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Summary

Hydrological extremes such as large floods happen rarely but whenever they do, they cause
extensive damage to life and property, and major disruption of activities. In order to defend
ourselves against the possible dangers, structures such as dams, flood retention reservoirs,
floodwalls and levees are built. As per the definition of engineering, science used to solve
problems that humans (may) face in an economic manner, the size of such defense structures
and evacuation plans need to be developed in an economical manner as well. To do so, it
is important to understand how large the magnitude of these floods may be in near or far
future.

Understanding the phenomenon occurring in the atmosphere and the catchments under-
neath them is not trivial and has been a subject of research for more than a century. Even
with state-of-the-art knowledge, it is not uncommon to encounter new cases where disas-
ter took the concerned authorities and individuals in an area by surprise. This leads to the
question, what is still missing in the techniques that are used to understand and predict
large scale precipitation that leads to large floods?

This thesis tries to address one of the important and less investigated aspects of hydrolog-
ical extremes, namely the description of the structure of dependence of multiple points in
space-time of variables such as precipitation before and during a large flood event. And ad-
ditionally, the possibility of generating this structure synthetically via numerical simulation.

Consider the following problem. The catchment area of a certain river is monitored for pre-
cipitation, temperature, land-cover, soil type, geology, evapotranspiration and finally, river
discharge. The matter of interest is the amount of the resulting flow in the river due to liq-
uid precipitation or snow-melt. A rainfall-runoff model (physically-based or conceptual) is
chosen to represent the interactions between the various variables to model river discharge.
Two main problems, among many, exist. Firstly, the model is highly unlikely to represent the
catchment in a manner that is complete enough to obtain usable. Secondly, the catchment
is not monitored for precipitation/temperature at each point. For all the remaining area
except for the monitoring points, these variables have to be interpolated. To obtain correct
estimates at locations where no measurement were made, geostatistical techniques such as
Kriging and its various variants are used. And, this is where the problem starts. For instance
temperature varies very smoothly over large areas and decreases, mostly, as the altitude in-
creases at a near constant rate. Such a behavior can be easily interpolated by Kriging that
takes the effect of elevation into account. On the other hand, precipitation follows no such
behavior, especially at the shorter temporal scales e.g., minutely or hourly scales. If the aim
is to model large scale precipitation then it is imperative that such behavior be understood
first and then modeled. This would be the ideal case that may not be possible in practice.

xvii
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The next possible research avenue could be to investigate the ground-truth i.e., precipitation
measurements at the monitoring locations. Mainly, the question that needs answering is
that how does the precipitation at multiple points behave before and during a large river
discharge event? Is precipitation occurring at all gauges, a subset or none? It can come as
a surprise that river flows show increase without any precipitation being observed at the
monitoring locations liquid- or snow-melt- wise. This may very well be the case because,
the entire catchment is not monitored. Possibility of such a scenario grows as the density of
monitoring locations becomes smaller.

It is not trivial to study the problem of precipitation retrospectively or even in real-time due
to sparse coverage of the catchment. In some cases, this problem could be studied by ana-
lyzing discharge time series recorded at multiple locations. Consider the following problem
of stream flows in multiple sub-catchments inside a catchment. Flow in the stream is the
cumulative response of the catchment to precipitation while accounting for all the possible
interactions. Each sub-catchment can be considered as one large precipitation measurement
gauge. If discharge of different headwater sub-catchments of the entire catchment can be
monitored, then these can also be used to understand the dynamics of large floods. For ex-
ample, the timings of peaks and their relative magnitudes can be analyzed. It can also be
studied whether all the large floods at the mouth of the catchment are due to all of them
yielding large flows or only a subset of them. Such information can be used to design worst-
case scenarios.

To describe the multivariate dependence in space-time, copulas were utilized. These pro-
vide the advantage that the modeling process is translated from the marginal to rank space
where the relative order rather than the magnitudes of values are of importance. Such a con-
struction helps with mitigating the effects of erroneous values or outliers to a large extent as
large river flow values are not physically measured but are indirectly derived from a rating
curve.

Strength of dependence between two variables is quantified, traditionally, by calculating
their Pearson’s correlation. In the rank space, this correlation is called the Spearman’s or
rank correlation. Furthermore, copulas also offer the possibility to differentiate between
the dependence of high and low values relative to each other. These are described by the
order and directional asymmetries. The order asymmetry describes the relative mismatch
between the relative occurrence of low values appearing together with respect to high values
appearing together. Such a behavior can be analyzed for the time series with itself or for two
time series recorded at different locations.

As one major goal is to understand the dependence in space-time by analyzing variables
at multiple locations, it would be more optimal to describe dependence of more than two
points i.e., multivariate dependence.

The next step was to develop algorithms that can simulate synthetic time series that have
prescribed properties. In that aspect, Fourier transform-based algorithms were utilized.
These mainly work by moving time series to the frequency domain where phases, that con-
trol timing, are manipulated only while keeping the magnitudes, that control variance, of
all frequencies constant. Their main advantage is their speed and the conservation of the
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auto- and cross-correlations. However, these suffer from the disadvantage that other prop-
erties such as the asymmetric dependence is not present necessarily in the resulting time
series. The long existing algorithms Phase Randomization, Amplitude Adjusted Fourier
transform, Iterative Amplitude Adjusted Fourier transform were used as benchmarks. The
series resulting from these are called surrogates or surrogate time series.

To address the drawback of the missing asymmetric dependence in the surrogates, the exist-
ing Phase Annealing algorithm was selected. The main advantage of this algorithm is that it
can incorporate arbitrary constraints, e.g., point and/or areal, while simulating. However, a
measure that not only describes the overall asymmetry but the variability of it in space-time
was still missing. Therefore, a new measure that incorporates such behavior was formulated
by taking the values as a time series that describe the order and directional asymmetry in
space-time. As an objective function, the power spectrum (the square of the absolute values
of the Fourier frequencies) of the asymmetry time series was matched for the observed and
simulated series by minimizing their squared differences in the Phase Annealing algorithm.
This resulted in series that exhibited correct asymmetric space-time behavior for both pre-
cipitation and discharge. As the order and directional asymmetries are defined for pairs
only, the problem of considering multivariate asymmetry still remained.

Additionally, two new algorithms were also proposed, IAAFT-PSC1 and IAAFT-PSC2, that
can achieve some aspects of the asymmetric behavior of dependence in new time series
rather quickly. These were based on the mixing of time series of the observed values and
their ranks in a certain proportion. The exact proportions were determined by using the Sim-
ulated Annealing algorithm. These resulted in time series having Pearson’s and Spearman’s
correlations being closer to the observed ones in space-time as compared to the benchmark
algorithms that can conserve only one of them.

To test, independently, whether various algorithms produce overall high-dimensional de-
pendence in space-time similar to that of the observed, asymmetries in d-dimensions were
also developed. These are collectively called d-asymmetries. The approach used was geo-
metric, where each dimension among d was assigned the value of asymmetry based on the
mean of the cube of distances of points from a given line that passed through the opposing
corners of a unit hypercube. This resulted in vectors for each set of time series which could
then be compared to the vectors of the observed, and evaluated for the difference.

The d-asymmetries describe the overall dependence of points in a high-dimensional space
while the question of describing the behavior during large flood events still remained. For
this issue, measures in the frequency domain were developed because they are capable of
representing the temporal behavior in a more complete and transparent manner. Firstly,
the maximum correlation (MXCORR) was defined which is akin to a worst-case scenario
where all the values of similar magnitudes synchronize in a set of time series. As a side
effect, it also resulted in a spectrum CMPOW d that showed at which time scales, e.g., daily,
seasonal or annual, the various time series can synchronize with each other. Secondly and
more importantly, another measure CMCORRd

p was developed that described the behavior
of existing time series in higher dimensions by incorporating the differences of phases into
the former measure. Such a construction helps in evaluating the multivariate dependence
in a more complete manner by taking into account the real behavior while using various
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algorithms to simulate surrogates.

Yet another method was also used to simulate time series of discharges indirectly by creat-
ing synthetic rainfall-runoff model inputs, namely precipitation, temperature and potential
evapotranspiration that were then fed to rainfall-runoff models that were calibrated already
using observed inputs. The resulting time series of discharges were then compared to ob-
served and the calibrated model discharges. The aim was to test whether it makes more
sense to use synthetic model inputs and then obtain discharge time series or by simulating
discharge time series directly. The rationale for such an approach was that river flows are a
result of a very deterministic process that is difficult to mimic using statistical approaches.
On the other hand, precipitation and temperature proved to be much easier to simulate.

Time series of daily discharge, precipitation, temperature and potential evapotranspiration
and hourly precipitation were simulated using all the aforementioned techniques and with
various objective functions for the case of Phase Annealing.

To evaluate whether the time series have realistic properties, apart from the existing pairwise
and the new high-dimensional measures; two more tests were also done. The first test was
that of the distributions of summation of time series in space (spatial-sums) while the second
test was that of the return periods for precipitation and discharge. For the case of spatial-
sums, where a new time series was obtained in which the value at each time step was the
sum of all the values of all the series at the same time step, the upper tails were compared
to the observed distributions. The second test of return periods was built in such a manner
where a group of four time series was taken and the probabilities of only three of them
having floods of return periods of two years or more, against all of them having floods of
return periods of two or more years was compared for observed and simulated cases.

Finally, the results showed a mixture of behaviors. The new methods did outperform the
existing ones when considering the various properties that are unique to a given type of
variable. However, the spatial-sum distributions were simulated very well by almost all
methods for all variables. This was evidenced by the fact that the observed distributions
were enveloped very well by distributions of the simulations. These envelopes are ana-
logues of uncertainty bounds on distributions. This was the case for daily discharge, pre-
cipitation and model discharges. For the case of the hourly precipitation, only one method,
namely IAAFT-PSC2, performed acceptably. This signifies that simulating at finer temporal
scales still needs more research, where the behavior is likely to be very different compared
to that of the daily. It was also noted that complete reproduction of the various evaluation
metrics was not achieved by any of the simulation methods and the results did show under-
or over-estimation of strength for many of them.

By examining simulated time series that perform well for the case of extreme values, in terms
of synchronization in time and magnitudes, it was found out that the only property that all
those had in common was that theirCMCORRd

p spectra were close to those of the observed,
especially in the high frequency ranges. This was not the case for the other measures that
focused on the overall behavior.



Zusammenfassung

Hydrologische Extremereignisse wie große Überschwemmungen kommen zwar selten vor,
aber wenn sie auftreten, verursachen sie große Schäden an Leben und Eigentum sowie ei-
ne erhebliche Beeinträchtigung der Aktivitäten. Um sich gegen die möglichen Gefahren zu
schützen, werden Bauwerke wie Dämme, Hochwasserrückhaltebecken, Hochwassermau-
ern und Deiche errichtet. Gemäß der Definition des Begriffs Ïngenieurwesenäls Wissen-
schaft, die dazu dient, Probleme, mit denen der Mensch konfrontiert wird, auf sparsame
Weise zu lösen, müssen auch die Größe solcher Verteidigungsanlagen und Evakuierungs-
pläne auf sparsame Weise entwickelt werden. Dazu ist es wichtig zu verstehen, wie groß
das Ausmaß dieser Überschwemmungen in naher oder ferner Zukunft sein kann.

Das Verständnis der Phänomene, die in der Atmosphäre und den darunter liegenden Ein-
zugsgebieten auftreten, ist nicht trivial und wird seit mehr als einem Jahrhundert erforscht.
Selbst mit den neuesten Erkenntnissen ist es nicht ungewöhnlich, dass neue Fälle auftre-
ten, bei denen die Katastrophe die betroffenen Behörden und Personen in einem Gebiet
überrascht hat. Dies wirft die Frage auf, was in den Methoden, die zum Verständnis und
zur Vorhersage großflächiger Niederschläge, die zu großen Überschwemmungen führen,
eingesetzt werden, noch fehlt.

In dieser Arbeit wird versucht, einen der wichtigen und wenig erforschten Aspekte hydrolo-
gischer Extreme anzugehen, nämlich die Beschreibung der Struktur der Abhängigkeit meh-
rerer Punkte in der Raum-Zeit von Variablen wie dem Niederschlag vor und während eines
großen Hochwasserereignisses. Und zusätzlich die Möglichkeit, diese Struktur synthetisch
durch numerische Simulationen zu erzeugen.

Betrachten Sie das folgende Problem. Im Einzugsgebiet eines bestimmten Flusses werden
Niederschlag, Temperatur, Bodenbedeckung, Bodenart, Geologie, Evapotranspiration und
schließlich der Abfluss des Flusses beobachtet. Von Interesse ist die Menge des resultieren-
den Abflusses im Fluss aufgrund von flüssigem Niederschlag oder Schneeschmelze. Ein
(physikalisch basiertes oder konzeptionelles) Niederschlags-Abfluss-Modell wird gewählt,
um die Wechselwirkungen zwischen den verschiedenen Variablen darzustellen und den
Abfluss eines Flusses zu modellieren. Dabei gibt es zwei Hauptprobleme unter vielen an-
deren. Erstens ist es sehr unwahrscheinlich, dass das Modell das Einzugsgebiet vollständig
genug abbildet, um brauchbare Ergebnisse zu erzielen. Zweitens wird das Einzugsgebiet
nicht an jedem Punkt hinsichtlich Niederschlag/Temperatur überwacht. Für das gesamte
übrige Gebiet mit Ausnahme der Überwachungspunkte müssen diese Variablen interpoliert
werden. Um an Orten, an denen keine Messungen vorgenommen wurden, Schätzungen zu
erhalten, werden geostatistische Verfahren wie Kriging und seine verschiedenen Varianten
eingesetzt. Und genau hier beginnt das Problem. Die Temperatur schwankt, beispielsweise,
über große Gebiete hinweg sehr gleichmäßig und nimmt mit zunehmender Höhe meist mit
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einer nahezu konstanten Rate ab. Ein solches Verhalten kann leicht durch Kriging interpo-
liert werden, das den Effekt der Höhe berücksichtigt. Andererseits folgt der Niederschlag
keinem solchen Verhalten, insbesondere auf kürzeren Zeitskalen, z. B. auf Minuten- oder
Stundenskalen. Wenn das Ziel darin besteht, großräumige Niederschläge zu modellieren,
ist es zwingend erforderlich, dieses Verhalten zunächst zu verstehen und dann zu modellie-
ren. Dies wäre der Idealfall, der in der Praxis nicht immer möglich ist.

Der nächste mögliche Forschungsansatz könnte darin bestehen, die Bodenwahrheit, d. h.
die Niederschlagsmessungen an den Überwachungsstandorten, zu untersuchen. Die Frage,
die es zu beantworten gilt, lautet vor allem: Wie verhält sich der Niederschlag an mehreren
Punkten vor und während eines großen Abflussereignisses? Fallen die Niederschläge an
allen Pegeln, an einer Teilmenge oder an keinem? Es kann überraschen, dass der Abfluss
eines Flusses ansteigt, ohne dass an den Messstellen Niederschlag in Form von Flüssigkeit
oder Schneeschmelze zu verzeichnen ist. Dies kann sehr wohl der Fall sein, weil nicht das
gesamte Einzugsgebiet überwacht wird. Die Möglichkeit eines solchen Szenarios wächst, je
geringer die Dichte der Messstellen ist.

Es ist nicht trivial, das Problem der Niederschläge rückwirkend oder sogar in Echtzeit zu
untersuchen, da das Einzugsgebiet nur spärlich erfasst ist. In einigen Fällen kann dieses Pro-
blem durch die Analyse von Abflusszeitreihen untersucht werden, die an mehreren Orten
beobachtet wurden. Betrachten wir das folgende Problem der Abflüsse in mehreren Tei-
leinzugsgebieten innerhalb eines Einzugsgebiets. Der Abfluss im Bach ist die kumulative
Reaktion des Einzugsgebiets auf den Niederschlag, wobei alle möglichen Wechselwirkun-
gen berücksichtigt werden. Jedes Teileinzugsgebiet kann als ein großes Niederschlagsmess-
gerät betrachtet werden. Wenn die Abflüsse verschiedener Teileinzugsgebiete des gesam-
ten Einzugsgebiets überwacht werden können, lassen sich diese auch dazu nutzen, die
Dynamik großer Hochwasser zu verstehen. So können zum Beispiel die Zeitpunkte der
Spitzen und ihre relativen Größenordnungen analysiert werden. Es kann auch untersucht
werden, ob alle großen Überschwemmungen an der Mündung des Einzugsgebiets darauf
zurückzuführen sind, dass alle Einzugsgebiete große Abflüsse erzeugen, oder nur eine Teil-
menge davon. Diese Informationen können für die Entwicklung von Worst-Case-Szenarien
verwendet werden.

Um die multivariate Abhängigkeit in der Raum-Zeit zu beschreiben, wurden Copulas ver-
wendet. Diese bieten den Vorteil, dass der Modellierungsprozess vom Rand- in den Ran-
graum übertragen wird, in dem die relative Reihenfolge und nicht die Größenordnungen
der Werte von Bedeutung sind. Eine solche Konstruktion trägt dazu bei, die Auswirkun-
gen von fehlerhaften Werten oder Ausreißern weitgehend abzuschwächen, da große Ab-
flusswerte nicht physisch gemessen, sondern indirekt aus einer Bewertungskurve abgeleitet
werden.

Die Stärke der Abhängigkeit zwischen zwei Variablen wird traditionell durch die Berech-
nung ihrer Pearson-Korrelation quantifiziert. Im Rangraum wird diese Korrelation als
Spearman’s oder Rangkorrelation bezeichnet. Darüber hinaus bieten Copulas auch die
Möglichkeit, zwischen der Abhängigkeit von hohen und niedrigen Werten voneinander
zu differenzieren. Diese werden durch die Ordnungs- und Richtungsasymmetrien be-
schrieben. Die Ordnungsasymmetrie beschreibt die relative Ungleichheit zwischen dem
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relativen Auftreten von zusammen auftretenden niedrigen Werten gegenüber zusammen
auftretenden hohen Werten. Ein solches Verhalten kann für die Zeitreihe an sich oder für
zwei an unterschiedlichen Orten beobachtete Zeitreihen analysiert werden.

Da ein Hauptziel darin besteht, die Abhängigkeit in der Raum-Zeit durch die Analyse von
Variablen an mehreren Orten zu verstehen, wäre es optimaler, die Abhängigkeit von mehr
als zwei Punkten, d. h. die multivariate Abhängigkeit, zu beschreiben.

Der nächste Schritt bestand darin, Algorithmen zu entwickeln, die synthetische Zeitreihen
mit vorgegebenen Eigenschaften simulieren können. In diesem Zusammenhang wurden Al-
gorithmen auf der Grundlage der Fourier-Transformation eingesetzt. Bei diesen Algorith-
men werden die Zeitreihen hauptsächlich in den Frequenzbereich verschoben, wobei nur
die Phasen, die das Timing steuern, manipuliert werden, während die Magnitude, die die
Varianz steuern, für alle Frequenzen konstant bleiben. Ihr Hauptvorteil ist ihre Geschwin-
digkeit und die Erhaltung der Auto- und Kreuzkorrelationen. Sie haben jedoch den Nach-
teil, dass andere Eigenschaften wie die asymmetrische Abhängigkeit nicht unbedingt in den
resultierenden Zeitreihen vorhanden sind. Die seit langem existierenden Algorithmen Pha-
senrandomisierung, Amplitudenangepasste Fourier-Transformation und Iterative Amplitu-
denangepasste Fourier-Transformation wurden als Benchmarks verwendet. Die daraus re-
sultierenden Reihen werden als Surrogate oder Surrogat-Zeitreihen bezeichnet.

Um den Nachteil der fehlenden asymmetrischen Abhängigkeit in den Surrogaten zu behe-
ben, wurde der existierende Algorithmus Phase Annealing gewählt. Der Hauptvorteil die-
ses Algorithmus besteht darin, dass er während der Simulation beliebige Beschränkungen,
z. B. punkt- und/oder flächenbezogen, berücksichtigen kann. Es fehlte jedoch noch ein
Maß, das nicht nur die Gesamtasymmetrie, sondern auch die Variabilität der Asymme-
trie in der Raum-Zeit beschreibt. Daher wurde ein neues Maß formuliert, das ein solches
Verhalten berücksichtigt, indem die Werte als Zeitreihe genommen wurden, die die Ord-
nung und die Richtungsasymmetrie in der Raumzeit beschreiben. Als Zielfunktion wur-
de das Power Spektrum (das Quadrat der absoluten Werte der Fourier-Frequenzen) der
Asymmetrie-Zeitreihen für die beobachteten und simulierten Reihen durch Minimierung
ihrer quadratischen Differenzen im Phase Annealing-Algorithmus angepasst. Dies führte
zu Reihen, die sowohl für den Niederschlag als auch für den Abfluss ein korrektes asym-
metrisches Raum-Zeit-Verhalten aufwiesen. Da die Ordnungs- und Richtungsasymmetrien
nur für Paare definiert sind, blieb das Problem der Berücksichtigung multivariater Asym-
metrien bestehen.

Außerdem wurden zwei neue Algorithmen vorgeschlagen, IAAFT-PSC1 und IAAFT-PSC2,
mit denen einige Aspekte des asymmetrischen Verhaltens der Abhängigkeit in neuen
Zeitreihen relativ schnell erreicht werden können. Diese basierten auf der Vermischung
von Zeitreihen der beobachteten Werte und ihrer Ränge in einem bestimmten Verhältnis.
Die genauen Proportionen wurden mit Hilfe des Algorithmus Simulated Annealing
bestimmt. Dies führte dazu, dass die Zeitreihen mit Pearson’s und Spearman’s Korre-
lationen näher an den beobachteten Korrelationen in der Raum-Zeit lagen als bei den
Benchmark-Algorithmen, die nur eine der beiden Korrelationen beibehalten können.

Um unabhängig davon zu testen, ob verschiedene Algorithmen insgesamt eine hochdi-
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mensionale Abhängigkeit in der Raumzeit erzeugen, die der beobachteten ähnelt, wurden
auch Asymmetrien in d-Dimensionen entwickelt. Diese werden zusammenfassend als d-
Asymmetrien bezeichnet. Es wurde ein geometrischer Ansatz verwendet, bei dem jeder d-
Dimension ein Asymmetriewert zugewiesen wurde, der auf dem Mittelwert des Kubus der
Abstände von Punkten zu einer bestimmten Linie basiert, die durch die gegenüberliegenden
Ecken eines Einheitshyperwürfels verläuft. Daraus ergaben sich Vektoren für jeden Satz von
Zeitreihen, die dann mit den Vektoren der beobachteten verglichen und auf die Differenz hin
ausgewertet werden konnten.

Die d-Asymmetrien beschreiben die Gesamtabhängigkeit von Punkten in einem hochdi-
mensionalen Raum, während die Frage nach der Beschreibung des Verhaltens bei großen
Hochwasserereignissen noch offen blieb. Für diese Frage wurden Maße im Frequenzbe-
reich entwickelt, da sie das zeitliche Verhalten vollständiger und transparenter darstellen
können. Zunächst wurde die maximale Korrelation (MXCORR) definiert, die einem Worst-
Case-Szenario entspricht, bei dem sich alle Werte ähnlicher Größenordnung in einer Rei-
he von Zeitreihen synchronisieren. Als Nebeneffekt ergab sich daraus auch ein Spektrum
CMPOW d, das zeigt, auf welchen Zeitskalen, z. B. täglich, saisonal oder jährlich, die ver-
schiedenen Zeitreihen miteinander synchronisieren können. Zweitens, und das ist noch
wichtiger, wurde ein weiteres Maß CMCORRd

p entwickelt, das das Verhalten bestehender
Zeitreihen in höheren Dimensionen beschreibt, indem die Unterschiede der Phasen in das
erste Maß einbezogen werden. Eine solche Konstruktion hilft bei der Bewertung der multi-
variaten Abhängigkeit auf eine vollständigere Art und Weise, indem das reale Verhalten bei
der Verwendung verschiedener Algorithmen zur Simulation von Surrogaten berücksichtigt
wird.

Eine weitere Methode wurde verwendet, um Zeitreihen von Abflüssen indirekt zu simulie-
ren, indem synthetische Niederschlag-Abfluss-Modell-Inputs, nämlich Niederschlag, Tem-
peratur und potenzielle Evapotranspiration, erzeugt wurden, die dann in Niederschlag-
Abfluss-Modelle eingespeist wurden, die bereits anhand beobachteter Inputs kalibriert wor-
den waren. Die daraus resultierenden Zeitreihen der Abflüsse wurden dann mit den beob-
achteten und den kalibrierten Modellabflüssen verglichen. Ziel war es, zu prüfen, ob es
sinnvoller ist, synthetische Modellinputs zu verwenden und dann Abflusszeitreihen zu er-
halten oder die Abflusszeitreihen direkt zu simulieren. Die Begründung für einen solchen
Ansatz war, dass die Abflüsse in Flüssen das Ergebnis eines sehr deterministischen Prozes-
ses sind, der mit statistischen Ansätzen nur schwer nachgeahmt werden kann. Andererseits
erwiesen sich Niederschlag und Temperatur als wesentlich einfacher zu simulieren.

Die Zeitreihen des täglichen Abflusses, des Niederschlags, der Temperatur und der poten-
ziellen Evapotranspiration sowie des stündlichen Niederschlags wurden mit allen oben ge-
nannten Methoden und mit verschiedenen Zielfunktionen für den Fall des Phase Annealing
simuliert.

Um zu beurteilen, ob die Zeitreihen realistische Eigenschaften haben, wurden neben den be-
stehenden paarweisen und den neuen hochdimensionalen Maßen zwei weitere Tests durch-
geführt. Der erste Test betraf die Verteilungen der Summierung von Zeitreihen im Raum
(Raumsummen), der zweite Test die Wiederkehrperioden für Niederschlag und Abfluss.
Für den Fall der räumlichen Summen, bei dem eine neue Zeitreihe erhalten wurde, bei der
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der Wert bei jedem Zeitschritt die Summe aller Werte aller Reihen bei demselben Zeitschritt
war, wurden die upper-tails mit den beobachteten Verteilungen verglichen. Der zweite Test
der Wiederkehrperioden wurde so aufgebaut, dass eine Gruppe von vier Zeitreihen genom-
men wurde und die Wahrscheinlichkeiten, dass nur drei von ihnen Überschwemmungen
mit Wiederkehrperioden von zwei Jahren oder mehr haben, mit allen anderen verglichen
wurden, die Überschwemmungen mit Wiederkehrperioden von zwei Jahren oder mehr ha-
ben, für beobachtete und simulierte Fälle.

Schließlich zeigten die Ergebnisse eine Mischung aus verschiedenen Verhaltensweisen. Die
neuen Methoden übertrafen die bestehenden, wenn man die verschiedenen Eigenschaften
berücksichtigt, die für einen bestimmten Variablentyp typisch sind. Die Raumsummenver-
teilungen wurden jedoch von fast allen Methoden für alle Variablen sehr gut simuliert. Dies
zeigte sich daran, dass die beobachteten Verteilungen sehr gut von den Verteilungen der
Simulationen umhüllt wurden. Diese Umhüllungen sind Analoga zu den Unsicherheits-
grenzen von Verteilungen. Dies war der Fall für den täglichen Abfluss, den Niederschlag
und die Modellabflüsse. Im Falle des stündlichen Niederschlags schnitt nur eine Methode,
nämlich IAAFT-PSC2, akzeptabel ab. Dies bedeutet, dass die Simulation auf feineren zeitli-
chen Skalen noch weiter erforscht werden muss, da sich das Verhalten hier wahrscheinlich
sehr von dem des täglichen Abflusses unterscheidet. Es wurde auch festgestellt, dass keine
der Simulationsmethoden eine vollständige Reproduktion der verschiedenen Bewertungs-
metriken erreichte und die Ergebnisse für viele von ihnen eine Unter- oder Überschätzung
der Stärke zeigten.

Bei der Untersuchung simulierter Zeitreihen, die im Falle von Extremwerten eine gute
Leistung hinsichtlich der zeitlichen Synchronisation und der Größenordnungen erbringen,
wurde festgestellt, dass die einzige Eigenschaft, die alle gemeinsam hatten, darin bestand,
dass ihre CMCORRd

p-Spektren denen der beobachteten nahe kamen, insbesondere in
den hohen Frequenzbereichen. Dies war bei den anderen Messungen, die sich auf das
Gesamtverhalten konzentrierten, nicht der Fall.





1 Introduction

Uncertainty exists all around everywhere. Be it observations, measurements or routine de-
cisions. Things almost never turn out as planned. In Hydrology measurement uncertainty,
uncertainty due to small observation samples, low density monitoring networks and model
output uncertainty is so common that they are not even considered, and even if they are, it
is based on some assumptions that themselves are not necessarily fulfilled i.e., uncertain.

1.1 An example of uncertainty

Consider the case of stream discharge measurement. The standard practice is to measure
velocity using various types of fluid velocity meters (current meters, pressure meters or ul-
trasonic sensors) along with water depth and cross-section measurements at different times
of the year at a given location of interest. Velocity and cross-sectional area are then com-
bined to yield discharge. Many observations are then used to derive a function that trans-
forms depth of water to discharge for convenience, the so called stage-discharge or rating
curve. Consider the number of error sources in the measurements that may affect the fi-
nal value of the discharge. An analog/mechanical current meter converts the number of
revolutions to velocity. The number of revolutions per unit time relate to velocity which in
itself is also a fitted-function. A digital meter normally relies on the speed of sound using
a transmitter and a receiver. How accurate are these? The friction increases over time due
to corrosion inside the bearings or foreign particles entering the analog device. The speed
of sound depends on the density of water for the digital flow meter. Depending on how
much the flow meter is not parallel to the flow velocity introduces another error. The river
bed is either soft or ragged but almost never straight except in seldom cases. The cross-
section measurements are made at discrete intervals, where it is assumed that the riverbed
uniformly increases/decreases in depth from one point to the next. Even at each point, the
depth measurement itself is uncertain. The same applies to axial measurements along the
cross-section. The velocity profile is curved while moving towards the surface. It is as-
sumed constant for every polygon drawn inside the cross-section. All measurements are
not made at the same instant of time. Finally, at least eight measurement errors are intro-
duced into the calculations of stream discharge. All of these contribute to the final flow rate
and consequently the rating curve. That is not considering if a surface roughness factor,
e.g., due to vegetation, is used which in itself is highly uncertain. This final rating curve is
used for obtaining hourly/daily discharge in the future. Later in time, the river bed might
have changed by erosion or deposition. In the case of a major flood taking place after the
fitting of the rating curve, how certain is it that the river bed kept its form similar to how it
was before the flood? Similarly, the bed and banks may be affected by seasonal vegetation.

1



2 Introduction

Another problem is due to the shape of the cross-section. It usually increases in width as dis-
tance to surface decreases, relative to the bed. An error of one unit at low stage produces less
absolute volume error as compared to a higher stage. Finally, the largest source of error oc-
curs when the depth of flow at a given time exceeds the range of the stage-discharge curve.
There the function is simply used to extrapolate. For such flows, there is no guarantee that
the fitted function holds outside its bounds. Later on during rainfall-runoff modeling, how
often are the effects of all these possible errors considered while finding model parameters
to the given data? To begin with, such information is never supplied with discharge time
series. A similar case could be made for other environmental variables such as precipitation,
temperature, evapotranspiration, land cover, geology, to name a few. The goal here is not
criticism but rather the drawing of awareness towards the negligence of uncertainty.

Coming from field to a modeling environment; decisions about future actions are based on
the present knowledge. In hydrology, similar to many other fields of science, models are
used to help with the decision making. These models are calibrated using a finite length
input dataset comprised of relevant variables. The model output uncertainty is affected by
various factors. Firstly, the models themselves are coarse representations of reality. Differ-
ent model parameters will produce different outputs. It may also be the case that dissimilar
model parameters yield very similar type of model performances (sum of squared differ-
ences, for example), the so called Equifinality. Regarding inputs, there are two main types of
problems. One is the aforementioned measurement error while the other being the length of
the input series (e.g., the number of time steps of daily precipitation data). It should come
as no surprise that using different time periods to calibrate the same model will result in dif-
ferent model parameters, which is also a function of measurement error indirectly to some
extent. Generally speaking, using shorter time periods for calibration result in over-fitting
i.e., the model performs well on calibration but worse on validation compared to the case if
the input series were of a longer length. Another important aspect to keep in mind is that
of the environment. It evolves continuously in time and space and therefore, using inputs
from different time periods produce different model parameters up on calibration.

All the concerns mentioned above have to be dealt with, to make better decisions for the
future. The sources of uncertainty will always remain to a certain degree while the under-
standing of the environment increases with time that in turn allows for creation of better
models. However, the quality of their output is still linked to the quality and quantity of
the inputs. The painted grim picture doesn’t mean that hope should be given up. A more
reasonable approach is to include confidence bounds on model outputs. For example, pre-
diction of tomorrow’s discharge in some river is expected to be 10 m3 · s−1 ± 1.5 m3 · s−1.
Prediction in such a form allows for the preparation of best and worst case scenarios in a
much better manner depending on how wide the bounds of uncertainty are on the predic-
tion. This thesis aims to address a similar problem.

