprocessing. Getting rid of the need to encode a graph into a flat vector
first, the risk of loosing information embedded into the topology of the graph was
eliminated. By now, GNNs are represented in very different applications, reaching from
computer graphics, over natural language processing and chemistry to traffic control
and prediction [WPC+20].

Extending the work of [MFB+21], Ravichandran and his colleagues did research on how
to use GNNs to encode three dimensional space in a way that explains it to an agent
[RPH+22]. Using a high-level representation of the environment in the form of a scene
graph, their model is capable of learning navigation policies to move around the scene
and keep track of its trajectory. They prove that their model manages to search and find
different objects in its environment

Improving the performance of agents during search tasks in environments like house-
holds, [KLA+23] came up with a solution that is capable of predicting the location of
different objects. This is achieved by using a combination of two different techniques,
first using a Scene Graph Memory for exploring the environment and secondly a Node
Edge Predictor to predict new node edge combinations. Utilizing the Scene Graph
Memory, the agent collects several observations of the environment over a certain period.
Once familiar with the environment, it can then be tasked to find an object in the
environment (that was not seen before or might have moved since it has been seen) and
find it using the Node Edge Predictor.

19

4 Method

4.1 Overview

Figure 4.1: Overview of the Goal Inference Module

To replace the transformer with a GNN, the data needed a different encoding than used
in the WAH paper. This different style required us to update some parts of the Goal
Inference Module (GIM) to work with different dimensions and keys in the set.

Our implementation consists of four main components: three different modules (orange
in 4.1) intertwined inside the GIM (dark green in 4.1). The first part is the Multi Edge
Graph Convolutional Network (MEG), which is the replacement of the transformer as
it was used in the WAH implementation. After this comes a Long Short Term Memory
(LSTM), collecting the outputs from the MEG per time step. The GIM is reshaping the
data around these two first modules and implementing more basic layers to improve
the output of our network. The last component is the Predicate Classifier, which, in its
initial form, was copied from the WAH implementation.

21

4 Method

Snapshot Data Shape

Before MEG List of Graphs (see 5.2)
After MEG tensor(batch_size · num_nodes, features)

Before LSTM tensor(batch_size, features)
After Predicate Classifier tensor(batch_size, num_classes)

Table 4.1: Overview of data shape

4.1.1 Goal Inference Module

The input to the GIM is a "demonstration", as it is described in 5.2. Before the data can
be used in the MEG, it has to be reshaped. PyTorch adds a batching dimension as the
first dimension of the data, which does not work in PyG. PyG implements batching by
concatenating the adjacency matrices of each sample in the batch in a diagonal manner.
This style of batching can be achieved by unpacking the batched data from PyTorch and
then adding it each individually into a PyG "Batch" wrapper. After transformation, we
can feed the graphs (for each time step) into the MEG, computing the final state of each
node in each graph. The data returned from the MEG is a tensor that still has the batch
dimension as PyG uses it. Before proceeding, this gets reshaped to match PyTorch’s style
of batching (compare "After MEG" and "Before LSTM" in 4.1). The global state of each
graph is then calculated using global mean pooling (as described in [WPC+20]). Finally,
using the Predicate Classifier, the likeliness for each class is inferred. Three dropout
layers were added to the GIM, one after the global mean pooling, one after the LSTM,
and another one after the mean pooling. The dropout layers were supposed to improve
the overfitting problem this network has and have been kept when the experiments got
frozen even though the overfitting could not be significantly improved as discussed in
the "Results" section.

4.1.2 Multi Edge Graph Convolutional Network

This module receives a node index and an edge index as input. While we are only using
one type of node at this point, which has its type encoded in its feature vectors, the
edges vary in type (see section 5.1 for more details on this). During its forward call,
the MEG channels the data through three graph convolutional layers, each followed
by a ReLu activation and finally through a fully connected linear layer. The most
important part about this module is, that, right after initialization, it gets transformed to
a heterogeneous graph capable version using PyGs transform function. This performs

22

4.1 Overview

graph convolutions on each sub-graph (edge type wise) and shares those results with
other sub-graphs each iteration.

