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Abstract

Machine learning and in particular deep learning techniques are nowadays state of the
art and used in everyday life. Beyond, so-called kernel methods are another class of
machine learning methods, which however can be seen as shallow methods. Nevertheless
they are still used for approximation theory, machine learning and surrogate modeling
among others, especially due to their appealing mathematical framework. This thesis deals
with these kernel methods, in particular greedy kernel methods and advances in terms of
algorithms, analysis and possible applications – in particular several ways of introducing
depth into kernel methods are presented in order to benefit from the advantages of deep
models.

The first main part of the thesis, Chapter 3, focuses on algorithms and analysis from
the theoretical point of view, extending the theory and analysis for shallow kernel meth-
ods. The main vehicles for these improvements were provided by abstract tools from
approximation theory, which were applied to kernel approximation by leveraging and ex-
tending a convenient connection, which was recently established in the literature. Notably
it was possible to unify greedy kernel algorithms in a joint framework and prove strong
target data-dependent convergence rates for greedy kernel approximation for the first
time.

The second main part of the thesis, Chapter 4, focuses on algorithms and analysis
as well, however from the practical point of view by introducing two novel deep kernel
approaches. Firstly, structured deep kernel networks (SDKNs) are presented, which are
constructed by using simple classes of kernels in a multilayer network setup, akin to
neural networks. Theoretical analyis explores their approximation properties in different
asymptotic regimes, where efficient constructions are feasible by leveraging “flat limit”
properties of kernels. Secondly, two-layered kernels (2L) are presented, which can be seen
as hyperparameter optimized kernels. An efficient optimization strategy is given, which
allows to use these two-layered kernels for subsequent kernel approximation tasks, thus
introducing the 2L-VKOGA algorithm.

The third main part of the thesis, Chapter 5, deals with the application part of this
thesis and shows the practical use and benefits of the newly introduced methods. A first
application addresses the challenging task of predicting closure terms for the simulation
of turbulent flows, for which SDKNs were employed. The second application relates to
modeling the human spine, where greedy kernel models serve as surrogate models for
intervertebral discs within a larger model.

vii



viii



Kurzfassung

Maschinelles Lernen und insbesondere Methoden des “Deep Learning” (tiefes Lernen)
sind heutzutage “state of the art” und werden im Alltag genutzt. Andererseits gibt es
sogenannte Kern-Methoden, eine weitere Klasse von maschinellen Lernverfahren, die je-
doch als flache Methoden angesehen werden können. Dennoch werden sie nach wie vor
in der Approximationstheorie, für maschinelles Lernen und Surrogatmodellierung einge-
setzt, insbesondere aufgrund ihrer ansprechenden mathematischen Theorie. Diese Arbeit
beschäftigt sich mit diesen Kern-Methoden, vor allem mit greedy Kern-Methoden und
präsentiert Fortschritte im Bezug auf Algorithmen, Analysis und mögliche Anwendungen
– insbesondere werden verschiedene Möglichkeiten zur Einführung von “depth” (Tiefe) in
Kern-Methoden vorgestellt, um von den Vorteilen tiefer Modelle zu profitieren.

Der erste Hauptteil der Arbeit, Kapitel 3, konzentriert sich auf Algorithmen und
Analysis aus theoretischer Sicht und erweitert die Theorie und Analyse flacher Kern-
Methoden. Das Hauptwerkzeug für diese Verbesserungen wurde durch abstrakte Werkzeuge
aus der Approximationstheorie bereitgestellt, welche auf die Kern-Approximation angewen-
det werden konnten, indem eine kürzlich in der Literatur etablierte Verbindung genutzt
und erweitert wurde. Insbesondere war es möglich, greedy Kern-Algorithmen in einem
gemeinsamen Rahmen zu vereinheitlichen und erstmals starke Konvergenzraten für von
den Zieldaten abhängige greedy Kern-Approximation zu beweisen.

Der zweite Hauptteil der Arbeit, Kapitel 4, konzentriert sich erneut auf Algorithmen
und Analysis, jedoch aus praktischer Sicht, indem zwei neue Ansätze für tiefe Kern-
Methoden vorgestellt werden. Erstens werden strukturierte tiefe Kern-Netzwerke (SD-
KNs) vorgestellt, die durch die Verwendung einfacher Klassen von Kernen in einem
mehrschichtigen Netzwerk aufgebaut werden, ähnlich wie neuronale Netzwerke. Die theo-
retische Analyse erforscht ihre Approximationseigenschaften in verschiedenen asympto-
tischen Regimen, bei denen effiziente Konstruktionen durch Ausnutzung des “flat limits”
(flacher Grenzfall) der Kerne möglich sind. Zweitens werden zweischichtige Kerne (2L)
vorgestellt, die als hyperparameteroptimierte Kerne betrachtet werden können. Es wird
eine effiziente Optimierungsstrategie präsentiert, die es ermöglicht, diese zweischichtigen
Kerne für nachfolgende Kern-Approximationsaufgaben zu verwenden und somit den 2L-
VKOGA Algorithmus einführt.

Der dritte Hauptteil der Arbeit, Kapitel 5, behandelt den Anwendungsteil dieser Ar-
beit und zeigt den praktischen Nutzen und die Vorteile der neu eingeführten Metho-
den auf. Eine erste Anwendung betrifft die anspruchsvolle Aufgabe der Vorhersage von
Schließungstermen für die Simulation von turbulenten Strömungen, für die SDKNs einge-
setzt wurden. Die zweite Anwendung bezieht sich auf die Modellierung der menschlichen
Wirbelsäule, bei der greedy Kern-Modelle als Surrogatmodelle für Bandscheiben innerhalb
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eines größeren Modells genutzt werden.
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Chapter 1

Introduction

1.1 Motivation

Some of the most prominent advances in science of the last decades were achieved in ma-
chine learning and deep learning, which is already ubiquitous in everyday life. Important
examples have been achieved in the field of computer vision and natural language process-
ing, e.g. self-driving cars or chatbots, especially recently ChatGPT1. This surge of deep
learning methods was enabled by an unprecedented availability of data and computational
power in recent years. Those methods frequently rely on artificial neural networks, which
are the state-of-the-art machine learning tools in several applications.

Besides neural networks, another direction within machine learning can be summarized
as kernel methods, which was one of the main machine learning directions before. Kernel
methods are usually non-parametric models revolving around the use of a kernel, which is
a symmetric function that allows, in simple terms, to implicitly turn linear algorithms into
nonlinear ones. This usually gives rise to a convex optimization problem, which can be
solved efficiently – however the method is rather applicable to comparably small training
data sets due to an at least challenging O(n2) scaling in the dataset set size n. In fact,
there are also several intriguing connections between neural networks and kernel methods,
e.g. in different scaling limits of the neural network: On the one hand, the so-called NNGP
(neural network Gaussian process) describes the initialization of neural networks in the
infinite width limit [62, 124, 131]. On the other hand, the NTK (neural tangent kernel)
can be used to describe the training behavior of neural networks under gradient descent
in the infinite width limit [53], which is therefore also called “kernel regime”. In general,
kernel methods are still state of the art in several use cases, e.g. on small data set tasks,
they were shown to outperform neural networks [6]. Furthermore, kernel methods are also
used in various other fields of mathematics such as approximation theory or numerical
analysis, which is due to their rich mathematical background.

This motivates the further research in and development of kernel methods. A very
classical result from the theory of kernels is the kernel representer theorem [56, 101, 110],

1https://chat.openai.com/
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Chapter 1. Introduction

that states that a scalar-valued kernel model looks like

sn(·) =
n∑

j=1

α
(n)
j k(·, xj), α

(n)
j ∈ R,

where k is the kernel, xj are given input data and α
(n)
j are coefficients that can be fre-

quently calculated explicitly based on given data, see also Theorem 6. A classical task
when striving for an efficient kernel model is to balance between accuracy (e.g. a classifi-
cation rate or an L∞ error) of the kernel model and its computational cost (e.g. training
and prediction times). As the coefficients can be computed, the only choices to be made
is about the kernel k and the input data {xj}nj=1. For the choice of the used input data,
we investigate greedy methods that subselect a suitable amount of centers from the given
input data, as elaborated in Chapter 3. This constitutes the more theoretical, mathe-
matical analysis part of this thesis. For the choice of a suitable kernel, we focus on data
adapted and deep kernel models and introduce two approaches, namely Structured Deep
Kernel Networks (SDKNs) as well as two-layered kernels (2L) in conjunction with greedy
algorithms (2L-VKOGA), see Chapter 4. These chapters constitute the more algorithmic
part of the thesis.

Advancements in theoretical results and algorithmic aspects are of particular interest
if they also allow for practical improvements: Therefore, these novel insights are used for
surrogate modeling purposes, where kernel model are used as sparse and accurate models.
This is presented in Chapter 5.

1.2 Structure of this thesis

This thesis is structured as follows:
Chapter 2 provides the background information required for the subsequent chapters

of this thesis including basic knowledge about kernels, kernel approximation, greedy algo-
rithms and deep models. Like this also the common notation for the subsequent sections
is set.

Chapter 3 starts with an overview of the state of the art and presents some necessary
in detail background information. Subsequently, the novel scientific contributions are
presented: First, a utility link between abstract analysis and kernel analysis is extended.
This strong link is then used in two directions: First, it is leveraged to prove a kind
of stability result, namely how L∞(Ω) convergence rates can be transferred to subsets
Ω̃ ⊂ Ω. Secondly, it is leveraged to provide a full analysis for target data-dependent greedy
kernel algorithms. Third, an overview of the same analysis for the solution of PDEs is
presented. Chapter 4 starts by discussing some state-of-the-art methods for deep kernel
learning. Then, two newly developed approaches are presented: First, structured deep
kernel networks (SDKNs) are presented in Section 4.2, which combine classes of simple
kernels with a network structure. Secondly, two-layered kernels (2L) are introduced in
Section 4.3, which can be seen as a generalization of hyperparameter tuned kernels, where
the tuning is done by a machine-learning optimization. Chapter 5 presents and discusses
applications of the previously shown analysis and the introduced algorithms for surrogate
modeling. For this, challenges from turbulence and human spine modeling were chosen.
Chapter 6 provides a concise overview on the software developed during the course of this
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1.3. Publications

studies, while Chapter 7 summarizes the work with a conclusion and the appendices A
and B collect several deferred proofs.

1.3 Publications

During the time of this PhD studies, I was working on several publications:

• Published:

1. T. Wenzel, G. Santin, and B. Haasdonk. A novel class of stabilized greedy kernel
approximation algorithms: Convergence, stability and uniform point distribu-
tion. Journal of Approximation Theory, 262:105508, 2021

2. P. Gavrilenko, B. Haasdonk, O. Iliev, M. Ohlberger, F. Schindler, P. Toktaliev,
T. Wenzel, and M. Youssef. A full order, reduced order and machine learning
model pipeline for efficient prediction of reactive flows. In Large-Scale Scientific
Computing, pages 378–386. Springer International Publishing, 2022

3. B. Haasdonk, T. Wenzel, G. Santin, and S. Schmitt. Biomechanical Surro-
gate Modelling Using Stabilized Vectorial Greedy Kernel Methods. In F. J.
Vermolen and C. Vuik, editors, Numerical Mathematics and Advanced Appli-
cations ENUMATH 2019, pages 499–508, Cham, 2021. Springer International
Publishing

4. T. Wenzel, M. Kurz, A. Beck, G. Santin, and B. Haasdonk. Structured Deep
Kernel Networks for Data-Driven Closure Terms of Turbulent Flows. In Large-
Scale Scientific Computing, pages 410–418, Cham, 2022. Springer International
Publishing

5. T. Wenzel, G. Santin, and B. Haasdonk. Analysis of target data-dependent
greedy kernel algorithms: Convergence rates for f-, f· P-and f/P-greedy. Con-
structive Approximation, 57(1):45–74, 2023

6. B. Haasdonk, H. Kleikamp, M. Ohlberger, F. Schindler, and T. Wenzel. A
New Certified Hierarchical and Adaptive RB-ML-ROM Surrogate Model for
Parametrized PDEs. SIAM Journal on Scientific Computing, 45(3):A1039–
A1065, 2023

7. T. Wenzel, F. Marchetti, and E. Perracchione. Data-driven kernel designs for
optimized greedy schemes: A machine learning perspective. SIAM Journal on
Scientific Computing, 46(1):C101–C126, 2024

8. M. Hammer, T. Wenzel, G. Santin, L. Meszaros-Beller, J. P. Little, B. Haas-
donk, and S. Schmitt. A new method to design energy-conserving surrogate
models for the coupled, nonlinear responses of intervertebral discs. Biomechan-
ics and Modeling in Mechanobiology, pages 1–24, 2024

9. F. Döppel, T. Wenzel, R. Herkert, B. Haasdonk, and M. Votsmeier. Goal-
Oriented Two-Layered Kernel Models as Automated Surrogates for Surface
Kinetics in Reactor Simulations. Chemie Ingenieur Technik, 2024
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• Accepted:

10. T. Wenzel, B. Haasdonk, H. Kleikamp, M. Ohlberger, and F. Schindler. Appli-
cation of Deep Kernel Models for Certified and Adaptive RB-ML-ROM Sur-
rogate Modeling. arXiv preprint arXiv:2302.14526, 2023. Accepted for LSSC
2023 proceedings

11. T. Wenzel, G. Santin, and B. Haasdonk. Stability of convergence rates: Ker-
nel interpolation on non-Lipschitz domains. arXiv preprint arXiv:2203.12532,
2022. Accepted for publication in IMA Journal of Numerical Analysis

• Preprints:

12. T. Wenzel, D. Winkle, G. Santin, and B. Haasdonk. Adaptive meshfree solution
of linear partial differential equations with PDE-greedy kernel methods. arXiv
preprint arXiv:2207.13971, 2022

13. T. Wenzel, G. Santin, and B. Haasdonk. Universality and Optimality of Struc-
tured Deep Kernel Networks. arXiv preprint arXiv:2105.07228, 2021

14. G. Santin, T. Wenzel, and B. Haasdonk. On the optimality of target-data-
dependent kernel greedy interpolation in Sobolev Reproducing Kernel Hilbert
Spaces. arXiv preprint arXiv:2307.09811, 2023

15. T. Wenzel. Sharp inverse estimates for radial basis function interpolation: One-
to-one correspondence between smoothness and approximation rates. arXiv
preprint arXiv:2306.14618, 2023

The articles 5, 1, 11 and 12 constitute the mostly theoretical analysis on kernel ap-
proximation. The work of the articles 5 and 11 is presented in Section 3.5 respective
Section 3.4, while an overview of article 12 is briefly given in Section 3.6. Article 1 is
not presented in this thesis, as it is mostly work resulting from the author’s master the-
sis [114]. The articles 13 and 7 introduce two deep kernel algorithms and are presented in
Section 4.2 and Section 4.3. Applications of these works are shown in the articles 4, 2, 3
and 6. Some details of the articles 4 and 3 are elaborated in Section 5.1 and Section 5.2,
while article 2, 6, 15, 14, 9 are not covered in this thesis.
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Chapter 2

Background

The following sections review the required background for the topics researched in this
thesis: Kernels, greedy kernel algorithms and deep models. It is not meant to cover all
the available details, but pointers to the literature with further background information
are provided. Most of this content is covered in [33,34,105,112], while for Section 2.6 we
additionally point to [42].