1.2 The Objective

During decision making, suppose the case where the risk that a certain high precipita-
tion/floods (extreme events) of given magnitudes occur simultaneously at multiple loca-
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tions of interest has to be evaluated. Assuming that some observations from the past ex-
ist. Using them, with various models in practice, the probability of such a scenario can be
calculated. The problem that needs to be addressed next is that of the uncertainty of the
prediction. As the probability of an event becomes smaller which is inversely related to the
magnitude of the event, the uncertainty becomes larger. To address this, existing models
(e.g., copulas) that provide confidence bounds for all values. The objective of this thesis is
to extend the knowledge on how these confidence bounds can be estimated in a better man-
ner without making too many assumptions on the behavior of the variable in space-time.
Mainly, the focus would be more on methods that are capable of simulating the spatial and
temporal dependence of extreme values. Simulating values at a point that go beyond what
was observed is not handled directly but rather the case of the sum of values considering
multiple points that go beyond the sum of what was observed is dealt with.

Specifically, consider a catchment that has d rivers inside it, whose values are monitored at
some pre-specified temporal resolution ∆t. The discharge at the mouth of the catchment is
the sum of the discharges of the said d sub-catchments. There are precipitation, temperature
and potential evapotranspiration time series also available for all sub-catchments. Addi-
tionally, lumped rainfall-runoff models for each of the sub-catchments are calibrated using
observed time series of precipitation, temperature and potential evapotranspiration. Then,
questions that this research tries to answer are as follows:

1. While using simulated (synthetic) precipitation for d sub-catchments, are there cases
where the sums of precipitation (that may or may not be aggregated in time) exceed
those of what was observed till now?

2. Using simulated model inputs, are there cases where model discharges become larger
than those that were modeled to-date or observed?

3. Using simulated discharge, are there cases where the sums of simulated values become
larger than those of what was observed?

4. Lastly and most importantly, what properties of time series, that when conserved by
the simulations, correspond to aggregates that become equal or larger than those of
the observed cases?

These questions will be answered by exploring modified approaches, based on the existing
ones, allowing users to generate multi-site/multivariate synthetic time series that perform
better than the older ones. The meaning of what is considered better will become clear while
progressing through the coming chapters. For this purpose, the chapters are structured in
the following manner: First, Chapter 2 describes the state-of-the-art of existing time series
generators which is then followed by Chapter 3 on the theory of Copulas and their prop-
erties that are important to describe time series in general. The study area, rainfall-runoff
modeling and the experimental setup used to evaluate quality of time series is shown in
Chapter 4. Next, existing and new time series generators are presented in Chapter 5. New
bivariate quality metrics and objective functions are discussed in Chapter 6 which is then
followed by Chapter 7 where spatial aspects of extremes, criteria for developing depen-
dence description in d dimensions and new type of performance metrics that represent said
dependence in d dimensions are introduced with potential applications. Chapter 8 shows
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how various properties of time series may evolve in space-time for some observed cases.
Results of using various time series and their evaluation for the extreme value cases are pre-
sented in Chapter 9. Finally, conclusions are drawn along with recommendations of topics
that may be researched in the future in Chapter 10.



2 Stochastic time series generators

Stochastic time series generator are the main tools used in this thesis to simulate time series
that have a desired set of properties. It makes sense to define the term time series generator
formally, to avoid confusions. Here, it means a number generator be it uni- or multi-variate
that generates a sequence of values that have some prescribed set of properties with some
stochasticity included. As an example, consider the simpler case of temperature at a certain
point on the surface of the Earth. It has a clear daily cycle due to the Earth’s rotation around
its own axis on to which the annual cycle, due to the Earth’s revolution around the Sun, is
superimposed to begin with. The rest of the effects that cause the variability are those due
to the local climate, proximity to an ocean or a mountain range, masses of air that are heated
by the Sun over the surface of the Earth. With the knowledge of these properties, one can
formulate a time series generator that statistically, more or less, mimics these and all that
without the knowledge of the physics of the entire process.

A time series generator can be formulated for almost any variable that can be observed. As
a rule all of them try to reproduce the auto-correlation function of a given reference, while
possibly preserving other properties. Purpose built generators exist in many areas be it
finance, energy demand, traffic, supply and demand of goods, crop growth modeling and
most importantly weather.

There are numerous use-cases for time series generators. The most important one being, for
testing a system’s response where no or limited observed data are available. Suppose the
case of modeling a bridge or a road that is being designed and needs to be tested beforehand
to see if it withstands the number of vehicles that may pass through/over it. Data from
existing roads can be taken as a reference, but suppose that the situation is unique. For this
purpose, a time series generator of vehicles is needed. From experience, it is known that it
should create a temporal sequence of moving vehicles along with their weight and duration
spent on the road/bridge. The main aim there would be to see if congestion would take
place and how much it may be, for the worst case. Another purpose could be wear and tear
of the structure, caused mainly by heavy vehicles and the weather. Simultaneously, time
of the year along with temperature may be desired as freezing and too hot temperatures
lead to an accelerated deterioration of the structure. Based on the system’s response to
synthetic/stochastic inputs, it can be evaluated if further changes to the design are required.

The idea of time series generators is very interesting while looking from the stand point
of physics. A good analogy can be that of a scrambled egg. Suppose, 10 eggs are cracked
open in separate bowls. If done carefully, the yolk stays separate from the white. The egg in
each cup is uniquely different from its neighbors but for the observer they are unscrambled
eggs. The property that separates an unscrambled (low entropy) one from a scrambled (high
entropy) is that the yolk stays as a single mass inside the white regardless of their relative
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size to each other. Now, suppose the eggs are scrambled i.e., each yolk is not a single mass
any more. Hence, the yolk being a single mass can be seen as the property of the system
which essentially defines it. What if the opposite process is required, i.e., unscrambling an
egg.

The essence of time series generators is akin to unscrambling an egg. Any given time series
uses pseudo-random numbers as inputs to create a time series whose properties are similar
to those of a reference, albeit, using some rules/constraints. Full unscrambling of the egg for
a time series generator would be the case in which the output of the time series generator is
a copy of the reference. Such a generator would be pointless, as the reference exists already.
What is mainly required is an output time series that has no correlation with the reference
and only mimics its properties. In simpler terms, an unscrambled egg such that it does not
look exactly like the original one is required, it should be different and more importantly, if
an external observer is presented with an unscrambled egg (after scrambling) mixed with
the other eggs (that were not scrambled to begin with), the observer should be unable to
make a difference while deeming them all to be unscrambled eggs.

Time series of observed variables have properties such as correlations, asymmetric depen-
dence and entropies among many others for both the auto- and cross-cases. Consider the
distributions of precipitation and river discharge. A fundamental difference can be observed
readily i.e., precipitation is intermittent (a mixed distribution) while discharge is, mostly,
continuous. A time series generator built to simulate these variables has to explicitly deal
with such behaviors. Such problems have been dealt with for decades. A excellent reference
for beginners is that by Box and Jenkins (1976). The main question that has to be asked is:
which properties of the reference should the generator preserve?

Numerous ways have been proposed and are in use to generate time series in various fields
of science. The basic ones are presented first and afterwards the more sophisticated ones.

To begin with, rainfall-runoff models are also time series generators where equations de-
scribing nature can be seen as rules on how the output is formed. The simplest method to
generate the maximum discharge was the Rational Method dating back more than 150 years
(Beven, 2020) where, for each catchment, the amount of design discharge was equal to the an
empirical constant multiplied by a given rainfall intensity. The science has progressed much
farther since then. Continuous research has brought physically based models of catchments
that take in a large set of inputs to compute states of various variables on a regular grid for
any time step. Much simpler models, conceptual rainfall-runoff models, were also devel-
oped whose complexity lies between the empirical and the physically based models. These
require inputs such as precipitation, temperature and potential evaportranspiration among
others as inputs to produce a time series of discharge and require calibration of model pa-
rameters. Various models are capable of either a single event simulation or a continuous
time series. These may be used in lumped or a distributed configuration. One such model
namely the HBV (Bergström, 1992) is used in the thesis and will be described later in detail.

The simplest time series generators that keep the auto-correlation function are the Auto-
Regressive (AR) and the Moving Average (MA) generators (Box and Jenkins, 1976). They
work with the assumption of linear dependence between time steps. These use the auto-
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correlation function that may or may not be extracted from observed data along with some
Gaussian noise added to produce a time series. The product of the Gaussian noise and the
correlation function, depending on the number of previous time steps used, is the value at
the next time step. Infinitely long time series can be generated through this process. The
main problem with these is that the correlation function which is assumed to be station-
ary throughout the time period of generation and is the only property that fully defines the
system. This is generally not the case. Much cannot be done about this as it is generally
not known how the correlation function evolves in time. Another problem is that of the as-
sumption that the noise in space-time is Gaussian which is also, generally speaking, not the
case. Several refinements of these processes exists namely ARMA, ARIMA and SARIMA
(Box and Jenkins, 1976). A generator worth mentioning is the FFTMA (Ravalec et al., 2000;
de Figueiredo et al., 2020), which is the spectral version of the MA process. Such processes
do lack the imposition of certain behaviors such as the properties of precipitation. Its inter-
mittent behavior needs to be explicitly accounted for by some form of a truncated Gaussian
process. Similarly, discharge is also an issue as it has faster rising limbs and slower recession
limbs. Based on the Gaussian nature of outputs of these generators, they are not so useful
except for cases with long aggregation times such as the monthly and annual scales. Such
models can also be modified for use as forecasting tools by fixing the observed states from
previous time steps and then calculating the next few time steps by taking a distribution of
noise values.

Another class of time series generators is that of the resamplers. Such methods involve cre-
ating time series that may or may not have a Gaussian distribution but at the end perform a
transformation such that the distribution of the outputs is same as that of the reference data
while still maintaining the properties of the reference, the so called surrogates. Theoretically,
speaking any time series generator can be modified to behave in this way. The methods
Phase Randomization, Amplitude adjusted Fourier transform, Iterative amplitude adjusted
Fourier transform and multivariate iterative amplitude adjusted Fourier transform belong
to this class and will be discussed in much more detail later. These methods were originally
created to test a given time series for non-linear dependence but they also lend themselves
to simulation of time series with linear or non-linear properties as a side-effect. An excellent
reference that summarizes these type of generators is that by Lancaster et al. (2018).

Yet another method that is popular is that of the wavelets (Daubechies, 1992). These are one
of the spectral methods to generate time series and involve distilling a given time series into
components that have their periods oscillate with distinct lengths in time. Such methods
give an insight in to various periodic components that a time series may or may not have.
Wavelet iterative amplitude adjusted Fourier transform (Keylock, 2012) is one of these meth-
ods among many. One crucial feature that sets the wavelet-type time series generators apart
from other is that they seem to be able to produce non-linear i.e., asymmetric dependence.
An interesting approach of applying such methods to extreme discharge is that by Brunner
and Gilleland (2020).

Numerous physically-based models that incorporate the real behavior/interaction of vari-
ables in the atmosphere, land and the oceans exist (Flato et al., 2013). These models lie in the
realm of Physics and Meteorology and are not discussed here. Their main drawback being
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that they are data intensive and require super-computers to run and even then may take
months to finish. Due to this hurdle, stochastic weather generators have been developed.

As was stated in the introduction, the aim here is to evaluate the worst case scenario(s) in
terms of bad weather i.e., stream flows that are large enough to cause damage to their sur-
roundings that may cause a disruption in desired human activity, loss of property and or
even worse, loss of life. So far, generic time series generators were discussed. These may
or may not be able to mimic crucial properties of weather-related variables. To solve these
problems, a class of stochastic generators exist i.e., weather generators. The main appeal of
using such generators is that compared to using numerical global/regional climate models,
stochastic weather generators are orders of magnitude less demanding in their computa-
tional requirements as they do not have to the solve all the partial differential equations
that exist in a four dimensional grid and less input data requirements. Albeit, they only
reproduce a subset of properties. The first formal weather generator can be attributed to
Richardson (1981) where daily precipitation, minimum temperature, maximum tempera-
ture and solar radiation were simulated. Their methodology involved finding properties
such as the probability of no-rain and rain and the distribution of rainfall. Next, proper-
ties of the remaining variables were calculated for the two states of rainfall. Then, rainfall
was generated using a Markov-chain process and depending if rainfall took place or not,
the other variables were drawn from an appropriate multivariate distribution. Provisions
were also made to keep the seasonality of the variables. Another original approach was
made by Racsko et al. (1991), where the weather was taken as a three dimensional process
with the temperature being the most important one and the other two variables being the
number of solar hours and precipitation. Their additional aim was to capture the length of
dry precipitation periods more accurately for crop modeling. They separated the precipita-
tion events into small, medium and large quantities with properties calculated subsequently
for each group. Similarly, they fitted Gaussian distributions to temperature conditioned for
every group of rainfall. Solar hours were also modeled similar to temperature but with a
mixed distribution for the cases where the hours fell to zero. Racsko et al. (1991)’s approach
can be seen as a refinement of the Richardson’s approach. Modern weather generators are
based on these two ideologies and are referred to as the Richardson-type and the Serial-type
respectively. Since then, much more refined models have been in use that deal with very
many variables at the same time. Some famous weather generators are WGEN (Richardson,
1984), CLIMGEN (Stöckle et al., 1999), CLIGEN (Nicks and Gander, 1994), WeaGETS (Chen
et al., 2012), LARGSWG (Semenov and Barrow, 2002), CLIMA (Donatelli et al., 2009) and
AWGEN-2D (Peleg et al., 2017). A comprehensive review of existing stochastic weather gen-
erators is given by Ailliot et al. (2015). Generators that can handle explicit change in climate
(increase in temperature for example) such as those by Kilsby et al. (2007) and Schlabing
et al. (2014) also exist.

Both physically-based and statistical variants of generators are in use. The former requires
much more input and computational power while the later is much more efficient for gen-
eration albeit missing the true physical interaction of the state variables with each other.

Another interesting approach that is famous these days is that of using copulas. These allow
for dependence modeling in a much more robust manner because they account for depen-
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dence among variables based on their order with respect to each other and not the variable
dependent marginal distribution. Proper weather generators with one exception, Schlabing
et al. (2014), that are on the same level as the regular time series generators do not exist
as of yet. Any existing generator can be modified to operate in the rank-space. However,
univariate multi-site generators do exist. Their main application concerns precipitation and
discharge in hydrology. An overview on the use of copulas in hydrology is given by Hao
and Singh (2016). Nguyen and Chen (2022) formulated a generator that models continuous
precipitation at a temporal resolution of 10 min. Vandenberghe et al. (2010) show a similar
example. Gao et al. (2020) created a precipitation model that can be used to simulate both
flood and drought behavior with minor drawbacks. Another generator worth mentioning
is NiedSim (Bárdossy and Plate, 1992) and its subsequent variants Bárdossy et al. (2020);
Bliefernicht and Bárdossy (2007); Beck (2013); Müller et al. (2017). It utilizes Fuzzy Logic
combined with weather circulation patterns to produce precipitation time series that have
properties that are difficult to capture otherwise. It is currently employed by various fed-
eral states in Germany for precipitation simulation. Once more, Ailliot et al. (2015) give an
overview of some generators that employ copulas.



3 Copulas

A copula is a mathematical formulation that describes the dependence between/among at
least two variables regardless of their magnitudes by only considering their order of oc-
currence. Before copulas are formally introduced, a traditional case of how a dependent
and independent variables are modeled is presented. Suppose two variables X and Y with
marginals (or observed values) x and y respectively and that Y depends linearly on X , then
a straight line of the form y = mx + c can be used, where x is the independent (or predic-
tor) variable, y the dependent (or predictand) variable, m being the slope and c being the
y-intercept. Such a line can be fitted to any two variables in which one is assumed to be
linearly dependent on the other through a method called Linear Regression where the sum
of squared difference of observed and predicted values of Y using X is minimized. Fig. 3.1
shows an example. Furthermore, a general (multivariate) form of it, Multiple Linear Regres-
sion (MLR) takes more than one independent variable to predict only one. In such a case, for
each predictor variable there exists a separate slope or coefficient. Such a technique focuses
on relation among variables in the marginals’ domain i.e., using x and y.

Figure 3.1: An example of simple linear regression with X as the predictor and Y the pre-
dictand.

The problem of prediction/interpolation/extrapolation can also be dealt with, by moving
to a different type of space. Using the previous example, the corresponding cummula-
tive probability distribution functions (CDFs) of the predictor and predictand variables,
F (x) = P [X ≤ x] and F (y) = P [Y ≤ y] exist which are also referred to as non-exceedence
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probabilities or grades ofX and Y respectively, where P symbolizes probability whose range
is between 0 and 1. These may be theoretical or empirical. The use of CDFs is central to
statistics as it defines the values a variable may attain along with their relative frequen-
cies. They are monotonic functions that express the probability of variables not exceeding
a given threshold. CDFs are central to copulas as the non-exceedence probabilities are the
entities that are used to construct them. To do so, F (x) and F (y) are used rather than X

and Y . The main difference being that no lines are used; only special type of monotoni-
cally increasing surfaces inside a unit hyper-cube. And this is what a copula refers to. An
entity that describes the dependence of these distribution functions. It could be stated that
a copula describes the relation among variables in probability space, while fulfilling some
conditions. Specifically, Sklar’s Theorem (Sklar, 1959) states that any multivariate distribu-
tion can be re-expressed as a copula. Consider the joint probability of X and Y , F (x, y) that
may be written as,

F (x, y) = P [X ≤ x, Y ≤ y] (3.1)

Then, Sklar’s Theorem states that if F (x) and F (y) are continuous there exists a copula C
that links the two CDFs and is unique. The joint probability F (F (x), F (y)) may be rewritten
as,

F (x, y) = C(F (x), F (y)) (3.2)

Sklar’s Theorem also holds for the converse case i.e., if a copula is defined then F (x, y) also
exists. Instead of using X and Y , a d-dimensional vector Xd is used. It could represent d
time series, for example. The probability form of such a vector can be written as,

(U1, . . . , Ud) =
(
F1(X1), . . . , Fd(Xd)

)
where U1, . . . , Ud are the copula analogs of CDFs. Supposing that P [X ≤ x] = u, a copula
(C) is a joint cumulative distribution function that can be written as,

C(u1, . . . , ud) = Probability of [U1 ≤ u1, . . . , Ud ≤ ud] (3.3)

whose density function (c) is,

c(u1, . . . , ud) =
δd

δu1 . . . δud
C(u1, . . . , ud) (3.4)

where, C refers to the copula that describes the dependence among all involved variables
in probability space. d refers to the number of variables considered. Marginals of the cop-
ula (u) are defined on the unit hyper-cube that has d dimensions and are uniformly and
independent and identically distributed (i.i.d) between 0 and 1.
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Formally, C : [0, 1]d → [0, 1] is a d-dimensional copula (defined on the unit hypercube) if C is
a joint cumulative distribution function of a d-dimensional random vector on the unit cube
[0, 1]d with uniform marginals (Nelsen, 2007). Furthermore, a d-dimensional C must satisfy
the following properties:

1. C(u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0 i.e., the copula yields a value of zero if any its argu-
ments are zero.

2. C(1, . . . , 1, u, 1, . . . , 1) = u i.e., the copula yields a value of u if only one of its argu-
ments is u and the rest are 1.

3. C is non-decreasing as its arguments increase from 0 to 1, similar to a CDF. More
specifically, for every orthotope/hyperrectangle drawn inside a copula whose volume
is given by V =

∏d
i=1[xi, yi] is always non-negative. Where, x and y are the copula

marginals with the former always less than or equal to the latter.

In other words, all the arguments on the left side of Eq. 3.3 can take values between 0 and
1 (both inclusive) and yield values between 0 and 1. Obviously, a copula needs at least
two variables. The minimum that Eq. 3.3 can yield is a 0 while the maximum being a 1.
Yet, another, simpler, way of looking at Eq. 3.3 is that it takes non-exceedence probabili-
ties of multiple predictor variables to produce a conditional distribution that can be further
transformed to marginals by the inverse of the respective predictand CDF i.e., for given
u1, . . . , ud−1 as the predictors to give a conditional distribution Ud.

An empirical copula of any two distinct variables X and Y having N values each and CDFs
F (x) and F (y) can be constructed by an x-y scatter of F (x) and F (y). Fig. 3.2 shows the
empirical copula of the same data used in Fig. 3.1. The advantage of using such an approach
is that the relationship between/among variables is independent of the magnitude/range
of their distributions and depends purely on their order/position with respect to each other,
meaning that any monotonic transformation applied to the data does not affect the so called
dependence structure. Such a form is useful for cases where a few outliers might dominate the
entire covariance used in MLR or similar techniques. This property is also a double-edged
sword i.e., a copula perceives values, whose difference could be trivial to the user, as distinct
that have as much influence as the larger, more important, ones. Another main advantage
of a copula is that instead of yielding a single value, a whole distribution of possibilities, or
a not necessarily Gaussian conditional distribution, is yielded, which can then be used to
give confidence bounds for the predictand.

In this thesis, only empirical copulas are utilized. The reasons will become clear while pro-
gressing through the chapters. Some theoretical copulas are mentioned nevertheless. The-
oretical copulas exist that can be fitted to data e.g., Gaussian and Archimedean. The more
interested reader is referred to Nelsen (2007). For any proposed one, be it parametric or non-
parametric, certain conditions apply. The most important one being that for any interval, the
densities cannot drop below zero i.e., a copula starts from zero, C(0, 0) = 0, monotonically
increases and stops at one, C(1, 1) = 1. Furthermore, there exist the Fréchet-Hoeffding cop-
ula bounds, these limit the minimum and maximum C(u1, . . . , ud) values at any point in a
copula. e.g., for a two-dimensional case, these are:
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Figure 3.2: Empirical copula corresponding to data in Fig. 3.1.

max{u1 + u2 − 1, 0} ≤ C(u1, u2) ≤ min{u1, u2}

The lower bound refers to dependence between two variables that are perfectly negatively
correlated (countermonotone) while the upper for perfectly positively correlated (comono-
tone). Important to mention are the independence and dependence copula. As their names
give it away, the former refers to the case where u1 is independent of u2. It is given by,

C(u1, u2) = u1u2

while the later refers to the case when both u1 and u2 have a 1:1 relation (the upper Fréchet-
Hoeffding bounds). It can be written as,

C(u1, u2) = min(u1, u2)

It should be noted that the upper Fréchet-Hoeffding bounds exist for all copulas in any
number of dimensions but the lower bounds are defined for the two-dimensional case only.
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3.1 Auto- and cross-copula

A copula can be an auto-copula or a cross-copula. An auto-copula holds the dependence of
a variable with itself. For example, for a time series of a variable X , an empirical copula can
be constructed by taking ut and ut+l, where t is the time step and l is the number of steps the
series is lead or lagged by, e.g., ± 2, steps. The resulting copula will have N − |l| points for
N number of time steps. A practical example would be to take a discharge time series, find
its distribution function, lead a copy of it by one step and plot the resulting series. One can
even take multiple leads or lags and construct a high-dimensional copula. This however,
violates the assumption that the marginals of copula are independently distributed. Such a
condition cannot be met for auto-copulas. A cross-copula holds the dependence between,
at least, two distinct variables. This could be, for example, discharge time series at separate
locations along a river. The rest of the idea is similar to that of the auto-copula but here the
copula can be for the same time step as well i.e., l = 0. Fig. 3.3 shows some examples of
empirical auto- and cross-copulas. Similar terminologies exist for the Pearson correlation
i.e., auto-correlation and cross-correlation.

3.2 Pearson and Spearman correlation coefficients

For the sake of completeness, the Pearson correlation (ρp) between any two variables X and
Y can be written as,

ρp =
covariance(X,Y )

σXσY
(3.5)

Similarly, the Spearman correlation (ρs) for probability distribution functions F (x) and F (y)
is given by,

ρs =
covariance(F (x), F (y))

σF (x)σF (y)
(3.6)

where, σ is the standard deviation. ρp and ρs can have values between -1 and +1, with -1
being a perfect negative linear relation, 0 being no linear correlation and +1 being a perfect
positive linear relation between the two variables. Both, ρp and ρs, are good measures as
long as the dependence between the two is linear with ρs used for cases where a monotonic
relation is preferred and it is the main measure to calculate the strength of dependence of a
copula. ρs can be viewed as an analogue of ρp when moving from marginals to grades. An
example of getting a wrong impression, consider an empirical copula of two variables that
has a donut shape. Here, ρp would be zero but actually there is a relation only that it is not
a linear one; more precisely, for a given value of X there are two, almost, equally positive
and negative values of Y , which result in a cancellation while calculating the covariance
between the two, leading to the belief that they do not relate. A practical example would be
to calculate auto-ρp and auto-ρs of a daily temperature series in which Y leads/lags X by
three months. Fig. 3.4, 3.5 and 3.6 show hypothetical time series having diamond-, donut-
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Figure 3.3: Examples of empirical copulas for various cases. (a) is an auto-copula for a vari-
able U1 with a lead of 1 step, (b) is an auto-copula for a variable U2 with a lead
of 1 step. (c) is cross-copula of U1 and U2 with no lag/lead steps. (d) is a cross-
copula of U2 having a lead of 1 step over U1.
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and V-shaped empirical copulas respectively with no significant ρp and ρs. Fig. 3.7 shows
how the Spearman’s auto-correlation function might look like for a time series. ρs is also
called the grade correlation coefficient sometimes. ρs is not the only measure of the strength
of dependence between variables. Other measures such as the Gini, Blomqvist coefficients
and Kendall’s Tau are also used. These are discussed in detail in Chapter 5 of Nelsen (2007).

3.3 Some additional terms

A “low”refers to a value, or its rank, in the lower tail of the distribution of a variable while
a “high”refers to a value, or its rank, in the upper tail. The term “low-high”refers to the
occurrence of a low followed by a high in a time series. A similar term with an opposite
meaning is “high-low”. Other terms are “low-low”and “high-high”. These have contextual
meaning and are used for clarification purposes only. Fig. 3.8 demonstrates these terms
using two neighboring discharge stations’ copula.

Figure 3.8: Demonstration of terms used to describe local copula behavior.

3.4 Order asymmetry

For a copula where there is no difference between relative densities in the regions c(u1, u2),
c(1 − u1, u2), c(u1, 1 − u2) and c(1 − u1, 1 − u2) is said to be symmetric. For the opposite
case where there is a difference between the four terms, the copula is said to be asymmet-
ric. Theoretical copulas exist that do exhibit asymmetry and the same can be observed for
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Figure 3.4: Example of two time series (a) that are similar to each other but having a lag/lead
of 91 steps resulting in a diamond-like dependence (b) with no significant Pear-
son or Spearman correlation.
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Figure 3.5: Example of two time series (a) that are similar to each other but having a lag/lead
of 91 steps resulting in a donut-like dependence (b) with no significant Pearson
or Spearman correlation.
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Figure 3.6: Example of two time series (a) that are similar to each other but having a lag/lead
of 91 steps resulting in a V-like dependence (b) with no significant Pearson or
Spearman correlation.
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Figure 3.7: Properties of the empirical auto-copulas (b, c, d, e) of an observed daily discharge
time series (a) for which U2 leads U1 by various steps.
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variables in nature. For example, consider the example of discharge. The periods of low
flows are generally much longer compared to peak flows that only last for a couple of days
compared to the case of dry periods that may last for months. Measures to describe this
asymmetry are important and provides information about the nature of dependence of the
variables under consideration. For a bivariate copula, two types of asymmetries exist i.e.,
order and directional asymmetry denoted by AO and AD respectively.

AO refers to the relative occurrences of high-highs against low-lows of a copula for the
bivariate case (Guthke, 2013). It is the expected value of the term (U1 + U2 − 1.0)3 and is
given as follows,

A2 = E[(U1 + U2 − 1.0)3] (3.7)

or

A2 =

∫ 1

0

∫ 1

0
(u1 + u2 − 1.0)3c(u1, u2)du2du1 (3.8)

where, E refers to the expected value and A2 is the theoretical order asymmetry. For the
empirical case, raw order asymmetry (AOraw) maybe written as,

AOraw =
1

N

N−1∑
t=0

(ut1 + ut2 − 1.0)
3 (3.9)

where, t is the time step. In essence, it is the mean of the cube of the distances of points in a
copula from the line u2 = 1−u1. It is negative when the incidence of low-lows are relatively
more than the incidence of high-highs and positive for the opposite case. It can be auto or
cross depending on the copula. As a general example, order asymmetry of the Gaussian
copula, for a sample large enough, is, theoretically, zero meaning that the dependence of
low-lows and high-highs is equal. A more relatable example is that of discharge in a stream.
It has, at least in the author’s experience, a negative order auto-asymmetry if the auto-copula
is that of u2 leading u1. In this case, for a very dry spell the flows approach a state of
equilibrium i.e., low-lows for a long time. The opposite case is not true. It would be strange
that a stream experiences consistently very high flows, i.e., no recession, for periods as long
as the dry periods. It is always a faster rising limb with a slower recession for an event,
depending on the size of the catchment.

Magnitudes of raw order asymmetries are meaningless when comparing them for two copu-
las with different ρss. This is akin to the term in the denominator when calculating skewness
of a sample. Hence, it is important to normalize them. This gives it the same range as ρp
and ρs i.e., ± 1. Guthke (2013) calculated an equation to yield the maximum possible order
asymmetry (AOmax) for a bivariate copula with a given ρs,

AOmax = 0.5× (1− ρs)×

(
1−

(
0.5× (1− ρs)

) 1
3

)
(3.10)
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The minimum absolute order asymmetry is, of course, zero. Fig. 3.9 gives a visual represen-
tation of how location of points in the copula affect the order asymmetry. Finally, the order
asymmetry used in this report is always a normalized one and is given by,

AO =
AOraw

AOmax
(3.11)

From here on, any reference made to order asymmetry would mean that it was calculated
using Eq. 3.11 in two dimensions unless otherwise specified. Fig. 3.7 shows how it might
look like for a time series. There are observed cases where AO goes beyond ± 1. These arise
for when a significant number of values repeat in a time series such as those of the hourly
precipitation.

Figure 3.9: Demonstration of how distance of a point affects the order asymmetry. The
greater the distance (blue line) from the red line the higher the effect.

3.5 Directional asymmetry

It refers to the relative occurrences of high-lows against low-highs (Bárdossy and Hörning,
2017). It is the expected value of the term (U1 − U2)

3 that may be written as follows,

A3 = E[(U1 − U2)
3] (3.12)

or
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Ad =

∫ 1

0

∫ 1

0
(u1 − u2)

3c(u1, u2)du2du1 (3.13)

where, Ad is the theoretical directional asymmetry. Raw directional asymmetry (ADraw) for
an empirical copula may be written as,

ADraw =
1

N

N−1∑
t=0

(ut1 − ut2)
3 (3.14)

In essence, it is the mean of the cube of the distances of points from the line u1 = u2 in a
copula. It is negative when low-highs happen more often than high-lows and positive for the
opposite case. It can be auto or cross depending on the copula. Again, the Gaussian copula
has a directional asymmetry of zero by definition, i.e., the chances that low-highs happen are
similar to those of high-lows. This measure is more related and pronounced for the case of
a daily discharge auto-copula, with u2 leading u1 by a couple of days, where a rising limb is
more abrupt as compared to the recession limb. This gives discharge a negative directional
auto-asymmetry. The opposite case is unusual i.e., the recession limb being shorter than the
rising and happens rarely but is entirely possible for cases such as discharge rising slowly
due to small precipitation for a long time which stops abruptly. A drawback of directional
asymmetry is that it is very susceptible to outliers in the copula with a strong dependence
(correlation- or entropy-wise). A single value having a large enough departure from the line
u1 = u2 can change its sign and magnitude in a significant manner. Following the method
used in Guthke (2013), to derive Eq. 3.10, the maximum possible directional asymmetry
(ADmax) is,

ADmax = 0.5× (1 + ρs)×

(
1−

(
0.5× (1 + ρs)

) 1
3

)
(3.15)

The minimum possible absolute directional asymmetry is zero. Fig. 3.10 gives a visual
representation of how location of points in a copula affect the directional asymmetry. Fi-
nally, the directional asymmetry used in this thesis is always a normalized one for the two-
dimensional case and is given by,

AD =
ADraw

ADmax
(3.16)

From here on, any reference made to directional asymmetry would mean that it was calcu-
lated using Eq. 3.16 in two dimensions unless otherwise specified. Fig. 3.7 shows how it
might look like for a time series. It is worth mentioning that order and directional asym-
metries are also called reflection and permutation asymmetry in Rosco and Joe (2013) and
Krupskii (2017). Although the equations presented therein are more general and do not in-
clude the normalization. A very similar formula that is used for the marginals is given by
Keylock (2012).
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Figure 3.10: Demonstration of how distance of a point affects the directional asymmetry.
The greater the distance (blue line) from the red line the higher the effect.

3.6 Copula entropy

Perhaps one of the most elusive measures, and difficult to get achieve through modeling, is
the copula entropy. It, mainly, provides information about the compactness of copula den-
sities. It expresses the strength of both linear and non-linear dependence. The information
about how and where they are in a copula is missing. The same is true for the direction of
dependence.