4.1.3 Predicate Classifier

Originally copied from the WAH code, this module was responsible for counting how
often every predicate showed up during a demonstration. As we were not able to run
the original code on our systems (due to memory requirements) and we could not
infer all intentions in the code from looking at it, we were not able to understand the
functionality of this last module to the point where we could reproduce it entirely. This
is why we ended up using the predicate classifier to predict the performed task rather
than counting the predicate occurrences during the demonstration. Its implementation
however has not been modified any further than changing its output dimension (shown
in 4.1).

23

5 Dataset

5.1 Watch-And-Help Data

For their experiments, Puig and his colleagues used data that was created using the
Virtual Home Simulator [PRB+18]. The scenarios this simulator offers were created
using descriptions of common tasks from everyday life, collected from a variety of people.
From this, a sample was selected to be used for training and validation of the watch
phase in the WAH paper.

This sample offers seven different apartments of different sizes and layouts. Every
flat consists of at least one of each of these rooms: Bathroom, Kitchen, Bedroom, and
Living Room. Between different apartments, rooms of the same kind differ in their
fit-out, size and connection to adjacent rooms. To populate the rooms, 136 different
assets are available, split up into 25 categories (for example Lamps, Furniture, Decor,
and Appliances). Every asset can be used several times per flat, to make a flat look
like a real-life flat. For training and validation of the goal inference during the watch-
phase, demonstrations are used. A demonstration shows the execution of a specific
task to the point where it is considered completed. Five different tasks are available,
namely read_book, put_dishwasher, prepare_food, put_fridge and setup_table. Each
task is part of a demonstration in several of the different apartments or, for those
demonstrations taking place in the same flat, has objects placed in different parts of the
environment. It is also possible that the goal of the demonstration, even though it is the
same task, might look different. For example, setup_table requires forks and knives on
the table for one demonstration, but in a different demonstration it only needs knives
on the table.

The data was split into a training and a validation set consisting of 5303 demonstrations
for training and 1021 demonstrations for the validation set. Out of the seven apartments
mentioned before, only five were used in the training demonstrations. Two were held
back for the validation set, which is not only using those extra two flats but all seven
environments. This is to ensure, that the model is capable of inferring a task not only in
known environments but also in an unknown apartment.

25

5 Dataset

5.2 Our Data

Using the code from the WAH project, we generated the dataset, making sure the split
between training and validation data is the same. While originally the two datasets
were two objects that were kept in memory during the entire runtime, we could not
do the same due to the object’s size and the memory limits on our machines. Thus, all
demonstrations were extracted from the original sets and saved, each individually, as
binary files for later access.

The goal then was, to generate a dataset that is compatible with PyTorchs data loaders,
lightweight on memory, accessible and modifiable, and working well together with
the modules from PyTorch and PyTorch Geometric (PyG) with as little as possible
modifications on the fly. Each demonstration, as we received and saved it from the WAH
code, contained a series of information of which we took the task_name and the graphs.
While there was more information encoded in the data, due to little documentation,
we were not able to infer its use up to a point where it could have become useful for
us. Opposed to the task_name, which is a human-readable descriptor of the depicted
demonstration (matching one of the five task names named before), the graphs field
does not hold any graphs. Instead, it is a list of flat states, in which each element
represents one time-step throughout the demonstration. The flat states are encoded
as a list of objects, in which each object describes an entity in a flat or an entire room
(without its content). Every entity has a category, a name, valid states and properties
assigned as attributes as well as a bounding box object, which holds the position and
extent of the entity.

5.2.1 Edges and Nodes

We use the entities’ attributes to generate nodes and edges. Every demonstration
holds one ordered list per attribute: class_names, categories, properties and states,
which each holds all possible values for all nodes over the entire dataset (not only the
demonstration).