2.1 Kernels

Given a nonempty set Ω, a real-valued kernel is a symmetric function k : Ω×Ω→ R. In
general the set Ω can be quite arbitrary, but this thesis revolves around kernels defined
on subsets of the Euclidean space, i.e. Ω ⊆ Rd, d ∈ N. Furthermore, it is also possible to
consider complex-valued kernels or matrix-valued kernels, but this is neither the focus.
We remark that parts of the results presented in the following chapters can also be easily
generalized (under some mild assumptions) to complex-valued or matrix-valued kernels.

A key quantity in the following is the kernel matrix AXn , which is defined for any
Xn ⊂ Ω as (AXn)ij := k(xi, xj), 1 ≤ i, j ≤ n. An important characterization of kernels
is given by its positive definiteness, and we focus on (strictly) positive definite ((s)pd)
kernels : A kernel is positive definite, iff its kernel matrix is positive semi-definite for any
set Xn, n ∈ N of pairwise distinct points. A kernel is strictly positive definite, iff its
kernel matrix is positive definite for any set Xn, n ∈ N of pairwise distinct points. For
the following we assume Ω ⊂ Rd to be bounded and focus on strictly positive definite real
valued kernels. This neglects conditional positive definite (cpd) kernels, however much
of the theory can also be extended, with some care, to those kernels. Indeed, every cpd
kernel has an associated (s)pd kernel [98].

From the application point of view, translational invariant kernels are of interest be-
cause they can be implemented and evaluated easily. They are defined on Rd × Rd: A
kernel is called translational invariant iff

k(x, y) = k(x+ z, y + z) ∀x, y, z ∈ Rd,

and is called radial iff

k(x, y) = k(z, w) ∀x, y, z, w ∈ Rd such that ∥x− y∥2 = ∥z − w∥2.

5



Chapter 2. Background

The class of translational invariant and the class of radial kernels can be also characterized
with the following proposition:

Proposition 1. A kernel k : Rd × Rd → R is translational invariant, iff there exists a
Φ : Rd → R such that

k(x, y) = Φ(x− y) ∀x, y ∈ Rd.

A kernel k : Rd × Rd → R is radial, iff there exists a Φ : R≥0 → R such that

k(x, y) = Φ(∥x− y∥2) ∀x, y ∈ Rd.

The function Φ is called the radial basis function. Such radial kernels (or radial basis
function kernels) can be easily modified by the introduction of a shape parameter ε > 0,
which modifies the kernel according to

kε(x, y) = Φ(ε · ∥x− y∥2). (2.1)

A lot of properties such as stability of numerical algorithms and error estimates depend
on the smoothness of the considered kernel k. For translational invariant kernels, this is
usually characterized with help of the decay of the d-dimensional Fourier transform Φ̂ of
the function Φ:

• A translational invariant kernel k is called kernel of finite smoothness τ > d/2, if
there exists constants cΦ, CΦ > 0 such that

cΦ(1 + ∥ω∥22)−τ ≤ Φ̂(ω) ≤ CΦ(1 + ∥ω∥22)−τ . (2.2)

• A translational invariant kernel k is called kernel of infinite smoothness, if for any
k ∈ N there exists a constant CΦ,k > 0 such that

Φ̂(ω) ≤ CΦ,k(1 + ∥ω∥22)−k.

Well-known examples of strictly positive definite kernels are the Gaussian or the ex-
ponential kernel, which are even radial basis function kernels. They are defined as

kGauss = exp(−∥x− y∥22),
kexponential = exp(−∥x− y∥2).

(2.3)

The exponential kernel is a finitely smooth kernel and the most basic example from the
class of Matérn kernels, which provide finitely smooth kernels for any dimension d ∈ N.
The Gaussian kernel on the other hand is an infinitely smooth kernel for any d ∈ N.
Here, we furthermore introduce the Wendland “k = 0” kernel in one dimension because
it will be used later on. It is defined as

k(x, y) = min(0, 1− |x− y|). (2.4)

The class of Wendland kernels is of interest because they provide compactly supported
kernels.
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2.2. Function spaces

2.2 Function spaces

Kernels are related to so-called reproducing kernel Hilbert spaces. A Hilbert space of real
valued functions f : Ω→ R is called a reproducing kernel Hilbert space (RKHS), if there
exists a reproducing kernel k such that:

1. k(·, x) ∈ H ∀x ∈ Ω

2. f(x) = ⟨f, k(·, x)⟩H ∀x ∈ Ω,∀f ∈ H (reproducing property)

A well-known theorem from Aronszajn [5, p. 344] (which he attributes to Moore) also
shows kind of the reverse direction: Every positive definite kernel k gives rise to a repro-
ducing kernel Hilbert space, which is formalized in the following theorem:

Theorem 2. Let Ω be a nonempty set and k be a positive definite kernel. Then, there is
a unique Hilbert space Hk(Ω) of functions on Ω such that k is its reproducing kernel.

In order to stress the connection to the reproducing kernel k, the notion Hk(Ω) was
introduced. Depending on the research community, the RKHS of a kernel k is also called
the native space. The proof of Theorem 2 is quite constructive, and is done by considering
the space

H0 := span{k(·, x), x ∈ Ω} (2.5)

and showing that it is a pre-Hilbert space with respect to the bilinear product

⟨k(·, x), k(·, z)⟩H0 := k(x, z).

Then, the abstract completion of H0 with respect to the norm induced by the bilinear
product defined before yields the desired RKHS. It remains to show that this abstractly
completed space is indeed a space of functions, which follows by showing pointwise con-
vergence due to Cauchy’s inequality.

In order to recall the dependence of the RKHS Hk(Ω) on the underlying domain Ω,
we consider the two sets Ω̃ ⊂ Ω ⊂ Rd. We define the restricted kernel k̃ via

k̃ := kΩ̃ : Ω̃× Ω̃→ R, (x, y) 7→ k(x, y). (2.6)

This mathematical precise distinction will be of importance for Section 3.4. We collect
the results [112, Theorem 10.46] and [112, Theorem 10.47].

Theorem 3. Each function f̃ ∈ Hk̃(Ω̃) has an extension to a function Ef̃ ∈ Hk(Ω).
Furthermore, ∥Ef∥Hk(Ω) = ∥f∥Hk(Ω̃).

The operator E : Hk̃(Ω̃)→ Hk(Ω) is called the embedding operator.

Theorem 4. The restriction f |Ω̃ of any function f ∈ Hk(Ω) is contained in Hk̃(Ω̃) with
∥f |Ω̃∥Hk̃(Ω̃) ≤ ∥f∥Hk(Ω).

For kernels of finite smoothness, as introduced in Section 2.1, the corresponding RKHS
can be characterized with help of Sobolev spaces. We have:

Corollary 5. Let k be a translation invariant kernel with Fourier transform decay as Eq.
(2.2) with τ > d/2. Suppose that Ω has a Lipschitz boundary. Then the RKHS Hk(Ω) is
norm equivalent to the Sobolev space Hτ (Ω), i.e. Hk(Ω) ≍ Hτ (Ω).
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Chapter 2. Background

2.3 Approximation with kernels

Kernels can be used to approximate functions, e.g. by interpolation. For this the stan-
dard assumption is f ∈ Hk(Ω), such that the previously introduced results can be easily
leveraged.
A starting point for this is provided by the well-known kernel representer theorem [56,
101,110]. Here we state the version of [105, Theorem 5.5] for the mean squared loss:

Theorem 6. Consider a positive definite kernel k. Let Xn = {x1, ..., xn} ⊂ Ω be a
nonempty set with corresponding target values Yn = {y1, ..., yn} and a regularization pa-
rameter λ > 0. Then, there exists a unique solution sn,λ satisfying

1

n

n∑
j=1

|yj − sn,λ(xj)|2 + λ∥sn,λ∥2Hk(Ω) = inf
f∈Hk(Ω)

1

n

n∑
j=1

|yj − f(xj)|2 + λ∥f∥2Hk(Ω),

and it is of the form

sn,λ(x) =
n∑

j=1

α
(n)
j k(x, xj), α

(n)
j ∈ R. (2.7)

The vector of coefficients α(n) = (α
(n)
1 , ..., α

(n)
n )⊤ ∈ Rn can be obtained as the solution

of the linear equation system

(AXn + λI)α(n) = y, (2.8)

where AXn is the kernel matrix related to Xn and y = (y1, ..., yn)
⊤. The case λ = 0 usually

works only for strictly positive definite kernels. In this case, i.e. exact interpolation, one
seeks the interpolant sn := sn,λ ∈ Hk(Ω) of minimal norm ∥sn∥Hk(Ω). Then the solution
is again given by Eq. (2.7) and the linear equation system from Eq. (2.8) simplifies to

AXnα
(n) = y,

which is solvable, as the kernel matrix is positive definite.
The case λ > 0 is usually of interest for (machine learning) applications, where the

target data {y1, ..., yn} is possibly affected by noise. The case λ = 0 corresponds to exact
interpolation of the target values and is useful in case of absence of noise or if it is negli-
gible small, e.g. for approximation theoretical statements.

In the following we provide more information about this interpolation case and assume
that the target data yj, j = 1, ..., n stem from some function f ∈ Hk(Ω), such that the
interpolation conditions are

sn(xj) ≡ sn,λ=0(xj) = f(xj) ∀j = 1, ..., n. (2.9)

Then, it can be shown that the unique interpolant sn ∈ span{k(·, xj), j = 1, ..., n} is equal
to the orthogonal projection ΠV (Xn)(f) of f ∈ Hk(Ω) onto the n-dimensional subspace
V (Xn) := span{k(·, xj), j = 1, ..., n}.
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2.3. Approximation with kernels

A convenient way to estimate the ∥ · ∥L∞(Ω) approximation error between sn and f is
provided by the so-called power function, for which several expressions exists:

PXn(x) := ∥k(·, x)− ΠV (Xn)(k(·, x))∥Hk(Ω) (2.10)

≡ sup
0̸=f̃∈Hk(Ω)

|(f̃ − ΠV (Xn)(f̃))(x)|
∥f̃∥Hk(Ω)

(2.11)

≡
(
detAXn∪{x}

detAXn

)1/2

. (2.12)

We remark that power functions can also be defined for any closed subspace by using
Eq. (2.10) and considering the projector onto this closed subspace. From Eq. (2.11) it
is obvious that the ∥f − sn∥L∞(Ω) = ∥f − ΠV (Xn)(f)∥L∞(Ω) error can be bounded by the
power function. Indeed it holds

|(f − sn)(x)| ≤ PXn(x) · ∥f − ΠV (Xn)(f)∥Hk(Ω)

≤ PXn(x) · ∥f∥Hk(Ω) ∀x ∈ Ω,
(2.13)

and Eq. (2.13) will be called standard power function estimate. The estimate ∥f −
ΠV (Xn)(f)∥Hk(Ω) ≤ ∥f∥Hk(Ω) followed from the best approximation property due to the
projection ΠV (Xn).

The approximation error ∥f − ΠV (Xn)(f)∥L∞(Ω) is frequently bounded with help of
the fill distance hXn,Ω, which measures, graphically speaking, the largest hole within Ω
without any interpolation point:

hXn,Ω := sup
x∈Ω

min
xj∈Xn

∥x− xj∥2. (2.14)

Another quantity of interest is provided by the separation distance qXn , which is usually
used to bound instability related quantities, e.g. the smallest eigenvalue of the kernel
matrix AXn :

qXn :=
1

2
min
xi ̸=xj

∥xi − xj∥2.