Other forms of entropy measures exist e.g., Shannon (Shannon, 1948), Tsallis (Tsallis, 1988),
Renyi (Rényi et al., 1961) and Kullback-Leibler (Kullback and Leibler, 1951) entropies.
Throughout this thesis the most widely known Shannon’s entropy (H) is used for calculat-
ing the overall strength of dependence and Mutual Information (MI) (Cover and Thomas,
2006) while looking at finer temporal scales i.e., local entropy. For a bivariate copula (C2) it
may be written as follows,

H(C2) = −
∫ 1

0

∫ 1

0
c2(u1, u2)ln

(
c2(u1, u2)

)
du2du2 (3.17)

A form more suitable for practical purposes, i.e., the empirical case, is,
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Hraw = −
M−1∑
j=0

M−1∑
k=0

c[j, k] ln(c[j, k]) (3.18)

c[j, k] =
1

N

N−1∑
t=0

 1, if
(

j
N < ut1 <

j+1
N

)
∧
(
k
N < ut2 <

k+1
N

)
0, else

(3.19)

where, M is the number of bins of a bivariate relative frequency histogram of the empirical
copula and ∧ is the logical AND operator. c[j, k] refers to the relative density in each cell sim-
ilar to the density in Eq. 3.4. j and k are the j-th row and k-th column of the histogram and is
calculated using Eq. 3.19. A lower entropy would mean that there are regions of higher den-
sity in the copula and the rest is mostly empty i.e., high dependence. A higher value would
mean that values are more spread out i.e., the dependence is weak. Measuring the strength
of dependence is the elusive part. Monotonic dependence can be easily captured by ρs but
a non-monotonic dependence, e.g., a donut, a U or a V shape, will result in small ρss with,
still, a low entropy. Hence, the entropy provides the information that dependence exists
only that it does not specify the type e.g., linear, non-linear, monotonic, or non-monotonic.
The solution to such a problem while modeling is that the model should produce series that
have similar entropies and no significant bias when considering an ensemble compared to
the entropy of the observations. An important thing to take into account while using Eq.
3.19 is to discard all values of c[j, k] that are zero because of the logarithm. Such an action
is justified as the first term, c[j, k], will be zero anyhow. Similar to copula asymmetries,
entropies have to be normalized as well. The maximum possible entropy (Hmax) is,

Hmax = − ln

(
1

M2

)
(3.20)

Note that unlike the asymmetries, Hmax is independent of ρs. It represents the entropy of
the independence copula. The minimum possible entropy is zero. This is counter intuitive,
assuming that the minimum entropy possible is when all points lie in a number of cells that
is equal toM (assuming same bin sizes in each dimension) of the copula which would result
in a minimum entropy of,

− ln

(
1

M

)
However, it is also possible that almost all values lie in only one cell of a copula. This
could be the case when two precipitation time series are compared and both of them have
zeros only with the exception of a single time step. For that case, the entropy is almost
zero. Similar to the asymmetries, the entropy used from here on is also normalized unless
otherwise specified and is given by,

H =
Hraw

Hmax
(3.21)
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Fig. 3.11 shows some empirical copulas along with their respective 2D relative histograms,
ρp, ρs and entropies (H). The interesting case is that of the diamond, where the correlations
are zero but the entropy is lower than the second case where the correlations are close to
one. Fig. 3.7 shows how it might look like for a time series.

Similar to Shannon’s entropy, another very similar type of entropy is the Mutual Informa-
tion (MI). What sets it apart fromH is that it can be computed locally, i.e., for each time step,
with emphasis on the bin densities that given points correspond to, in their respective dis-
tribution functions. In essence, it assigns a discrete value to each time step, categorizing it in
such a way that values that correspond to dense areas in their distribution functions weigh
higher while values that are from less denser regions get a smaller weight, comparatively,
because of the denominator in the logarithm. Sensitivity of this measure can be increased by
increasing M i.e., points falling in bins with higher relative density result in an even higher
local MI . Formally, for the empirical case it can be, along with some additional terms, writ-
ten as follows. The formulation presented here is a modified version of the original MI that
is adapted for use in copulas.

b[t] = ⌊utM⌋ (3.22)

c[ut] =
1

N

N−1∑
t=0

{
1, if b[t] = ⌊utM⌋
0, else

(3.23)

c[ut1, u
t
2] =

1

N

N−1∑
t=0

{
1, if

(
b1[t] = ⌊ut1M⌋

)
∧
(
b2[t] = ⌊ut2M⌋

)
0, else

(3.24)

MI(t) = c[ut1, u
t
2] ln

(
c[ut1, u

t
2]

c[ut1]c[u
t
2]

)
(3.25)

where, ⌊x⌋ is the floor operation on x, b[t] can range from 0 toM−1, c[ut] is the time series of
the relative frequencies of b[t] and c[ut1, u

t
2] is the time series of empirical copula bin densities

when ut1 and ut2 are in the same cell of the discretized bivariate copula.

In theory, c[ut] should be uniformly distributed. In practice, this does not hold and it does
have an additional effect on MI . For example, consider the case of discharge. The stage is
always rounded to the nearest centimeter or so to get the flow rate through the rating curve.
The resulting time series has discretized numbers where the same flow rates get the same
rank and, consequently, the same non-exceedence probability. This phenomenon becomes
much more apparent for low flows that vary little overtime as compared to the high ones.
For precipitation, it becomes much more important to take this in to account because of the
zeros or very small values. Fig. 3.12 shows how MI might look like for a discharge time
series where u2 leads u1 by a single time step. Notice how the low flow regions get larger
values of MI as compared to the rest. It is because of the term in the denominator, which
reduces the weight of smaller density cells much more as compared to Shannon’s entropy.
This property will be exploited to simulate better time series later.
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Figure 3.11: Empirical copulas with corresponding 2D relative histograms and the resulting
entropies. Cases (a) and (b) are for the diamond shaped copula, (c) and (d) for
two linearly dependent variables while (e) and (f) represent the no dependence
case.
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Figure 3.12: A hydrograph along with its corresponding Mutual Information (MI) time se-
ries calculated using a lead step of 1 with respect to itself.

3.7 d-dimensional Spearman correlation coefficient

So far, measures describing bivariate dependence were discussed. It is more interesting to
have the strength of dependence for the case of d dimensions. For copulas, Wolff (1980)
proposed a measure that can take into account a multivariate copula or time series of non-
exceedence probabilities/grades and produce a single measure of the strength of depen-
dence. Two versions of the d-dimensional Spearman’s correlation coefficient exist. Their
computationally friendly forms are given in Schmid and Schmidt (2007) which are derived
from Wolff (1980) and Ruymgaart and van Zuijlen (1978). It can be viewed as the average
distance of a copula from that of the independence copula. The equation for a d-dimensional
copula is given as follows,

ρd =
d+ 1

2d − d− 1

(
2d
∫
C(u)du− 1

)
(3.26)

It collapses to ρs for the 2-dimensional case. The term C(u) is difficult to compute in d

dimensions even though it is more straight forward to understand. Later, Ruymgaart and
van Zuijlen (1978) proposed another version which is much easier to calculate numerically.
It is given as follows,

ρ̃d =
d+ 1

2d − d− 1

(
2d
∫ ∏

(u) dC(u)− 1

)
(3.27)

where, the term
∏
(u) refers to the product of all us at any given point in the copula. A

problem exists while using ρd or ρ̃d, namely that they are unequal except for the case when
the copula is symmetric in all directions i.e., AO and AD are both zero. The mismatch in
values can also be exploited to indicate if the copula of given data is non-Gaussian. Yet
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another issue is that the lower Fréchet-Hoeffding bounds are still not defined for copulas
in more than two dimensions. According to Wolff (1980), the lowest possible correlation
among variables is not -1 at minimum, as one would expect, but a larger value for cases
with d greater than two. As the number of dimensions increases the least possible correlation
tends to 0 but cannot be explicitly defined. This issue has implications while normalizing
copula asymmetries in higher dimensions due to the unknown lower limit of the correlation.



4 Study Area, Rainfall-Runoff Modeling and
Experimental Setup

All the data used in this thesis is from locations in the Federal state of Baden-Würrttemberg
(BW) of Germany. BW (Fig. 4.1) is the most South-western state of Germany that borders
Switzerland to the South and France to West. To the East lies the Federal State of Bavaria
with Rheinland-Palatinate and Hessen bordering it on the northern side. Its total area is
about 36,000 km2. The famous Black Forest area covers its south-western side. The River
Danube originates in the Black Forest and flows out towards Bavaria. One of the largest
rivers in Europe, the Rhine River, originates in the Swiss Alps which forms the border be-
tween Germany, France and Switzerland as it flows towards the Netherlands.

The Neckar River (Fig. 4.2) is a tributary of the Rhine River. It originates in the Swabian Alps
that lie in the center of BW. The river then flows North towards Tübingen, then Stuttgart and
then falls in to the River Rhine at the city of Mannheim. The catchment area of the Neckar
River is ca. 14,000 km2, which is about half the area of BW while its running length from
source to mouth is ca. 300 km.

4.1 Data

Daily time series of precipitation, temperature and discharge are considered at various lo-
cations inside and around the study area. In some cases, hourly precipitation is also consid-
ered. The time period for daily data is from 1961 to 2015 while for the hourly it is from 2010
to 2015. Furthermore, the discharge gauge locations are solely considered in the Neckar
River catchment as it lies completely inside the study area.

There are about 900 precipitation gauges having daily data records throughout the study
area (Fig. 4.3). All of these are, of course, not active at any given time step. The total number
of active gauges fluctuates depending on the time period. For example, 550 gauges were
active for the period 1961-1970 with a steady decrease in the following years that reached to
only 156 active gauges for the period of 2001-2010. The mean precipitation per year is 1000
mm with a relatively small annual cycle. The network used here is maintained by the gov-
ernment agency Deutscher Wetterdienst (DWD; the German Weather Service; DWD, 2019).
The density of the hourly gauges (Fig. 4.4) is not as high as that of the daily. Temperatures
go well below freezing in the winter with snow events between the months of December
and March.

Fig. 4.3 also shows groups of five gauges that are used in the coming chapters for the demon-
stration of spatio-temporal dependence on the daily temporal scale. These series have very

30
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Figure 4.1: Study Area.
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Figure 4.2: The Neckar River and its tributaries.
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long continuous records i.e., 1961 to 2015, and are hence chosen for demonstration. Specifi-
cally, set A (red) has gauges that are located in the west of the study area and have a mean
distance of ca. 39 km among them, while set B (blue) is located in the north-east having a
mean distance of ca. 32 km among the gauges, while set C (black) contains gauges from all
corners of the study area with a mean distance of 161 km among them. Note that set A and
C share a gauge (second gauge from the top in set A and C). Similarly, Fig. 4.4 shows a set
of gauges that is also used in further analysis for the hourly case. The time series of gauges
in set D (pink) is from 2010 to 2015 with a mean distance of 33 km among the gauges.

Figure 4.3: Distribution of precipitation gauges with daily records with various sets of
gauges (sets A, B, C) that are chosen for demonstration of spatio-temporal prop-
erties of groups of points.

Sub-catchment discharge varies depending on the location of the gauging station (Fig. 4.2).
The main section of the river from Plochingen to Rockenau is used for transport by ships and
has structures built to regulate the depth of flow. This section, unfortunately, cannot be used
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Figure 4.4: Distribution of precipitation gauges with hourly records with a set of gauges (set
D) that is chosen for demonstration of spatio-temporal properties of groups of
points.
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for modeling as the flows do not respond correctly to rainfall/snowmelt events at the daily
temporal resolution. Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Würt-
temberg (LUBW; Environmental protection agency of Baden-Württemberg; LUBW, 2020) is
the agency responsible for maintaining the gauges in BW. The time series for earlier time
periods has a daily resolution but most gauges have been updated to produce an hourly or
even a 15-minute resolution. Four sub-catchments of the Neckar were selected to serve as
the basis for studying, comparison and simulation. These are Kirchentellinsfurt (Neckar),
Vaihingen (Enz), Stein (Kocher) and Untergriesheim (Jagst). The criteria for selection of
these four was the length of the records, the sub-catchment area, being a head-water sub-
catchment, the quality of the time series and susceptibility to human intervention. For the
case of daily resolution, it is important that the time of concentrations at any point of interest
be 24 hours or more. If the catchments are so small that a peak is observed at the same time
step at which the peak of a precipitation event took place then a rainfall-runoff model can
not simulate the event at the correct time step as it needs at least one time step to propagate
the effect of input precipitation as discharge. The details of these sub-catchments are shown
in Table 4.1 and Fig. 4.2.

Table 4.1: Properties of the Neckar sub-catchments

Catchment Area (km2) Mean flow
(m3 · s−1)

Min. flow
(m3 · s−1)

Max. flow
(m3 · s−1)

Kirchentellinsfurt 2320 26.9 0.9 538.0
Vaihingen 1656 19.8 3.0 424.0
Stein 1943 22.8 2.6 572.0
Untergriesheim 1829 17.7 1.3 504.0

For rainfall-runoff modeling, daily precipitation was interpolated over the whole Neckar
catchment on a grid with 1 km spatial resolution using the External Drift Kriging (EDK;
Ahmed and de Marsily, 1987) method with elevation as the drift. Similarly, minimum, mean
and maximum temperatures were also interpolated on a daily basis. Potential evapotran-
spiration was then subsequently computed using these values with the Hargreaves-Samani
equation (Hargreaves and Samani, 1982). These variables were then lumped as a daily time
series for each considered sub-catchment that were then used as inputs for the rainfall-runoff
model.

4.2 The HBV rainfall-runoff model

The HBV (Bergström, 1992) is a well known conceptual rainfall-runoff model (Fig. 4.5).
Based on its history, e.g., Das et al. (2008); Götzinger and Bárdossy (2007); Hundecha and
Bárdossy (2004) in this study area and simplicity, a slightly modified version that conserves
mass is presented. It needs precipitation (P), temperature (T), and potential evapotran-
spiration (PE) time series as input. It can be run in a spatially lumped or a distributed
configuration. A schematic diagram and the equations of a lumped configuration are
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presented here. The Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970) (NSE) and Log-
Nash-Sutcliffe Efficiency (LnNSE) were used as objective functions while optimizing for
best model parameters using the Differential Evolution (Storn and Price, 1997) optimization
scheme.

Snow melt and accumulation

MEi = max

(
0.0,

(
CMT + CMP (Pi)

)
(Ti − TT )

)
(4.1)

SNi =

{
SNi−1 + Pi if Ti <= TT,

SNi−1 −MEi else.
(4.2)

LPi =

{
0.0 if Ti <= TT,

Pi +min(SNi−1,MEi) else.
(4.3)

where, the subscript i is the index of a given day, CMTE is the snow-melt due to increase in
temperature in mm ·◦ C−1 · day−1, Pi is the precipitation in mm · day−1, CMP is the snow-
melt due to falling liquid precipitation in mm ·◦ C−1 · day−1 ·mm−1, Ti is the temperature
in ◦C, TT is the threshold temperature below which the precipitation falls as snow, MEi is
the possible snow-melt in mm, SNi is the total accumulated snow in mm, LPi is the liquid
precipitation in mm that might come from snow-melt or precipitation or both.

Evapotranspiration and soil moisture

AMi = SMi−1 + LPi

(
1−

(
SMi−1

FC

)β)
(4.4)

ETi =


min(AMi, PEi) if SMi−1 > PWP,

min
(
AMi, PEi

(
SMi−1

FC

))
else.

(4.5)

SMi = max(0.0, AMi − ETi) (4.6)

where, SMi is the soil moisture in mm, FC is the field capacity in mm, PWP is the per-
manent wilting point in mm, β is a unitless constant related to the soil’s ability to retain
moisture, AMi is the available soil moisture in mm, PEi is the potential evapotranspiration
in mm · day−1, ETi is the actual evapotranspiration in mm · day−1.

Upper reservoir runoff routing
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Figure 4.5: The HBV model.
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RNi = LPi

(
SMi−1

FC

)β

(4.7)

URUOi = max
(
0.0,Kuu(URSTi−1 − UT )

)
(4.8)

URLOi = max
(
0.0,Kul(URSTi−1 − URUOi)

)
(4.9)

URLRi = max
(
0.0,Kd(URSTi−1 − URUOi − URLOi)

)
(4.10)

URSTi = max
(
0.0, (URSTi−1 − URUOi − URLOi − URLRi +RNi)

)
(4.11)

where, RNi is the runoff in mm · day−1 i.e., the amount of water that is not retained by
the soil and is available for routing through the model’s reservoirs, URSTi is the upper
reservoir storage in mm, UT is the storage threshold in mm above which quick runoff from
the upper outlet of the reservoir should take place. Kuu is the upper reservoir upper outlet’s
runoff coefficient in day−1, URUOi is the runoff in mm · day−1 from the upper reservoir
upper outlet, Kul is the upper reservoir lower outlet’s runoff coefficient in day−1, Kd is the
coefficient of runoff transfer from the upper to lower reservoirs in day−1, URLOi is the
runoff from the upper reservoir’s lower outlet in mm · day−1.

Lower reservoir runoff routing

LROi = Kll(LRSTi−1) (4.12)

LRSTi = LRSTi−1 + URLRi − LROi (4.13)

where, LRSTi is the lower reservoir storage in mm, Kll is the lower reservoir runoff coeffi-
cient in day−1, LROi is the runoff from the lower reservoir in mm · day−1.

Simulated discharge

QSi = CC(URUOi + URLOi + LROi) (4.14)

where, CC is a conversion constant that convertsmm/day tom3 ·sec−1,QSi is the simulated
discharge in m3 · sec−1.
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4.3 Setting up experiments to test for extremes

High flows are produced by high precipitation in one way or another. Be it large intensity
precipitation for a short time or a medium precipitation for an unusually long time or a sig-
nificant amount of snow melting due to rise in temperature. As was stated in the beginning
of this thesis, the aim here is to have a time series generator that produces time series that
when used by themselves or as inputs for a rainfall-runoff model would/should produce
extremes, high precipitation or discharge, such that they match the observations in terms of
statistics. Not only that, these generators should also preserve properties of time series that
correspond to the natural behavior such as seasonal and annual cycles. More precisely, at
any given point in space the distributions of the temporal aggregations, e.g., from hourly to
daily or from daily to weekly or monthly, of the simulated series should be similar to those
of the observed i.e., no consistent/significant bias towards very low of very high values.
Similarly, at any given time step the distribution of the sum of all values of a given vari-
able at various locations of all simulations should be similar to that of the observed with no
significant biases. Although the word extreme includes both high flows and droughts, here
only floods are dealt with.

As high flows are a result of precipitation (rainfall or snow-melt), precipitation and dis-
charge are tested only. The distribution of high values can be assessed for both precipitation,
which indirectly induces floods, and discharge, which is the main variable of interest in this
study. These two variables require different setups due to their properties. Both of these are
described in detail in the following subsections along with properties that the series should
preserve.

4.3.1 Precipitation

Various setups are proposed here to test if the spatio-temporal behavior of the overall time
series and especially that of the extremes is reproduced in a manner similar to that of a given
reference, which in this case are the properties of observed time series of precipitation, tem-
perature, potential evapotranspiration and discharge at daily and hourly resolutions. As
was shown earlier, many gauges with long records in time are available, various combina-
tions of properties can be used. It is proposed here that clusters of five stations that are
not very far away from each other be simulated simultaneously and a group of five stations
that are as far away as possible from each other in the study area. For the daily resolution,
the time periods vary from 10 years to 55 years while 6 years only for the hourly. This af-
fects the amount of gauges that can be used as all of them do not have continuous records
for any selected time period. A setup is defined as a possible combination of various vari-
ables to be simulated either independent of each other simultaneously or by having a set
of cross-properties among them. Properties considered during simulation could be the pre-
viously mentioned ones in the copula domain or the ones that are introduced next in the
coming chapters. For example, precipitation is simulated such that the sum of the squared-
differences of the auto-properties (Pearson’s correlation (ρp), Spearman’s correlation (ρs),
Copula order asymmetry (AO) etc.) at various lags between the simulated and observed
are minimized. Another example is that of precipitation, temperature and potential evap-
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otranspiration simulated simultaneously such that both the sum of the squared-differences
between the auto- and cross-properties of the reference and simulation are minimized. The
details of how this is done exactly will be presented in the coming chapters. Each setup is
simulated 100 times, so that enough values are produced to see a wide range of possibilities
of extreme events i.e., the upper tails of various distributions.

After simulation, three properties are assessed namely, the distributions of various temporal
aggregations at any location, the distribution of spatial-sums at any given time step and the
distribution of spatial-sums of the aggregated time series. A spatial-sum series refers to the
sum of the values of all series at each time step. It is assumed that properties that were
used as objective functions during optimization should conserve the aforementioned three
properties indirectly.

4.3.2 Discharge

Stream flow is a much more deterministic response of a catchment to precipitation and its
environment. It is difficult to mimic it through statistics as compared to temperature and
precipitation. An attempt is made nevertheless. Exactly the same setup as that used for pre-
cipitation is taken for discharge as well, albeit for the four aforementioned sub-catchments
of the Neckar River. In addition, a much more elaborate experiment is also set up to verify
the simulation results. This is detailed below.

Consider a simple rainfall-runoff modeling scenario. Precipitation, temperature, and po-
tential evapotransipiration are prepared as inputs for a rainfall-runoff model. Observed
discharge along with an optimization scheme is used to find the model parameters that pro-
duce output discharge of an acceptable quality . This model is then subsequently used either
with forecasted data or with simulated data to see the system’s response.

Suppose, the input data at each point is shuffled for all series independent of each other i.e.,
no spatial or temporal structure and then used as input and an attempt at model calibration
is made afterwards. As the inputs have no temporal relation with the observed discharge, it
is very unlikely that a good objective function value (sum of the squared-differences of the
properties of reference and simulation) similar to the original case (the one with the mea-
sured inputs) is achieved. If it does achieve a performance similar to that of the original case
then it means that either the inputs or the model or the observed discharge or everything
was wrong to begin with. This case is also tested later and presented. What a time series
generator does is that it also shuffles the values randomly, with one major difference that
the shuffling is constrained (time series generators can be viewed as constrained scramblers).
Constrained in such a way that the new series do have properties that are common with or
similar to those of the observed. Here, the assumption is that if a set of properties is kept
by the simulated time series and these are then used as inputs for the rainfall-runoff model,
then the properties or performance of the model output discharge should be close to those
of what was simulated by the model with observed input data. Next, the comparisons are
made with the original model output discharge, rather than the observed, and the model
output discharge that was obtained using simulated inputs. This is important because no
model outputs match observations fully after calibration.
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The aforementioned method does create some new problems. Instead of only using precip-
itation for simulation, other variables (temperature and potential evapotranspiration) have
to be simulated simultaneously. Doing so serves two purposes. First, even though tempera-
ture and precipitation are not very related, the simultaneous simulation of these will result
in whatever correlated behavior these two might have, thereby producing better series. Sec-
ond, it allows for the freedom of using the same temperature and potential evapotranspi-
ration for all model runs with changing precipitation, which may or may not bias the final
model discharges.

4.3.3 Properties considered during simulation

One important aspect that was left out during the experimental setup is that of the prop-
erties used while simulating. One always has to probe the subset of properties to conserve
given the large number of choices. Ideally, all should be conserved but this has two major
drawbacks. One, not all properties can be kept using the state of the art generators. Two,
the computational time increases exponentially with the number of properties that are to
be conserved during simulation/optimization. Nevertheless, one has to find out manually
which properties to conserve. Imagine that auto-correlation function which forms the basis
of most generators turns out to be not that important. What if the Spearman’s correlation is
important to keep rather than the Pearson’s or vice versa? Some new properties along with
existing ones are presented in the later chapters in detail. In short and ideally, the properties
considered during simulation should be a function of the application for which the gener-
ated data are used. For example, if the discharge volumes in a reservoir are of interest (e.g.,
for irrigation) then the monthly mean discharges values are of interest and their behavior
at the daily or hourly scale is unimportant. However, for the same reservoir the peak flows
may also be of importance so that the spillways could be dimensioned correctly. In this case,
the maximum hourly peak flows would be of importance. Another very important aspect
that has to be considered while simulating is that all the simulated series with a given set of
properties should have the same chances of occurrence with respect to each other.



5 Phase Randomization: Existing and New
Variants

Before presenting Phase Randomization, the Fourier transform, is defined because the for-
mer depends on later. Similar to what was described in Chapter 3, a transition from marginal
to frequency domain is made. Any given time series can be written as a composition of sev-
eral frequencies, each having its respective amplitude and phase. The amplitude defines
the relative influence of the frequency on the time series while the phase defines its starting
point. This formulation was described by Baron Jean-Baptisite-Joseph Fourier (1768-1830)
in Fourier (1822). In essence, the forward Fourier transform decomposes any given signal
in to waves such that when combined at any point in time, the result is the value of the orig-
inal signal. Throughout this thesis, the Fourier transform of a one dimensional real valued
series is utilized.

5.1 The Fourier transform

Suppose a variable X , composed of N real values, then its forward Fourier transform (FT )
is given by,

FTX(k) =
N−1∑
t=0

x(t) exp

(
−2πjtk

N

)
for k = 0, . . . , N − 1 (5.1)

And the backward transform is given by,

x(t) =
1

N

N−1∑
k=0

FTX(k) exp

(
2πjtk

N

)
for t = 0, . . . , N − 1 (5.2)

where, k is the frequency, x(t) is the value ofX at time step t, and j is
√
−1 with each term in

Eq. 6.1 being a complex number except for the first term which is the sum of all the values of
X . Throughout this thesis, the first value is not used as it only serves to shift the location of
all the values and also because the focus is on the temporal/spatial variance of the variables.

Each term on the left side of Eq. 6.1 is called a Fourier coefficient of the given frequency and
is a complex number. Two spectra, namely the magnitude spectrum (MAG) and the phase
spectrum (PHS), are given by the following equations respectively,

42
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MAGX(k) = ||FTX(k)|| for k = 1, . . . , N − 1 (5.3)

PHSX(k) = ∠FTX(k) for k = 1, . . . , N − 1 (5.4)

Each frequency’s phase determines where the wave starts on the y-axis and its magnitude
determines how high or low it may be. Similarly, another spectrum that defines the variance
of the series in terms of frequencies is the power spectrum (POW ) and can be written as,

POWX(k) =
(
MAGX(k)

)2 for k = 1, . . . , N − 1 (5.5)

The power spectrum is also called the periodogram. Eq. 6.2 has an interesting property
i.e., it relates to the auto- or cross-correlation function of time series. In other words, a
change in the phases can be made without disturbing the mean, variance and the auto-
correlation function of the series. The equation that neatly presents this relationship is called
the Wiener-Khinchin theorem (Chatfield, 2016) and is written as follows for converting the
auto-correlation function (ρp(t)) to the power spectrum,

POWX(k) =

N−1∑
t=0

ρpX(t) exp

(
−2πjtk

N

)
for k = 0, . . . , N − 1 (5.6)

where, ρpX(t) refers to the auto-ρp computed with t lead steps. Another way of visualizing
this relationship is that the power spectrum is the forward Fourier transform of the auto-
correlation function of a time series. Similarly, the auto-correlation function can be derived
by taking the backward Fourier transform of the power spectrum after setting the value of
the first coefficient (at frequency 0) to zero. It is given as follows,

ρpX(t) =
1

N

N−1∑
k=0

POWX(k) exp

(
2πjtk

N

)
for t = 0, . . . , N − 1 (5.7)

The values in Eq. 5.7 may need to be normalized by the first term in the spectrum to get the
correlations in the range of ± 1 as the transformation actually produces the auto-covariance,
which depending on the values may or may not have the same range as ρp. This theo-
rem also has an important benefit that is outside the scope of this thesis but is mentioned
anyway. For time series with missing values, it is not possible to compute the Fourier trans-
form. But it is possible to get the auto- correlation or covariance function. Assuming that the
distribution of the data is the same as if it were having no missing values, the power spec-
trum and subsequently the magnitude spectrum can be computed. Now to get the missing
values, a constrained optimization scheme can be written in such a way to find the phase
spectrum such that it would produce exactly the same values at the known time steps while
constructing the values at the missing time steps as a side-effect.
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Visualizing the Fourier transform

Consider a time series of a variable X (Fig. 5.1). Its magnitude spectrum is symmetrical
around the center. This is a useful side-effect of the Fourier transform. It wouldn’t be the
case if the inputs were composed of complex numbers. For the phase spectrum, this is not
exactly the case. There, the corresponding phases are shifted by 180°. This is yet another
feature i.e., the Fourier coefficients at indices k and N − k are complex conjugates of each
other for real valued inputs e.g., the coefficient at index 1 is the complex conjugate of the
coefficient at the index N − 1. This property is exploited by algorithms when computing
the Fourier transform of a series because the first half of the terms are with the opposite
sign of the second half. The resulting magnitude and phase spectra using these algorithms
yield only half of the spectrum whose length is almost half of N , depending on the number
of steps being odd or even. For odd steps it is 0.5N + 1. Throughout this thesis only series
with even steps i.e., the last step is dropped if the steps are odd which makes the length of
the magnitude and phase spectra one half of the original length of the input time series.

5.2 Phase Randomization

Following what was observed in Eq. 6.2, a new series can be generated that has the same
first- and second-order moments as the original input i.e., an arbitrary phase spectrum
can be generated (except for the phase at index 0) and used to recalculate the Fourier co-
efficients and a new time series can be created using Eq. 5.2. This procedure is called
Phase Randomization (PR). Generating new time series aka surrogate series is, among others,
one of its uses (Theiler et al., 1992). It is this property that is exploited to generate series.
Similarly, many series at multiple locations can be generated while conserving their auto-
and cross-correlation functions. This may be achieved by generating one single random
phase spectrum that is added to all the existing phase spectra. This results in the same dif-
ference of the phases between multiple locations and consequently their cross-covariances
are also preserved. Details of this procedure is presented in the coming subsections. Fig. 5.2
shows three realizations, surrogate series, that were obtained using PR. It should be noted
that surrogate values follow the Gaussian distribution regardless of the distribution of the
input values (on the mean). This is of course not desired while simulating series that do not
follow the Normal distribution. For this purpose, a further step is taken to get the original
distribution back. It is detailed shortly in a coming subsection.

It is important to mention how the randomized phase spectra affect the resulting surrogate
series’ properties. For any given frequency, increasing or decreasing the phase by 180° re-
sults in direction reversal of the wave. For example, if a wave starts with a positive value,
after adding 180° to it will result in it starting from the same value but with a negative sign.
If all the waves are shifted by 180° then, the resulting time series flips its direction in time.
For discharge, it would mean that the rising limbs would be slower than the recession limbs.
Some drawbacks of using PR will be presented later.
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Figure 5.1: Magnitude (b and c) and phase (d) spectra of a hypothetical time series (a). (c)
shows a different way of visualizing the magnitude spectrum by using periods
of waves which are easier to understand as compared to frequencies. Due to the
magnitude spectrum symmetry, only the first half is shown in (c). It is important
to mention that the first value of the magnitude spectrum represents the sum of
the values of X . (e) shows waves with various frequencies that sum up to give
the original time series X .
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Figure 5.2: A reference series (a) and its three corresponding surrogate series (b, c, d) gener-
ated using Phase Randomization.
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The algorithm

An algorithm describing how a multivariate series XM with M variables and N time steps
(an N × M matrix) can be Phase Randomized such that the covariance matrix of the variables
remains undisturbed. This algorithm requires N to be even.

1. Compute the Fourier coefficients at the respective frequencies for each variable in XM

using Eq. 6.1.

2. Using Eq. 5.3 obtain the magnitude spectra.

3. Using Eq. 5.4 obtain the phase spectra.

4. Draw N
2 − 1 random phases between +π and −π.

5. Create another set of phases by adding +π to all the phases from the previous step and
then flipping them in order.

6. Add the phases from step 4 to all the phase spectra from step 3 at indices 1 to N
2 − 1.

7. Add the phases from step 5 to all the phase spectra from step 3 at indices N
2 + 1 to

N − 1. The phases at indices 0 and N
2 remain unchanged for all spectra.

8. Compute the new Fourier coefficients by using the modified phase spectra from the
previous step and the magnitude spectra from step 2. This can be done by taking the
product of the magnitude and the cosine of the respective phase at each frequency as
the real part of the coefficient. For the imaginary part take the product of the magni-
tude and the sine of the phase.

9. Using the new Fourier coefficients for each series, get the surrogate series through Eq.
5.2.

Drawbacks of using Phase Randomization as a time series generator

It was shown how simple it is to generate series that conserve the auto- and cross-
correlations. However, there are quite a few drawbacks to using PR.

Firstly, series that have the same length as that of the reference series can be generated only.
Simple concatenation of series in to a longer one results in the destruction of the continuity
of dependence in time, because the ending of one series and the beginning of the next have
no relation to each other for observed series necessarily.

Secondly, it only keeps the mean and overall correlation in time and space. Other statistical
properties such a skewness and kurtosis are not kept necessarily.