For every node, the feature vector is generated from a series of node specific attribute
vectors. Every attribute vector has as many dimensions as the corresponding list. The
entries in the specific attribute vector are 1 if the corresponding node holds the attribute
at the given index and 0 otherwise. All four feature vectors for the specific node get
concatenated to become the nodes feature vector. In section 5.2.2, we explain why all
features over the entire dataset are needed during this construction and not only the
ones from the current demonstration.

26

5.2 Our Data

Figure 5.1: Environment at time step 0

The bounding boxes were solely used to create edges. Five different edge types were
computed during the creation of the dataset, representing "inside", "touching", "is
below", "is above" and "is close" relations between nodes. To refine the "inside" relation,
additional restrictions based on the classes of the two nodes in question were made,
reducing the edge count by 16%. The other four relations are purely based on the
position and extent of the nodes. For the "is close" relation, a threshold of 1.5 meters was
chosen, which is approximately the length from one hand to another at fully stretched
arms. This relation was added, as it could help to decide whether an object is at its final
position already or not. It also helps with the "inside" relation, which in some cases
connected a node to two rooms, as their bounding boxes overlapped too much (depicted
in 5.1).

5.2.2 Padding

PyTorch needs every sample or batch of samples to be of the same size for its modules
to work correctly. As the demonstrations vary in length between 50 and 80 time steps,
the number of graphs per demonstration would vary between this range too. Further,
depending on which apartment is used in the demonstration, the number of rooms
and objects in those rooms varies too and thus, the number of edges per graph varies
significantly too. As this would yield very differently sized dimensions between different
demonstrations, all graphs needed to be padded. For shorter demonstrations, padding
graphs were needed to fill up the otherwise empty time steps at the end. The feature
vector of a padding node contains −1 at every position and padding edges all went from
node 0 to node 0.

27

5 Dataset

5.2.3 Final Data Set

Constructing the data set as described, using all available data from WAH, yields
demonstrations with graphs as described in 5.1. Loading one sample from the dataset
returns a tuple as described in 5.2. The label is encoded as a one-hot tensor. The index
of the 1 indicates the corresponding class among "read book", "put dishwasher", "prepare
food", "put fridge" and "setup table".

Number of Graphs 80
Number of Nodes 135

Number of Node Features 187

Number of Edges

inside: 138
touching: 340

below: 77
above: 176
close: 1128

Table 5.1: Features in the Final Data Set

(a) Structure of a data sample

Identifier Data Type

Demonstration Tuple
Flat State Dictionary (string: any)

nodes tensor
edges Dictionary (string: list)

edge types tensors
label tensor

(b) Data types in a sampel

Figure 5.2: Final data sample construct

28

6 Experiments

Several different experiments have been conducted during the process of developing
and testing the new GIM. The entire process can be split into three sections. During
each section, a series of tests was conducted to evaluate the current step. In 6.1, we
give a coarse overview of how the network design developed over time. This does not
reflect every single change, which will be discussed in the different subsections, but
rather shows the main snapshots during development. Network 3 corresponds to the
network presented in 4.1 and was only added to the table to allow comparison to the
previous implementations.

6.1 Network Design and Hyper Parameters

During this early stage of the development of the new GIM, we focused on achieving an
uninterrupted dataflow. Therfore we evaluated the training loss and adjusted the layout
of the network and the hyperparameters. Network 1 (see 6.1) was the first network
that allowed the data to flow through without any dimension issues and provided an
uninterrupted gradient flow during optimization. However, there was no decrease in the
loss plot.

We realized that a hidden size of 64 was way too small to capture all details in the data
(compare 5.1: number of graphs · number of nodes · number of node features). Another
issues with Network 1 was the interpretation of how to use the output from the LSTM.
PyTorchs LSTM returns a tensor in shape (batch_size, time_steps, features). In Network
1, only the last time step had been used (due to a misunderstanding in how LSTMs
work), while in fact, the mean over all time steps (as it was also done in the code from
WAH) was needed.