For bounded domains Ω ⊂ Rd it holds

hXn,Ω ≥ cΩ · n−1/d,

qXn ≤ CΩ · n−1/d,
(2.15)

which can be derived by volume comparison arguments [75, Section 2.1]. In order to
measure the uniformity of points Xn ⊂ Ω, the ratio hXn,Ω/qXn is considered. A sequence
of sets of points (Xn)n∈N is called asymptotically uniformly distributed if there exists a
constant C > 0 such that

hXn,Ω/qXn ≤ C ∀n ∈ N. (2.16)

9



Chapter 2. Background

Somehow imprecise, also a set of points Xn is called asymptotically uniformly distributed,
if the sequence of sets (Xn)n∈N is clear from the context. In the case of asymptotically
uniformly distributed points, Eq. (2.15) together with Eq. (2.16) then yields,

cΩ · n−1/d ≤ hXn,Ω ≤ C · qXn ≤ CCΩ · n−1/d. (2.17)

In addition to the power function approach, another way to bound the approximation
error is provided with help of sampling inequalities. Their basic idea is [87, Section 2]:

“If a sufficiently smooth function is small on scattered points, and if its derivatives
are bounded, it must be small in the whole domain.”

For the subsequent purposes it is enough to state the following result, which was taken
from [39, Theorem 2.2]

Theorem 7. Suppose Ω ⊂ Rd is a bounded domain satisfying an interior cone condition
and having a Lipschitz boundary. Let X ⊂ Ω be a discrete set with sufficiently small fill
distance h = hX,Ω. Let τ = k + s with k ∈ N, 0 ≤ s < 1, 1 ≤ p < ∞, 1 ≤ q ≤ ∞,m ∈ N0

with k > m + d/p if p > 1 or k ≥ m + d/p if p = 1. Then for each u ∈ W τ
p (Ω) we have

that

|u|Wm
q (Ω) ≤ C

(
h(τ−m−d(1/p−1/q)+) · |u|W τ

p (Ω) + h−m∥u|X∥∞
)
,

where C > 0 is a constant independent of u and h and (x)+ = max{x, 0}.

Using u := f − ΠV (X)(f) gives u|X ≡ f − ΠV (X)(f)|X = 0 due to the interpolation
conditions. Furthermore, leveraging the norm equivalence of the RKHS of finitely smooth
kernels to Sobolev spaces (Corollary 5), allows deriving error bounds for the residual f −
ΠV (Xn)(f) of the kernel interpolant in any Sobolev norm. Using asymptotically uniformly
distributed points, these bounds can then also be formulated in terms of the number n of
interpolation points Xn by using Eq. (2.17). Due to Eq. (2.11), these bounds then also
give bounds on the power function.

The case of regularized approximation in the context of (greedy) kernel interpolation,
i.e. λ > 0 in Theorem 6, is not covered in this thesis in detail. The interested reader is
pointed to [95].

2.4 Generalized interpolation

In chapters on generalized interpolation (i.e. here in Section 2.4 and Section 3.6) we will
denote the function to be approximated as u ∈ Hk(Ω) instead of f ∈ Hk(Ω).

The use of kernels is not restricted to using inputs xj ∈ Ω and corresponding function
values u(xj) for some u ∈ Hk(Ω) as it was done in Section 2.3. In fact, it is possible to
generalize the theory presented in Section 2.3 and make use of information from any linear
continuous functionals λj ∈ Hk(Ω)

′, j = 1, ..., n and seek an approximant sn ∈ Hk(Ω) that
satisfies

λj(sn) = λj(u) ∀j = 1, ..., n. (2.18)

10



2.4. Generalized interpolation

Table 2.1: Overview on standard and generalized interpolation.
standard generalized

Conditions Xn ⊂ Ω Λn ⊂ Hk(Ω)
′

Kernel matrix (AXn)ij = ⟨k(·, xi), k(·, xj)⟩Hk(Ω) (AΛn)ij = ⟨vλi
, vλj
⟩Hk(Ω)

Subspace V (Xn) = span{k(·, xj), xj ∈ Xn} V (Λn) = span{vλj
, λj ∈ Λn}

Power function PXn(x) PΛn(λ)

As λj ∈ Hk(Ω)
′, we can find corresponding Riesz representers which we denote as vλj

∈
Hk(Ω). We define V (Λn) := {vλj

, λj ∈ Λn}. Then it can be shown that the minimum
norm solution to Eq. (2.18) is unique and again given by a projection ΠV (Λn)(u) with
ΠV (Λn) : Hk(Ω)→ V (Λn):

sn(x) = ΠV (Λn)(f)(x) =
n∑

j=1

αjvλj
(x). (2.19)

The vector of coefficients α = (α1, ..., αn)
⊤ can be obtained with help of the equation

system

AΛnα = (λj(u))
n
j=1 ∈ Rn,

where AΛn is the generalized kernel matrix with (AΛn)i,j = ⟨λi, λj⟩Hk(Ω), 1 ≤ i, j ≤ n.
In order to bound the approximation error, the generalized power function is intro-

duced, which can be expressed as

PΛn(λ) := ∥vλ − ΠV (Λn)(vλ)∥Hk(Ω) (2.20)

= sup
0 ̸=u∈Hk(Ω)

|λ(u− ΠV (Λn)(u))|
∥u∥Hk(Ω)

, (2.21)

and implies the standard generalized power function estimate

|λ(u)− λ(ΠV (Λn)(u))| ≤ PΛn(λ) · ∥u− ΠV (Λn)(u)∥Hk(Ω)

≤ PΛn(λ) · ∥u∥Hk(Ω) ∀u ∈ Hk(Ω).
(2.22)

We point out that this gives a bound on the λ-evaluation λ(u−ΠV (Λn)(u)) of the residual.
Only for the choice λ ∈ Hk(Ω)

′ such that vλ = k(·, x), we obtain the point evaluation of
the residual u− ΠV (Λn)(u) itself.

In comparison with Section 2.3 it can be seen that generalized interpolation is indeed
a generalization of kernel interpolation: By using Λn = {δxj

, xj ∈ Xn}, the framework
of generalized interpolation specializes again to the case of standard interpolation. The
corresponding connections are summarized in Table 2.1.

A particularly interesting use case for the framework of generalized interpolation is
given by solving PDEs. A linear elliptic PDE with Dirichlet conditions can be written as

Lu = f on Ω ⊂ Rd

u = g on ∂Ω,
(2.23)
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and the Poisson equation which uses L := −∆ is a well-known example. By choosing a
suitable kernel k such that it holds

u ∈ Hk(Ω),

δx ◦ L ∈ Hk(Ω)
′, x ∈ Ω,

δx ∈ Hk(Ω)
′, x ∈ ∂Ω,

we can introduce the sets of functionals

ΛL := {δx ◦ L : x ∈ Ω}
ΛB := {δx : x ∈ ∂Ω}
Λ := ΛL ∪ ΛB.

(2.24)

Then the solution u ∈ Hk(Ω) can be approximated in the framework of generalized
interpolation by computing the minimum-norm interpolant ΠV (Λn)(u) for a suitable chosen
set of generalized interpolation conditions Λn = {λ1, ..., λn} ⊂ Λ. The functionals λ ∈
Λ ≡ ΛL ∪ ΛB from Eq. (2.24) can be conveniently linked to their underlying points
x = xλ, because Ω ∩ ∂Ω = ∅ for open domains Ω. We remark that for this, the solution
u ∈ Hk(Ω) does not need to be known, because the generalized interpolation conditions
λj(sn) = λj(u), j = 1, ..., n read{

(Lsn)(xλj
) = f(xλj

) λj ∈ ΛL

sn(xλj
) = g(xλj

) λj ∈ ΛB

i.e. they depend only on the right-hand side functions f, g of the PDE from Eq. (2.23).

2.5 Greedy algorithms

As elaborated in the previous Section 2.3 and Section 2.4, kernel approximants are given
by a weighted sum of kernels centered in points Xn ⊂ Ω. As a good choice of points
Xn ⊂ Ω can be beneficial in terms of approximation properties or stability concerns, this
raises the question how to obtain them. An optimal choice or global search is usually
infeasible, therefore greedy methods are employed. The basic idea of greedy algorithms is
to proceed step-by-step, see [108] for a general overview.
For standard greedy kernel interpolation algorithms, this means in particular: We start
with an empty set X0 = ∅ and then incrementally add points Xn+1 := Xn ∪ {xn+1}
according to some optimality criterion η(n) as

xn+1 := argmax
x∈Ω

η(n)(x). (2.25)

Two remarks are required on Eq. (2.25):

1. For open domains Ω it is not clear, whether a maximum of η(n)(x) exists at all, or
whether only a supremum exists. To alleviate this technical issue, weak selection
criteria can be considered, see eg. Definition 18. The analysis is essentially the same.

2. Usually the optimality criterion η(n) is zero in the already chosen points, i.e. η(n)(xj) =
0 for all xj ∈ Xn. Therefore, an already chosen point will not be picked again (given
η(n) is nonnegative), and there is no analytic need to exclude Xn in the search set.
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2.5. Greedy algorithms

The literature introduces four different selection criteria, namely the P -greedy [22], f -
greedy [100] and f/P -greedy [75] and the psr -greedy (power-scaled-residual) [31], which
we will however call the f · P -greedy because it fits better into the notation introduced
later on. Their selection criteria are given as

i. P -greedy: η
(n)
P (x) = Pn(x),

ii. f -greedy: η
(n)
f (x) = |rn(x)|,

iii. f/P -greedy: η
(n)
f/P (x) = |rn(x)|/Pn(x),

iv. f · P -greedy: η
(n)
f ·P (x) = |rn(x)| · Pn(x),

whereby rn := f − sn denotes the residual. We remark that the f/P -greedy algorithm
is not necessarily well-defined, see the counter example in [119, Example 6]. This further
motivates considering weak selection criteria, see e.g. Definition 18. It is immediate that
these different selection criteria imply different properties on the resulting interpolant sn,
especially on the convergence rate ∥f − sn∥ → 0 measured in some suitable norm, e.g.
∥ · ∥ = ∥ · ∥L∞(Ω). Results on such convergence rates are discussed in detail in Section 3.1.
For efficient numerical implementations of these greedy algorithms, but also for analytic
results, the introduction of a Newton basis is helpful and was done in [75]. This Newton
basis {vj}nj=1 (not to be confused with the Riesz representers {vλj

}nj=1 from the generalized
interpolation in Section 2.4) can be obtained by a Gram Schmidt orthogonalization of the
subspace V (Xn) = span{k(·, xj), xj ∈ Xn} with respect to ⟨·, ·⟩Hk(Ω). Using the Newton
basis, the kernel interpolant from Eq. (2.7) can be written as

sn(x) =
n∑

j=1

⟨f, vj⟩Hk(Ω)vj(x). (2.26)

A crucial advantage is, that, in order to update sn to sn+1, only the latest element vn+1(x)
with corresponding coefficient ⟨f, vn+1⟩Hk(Ω) needs to be added, and there is no need to

recompute all the coefficients (α
(n)
j )nj=1 as in Eq. (2.7). Furthermore, it holds

⟨f, vj⟩Hk(Ω) =
|(f − sj−1)(xj)

PXj−1
(xj)

, j = 1, 2, 3, ... (2.27)

If sn
n→∞−→ f in Hk(Ω), then it follows that

∞∑
j=0

(
(f − sj)(xj+1)

PXj
(xj+1)

)2

= ∥f∥2Hk(Ω), (2.28)

and in general we have always the inequality, i.e. ”≤” in Eq. (2.28).

Greedy algorithms can also be formulated for generalized interpolation, and also a
Newton basis with corresponding formulas can be derived: Following Section 2.4, given a
set Λ ⊂ Hk(Ω)

′ of generalized interpolation conditions, we start with an empty set Λ0 := ∅
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and incrementally add functionals Λn+1 := Λn ∪ {λn+1} according to some optimality
criterion η(n) as

λn+1 := argmax
λ∈Λ

η(n)(λ), (2.29)

which is a straightforward generalization of Eq. (2.25). The construction of a Newton basis
works again by applying the Gram Schmidt orthogonalization procedure with respect
to ⟨·, ·⟩Hk(Ω) to the Riesz representer of the chosen functionals, i.e. {vλ1 , ..., vλn}. As
V (Λn) ≡ span{vλ1 , ..., vλn} = span{v1, ..., vn} it follows that Eq. (2.26) still holds, because
the interpolant sn is given as the projection onto V (Λn), see Eq. (2.19).
The formula for calculating the Newton coefficients is modified to

⟨u, vj⟩Hk(Ω) =
λj(u− sj−1)

PΛj−1
(λj)

, j = 1, 2, 3, ... (2.30)

and Eq. (2.28) turns into

∞∑
j=0

(
|λj+1(u− sj)|
PΛj

(λj+1)

)2

= ∥u∥2Hk(Ω), (2.31)

for generalized interpolation if sn
n→∞−→ u in Hk(Ω). The familiar reader observes again,

that Eq. (2.31) simplifies to Eq. (2.28) and Eq. (2.30) simplifies to Eq. (2.27) for λj =
δxj
, j = 1, ..., n.
For solving PDEs by greedy kernel approximation, i.e. using the choice Eq. (2.24) for

the sets of functionals, [99] introduced the choice

λn+1 := argmax
λ∈Λ\Λn

PΛn(λ),

which can be seen as a generalized P -greedy selection criterion.