Another disadvantage is that the surrogate series have values that follow the Gaussian dis-
tribution. This becomes a serious problem when the variables in question have different
distributions. For example, there are no negative discharges, precipitation and evapotran-
spiration. Precipitation has a mixed distribution where zero precipitation may dominate
a good portion of the overall distribution. At least two ways exist to remedy this prob-
lem. Using the first method, all input values are transformed to Gaussian and then these
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are Phase Randomized. After PR, the original values are reordered such that they follow
the same order in time as that of the surrogate series. The later method, involves fitting
proper distributions to all inputs. Transforming the inputs to Gaussian (same as before).
Afterwards, the back transform is used to come back to the range of the reference values
(QQ-transforming or rank-order matching). This has the advantage of having values in the
simulations that may go beyond the range of the reference. Both these methods are varia-
tions of the Amplitude adjusted Fourier transform (AAFT) algorithm described in Theiler
et al. (1992). However, the former method is opt for in this thesis because the main concern
here is simultaneous occurrences of extremes rather than their magnitudes. Unfortunately,
doing so (using either method) leads to another problem. Namely, PR keeps the auto- and
cross-correlations in the Gaussian space. The resulting series are almost guaranteed to lose
auto- and cross-ρp.

Yet another, and perhaps the biggest, limitation is that of the loss of important copula prop-
erties namely the Spearman’s correlation, order- and directional-asymmetries and entropy.
Upon Phase Randomizing, information about timing of the waves carried by the phase spec-
tra are lost. For example, the waves with a period of one year and those that correspond to
seasons, always happen at, almost, fixed times in any year for observed data (at least for
environmental variables). The timing of the beginning of a hydrological year and seasons
are lost when the phase spectra are randomized.

Fig. 5.3 and 5.4 show the example of a daily discharge series. It has some special prop-
erties that the surrogate series should also preserve. Properties such as the difference of
dependence in time of the low flows and the high flows i.e., order asymmetry (AO) and
the difference in the rising and recession limbs of various events i.e., directional asymmetry
(AD). Notice how AO becomes significantly different at larger lead steps while the AD is
significantly different at the first few lead steps only. The simulated series lose both these
properties i.e., the opposite corners of the empirical copulas show very similar densities.
Furthermore, the copula entropies (H) also increase i.e., loss of dependence that was not
captured by auto-correlations.

By observing the empirical copulas and the properties that the new series have, it can be
concluded that they all correspond to that of the multivariate Gaussian copula i.e., they are
symmetric. It could be said that PR is in fact a multivariate Gaussian distribution sample
generator in disguise, where the means, the correlation matrix (in case of a multivariate
scenario) and the auto-correlation function correspond to that of the given reference.

An important property of weather-related variables are their annual and seasonal cycles
along with daily, for the case of hourly data, that are lost as a result of randomizing all
phases. The solution to this was formally presented in Galka (2000); Nakamura et al. (2006),
where phases of important cycles were kept undisturbed. This results in simulations that
show consistent patterns of time series in time. This approach is also used for all time series
simulated in this thesis.
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Figure 5.3: Comparison of copula properties (b, c, d, e, f) of a reference discharge series (a)
against those obtained using Phase Randomization. The color blue represents
the reference while black represents properties of Phase Randomized series. The
actual surrogate series are not shown here. Pearson correlations are also not
compared as they are equal for all series.
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Figure 5.4: Empirical copulas of reference (a) and surrogate (b, c, d, e, f) series. u2 leads u1
by 1 step.
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5.3 Amplitude adjusted Fourier transform

Amplitude adjusted Fourier transform (AAFT) aims to get the original distribution back
by using a simple transformation from the Gaussian values to the original values (Theiler
et al., 1992). This method is called the QQ-transform (Quantile-Quantile transform) or Rank-
order matching. This variant of PR adds one additional step. One method to achieve this is
as follows:

1. Sort the values of the original time series.

2. Find the ranks of the values in the surrogate time series.

3. Use these ranks as indices in the sorted time series to get them in to new order that cor-
responds to that of the surrogate but has now the values whose distribution is exactly
that of the original time series.

It should be noted that AAFT is the default form of Phase Randomization that is used
through out this thesis because the distributions must match those of the reference. For
example, a Phase Randomized series will have values that follow a Gaussian distribution
i.e., negative discharges, which can never be the case. Same applies to precipitation and
potential evapotranspiration. For this reason whenever time series are mentioned that were
created using PR, what they actually refer to is that the AAFT algorithm was used.

Drawbacks of using AAFT

AAFT solves the problem of the incorrect data distribution but now creates another one
namely that the auto-Pearson’s correlation (ρp) is disturbed because the magnitude spec-
trum was only equal to that of the original for the surrogate Gaussian values. This also has a
consequence for the distribution of the first-order differences. All the properties in the cop-
ula domain remain as they were before because the QQ-transformation is monotonic. All
the other drawbacks due to PR still remain.

5.4 Iterative amplitude adjusted Fourier transform

To address the issue of the lost auto-ρp function, yet another addition to the AAFT algorithm,
Iterative amplitude adjusted Fourier transform (IAAFT), was proposed by Schreiber and
Schmitz (1996). This variant involves replacing the resulting incorrect magnitude spectrum
from AAFT by that of original series iteratively. The algorithm is as follows:

1. Compute the magnitude spectra (MAGX ) of the original time series X .

2. Let Y be the surrogate. Randomly shuffle values for each series (this approach was
recommended by Venema et al. (2006)) in Y . This results in the time series having
a nearly flat power (i.e., all values in the magnitude spectrum become very similar).
This is the series that is iteratively improved to become the final surrogate series.

3. Compute PHSY .
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4. Compute the surrogate Y by using MAGX and PHSY in Eq. 5.2.

5. Apply the QQ-transform to get time series Y with the correct distributions.

6. Skip this step if it is the first iteration. Otherwise, compute the Spearman’s correlation
(ρs) of the new time series with that of the the previous iteration. If it is above a
threshold, say 0.999, then stop the algorithm if not then go to step 3 and repeat till the
threshold is reached.

The final series resulting from the above algorithm should have a power spectrum very
similar to that of the original series along with the distribution that is exactly that of the
original. This is guaranteed by the construction of the algorithm as was demonstrated by its
creators.

Drawbacks of using IAAFT

IAAFT addresses a major short coming of the previous variants by iteratively finding a
time series that has the correct properties. These new time series may have properties in
the copula domain that are clearly better than those of the AAFT. However, as only the
magnitude spectrum of the original time series was used, there is no guarantee if other
required properties are kept. It does not allow any control over what the properties of the
resulting time series should be except that the auto-ρp function is kept.

5.5 Multivariate iterative amplitude adjusted Fourier transform

So far, time series could be generated that had the correct auto-ρp function. The next prob-
lem that needs to be addressed is that of the pairwise cross-ρp. Keylock (2012) proposed
a method, Multivariate iterative amplitude adjusted Fourier transform (MIAAFT), to gen-
erate multivariate time series by extending the IAAFT algorithm with one more step. The
idea is simple, elegant and efficient. Previously, it was mentioned that the cross-correlation
of two sites is dependent on the phases of the Fourier coefficients. The closer the phases to
each other the stronger the cross-correlation. It is this fact that is used to generate time series
that have the additional property of having correct cross-correlations. The algorithm is as
follows:

1. Randomly select an index m from the M number of time series in the input XM .

2. Find the phase differences (∆PHSm) for each series by subtracting the phase spectrum
of series Xm (PHSXm) from each phase spectrum in PHSX . This should yield M

number of phase spectra in which all the values in the column m are zeros.

3. Similar to IAAFT, start by having a time series Y in which all the values are randomly
shuffled.

4. Compute the phase spectrum of the series Ym (PHSYm).

5. Compute the new phase spectrum (PHSY ) by adding the respective difference spectra
from ∆PHSm to PHSYm.
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6. Compute the surrogate Y by using MAGX and PHSY in Eq. 5.2.

7. Rank-order match Y .

8. Skip this step if it is the first iteration. Otherwise, compute ρs of the new time series
with that of the the previous iteration. If it is above a threshold, say 0.999, then stop
the algorithm if not then go to step 4 and repeat till the threshold is reached.

Drawbacks of using MIAAFT

Using this method does solve the problem of cross-ρp with one extra step. However, during
testing this algorithm it was observed that quality of the outputs was not uniform for the
all the simulated time series. The problem is due to the selection of the series, Ym, as the
reference for phase differences. Whichever station was selected, had the auto-ρp function
preserved better than those of the other series. Apart from that, the problem of dependence
loss in the copula domain still remains.

5.6 Modified multivariate iterative amplitude adjusted Fourier
transform

In order to deal with the over-fit for one series in MIAAFT, only a small adjustment is re-
quired to rectify the bias. This adjustment merely involves cycling through series while
the MIAAFT algorithm loops. The algorithm, Modified multivariate iterative amplitude
adjusted Fourier transform (MMIAAFT), is as follows:

1. Start by having a randomly shuffled time series Y .

2. Set the series counter (m) to zero.

3. Compute ∆PHSm.

4. Compute PHSYm.

5. Compute PHSY by adding PHSYm to ∆PHSm.

6. Compute the surrogate Y by using MAGX and PHSY .

7. Rank-order match Y .

8. Increment m by 1. If it equals M then reset it to zero.

9. Skip this step if it is the first iteration. Otherwise, compute ρs of the new time series
with that of the the previous iteration. If it is above a threshold, say 0.999, then stop
the algorithm if not then go to step 3 and repeat till the threshold is reached or if ρs
begins to oscillate (increasing and decreasing periodically) then stop the algorithm.
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Drawbacks of using MMIAAFT

It is a slightly better version of MIAAFT. A small drawback was observed though. Due to
the constant change of m for which the phase differences are taken, the algorithm never
converged but rather oscillated after reaching a certain high correlation. Another way of
circumventing the non-convergence could be to use a dummy series that has no correlation
to the other series and using that as the pivot for the phase differences in the MIAAFT al-
gorithm. Nevertheless, results showed that even if the algorithm never converges, it does
produce spectra that are very similar to those of the reference and are less biased than MI-
AAFT. Problems in the copula domain still remain.

5.7 Simulated Annealing

Before introducing a very powerful variant of Phase Randomization, it is important
to discuss the optimization scheme of Simulated Annealing which is at the heart of
Phase Annealing. Suppose the following problem. An observed time series of a variable X
with N time steps is provided for which surrogate series have to be generated. To simulate
the process generating X a model G with a parameter vector β having a length of M and
K model input variables ZK also in a series form is chosen. Let the simulated output time
series for any β using G be Y . What remains to be solved is β such that when used in the
model, the overall difference between X and Y is below a specified threshold.

Finding such a β may or may not be trivial. It could be that no solution exists as the model
is too simple or just an incorrect representation of the process generating X ; or many such
vectors exist, the so called Equifinality; or there exists a unique solution indeed. Given the
complexity of natural systems, simpler models are chosen to represent them. Generally, it is
not trivial to find the optimal β by analytical methods. Hence, optimization schemes are used.
It involves finding out the best β iteratively. This is traditionally done by starting from a
randomly drawn β from the parameter space and moving it slowly in an M -dimensional
space while evaluating the objective function till a desired solution is achieved. The move-
ment in parameter space in search of the optimum is what sets apart all optimization schemes.
Some move based on slope, some based on covariance matrices, some on mixing different
βs and some on random walks. They optimization schemes have two main types: local and
global. Local refers to schemes that start from a point, keep evaluating the differences till
they become smaller and smaller and stop once it starts to become large; whereas, global
refers to schemes that tend to evaluate the differences all over the parameter vector space
and stop when they have no more space to evaluate, in theory that is, all while retaining
the best β. All optimization schemes have one thing in common and that is the objective
function. Its value represents the difference in reference and simulated variables e.g., sum
of squared difference between a reference and the model output, Nash-Sutcliffe Efficiency
(NSE) etc. Furthermore, it is possible that an objective function value might need to be max-
imized or minimized depending on the problem. Traditionally, optimization schemes aim
at minimization.

Among the thousands of optimizations schemes available, Simulated Annealing (SA) is used
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in this thesis to find the best surrogates. It is a global optimization scheme that aims to
find the minimum of any given objective function by applying random changes to β using
a prescribed cooling schedule. This technique is a mathematical version of the method used
to slowly cool hot metals to make them soft and release any stress that has built up inside
the metal lattice i.e., Annealing. The cooling has to be slow enough such that the atoms of
the metal can align themselves in a target lattice. A faster cooling rate will result in atoms
locking in positions that are not optimal, resulting in a brittle structure. The main idea
i.e., the connection between statistical mechanics and multivariate optimization was first
presented by Kirkpatrick et al. (1983) while the basic algorithm of SA is given in detail by
Černý (1985). Their ideas were based on those of Metropolis et al. (1953), who formulated
an algorithm that described transition of a system of atoms/molecules from a high to very
low energy (entropy) state.

The algorithm

Following steps are involved in finding the solution of a given problem using the SA algo-
rithm.

1. Define the objective function that results in a valueO. The aim is to evaluate/minimize
the sum of the squared differences between some reference (X), that has to be matched,
and simulation (Y ).

2. Define the maximum number of iterations (Q).

3. Define the minimum absolute difference value between successive iterations (Ψ). The
algorithm stops if the absolute difference drops below this for some given number of
iterations continuously.

4. Set the initial annealing temperature (T0). It has to be greater than zero and less than
Infinity.

5. Define a cooling ratio (C) which is applied after every J iterations. C is a value greater
than zero and less than one. This is called the cooling schedule.

6. Draw a random β0 and compute O0 by running G using β0 and using X with the
resulting Y in the objective function.

7. Set the iteration counter (i) to one.

8. Draw a new βi and compute Oi same as that in step 6.

a) Calculate the absolute difference (ψi) between O0 and Oi.

b) If Oi is smaller than O0 then replace β0 with βi and O0 with Oi and go to step 9.

c) Otherwise,

i. Compute the Boltzmann’s Probability (Pb),

Pb = exp

(
O0 −Oi

Ti

)
(5.8)
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ii. Draw a random number (Pr) between zero and one.

iii. If Pr is less than Pb then β0 is replaced by βi and O0 by Oi.

iv. Else, reject βi and go to step 9.

9. Increment i by one.

10. If Q iterations are completed then go to step 15.

11. If ψi is less than Ψ then go to step 15.

12. If J iterations have passed then update the temperature,

Ti = C × Ti−1 (5.9)

13. If Ti ≈ zero then go to step 15.

14. Go to step 8.

15. β0 is the optimal solution and O0 is its corresponding objective function value.

Two main aspects of the algorithm stand out i.e., the cooling schedule and the Boltzmann’s
probability. Apart from that still some questions remain e.g., how to sample a new βi. These
are explained next.

Some remarks

The initial temperature (T0), the cooling schedule and the Boltzmann’s probability (Pb) are
tightly coupled in SA. To begin with, a T0 is required such that when used in Eq. 5.8 results
in a rejection rate that is 100% exactly (or slightly below for practical purposes, say 80 to
90%). This would mean that the knowledge that every rejected solution is accepted when
the algorithm begins and by reducing the temperature after J iterations (cooling) exists be-
forehand. In practice, such a situation is not possible. Paradoxically, finding a suitable T0
would require another optimization scheme. A simple method to get an acceptable value
is to evaluate the acceptance rates of randomly sampled temperatures that involve running
the optimization scheme for a few hundreds of iterations, without updating the tempera-
ture. This can be done simply by increasing the temperature from some known small value
at which the acceptance rate is very close to zero (say below 20%) and stopping at a tem-
perature that yields an acceptance rate between 70 to 80%. Once a suitable temperature is
reached, SA can begin. The second issue is that of the cooling schedule. If the cooling ratio
(C) is too small (used in Eq. 5.9), then there is a high chance of obtaining a local optimum.
C very close to one might result in the optimization taking too long to converge to a global
optimum. Unfortunately, there is no straightforward way of knowing the best C. This too
has to be calculated iteratively once T0 is known. One way to do so is to run the algorithm
in parallel many times, starting from a small C and then evaluating if all runs converged
to similar objective function values (O). If yes, then this is the optimum C otherwise keep
increasing it till all runs result in Os that are within an acceptable tolerance of each other. C
is also linked to the length of the vector β. The larger the length, the closer C should be to
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one. The third issue, and a unique feature, of SA is Pb. Due to the exp and its negative input
it is always between zero and one. This is an unusual feature of SA because it allows for
acceptance of βs that result in an O that is worse than the previous one. This is done in the
hopes that even worse performing βs can lead to better solutions subsequently. It changes
dynamically as the temperature is reduced. For example, initially when temperature is high
Pb is also closer to one due to the larger temperature in the denominator. Thereby, resulting
in relatively higher chances of acceptance of worse solutions. As the algorithm progresses,
Pb gets closer to zero, thereby resulting in smaller chances of acceptance of worse solutions.
Such an approach improves the chances of not getting stuck in a local optimum. Finally, the
issue of sampling of the vector β for subsequent iterations needs to be addressed. Nomi-
nally, it can be sampled from anywhere in the M -orthotope (a hyper dimensional rectangle)
but that is very likely to produce strong fluctuations in the objective function resulting in
high rejection rates and slow convergence. A more reasonable approach is to dynamically
reduce the sampling space around β as the algorithm progresses. For example, a variable
can be defined that is reduced proportionally to the relative number of iterations or the ac-
ceptance rate. This variable may be updated whenever the temperature is reduced. Hence,
in the beginning when the temperatures are high along with the acceptance rate, β can be
sampled from anywhere in the M-orthotope thus sampling almost uniformly and then as
the algorithm progresses, based on the acceptance rate, the distance of the next β relative
to the last is reduced. This ensures that the next sampled vector will result in an objective
function value that is not very different than the last. Hence, resulting in a smoother and a
more efficient convergence towards the global optimum.

The aspect of convergence of any optimization scheme is of the main importance. For a
global optimizer, the focus is more on the efficient sifting of the parameter space to find a
point that produces the least objective function value. This, of course, can not be always
guaranteed for all schemes. But for SA it is guaranteed provided the condition that the
cooling schedule is set to change slowly enough. The main reason that this can be guaran-
teed is due to Pb, which allows the acceptance of solutions that are worse than the existing
ones. Meaning that optimization does not get stuck in a local minima necessarily. This was
mentioned in Metropolis et al. (1953). At the end, the question of the cooling schedule still
remains. If it is too slow, it is likely that the same points (or neighborhoods) are visited re-
peatedly. If the cooling schedule is too fast then the chances of obtaining a local optimum
increase. The only remedy for was mentioned before, i.e., the optimum cooling schedule
has to be found empirically.

5.8 Phase Annealing

Phase Annealing (PA) is a technique that aims to generate series/fields similar in properties
with respect to a given reference by making changes to the phase spectrum (or spectra) us-
ing Simulated Annealing (SA). It was recently presented in Hörning and Bárdossy (2018) to
generate spatial random fields that must have set of prescribed properties. In this thesis, the
algorithm is used to generate time series for a single variable at multiple locations or multi-
ple variables at the same location or multiple variables at multiple locations or a univariate
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series at a single location, while retaining a set of properties in the simulations similar to
those of a reference.

To make things more understandable, suppose the following two problems: A time series of
a univariate reference variable X is provided. It has properties such as auto-correlation (ρp
and ρs) functions, copula auto-asymmetries (AO and AD) and copula auto-entropies (H) in
time. It is required to have M series such that they all have properties very close to those of
the reference and that all of them have, possibly, very little correlation in time with the refer-
ence and with each other. This would be the auto-case. Similarly, there can be two reference
series X and Y , where the properties for the cross-case are also required. One approach can
be the use of theoretical copulas that can be fitted to various arrangements of the variables.
Here, an approach is used that allows for preservation of properties non-parametrically.
This method is used because using theoretical copulas to simulated series involves implicit
assumptions on the dependence structure rather then a general solution that frees the users
from making any assumptions and produces series that preserve the properties of the refer-
ence. Another problem with fitting theoretical copulas is that only few exist that are truly
multivariate such as the Gaussian copula which lacks the asymmetric dependence proper-
ties that is very visible when analyzing observed time series. Vine copulas suffer from the
same drawbacks.

Before proceeding further, the curse of dimensionality is discussed. Suppose two points in
three dimensions e.g., [0, 0, 0] and [1, 1, 1] as a sample. Considering only the first dimension
of both the points the distance between them is 1.0 units. For the first two dimensions it is
1.414 units and for all of them it is 1.732 units. In other words, the density of points in space
reduces as dimensions increase while keeping the number of points constant. To obtain the
same density of a mean distance of 1.0 units more points have to be added. This can be done
by dividing the M -orthotope into smaller equally sized M -orthotopes and then calculating
the mean density of points in each of them. The discretization should be based on the one-
dimensional case’s distances. Now, more points are added till the density equals to that of
the reference case. Unfortunately, this is very unlikely to happen in a real world scenario
because the length of the time series are restricted and getting a longer series is not possible.

As shown in Sec. 5.2, Phase Randomization (PR) can be used to generate new series easily.
The problem that remains to be solved is that many important properties are not reproduced
which is directly linked to the random phase spectra that are drawn. As a phase spectrum is
a very high dimensional vector, the probability that a randomly drawn spectrum also yields
the desired properties is very small. Hence, an optimization scheme is required to find such
a spectrum. Using the Simulated Annealing (SA) algorithm to do so is what is referred to as
Phase Annealing (PA).

The algorithm

Following steps are involved in finding suitable phase spectra for a multivariate series (X)
with M variables and N time steps. Here, the SA algorithm, described in Sec. 5.7, adapted
to generate a multivariate time series is shown.
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1. Compute the Fourier coefficients (FT ) of X , its corresponding magnitude (MAG) and
phase (PHS) spectra using the formulas shown in Sec. 5.1.

2. Compute all the desired properties that have to be kept such as correlations, asymme-
tries and entropies using formulas from Chapter 3. These will be used as a reference
in the objective function and these are the ones that the simulated series should have
at the end.

3. Define the objective function(s). The differences between the reference and simulated
series’ properties are evaluated. These could be for the auto- and the cross-cases. For
example, the sum of the squared differences of the auto-asymmetries of the reference
at desired lag/lead steps and the simulations at the same lag/lead steps. Let the value
of the objective function be O.

4. Define the maximum number of iterations (Q).

5. Define the minimum absolute O difference between successive iterations (Ψ).

6. Set the initial annealing temperature (T0).

7. Define a cooling ratio (C) which is applied after every J iterations.

8. Draw a random phase spectrum similar in length to that of PHS. With all the phases
in between +π and -π. Add these to PHS at the corresponding frequencies to produce
new phase spectra (PHS0). For example, at frequency k the same phase is added to all
the phases in PHS. Use Eq. 5.2 to obtain a new X0. The procedure is similar to that
used in sampling a new phase spectrum in Phase Randomization. Use the new series
to compute O0.

9. Set the iteration counter (i) to one.

10. Draw a random phase (ϕi) and frequency index (ki). Compute the new phase spectrum
(PHSi) by adding ϕi to PHS0 at the frequency index ki. Use PHSi to get Xi and then
compute Oi, same as that in step 8.

a) Calculate the absolute difference (ψi) between O0 and Oi. If ψi is less than Ψ then
go to step 17.

b) If Oi is smaller than O0 then go to step 11.

c) Otherwise,

i. Compute the Boltzmann’s Probability (Pb),

Pb = exp

(
O0 −Oi

Ti

)
ii. Draw a random number (Pr) between zero and one.

iii. If Pr is less than Pb then move to step 11.

iv. Else revert the changes applied in this iteration at step 10 and move to step
12.
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11. Replace O0 with Oi, PHS0 with PHSi and X0 with Xi.

12. Increment i by one.

13. If Q iterations are completed then go to step 17.

14. If J iterations have passed then update the temperature,

Ti = C × Ti−1

15. If Ti ≈ zero then go to step 17.

16. Go to step 10.

17. PHS0 are the optimal phase spectra and O0 is their corresponding objective function
value and X0 is the multivariate Phase Annealed time series.

Some remarks

Caveats that were valid for the original SA algorithm apply here as well. Furthermore, in
PA the phase spectrum is not fully analogous to that of a model parameter vector β.

At least two variables are dealt with simultaneously, namely the phase (ϕ) and the frequency
index (k). Choosing these does affect how efficiently the high-dimensional phase space is
traversed while looking for a suitable solution. Suppose that PHS has a length of one thou-
sand. Selecting one phase randomly from it and changing its value will have very little
effect, in general, on the resulting properties. The same strategy that was recommended for
β can be used here as well i.e., dynamically reducing the change applied to phases and the
number of frequencies selected for modification. The implementation can be as follows: At
the start when temperatures and acceptance rates are high, generate more frequency indices.
Similarly, generate phase differences that are also larger in magnitude. As the optimization
progresses and the acceptance rates drop, the absolute value of the new phase differences
along with number of phases to modify is reduced. This allows for movement through the
phase space more efficiently in the beginning to look for a neighborhood that might hold
phases such that the resulting properties are more suitable rather than moving very slowly
by changing a single phase at every iteration.

Another problem that might arise is that of the relative magnitude of the objective functions.
For example, the order asymmetries (AO) of the simulated series being very similar to that
of the reference while the directional asymmetries (AD) being wildly different. This results
in AD dominating the objective function value with the final AO being the best. For such
a case, weights need to be assigned to each property in the objective function. The weights
can be obtained by comparing the relative magnitudes of differences in the objective func-
tion by using randomized phase spectra for a few hundreds of iterations. The measure with
a relatively small difference gets a larger weight and vice versa for the ones with larger dif-
ference magnitudes. The same may be done while comparing the objective function values
of time series of multiple variables, where some might dominate the rest.
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5.9 A better MMIAAFT: IAAFT-PSC1

So far, none of the IAAFT variants that were discussed here conserve properties in the rank
space. One such approach is presented here. The idea is as follows: It is clear that MIAAFT
conserves auto- and cross-ρp functions. Which depends on the distribution of the observed
values. If the distribution changes, so does ρp. This was evident with the use of PR. This fact
can be exploited. Suppose that instead of using the marginals of a time series, their grades,
FX(x), are used and then the MMIAAFT algorithm is used. The generated series will have
the correct ρp but as the grades were used as inputs, the new time series with the correct
ρs are simulated. However, after QQ-transformation to get the time series with the correct
distribution, it can be observed that the ρp has in fact changed. The crux of the matter is that
the type of input influences the properties of the outcome. The next question that arises is:
Do any transformed series exist that results in keeping both ρp and ρs when used as input
for MMIAAFT? If using the marginals results in correct ρp and using the grades results in
correct ρs then it could be that a series that is a mixture of the two produces results that have
both the properties. It may be that even other copula properties such as asymmetries and
entropy are also kept. This is what is proposed here. A variant of MMIAAFT that aims to
do both. In essence, it uses a mixture of the observed values and their grades as input rather
than any single one of them. The trick lies in how the two are mixed. On the account of
the Pearson’s and Spearman’s correlation preservation (PSC), this algorithm is referred to as
IAAFT-PSC1. The steps are as follows:

1. Compute the grades (U ) of the input series X for each column m in M columns. The
grades are non-exceedence probability values obtained from the empirical distribution
function of a given variable.

2. For M random αs between 0 and 1 (one for each column) do the following:

a) Start by having a randomly shuffled series Y .

b) Set m to zero.

c) Compute grades (V ) of Y .

d) Compute ∆PHSm for Y and V .

e) Compute PHSYm and PHSVm.

f) Compute PHSY by adding PHSYm and PHSV by adding PHSVm to their re-
spective ∆PHSms.

g) Compute the surrogate Y by using MAGX and PHSY . Similarly, compute the
surrogate V by using MAGU and PHSV .

h) Rank-order match Y . Similarly, Rank-order match V .

i) Normalize Y and V by subtracting theirs respective means from them and then
dividing them by their respective standard deviations. This normalizes both to a
range of 0 to 1.

j) Set the new series Ym = αmYm + (1 - αm)Vm for all columns m in M .
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k) Rank-order match Y .

l) Increment m by 1. If it equals M then reset it to zero.

m) Skip this step if it is the first iteration. Otherwise, compute ρs of the new time
series with that of the the previous iteration. If it is above a threshold, say 0.999,
then stop the algorithm if not then go to step 2c and repeat till the threshold is
reached or if ρs begins to oscillate then stop the algorithm.

n) Store optimized Y and its grades V as separate variables elsewhere.

3. After finding series with many αs, compute the properties such as auto- and cross-ρp
and ρs and select the series that give the least error as the final solution.

For the single-site case, steps 2d to 2f can be ignored while taking the surrogate phase spec-
trum for the single column similar to what is done in IAAFT. Similarly, many time series can
be simulated simultaneously while keeping no cross-correlation. This setting is also relevant
to IAAFT-PSC2, which will be discussed next. The algorithm is guaranteed to converge as
the αms are optimized using SA. Also, for each iteration the algorithm is basically IAAFT
which is also guaranteed to converge. This was also evidenced by the tests (not shown)
performed while developing it.

Drawbacks of using IAAFT-PSC1

IAAFT-PSC1 does address the problem of the ρs loss albeit at the cost of much more com-
putational time. The algorithm is effectively an optimization scheme where the αs are the
model parameters that have to be optimized. Simulated Annealing (Kirkpatrick et al., 1983;
Černý, 1985) was used to find the optimum αs. An important point to note is that the final
model parameters depend on the randomized sequence of Y that the algorithm was started
with. This algorithm does not solve all the problems though. Results showed that order
asymmetry was kept while the directional asymmetry was not. This means that it is suit-
able for cases where the directional asymmetry is negligible. For keeping the directional
asymmetry, something much more sophisticated is required.

5.10 IAAFT-PSC2

While analyzing the results of IAAFT-PSC1, it was observed that as the ρs is preserved to a
certain degree, it had a problem in many cases. The problem being that the auto-ρs function
of the series was above than that of the reference. It stayed well below and approached
almost that of the reference. Furthermore, it was observed that for simulations where the
auto-ρs function was well preserved, the auto-ρp function was shifted higher than that of the
reference. For any α, there was always an offset between the auto-ρp and ρs. So far, the phase
spectra of the surrogate series were not disturbed during the optimization. Next, the phase
spectra of the marginals and grades were swapped with each other before the backward
Fourier transform was applied. This, seemingly, illogical step produced series that resulted
in no difference between the auto-ρp and ρs functions on average. Furthermore, it was also
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observed that the order asymmetry was much better conserved. IAAFT-PSC2 involves twice
the calculations of IAAFT-PSC1, as it does the phase swapping for the case where no cross-
correlations are kept. When the phase swapping was tried for the case with cross-correlation
conservation, then the resulting series were of lower quality. In essence, IAAFT-PSC2 is
IAAFT-PSC1 run twice for the original setting and once with a setting where multiple station
are taken but no cross-correlation is kept and the phase spectra of the marginals and grades
are swapped. The algorithm is as follows:

1. Compute the grades (U ) of the input series X for each column m in M columns.

2. For M random αs between 0 and 1 (one for each column) do the following:

a) Start by having a randomly shuffled series Y .

b) Set m to zero.

c) Run the IAAFT-PSC1 from the steps 2c to 2j in IAAFT-PSC1 in a cross-correlation
preservation setting. Let the resulting series be A.

d) Run the IAAFT-PSC1 from the steps 2c to 2j in IAAFT-PSC1 in a non-cross-
correlation preservation setting. Let the resulting series be B.

e) Compute Y = A+B.

f) Rank-order match Y .

g) Increment m by 1. If it equals M then reset it to zero.

h) Skip this step if it is the first iteration. Otherwise, compute ρs of the new time
series with that of the the previous iteration. If it is above a threshold, say 0.999,
then stop the algorithm if not then go to step 2c and repeat till the threshold is
reached or if ρs begins to oscillate then stop the algorithm.

i) Store optimized Y and its grades V as separate variables elsewhere.

3. After finding series with many αs, compute the properties such as auto- and cross-ρp
and ρs and select the series that give the least error as the final solution.

For the single-site case, step 2c can be ignored. Similar to IAAFT-PSC1, IAAFT-PSC2 also
converges to a point where no significant changes in the temporal order of the variables
cannot be observed. But given that the phase spectra are swapped repeatedly, it may take
many more iterations as, say, compared to IAAFT.

Drawbacks of using IAAFT-PSC2

IAAFT-PSC2 addresses the correlation bias issue of IAAFT-PSC1. All of this is at additional
computational cost. There was one major drawback observed for cases where there was
significant directional asymmetry in time i.e., discharge time series. As both variants of the
IAAFT-PSC cannot preserve the directional asymmetry, it was observed that for simulations
the resulting time series had low-highs that correspond to the observed cases but an equal
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number of cases of high-lows and that also in close succession in time. Meaning that the se-
ries had an oscillating behavior, which is unnatural. This drawback could only be observed
when the simulated time series were inspected directly. By looking only at the ρp, ρs and
both asymmetries such behavior cannot be detected. Hence, it is recommended that this
method be used for cases where the directional asymmetry is not significant. Precipitation
and temperature can be simulated with this algorithm.