After fixing the mentioned issues, several training runs were started to investigate
whether the network was learning but without any success. The loss fluctuated with
up to ±50% but did on average not improve at all, as shown in 6.1. Besides checking
that the optimizer worked, several attempts were made to improve the results, testing
different combinations of learning rates, annealing and activation functions of different
types (ReLu and Tanh) behind different layers. Plotting the prediction of the network

29

6 Experiments

finally gave an insight into what the issue with the training was. Looking at the model’s
predictions (6.2b) showed that it always leaned towards classes 2 and 3 (noticeable over
several different training runs). Plotting the occurrences of the tasks from the training
set suggested that the model can not deal with the highly unbalanced training set.
After reading [SGL+24], we tested training with different weights for each class during
the loss calculation. However, we found that this technique was not sufficient for our
purposes. Another mentioned approach suggested to balance the set by copying samples
from underrepresented classes or removing samples from overrepresented classes. To
quickly achieve results, we went with the latter-mentioned solution, where we picked
the first 600 samples of each class. With these updates, the loss plot looked like the
model was learning.

Network
Design

Module Parameters

Network 1

GIM
no dropouts

using only last layer of LSTM

MEG
hidden/output layers: 64

internal pooling and aggregation of sub-graphs

LSTM
hidden/output layers: 64

hidden layers: 2

Network 2

GIM
no dropouts

mean over all LSTM layers
linear layer after LSTM

MEG
hidden/output layers: 512

internal pooling and aggregation of sub-graphs

LSTM
hidden/output layers: 512

hidden layers: 3

Network 3

GIM
added dropouts

inferring global state from MEGs output

MEG
hidden/output layers: 512

no internal pooling

LSTM
hidden/output layers: 512

hidden layers: 2

Table 6.1: Main Network Layouts

30

6.1 Network Design and Hyper Parameters

Figure 6.1: Loss Plot of first training attempts (smoothed)

(a) Distribution of classes in training set

(b) Predicted likeliness of each class per sample

Figure 6.2: Class distribution in training set explains the model’s tendency towards a
single class

31

6 Experiments

Figure 6.3: Loss of training and validation

6.2 Over Fitting

Using Network 2 (from 6.1), the plotted loss decreased during training, but the validation
loss did not (see 6.3). As a first measure, using new insights in PyG, the MEG was
redesigned making use of PyGs internal transformation from GNNs for homogeneous
graphs to one for heterogeneous graphs. Another linear layer was added to the GIM
with the intention that the new depth of the network would allow it to generalize more
and reduce the overfitting by that.

After 20 rounds of training, the most promising results were achieved with Network 3
(see 6.1, which is also the one described in 4.1). Even though during these 20 rounds of
training, a wide range of different settings were tested, both for the hyperparameters
as well as some internal parameters of the network (dropout probabilities, hidden
LSTM layer numbers, adding and removing of linear layers between other layers), no
improvement for the validation could be found.

6.3 Impact of Used Edges

As a last experiment and disregarding the overfitting issue the current model has, we
looked at whether using different edges for training makes a difference. Therefore, we
ran four different rounds of training with the same network and all equal hyperparame-
ters. The edges we used were:

32

6.3 Impact of Used Edges

Figure 6.4: Training loss compared to different edges used during training (smoothed,
faded plots are unsmoothed data)

1. all edges

2. inside and touching edges

3. only touching edge

4. all edges besides the "is close" relation

We plotted the loss functions during training as it can be seen in 6.4. This already
suggests that the types of used edges matters. For a deeper discussion of the findings,
refer to section 7.