2.6 Deep models

Deep learning [42] describes a family of machine learning methods, which make use of a
multilayer model structure that allows to express the model as a concatenation of simple
functions. The most prominent examples are neural networks. Due to their multilayer
structure, these deep models allow for representation or feature learning: The first layers
can extract features, which are then used for the subsequent learning tasks. This renders
such deep models suitable for high dimensional datasets occurring in applications, as
they can automatically detect a suitable lower dimensional representation of the data.
Another benefit is their natural scaling to large data sets, because they do not rely (in
contrast to flat kernel methods) on kernel evaluations of pairs of data points which scales
quadratically in the number of samples.
These two points – no feature learning and disadvantageous scaling in the data set size
– pose serious limitations to standard kernel methods. Therefore, it is imminent to ask
for combinations of kernel methods and deep models in order to address these challenges,
for which two approaches are presented in Chapter 4. The following Section 2.6.1 and
Section 2.6.2 thus provide more background information on neural networks and deep
kernels.
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2.6.1 Neural networks

In contrast to standard kernel methods as described in the previous sections, neural
networks (NNs) are an instance of deep models and parametric models [42]. In their
most basic form, i.e. feedforward neural networks, the mapping f can be written as a
concatenation of basic functions:

fNN(x) = fL ◦ ... ◦ f1(x). (2.32)

Every mapping fj, j = 1, ..., L describes one of the L layers and they are of the form

fl(x) = σ(Wlx+ bl), 1 ≤ l ≤ L− 1,

fL(x) = WLx+ bL,
(2.33)

with dimensionwise acting activation function σ : R→ R and weight matrix Wl ∈ Rdl×dl−1

and bias vector bl ∈ Rdl . Due to these parameters Θ := {Wl}Ll=1∪{bl}Ll=1, neural networks
are an instance of parametric models.
Given some input data Xn := {x1, ..., xn} ⊂ Rd with corresponding output values Yn :=
{y1, ..., yn} ⊂ R, the optimization of such a neural network fNN,Θ ≡ fNN refers to a
modification of the parameters Θ to minimize the cost functional

J(Θ, Xn, Yn) ≡
n∑

i=1

L(yi, fNN,Θ(xi)) +R(Θ), (2.34)

which consists of a loss part L and a regularization part R. Frequent choices are the least
squares loss and a weight penalization via

L(y, fNN,Θ(x)) :=
1

2
|y − fNN,Θ(x)|2

R(Θ) :=
L∑
i=1

λi,W∥Wl∥2 +
L∑
i=1

λi,b∥bl∥2

for regularization parameters λi,W , λi,b ≥ 0, i = 1, ..., L. The parameters Θ are usually
optimized using a gradient descent mini-batch algorithm, whereby the Adam optimizer
[57] is a popular choice.
Neural networks are known to be universal approximators under mild conditions, which
means that continuous functions can be approximated arbitrarily well: The case of wide
networks (i.e. d1, ..., dL−1 → ∞) was analyzed e.g. in [52, 64, 85] and for the case of deep
networks (i.e. L → ∞) see e.g. [32, 49, 107]. For the case of deep networks, much focus
was put on the popular ReLU activation function σ(x) = max(0, x).
There are also some connections to kernel methods, which are partly of interest for the
following: First, there are representer theorems for neural networks, see e.g. [82, 109].
Connections between these representer theorems and the kernel representer theorems of
Theorem 6 and Theorem 8 are discussed in Section 4.2.5. In order to emphasize the
feature learning ability of neural networks, Eq. (2.32) and Eq. (2.33) can be written as

fNN(x) = WL (fL−1 ◦ ... ◦ f1(x)) + bL,
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which highlights that a neural network is essentially a linear model in the feature fL−1 ◦
...◦f1(x) of x. As the mappings f1, ..., fL−1 are described by the parameters {Wl}L−1

l=1 and
{bl}L−1

l=1 which can be optimized, neural networks allow for feature learning. A particular
interesting case are convolutional neural networks, where the learned features even have
a visual interpretation and explanation [43]. This can be contrasted with kernel models,
as the kernel model from Eq. (2.19) reads

sn,λ(x) =
n∑

j=1

α
(n)
j k(x, xj)

using a fixed preselected kernel k, that does not adapt to the data (beyond the choice
of e.g. a shape parameter as in Eq. (2.1)). Chapter 4 starts at this point and proposes
kernel models which adapt to the data just as neural networks do, but keeping benefits
of kernel methods.
Another interesting connection between neural networks and kernels was initially de-
scribed in [16] which introduced arc-cosine kernels, that can be seen as infinite width
limit of one hidden layer neural networks. This idea – obtaining kernels from the infinite
width limit of neural networks – was followed up in [53] where the neural tangent kernel
(NTK) was introduced, which is defined by the feature map obtained by the gradients of
the neural network. As the construction defined the kernel recursively, it thus also works
for multilayer neural networks and especially using quite general activation functions. The
crucial insight was, that the neural tangent kernel becomes deterministic in the limit of
infinite width, and that then the training behavior of such infinite width neural networks
can be described exactly with help of the stationary NTK. This connection allowed to
analyze the generalization performance of neural networks. This work has sparked a lot
of research recently, see e.g. [6, 11,50,63,131].

2.6.2 Data adapted and deep kernel models

As argued in Section 1.1 the choice of a proper kernel is desired in order to obtain a good
kernel model. Therefore, it makes sense to strive for data adapted kernels, which take into
account properties of the data set or the underlying problem, even before computing a
model. In the context of approximation theory and in particular function approximation,
as dealt in Chapter 3, it can be argued [19] that the optimal kernel for the approximation
of a function f : Ω→ R is given by

k(x, z) = f(x)f(z),

because it allows to perfectly recover a function with only one sample point x1 (that
satisfies f(x1) ̸= 0) as

f(x) =
1

f(x1)
k(x, x1).

However – especially if only partial information by data points is provided – it is hardly
possible to find this optimal kernel.

Nevertheless, it is still possible to obtain a better suited data adapted kernel, though it
might not be the optimal kernel. Due to the success of deep models especially via neural
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networks, it is imminent to try to obtain data adapted kernels by using a multilayered
kernel, i.e. a deep kernel. A theoretical milestone for the mathematical foundation of such
a deep kernel was set in a deep kernel representer theorem in [13], where a generalization
of the standard kernel representer theorem from Theorem 6 was given. A predecessor of
this statement for two layers was presented in [24, Section 3.1]. The more general deep
kernel representer theorem of [13] is restated in the following (with notation adopted to
this thesis) for convenience: For this, a set of corresponding input-output values (xi, yi) ∈
Rdin+dout , i = 1, ..., N is considered, which is to be approximated with a multilayered
function h = fL ◦ .. ◦ f1:

Theorem 8. Let H1, ..,HL be reproducing kernel Hilbert spaces of functions with finite-
dimensional domains Dl and ranges Rl ⊆ Rdl with dl ∈ N for l = 1, .., L such that
Rl ⊆ Dl+1 for l = 1, .., L − 1, D1 = Ω and RL ⊂ R. Let furthermore L : R2 → [0,∞]
be an arbitrary loss function and let Θ1, ..,ΘL : [0,∞)→ [0,∞) be strictly monotonically
increasing functions. Then, a set of minimizers (f ∗

l )
L
l=1 with f ∗

l ∈ Hl of

J(f1, .., fL) :=
N∑
i=1

L(yi, fL ◦ .. ◦ f1(xi)) +
L∑
l=1

Θl(∥fl∥H2
l
)

fulfills f ∗
l ∈ Ṽl ⊂ Hl for all l = 1, .., L with

Ṽl := span{Kl( · , f ∗
l−1 ◦ .. ◦ f ∗

1 (xi))ekl |i = 1, .., N, kl = 1, .., dl},

where Kl denotes the reproducing kernel of Hl and ekl ∈ Rdl is the kl-th unit vector.

It is remarked that the cost functional J from Theorem 8 is very similar to the cost
term used for the optimization of neural networks, see Eq. (2.34). Overall Theorem 8
gives rise to a deep kernel model sdeep as

sdeep(·) =
N∑
i=1

KL(·, xi)αi (2.35)

using the deep kernel

KL(x, z) = KL(fL−1 ◦ .. ◦ f1(x), fL−1 ◦ .. ◦ f1(z)). (2.36)
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Chapter 3

Kernel approximation

In contrast to the next Chapter 4, this chapter mainly deals with the analysis of already
existing methods and algorithms and by doing so solves some open problems. Moreover,
the results and introduced analysis techniques also ease the way to derive new methods.
In order to keep the outline in this section as abstract as possible, we try to mainly rely
on reproducing kernel Hilbert space arguments most of the time and only make use of
arguments from e.g. the theory of Sobolev spaces when necessary.

Section 3.1 starts by summarizing the literature and current state of the art, and Sec-
tion 3.2 proceeds by introducing required special tools from the literature, which will be
leveraged in the forthcoming analysis. Section 3.3 proceeds by generalizing and extending
those tools, which will be then used in the subsequent sections: Section 3.4 leverages
greedy algorithms as a tool to derive results on general kernel interpolation. Section 3.5
then actually analyzes greedy algorithms itself, and Section 3.6 briefly discusses gener-
alized greedy algorithms. Note that there is a change of the order of presentation here
in comparison with the chronological publication order of the papers, which was done
in order to highlight the pipeline of the results. Section 3.7 concludes by discussing the
results, commenting on them and providing an outlook.

3.1 Literature and state of the art

After the respective introduction of the different greedy kernel algorithms (see Section 2.5
for more details), their analysis was quite tough: After [22] defined the P -greedy algo-
rithm, the provided convergence analysis derived a convergence rate as ∥Pn∥L∞(Ω) ≤ n−1/d

[22, Theorem 4.3.] based on the use of the mean value theorem. Then, [75] defined the f -
greedy algorithm and provided a decay rate as minj=1,...,n ∥f − sf,Xn∥L∞(Ω) ≤ Cn−1/d [75,
Korollar 3.3.8]. Afterward, [126] introduced and analyzed the f/P -greedy algorithm, but
the proven decay rate holds only for a very small set of functions [126, Theorem 2.8].

Based on a more general setting than kernel interpolation, [23] and the predecessor
paper [12] analyzed performance of greedy algorithms in general Banach and Hilbert
spaces: It was shown that their considered greedy algorithms essentially realize the same
convergence behavior as the corresponding Kolmogorov widths of the considered problem.
This analysis was first used by [92] to connect these results to greedy kernel approximation,
which established a strong tool. We remark that the paper [37] established indeed the
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Chapter 3. Kernel approximation

same connection two years later, probably unaware of [92]. Essentially the considered
Kolmogorov width of [23] turned out to be upper boundable by a sampling number of
the reproducing kernel Hilbert space, and thus the P -greedy algorithm essentially realizes
the same kind of convergence as the corresponding sampling numbers of the considered
problem. This connection will also be essential for the forthcoming analysis, and therefore
it will be explained in more depth in Section 3.2. Despite this progress in the analysis
of the target data-independent P -greedy algorithm, a powerful analysis of target data-
dependent algorithms still remained an open problem till the work presented in Section 3.5
and published in [122].

Greedy algorithms can not only be investigated for interpolation or regularized inter-
polation, but also for generalized interpolation and therefore especially for solving PDEs,
see Section 2.4. An initial analysis of a P -greedy like algorithm for symmetric kernel
collocation was provided in [99], which generalized the connection established in [92] to
generalized interpolation problems, see [99, Section 4]. Section 3.6 comments on gener-
alizing the analysis from Section 3.5 to target data-dependent generalized greedy kernel
algorithms.

Much of the analysis on error estimates for kernel approximation focussed on uniformly
distributed points and was thus measured in terms of a (local) fill distance, see e.g.
[77, 97, 129]. Estimates based on fill distances can be transformed to statements in the
number of points for asymptotically distributed points by using Eq. (2.17). However,
when working with fill distances, assumptions on the domain like Lipschitz boundary
are frequently imposed. These restrictive assumptions on the domain are not required
when working with local fill distances [129], nevertheless, these local distances require a
clustering of points around cusps and thus do not allow converting them into estimates
based on the number of interpolation points for non-Lipschitz domains. This will be
removed by the technique introduced in Section 3.4, which directly works in the number
of interpolation points and thus circumvents fill distances.

3.2 Background

The following two subsections distinguish between an abstract setting and a kernel setting,
which are both required for the forthcoming analysis of greedy kernel algorithms. This
distinction is done to separate the more abstract analysis which takes part in arbitrary
Hilbert spaces, and the connection which allows transferring this connection to greedy
kernel interpolation.

3.2.1 Abstract setting

A key tool for the analysis of greedy kernel algorithms was provided in [92], which made
use of results from [23]. We start by introducing the required terminology and results
of [23] and subsequently showing how [92] connected them to kernel approximation:

The paper [23] considers a Hilbert space H and a compact subset F which is assumed
to satisfy ∥f∥ ≤ 1 for all f ∈ F . We assume F to contain infinitely many elements,
otherwise the forthcoming analysis is trivial. The compactness of F ensures that F can
be well approximated with finite dimensional subspaces. Then a sequence {f0, f1, ...} of
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3.2. Background

elements from F is constructed by a greedy algorithm, which starts with any f0 ∈ F that
satisfies

∥f0∥ ≥ γ ·max
f∈F
∥f∥

for a preselected γ ∈ (0, 1]. Then, defining Vn := span{f0, ..., fn−1}, the next element
fn ∈ F is chosen such that it satisfies

dist(fn, Vn)H ≥ γ · sup
f∈F

dist(f, Vn)H. (3.1)

This algorithm is called weak greedy algorithm with constant γ. As H is a Hilbert space,
the distances can be computed by the distance to the best approximating element, which
is given by the projection, i.e. it holds dist(f, Vn) = ∥f − ΠVn(f)∥H and ΠVn : H → Vn is
the orthogonal projector onto the n-dimensional subspace Vn ⊂ H. Especially for γ < 1,
but also for γ = 1, the resulting sequence does not need to be unique. Nevertheless, the
subsequent statements hold for any sequence which is constructed in this way.

For the analysis of the approximation properties of the subspace Vn generated by
f0, ..., fn−1, the following quantities are defined:

σn(F)H := sup
f∈F

dist(f, Vn)H,

dn(F)H := inf
Yn⊂H

sup
f∈F

dist(f, Yn)H,
(3.2)

where the infimum infYn⊂H runs over all n-dimensional subspaces Yn of H.
The first quantity σn(F)H measures how well the n-dimensional subspace Vn approxi-

mates F , while the second quantity dn(F)H measures how well an optimal n-dimensional
subspace approximates F . The quantity dn(F)H is also called the Kolmogorov n-width of
F in H. In the following we frequently drop the index H and the argument F , if they are
clear from the context.