6 New Objective Functions in the Spectral
Domain

Objective functions or diagnostic measures to assess quality of simulations that operate in
the spectral domain, Fourier, are proposed in this chapter. In essence, the time series of
properties of a variable are dealt with rather than only using the time series of variables
themselves. These depend on the cumulative power spectrum (CMPOW ), a measure pro-
posed in this thesis to describe dependence in the frequency domain, which in essence is
the power spectrum (or periodogram) of a series that are derived from reference time series.
The philosophy behind using such an approach is that single-valued descriptors of distribu-
tions and relationships e.g., mean, variance, skewness, kurtosis, Pearson’s correlation (ρp),
Spearman’s correlation (ρs), order asymmetry (AO) and directional asymmetry (AD) suffer
from the drawback that they can be influenced by tails of their distribution (or outliers). On
the other hand, taking a full spectrum to represent a time series is a much stronger con-
straint. However, it is also not completely immune to outliers. The coming topics assume
that working with the proposed power spectra lead to better simulations while ignoring the
phase spectra completely. For the sake of completeness, all terms involved are given below
for a generic one-dimensional case.

Suppose a variableX , composed ofN real values, whose discrete forward real Fourier trans-
form (FT ) is given by,

FTX(k) =

N−1∑
i=0

x(i)exp

(
−2πjik

N

)
for k = 0, . . . , N (6.1)

where, k is the frequency, x(i) is the ith value of X , and j is
√
−1 with each term in Eq. 6.1

being a complex number.

The power spectrum (POW ) of the series X can be written as,

POWX(k) = |FTX(k)|2 for k = 1, . . . ,M (6.2)

M =

{
N
2 , if N is even
N+1
2 − 1, if N is odd

(6.3)

Where, | | returns the absolute value of its argument. The cumulative power spectrum
(CMPOW ), can then be defined as follows,

65
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CMPOWX(k) =

k∑
i=1

POWX(i) for k = 1, . . . ,M (6.4)

Using a proper transform of a time series X in Eq. 6.1 to compute CMPOW , which cor-
responds to the dynamic behavior of the transformed data, e.g., copula asymmetry in any
given direction, through time. Such a behavior is missing when using only one value to rep-
resent the entire time series’ behavior because there are a large number of possibilities using
many values to produce only one. Through out this thesis, CMPOW is always normalized
by dividing it by the sum of all values of its respective POW . This helps in comparing mul-
tiple series where the overall shape is important rather than the absolute values and also
does not allow one objective function to dominate the others while optimizing.

Depending on X , CMPOW has a different meaning. For example, if X is the first-order
difference of a series then the spectrum represents dependence with respect to X itself such
as the auto-correlation or order auto-asymmetry or directional auto-asymmetry or auto-
entropy at a lag/lead of l steps. If X is a convolution of the same variable at different
locations for the same period of time, e.g., temperature or discharge at two stations, then
the spectrum represents properties such as the cross-correlation or order cross-asymmetry
or directional cross-asymmetry or cross-entropy. In general, various transforms of data can
be used to describe the transform-dependent behavior of the data in the spectral domain.

During optimization, the squared difference of CMPOW of a reference (corresponding to
an observed series) and the simulated series in the objective function is minimized to pro-
duce time series that have properties similar to that of the observed.

6.1 Marginal cumulative periodogram

Even though, the reference and simulated series have the exact same variance, the amount
of this variance is, generally, not exactly the same for each frequency in both the series. This
can be easily corrected. As shown before, the Wiener-Khintchin theorem provides the con-
version from the power spectrum of a series to the auto-covariance and vice versa. Whether
the covariance or its normalized form, the correlation, is used does not matter as long as
the same is used everywhere. This means that to keep the auto-correlation function of a
variable being simulated, its own must be matched with that of the reference. This is com-
putationally much more efficient as compared to computing the auto-correlation function
explicitly using Eq. 3.5 for each lag/lead step. However, there is one drawback to this
that the Fourier-transform assumes that the input time series is periodic i.e., the beginning
and ending values are correlated in the same manner as the values are elsewhere in the
time series. This is mostly not the case, as was pointed out by Nakamura et al. (2006), who
then advised for a truncated Phase Randomization (PR). Fortunately, any weather related
variable is periodic due to the annual cycle but there exist other signals such as trends and
seasonal cycles which may not repeat every year. Even the hydrological year can be shown
to not have the exact same length for all years and consequently its starting and ending time.
In general, if a series is long, say more than 10 years at a daily scale, then this does not pose a
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great problem and the auto-correlation functions computed using the Wiener-Khintchin the-
orem and explicit calculations are very similar. The CMPOW of the marginals is denoted
by CMPOWp where, p is for the Pearson’s correlation. For a single time series CMPOWp

is obtained when X is the time series of the simulated marginals in Eq. 6.4. Notice that k
begins at 1 instead of 0. M is computed using Eq. 6.3. This form is normally known as the cu-
mulative periodogram. During optimization, the sum of the squared differences of CMPOWp

have to be minimized between the simulated and the reference. Another important point
to mention is that in this case the PHS is completely ignored. This means that even if the
auto-covariances are matched, the direction may become negative. There is a 50% chance of
this happening. To circumvent this problem, some phases are not randomized, for example
those of the annual- and seasonal-cycles. This ensures that summer of the simulated series is
observed during the summer of the reference series and not in the winter. This was already
mentioned in Sec. 5.2.

6.2 Grade cumulative periodogram

Similarly, the auto-Spearman correlation (ρs) can also be preserved by using the grades or
non-exceedence probabilities of the series in Eq. 6.4 during optimization. It is denoted by
CMPOWs where, s stands for the Spearman’s correlation.

6.3 Copula order asymmetry

Low-lows or high-highs occurring together is what affects the order asymmetry. To describe
this measure in the spectral sense, suppose a time series of a variable X with N values
having a probability distribution function F (x), a series of components of the order auto-
asymmetry (AOAUTO),

AOAUTO(t) =
(
F (xt) + F (xt+l)− 1.0

)3
for t = 0, . . . , N − l − 1 (6.5)

can be calculated. Where F (xt) is the grade of X at time step t and l is the number of
lag/lead steps. The series resulting from Eq. 6.5 has l less steps as compared to the original
series X . Then, CMPOW of AOAUTO is,

CMPOWAO AUTO(k) =

k∑
i=1

POWAO AUTO(i) for k = 1, . . . ,M (6.6)

Fig. 6.1 shows AOAUTO, POWAO AUTO, CMPOWAO AUTO of daily discharge time series
for two different years at the same gauging station with a lag of 28 days i.e., dependence
between low and high flows on a monthly basis. To demonstrate and clarify the meaning of
this measure, two series are taken as inputs. Generally speaking, departure of AOAUTO(t)

from zero signifies dependence in time for low and high flows. Values near zero have a
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double meaning, one that mean flows are coming together and the other being the combina-
tion of a high and a low value. Both cases do not affect the order asymmetry. Furthermore,
negative values show a stronger dependence of low flows while positive signify a stronger
dependence of high flows. POWAO AUTO and CMPOWAO AUTO in Fig. 6.1 show that the
overall shape is similar for both, with the annual cycle (period=365) being the dominating
frequency followed by the seasonal cycles. Another important detail to observe here is the
difference in frequencies of periods shorter than six months i.e., the monthly dependence is
more correlated to time of the year rather than time of the month. In other words, it signals
that relatively short term dependence of high and low flows is not as stable as that of the
annual, at least in this case.

Similarly, for two distinct time seriesX and Y withN values having probability distribution
functions F (x) and F (y) respectively, a series of components of the order cross-asymmetry
(AOCROSS),

AOCROSS(t) =
(
F (xt) + F (yt)− 1.0

)3
for t = 0, . . . , N − 1 (6.7)

can be calculated. Where F (xt) is the grade of X and F (yt) is the grade of Y at time step t.
Then CMPOW of AOCROSS is,

CMPOWAO CROSS(k) =

k∑
i=1

POWAO CROSS(i) for k = 1, . . . ,M (6.8)

To compute two distinct AOCROSS series corresponding to that in Fig. 6.1, a total of four
input time series are needed. Fig. 6.2 showsAOCROSS , POWAO CROSS , CMPOWAO CROSS

of daily discharge time series for two different years at two gauging stations on the same
river (X being downstream of Y). Series X and A are for the same station with a different
time period while Y and B are for the same station with a different time period. The time
period of X and Y is similar while the time period of A and B is similar.

An important difference while comparing AOAUTO in Fig. 6.1 to AOCROSS in Fig. 6.2 is the
range of the values. The latter shows almost twice the range, signifying that the dependence
of lows and highs for two neighboring stations on a daily scale is much higher than that of
a single station on a monthly scale. This can also be seen in the relatively larger values of
POWAO CROSS . Consequently, this information can also be used to find out the distance
and the period of time, over a catchment, in which the dependence between highs and lows
is very similar. Such an experiment might not work, mainly because gauges are spaced at
irregular points in space. Nonetheless, this information is useful while simulating in space-
time as only one CMPOWAO CROSS has to be preserved. Similar to CMPOWAO AUTO, the
overall shape of CMPOWAO CROSS is similar for both with the annual cycle (period=365)
being the dominating frequency followed by the seasonal cycles. Another important detail
to observe here is that the difference in frequencies of periods shorter than six months are,
again, not similar. Meaning that the spatial dependence is more a function of the time of the
year. Yet another interesting thing to note is that the beginning terms of POWAO CROSS and
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Figure 6.1: Cumulative power spectrum of the order auto-asymmetry (CMPOWAO AUTO)
of two discharge series for the same station but different years computed using
lead steps of 28 days.
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Figure 6.2: Cumulative power spectrum of the order cross-asymmetry (CMPOWAO CROSS)
of four discharge series.
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CMPOWAO CROSS are very close to zero, this shows that in space the relative dependence
of low and high flows is very similar.

6.4 Copula directional asymmetry

Lows followed by highs or vice versa is what affects the directional asymmetry. To describe
this measure in the spectral sense, suppose a time series of a variable X with N values
having a probability distribution function F (x), a series of components of the directional
auto-asymmetry (ADAUTO),

ADAUTO(t) =
(
F (xt)− F (xt+l)

)3
for t = 0, . . . , N − l − 1 (6.9)

can be calculated. Where F (xt) is the grade of X at time step t and l is the number of lag
steps. The series resulting from Eq. 6.9 has l less steps as compared to the original series X .
Then, CMPOW of ADAUTO is,

CMPOWAD AUTO(k) =
k∑

i=1

POWAD AUTO(i) for k = 1, . . . ,M (6.10)

Fig. 6.3 shows ADAUTO, POWAD AUTO, CMPOWAD AUTO of daily discharge time series
for two different years at the same gauging station with a lag of 1 day i.e., dependence
between low and high flows on a daily basis. To demonstrate and clarify the meaning of
this measure, two series are taken as inputs.

Generally speaking, departure of ADAUTO(t) from zero signifies occurrence of lows fol-
lowed by highs, or vice versa, such as the rising limb of an event in a hydrograph, the
greater the difference between the successive values the larger the asymmetry. In a certain
sense, directional asymmetry is the opposite of order asymmetry. The main difference is that
very different values following each other are what constitute directional asymmetry while
everything else has a relatively weak effect. Values near zero are a result of similarly ranked
values following each other e.g., low-low or high-high. Both cases do not affect the direc-
tional asymmetry. Furthermore, negative values mean a small value followed by a large one
and vice versa for the positive ones. POWAD AUTO and CMPOWAD AUTO in Fig. 6.3 show
that there is no dominating frequency as compared to order asymmetry.

Similarly, for two distinct time series X and Y with N values having probability distribu-
tion functions F (x) and F (y) respectively, a series of components of the directional cross-
asymmetry (ADCROSS),

ADCROSS(t) =
(
F (xt)− F (yt)

)3
for t = 0, . . . , N − 1 (6.11)

can be calculated. Where, F (xt) is the grade of X and F (yt) is the grade of Y at time step t.
Then, CMPOW of ADCROSS is,
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Figure 6.3: Cumulative power spectrum of the directional auto-asymmetry
(CMPOWAD AUTO) of two discharge series for the same station but differ-
ent years computed using a lead step of 1 day.
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CMPOWAD CROSS(k) =

k∑
i=1

POWAD CROSS(i) for k = 1, . . . ,M (6.12)

To compute two distinct ADCROSS series corresponding to that in Fig. 6.3, a total of four
input time series are needed. Fig. 6.4 showsADCROSS , POWAD CROSS ,CMPOWAD CROSS

of daily discharge time series for two different years at two gauging stations on the same
river (X being downstream of Y). Series X and A are for the same station with a different
time period while Y and B are for the same station with a different time period. The time
period of X and Y is similar while the time period of A and B is similar.

An important difference while comparing ADAUTO in Fig. 6.3 to ADCROSS in Fig. 6.4 is the
direction of the values. The latter shows predominantly positive values i.e., station X expe-
rienced larger flows at the same time step as compared to Y but not the other way around. It
makes sense as X is downstream of Y and could possibly get more discharge from a smaller
catchment connecting to the stream while Y experienced smaller runoff. Most of the time
both stations experienced similarly ranked flows, meaning that the weather over both the
gauges was frequently similar. The relatively smaller values of POWAD CROSS as compared
to POWAD AUTO show that directional asymmetry is much weaker in space as compared to
time. POWAD CROSS of both the series show very different concentration of dominant fre-
quencies. This could be an indication that directional cross-asymmetry is highly uncertain
when moving in time. It is noteworthy that for one time period (XY ) the asymmetry is rel-
atively independent of time but for the next time period (AB) it is dominated by longer and
some shorter waves, even though both the series represent the same points in space.

6.5 Copula entropy

Considering the same case of daily discharge from the previous two sections, using
CMPOWAD AUTO and CMPOWAD CROSS as objective functions have a major drawback
while simulating series that may change very slowly as long as no rainfall/snow-melt
occurs and exhibit a dissimilar change in dependence as more water suddenly accumulates
in the stream. The resulting asymmetries are dominated by such events where a low-high
takes place that is far away from the diagonal in the copula. For example, Fig. 6.3 shows
that the time series of ADAUTO(t) is very often close to zero and deviates significantly
upwards from zero at a few time steps only. These peaks dominate the variance of the time
series and consequently its magnitude spectrum. Using such a measure for simulation will
aim at getting the tails of the distributions right while neglecting the central values. These
central values (that change slowly over time) give copula of a discharge series an entropy
that is smaller than that of the Gaussian with a similar correlation matrix. The smaller
entropy is the result of values clustered around the line u1 = u2 with very few values that
are far away from it. Were it not for these outliers, the correlations would have been much
stronger. This is where copula entropy becomes helpful.

Copula local Mutual Information (MI) can be used to simulate series that have entropies
close to that of the reference. Similar values occurring in close succession in space-time lead
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Figure 6.4: Cumulative power spectrum of the directional cross-asymmetry
(CMPOWAD CROSS) of four discharge series.
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to high local MI while values that belong to low density regions of a copula get a smaller
value. This results in a time series whose variance is dominated by the high local entropy
values, exactly what the previous measures tended to ignore. To bring this concept to a
usable form, consider a time series of a variable X with N values. Then using Eq. 3.25,
MI(t) with u2 leading u1 for various time steps can be computed, for example. Using the
same methodology developed in the previous two subsections, CMPOW of MIAUTO can
be written as,

CMPOWMI AUTO(k) =
k∑

i=1

POWMI AUTO(i) for k = 1, . . . ,M (6.13)

Fig. 6.5 shows MIAUTO, POWMI AUTO and CMPOWMI AUTO of daily discharge time se-
ries for two different years at the same gauging station with a lead step of 1 day. Interesting
to note here is when MIAUTO becomes large, locally. Independent of the magnitude of the
discharge, if changes in subsequent values are comparatively small MIAUTO becomes large
e.g., slowly increasing flows and stable low flows. MIAUTO is smallest when abrupt changes
happen in subsequent ranks e.g., a sudden rise in discharge or fluctuating low flows. In gen-
eral, it could be stated that local entropies are high when a given point in the copula belongs
to a bin with a higher relative frequency.

Similarly, if u1 and u2 represent two distinct time series in Eq. 3.25 then, CMPOW of
MICROSS can be written as,

CMPOWMI CROSS(k) =

k∑
i=1

POWMI CROSS(i) for k = 1, . . . ,M (6.14)

Fig. 6.6 shows MICROSS , POWMI CROSS and CMPOWMI CROSS of daily discharge time
series for two different years at two gauging stations on the same river (X being downstream
of Y). Series X and A are for the same station with a different time period while Y and B are
for the same station with a different time period. The time period of X and Y is similar while
the time period of A and B is similar. MICROSS increases if both the time series go high or
low proportionally to each other. In other words, MICROSS represents the relative timing
of the two time series locally. Highly synchronized events at both locations lead to higher
local entropy.

6.6 Drawbacks

However, even after taking local entropies into account along with other measures, still
all statistical properties of the time series are not recovered. Local MI does suffer from
a drawback. For the case of ADAUTO or ADCROSS , relatively few events dominated the
variance but for MI there may be many (increasing the number of copula bins might help).
This as a result might lead to some smoothness in the simulated time series. Matching the
CMPOW s does alleviate the problem but not entirely. This is, unfortunately, true for any
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Figure 6.5: Cumulative power spectrum of the local Mutual Information
(CMPOWMI AUTO) of two discharge series for the same station but differ-
ent years computed using a lead step of 1 day.
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Figure 6.6: Cumulative power spectrum of the local Mutual Information
(CMPOWMI CROSS) of four discharge series.



78 New Objective Functions in the Spectral Domain

single measure. According to Fernández (2013), to describe all the features of a time series,
very many (almost equal to the number of data points) single-valued statistical descriptors
are needed. This would of course lead to an over-fit. What is more appropriate is that the
utilized descriptors must be somehow related to the properties that the simulations must
preserve.



7 Spatial Aspects of Hydrological Extremes

The main focus of this thesis is on identifying, describing and simulating hydrological ex-
tremes. Mainly, extreme floods occurring simultaneously or parallely at multiple locations. Here,
the term simultaneous refers to close proximity in time. Suppose the question, if a hundred
year floods occurs at station A then what is the probability that another flood of a given
return period happens at station B within one day or what happens at station B in general?
Where, the threshold of one day is decided upon by the decision maker and any events hap-
pening within this window constitute a simultaneous occurrence. The same question can
be formulated for M number of locations of interest. An extreme flood refers to flows in
streams due to heavy rainfall or melting of snow cover rapidly due to a sudden rise in tem-
perature that is enough to induce a large snow-melt to cause flows that end in life and/or
property destruction downstream. Traditionally, simultaneous extremes are rarely studied,
only point extremes are dealt with rigor. Mainly due to the complexity involved at such
large spatial and short temporal scales and also the curse of dimensionality because the
number of such events is a small subset of the observations anyhow and analyzing them in
higher dimensions is not optimal and involves making assumptions on the behavior of the
variable in space-time that are difficult to validate. Most applications solve the prediction of
extremes by using Flood Frequency Analysis (FFA). Their focus is on fitting a distribution to
the extreme events, say one per year or all flows above a set threshold. The advantage being
that flows of even higher return periods can be estimated at a single point in space. The
disadvantage is that it gives no information about the processes involved or an indication of
circumstances under which these flows might occur. Conditional distribution of events can
be taken, say summer and winter events, but that reduces the already small pool of values
to an even smaller one leading to much more uncertainty and over-fitting.

Understanding the spatio-temporal aspects of extremes completely with the state-of-the-
art knowledge is still not possible. This thesis will not solve this problem entirely but will
provide more tools to identify the issues with the currently used techniques and offer some
methods to solve them i.e., better simulations. The opposite of extreme floods i.e., droughts
are also hydrological extremes. These are not dealt with explicitly here. However, the tools
provided here apply to drought simulation as well. For droughts, the focus is on the length
of no/little precipitation or very low flow durations.

It is assumed throughout this thesis, unlike FFA where, only existing extreme events to
predict other extremes is not enough. Furthermore, a stronger assumption is made that
all the important properties mentioned so far of multiple variables in space and time have
to be preserved by simulated series. In other words, the aim is to generate series that are
statistical equivalents of a given reference. Such an approach allows for the flexibility to
apply the methods presented here to be used almost anywhere without any loss of generality

79
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and not only to hydrological variables. Furthermore, once dependence in space and time is
determined, flood magnitudes using FFA can be used at a location to estimate variable states
under consideration at other sites. This chapter focuses on measures that may be used to identify
and describe the behavior of time series in general with simultaneous extremes considered implicitly.

The multivariate dependence of precipitation and discharge series are considered mainly as
demonstration variables. The other important aspect of extremes is the state of the catch-
ment such as land-use and geology but these are set aside as they are much more consistent
in time than any other variable and also because the relationship between all variables and
discharge is the result of the catchment state, which can be obtained from the dependence
structure of all these variables or the state variables of a rainfall-runoff model to a large
extent.

Analyzing the combined behavior of precipitation and discharge at the same location shows
that they do not correspond as they should. Mainly, because it does not rain all the time but
the rivers do flow, almost, all the time, albeit with changing magnitude of flow. Ultimately,
high flows in streams are caused by some form of precipitation. The delay in discharge se-
ries compared to precipitation is because precipitation has to interact with several variables
on the way before its effect appears as discharge in streams. Describing these processes is
not trivial. Efforts have been made in the past to have models that represent reality but all
suffer from one major drawback or another or in many cases several drawbacks. For pre-
cipitation, it takes a finite amount of time till a rise in stream flow is observed after a rainfall
or snow-melt event. The main modifiers here being temperature and the catchment state.
For example, suppose it is above freezing and it rains. Depending on how wet the soil of
the catchment is, which is related to time of the year (amount of vegetation that intercepts
rain) and how much rain had occurred previously, different hydrographs namely the rising
and recession limbs and the peak values can be observed. Another example could be that
of snow-melt which is mainly controlled by the atmosphere over a time scale that is always
longer than that of a typical rainfall-runoff event.

Another crucial difference that complicates the combined modeling of precipitation and
discharge is that precipitation happens discontinuously in space and time but discharge is
recorded only at one point in space and continuously in time. To make things simpler, point
precipitation at multiple locations is also converted to a spatially-averaged point time series
similar to that of discharge by interpolating it in space at multiple points for any given time
step and then averaging it for the entire catchment that contributes to the point where dis-
charge is being recorded. Such a method introduces a large uncertainty in the total amount
of precipitation. Interpolation schemes aim to interpolate at unknown locations based on
observations only. Hence, the volume that is obtained is a function of these observations
which may or may not be a sample big enough to capture the variability, and volume, fully
at the catchment scale. Given that the distribution of precipitation is exponential in space
at any time step, the chances that a gauge actually captures the biggest value are practically
zero. This was discussed at length in Bárdossy and Anwar (2023).

Larger catchments behave much more smoothly as compared to smaller ones because they
act as much larger low-pass filters. Smaller catchments on the other hand can present trick-
ier situations. For example, sewage flows represent a larger proportion of the low-flow
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season. Also, it is possible that water from other catchments enters in to the stream through
underground cracks in rocks as discharge with no direct precipitation over the catchment.

On the other hand, temperature behaves much more smoothly in space-time and does not
show the discontinuous behavior similar to precipitation. Same applies to potential evap-
otranspiration which is mostly a function of vegetation and temperature (however, wind
can have a considerable impact at consistently high speeds) that could be discontinuous but
behaves much more consistently on a catchment scale. Temperature gradient inversions in
atmosphere can be a problem for snow-melt simulation at certain locations.

All the aforementioned challenges would be somewhat simpler to handle, if the data were
observed at finer spatio-temporal scales. The lower temporal resolution discharge presents
itself as a problem when precipitation concentration times are smaller than the frequency
of observed discharge. This mainly happens for smaller catchments where the times-of-
concentration can be in minutes/hours while the recorded discharges are on daily basis.

To address the problems mentioned above, several tools and methods are described in lit-
erature that are in use and produce acceptable results. Some useful tools were presented in
previous chapters to analyze dependence and simulate time series. These are combined in
the coming subsections to assess realizations/simulations that are close to a given reference
in terms of dependence.

7.1 Desired properties of measures describing higher-order
dependence

Before defining measures that describe dependence in a truly multivariate sense, some char-
acteristics that all these measures should have are proposed. Here, the term higher-order
dependence refers to the combined behavior of variables in more than 2 dimensions i.e., unlike the
previously described measures that only considered pairs, these should be able to take more
than two variables. First and foremost, these measures should reflect the change in depen-
dence as variables are included in or excluded from any existing arrangement. For example,
consider three variables and their accompanying Pearson’s correlations (ρp). In total, there
are three correlation values. Now suppose, the third variable is exchanged with a new one.
As a result the new correlations change but not all of them. One of them is independent
of the new variable. In other words, the change in dependence is not reflected fully. It is
expected from measures describing/quantifying higher-order dependence that they reflect
the change in it everywhere as the variables change.

Secondly, these measures should reflect the expected properties of the multivariate Gaus-
sian copula when large samples are drawn from it and used as input. For example, the
directional asymmetry (AD) for the Gaussian copula in any number of dimensions is zero
on the mean. While, the order asymmetry (AO) can fluctuate much more widely around
zero, but it should show a very consistent behavior when looking from various directions.
Note that this may not be the case for variables with truncated behavior such as precipitation
where the zeros represent a major portion of the distribution.
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Further tests can be made by using d random variables with N values such that all variables
are copies of each other i.e., xi1 = . . . = xid. Using this as an input, the measures should pro-
duce the same value for order asymmetries (these can be non-zero for mixed distributions)
and have zero directional asymmetries.

7.2 Copula asymmetries in higher dimensions

In Chapter 3, copula order and directional asymmetries (AO and AD respectively) were
presented. These were for the bivariate case. The same concept can be extended to d di-
mensions. The main focus being on the fact that each point’s dependence should reflect a
d-dimensional dependence and not only in a bivariate sense as pairwise correlations. This
is achieved by resorting to Geometry. The idea is as follows. Bivariate asymmetries were
calculated based on distances of points from a line in a given direction in two dimensions in
Chapter 3. The same can be employed in d dimensions i.e., the shortest possible distance of
a d-dimensional point to a d-dimensional line in a d-dimensional hypercube and the vector
that forms it. From hereon, order asymmetry is referred to as AOd instead of AO where,
d represents the dimensions of the copula. d can be any positive number greater than one.
The same applies to the directional asymmetry. Furthermore, asymmetries will now be pre-
sented as d-dimensional vectors (they cannot be scalars for obvious reasons) and will be
referred to as d-asymmetries as a whole. They will be mainly used when more than two
variables are considered.

7.2.1 Order asymmetry in d dimensions

The bivariate case of raw AO is considered that is then generalized to higher dimensions so
that the two approaches can be related. Consider a point u with the coordinates (u1, u2) in
a copula and the vector A⃗B (the line u2 = 1 − u1). Let the point at which the shortest line
passing through u and intersecting A⃗B be R. Then, the distance between u and R is given
by,

distance(R, u) =
|u1 + u2 − 1|√

2
(7.1)

And the coordinates of R are,

xR =
u1 − u2 + 1

2
and yR =

−u1 + u2 + 1

2
(7.2)

Then, raw AO2 for N such points [uN1 , u
N
2 ] is defined as,

AOraw,2 =

[
1

N

N−1∑
i=0

(
ui1 − xi

)3
,
1

N

N−1∑
i=0

(
ui2 − yi

)3] (7.3)
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Before the d-dimensional case is presented, it is useful to discuss the relationship between
AOraw,2 and AOraw. For the case of AOraw in Sec. 3.4 the distance of a point was calculated
from the line u2 = 1 − u1 (using Eq. 7.1 and without the denominator) then, assigned a
negative sign when the u1 was less then xR or a positive sign when the u1 was greater then
xR. Afterwards, this signed distance was raised to the power of three. The exponent of three
only serves to amplify the weight of larger distances and to keep the sign of the direction.
Finally, AOraw was the mean of all these signed distances. For the case of AOraw,2, the
magnitude of the components of the vectors are raised to the power three first, of the line
joining R and A⃗B and then the mean at each component is calculated. In other words, the
coordinate-wise distance rather then the bivariate distance is considered. It is done so to
accommodate the higher dimensional cases in which the convenient positive or negative
signs cannot be utilized.

In three dimensions, there are three possible directions that are analogous to the lines that
were used in the two-dimensional case, they become four in the four-dimensional case, five
in the five-dimensional case and so on. Using linear algebra, the general case of order asym-
metries is presented. Suppose a direction vector A⃗B passing through two points A and B

and a point u having the coordinates (u1, . . . , ud). A⃗B can only have certain directions. It
cannot be on any of the (d− 1)-dimensional faces and must pass through two opposite cor-
ners of the d-dimensional hypercube. u can be anywhere in the hypercube. Also, let the
vector pointing from A to u be A⃗u. Let the line that passes through u while intersecting
A⃗B perpendicularly be R⃗. Then, the coordinates of the intersection point (R) on A⃗B can be
written as,

R = A⃗B
A⃗u · A⃗B
A⃗B · A⃗B

+ A⃗ (7.4)

Then, the theoretical forms of d-dimensional j-th raw order asymmetry (AOraw,d
j ) may be

written as,

AOraw,d
j =

[
E[(U1 −R1)

3], . . . , E[(Ud −Rd)
3]
]
j

(7.5)

or

AOraw,d
j =

[∫
[0,1]d

(
u1 − r1

)3
dud . . . du1, . . . ,

∫
[0,1]d

(
ud − rd

)3
dud . . . du1

]
j

(7.6)

where, R1, . . . , Rd and r1, . . . , rd refer to the components of R, depending on the employed
form. More importantly, the empirical form of d-dimensional j-th raw order asymmetry
(AOraw,d

j ) for N points [uN1 , . . . , u
N
d ] can be written as,

AOraw,d
j =

[
1

N

N−1∑
i=0

(
ui1 − ri1

)3
, . . . ,

1

N

N−1∑
i=0

(
uid − rid

)3]
j

(7.7)
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where, j represents the j-th vector A⃗B. As mentioned before, the vector A⃗B can only have
d directions. The idea being similar to that in AOraw i.e., while one component goes low, the
others go high. In case of AOraw,d, while one component goes low, all other go high. For
example, in the three-dimensional case points A and B will have the following coordinates
along with the direction of the corresponding direction vector A⃗B,

j A B A⃗B

1 [0, 1, 1] [1, 0, 0] [+1, -1, -1]
2 [1, 0, 1] [0, 1, 0] [-1, +1, -1]
3 [1, 1, 0] [0, 0, 1] [-1, -1, +1]

In four dimensions, there are a total of four such direction vectors possible,

j A B A⃗B

1 [0, 1, 1, 1] [1, 0, 0, 0] [+1, -1, -1, -1]
2 [1, 0, 1, 1] [0, 1, 0, 0] [-1, +1, -1, -1]
3 [1, 1, 0, 1] [0, 0, 1, 0] [-1, -1, +1, -1]
4 [1, 1, 1, 0] [0, 0, 0, 1] [-1, -1, -1, +1]

For the d-dimensional case, a row and a column are added to get the corresponding direction
vectors A⃗B while following the same procedure as that in the above mentioned cases. A
further restriction that applies is that of the intersection set of the points in A and B should
be empty. Due to this reason, for AOraw,2, there is only one possible vector A⃗B.

AOraw,d cannot be normalized as the ρd has no defined lower bounds. This was mentioned
already in Sec. 3.7. Hence, d-dimensional j-th order asymmetry (AOd

j ) can be written as,

AOd
j = AOraw,d

j (7.8)

The drawback of Eq. 7.8 is that it is only comparable for two cases when both of them have
the same ρd.

7.2.2 Directional asymmetry in d dimensions

The case of the d-directional asymmetry is very similar to that of the order asymmetries.
Firstly, AD becomes ADd. There is only one possible direction that ADd can have i.e., all
components go from low to high. More specifically, all points project on the line u1 = u2 =

. . . = ud. For example, coordinates of point A and B are [0, ..., 0]d and [1, ..., 1]d respectively
while the direction of A⃗B is [1, ..., 1]d in d-dimensions. The rest of the calculations stay
similar to those shown in Sec. 7.2.1 for AOd. d-directional asymmetry can also be modified
to show relative strength of dependence when comparing two or more multivariate series.
Namely, by considering the absolute distance of points from A⃗B. This is left out as an
outlook of this study.
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7.2.3 Comparing old and new copula asymmetries

Using the equations described above and the ones described in Chapter 3 raw order and
directional asymmetries are computed to demonstrate how the two forms vary in their final
values but convey similar information when using the same input data. Given in Fig. 7.1 is
an empirical copula of five points P0, P1, P2, P3 and P4 that is used for demonstration. Their
coordinates in the copula are given in the columns C1 and C2 of Table 7.1.

Figure 7.1: Exemplary empirical copula of five points for demonstrating the difference be-
tween the old and new asymmetries. (a) shows the distance of points for the case
of the order asymmetry while (b) shows the distance of points for the case of the
directional asymmetry.

Table 7.2 shows calculations for AOraw and ADraw (the older versions from Chapter 3). The
column C0 shows labels of points that correspond to the points appearing in Fig. 7.1. C1
shows the result of the inner term of the summation in Eq. 3.9 i.e., (u1 + u2 − 1.0)3. The
mean of all the terms in the final row, isAOraw of these points. Here, a positiveAOraw shows
that the dependence of high-highs is larger compared to low-lows. A high-high refers to any
point in copula that is above the line u2 = 1 − u1. Similarly, C2 shows the corresponding
calculations for ADraw. In this case, a negative value shows that the strength of low-highs is
larger than high-lows. A low-high point is any point in copula that is above the line u2 = u1.