33

6 Experiments

Edges
Precision

Per Class Average

touching 0, 0.28, 0.12, 0, 0.42 0.16
inside, touching 0, 0.23, 0.0, 0, 0 0.05

all except "is close" 0, 0.38, 0.12, 0.0, 0.32 0.16
all 0.89, 0, 0.15, 0, 0.44 0.30

(a)

Edges
Recall

Per Class Average

touching 0.0, 0.66, 0.0043, 0.0, 0.10 0.15
inside, touching 0.0, 0.82, 0.0, 0.0, 0.0 0.16

all except "is close" 0.0, 0.66, 0.0043, 0.0, 0.10 0.15
all 0.08, 0.0, 0.05, 0.0, 0.72 0.17

(b)

Edges Correct Prediction

touching 30%
inside, touching 22%

all except "is close" 30%
all 42%

(c)

Table 6.2: Test results for different used edge types

Precision per class 0.96, 0.0, 0.96, 0.83, 0.56
Precision average 0.67
Recall per class 0.44, 0.0, 0.47, 0.65, 0.73
Recall average 0.56

Table 6.3: Testing with all edges on the train set

34

7 Discussion

In [PSL+20], the GIM achieves precision and recall of 0.85 and 0.96 during testing.
Compared to this, our model can not keep up with the original GIM. The best results our
model achieved were precision and recall of 0.30 and 0.17 (averaged over the different
classes) using all five edge types. The results from the WAH paper however look at
the "predicate counts" and do not infer the overall task type as we did (we described
the reason for this in section 4.1.3). As mentioned in the introduction, a predicate is
something like "One fork on the table", hence guessing the task type can be considered a
more general approach to inferring the agent goal rather than counting the predicates.
For a closer comparison between a GNN and the transformer, the overfitting problem
needs to be overcome first.

Different techniques can be used to reduce overfitting. Due to the time spent coming up
with the current layout of the model and understanding the problem during training
caused by the unbalanced training set, we did not have time to test these approaches.
One way could be the implementation of more layers to allow the model to generalize
more, in combination with refitted dropout layers or residual blocks. Another possibility
would be to change how we deal with the unbalanced data set. Instead of removing
samples from over-represented classes as it is done at the moment, copies from demon-
strations of underrepresented classes could be inserted. Doing so would increase the
overall amount of training data and thus help the model to generalize more.

Changing the way the graphs and demonstrations were padded could also yield different
results. Instead of adding the padding edges from and to the first node, these could be
added to the last node, which would likely be a padding node as well.

It would be interesting to investigate the impact of different edge types in the environ-
mental graphs. While we focused on very basic relations during the development of our
model, the used edge types could have a big impact on the model’s performance (as the
results listed in 6.4 suggest). Besides using spatial relationships, logical relations like
"can use" could be beneficial.

35

8 Results

We built a new GIM using a GNN to replace the transformer. In its current implemen-
tation however, we have to admit, that our GIM can not compete with the network
presented in WAH. As 6.3 shows, the model is capable of learning the different classes
in the balanced training set and is not simply guessing labels. This suggests that, with
more development, the model should be able to achieve better precision and recall than
it has so far. In 7, we mentioned possible solutions to solve the issues (most importantly
the overfitting) of the current GIM. Comparing precision and recall depending on which
edge types were used, shows, that the selection of used edge relations impacts the
models’ performance.

37

Bibliography

[BKM+19] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, I. Mor-
datch. “Emergent tool use from multi-agent autocurricula.” In: arXiv
preprint arXiv:1909.07528 (2019) (cit. on p. 18).

[FGS98] P. Frasconi, M. Gori, A. Sperduti. “A general framework for adaptive
processing of data structures.” In: IEEE transactions on Neural Networks
9.5 (1998), pp. 768–786 (cit. on p. 15).

[GMS05] M. Gori, G. Monfardini, F. Scarselli. “A new model for learning in graph
domains.” In: Proceedings. 2005 IEEE international joint conference on
neural networks, 2005. Vol. 2. IEEE. 2005, pp. 729–734 (cit. on p. 19).