Given those definitions, we recall the technical statement [23, Lemma 2.1] as Lemma 9
and subsequently state [23, Theorem 3.2] as Theorem 10, which will be of importance to
us:

Lemma 9. Let G = (gi,j) be a K × K lower triangular matrix with rows g1, ..., gK, W
be any m-dimensional subspace of RK, and P be the orthogonal projection of RK onto W .
Then

K∏
i=1

g2i,i ≤

{
1

m

K∑
i=1

∥Pgi∥22

}m{
1

K −m

K∑
i=1

∥gi − Pgi∥22

}K−m

where ∥ · ∥2 is the Euclidean norm of a vector in RK.

Theorem 10. For the weak greedy algorithm with constant γ in a Hilbert space H and
for any compact set F , we have the following inequalities between σn := σn(F)H and
dn := dn(F)H, for any N ≥ 0, K ≥ 1, and 1 ≤ m < K:

K∏
i=1

σ2
N+i ≤ γ−2K

(
K

m

)m(
K

K −m

)K−m

σ2m
N+1d

2K−2m
m .
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Chapter 3. Kernel approximation

The proof of Theorem 10 is based on the application of the technical Lemma 9. We
do not restate it here, because later on a related proof is given for a modified statement.
A conclusion of Theorem 10 is provided by the following corollary, which is [23, Corollary
3.3]:

Corollary 11. For the weak greedy algorithm with constant γ in a Hilbert space H, we
have the following:

1. For any compact set F and n ≥ 1, we have

σn(F) ≤
√
2γ−1 min

1≤m<n
d

n−m
n

m (F)

2. If dn(F) ≤ C0n
−α, n = 1, 2, ..., then σn(F) ≤ C1n

−α, n = 1, 2, ..., with C1 :=
25α+1γ−2C0.

3. If dn(F) ≤ C0e
−c0nα

, n = 1, 2, ..., then σn(F) ≤
√
2C0γ

−1e−c1nα
, n = 1, 2, ..., where

c1 = 2−1−2αc0.

3.2.2 Kernel setting

In the following, we show how [92] used the abstract setting from [23] in order to derive
convergence rates for the P -greedy algorithm: In view of Section 3.2.1, it was chosen
H = Hk(Ω) and F = {k(·, x), x ∈ Ω}. This choice allows identifying any f ∈ F uniquely
with an x ∈ Ω. For the subspace Vn ⊂ H this means

Vn ≡ span{f0, . . . , fn−1} = span{k(·, xi) | i = 1, . . . , n} ≡ V (Xn). (3.3)

With these choices, which are also summarized in Table 3.1, it is possible to express the
quantities σn(F), dn(F) from Eq. (3.2) as

σn(F) ≡ sup
f∈F

dist(f, Vn)H = sup
f∈F
∥f − ΠVn(f)∥H

= sup
x∈Ω
∥k(·, x)− ΠV (Xn)(k(·, x))∥Hk(Ω) = ∥PXn∥L∞(Ω),

(3.4)

and

dn(F) ≡ inf
Yn⊂H

sup
f∈F

dist(f, Yn)H = inf
Yn⊂H

sup
f∈F
∥f − ΠYn(f)∥H

≤ inf
Yn⊂spanF

sup
f∈F
∥f − ΠYn(f)∥Hk(Ω) ≤ inf

Xn⊂Ω
sup
x∈Ω

PXn(x)

= inf
Xn⊂Ω

∥PXn∥L∞(Ω),

(3.5)

We point out, that due to the choice of F , the Kolmogorov width dn(F) could be bounded
from above by a sampling number infXn⊂Ω ∥PXn∥L∞(Ω).
Using the unique identification f ∈ F ⇔ x ∈ Ω, F ∋ fn ⇔ xn+1 ∈ Ω, the greedy selection
criterion of Eq. (3.1) can be expressed as

⇔ dist(k(·, xn+1), V (Xn)) ≥ γ · sup
x∈Ω

dist(k(·, x), V (Xn))

⇔ ∥k(·, xn+1)− ΠV (Xn)(k(·, xn+1))∥Hk(Ω) ≥ γ · sup
x∈Ω
∥k(·, x)− ΠV (Xn)(k(·, x))∥Hk(Ω)

⇔ PXn(xn+1) ≥ γ · ∥PXn∥L∞(Ω).
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3.3. Analysis of greedy algorithms in an abstract setting

In view of Section 2.5, one can see that the greedy selection criterion of the abstract
setting is exactly the (weak) P -greedy selection criterion.

In order to be able to leverage Theorem 10 or Corollary 11, one needs to check the
remaining requirements:

1. First, we note that the basic assumption ∥f∥ ≤ 1 for all f ∈ F is equivalent to

sup
x∈Ω
∥k(·, x)∥Hk(Ω) = sup

x∈Ω

√
k(x, x) < 1, (3.6)

whereby the last inequality can be ensured easily for e.g. translational invariant
kernels after suitable scaling.

2. Second, we need to check that F is indeed a compact subset of Hk(Ω). This was
done in [92] and [122] by leveraging [86, Prop. 1.2 (page 10)], which states that a
set F is compact iff dn(F) → 0 and F is bounded: The boundedness of F indeed
follows from Eq. (3.6) and dn(F) → 0 holds as soon as there exists a sequence of
sets (Xn)n∈N such that infXn⊂Ω ∥PXn∥L∞(Ω)

n→∞−→ 0, which frequently holds, e.g. if

hXn,Ω
n→∞−→ 0.

However, this argumentation via [86, Prop. 1.2 (page 10)] is indeed not complete,
as [86] assumes the considered sets to be closed in the beginning of [86, Chapter II].
We discuss this issue in more detail in Section 3.3.1.

With this choice of H = Hk(Ω) and F = {k(·, x), x ∈ Ω} it is possible to use
Theorem 10 or in particular Corollary 11: Using Eq. (3.5), any asymptotic rate for
infXn⊂Ω ∥PXn∥L∞(Ω) (e.g. a rate realized by well distributed points Xn ⊂ Ω) carries over to
a rate on the decay of the power function for the P -greedy algorithm. This is essentially
summarized in [92, Theorem 4.1].

Table 3.1: Connection between the abstract setting and the kernel setting.
Abstract setting H f ∈ F Vn ≡ span{f0, . . . , fn−1}
Kernel setting Hk(Ω) k(·, x), x ∈ Ω V (Xn) ≡ span{k(·, xi), xi ∈ Xn}

3.3 Analysis of greedy algorithms in an abstract set-

ting

We extend the analysis of [23], which was presented in Section 3.2 in two ways: First, in
Section 3.3.1, we elaborate why it is possible to generalize the assumption on F being a
compact set to F being a precompact set. Second, in Section 3.3.2, we derive more general
results than presented in [23] within the same framework. Especially, we formulate these
statements using F ⊂ H precompact.
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Chapter 3. Kernel approximation

3.3.1 Precompact sets F ⊂ H
In Section 3.2.2 we already discussed that the choice of F ⊂ H via F := {k(·, x), x ∈ Ω}
does not necessarily yield a compact set: If Ω ⊂ Rd is not a closed set, then also F is not
closed and thus in particular not compact. We have the following Corollary 12:

Corollary 12. Let Ω ⊂ Rd be a bounded set and let k : Ω× Ω → R be a strictly positive
definite continuous kernel. Then it holds

{k(·, x), x ∈ Ω}
∥·∥Hk(Ω)

= {k(·, x), x ∈ Ω}

as sets within Hk(Ω).

We remark that k(·, x) : Ω→ R ∈ Hk(Ω) for x ∈ ∂Ω follows from Theorem 4.

Proof. We define F := {k(·, x), x ∈ Ω} and are interested in F∥·∥Hk(Ω) :

”⊆” Let f ∈ F∥·∥Hk(Ω) , i.e. there exists a sequence (fn)n∈N ⊂ F such that ∥f−fn∥Hk(Ω) →
0, in particular (fn)n∈N is a Cauchy sequence. We use the unique identification fn ↔
k(·, xn) (because k is strictly positive definite) to obtain a sequence (xn)n∈N ⊂ Ω. As
Ω is compact, there exists an accumulation point x∗ ∈ Ω such that for a subsequence

(nj)j∈N ⊂ N it holds xnj

j→∞−→ x∗. We show now that f = k(·, x∗), and for this it is
sufficient to show that f(x) = k(x, x∗) for all x ∈ Ω:

|k(x, x∗)− f(x)| = |k(x, x∗)− k(x, xnj
) + k(x, xnj

)− f(x)|
≤ |k(x, x∗)− k(x, xnj

)|+ |k(x, xnj
)− f(x)|

≤ |k(x, x∗)− k(x, xnj
)|+ |fnj

(x)− f(x)|.

The first summand vanishes due to the continuity of k, and the second summand
vanishes due to |fnj

(x)− f(x)| ≤ ∥k(·, x)∥Hk(Ω) · ∥fnj
− f∥Hk(Ω). As x

∗ ∈ Ω, we have

f ∈ {k(·, x), x ∈ Ω}.

”⊇” Consider k(·, x∗) with x∗ ∈ Ω. If x∗ ∈ Ω, then the inclusion is trivial. For x∗ ∈
∂Ω, consider any sequence (xn)n∈N ⊂ Ω such that xn → x∗. Then, by using the
continuity of the kernel, we can show that k(·, xn) is a Cauchy sequence:

∥k(·, xn)− k(·, xm)∥2Hk(Ω)
= k(xn, xn) + k(xm, xm)− 2 · k(xn, xm)→ 0.

As Hk(Ω) is complete, there exists a unique limiting element f ∈ Hk(Ω) such that

k(·, xn) → f in Hk(Ω), i.e. f ∈ F
∥·∥Hk(Ω) . It is left to show that f = k(·, x∗), for

which it suffices to show f(x) = k(x, x∗) for all x ∈ Ω:

|f(x)− k(x, x∗)| = |f(x)− k(x, xn) + k(x, xn)− k(x, x∗)|
≤ ∥k(·, x)∥Hk(Ω) · ∥f − k(·, xn)∥Hk(Ω) + |k(x, xn)− k(x, x∗)|.

The first summand vanishes due to k(·, xn)→ f in Hk(Ω), and the second summand
vanishes by continuity of the kernel.

Therefore, we have k(·, x∗) = f and f ∈ F∥·∥Hk(Ω) , i.e. k(·, x∗) ∈ F∥·∥Hk(Ω) .
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3.3. Analysis of greedy algorithms in an abstract setting

Corollary 12 shows that whether F is closed or not, is just about Ω ⊂ Rd being
closed or not. In order to allow Ω to be also non-closed, we argue how to generalize the
results from [23] to F ⊂ Ω being precompact: By checking the proof of [23, Theorem 3.2] it
becomes clear, that closedness of F is not required, only a decay on the Kolmogorov width
dn(F). The closedness of F (and thus the compactness of F) was likely only assumed,
because this is a standard assumption in approximation theory. Indeed, [86, Theorem
1.1 (page 10)] shows that a precompact set and its closure provide the same Kolmogorov
width. Therefore, it is convenient to always consider the corresponding closed and thus
compact set.

Closedness of F might only be of interest if one strives for the maximal element which
realizes the supremum of some continuous quantity – because the supremum needs not
to be attained in open sets. But as the whole theory works also for weak algorithms, i.e.
incorporating a γ ∈ (0, 1), closedness of F is not required.

Similar to Corollary 12, also the reproducing kernel Hilbert spaces Hk(Ω) and Hk(Ω)
related to Ω and Ω are essentially the same:

Corollary 13. Let Ω ⊂ Rd be a bounded set and let k : Ω× Ω → R be a strictly positive
definite continuous kernel.
Then it follows that the embedding operator E : Hk(Ω) → Hk(Ω) (from Theorem 3) is
surjective, i.e. Hk(Ω) and Hk(Ω) essentially contain the same functions.

Proof. In order to show that E : Hk(Ω) → Hk(Ω) is surjective, we consider f ∈ Hk(Ω)
and show that there is a function f̃ ∈ Hk(Ω) such that Ef̃ = f :
For this, we define f̃ := f |Ω which is an element of Hk(Ω) by Theorem 4. For x ∈ Ω it
holds f(x) = f̃(x), therefore we consider x ∈ ∂Ω and a sequence (xn)n∈N ⊂ Ω such that
xn → x:

|f(x)− Ef̃(x)| ≤ |f(x)− f(xn) + f(xn)− Ef̃(xn) + Ef̃(xn)− Ef̃(x)|
≤ |f(x)− f(xn)|+ |f(xn)− Ef̃(xn)|+ |Ef̃(xn)− Ef̃(x)|.

The first and third summand vanish for n→∞ because f respective Ef̃ are elements of
Hk(Ω) and thus continuous. The second summand is equal to zero as Ef̃(xn) = f̃(xn) =
f(xn). As the space span{k(·, x), x ∈ Ω} is dense in Hk(Ω) (by construction), it follows
Ef |Ω = f .

3.3.2 Improved and generalized statements

This section is a mixture and extension of results within the abstract setting as introduced
in [122] and [121]. We will frequently use the notion “any arbitrary selection rule which
selects pairwise different elements”: Like this, we want to allow for arbitrary sequences
of pairwise different elements. The requirement on pairwise different elements is required
because otherwise the Gram Schmidt orthogonalization procedure which was used in [23]
and which will also be applied later on to prove the main abstract result (Theorem 14)
does not work directly, but some extra technical work on circumventing this would be
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required. In order to emphasize the use of the results for greedy algorithms, we stick to
the notion of “arbitrary selection rule”.