Calculations for AOraw,2 are given in the Table 7.3. It can be observed here that more
columns i.e., more calculations, are needed as compared to the their older counter parts.
Considering the case of AOraw,2, columns C1 and C2 are the coordinates of the points R
(which may or may not be unique for all points in a copula) calculated using Eq. 7.4. Here,
A⃗B is [+1,−1], which is formed by the point A and B with coordinates [0, 1] and [1, 0] re-
spectively. A⃗B is the same as the line u1 + u2 − 1.0 = 0. C3 and C4 show the corresponding
inner terms of the summations in Eq. 7.7 by taking the difference of the respective compo-
nents of the points in the empirical copula and the points R and then raising them to the
power of three. The final row shows their mean value i.e., AOraw,2. The resulting vector
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of AOraw,2 is [+2.08E − 3,+2.08E − 3]. Note that both the coordinates have the same sign
and values. The positive sign signifies that the high-highs have a larger strength compared
to the low-highs because the vector is pointing towards the upper right corner, with respect
to A⃗B, of the copula. This would be the same as a positive AOraw, which is in fact the case
as shown in Table 7.2. The artifact, of both the coordinates of the vector being the same,
appears only in the two-dimensional case. To reiterate, note that in two dimensions, only
one vector for the order asymmetry is possible unlike three or more dimensions.

Similarly, calculations for ADraw,2 are presented in Table 7.4. Here, the only difference com-
pared to AOraw,2 is A⃗B, which is [1, 1] formed by the line joining the points A and B whose
coordinates are [0, 0] and [1, 1] respectively. This also changes the coordinates of the points
R and consequently all the following calculations. Finally, ADraw,2 is yielded by taking the
mean of all values in the columns C3 and C4 i.e., [−6.94E − 4,+6.94E − 4]. Once again,
both the coordinates have the same magnitude but opposite signs. In this case ADraw,2 is
pointing towards the upper left corner, with respect to A⃗B, of the copula which signifies
that u2 reacted faster than u1, which the ADraw also revealed in Table 7.2.

Finally, it can be summarized that the absolute values of the old and new asymmetries are
not equal, which is not surprising as the steps taken to obtain them are different. However,
they convey the same information while considering their signs and directions.

Table 7.1: Coordinates of points in the empirical copula shown in Fig. 7.1 as a table. These
are used for exemplary computations of AOraw, ADraw, AOraw,2 and ADraw,2.
Refer to Section 7.2.3 for description.

C0 C1 C2

Point u1 u2

P0 0.17 0.50
P1 0.67 0.83
P2 0.83 0.67
P3 0.33 0.17
P4 0.50 0.33
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Table 7.2: Exemplary calculations for AOraw and ADraw. Refer to Section 7.2.3 for descrip-
tion.

C0 C1 C2

Point (u1 + u2 − 1.0)3 (u1 − u2)
3

P0 -3.70E-2 -3.70E-2
P1 +1.25E-1 -4.63E-3
P2 +1.25E-1 +4.63E-3
P3 -1.25E-1 +4.63E-3
P4 -4.63E-3 +4.63E-3

Mean +1.67E-2 -5.56E-3

Table 7.3: Exemplary calculations for AOraw,2. Refer to Section 7.2.3 for description.

C0 C1 C2 C3 C4

Point r1 r2 (u1 − r1)
3 (u2 − r2)

3

P0 0.33 0.67 -4.63E-3 -4.63E-3
P1 0.42 0.58 +1.56E-2 +1.56E-2
P2 0.58 0.42 +1.56E-2 +1.56E-2
P3 0.58 0.42 -1.56E-2 -1.56E-2
P4 0.58 0.42 -5.79E-4 -5.79E-4

Mean +2.08E-3 +2.08E-3

Table 7.4: Exemplary calculations for ADraw,2. Refer to Section 7.2.3 for description.

C0 C1 C2 C3 C4

Point r1 r2 (u1 − r1)
3 (u2 − r2)

3

P0 0.33 0.33 -4.63E-3 +4.63E-3
P1 0.75 0.75 -5.79E-4 +5.79E-4
P2 0.75 0.75 +5.79E-4 -5.79E-4
P3 0.25 0.25 +5.79E-4 -5.79E-4
P4 0.42 0.42 +5.79E-4 -5.79E-4

Mean -6.94E-4 +6.94E-4

7.2.4 Interpretation of d-asymmetries

Fig. 7.2 demonstrate d-asymmetries for 5 discharge time series at various locations in the
study area. In the background are series simulated with Gaussian dependence (using the
Amplitude Adjusted Fourier Transform (AAFT) algorithm) only to show that the observed
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dependence is significantly different. Formal comparisons using various methods are
shown in the chapter of Results. d-asymmetries have to be interpreted slightly differently
as compared to the older versions described in Chapter 3, in that each component provides
information about the behavior in its own dimension. For example, consider the three-
dimensional case of order d-asymmetries. For variables having a Gaussian dependence,
all the values will swing around zero. In practice, the j-th component of AOd

j will show
much more variability as compared to the rest of the components as it has the opposite
direction in terms of the major axis and all the points have the farthest distance from it,
assuming the variables’ dependence is along the major axis. Slightly larger distances will
affect the j-th component the most when they are raised to the power of three. This has an
important bearing on how AOd

j s are interpreted. As the points gather more and more on
one side of the vector A⃗B, a more pronounced deviation away from zero can be observed.
The sign of the component will show whether low-lows are more likely or the high-highs.
Components apart from the j-th show less deviations comparatively for variables that have
their dependence distributed mostly along the major axis. If the case be that the non-j-th
components show higher deviations than the j-th then it could be stated with confidence
that points in the d-dimensional copula are not along the major axis. This can happen when
some variables are inversely related to the others in time. The directional d-asymmetry
shows the relative difference in timing of all stations’ time series with respect to each other.
The component having the largest positive value should be seen as the one that acts the
earliest (or fastest) while the one having the largest negative value should be seen as the
one that reacts the latest.

It is advised to use d-asymmetries with some healthy skepticism. They represent the mean
of the cube of the signed distances in each dimension, which is very sensitive. The mean
value can be a result of practically infinite combinations. It could be that only one point that
lies away from the direction vector while other lie near to it, produce the same value. The
same drawback applies to the older versions.

7.2.5 Usage of d-asymmetries

Use of d-asymmetries is the same as that of the bivariate asymmetries. These serve as diag-
nostic tools rather than objective functions. It is not advised to use them as objective func-
tions due to the previously mentioned reasons regarding their sensitivity when the points
are too few. The comparison of these for the reference and simulations should demonstrate
quickly whether a bias in direction of dependence exists or not. Furthermore, as the lower
bounds on ρd are undefined, d-asymmetries cannot be normalized similar to their original
two-dimensional versions. For this reason, only their forms can be compared for any two
cases but not the magnitudes when ρds are different.
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Figure 7.2: d-asymmetries for five discharge stations with daily records for the period of
1961-2015 in the Neckar catchment. In red are observed series while in black are
series with Gaussian dependence (AAFT).
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7.3 The Fourier transform, maximum correlation and
hydrological extremes

One of the main use of the Fourier transform (FT) that was left out in Chapter 5 is that of
the maximum possible correlation among multiple variables. In other words, the correlation
among any number of variables can be quantified if the timing of events are not considered
while keeping their auto-correlation functions intact. This property can be seen as some-
thing akin to the worst (or best) possible case that represents all bad (or good) things in all
time series happening at the same time at all locations. The value of this correlation ranges
from zero to one. The notion of a maximal correlation exists and was given by Gebelein
(1941). This can be imagined as the correlation of the sorted values of two series but note
that the auto-correlation functions of any two series are not the same for real world cases,
hence, the maximal correlation is always less than or equal to the correlation of the sorted se-
ries. There are methods of computing the maximal correlation other than the one presented
here. These are difficult to program but the one using the FT (developed by the supervisor
of the author) is much more straight forward and provides additional information in terms
of contributions from individual frequencies to the final value. Following are some formal
details.

Suppose a time series of multiple variables (XM ) having M variables and N time steps.
Borrowing terminologies developed in Chapter 5, the magnitude spectra (MAG) of all them
can be written as,

MAGm
X(k) = |FTm

X (k)| for k = 0, . . . , ⌈N ÷ 2⌉ and m = 0, . . . ,M − 1 (7.9)

where, m represents the index of the m-th variable in XM . Then, the maximum possible
cross-power (MXPOW ) between these M variables is given by,

MXPOW (X0, . . . , XM−1) =

⌈N÷2⌉∑
k=1

(
M−1∏
m=0

MAGm
X(k)

)
(7.10)

where, ⌈⌉ is the ceiling operation. It rounds any value with digits after the decimal to the
next integer e.g., 1.01 becomes 2 while 1.0 remain 1.0. Notice that only half the frequencies
are used and that the first frequency index which is the sum of the series is not used to
compute the power. MXPOW can be normalized to yield the maximum possible cross-
correlation (MXCORR),

MXCORR(X0, . . . , XM−1) =

⌈N÷2⌉∑
k=1

(
M−1∏
m=0

MAGm
X(k)

)

M

√√√√M−1∏
m=0

(⌈N÷2⌉∑
k=1

(
MAGm

X(k)
)M) (7.11)
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Please note that if too many values are taken, numerical overflow may easily result as they
have finite precision in the memory of a computer.

7.3.1 Interpretation of the maximum correlation

Eq. 7.10 and 7.11 have some drawbacks. Suppose, two triplet series XM and YM both with
N steps. Let it be the case, that they both produce the same power and correlation val-
ues. This does not necessarily mean that they have the same correlation structure because
the same product-sum can be produced by many combinations. Even for the contributions
at a single frequency by all variables, there are three degrees of freedom. Infinitely many
possible magnitudes could produce the same product. The solution for this is that the sim-
ulated auto-correlation functions i.e., magnitude spectra of all series should be the same or
very close to those of the reference. All the generators presented here can do this to a very
good extent. The curious reader might wonder that why the terms relating to the maximum
possible power and correlation are introduced and not just the multivariate power and cor-
relations. The answer to this question is again related to the degrees of freedom i.e., for more
than two variables the ability to assign a sign (or direction) to the multivariate correlation
is lost. The d-dimensional Spearman’s correlation coefficients ρd and ρ̃d that were presented
in Sec. 3.7, suffer from a similar problem in that they have no defined lower bounds and the
least correlation tends to zero as the number of dimensions grow larger.

The question that now arises is that how to interpret the value of MXCORR? What does
say a value of 0.75 mean? MXCORR is akin to the upper Fréchet-Hoeffding bounds for a
copula from Chapter 3 with a crucial difference. The upper Fréchet-Hoeffding bounds are
for variables that are fully correlated but MXCORR will yield a value that is likely to be
lower than 1.0 for a set of variables. Suppose the following scenario of three discharge time
series. Two series have a perfect MXCORR of 1.0 but the third one has a MXCORR of
0.5 with both of them. It could be that the third station has no power in half of its spec-
trum. The resulting MXCORR value for the three of them will now be 2/3. This means
that the MXCORR value is mainly controlled by series that have the absolute correlation
closer to zeros with all of them. In reality, MXCORR is brought down incrementally by
all of the considered series where some will contribute more than the others to the decorre-
lation. Consider another example where 10 discharge time series are considered with one
location always having the same value. This means that it has no variance and consequently
MXCORR becomes zero because the magnitude at all the frequencies is zero.

Finally, given that so many calculations are required to compute MXCORR, it is possible
that the resulting spectrum has no meaning i.e., it has no significance. This can be easily
tested for all combinations by comparing them against theMXCORR of many randomized
series. If the MXCORR of the reference is consistently higher than that of the ensemble of
the randomized series, then it can be stated with confidence that its value is significant.
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7.3.2 Use of the maximum correlation

Using MXCORR is not so straight forward to comprehend for a group of 10 time series
as compared to only a pair of them due to the many possibilities of combinations. It could
be that only 5 out of the 10 time series are correlated enough to bring their highest values
together and not the others. While only relying on the MXCORR of the 10, this cannot
be ascertained. The more sensible method of achieving is that all the possible combinations
ranging from all possible pairs to a multuplet of 10 have to be evaluated by only considering
the ones that have correlations above a set threshold.

The total number of combinations that are possible for a group of 10 series are 1013. For
100 time series it is a, mind boggling, 1,267,650,600,228,229,437,251,415,720,939 MXCORR

values (an order of 30). It will be difficult to fit these many spectra in computer memory to
begin with. To handle such a large number of possibilities, some assumptions can be made.
From Geostatistics, it is known that values far away from each other are less related to the
values closer to each other. For discharge, this may not be the case as a headwater gauge
has a relationship with the down stream gauges, even if they are far away. Although, their
correlation in the high frequencies will become smaller as the distance increases because
of the low pass filtering applied by the river and the in-between catchment area. Hence,
groups can be identified that are close to each other while ignoring the ones that are too far
away. Next, the groups of any given size can be sorted based on their MXCORR values.
Maps of these combinations can then provide the information about groups of points that
are likely to bring extremes together. This makes much more sense for precipitation than
for discharge series. Another way of making groups could be by utilizing the pairwise
MXCORRs. Suppose, the variables A,B,C have MXCORRs of 0.8, 0.85, 0.9 for the pairs
AB, AC and BC respectively. Now, the trivariate MXCORR of ABC can be calculated as
well, its value will always be less that ofMXCORRAB becauseC has both theMXCORRs
less than 1. As the value of MXCORR is bound between 0 and 1, the result will either be
no change or a decrease but never an increase in the final value by adding more variables.
For practical cases, as the number of variables grows, MXCORR tends to zero.

Another question that arises now is that of the MXCORR value related to simultaneous
extremes. A value of 0.6 is better than 0.5 but what does this objectively mean? Only those
series that have higher correlation in the high frequencies are more likely to bring their ex-
tremes together. It could be that most of the correlation comes from the annual and seasonal
cycles. These holds less significance as these contribute very little to the high values, and
especially if they are abrupt.

Fortunately, it is not that important to know exactly what the value of MXCORR should
be for simultaneous extremes. This can be directly observed in the observed series anyhow.
The important matter is that the simulated time series should have similar and unbiased
MXCORR values. If they are consistently too high, then more cases (most likely) of simul-
taneous extremes and vice versa for the consistently lowerMXCORR values are simulated.

It should be noted that, MXCORR provides the information about the possibility of having
extremes together but not guarantee it. Consider a scenario with two discharge time series.
One is of a river that is mainly snowfed and another one that is rainfed. Assuming that
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the mean flows are the same (it does not matter though as the first term is discarded in the
Fourier transform) and the main precipitation season is in winter for both. For the snowfed
river, peak flows will only occur in the Summer while for the rainfed they will only hap-
pen during the winter. In terms of the Fourier transform, they both will have very similar
annual cycles but will be shifted by about 180o. Computing the MXCORR will show that
their maximum possible correlation is rather high. But this would be misleading, as they
never experience high flows at the same time. Furthermore, as was shown earlier, both of
them will have a relatively small correlation in the higher frequencies resulting in very little
probability of simultaneous extremes. More stress has to be put on the contribution of the
high frequencies while making sure that the phases are mostly synchronized.

Consider another example where the likelihood of simultaneous extremes may be very
large. Suppose two adjacent catchments in an area having the same climate. The annual
and seasonal cycles are well synchronized along with much higher probability that any
large-scale precipitation will happen over both of them resulting in higher chances of high
flows together. More precisely, sudden peaks in flows require many high-frequency compo-
nents to contribute at the given time step (i.e., come into phase). Which means that for the
synchronization of peaks at multiple locations, they must have a higher correlation in the
high-frequency range as well. This is what the simulations should also reflect.

All of the cases stated above are for observed cases and should come as no surprise. No
fancy measures are needed to reach this conclusion. The reason why MXCORR is used is
to make sure that the simulations also follows a similar pattern in dynamics. It allows for
the evaluation whether the properties of the simulations actually follow the relationship in
space and time that was also observed. This tool can be used to test existing generators. One
could also use this as an objective function during optimization. This would guarantee their
usability for worst-case scenarios but is however not recommended due to the possibility of
over-fitting. Another very important reason is that the copula asymmetries are a function
of ρs. If reference and simulations are to be compared for asymmetries then it is imperative
that their correlations match first. Without them matching, a comparison is meaningless.

To identify which pairs of catchments bring floods together, reference series where it is
known that the extreme events are synchronized e.g., stations directly up- or down-stream
of each other. To ascertain if two locations bring extreme events together, their empirical
cross-copula can be evaluated. If the densities are skewed towards the top-right corner of
the copula, i.e., towards [1, 1], than this means that they are very likely to bring floods to-
gether. In terms of numbers, their order and directional cross-asymmetries (AO and AD
respectively) can be calculated. A high positive AO and a very small absolute AD mean that
the high-highs are more synchronized while a high negative AO and a very small absolute
AD mean that their low-lows are more synchronized. If absolute AD is high and AO is small
then that means that both low-lows and high-highs are not very likely to be synchronized.
If both AO and AD are low then that could mean two things. First, if the Spearman’s corre-
lation (ρs) is high then the dependence of low-lows and high-highs is equal and also high.
Second, if the ρs is low then the dependence of low-lows and high-highs is small. The use
of the terms small, high and likely is on purpose. That is because their definitions are relative
to some user defined reference.
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The notion of the maximum correlation can be extended to the objective functions in the
spectral domain defined in Chapter 6 for the multi-site case. These are introduced shortly.

7.4 d-dimensional cumulative power spectrum

Auto- and cross-CMPOW for the bi-variate case were presented in Chapter 6. By chang-
ing the input variables in Eq. 7.11, the maximum possible correlation of that variable can
be computed. Note that the magnitude spectrum (MAG) rather then the power spectrum
(POW ) is used. The details are as follows for a generic case of the variable XM where the
variable X has M columns/series.

Suppose a variable X , composed of N real values, whose forward real Fourier transform
(FT ) is given by,

FTX(k) =

N−1∑
i=0

x(i)exp

(
−2πjik

N

)
for k = 0, . . . , N (7.12)

where, k is the frequency, x(i) is the ith value of X , and j is
√
−1 with each term in equation

being a complex number. The magnitude spectrum (MAG) of the series X can be written
as,

MAGX(k) = |FTX(k)| for k = 1, . . . , A (7.13)

A =

{
N
2 , if N is even
N+1
2 − 1, if N is odd

(7.14)

The d-dimensional cumulative power spectrum (CMPOW d), can then be defined as fol-
lows,

CMPOW d
X(k) =

k∑
k=1

(
M−1∏
m=0

MAGm
X(k)

)

M

√√√√M−1∏
m=0

(
A∑

k=1

(
MAGm

X(k)
)M) for k = 1, . . . , A (7.15)

7.5 d-dimensional marginal cumulative periodogram

By using the time series of the marginals as input in Eq. 7.15 the maximum correlation
among any number of variables can be calculated as a periodogram. The time series used
as input can be multuplets of precipitation from multiple locations or a combination of var-
ious variables at the same location. Care must be taken though. Suppose, temperature
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and precipitation at multiple locations are provided. Calculating the CMPOW d
X for all of

these makes little sense as precipitation and temperature have negligible correlation in gen-
eral as temperature has a very strong annual cycle magnitude while for precipitation it is
much smaller and most of the power is evenly distributed in the high frequencies. It will
yield a very small value because any variable that has a small correlation will bring down
MXCORR with it, even if the others have a significant dependence. What could be done
is in addition to the CMPOW d

X of all variables combined, it can also be calculated for pre-
cipitation only for all locations along with the same for temperature. Automatic detection
of variables belonging to the same group can be done by an unsupervised classification al-
gorithm where the number of groups have to be at least the number of the variables used.
This yields three correlations or spectra which in turn provides more information albeit at
the price of more computational time. Matching or comparing these three spectra for the
reference and simulation gives allows for a better judgment for any significant bias in de-
pendence. Maximum correlation is denoted by MXCORRp, where the subscript p stands
for the Pearson’s correlation. Similarly, CMPOW d

p is the d-dimensional marginal cumula-
tive periodogram.

Fig. 7.3 and 7.4 show two cases where the former has series that are close to each other
in space while the latter has series that are farther from each other. In the background are
simulations of the same variables using Gaussian dependence (AAFT) only. The final values
of the spectra are theMXCORRs of the series. An immediate difference can be realized. For
the nearby points’ case, the spectra are close to each other with a slight difference while the
MXCORR values match the observed case very well. The latter farther points’ case shows
a significant difference. Finally, considering a spectrum as a diagnostic measure shows that
it is superior to using a single value as it provides a more complete picture of the temporal
scales of bias.

Figure 7.3: CMPOW d
p for five precipitation stations with daily records for the period of

1961-2015 in BW that are near to each other. In red are observed series while in
black are series with Gaussian dependence (AAFT).
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Figure 7.4: CMPOW d
p for five precipitation stations with daily records for the period of

1961-2015 in BW that are far away from each other. In red are observed series
while in black are series with Gaussian dependence (AAFT).

7.6 d-dimensional grade cumulative periodogram

Similar to CMPOW d
p , using the time series of grades yields the maximum correlation of

grades in d-dimensions. It is denoted by MXCORRs, where the subscript s stands for
the Spearman’s correlation and CMPOW d

s is the d-dimensional grade cumulative peri-
odogram.

Fig. 7.5 and 7.6 show examples of the CMPOW d
s for the same settings as those for

CMPOW d
p . An even larger problem can be observed. The background simulations were

performed using the Amplitude Adjusted Fourier Transform (AAFT) algorithm where the
magnitude spectrum of the marginals was used and the grades were not considered. The
resulting copula of the simulations has properties drastically different than the reference,
as evidenced by the figures. The strength of the resulting MXCORR is reduced by one
half for the grades. This also becomes an issue while comparing d-asymmetries of reference
and simulations. An interesting aspect to notice is that the simulations have significantly
larger magnitudes of the annual cycle, which are not present for the reference. Also,
the simulations are missing one of the long-term signal strength which is present for the
reference. This could be an indicator of non-linearity i.e., long-term trend in this case, as
was pointed out by Nakamura et al. (2006).

7.7 d-dimensional copula order asymmetry cumulative
periodogram

In Sec. 6.3, only the pairwise power spectra of asymmetries were shown. The d-dimensional
version is presented here by utilizing the new formulas developed in Sec. 7.2.1. d-
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Figure 7.5: CMPOW d
s for five precipitation stations with daily records for the period of

1961-2015 in BW that are near to each other. In red are observed series while in
black are series with Gaussian dependence (AAFT).

Figure 7.6: CMPOW d
s for five precipitation stations with daily records for the period of

1961-2015 in BW that are far away from each other. In red are observed series
while in black are series with Gaussian dependence (AAFT).
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dimensional vectors are used instead of a single value per time step. Hence, instead of
taking the mean for any component all the values for each time step are used and these are
treated as a multivariate time series. Also, here the notion of lag- or lead-steps does not
exist as the asymmetries are only computed for the cross-case. Lagged or leaded time series
are not discussed as they were already handled in Chapter 6 for various cases. Although,
this could also be done for the auto-case which may be an even a more elegant solution,
albeit at the cost of no normalization. Finally, when the values at each component for any
order asymmetry in d dimensions are used as input in Eq. 7.15, the d-dimensional copula
order asymmetry cumulative periodogram is obtained and is denoted by CMPOW d

AO.
Note that there are a total of d number of CMPOW d

AOs except for the two-dimensional case
where it is only one.

An important question to pose here is that what do these time series and their periodogram
mean? This can be explained by tracing the path of points in each component in time. As a
weather variable is bound to the atmosphere, it has to follow roughly the same path every
year and must behave in a physical manner. For a simulated time series, it could very well
be that they do not follow the same behavior due to any number of reasons. This will result
in a mismatch of the two spectra, which would signify that the dynamics simulated by the
generator are not realistic.

Fig. 7.7 and 7.8 demonstrate d-asymmetries for the same setting as that for CMPOW d
p and

CMPOW d
s . It was shown that the MXCORRs of the simulated series are not similar to

those of the reference, so, a direct comparison does not make sense for the absolute values.
Nevertheless, the shape could be compared. Looking at both of them, it can be observed
that, on average, the maximum value attained by the spectra are greater for the nearby
points as compared to the points that are farther apart.

7.8 d-dimensional copula directional asymmetry cumulative
periodogram

Similarly, when taking the time series of components while computing the directional d-
asymmetry described in Sec. 7.2.2, the d-dimensional copula directional asymmetry cumu-
lative periodogram can be obtained that is denoted by CMPOW d

AD. It is different then the
order asymmetries because it contains the distances from the major axis only. Fig. 7.7 and
7.8 show examples.

7.9 Worst-case scenario multi-site time series

It was previously mentioned that the MXCORR represents the best- or worst-case scenario
depending on context. For clarification some details are provided here that show how such
series may be constructed. As was shown that MXCORR is constructed by using magni-
tude spectra of multiple time series, which is nothing more than computing the correlation
of two or more series without considering their phase differences while keeping their auto-
correlation functions. To create a multi-site time series, the same phase spectra for all series
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Figure 7.7: CMPOW d
AO (top five) and CMPOW d

AD (bottom) for five precipitation stations
with daily records for the period of 1961-2015 in BW that are near to each other.
In red are observed series while in black are series with Gaussian dependence
(AAFT).
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Figure 7.8: CMPOW d
AO (top five) and CMPOW d

AD (bottom) for five precipitation stations
with daily records for the period of 1961-2015 in BW that are far away from each
other. In red are observed series while in black are series with Gaussian depen-
dence (AAFT).
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can be taken and used as input for the AAFT or any suitable algorithm to create new series
for each site. It may very well be that all the phase spectra are not equal but the chances
are very good that all the series have now fully synchronized simultaneous extreme values.
Note that this is not the same as using sorted time series as the sorted time series have auto-
correlation functions different than those of the reference. This case can also be compared
additionally to the reference and all the simulations. Ideally, the maximum spatial-sum of
these series should be the largest among all the series. It should be noted that the final
time series properties are somewhat dependent on the first shuffle. Hence, to get the worst-
case scenario, many such shuffles can be used and the one that yields the auto-correlation
functions closest to the reference can be selected as the final series. Interestingly, series that
would produce the extremes floods together are also very likely to have regions in time
where many low values take place consecutively. If the highs are grouped together then
the lows have to be as well. For simulated series, a test can be written to evaluate how the
lengths of low-flow durations compare to those of the reference. However, simultaneous
extremes tend to happen for much shorter times than droughts due the exponential-like
distribution of precipitation and consequently discharge, other frequencies may be more
responsible for such behavior. These could be many small frequencies that synchronize in
such a manner that all produce a combined low, and due to their slow rise and fall times,
persist in time to produce droughts.

7.10 d-dimensional correlation based on mean phase

So far, the phase spectrum was left out of the discussion which is the other important half.
As the magnitude spectrum shows the strength of the signal at a given frequency, the phase
determines the location of the signal start in time. Hidden in the phase spectrum is the
asymmetric behavior i.e., non-Gaussian dependence. To define the d-dimensional correla-
tion, the cross-correlation in the frequency domain for pair of series is presented first. The
cross-power spectrum between two series X and Y is given by,

POWXY (k) =MAGX(k) ·MAGY (k) · cos
(
∠FTX(k)− ∠FTY (k)

)
for k = 1, . . . , A

The summation of all POWXY (k) values yields the total cross-power (assuming a mean of
zero). By normalizing it properly, the correlation in the frequency domain (up to a given
frequency) is obtained by the following equation,

CORRXY (k) =

k∑
k=1

POWXY (k)√√√√ A∑
k=1

(
MAGX(k) ·MAGY (k)

) for k = 1, . . . , A

The individual contribution at or up to each frequency for any two series using the above
equation can be calculated. For example, the contribution of the annual cycle to the total
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power or the contribution of frequencies between any two given thresholds. Another im-
portant aspect can be the assessment of long term trends in the data. These, if they exist,
can be very clearly seen by the relative contribution of frequencies whose periods are longer
than one year time for environmental variables (Nakamura et al., 2006). At any given fre-
quency, the contribution is related to the difference of the phases, the lesser the difference
the more the contribution. For a difference of π radians, a negative contribution is produced.
Two positively related series will have, in general, phases that have little differences while
for negatively related series, the phases will have opposite directions. For series with no
linear dependence, the phases will differ by half π radians or mixed in such a way that the
final power/correlation becomes zero or close to it.

Now to answer the question, What is the correlation among M number of series? As was stated
earlier, the direction of correlation (or dependence) is not defined for dimensions greater
than two. Hence, only the positive direction and the overall strength of correlation can be
determined. Given M number of series, the number of groups of two without replacement
are given by,

(
M

2

)
= MC2 =

M !

2(M − 2)!

For three series, three distinct pairwise correlations are possible. Suppose, two series have a
perfect positive correlation while the third one has a perfect negative correlation with both
of them. The mean of these is -0.33. There are infinitely many ways to produce a mean
correlation with the same values. It is difficult to get a mean of zero as long as any two
are related to each other, regardless of the direction. It was shown that the contribution
at each frequency to the power between two series is dependent on their phase difference.
Interestingly, the cosine of the difference also swings between −1 and +1, same as ρp. Hence,
the mean of the cosines of the phase difference for M (always greater than two) series can
be calculated. This is termed as the mean phase correlation (MNPHS) which is computed as
follows,

MNPHS(k) =

∣∣∣∣∣ 1
MC2

∑
i

cos
(
∠FTX(k)− ∠FTY (k)

)
i

∣∣∣∣∣ (7.16)

where, i represents the index of each possible combination pair X and Y without replace-
ment for M variables. As mentioned before, taking the absolute is necessary because even
with a negative sign the contribution from some series is still positive. Similarly, the mean
power can be defined by combining CMPOW d and MNPHS to produce the mean power
periodogram (MNPOW). It can be written as follows,

MNPOW (k) =MNPHS(k) ·
M−1∏
m=0

MAGm
X(k) (7.17)
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Finally, the mean d-dimensional cumulative mean correlation periodogram (CMCORR) can
be written as follows,

CMCORR(k) =

k∑
k=1

MNPOW (k)

M

√√√√M−1∏
m=0

(
A∑

k=1

(
MAGm

X(k)
)M) for k = 1, . . . , A (7.18)

It should be noted, that this is not a true d-dimensional correlation (if one is even possible)
because it still depends on the phase differences that are computed for pairs. Still, this can
be used to show the overall behavior ofM series. Similar to previous sections, depending on
inputs the marginal, grade, order-asymmetry and directional-asymmetry cumulative spec-
tra can be calculated. Contrary to the maximum correlation, these would show the actual
behavior of the input series in time. For the various cases of inputs, these are denoted by
CMCORRd

p, CMCORRd
s , CMCORRd

AO and CMCORRd
AD and are the d-dimensional cu-

mulative marginal, d-dimensional cumulative grade, d-dimensional cumulative order asym-
metry and d-dimensional cumulative directional asymmetry correlation periodograms re-
spectively.

7.10.1 Interpretation and usage of the mean correlation

CMCORRd does have the properties that required from a dependence measure with one
deficiency i.e., it swings between 0 and 1 i.e., no direction. For the case when all phases
are out of sync, a value of zero (or close to it) is obtained. When all are in sync, a one i.e.,
MXCORR is produced. One use of CMCORRd is that of determining the contribution of
high frequencies to the overall dependence. For a point time series such as discharge, to
create a sudden peak, many phases have to synchronize such that their magnitudes com-
bined produce the said peak. There is no way around this. Long term frequencies such as
the seasonal and annual cycles have less to do with it as they rise and fall too slowly, they
do affect the regions in time that are likely to have high values though. In order for the
simultaneous extremes to take place, the short term frequencies must also synchronize for
all the locations.

The above explanation for simultaneous extremes is good for the simple case where only
one peak occurs in the entire time series. In reality it could be much more different as there
are many such peaks scattered all over time in a somewhat random fashion. Then, does the
explanation of the high frequencies’ synchronization hold? The answer is partly. As there
are many high frequencies as compared to the short ones, in order for a peak to occur only
a subset of these have to synchronize and not all of them necessarily. This also means that
some frequencies with somewhat longer periods may also come into play. For this reason,
the very short ones cannot always be considered, say a day or a week but rather up to a
month. This will also become evident in the chapter of Results.

One could argue that the behavior of phase synchronization can be better represented by
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MNPHS. This could be the case in exceptional circumstances but consider that the phase
synchronization is only half the story, the actual contribution comes from the magnitude.
Hence, it could be that frequencies close to each other having different magnitudes, produce
very different results. In general, series having more contribution in the short frequencies
are more likely to have simultaneous extremes as compared to the ones that have lesser
contribution. This can also be used to sort groups of series that have very similar properties
in time.

One final point to keep in mind is that of the difference between taking the mean of corre-
lations and the mean of cosines of phase differences. For the case of three series with two
perfectly correlated while one having a negative correlation to both, the mean ρp is -0.33. In
case of the cosines, say two phases are fully in sync and the other has the opposite direc-
tion, a mean of 0.33 is produced, which makes more sense as having two correlated series
have a greater weight. More importantly, when any of the phases differ by half π, a null
contribution at that frequency is produced.