[KLA+23] A. Kurenkov, M. Lingelbach, T. Agarwal, E. Jin, C. Li, R. Zhang, L. Fei-Fei,
J. Wu, S. Savarese, R. Martın-Martın. “Modeling dynamic environments
with scene graph memory.” In: International Conference on Machine Learn-
ing. PMLR. 2023, pp. 17976–17993 (cit. on p. 19).

[LPB+19] Y.-H. Liao, X. Puig, M. Boben, A. Torralba, S. Fidler. “Synthesizing
environment-aware activities via activity sketches.” In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019,
pp. 6291–6299 (cit. on p. 18).

[LWT+17] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, I. Mordatch. “Multi-
agent actor-critic for mixed cooperative-competitive environments.” In:
Advances in neural information processing systems 30 (2017) (cit. on p. 17).

[MFB+21] R. Möller, A. Furnari, S. Battiato, A. Härmä, G. M. Farinella. “A survey on
human-aware robot navigation.” In: Robotics and Autonomous Systems 145
(2021), p. 103837 (cit. on pp. 18, 19).

[PRB+18] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, A. Torralba. “Virtualhome:
Simulating household activities via programs.” In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018, pp. 8494–8502
(cit. on pp. 13, 25).

39

[PSL+20] X. Puig, T. Shu, S. Li, Z. Wang, Y.-H. Liao, J. B. Tenenbaum, S. Fidler,
A. Torralba. “Watch-and-help: A challenge for social perception and human-
ai collaboration.” In: arXiv preprint arXiv:2010.09890 (2020) (cit. on
pp. 13, 15, 35).

[RPH+22] Z. Ravichandran, L. Peng, N. Hughes, J. D. Griffith, L. Carlone. “Hierarchical
representations and explicit memory: Learning effective navigation policies
on 3d scene graphs using graph neural networks.” In: 2022 International
Conference on Robotics and Automation (ICRA). IEEE. 2022, pp. 9272–9279
(cit. on p. 19).

[SDIM19] J. Suarez, Y. Du, P. Isola, I. Mordatch. “Neural MMO: A massively multia-
gent game environment for training and evaluating intelligent agents.” In:
arXiv preprint arXiv:1903.00784 (2019) (cit. on pp. 17, 18).

[SGL+24] R. Shwartz-Ziv, M. Goldblum, Y. Li, C. B. Bruss, A. G. Wilson. “Simplifying
Neural Network Training Under Class Imbalance.” In: Advances in Neural
Information Processing Systems 36 (2024) (cit. on p. 30).

[SRD+19] M. Samvelyan, T. Rashid, C. S. De Witt, G. Farquhar, N. Nardelli, T. G. Rud-
ner, C.-M. Hung, P. H. Torr, J. Foerster, S. Whiteson. “The starcraft multi-
agent challenge.” In: arXiv preprint arXiv:1902.04043 (2019) (cit. on
p. 17).

[WPC+20] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S. Y. Philip. “A comprehensive
survey on graph neural networks.” In: IEEE transactions on neural networks
and learning systems 32.1 (2020), pp. 4–24 (cit. on pp. 19, 22).

[Zac77] W. W. Zachary. “An information flow model for conflict and fission in small
groups.” In: Journal of anthropological research 33.4 (1977), pp. 452–473
(cit. on p. 15).

All links were last followed on 3rd April 2024.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	8e4feacf-5234-4aa9-875c-982a95d3233c.pdf
	1 Introduction
	2 Motivation
	3 Related Work
	3.1 Collaborative Environments
	3.2 Graph Neural Networks

	4 Method
	4.1 Overview

	5 Dataset
	5.1 Watch-And-Help Data
	5.2 Our Data

	6 Experiments
	6.1 Network Design and Hyper Parameters
	6.2 Over Fitting
	6.3 Impact of Used Edges

	7 Discussion
	8 Results
	Bibliography