First, we start by generalizing Eq. (3.2) by introducing the quantity νn:

σn(F) := σn(F)H ≡ sup
f∈F

dist(f, Vn)H,

dn(F) := dn(F)H ≡ inf
Yn⊂H

sup
f∈F

dist(f, Yn)H,

νn := (νn)H ≡ dist(fn, Vn)H.

(3.7)

This newly introduced quantity νn is not of much interest for the abstract analysis in [23]
and was there simply denoted as an,n, but its consideration will pay off later on.

We have the following theorem, which is a unified formulation of [122, Theorem 1]
and [121, Theorem 4] with the additional novelty that F ⊂ Ω can be precompact. We
remark that the precompactness of F is not required here, as F bounded is sufficient to
keep dn(F) bounded. However, F precompact will be used later on, as it is equivalent to
dn(F)→ 0 for n→∞, see [86, Prop. 1.2 (page 10)].

Theorem 14. Consider a precompact set F in a separable Hilbert space H and a subset
F̃ ⊆ F that contains infinitely many elements. Consider a greedy algorithm that selects
pairwise different elements {f0, f1, ...} from F̃ ⊆ F according to any arbitrary selection
rule. We have the following inequalities between νn, σn(F̃) and dn(F) for any N ≥ 0, K ≥
1, 1 ≤ m < K:

K∏
i=1

ν2N+i ≤
(
K

m

)m(
K

K −m

)K−m

σN+1(F̃)2mdm(F)2K−2m. (3.8)

Both the proofs of [122, Theorem 1] and [121, Theorem 4] commented only on the
minor changes necessary compared to the proof of the initial statement in [23, Theorem
3.2]. As we have here a more general statement, we include a full proof:

Proof. The proof is an extension of the proof of [23, Theorem 3.2], thus we proceed similar:
As H is separable, we assume without loss of generality that H is ℓ2(N ∪ {0}). For the
infinite sequence (fn)n≥0 ⊆ F̃ ⊂ H consisting of pairwise different elements, we consider
the orthonormal system (f ∗

n)n≥0 obtained by Gram-Schmidt orthogonalization. For the
orthogonal projector Pn : H → Vn ≡ span{f0, ..., fn−1} it then holds

Pnf =
n−1∑
i=0

⟨f, f ∗
i ⟩f ∗

i .

Especially fn can be expressed in this orthogonal basis, and we collect the coefficients in
an (infinite dimensional) lower triangular matrix A:

A := (ai,j)
∞
i,j=0, ai,j := ⟨fi, f ∗

j ⟩H.

Now we consider the K ×K matrix G = (gi,j) which is formed by the rows and columns
of A with indices from {N + 1, ..., N + K}. Each row gi is the restriction of fN+i to
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the coordinates N + 1, ..., N + K. Let Hm be the m-dimensional Kolmogorov subspace
of H for which dist(F ,Hm) = dm. Then, dist(fN+i,Hm) ≤ dm, i = 1, ..., K. Let W̃ be
the linear space which is the restriction of Hm to the coordinates N + 1, ..., N + K. In
general, dim(W̃ ) ≤ m. Let W be an m-dimensional space, W ⊂ span{eN+1, ..., eN+K},
such that W̃ ⊂ W and P and P̃ are the orthogonal projections from RK onto W ⊂ RK

and W̃ ⊂ RK , respectively.
As the selection criterion chooses only elements from F̃ , it holds fi ∈ F̃ for all i =

0, 1, ..., and thus

∥Pgi∥2RK ≤ ∥gi∥2RK = ∥fN+i − ΠVN+1
(fN+i)∥2H

≤ sup
f∈F̃
∥f − ΠVN+1

(f)∥2H = σN+1(F̃)2H i = 1, ..., K.

Furthermore

∥gi − Pgi∥RK ≤ ∥gi − P̃gi∥RK = dist(gi, W̃ )

≤ dist(fN+i,Hm) ≤ dm(F), i = 1, ..., K.

And finally

gi,i ≡ aN+i,N+i ≡ ∥fN+i − ΠVN+i
fN+i∥H = dist(fN+i, VN+i)H

Eq. (3.7)
≡ νN+i.

Now Lemma 9 can be leveraged:

K∏
i=1

g2i,i ≤

{
1

m

K∑
i=1

∥Pgi∥22

}m{
1

K −m

K∑
i=1

∥gi − Pgi∥22

}K−m

⇒
K∏
i=1

ν2N+i ≤

{
1

m

K∑
i=1

σN+1(F̃)2H

}m{
1

K −m

K∑
i=1

dm(F)2
}K−m

⇔
K∏
i=1

ν2N+i ≤
(
K

m

)m(
K

K −m

)K−m

σN+1(F̃)2mdm(F)2K−2m.

We proceed by deriving two corollaries from Theorem 14: We start with Corollary 15,
which is an extension of [121, Corollary 5] and will be leveraged in Section 3.4. Then we
state Corollary 16, which is an extension of [122, Corollary 2] and will be leveraged in
Section 3.5. In the following, log denotes the natural logarithm.

Corollary 15. Under the assumptions of Theorem 14, but using the greedy selection
criterion

fn ∈ F̃ such that dist(fn, Vn)H ≥ γ · sup
f∈F̃

dist(f, Vn)H (3.9)

for γ ∈ (0, 1] it holds:
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i) If dn(F)H ≤ C0n
−α log(n)δ with α > 0, δ ≥ 0 for n = 1, 2, . . . , then it holds

σn(F̃)H ≤ C1n
−α log(n)δ (3.10)

for n = 8, 9, ... with C1 := 25α+1+δC0γ
−2.

ii) If dn(F)H ≤ C0e
−c0nα

with α > 0 for n = 1, 2, . . . , then it holds

σn(F̃)H ≤
√

2C̃0γ
−1e−c1nα

(3.11)

for n = 2, 3, . . . with C̃0 := max{1, C0} and c1 = 2−(2+α)c0 < c0.

We remark that for γ = 1, δ = 0 this corollary simplifies to [121, Corollary 5].
Furthermore, we remark that statement ii) (and also the subsequent Corollary 16)

could be generalized by adding a log(n) term to the exponent, i.e. assuming dn(F)H ≤
C0e

−c0 log(n)βnα
for some β ∈ R. However this does not provide much additional insight,

therefore it is not included here. Instead, we point to [121, Corollary 11] for such a
statement.

Proof. As νn ≡ dist(fn, Vn)H, the selection criterion Eq. (3.9) means we have νn ≥ γ ·
supf∈F̃ dist(f, Vn)H ≡ γ · σn(F̃). This can be plugged into Eq. (3.8) from Theorem 14:

K∏
i=1

γ2σN+i(F̃)2 ≤
(
K

m

)m(
K

K −m

)K−m

σN+1(F̃)2mdm(F)2K−2m

⇔
K∏
i=1

σN+i(F̃)2 ≤ γ−2K

(
K

m

)m(
K

K −m

)K−m

σN+1(F̃)2mdm(F)2K−2m.

The remaining proof is very close to the proof of [23, Corollary 3.3]:

i) We consider σn(F̃)H instead of σn(F)H, which is not a big change because the proof
of [23, Corollary 3.3] is purely algebraic. However, we need to keep track of the
logarithmic term log(n)δ:

We use the monotonicity of (σn(F̃)H)n≥0 and use above’s equation for N = K = n
and any 1 ≤ m < n to obtain

σ2n(F̃)2n ≤ γ−2n
( n
m

)m( n

n−m

)n−m

σn(F̃)2mdm(F)2n−2m.

We consider the case of n even, i.e. n = 2s for some s ≥ 2 and pick m = s. Thus
the previous equation simplifies to

σ4s(F̃)4s ≤ γ−4s4sσ2s(F̃)2sds(F)2s

⇔ σ4s(F̃) ≤
√
2γ−1

√
σ2s(F̃)ds(F). (3.12)

We proceed by assuming the contradiction and consider M the first value such that
σM(F̃) > C1M

−α log(M)δ.
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• First case: M = 4s. From Eq. (3.12) using σ2s(F̃) ≤ C1(2s)
−α log(2s)δ and

the decay assumption on ds(F), we have

σ4s(F̃) ≤
√
2γ−1

√
(C1(2s)−α log(2s)δ)(C0s−α log(s)δ)

=
√
2
√
C1C02δ−αγ−1 log(s)δs−α,

whereby we used log(2s) ≤ 2 log(s) for s ≥ 2. It follows

C1(4s)
−α log(4s)δ < σ4s(F̃) ≤

√
2
√
C1C02δ−αγ−1 log(s)δs−α,

which can be rearranged to

C1 ≤ 4α
√
2
√
C1C02δ−αγ−1 log(s)δ

log(4s)δ

< 22α+(δ−α+1)/2
√
C1C0γ

−1

⇔ C1 < 23α+1+δC0γ
−2 < 25α+1+δC0γ

−2,

which is the desired contradiction to the definition of C1.

• Second case: M = 4s+ q, q ∈ {1, 2, 3}. Using Eq. (3.12) and the monotonicity
of (σn(F̃)H)n≥0 gives

C12
−α(4s)−α log(s)δ < C1(4s+ q)−α log(4s+ q)δ

< σ4s+q(F̃) ≤ σ4s(F̃)

≤
√
2
√
C1C02δ−αγ−1 log(s)δs−α

⇒ C1 < 2 < 25α+δ+1C0γ
−2,

which is again the desired contradiction.

ii) The proof of [23, Corollary 3.3] is slightly inaccurate, because its Eq. (3.9) uses

σ2n+1 ≤
√
2C0γ

−1e−c02−1−α(2n)α ,

however

σ2n+1 ≤
√
2C0γ

−1e−c02−1−α(2n+1)α

would be required.
Thus, instead we use ii) of Corollary 16 (which is possible because the proof of
Corollary 16 does not rely on Corollary 15) for our selection criterion from Eq.
(3.9), i.e. it holds νn ≡ dist(fn, Vn)H ≥ γ · σn(F̃).
Using the monotonicity of (σn(F̃)H)n≥0, Eq. (3.14) gives the result:

γ · σn(F̃) ≤

(
2n∏

i=n+1

γ · σi(F̃)

)1/n

≤

(
2n∏

i=n+1

νi

)1/n

≤
√
2C̃0 · e−c1nα

.
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Corollary 16. Under the assumptions of Theorem 14 (i.e. using any arbitrary selection
rule that selects pairwise different elements):

i) If dn(F) ≤ C0n
−α log(n)δ with α > 0, δ ≥ 0 for n = 1, 2, ..., then it holds(

2n∏
i=n+1

νi

)1/n

≤ 2α+δ+1/2C̃0e
α · log(n)α+δn−α, (3.13)

for n = 3, 4, ... with C̃0 := max{1, C0}.

ii) If dn(F) ≤ C0e
−c0nα

with α > 0 for n = 1, 2, ..., then it holds(
2n∏

i=n+1

νi

)1/n

≤
√

2C̃0 · e−c1nα

, (3.14)

for n = 2, 3, ... with C̃0 := max{1, C0} and c1 = 2−(2+α)c0 < c0.

Proof. The proof is a minor adjustment of the proof of [122, Corollary 2], because we
track the additional δ dependent terms:
We exactly follow its proof until including its Eq. (12), which reads(

n∏
i=1

νn+i

)1/n

≤
√
2 · dm(F)(n−m)/n for any 1 ≤ m < n,

To prove statement i) and ii), we proceed slightly different:

i) We follow the lines of the proof of [122, Corollary 2] and additionally keep track
of the parameters δ and γ: For n fixed we choose a fixed 0 < ω ≪ 1 and define
m∗ := ⌈ωn⌉ ∈ N, i.e. ωn ≤ m∗ < ωn+1. Using dn(F) ≤ 1 , dn(F) ≤ C̃0n

−α log(n)δ

with C̃0 := max{1, C0}, and since dn(F) is non-increasing, we can estimate:(
n∏

i=1

νn+i

)1/n

≤
√
2 · dm∗(F)(n−m∗)/n

≤
√
2 · d⌈ωn⌉(F)(n−ωn−1)/n

≤
√
2C̃

(1−ω)−1/n
0 ⌈ωn⌉−α(1−ω)+α/n⌈log(ωn)⌉δ(1−ω)−δ/n

≤
√
2C̃0(ωn)

−α(1−ω)(ωn)α/n⌈log(ωn)⌉δ(1−ω).

The last inequality made use of −α(1−ω)+α/n = −α(1−ω− 1/n) < 0, such that
⌈ωn⌉ ≥ ωn could be used. Using (ωn)α/n ≤ (n1/n)α ≤ 2α we reformulate this as(

n∏
i=1

νn+i

)1/n

≤ 2α+1/2C̃0ω
−α(1−ω)n−α(1−ω)⌈log(ωn)⌉δ(1−ω)

≤ 2α+1/2C̃0ω
−αnαω⌈log(ωn)⌉δ(1−ω)n−α.
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Now we select ω = 1/ log(n) ∈ (0, 1) for n ≥ 3. With this choice, we obtain for the
ω-dependent factors:

ω−αnαω⌈log(ωn)⌉δ(1−ω) = log(n)α(n1/ log(n))α⌈log(n/ log(n))⌉δ(1−
1

log(n))

= log(n)αeα⌈log(n)− log(log(n))⌉δ(1−
1

log(n))

≤ log(n)αeα⌈log(n)⌉δ ≤ log(n)αeα(2 log(n))δ

= eα2δ log(n)α+δ.

Thus overall we obtain(
n∏

i=1

νn+i

)1/n

≤ 2α+1/2C̃0e
α2δ log(n)α+δn−α,

which is the desired bound.

ii) Here we can directly reuse the proof from [122, Corollary 2], as even the statement
is exactly the same.