7.10.2 Combined interpretation and usage of maximum and mean phase
correlation

The maximum and mean correlation spectra provide very useful information. The former
tells shows the potential effect that multiple series have, in a combined manner, while the
later shows how it actually is. The difference of these two holds the answer to the mismatch
in timing at each frequency. For example, if the difference between the two is large (with a
high value of the maximum correlation) then it can be concluded that the dynamics at vari-
ous points are very similar but potentially shifted in time i.e., asymmetric. Such information
is important when working with fine temporal resolution data such as hourly or sub-hourly
scales. The simulations can then be tested to check whether they also exhibit such a re-
lation or not. For simultaneous extremes, the focus is more on the synchronization of the
high frequency components, as they are the responsible ones. It should be kept in mind,
while comparing, that the gradients of these spectra (reference and simulation) have to be
similar and should not have any constant offset that might be there due to the mismatch
in low frequency waves. A consistent divergence in the high frequency range signifies that
the simultaneous extremes of reference and simulation are not similar. The simultaneous
extremes are more frequent for the case when the CMCORRd diverges to a value greater
than that for the reference while it is vice-versa for the case when it goes below.

7.11 Distribution of the spatial-sums

It is not disputed that the extreme floods in rivers are a direct consequence of large precipi-
tation over an area for some given time interval. Distributions of the sums of all values at a
given time step can be compared for the simulations with the reference. These should show
a bias immediately, if one exists. Such distributions will be shown in the chapter of Results.
Care should be taken while interpreting these. Large floods are results of continuous pre-
cipitation for long times. As the distributions do not hold any temporal structure, it should
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not be seen as a decisive factor. However, on average the distributions of the simulations
should be similar to those of the reference i.e., no significant bias. Another idea could be to
look at the cumulative time series of the 1st-order differences or the distribution of the 1st-
order differences. The magnitudes of the peaks and valleys in these series should be similar
for the reference and simulations. The drawback of this is that it can be only done for the
single-site case. Such distributions will be shown in the chapter of Results for the reference
and simulations. Additionally, two more distributions can be plotted along side. One of the
worst-case scenario and the other of the sorted time series’ spatial-sums. These should also
put things in perspective as to how the correlation function in space is like.

7.12 Conditional simultaneous upper-tail probabilities

Similar to the distribution of spatial-sums, another type of aggregate test on them can be
defined to assess whether the simulations follow a behavior similar to that of the reference.
Suppose, the case of 5 observed discharge time series. For these, the probabilities of cases
where a given combination of 4 series have tail values all above the return period of 10 years
or more. Similarly, the probability of cases where only 3 out of the four had all upper-tail
values of the return period of 10 years or more can be determined. Comparing these for
all the possible cases of combinations of 4 out of the 5 series will produce a set of scatter
points where the values on the horizontal axis are the probabilities of at least three of the 4
having simultaneous 10 year or higher events while on the vertical axis are corresponding
probabilities where all 4 have 10 year events. Such scatters will be shown in the chapter of
Results for the reference and simulations.

7.13 Testing 3D interpolations/simulations for correct
dependence structure

Interestingly, all the d-dimensional measures described till now can also be used to evalu-
ate variables that are interpolated in space-time. Consider the example of temperature. A
regular grid of 50x50 units2 has to be interpolated at 100 time steps. Out of the 2500 cells,
10 are control points that are used as input for interpolating at the remaining 2490 points.
The method of Ordinary Kriging is used to interpolate all the points for all the time steps.
Now the question is how the higher-order dependence of points can be evaluated? The tools
presented here can be used in the following manner to answer the question. For the control
points, draw time series of combinations of 4 and compute any (or all) d-dimensional prop-
erties. Now, draw random points from the grid that are not the control points in groups
of 4, and as many as possible. Care should be taken that the distances between the points
have the same distribution of distances as those of the control points. Compute the same d-
dimensional properties. Finally, compare the two for each measure, say the distributions of
MXCORR for the control and interpolation points. Ideally, these two distributions should
not show any significant difference. Similarly, any simulation method can be tested in the
same manner, only the number of fields that are interpolated are more than one which ne-
cessitates a comparison of many more distributions.
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Before the results of the various approaches to generate multivariate time series and tools to
diagnose correct behavior are presented, the persistence of some of the properties in space
and time are discussed and evaluated for observed series. The term persistence refers to the
constantness of properties in space-time in this thesis. The aim here is to show how these
evolve as distinct time periods are considered, how length of the selected periods affects
the persistence and how the dependence among points changes as the distance between
them increases or decreases. What is being explained here is a phenomenon that is com-
monly used when dealing with a system formed by interaction of multiples variables be-
tween/among each other. The concept is called Ergodicity, which in the context of this thesis
refers to the fact that if a time series is long enough, then the properties of the underlying
process can be deduced from it. For this thesis, the properties would be those that were
defined/discussed in the previous chapters e.g., Pearson’s correlation (ρp), Spearman’s cor-
relation (ρs), order asymmetry (AO), directional asymmetry (AD), copula entropy (H) etc.
Another purpose of this chapter is to demonstrate how changes in time series’ behavior are
linked to the shape of various measures in space-time. The measures point out that some
aspect of the time series have changed but they cannot explain why exactly.

It is assumed that for a property to be considered as an objective function in a time series
generator, it should be stable enough in time and space. If it is not, then that implies that
simulated time series are not very representative of the generating process behind the orig-
inal one and that they are an over-fit. It makes sense to impose such constraints on consid-
ered properties for simulation because time series generators are unaware of the generating
process. They only mimic a subset of its properties. In general, climate variables exhibit
persistent behavior over long periods of time or have little trend inside them as they are
influenced by processes that take place on a global scale. They can also respond in a drastic
manner to, say, an asteroid impact. Ideally, the simulated time series should show the same
type of variability in space-time as that of the reference.

It is should be noted that simulated time series using the methods developed in this thesis
have properties that are similar to those of the reference time series. As the earth’s climate
is permanently evolving, the problem that needs to be addressed next is that of including
information in the simulation process that takes such effects into account. As far as true
Ergodicity is concerned, it cannot be disputed that time series should be generated by ac-
counting for the possible effects of climate change in the simulation process. Nevertheless,
this does not render the new methods useless as it will be demonstrated that the variability
of various measures of the produced time series show similar patterns as those of the ob-
served to a large extent. Furthermore, the evaluation of the dependence structure of time
series using the newly developed metrics will show the evolution of properties in time if
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any exists. It should also be noted that effects of climate change can be easily evaluated
and incorporated into the generation of precipitation statistically as it is only related to the
atmosphere but doing the same for discharge is very difficult because changes in discharge
are due to changes in precipitation, river bed and land use or land cover etc. It is unlikely
that the information about the former are recorded for such long periods over study areas.

Finally, the following settings are used to demonstrate the persistence. The considered time
period of the data is from 1961 to 2015 at a daily scale. River discharge and point precip-
itation observed data in Neckar River catchment are used as the demonstration variables.
Various properties are computed for time periods of 1 and 26 years. In some cases, 5 and
10 year periods are also chosen for demonstration of the evolving behavior in time. Color
codes are used to identify a given year or a window of years wherever deemed necessary.
Hourly time series are not analyzed as they were too short in their lengths compared to the
daily series.

8.1 Auto-properties

Considering the daily discharge of the sub-catchment Enz in the study area for various time
windows, Fig. 8.1, 8.2 and 8.3 show the auto-properties of the time series for the time periods
of 1, 10 and 26 years respectively. The y-axes limits are kept same for both to show the
relative reduction in variance of properties over the longer period of time. ρs and H show
a relatively higher stability over time even at the 1 year time window. In comparison, AO,
AD and to some extent ρp show a much larger variability. An interesting thing to note
here about AO is that it varies much more for smaller lead steps as compared to the other
properties. More precisely, it shows that at smaller lead steps the relative densities in the
copulas of high-highs and low-lows can fluctuate to a very large degree from year to year
but as the number of lead steps grow larger, it becomes more negative on average up to a
certain limit (about a month here). This in turn means that low flows periods in this time
period persist much longer than high flow periods, which makes sense as high values do not
persist as long as low values in time at a given point. Furthermore, AD starts with negative
values consistently even for the 1 year window case. Signaling that low-highs occur more
often than high-lows. As the number of lead steps grows larger, this distinction disappears
to a certain extent but the values of AD do fluctuate around -0.2. H shows a much more
consistent behavior for the larger lead steps comparatively, especially looking at the 1 year
window case. Its slope plateaus around the 10 lead step mark, after which it changes rather
slowly but never touches 1 i.e., the case of full independence. This is an important aspect
of discharge here i.e., the memory of the sub-catchment is quiet long i.e., it can hold a large
amount of water and release it very slowly. Both ρp and ρs do not reach a value of zero even
in one month but H does reach an almost constant value. This could be an indication that
after a lead steps of about 10 days, no meaningful information can be extracted from the
data. Another very important aspect that should be kept in view is that the value of H is
copula bin size dependent. A finer resolution copula will convey different information than
a coarser one. Concerning the evolution of dependence in time, Fig. 8.2 (10 year windows)
shows that there is indeed some evolution in time when moving from one decade to the
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next. For example, ρs shows a decrease of strength in the smaller lags (from 1 day to two
weeks). ρp seems to be very similar for all the decades apart from 1961-1970 which has
unusually high strength. AO shows no consistent pattern but a definite transition for AD
can be observed in that it is decreasing as the time goes by. Similar to ρs, H also shows
a decrease in dependence as the time continues to pass. Fig. 8.3 shows a binary view of
the relative dependence strength between the past (1961-1986) and recent (1987-2012) years.
Here again, we see a relative decrease in the strength of all the metrics in the recent years.
Exact cause(s) of this behavior needs investigation which is out of the scope of this thesis.

For lead steps of 1, 7, 14, 28 days Fig. 8.4 and 8.5 show the Cumulative power spectrum of
auto-order asymmetry (CMPOWAO AUTO). Again, a considerable variability for the 1 year
window case can be observed. The contribution of the annual cycle of AO(t) varies to a
large degree. The strengths of the rest of the signals do not show the same behavior. This
makes sense as the low flow seasons are time dependent and repeat every year at, more or
less, the same time. For the 26 years window case, the two curves are very similar except for
the strength of the long term cycles (greater than 1 year). This could be a signal of a trend
in one of the time series where it is stronger. Ideally, the strength of these long term signals
should be zero or very little at least. However, they cannot be exactly zero as that would
mean that the weather repeats itself every year. Their increasing relative strength points to
non-stationarity, which is generally undesired when working with time series but it cannot
be avoided in observed time series. Such an information draws attention to the fact that ei-
ther the climate or the catchment state (say land-use) are changing in time. This means that
the rainfall-runoff modelers may have to take into account those model parameters that con-
trol evapotranspiration and update them accordingly. Another reason for these long term
signals could be that the timing of low flows have shifted in time either forwards or back-
wards. For the past time period (1961-1986) it can be seen that that strength of the cycle at
the period of ca. 1 decade is much larger than that of the recent period (1987-2012) and the
strength of the annual and the 5-year cycle of the recent time period is higher than that of
the past. This signifies that potential synchronization of the shorter frequencies have become
larger in the recent time which in turn means that the periods of droughts and floods have
shorter durations but occur relatively frequently. To assess whether this behavior is signif-
icant in space-time, the same test could be done for nearby rivers. Finally, Fig. 8.6 and 8.7
show the Cumulative power spectrum of auto-directional asymmetry (CMPOWAD AUTO).
These show a completely different behavior than their counterpart. Here, a larger variabil-
ity contributed by the higher frequencies can be observed. This makes sense as AD is more
sensitive to high-lows and low-highs, which are rather abrupt in nature compared to the
smoother low-lows and high-highs. For the lead step of 1, the contributions of high fre-
quencies can be observed to be significantly larger compared to the case of say 28 lead steps
where the greater contribution to variability is by the frequencies having periods of 10 to
100 time steps. Unlike CMPOWAO AUTO, CMPOWAD AUTO shows a change in shape as
the number of lead steps increases. A very small annual cycle can be seen as the number
of lead steps increases and almost no long term frequencies when observing the 26 year
window curves. Another important matter to note is that recent times (1987-2012) show rel-
atively more strength in the very high frequencies (10 days and lesser) and less in the longer
ones (10 to 100 days). More strength in higher frequencies is linked to fast rising and recess-
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ing peaks. This could be due to climate change as the number of snowy days decrease, more
precipitation reaches the streams instead of being slowly released via snow melt in winter
i.e., the time series are less smooth in recent times or at least they have more potential to be
so. This can be further investigated in the future.

From all the figures, it can be concluded that as the length of the time period used to com-
pute a given property increases, so do the properties become more similar for the various
windows. Most of the measures become very similar for the longest period of 26 years but
do not match exactly. This makes sense as the catchments and climate are undergoing con-
stant change and the weather never repeats itself exactly. The same can be said for the state
of a catchment.

8.2 Cross-properties

This thesis is about the spatial aspects of extremes, hence a more detailed view is shown
as compared to the auto-case. For daily discharge, a total of five headwater sub-catchments
are used to demonstrate the spatial variability. These gauges are Kirchentellinsfurt (Neckar),
Vaihingen (Enz), Untergriesheim (Jagst), Stein (Kocher) and Plochingen (Fils) (note the or-
der). Fig. 8.8, 8.9 and 8.10 show the d-asymmetries for the time windows of 1, 10 and 26
years respectively. d-dimensional order asymmetry (AOd

j ) show no significant difference in
their relative behavior because the j-th component of eachAOd

j shows a very similar spread.
Only the decade of 1971-1980 in the Fig. 8.9 shows behavior that is out of place as compared
to the rest. The cause(s) for this needs further investigation. It should be kept in view that
in higher dimensions, the asymmetries do not lend themselves to easy interpretation. Only
their relative behavior to each other can be evaluated. d-dimensional directional asymme-
try (ADd) provides information about the relative timing of the low-highs and high-lows
in various time series. In other words, which catchment reacts the most abruptly or the
fastest and which the slowest. Plochingen (Fils) (at index 4) has the overall largest posi-
tive values followed by Stein (Kocher) (at index 3), Kirchentellinsfurt (Neckar) (at index 0),
Untergriesheim (Jagst) (at index 2) and then Vaihingen (Enz) (at index 1). Relating this to
the map of the catchment (Fig. 4.2), it could be stated that discharge drivers (i.e., precipi-
tation) enter from the South-East of the catchment which leads to such a shift in timing of
the events. Furthermore, Plochingen (Fils) has an area of about 700 km2, which is consid-
erably smaller than the rest. This small size also gives it the lead in the reaction times to
precipitation events.

Fig. 8.11 shows the d-dimensional marginal cumulative periodogram (CMPOW d
p ) while

Fig. 8.12 shows the d-dimensional grade cumulative periodogram (CMPOW d
s ) for various

time windows. Both the multivariate periodograms show that the combined variability is
mostly dominated by the annual cycle in the long term and approach equal values as the
time windows grow in size. For the smaller windows, there appears to be years where the
peaks of the stations were potentially likely to be synchronized. Fig. 8.13 and 8.14 show
the d-dimensional copula order asymmetry cumulative periodogram (CMPOW d

AO) and d-
dimensional copula directional asymmetry cumulative periodogram (CMPOW d

AD). Here, a
much larger difference between the spectra can be observed. CMPOW d

AOs show practically
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Figure 8.1: Various auto-properties of daily discharge for every 1 year window.
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Figure 8.2: Various auto-properties of daily discharge for every 10 years window.



112 Persistence of Spatio-temporal Properties

Figure 8.3: Various auto-properties of daily discharge for every 26 years window.
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Figure 8.4: Various CMPOWAO AUTO of daily discharge for every 1 year window.
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Figure 8.5: Various CMPOWAO AUTO of daily discharge for every 26 years window.



8.2 Cross-properties 115

Figure 8.6: Various CMPOWAD AUTO of daily discharge for every 1 year window.
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Figure 8.7: Various CMPOWAD AUTO of daily discharge for every 26 years window.
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Figure 8.8: d-asymmetries of daily discharge for every 1 year window.



118 Persistence of Spatio-temporal Properties

Figure 8.9: d-asymmetries of daily discharge for every 10 years window.
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Figure 8.10: d-asymmetries of daily discharge for every 26 years window.
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no contribution in the frequencies with periods shorter than 1 year time. Also, there seems
to be a trend in time series as there exists a strength in frequencies longer than 1 year time
in some windows. Interestingly, all of them exhibit very similar behavior. Considering the
CMPOW d

AD, especially, for the longest windows, the directional asymmetry spectra show
considerable difference. Firstly, for the two 26 year series, the past time period (1961-1986)
has a considerably large power in the longest frequency while the recent (1987-2015) does
not. Secondly, the recent has a significant contribution in the annual cycle. Apart from
that, some contributions from the high frequencies can be observed as well. This could be
an indication of the evolving catchments or more probably that the direction of prevailing
winds that bring rain has changed. In the recent case, there exists the synchronization of
peaks in the annual cycle mainly, while in the other a very large shift in the timings of the
peaks due to the very large frequency can be seen.

Fig. 8.15 and 8.16 show the d-dimensional cumulative marginal correlation periodogram
(CMCORRd

p) and d-dimensional cumulative grade correlation periodogram (CMCORRd
s)

respectively for the same time periods but only considering the frequencies whose periods
are less than one year time. Again, very similar patterns compared to previous cases can
be observed. Most of the contribution is coming from the longer frequencies, while the
shorter ones seem to have no power. CMCORRd

s appears to be much more stable than
CMCORRd

p. This mismatch is directly related to amounts of rainfall where the relative
order stayed the same but magnitudes changed over time. Furthermore, a very interesting
pattern can be observed. Namely, that the power in the shorter cycles increased for the more
recent times in terms of the combined behavior for both CMCORRd

p and CMCORRd
s . This

can be clearly seen in the 10 and 26 year time windows. It could be an indication that lengths
of the hydrological years fluctuate more for the present than for the past.

Fig. 8.17, 8.18 and 8.19 show the d-dimensional cumulative order asymmetry correlation
periodogram (CMCORRd

AO) and d-dimensional cumulative directional asymmetry corre-
lation periodogram (CMCORRd

AD) for the time windows of 1, 10 and 26 years respectively.
These also show considerable variability compared to CMPOW d

AO and CMPOW d
AD. It

is curious to note that the contribution of frequencies shorter than the annual cycle when
considering the phases is much more pronounced here. For the case of CMPOW d

AOs, the
half-year cycle shows a significant contribution while it is missing for CMPOW d

AD when
looking at the 10 and 26 year time windows. Also, the overall value is much smaller because
the contribution of frequencies up to and including the annual cycle is not shown. Similar
to CMPOW d

AO and CMPOW d
AD, it can be stated with confidence that the overall timings

of values relative to each other are largely synchronized on larger time periods. In terms of
climate change, a consistent pattern cannot be seen on the decadal scale but only for the 26
year windows. There, it can be observed that the strength of the recent times (1987-2012)
compared to the past (1961-1986) has increased for the CMCORRd

AO. This signifies that for
each spectrum, the distance of points in the d-dimensional space from the respective line
through the hypercube has more correlation in time as compared to the past which is sim-
ilar to what was observed previously for the case of CMCORRd

s . However, CMCORRd
AD

shows that although the final value that both the recent and past curves obtain is very close,
the relative contributions in the long and short frequencies is not the same. For the recent
times, it the contributions in the short frequencies are larger. This signifies that the com-
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Figure 8.11: CMPOW d
p of daily discharge for various time windows.
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Figure 8.12: CMPOW d
s of daily discharge for various time windows.
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Figure 8.13: CMPOW d
AO (top five) and CMPOW d

AD (bottom) of daily discharge for every 1
year window.
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Figure 8.14: CMPOW d
AO (top five) and CMPOW d

AD (bottom) of daily discharge for every
26 years window.
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Figure 8.15: CMCORRd
p of daily discharge for various time windows. Note that only the

contribution of frequencies of periods less than one year time are considered.
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Figure 8.16: CMCORRd
s of daily discharge for various time windows. Note that only the

contribution of frequencies of periods less than one year time are considered.
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bined behavior of the time series is noisier in the recent period than that in the past. Once
again, the cause of this could be due the decreasing number of snowy day as the average
temperature of the study area is increasing over time. It would be interesting to investigate
the exact cause(s) for this behavior.

Coming to matter of main interest, Fig. 8.20 shows the distribution of spatial sums for var-
ious windows of time. It is interesting to note that the sums of the highest values show a
considerable difference even for the longer periods. This highlights the difficult problem of
extrapolation. Generally, as the extremes become larger, they lose correlation and tend to a
constant value, but here the slope is still positive. Meaning that they still have considerable
dependence and the even larger values may take place in the future. No consistent increas-
ing or decreasing pattern can be observed for the time windows of 1, 5 and 10 years. Only
the 26 year windows show a significant difference. The recent period ( 1987-2012) compared
to the past (1961-1986) had more combined discharge but only in the upper tail i.e., proba-
bilities less than 1 in a 100 days. This could also be related to less snowy days somehow and
requires further investigation.

In order to see the difference of dependence of distinct sets of data, daily precipitation from
the study area is used as a demonstration variable. Discharge cannot be used in this instance
as the gauges are too near to each other and also that discharge is an integrated output of
an area whereas precipitation is only at points. To do so, three sets having five precipitation
time series each are used. Two sets for stations that are near to each other (A and B) while
the other is of stations that are far away from each other (C). Each point in the sets have a
mean distance 39, 32 and 161 km with its neighbors respectively. The description of these
gauges was given in Chapter 4 Section 4.1 and Fig. 4.3. The hypothesis is that the nearer
the stations, the higher their overall correlation is. Due to the large incidence of zeros, their
overall form is different compared to that of discharge. Fig. 8.21 shows theCMPOW d

p of the
three multivariate series for the same length in time of 55 years. All three behave differently
in that the spectra have contributions coming from different sections of the frequencies.
B starts with low values in the long frequencies but over takes both A and C by having
consistently higher magnitudes in higher frequencies. This signifies that B has large events
that may synchronize in time but these events may take place at any time of the year. A
and C show a different behavior in that there exists the potential that the events that take
place in time have a relationship with the annual cycle. Fig. 8.22 shows CMPOW d

s for the
same setting. Here, a different behavior can be observed in that B now shows an annual
cycle in the copula domain and all show a significant half-year cycle as well. Moreover, the
contribution of high frequencies is much less compared to CMPOW d

p . This points to the
fact the in the marginal domain, abrupt large values occur more often which means that
the precipitation has a long upper tail that distorts the power spectrum at each location
much more compared to CMPOW d

s where the effect of tails is not so pronounced. Having
CMPOW d

p and CMPOW d
s is not enough of a constraint to decide whether a given set of

variables behave consistently in space as it does not take the relative timing into account in
a realistic manner, only the potential maximum synchronization can be extracted.

Fig. 8.23 and 8.24 show the CMCORRd
p and CMCORRd

s respectively for the same time
period but only considering the frequencies whose periods are less than one year time. As
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Figure 8.17: CMCORRd
AO (top five) andCMCORRd

AD (bottom) of daily discharge for every
1 year window.
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Figure 8.18: CMCORRd
AO (top five) andCMCORRd

AD (bottom) of daily discharge for every
10 years window.
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Figure 8.19: CMCORRd
AO (top five) andCMCORRd

AD (bottom) of daily discharge for every
26 years window.
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Figure 8.20: Distributions of spatial-sums of daily discharge for various windows.
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Figure 8.21: Comparison of CMPOW d
p of daily precipitation for three sets of stations.

Figure 8.22: Comparison of CMPOW d
s of daily precipitation for three sets of stations.
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the spectra ofA andB grow close to each other whileC spectra stay much more below them.
This is inline with the assumption that points that are farther from each other should be less
correlated than the nearer ones. Finally, Fig. 8.25 shows the daily spatial-sum distribution
of the three sets. Similar to discharge, the nearer stations have bigger maxima compared
to the farthest one. More importantly, the largest sums do not decorrelate and keep on
increasing. Even for the stations that are 161 km apart from each other on average. This
signifies that, same as discharge, in the future even larger sums are potentially possible. This
is an important aspect that the simulated time series should also reproduce. This aspect will
be evaluated for both discharge and precipitation in the chapter of Results.

Figure 8.23: Comparison ofCMCORRd
p of daily precipitation for three sets of stations. Note

that only the contribution of frequencies of periods less than one year time are
considered.
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Figure 8.24: Comparison ofCMCORRd
s of daily precipitation for three sets of stations. Note

that only the contribution of frequencies of periods less than one year time are
considered.

Figure 8.25: Comparision of the distributions of spatial-sums of daily precipitation for three
sets of stations.
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So far, the variables precipitation and discharge, methods to simulate them as point time
series and measures to evaluate their spatio-temporal behavior were described. Here, the
results of all existing and new methods are shown, discussed and evaluated. Multi-site daily
discharge is shown first and then daily precipitation. The goal is to find properties that are
important to be reproduced by the simulated time series in order for them to be deemed
usable in terms of representing extreme values.

Afterwards, results of a somewhat more practical case are presented. Precipitation, tem-
perature and potential evapotranspiration are simulated simultaneously that later serve as
inputs for the HBV. The properties of resulting model discharge are then evaluated. Addi-
tionally, this also serves as a validation for the plausiblness of the simulated model inputs.
The hypothesis being that, if the simulated series used as model inputs produce output dis-
charge that is similar to that by using the observed series as inputs then it can be stated with
confidence that these series do incorporate realistic properties and can be, therefore, used to
test scenarios of extreme cases.

Finally, the results of the hourly precipitation simulations are presented. This case of finer
temporal resolution was investigated additionally, apart from the daily, to evaluate whether
there was really a difference in the capabilities of the algorithms when presented with inputs
that are predominantly composed of zeros.

9.1 Selection of time series for simulation

In Sec. 4.1 the precipitation and discharge gauges that are available in the study area were
shown. Given the large number of them, not all could be simulated. Therefore, subsets
depending on various criteria were selected for various regions to demonstrate the perfor-
mance of all the simulation methods. These are detailed below.

For daily discharge, five groups of stations in the Neckar catchment for a time period of
55 years (1961-2015) each were selected. The groups included small and large head water
sub-catchments whose surface areas varied between 100 and 2300 km2.

For daily precipitation, four groups of five stations were selected from each corner of BW for
the time period of 55 years (1961-2015) each such that their mean distance was about 30 to 40
km. For the case of far away stations, one group of five stations was selected such that their
mean distance was about 161 km from each other for a time period 55 years (1961-2015). The
description of these gauges was given in Chapter 4 Section 4.1 and Fig. 4.3.

135
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For hourly precipitation, four groups of five stations from different corners of BW were
selected for the time period of 6 years (2010-2015) such that their mean distance was about
30 to 40 km. One group of stations that were far away from each other (mean distance of
about 160 km) was also selected. Only the case of the nearer stations is presented. The
description of these gauges was given in Chapter 4 Section 4.1 and Fig. 4.4.

One hundred time series were simulated for each setting with 10,000 optimization iterations.

9.2 Objective functions used to simulate time series

In total, seven algorithms were described in Chapter 5 that may be used to simulate time
series. A large number of combinations was possible given the number of methods and the
objective functions. As it is not possible to show the results using all the methods, only a
subset for each method are presented. Following are the details for each method.

The Amplitude Adjusted Fourier Transform (AAFT), Iterative Amplitude Adjusted
Fourier Transform (IAAFT), Multivariate Iterative Amplitude Adjusted Fourier Trans-
form (MIAAFT), Modified Multivariate Iterative Amplitude Adjusted Fourier Transform
(MMIAAFT), Iterative Amplitude Adjusted Fourier Transform - Pearson’s and Spearman’s
correlation 1 (IAAFT-PSC1) and Iterative Amplitude Adjusted Fourier Transform - Pear-
son’s and Spearman’s correlation 2 (IAAFT-PSC2) do not allow for simulation of time series
that keep the required properties in a manner similar to Phase Annealing (PA), depending
on the situation the resulting series can either be accepted or rejected. AAFT was the
fastest method and needed only a single iteration to produce a time series that also had the
cross-correlations to some extent. IAAFT required a slightly more but converged usually
within 10 iterations to a solution where no improvement of the power spectrum could be
achieved for the simulated series, here no cross-correlations were conserved. MIAAFT is
very similar to IAAFT, the only difference was that the difference of the phase spectra were
also conserved i.e., cross-correlations. It also converged within 25 iterations. MMIAAFT
also took similar time.

The two variants of IAAFT-PSC, on the other hand required more computation as the αs for
each series had to be optimized. The objective functions used for these were the Marginal
Cumulative Periodogram (CMPOWp) and Grade Cumulative Periodogram (CMPOWs)
and the pairwise cross-CMPOWp and CMPOWs. All entropy related properties were not
included, as they took too much time to compute on the given computing systems.

For PA, the most flexible algorithm among all of them, two settings were used. One where
the lumped versions (introduced in Chapters 3 and 6) of the objective functions and the
other where both the lumped and spectral versions were used. The two cases are referred to
as Lumped and Spectral respectively in the figures. Here too, entropy related properties were
not included while optimizing.

Finally, the measures described in Chapter 7 were only used as metrics to evaluate the qual-
ity independently. Here, only the results of d-dimensional cumulative marginal correlation
periodogram (CMCORRd

p) and d-dimensional cumulative grade correlation periodogram
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(CMCORRd
s) are presented. All the other were demonstrated for observed and the IAAFT

cases in the Chapters 7 and 8 already.

9.3 Quality assessment of simultaneous extremes

To assess whether the simulations have the the same characteristics of simultaneous ex-
tremes as those of the reference, two independent (i.e., not considered during optimization
whatsoever) tests are performed. One being the comparison of the distributions of the sums
(spatial-sums) while the other being conditional probabilities of multuplets and their sub-
sets bringing extreme values of a given or higher return period. These are described below.

Extreme flows may be a result of high precipitation at a single or multiple locations and
that also for a longer duration. All the three possibilities are investigated as follows. First,
the distributions of the sums of precipitation or discharge using all series for each time
step with their original resolution i.e., daily or hourly. The second case is where each time
series is aggregated to higher temporal scales e.g., daily to weekly or hourly to six-hourly
and then series of each point are evaluated independent of the others. The third being the
spatial-sums of the temporally aggregated series of all series.

For evaluating the conditional probabilities of multuplets of series, the test is conducted in
the following manner. For a given multivariate series of M stations, A sized combinations
are drawn out of it. Then, the conditional probabilities of all the series having values of re-
turn periods or greater versus only a subset of them having the extreme value for the same
return period are compared. For example consider five discharge time series having a length
of 100 years each for the same time period. Select all the time steps where at least four of
them have a flood of a return period of one year or higher and then among these time steps
only those where all five of them have floods with return periods of one year or more. The
probability of the second case will always be less than or equal to the first case (in general
lesser). These probabilities are compared for reference and simulations. Ideally, the simu-
lations should produce a cloud that contains the reference. If the reference is significantly
away from the cloud of simulations, then it can be concluded that the simulations are not
very representative of the reference. Otherwise, they are accepted. The problem with such
a test is that as the size of the combinations to test grows, the number of points that can be
compared reduces very fast. For this reason, the results are shown for cases where combi-
nations of four stations were drawn out of the five and then the probabilities are compared
for the case when the four bring a value of a return period of two years or higher versus the
case when only three of them do the same for the daily series while for the hourly the return
period of six months is used due to the shorter data length.

9.4 Daily discharge

Fig. 9.1 shows the auto-ρp functions for time series of a randomly selected gauge. AAFT
shows a larger loss as compared to the others. IAAFT-PSC2 and PA (Spectral) also show
a small bias. The rest perform acceptably. Fig. 9.2 shows the auto-Spearman’s correlation
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functions (auto-ρs) functions. Again, AAFT shows the largest loss comparatively. IAAFT
MIAAFT and MMIAAFT also show a much larger bias in that they could not simulate series
that have higher correlations consistently. PA shows the best results but it could seen as
over-fit. In that regard, IAAFT-PSC2 seems to show a much more realistic variance. Coming
to copula order asymmetry (AO) and copula directional asymmetry (AD) (Fig. 9.3 and 9.4
respectively), none perform in an acceptable manner but only get closer to the reference.
IAAFT-PSC2 does get very close, but still shows a bias for AO.

Pairwise cross-ρp, ρs, AO and AD are shown in Fig. 9.5, 9.6, 9.7 and 9.8 respectively for the
various methods. It should be noted that IAAFT was run with cross-correlation conservation
for the annual and seasonal cycles only, which are quiet large for the case of discharges here,
that consequently resulted in significant cross-correlations. The rest of the methods perform
well. It is interesting to note that the cross-AO and AD by AAFT are very close to zero
compared to the others, it is what is expected from a generator that is supposed to produce a
symmetric dependence. Another important aspect to notice is that MIAAFT and MMIAAFT
overestimate the cross-ρp and AO consistently with a few exceptions. This has bearing on
the extremes synchronizing too much in space, which will certainly lead to larger sums at
any given time step compared to the reference.