Corollary 15 and Corollary 16 look quite similar, and also their proofs are similar.
Thus it would be desirable to unify the statements. However, when using any arbitrary
selection rule as in Corollary 16, the convergence is slowed down by an additional log(n)α

term, which does not pop up when using a (weak) P -greedy selection criterion as in
Corollary 15. Indeed, the additional log(n)α term can be removed by bounding the error
with help of entropy numbers instead of Kolmogorov widths. This was done in [94] during
the finalization of this thesis.

3.4 Analysis of kernel approximation using greedy

algorithms

In this section we use the results of the previous Section 3.3, especially Corollary 15 to
obtain results for general kernel interpolation. In particular, we leverage greedy algo-
rithms as a tool to prove general kernel interpolation statements. The main statement
of this subsection is, that convergence rates (in the number of interpolation points) for
kernel interpolation in Hk(Ω) do not deteriorate if we consider the RKHS over a smaller
subset, i.e. Hk̃(Ω̃) with Ω̃ ⊆ Ω ⊂ Rd. This is formalized in Theorem 17. These results
were mostly covered in the publication [121].

We start by considering two sets Ω̃ ⊆ Ω ⊂ Rd, where Ω̃ is usually the set of interest
and Ω is a well-behaved domain such that we have approximation statements for Hk(Ω).
Furthermore, we choose a continuous strictly positive definite kernel k : Ω× Ω→ R with
k(x, x) ≤ 1 for all x ∈ Ω. This restriction is not too severe, because it can be enforced by
normalizing the kernel, i.e.

k′(x, y) :=
k(x, y)√

k(x, x) ·
√
k(y, y)

,
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as long as supx∈Ω k(x, x) < ∞. In order to leverage the framework from the previous
subsection, we define

H := Hk(Ω),

F̃ := {k(·, x), x ∈ Ω̃} ⊂ H,
F := {k(·, x), x ∈ Ω} ⊂ H,

(3.15)

and recall that it holds Vn = V (Xn), see Eq. (3.3). We make use of the detailed notation
from Section 2.2, especially of the restricted kernel k̃ from Eq. (2.6) and also include the
used kernel and the considered domain in the power function in the following, i.e. e.g.
Pk,Ω,Xn . Furthermore for the projectors, e.g. ΠHk(Ω),V (Xn) we here also include the RKHS,
where the projection takes place, in the notation, i.e. ΠHk(Ω),V (Xn) : Hk(Ω) → V (Xn).
Using these choices, we can compute the quantities of Corollary 15:

σn(F̃)H = sup
f∈F̃

dist(f, Vn)H = sup
f∈F̃
∥f − ΠVn(f)∥H

= sup
x∈Ω̃
∥k(·, x)− ΠHk(Ω),V (Xn)(k(·, x))∥Hk(Ω)

= sup
x∈Ω̃

Pk,Ω,Xn(x) = sup
x∈Ω̃

Pk̃,Ω̃,Xn
(x) = ∥Pk̃,Ω̃,Xn

∥L∞(Ω̃), (3.16)

dn(F)H ≡ inf
Yn⊂H

sup
f∈F

dist(f, Yn)H = inf
Yn⊂H

sup
f∈F
∥f − ΠYn(f)∥H

≤ inf
Yn⊂F

sup
f∈F
∥f − ΠYn(f)∥Hk(Ω) = inf

Xn⊂Ω
∥Pk,Ω,Xn∥L∞(Ω) (3.17)

With these choices, the selection criterion from Eq. (3.9) can be stated as

xn+1 ∈ Ω̃ such that Pk̃,Ω̃,Xn
(xn+1) ≥ γ · ∥Pk̃,Ω̃,Xn

∥L∞(Ω)

for Xn := {x1, ..., xn} and γ ∈ (0, 1]. This is also called the weak P -greedy algorithm, see
also Definition 18.

Now we can state the main result, which is a small extension of [121, Theorem 7] by
adding a possible log(n)δ decay rate:

Theorem 17. Let Ω̃ ⊂ Rd be arbitrary. If there exists a bounded superset Ω ⊇ Ω̃ and
a sequence of (non-necessarily nested) sets of points (Xn)n∈N ⊂ Ω such that for some
α > 0, δ ≥ 0 it holds

1. (algebraic decay case)

∥f − ΠHk(Ω),V (Xn)f∥L∞(Ω) ≤ C0n
−α log(n)δ · ∥f∥Hk(Ω) ∀f ∈ Hk(Ω), (3.18)

then the weak P -greedy algorithm with γ ∈ (0, 1] using k̃ applied to Ω̃ gives a nested
sequence of sets of points (X̃n)n∈N ⊂ Ω̃ such that

∥f − ΠHk̃(Ω̃),Ṽ (X̃n)
f∥L∞(Ω̃) ≤ C1n

−α log(n)δ · ∥f∥Hk̃(Ω̃) ∀f ∈ Hk̃(Ω̃)

for n = 8, 9, ... with C1 = 25α+1+δC0γ
−2.
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2. (exponential decay case)

∥f − ΠHk(Ω),V (Xn)f∥L∞(Ω) ≤ C0e
−c0nα · ∥f∥Hk(Ω) ∀f ∈ Hk(Ω), (3.19)

then the weak P -greedy algorithm with γ ∈ (0, 1) using k̃ applied to Ω̃ gives a nested
sequence of sets of points (X̃n)n∈N ⊂ Ω̃ such that

∥f − ΠHk̃(Ω̃),Ṽ (X̃n)
f∥L∞(Ω̃) ≤

√
2C̃0γ

−1e−c1nα · ∥f∥Hk̃(Ω̃) ∀f ∈ Hk̃(Ω̃)

for n = 2, 3., ... with C̃0 := max{1, C0} and c1 = 2−(2+α)c0 < c0.

Proof. We want to leverage Corollary 15 and therefore need to check its requirements: As
k is continuous and Ω ⊂ Rd, the RKHS Hk(Ω) is separable. The selection criterion of the
weak P -greedy algorithm with γ ∈ (0, 1] using k̃ applied to Ω̃ equals exactly the selection
criterion from Corollary 15, i.e. Eq. (3.9). Using Eq. (3.17), the prerequisites Eq. (3.18)
and Eq. (3.19) give bounds on the Kolmogorov widths dn(F)H as

dn(F)H ≤ inf
Xn⊂Ω

∥Pk,Ω,Xn∥L∞(Ω) ≤
{
C0n

−α log(n)δ algebraic decay case
C0e

−c0nα
exponential decay case.

The set F is precompact, because F∥·∥Hk(Ω) is compact which follows from being closed,

bounded, dn(F
∥·∥Hk(Ω)) = dn(F)

n→∞−→ 0 and the application of [86, Prop. 1.2 (page 10)].
Thus the application of Corollary 15 yields

∥Pk̃,Ω̃,Xn
∥L∞(Ω̃)

Eq. (3.16)
= σn(F̃)H ≤

{
C1n

−α log(n)δ algebraic decay case√
2C̃0γ

−1e−c1nα
exponential decay case,

with the constants as specified in the theorem. Using the supremum formulation of the
power function from Eq. (2.11) immediately yields the result.

Theorem 17 can be used to derive kernel approximation statements for non-standard
domains: The idea is to start with a well shaped domain Ω ⊂ Rd, for which convergence
results are available. Then, leveraging Theorem 17, these convergence rates also transfer
to any subdomain Ω̃ ⊂ Ω. This can be used to derive upper bounds on sampling num-
bers, to show a monotonicity of convergence rates with respect to domains and to derive
convergence rates on non-Lipschitz domains. Details are elaborated in [121, Section 4.3]
and numerical results are provided in [121, Section 5].

As an extension compared to [121], we also included a possible log(n)δ rate for the
algebraic case. This is of interest for e.g. tensor product kernels, which usually give rise
to mixed smoothness spaces. Such tensor product kernels are non-radial, i.e. the provided
theory is general enough to hold beyond radial kernels.

3.5 Analysis of greedy algorithms in kernel setting

In this section we use the results of the previous Section 3.3, especially Corollary 16 to
obtain convergence rates for a scale of greedy algorithms, including the greedy kernel
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algorithms introduced in the literature, i.e. the P -greedy, f -greedy, f/P -greedy and f ·P -
greedy. This main result is formalized in Corollary 22. These results were mostly covered
in the publication [122].

We start by introducing the unifying scale of β-greedy algorithms in Section 3.5.1 and
proceed with an analysis of those in Section 3.5.2.

3.5.1 Unifying scale of greedy kernel algorithms: β-greedy

We generalize the definition of β-greedy algorithms from [122, Definition 4] to weak β-
greedy algorithms. The notion weak refers to the fact, that one does not pick the maxi-
mizing element as it was done e.g. in Eq. (2.25), instead it is sufficient to pick any element
that is above a certain threshold.

Definition 18. A greedy kernel algorithm on Ω ⊂ Rd is called weak β-greedy algorithm
with parameters β ∈ [0,∞], γ ∈ (0, 1], if the next interpolation point xn+1 ∈ Ω is chosen
to satisfy:

η(n)(xn+1) ≥ γ · sup
x∈Ω

η(n)(x)

with

η(n)(x) =


|(f − sn)(x)|β · Pn(x)

1−β β ∈ [0, 1]
|(f − sn)(x)| · Pn(x)

1/β−1 β ∈ (1,∞)
|(f−sn)(x)|

Pn(x)
β =∞.

First, we remark that for β ∈ (1,∞), we used a slightly different scaling of the selection
criterion compared to [122]. However, as elaborated in [122, Remark 5], this different
scaling does not affect the selection condition. However, here it was used in order to obtain
a nice and consistent behavior in the additional γ parameter, which was not used in [122].
Second, we recall that these selection criteria do not yield a deterministic sequence of
points (xn)n∈N, especially for γ < 1 usually several points satisfy the selection criterion.
However, the forthcoming analysis holds for any such sequence of points.
The scale of greedy algorithms is visualized in Figure 3.1, which was taken from [122,
Figure 1]: It can be seen that the special choices of β = 0, β = 1/2, β = 1 and the
limiting case β → ∞ give respectively the P -greedy, the f · P -greedy, f -greedy and
f/P -greedy algorithm.

As elaborated in [122], these β-greedy algorithms are well-defined for β ∈ [0,∞). For
β = ∞, i.e. the f/P -greedy, one should formally consider a weak selection with γ < 1
due to the counter example in [119, Example 6].

3.5.2 Unifying analysis of β-greedy kernel algorithms

To start with the analysis, we recall [122, Lemma 6], where we added that we consider
pairwise distinct points. We remark that the statement holds for any strictly positive
definite kernel k (that can be normalized to satisfy k(x, x) ≤ 1 for all x ∈ Ω as discussed
in Section 3.4) on any set Ω, because it is based solely on RKHS theory.
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R
0

P -
greedy

f · P -
greedy

1/2

f -
greedy

1

limit β →∞
f/P greedy

β

Figure 3.1: Visualization of the scale of the β-greedy algorithms on the real line. Several
important cases for β ∈ {0, 1/2, 1} and β →∞ are marked. Figure taken from [122].

Lemma 19. For any sequence {xi}i∈N ⊂ Ω of pairwise distinct points and any f ∈ Hk(Ω)
it holds for all n = 1, 2, . . . that[

2n∏
i=n+1

|ri(xi+1)|

]1/n
≤ n−1/2 · ∥rn+1∥Hk(Ω) ·

[
2n∏

i=n+1

Pi(xi+1)

]1/n
, (3.20)

whereby ri+1 ≡ f − si+1 is the residual.

In order to connect the quantity |ri(xi+1)| to ∥ri∥L∞(Ω), we recall [122, Lemma 7]. Recall
that a different scaling in β was used in Definition 18 for β ∈ (1,∞), therefore the
statement slightly differs from [122, Lemma 7].

Lemma 20. Any weak β-greedy algorithm with β ∈ [0,∞] and admissible1 γ ∈ (0, 1]
applied to a function f ∈ Hk(Ω) satisfies for i = 0, 1, . . . :

a) In the case of β ∈ [0, 1]:

∥ri∥L∞(Ω) ≤ γ−1 · |ri(xi+1)|β · Pi(xi+1)
1−β · ∥ri∥1−β

Hk(Ω). (3.21)

b) In the case of β ∈ (1,∞] with 1/∞ := 0:

∥ri∥L∞(Ω) ≤ γ−1 · |ri(xi+1)|
Pi(xi+1)1−1/β

· ∥Pi∥1−1/β
L∞(Ω). (3.22)

Proof. We reuse the proof of [122, Lemma 7] and incorporate the use of weak greedy
algorithms, i.e. the occuring parameter γ ∈ (0, 1]. Furthermore, the different scaling in β
for β ∈ (1,∞) compared to [122] gives slightly modified formulae:

a) For β = 0, i.e. the weak P -greedy algorithm, Eq. (3.21) is the standard power
function estimate Eq. (2.13) in conjunction with the P -greedy selection criterion
Pn(xn+1) ≥ γ · ∥Pn∥L∞(Ω):

∥ri∥L∞(Ω) ≤ ∥PXi
∥L∞(Ω) · ∥ri∥Hk(Ω)

≤ γ−1 · PXi
(xi+1) · ∥ri∥Hk(Ω).

For β = 1, Eq. (3.21) is simply the selection criterion of the weak f -greedy since we
have here rn(xn+1) ≥ γ · ∥rn∥L∞(Ω).

1The notion “admissible” refers to the restriction, that the choice γ = 1 is not allowed for β =∞ due
to the counter example in [119, Example 6].