All performed acceptable for CMPOWp (Fig. 9.9). As AAFT did not conserve the auto-
ρs, its CMPOWs (Fig. 9.10) did not perform well either. The simpler methods show large
biases for the case of CMPOWAO AUTO (Fig. 9.11) for the lead of 1 step but all perform well
for the CMPOWAD AUTO (Fig. 9.12). All these have implications for the overall dynamics,
but their effect on the behavior of the extremes have to be independently evaluated (shown
next).

For the various methods Fig. 9.13 and 9.14 show the CMCORRd
p and CMCORRd

s spec-
tra respectively. Note that only the contributions from the frequencies whose periods are
less than one year time are considered here. Important differences can be observed. For
CMCORRd

p, AAFT lacks the long term frequency strength but has a greater strength in the
higher frequencies. IAAFT has little strength in the high frequency range. IAAFT-PSC2 has
high frequency strength that is even greater than the reference while PA (Lumped) behaves
in a manner similar to that of IAAFT but shows more loss. The rest show good performance.
Here, it can be foretold already the the behavior of simultaneous extremes i.e., all the meth-
ods that perform well in the high frequency range will also produce results that are closer
to those of the observed.

Coming to the most important metric which are distributions of the sums of extremes values,
Fig. 9.15 shows them for the various methods using the sums of the daily discharges for all
the five considered stations. The figures are made in a way to highlight the upper 10% of
the distributions. Excluding IAAFT (mean reduction of about 40%), all of them show no
strong biases compared to the observed case. Fig. 9.16 shows the sums of the weekly-mean
distributions. Again, no bias even for IAAFT but a problem can be seen with IAAFT-PSC2
which increases the values by about 30%. Similarly, Fig. 9.17 shows the distribution of
the weekly-mean of one randomly selected station among the five, it also shows no clear
bias for any of them except IAAFT-PSC2. Here, an important conclusion ca be drawn i.e.,
the overall cross asymmetries are not related to the simultaneous extremes. For example,
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Figure 9.1: Pearson auto-correlation functions using various methods for daily discharge. In
red are those of the observed while the black are using simulation.
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Figure 9.2: Spearman auto-correlation functions using various methods for daily discharge.
In red are those of the observed while the black are using simulation.
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Figure 9.3: Auto-order asymmetry functions using various methods for daily discharge. In
red are those of the observed while the black are using simulation.



142 Results

Figure 9.4: Auto-directional asymmetry functions using various methods for daily dis-
charge. In red are those of the observed while the black are using simulation.
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Figure 9.5: Pairwise Pearson cross-correlations using various methods for daily discharge.
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Figure 9.6: Pairwise Spearman cross-correlations using various methods for daily discharge.
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Figure 9.7: Pairwise cross-order asymmetries using various methods for daily discharge.
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Figure 9.8: Pairwise cross-directional asymmetries using various methods for daily dis-
charge.
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Figure 9.9: CMPOWp for various methods for daily discharge. Red are observed while
black are the simulations.
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Figure 9.10: CMPOWs for various methods for daily discharge. Red are observed while
black are the simulations.
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Figure 9.11: CMPOWAO AUTO with a lead step of 1 for various methods for daily discharge.
Red are observed while black are the simulations.
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Figure 9.12: CMPOWAD AUTO with a lead step of 1 for various methods for daily discharge.
Red are observed while black are the simulations.
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Figure 9.13: CMCORRd
p using various methods for daily discharge. Red are observed while

black are the simulations.
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Figure 9.14: CMCORRd
s using various methods for daily discharge. Red are observed while

black are the simulations.
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AAFT showed practically, zero cross asymmetries while IAAFT did have asymmetries that
had more variability comparatively. MIAAFT and MMIAAFT had pairwise cross-ρp values
that were overestimated, and their daily spatial-sum distributions show relatively larger
values as well. This means, that the extremes are more related to the measures defined on
the marginal’s domain rather than the rank domain. Another difference to notice is that all
methods except for IAAFT slightly overestimate the spatial-sums, but not all overestimate
the cross-ρp and all except AAFT do overestimate the auto-ρp. This all points to the fact that
the spatial-sums are strongly related to both auto- and cross-ρp.

Fig. 9.18 shows the conditional probabilities of cases where at least three out of four stations
produced a value of a return period of two year or more versus the case where all of them
produced the same. Here, it can be clearly seen that the methods that consistently produced
higher spatial-sums also consistently overestimate the conditional probabilities compared
to observations. AAFT and IAAFT-PSC1 perform very well with PA (Lumped) being the
worst.

9.5 Daily precipitation

Fig. 9.19 shows the auto-ρp functions for time series of a randomly selected gauge. All
perform acceptably but a slight underestimation for AAFT and some overestimation using
MIAAFT and MMIAAFTis visible. Fig. 9.20 shows the auto-ρs functions. Similar to dis-
charge, AAFT shows a larger loss as compared to the others. IAAFT and MIAAFT also
suffers from a small bias and so does PA. The rest perform acceptably. Coming to AO and
AD (Fig. 9.21 and 9.22 respectively), all perform in an acceptable manner with the excep-
tion of AAFT. IAAFT-PSC1 overestimatesAO slightly. All methods were unable to reach the
very small AD of the first few lead steps.

Looking at the pairwise cross-properties (Fig. 9.23, 9.24, 9.25 and 9.26), AAFT shows some
underestimation for ρp. MIAAFT and MMIAAFT similar to discharge, also show strong
bias towards higher values while the rest perform as well. IAAFT was run in a setting to
keep only the cross-correlations of the annual and seasonal cycles, as they are very small for
precipitation, their effects are not observable. Only IAAFT-PSC1 shows good performance
for the cross-ρs. For cross-AO, all methods show bias but IAAFT-PSC1 performs better than
the rest. For the case of cross-AD, MIAAFT performs the best. MMIAAFT and IAAFT-PSC1
do stay close to the reference more than the others.

Similar to discharge, all performed well for CMPOWp (Fig. 9.27). As AAFT did not
conserve the auto-ρs so much, its CMPOWs (Fig. 9.28) did not perform well either. No
large biases for the case of the cumulative power spectrum of auto-order asymmetry
(CMPOWAO AUTO; Fig. 9.29) for the lead of 1 step can be observed and all perform well for
the Cumulative power spectrum of auto-directional asymmetry (CMPOWAD AUTO; Fig.
9.30). These results show, in contrast to daily discharge, that precipitation is more suited for
simulation with these algorithms due to its more Gaussian-like behavior in space-time.

For the various methods, Fig. 9.31 and 9.32 show the CMCORRd
p and CMCORRd

s spectra
respectively. Note that only the contributions from the frequencies whose periods are less
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Figure 9.15: Distribution of daily spatial-sums of discharge for five large head water catch-
ments in the study area. Red are observed while black are the simulations.
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Figure 9.16: Distribution of weekly spatial-sums of discharge for five large head water catch-
ments in the study area. Red are observed while black are the simulations.
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Figure 9.17: Distribution of weekly mean discharge for randomly selected head water catch-
ment in the study area. Red are observed while black are the simulations.
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Figure 9.18: Conditional probability comparisons for daily discharge of three out of four
have values with return periods of two or greater (horizontal axis) versus all of
them having values equal or greater than two years (vertical axis) at the same
time step.
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Figure 9.19: Pearson auto-correlation functions using various methods for daily precipita-
tion. In red are those of the observed while the black are using simulation.
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Figure 9.20: Spearman auto-correlation functions using various methods for daily precipi-
tation. In red are those of the observed while the black are using simulation.
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Figure 9.21: Auto-order asymmetry functions using various methods for daily precipitation.
In red are those of the observed while the black are using simulation.
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Figure 9.22: Auto-directional asymmetry functions using various methods for daily precip-
itation. In red are those of the observed while the black are using simulation.
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Figure 9.23: Pairwise Pearson cross-correlations using various methods for daily precipita-
tion.
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Figure 9.24: Pairwise Spearman cross-correlations using various methods for daily precipi-
tation.
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Figure 9.25: Pairwise cross-order asymmetries using various methods for daily precipita-
tion.
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Figure 9.26: Pairwise cross-directional asymmetries using various methods for daily precip-
itation.
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Figure 9.27: CMPOWp for various methods for daily precipitation. Red are observed while
black are the simulations.
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Figure 9.28: CMPOWs for various methods for daily precipitation. Red are observed while
black are the simulations.
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Figure 9.29: CMPOWAO AUTO with a lead step of 1 for various methods for daily precipi-
tation. Red are observed while black are the simulations.
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Figure 9.30: CMPOWAD AUTO with a lead step of 1 for various methods for daily precipi-
tation. Red are observed while black are the simulations.
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than one year time are considered here. Similar to discharge, tor the very high frequency
range (greater than 10 days), all methods show good synchronization for CMCORRd

p.
As expected, IAAFT diverges away from the reference in the upper range by staying flat.
On the other hand, comparing to discharge, there are cases where both CMCORRd

p and
CMCORRd

s show the opposite behavior. For example, except for PA (Spectral), IAAFT-
PSC1 and IAAFT-PSC2, a considerable offset between the two curves for each method is
present. This points to the problem of the older simulation methods simulating only one
type of correlation correctly but not the other i.e., adding an offset between the two. The
newer methods seem to circumvent this to a large degree. Finally, the contributions in the
high frequency range are reproduced well by all methods except for IAAFT.

Regarding the distributions of the upper tails, similar to discharge, it can be observed (Fig.
9.33) that the daily spatial-sum distributions using all the methods are acceptable. There are
biases though. MIAAFT, MMIAAFT and to some extent IAAFT-PSC2 show bias towards
larger values. AAFT, IAAFT-PSC1 and PA (Spectral) show very good agreement with the
reference. As IAAFT was run without conserving the cross-correlations, it shows that the
sums are reduced by almost 60% on average. This also serves as a check. The distribution of
the spatial-sum (Fig. 9.34) of the weekly series show similar results i.e., the biases towards
higher values become much clearer. PA (Lumped) shows an additional problem of larger
values. Fig. 9.35 shows the distribution of the weekly-sum series of a randomly selected
station. All algorithms match the reference very well.

Fig. 9.36 shows the conditional probabilities of cases where at least three out of four stations
produced a value of a return period of two years or more versus the case where all of them
produced the same. Similar to daily discharge, AAFT and IAAFT-PSC1 perform very well
with IAAFT-PSC2, PA (Spectral) and (Lumped) not being far off. As expected, IAAFT has
no synchronization of the high values.

9.6 Daily model inputs

The case of using simulated model inputs is the most curious of them all. Firstly, lumped
HBV using spatially averaged values using observations for each time step were used to
calibrate it using the Differential Evolution algorithm. The NSE values varied from 0.82 to
0.9 for the 10 year’s case and from 0.8 to 0.88 for the 55 year’s case for the four considered
sub-catchments. Using the calibrated model parameters, the simulated inputs were now
used to produce new simulated discharge series (called model discharge from here onward).
The properties of these are compared to the properties of the series that were obtained using
the calibrations (using observed inputs). Furthermore, the observed discharge curves are
also shown along side for comparison (in green) in the figures. Unfortunately, PA could not
be used as it resulted in simulations times that were too long. Following are the results in
detail.

Fig. 9.37, 9.38, 9.39 and 9.40 show the auto-ρp, ρs, AO and AD functions for a randomly
selected gauge. All the measures show very good agreement with the reference and the ob-
served except for AD. It can be seen that the properties of the simulation and the calibrated
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Figure 9.31: CMCORRd
p using various methods for daily precipitation. Red are observed

while black are the simulations.
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Figure 9.32: CMCORRd
s using various methods for daily precipitation. Red are observed

while black are the simulations.
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Figure 9.33: Distribution of daily spatial-sums of precipitation for five stations in the study
area. Red are observed while black are the simulations.
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Figure 9.34: Distribution of weekly spatial-sums of precipitation for five stations in the study
area. Red are observed while black are the simulations.
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Figure 9.35: Distribution of weekly mean precipitation for randomly selected station in the
study area. Red are observed while black are the simulations.
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Figure 9.36: Conditional probability comparisons for daily precipitation of three out of four
have values with return periods of two or greater (horizontal axis) versus all of
them having values equal or greater than two years (vertical axis) at the same
time step.
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discharge are very similar but the observed values are very different when looking at lead
steps within one and three week windows. The model discharges lose their asymmetric be-
havior rather quickly afterwards but then plunge towards the observed values again. This
has nothing to do with the simulated inputs but rather the model itself. The model seems
to be lacking in the reproduction of the rising and recession limbs similar to those of the ob-
served consistently. This indicates that the model needs improvement in some of it aspects.
This behavior could also be catchment specific.

All the pairwise cross-properties all perform acceptably (Fig. 9.41, 9.42, 9.43 and 9.44). It is
strange to see that the ρp values tend to be underestimated but not overestimated as often.
This is most probably related to the simulated inputs. The methods that overestimated the
cross-ρp, also show some overestimation here but not as much as the precipitation. Such
a problem can also be linked to the fact that cross-asymmetries (pairwise) were also not
conserved so well for precipitation. Furthermore, observed data have some error in them
but the model discharge are more deterministic. This is an area where more investigation
can be carried out in the future.

Coming to the distributions of the upper tails, similar to discharge and precipitation, the
daily spatial-sum distributions (Fig. 9.45) using all the methods show acceptable results.
As IAAFT was run without conserving the cross-correlations, it shows that the sums are
reduced by almost 40% on average. The distribution of the spatial-sum of the weekly-mean
series show similar results (Fig. 9.46). Fig. 9.47 shows the distribution of the weekly-mean
series of a randomly selected station. Again, no major biases but a tendency to underesti-
mate at the higher aggregations can be observed. This is inline with reduced cross-properties
of the simulations, that manifest their effects when considering many values rather than
individual ones. It is noteworthy that the simulated discharges using simulated inputs are
larger than the observed values, even though the discharge from the original calibration was
consistently lower in the upper tails as compared to observed values and the distributions
of inputs are exactly the same everywhere.

Fig. 9.48 shows the conditional probabilities of cases where at least three out of four stations
produced a value of a return period of two years or more versus the case where all of them
produced the same. Here, all algorithms perform very similar and acceptable but it can be
observed that the observed probabilities are away from the simulations and the reference.

9.7 Hourly precipitation

So far, all the presented algorithms performed very similar for the distributions of extremes
of the daily cases. This lead to the question: Would these perform similarly for the hourly case
as well?. Unfortunately, PA could not be used as it took too long to converge. Furthermore,
only the more important properties are presented here.

For the various methods Fig. 9.49 and 9.50 show the CMCORRd
p and CMCORRd

s spectra
respectively. Note that only the contributions from the frequencies whose periods are less
than one year time are considered here. The differences in spatial coherence can be seen here
much more clearly. In the case of CMCORRd

p, IAAFT shows no correlation in frequencies of
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Figure 9.37: Pearson auto-correlation functions using various methods for daily model dis-
charge. In red are those of the reference calibration, green are the observed
while the black are using simulation.
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Figure 9.38: Spearman auto-correlation functions using various methods for daily model
discharge. In red are those of the reference calibration, green are the observed
while the black are using simulation.
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Figure 9.39: Auto-order asymmetry functions using various methods for daily model dis-
charge. In red are those of the reference calibration, green are the observed
while the black are using simulation.



9.7 Hourly precipitation 181

Figure 9.40: Auto-directional asymmetry functions using various methods for daily model
discharge. In red are those of the reference calibration, green are the observed
while the black are using simulation.
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Figure 9.41: Pairwise Pearson cross-correlations using various methods for daily model dis-
charge.
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Figure 9.42: Pairwise Spearman cross-correlations using various methods for daily model
discharge.
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Figure 9.43: Pairwise cross-order asymmetries using various methods for daily model dis-
charge.
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Figure 9.44: Pairwise cross-directional asymmetries using various methods for daily model
discharge.
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Figure 9.45: Distribution of daily spatial-sums of model discharge for five large head water
catchments in the study area. Red are the reference calibration, green are the
observed while black are the simulations.
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Figure 9.46: Distribution of weekly spatial-sums of model discharge for five large head wa-
ter catchments in the study area. Red are the reference calibration, green are the
observed while black are the simulations.
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Figure 9.47: Distribution of weekly mean model discharge for randomly selected head water
catchment in the study area. Red are the reference calibration, green are the
observed while black are the simulations.
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Figure 9.48: Conditional probability comparisons for daily model discharge of three out of
four have values with return periods of two or greater (horizontal axis) versus
all of them having values equal or greater than two years (vertical axis) at the
same time step. Red are the reference calibration, green are the observed while
black are the simulations.
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about one year to one day. Then, it steadily rises up and slows down till the final frequency
of about one hour. This results in it only achieving the very few largest spatial extremes
correctly while underestimating the rest. AAFT shows a much reduced form of the same
behavior. MIAAFT and MMIAAFT overestimate it, IAAFT-PSC1 both over-fits and over-
estimates it while only IAAFT-PSC2 seems to follow the reference without any problems.
The same is true for the case of CMCORRd

s , where the offsets of the older methods become
even larger. This points to the problem of under- and over-estimation of spatial extremes
that many of these methods will exhibit next.

Fig. 9.51 shows the spatial-sums of the hourly series. Here, the results are very mixed
results. AAFT shows only good results for the very high sums but has bias for the lower
ones. MIAAFT overestimates by a very large margin (over 100%) while MMIAAFT seems
to over-fit in some cases and matches the observed exactly while overestimating in the other
cases. This is due to the high values ofCMCORRd

p. IAAFT-PSC1 over-fits as well and shows
very little variability. IAAFT-PSC2 overestimates in general but not as much as the others.
The over-fitting by some of the methods is most probably due to the very high frequency of
zeros in the hourly data (more than 90%). Fig. 9.52 shows the spatial-sum of the resampled
daily series. Here, biases can be observed as well but much less than those for the hourly.
Fig. 9.53 shows the distribution of hourly precipitation resampled to daily for a randomly
selected station. Strangely, IAAFT shows the best performance here.

Fig. 9.54 shows the conditional probabilities of cases where at least two out of four stations
produced a value of a return period of six months or more versus the case where all of them
produced the same. The chances of all four having high values is zero but in exceptional cir-
cumstances, two stations may have some synchronization for the observed case. Similar to
the very high spatial-sums, MIAAFT and MMIAAFT seem to overestimate the probabilities
much more than the rest. AAFT and IAAFT-PSC2 perform acceptably. But it should be kept
in mind that these probabilities are very small and highly sensitive in general.

9.8 Summary and discussion of results

To summarize, the spatial-sum distributions using various settings of daily discharge series
show that, even though many properties such as the copula asymmetries for the auto- and
cross-cases are not kept exactly by the simulations, the behavior of extremes is well rep-
resented by enveloping the reference spatial-sum distributions. Daily precipitation shows
similar results to that of the daily discharge, but the conservation of various properties is
much better. Daily discharge using simulated model inputs show very good results for the
distribution of extremes and other properties as well. However, it should be mentioned that
as the spatial-sums of the discharges of the calibrated model were smaller than those of the
observed discharges, the results of models can only be used when their discharge distribu-
tions match those of the observed in an acceptable manner. One the other hand, the results
of the hourly precipitation show that only IAAFT-PSC2, performs better than the existing
ones in a significant manner but still the results are not as good as compared to the daily
simulations.
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Figure 9.49: CMCORRd
p using various methods for hourly precipitation. Red are observed

while black are the simulations.
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Figure 9.50: CMCORRd
s using various methods for hourly precipitation. Red are observed

while black are the simulations.



9.8 Summary and discussion of results 193

Figure 9.51: Distribution of spatial-sums of hourly precipitation for five stations in the study
area. Red are observed while black are the simulations.
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Figure 9.52: Distribution of resampled daily spatial-sums of hourly precipitation for five sta-
tions in the study area. Red are observed while black are the simulations.
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Figure 9.53: Distribution of hourly resampled to daily precipitation for a randomly selected
station in the study area. Red are observed while black are the simulations.
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Figure 9.54: Conditional probability comparisons for daily precipitation of two out of four
have values with return periods of six months or greater (horizontal axis) versus
all of them having values equal or greater than six months years (vertical axis)
at the same time step.
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Finally, the following question can be answered: which measures are to be conserved to have
better representation of the spatial extremes? One of the simulation methods, namely IAAFT,
had no cross-correlation preservation but had the annual and seasonal cycles locked like the
rest of the methods. It is the only method here that produced spatial-sums much lower than
the rest for all the considered variables. And what were the properties that it lacked? From
results it can be concluded that CMCORRd

p is the measure that consistently explains the
desired behavior. Furthermore, it is evident that biases in the auto- and cross-ρp functions
are also directly responsible for the tail behavior. The effects become clearer when look-
ing at higher temporal aggregations. Considering the case of AAFT, which does well for
the extremes despite having consistently lower cross-correlations and CMCORRd

p. It was
shown that it does keep (in this case) the correlation in the high frequency range. It should
be kept in mind that measures cannot be interpreted one-to-one for discharge (a continu-
ous distribution) and precipitation (a mixed distribution). An example could be of the daily
discharge, where PA (Lumped) shows some underestimation for the CMCORRd

p and pro-
duces spatial extremes that are slightly underestimated. Comparing this to the case of daily
precipitation, where AAFT shows an underestimation of the CMCORRd

p’s final value, but
does produce spatial extremes that envelop the reference very nicely. Contradicting infor-
mation? The answer to this is, most probably, that discharge is a result of a low-pass filter-
ing. High discharge values do not happen in isolation similar to precipitation. This means
that, comparatively speaking, discharge spatial extremes are more explained by some lower
frequencies as well.

Another important conclusion that can be drawn is that of simulating rainfall-runoff model
inputs rather than simulating discharge directly. Judging from the properties of the HBV
discharge compared to the reference and observed using simulated inputs, it is clear that
they are much better in the reproduction of properties compared to direct discharge sim-
ulation. This boils down to the fact that precipitation is much more random/chaotic in
nature as compared to discharge which is highly deterministic. Hence, using simulated
precipitation combined with a rainfall-runoff model provides a better chance at simulating
discharge series that have realistic properties in less computational time by needing less ob-
jective functions overall, even though temperature and potential evapotranspiration have to
be simulated simultaneously as well. It is not important to do so for simulating series that
better preserve simultaneous extremes only, but for other purposes that may require more
realistic discharge series. It goes without saying, the final results depend on how the model
and calibrations were, to begin with.

Finally, the simulation of the hourly precipitation is where the new variants shine
performance-wise. There, it can be clearly seen that IAAFT-PSC1 and IAAFT-PSC2 are the
winners in overall performance. This also bodes well for cases where finer temporal scales
hold more relevance such as those of small river along cities or small catchments in general
where time-of-concentrations are less than 24 hours.
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9.9 Simulation methods’ leader board

So, which method wins? What is recommended? The answer is: it’s depends! All methods
show biases in one form or another. AAFT performed very well overall for the distributions
of extremes and the conditional multuplet distributions of exceedence probabilities for the
daily case. It is surprising but true. Given the very little time that it takes to simulate, it
is recommended for the daily case while only conserving the individual time series power
spectra, cross phase spectra and (if possible) CMCORRd

p. Then, the next obvious choices
are IAAFT-PSC1 and PA (Spectral). MIAAFT or MMIAAFT are not recommended for the
cross-cases as the results show that they can significantly over-estimate in some cases. For
the daily auto-case, IAAFT-PSC2 is the method of choice as it was best able to conserve the
properties at a point. For the hourly precipitation case, IAAFT-PSC2 performs very well and
is recommended for multi-site simulation as it preserves the auto- and cross-properties of
the precipitation. Finally, PA is recommended when enough computational power and time
are available as it is able to produce series with arbitrarily specified properties.
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Existing and new methods to simulate time series using various methods were presented
in this thesis. The main aim was to have time series that have properties similar to a ref-
erence with more focus on those that define the occurrence of spatial extremes in an objec-
tive manner. The simulated series with acceptable quality allows for the ability to test any
system under scrutiny for many scenarios. It was demonstrated that the aspect of spatio-
temporal coherence is very important and has to be reproduced by the simulations. It was
also learned that precipitation and discharge properties are stable in space-time for long
time periods with some drift as the environment evolves. The Earth’s climate is under con-
stant change be it due humans or otherwise. The methods proposed and tested here are not
capable of taking such changes into account while simulating time series. Research in this
area exists and is a focus of many these days. In future, the findings of others can be incorpo-
rated into these methods. For example, the consensus is that increasing temperatures result
in more intense precipitation then, simply put, the outputs of the techniques here can be
post-processed by, yet, another algorithm to adjust them accordingly. Coming back to learn-
ing, it was also learned that properties that define the overall behavior of precipitation and
other variables in the copula domain do not have to be conserved exactly as they are only
partly responsible for the cases of spatial extremes. The cross-correlations were concluded
to be much more important though and even those need not be kept exactly the same. The
coherence of high frequency components was found out to be the main indicator of simul-
taneous extremes in the frequency domain. This makes sense, as big floods are a result of
the integration of the precipitation process over time where little deviations in timing can
be forgiven. The important point is that the high values at multiple locations maintain their
coherency similar to that of the reference. One more issue that was not addressed here was
that of the forecasting. This requires much more work; but in theory, the methods presented
here are capable of doing so. Techniques such as Random Mixing (Bárdossy and Hörning,
2016) exist already and can be used to have constrained realizations. A more realistic result
is to have three-dimensional fields where precipitation is simulated on a plane at each time
step while keeping coherence in space-time. The presented methods may be adopted to
produce such results but then the main challenge is evaluating the results at the unknown
locations and the other problem is that the spatial relationship at each time step may be
unique. This could be something that can be addressed by future research. Tools presented
here such as the d-dimensional cumulative marginal correlation periodogram (CMCORRd

p)
can be used to sample points randomly from fields and then compared with a reference.
Even the outputs of existing weather generators can be tested for these properties by the
various proposed measures.

The main contributions of this thesis, apart from the algorithms, are the newly introduced
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objective functions and properties. Properties such as the d-dimensional cumulative
periodogram (CMPOW d) and d-dimensional cumulative mean correlation periodogram
(CMCORRd) and the d-asymmetries and its spectral derivatives. These could be used as
standalone metrics similar to the Nash-Sutcliffe Efficiency to evaluate the results of any
time series generator. It is not important that the simulated series have metrics exactly
same as those of the observed but that they have negligible to little bias and show enough
variance in their results. One point that the author wants to emphasize is that all the
properties in the high dimensions (d-asymmetries) not be used as objective functions but
only as final independent evaluation metrics. This is because as the number of dimensions
grows larger while the number of points inside them remain the same, only a few points
have to be moved around to produce a similar value to that of the reference leading users
in to a false belief that the optimized time series are good. However, the various derivatives
of CMCORRd can be used as they are not so sensitive. Another important point that is
emphasized is that most metrics are based on copulas and show the performance on the
whole and not just for the upper tails of the distributions which are a rather small (but very
important) part of the entire story. Hence, they are more suited for the evaluation of model
outputs where they may highlight any systematic problems that the model may have.
Furthermore, using observed series, it was also shown how past time periods are different
than recent ones i.e., how climate change might look like. It was also demonstrated that the
spatial-sums of river discharge of catchments in the study area still showed an increasing
behavior of extremes that my be expected in future as the recorded maxima do not show
decorrelation in the upper tails of their distributions of sums. The same was the case for
various groups of precipitation stations considered in the study area.

Coming to the methods more specifically, the variant of Phase Annealing presented here has
one major drawback. That being the time it takes, to optimize a time series whose properties
match those of the reference, is longer than the rest depending on the case. A couple of daily
time series with a length of five years may take around an hour which is not bad but also
not very useful for practical cases where extremes are required. If one were to simulate say
a 50 years series for ten stations simultaneously, then the time to optimize goes into months.
Such a setting is desirable but given the amount of time required, makes it impractical. Sim-
ilarly, IAAFT-PSC variants introduced do produce series that have better cross-correlations
but all of this at a loss of reduced accuracy of copula auto- and cross-asymmetries. How-
ever, the results showed that impact of these on the extremes are not significant and all of
this within reasonable computational time because the number of evaluations required are
much less comparatively. It was shown that even using simple algorithms, such as AAFT
or MIAAFT results can be obtained that are acceptable. It shows that the problem may
not be as complicated as it was thought to be in the beginning. Keeping a small subset of
properties, e.g., CMCORRd

p, seems to be enough. However, it should be kept in mind that
the simple methods used, performed well because their annual and seasonal phases were
locked. At least, it is one of the reasons why the simple ones also performed well. This is in
contrast to a stationary process where such behaviors are generally not kept explicitly.

Regarding the problem of simulating extreme precipitation and discharges i.e., is it possible
to simulate larger values of spatio-temporal sums as compared to observed cases?, which
were among the main objectives of this thesis, the results are summarized as follows. For
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precipitation, it was shown that the distributions of the sums of simulated series did surpass
those of the observed in both space and time. The idea to test whether the sums in space-
time are larger as compared to observed cases is important, mainly due to the fact that it is
the larger values that cause destruction of property and life. For discharge, two approaches
were shown. One was to simulate discharge at multiple locations directly and the other
being simulating rainfall-runoff model inputs simultaneously and using them to obtain dis-
charge via a model. The model being the HBV. Both approaches had problems. Discharge is
a result of a complicated interaction of precipitation, temperature and the catchment. Simu-
lating it directly through a statistical process is ill-advised as the time series generator does
not take into account the various types of situations, say snow-melt or dry or wet catchment,
into account. However, the spatial-sum distributions using methods that conserved cross-
correlations showed very good results in their upper tails. Secondly, precipitation, temper-
ature and potential evapotranspiration were simulated simultaneously together for various
catchments. These were used as inputs for models that were calibrated with observed data
already for computing discharge. This lead to the drawbacks of such an approach. The
model output is not the same as observed. For one thing, almost all rainfall-runoff models
suffer from the same problem that they never match the peak flows and here the case was
no different. Only properties of model runoff could be compared for the simulated and ob-
served inputs only and not observed discharge. As even the observed inputs when used
for calibration do not produce an NSE of 1.0 or even close. Hence, only the properties of
model discharges could be compared. This makes the results less useful because the ex-
treme discharges created by models are consistently lower than those of the observed. But
surprisingly, model discharges using simulated inputs did produce values that were higher
than the observed. This was mainly due to the simulated precipitation where the spatial-
and temporal-sum distributions did have values in the upper tails that were higher than
those of the observed cases and all of this even when the distributions for all cases were
exactly the same. This is good news because, resampling observed series to produce new
scenarios can be much different than what was observed. However, it should not be seen as
a replacement for what may take place in the future.

To summarize, in this thesis, propositions for new time series generators, objective func-
tions and metrics that describe higher-order dependence were made. The main goal was to
have simulations that mimic observed variables in their behavior of extremes in space-time.
Measures were proposed to evaluate time series such as various CMPOW s, d-asymmetries,
CMPOW d and CMCORRd. It was shown that the higher frequencies of the CMCORRd

spectra of given variables’ time series can be used to differentiate between points whose
extremes are more synchronized in time and those that do not. Consequently, this measure
can be used to evaluate synthetic series for their properties compared to a reference. It was
shown that even simple time series generators are not that bad to begin with, at least on
the daily temporal scale. New algorithms (e.g., IAAFT-PSC1 and IAAFT-PSC2) were pro-
posed to have better outputs. More performance metrics were proposed that can be used as
objective functions to simulate and assess the quality of model outputs. For the daily reso-
lution, all methods showed good performance for the extreme cases even when their auto-
and cross-properties in space-time did not match those of the reference exactly. For the case
of hourly precipitation, only the IAAFT-PSC2 algorithm worked satisfactorily.
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In the future, attempts can be made to use generators that are even faster, if possible at
all. The Fourier transform-based generators used here are mainly meant for linear time se-
ries generation but were adapted to do non-linear simulations. Signals that vary over long
terms such as those of climate change were neither investigated nor dealt with in this study.
Time series from whom such effects are removed should be compared to the original ones
to assess how much the effect of these signals is on the final high-dimensional measures.
A whole different field of study, non-linear time series analysis, exists to tackle problems in
a more wholesome manner where measures such as the correlation dimension and the Ly-
punov’s exponent with dynamical systems are the norm. An important feature of non-linear
analysis is its use of filters. These allow for modification/handling of data for lower and
higher quantiles in a different manner. This could be useful for variables such as precipita-
tion and discharge where it is known that the dependence of smaller values is very much
different compared to those of the larger ones. Another very important point to investigate
is that of the high flows that are a result of the extrapolation of the rating curve and not
actual measurements. All values of observed series are treated as sacred but this should not
be the case for the extrapolation.
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A. Bárdossy and F. Anwar. Why do our rainfall–runoff models keep underestimating
the peak flows? Hydrology and Earth System Sciences, 27(10):1987–2000, 2023. doi:
10.5194/hess-27-1987-2023. URL https://hess.copernicus.org/articles/27/
1987/2023/.
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S. Hörning and A. Bárdossy. Phase annealing for the conditional simulation of spatial
random fields. Computers and Geosciences, 112:101–111, 2018. ISSN 0098-3004. doi:
https://doi.org/10.1016/j.cageo.2017.12.008.
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