35



Chapter 3. Kernel approximation

We thus consider β ∈ (0, 1) and let x̃i+1 ∈ Ω be such that |ri(x̃i+1)| = ∥ri∥L∞(Ω).
Then the selection criterion from Definition 18 gives

γ · |ri(x)|β · Pi(x)
1−β ≤ |ri(xi+1)|β · Pi(xi+1)

1−β ∀x ∈ Ω,

and in particular for x = x̃i+1

Pi(x̃i+1) ≤ γ−
1

1−β
|ri(xi+1)|

β
1−β

|ri(x̃i+1)|
β

1−β

· Pi(xi+1).

Using this bound with the standard power function estimate of Eq. (2.13) gives

∥ri∥L∞(Ω) = |ri(x̃i+1)| ≤ Pi(x̃i+1) · ∥ri∥Hk(Ω)

≤ γ−
1

1−β · |ri(xi+1)|
β

1−β

|ri(x̃i+1)|
β

1−β

· Pi(xi+1) · ∥ri∥Hk(Ω)

= γ−
1

1−β · |ri(xi+1)|
β

1−β

∥ri∥
β

1−β

L∞(Ω)

· Pi(xi+1) · ∥ri∥Hk(Ω)

⇔ ∥ri∥
1

1−β

L∞(Ω) ≤ γ−
1

1−β · |ri(xi+1)|
β

1−β · Pi(xi+1) · ∥ri∥Hk(Ω).

Taking the exponential (·)1−β yields the final result.

b) For β ∈ (1,∞), the selection criterion Definition 18 can be rearranged to

|ri(x)| ≤ γ−1 · |ri(xi+1)|
Pi(xi+1)1−1/β

· Pi(x)
1−1/β ∀x ∈ Ω \Xi,

and taking the supremum supx∈Ω\Xi
gives (after bounding the corresponding power

function value with ∥Pi∥L∞(Ω)):

∥ri∥L∞(Ω) ≤ γ−1 · |ri(xi+1)|
Pi(xi+1)1−1/β

· ∥Pi∥1−1/β
L∞(Ω).

For β =∞, the same steps can be done to directly yield the statement (when using
the notation 1/∞ = 0).

Now, Lemma 20 can be used to estimate the |ri(xi+1)| quantities appearing in Equa-
tion (3.20). This then yields the next Theorem 21, which is a slight generalization of [122,
Theorem 8]:

Theorem 21. Any weak β-greedy algorithm with β ∈ [0,∞] and admissible γ ∈ (0, 1]
applied to a function f ∈ Hk(Ω) satisfies the following error bound for n = 1, 2, . . . :

a) In the case of β ∈ [0, 1]:[
2n∏

i=n+1

∥ri∥L∞(Ω)

]1/n
≤ γ−1 · n−β/2 · ∥rn+1∥Hk(Ω) ·

[
2n∏

i=n+1

Pi(xi+1)

]1/n
. (3.23)
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3.5. Analysis of greedy algorithms in kernel setting

b) In the case of β ∈ (1,∞] with 1/∞ := 0:[
2n∏

i=n+1

∥ri∥L∞(Ω)

]1/n
≤ γ−1 · n−1/2 · ∥rn+1∥Hk(Ω) ·

[
2n∏

i=n+1

Pi(xi+1)
1/β

]1/n
. (3.24)

Proof. We reuse the proof of [122, Theorem 8] and incorporate the use of weak greedy
algorithms and the slightly modified scaling in β. We prove the two cases separately:

a) For β = 0, i.e. the weak P -greedy, Eq. (3.21) gives ∥ri∥L∞(Ω) ≤ γ−1 · Pi(xi+1) ·
∥ri∥Hk(Ω). Taking the product

∏2n
i=n+1 and the n-th root in conjunction with the

estimate ∥ri∥Hk(Ω) ≤ ∥rn+1∥Hk(Ω) for i = n+ 1, . . . , 2n gives the result.

For β ∈ (0, 1], we start by reorganizing the estimate from Eq. (3.21) of Lemma 20
to get

|ri(xi+1)| ≥ γ1/β ·
(
∥ri∥1/βL∞(Ω)

)
/

(
Pi(xi+1)

1−β
β · ∥ri∥

1−β
β

Hk(Ω)

)
,

and we use this to bound the left-hand side of Eq. (3.20) as

n−1/2·∥rn+1∥Hk(Ω) ·

[
2n∏

i=n+1

Pi(xi+1)

]1/n
≥

[
2n∏

i=n+1

|ri(xi+1)|

]1/n

≥ γ1/β ·

[
2n∏

i=n+1

(
∥ri∥1/βL∞(Ω)

)
/

(
Pi(xi+1)

1−β
β · ∥ri∥

1−β
β

Hk(Ω)

)]1/n

= γ1/β ·

[
2n∏

i=n+1

∥ri∥1/βL∞(Ω)

]1/n [ 2n∏
i=n+1

Pi(xi+1)
1−β
β · ∥ri∥

1−β
β

Hk(Ω)

]−1/n

.

Rearranging the factors, and using again the fact that ∥ri∥Hk(Ω) ≤ ∥rn+1∥Hk(Ω) for
i = n+ 1, . . . , 2n, gives

γ1/β ·

[
2n∏

i=n+1

∥ri∥1/βL∞(Ω)

]1/n

≤ n−1/2 · ∥rn+1∥Hk(Ω) ·

[
2n∏

i=n+1

Pi(xi+1)
1/β

]1/n
·

[
2n∏

i=n+1

∥ri∥
1−β
β

Hk(Ω)

]1/n

≤ n−1/2 · ∥rn+1∥Hk(Ω) ·

[
2n∏

i=n+1

Pi(xi+1)
1/β

]1/n
· ∥rn+1∥

1−β
β

Hk(Ω)

≤ n−1/2 · ∥rn+1∥1/βHk(Ω) ·

[
2n∏

i=n+1

Pi(xi+1)
1/β

]1/n
.

Now, the inequality can be raised to the exponent β to give the final statement.

b) For β ∈ (1,∞] we proceed similarly by first rewriting Eq. (3.22) of Lemma 20 as

|ri(xi+1)| ≥ γ ·
(
∥ri∥L∞(Ω) · Pi(xi+1)

1−1/β
)
/
(
∥Pi∥1−1/β

L∞(Ω)

)
,
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and we lower bound the left-hand side of Eq. (3.20) as

n−1/2·∥rn+1∥Hk(Ω) ·

[
2n∏

i=n+1

Pi(xi+1)

]1/n
≥

[
2n∏

i=n+1

|ri(xi+1)|

]1/n

≥ γ ·

[
2n∏

i=n+1

(
∥ri∥L∞(Ω) · Pi(xi+1)

1−1/β
)
/
(
∥Pi∥1−1/β

L∞(Ω)

)]1/n
.

Rearranging for
[∏2n

i=n+1 ∥ri∥L∞(Ω)

]1/n
yields[

2n∏
i=n+1

∥ri∥L∞(Ω)

]1/n

≤ γ−1n−1/2 · ∥rn+1∥Hk(Ω) ·

[
2n∏

i=n+1

∥Pi∥1−1/β
L∞(Ω)

]1/n
·

[
2n∏

i=n+1

Pi(xi+1)
1/β

]1/n
,

which gives the final result due to ∥Pi∥L∞(Ω) ≤ 1 for all i = 0, 1, .. .

In order to obtain useful bounds from Theorem 21, it is required to bound the geomet-
ric mean of subsequent power function values, i.e. [

∏2n
i=1 Pi(xi+1)]

1/n. This can be done
with help of the abstract setting and in particular Corollary 16. Similar to Section 3.4 we
choose again

H := Hk(Ω),

F := {k(·, x), x ∈ Ω} ⊂ H,

and recall that it holds Vn = V (Xn), see Eq. (3.3). We do not make use of Ω̃ here anymore
and only use Ω, in order to keep the argumentation clear. However, in order to derive
target data-dependent convergence rates also for non-Lipschitz domains, the analysis of
Section 3.4 and Section 3.5 can be easily combined.

As done in Eq. (3.16) and Eq. (3.17), we compute or estimate the quantities of Corol-
lary 15:

σn(F)H = ∥PXn∥L∞(Ω),

dn(F)H ≤ inf
Xn⊂Ω

∥PXn∥L∞(Ω).
(3.25)

Furthermore, for later on, we need the following statement on the quantity νn of Corol-
lary 16:

νn ≡ dist(fn, Vn)H = ∥fn − ΠVn(f)∥H
= ∥k(·, xn+1)− ΠV (Xn)(k(·, xn+1)∥Hk(Ω) = PXn(xn+1). (3.26)

With these connections at hand, we can derive the following result, which is a slight
generalization of [122, Corollary 11]:
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3.5. Analysis of greedy algorithms in kernel setting

Corollary 22. Assume that a weak β-greedy algorithm with β ∈ [0,∞] and admissible
γ ∈ (0, 1] is applied to a function f ∈ Hk(Ω). Let α > 0, δ ≥ 0 and C0, c0 > 0 be given
constants, and set 1/∞ := 0. Recall ri ≡ f − si:

1. If there exists a sequence (Xn)n∈N ⊂ Ω of sets of points such that∥∥∥f̃ − ΠV (Xn)f̃
∥∥∥
L∞(Ω)

≤ C0n
−α log(n)δ · ∥f̃∥Hk(Ω) ∀f̃ ∈ Hk(Ω),

then for all β ≥ 0 and for all n ≥ 8 it holds

min
n+1≤i≤2n

∥ri∥L∞(Ω)

≤Cγ−1 · n−min{1,β}
2

− α
max{1,β} · log(n)

δ+α
max{1,β}∥rn+1∥Hk(Ω), (3.27)

with C :=
(
2α+1/2max{1, C0}eα

) 1
max{1,β} .

2. If there exists a sequence (Xn)n∈N ⊂ Ω of sets of points such that∥∥∥f̃ − ΠV (Xn)f̃
∥∥∥
L∞(Ω)

≤ C0e
−c0nα∥f̃∥Hk(Ω) ∀f̃ ∈ Hk(Ω),

then for all β ≥ 0 and for all n ≥ 2 it holds

min
n+1≤i≤2n

∥ri∥L∞(Ω) ≤ Cγ−1 · n−min{1,β}
2 e−c1nα∥rn+1∥Hk(Ω), (3.28)

with C :=
(√

2max{1, C0}
) 1

max{1,β}
and c1 = 2−(2+α)c0/max{1, β}.

3. For f/P -greedy, for any kernel and for all n ≥ 1 it holds

min
n+1≤i≤2n

∥ri∥L∞(Ω) ≤ γ−1n−1/2 · ∥rn+1∥Hk(Ω).

Proof. We mostly reuse the proof of [122, Corollary 11] and incorporate the use of weak
greedy algorithms, i.e. the occuring parameter γ ∈ (0, 1] as well as the adjusted scaling
in β for β ∈ (1,∞): The proof is a simple combination of Corollary 15 and Theorem 21,
with the addition of the following simple steps:

First, the provided worst case bounds for functions in Hk(Ω) (either algebraic or
exponential) imply the same bound on the power function via Eq. (2.10), (2.11). Second,
in all cases we use the results of Theorem 21 in combination with the bound

min
i=n+1,...,2n

∥ri∥L∞(Ω) ≤

[
2n∏

i=n+1

∥ri∥L∞(Ω)

]1/n
.

Then, Eq. (3.23) and (3.24) of Theorem 21 can be jointly written as[
2n∏

i=n+1

∥ri∥L∞(Ω)

]1/n
≤ n−min{1,β}

2 · ∥rn+1∥Hk(Ω) ·

[
2n∏

i=n+1

Pi(xi+1)

] 1
nmax{1,β}

.

The last factor can be estimated with help of Corollary 16 by using the connection νi =
Pi(xi+1) established in Eq. (3.26). This gives the result of the first two points.

The third point directly follows from Eq. (3.24) for β =∞ due to Pi(xi+1) ≤ 1 for all
i = 1, 2, ... .
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Figure 3.2: Visualization of the algebraic main decay rate n−min{1,β}
2

− α
max{1,β} (y-axis) from

Corollary 22 for α ∈ {0.25, 1} in dependence on the β parameter (x-axis).

We remark that for the P -greedy algorithm (i.e. β = 0) the error bounds hold for
∥r2n∥L∞(Ω), i.e. without using the minimum minn+1≤i≤2n. It remains unclear whether
this minimum within the formulation of the results is really necessary, or whether a
monotonically decaying error bound can be proven.

The assumptions of Corollary 22 are satisfied in various cases: If the kernel is an RBF
kernel of finite smoothness with some decay in the Fourier transform, then the RKHS is
norm equivalent to a Sobolev space (see Corollary 5) and thus sampling inequalities can
be leveraged (see Theorem 7). More details on this can be found in [122, Section 5.2].

3.5.3 Numerical example

Although the results in this section are a significant step in the analysis of target data-
dependent greedy algorithm, the derived convergence rates still seem to be suboptimal yet:
For this we recall the example from [122, Section 6.2], which made use of the Wendland
“k = 0” kernel

k(x, y) = max(1− |x− y|, 0)

on the domain Ω = [0, 1]. It holds Hk(Ω) ≍ H1(Ω) such that we have α = 1/2 and
δ = 0 within Corollary 22. Due to the piecewise linear nature of the kernel k, kernel
interpolation boils down to piecewise linear interpolation, which allows also leveraging
classical results from spline interpolation theory. The function f : Ω → R, x → xω for
1/2 < ω < 1 is considered. The assumption ω > 1/2 ensures that f ∈ H1(Ω) ≍ Hk(Ω).
Furthermore, we recall that for asymptotically uniformly distributed interpolation points
– i.e. qXn ≍ hXn,Ω ≍ n−1 – it holds

∥f − sn∥L∞(Ω) ≥ Cω · n−ω, (3.29)

while for any distribution of points (i.e. also optimally distributed points) it holds

∥f − sn∥L∞(Ω) ≥ C · n−2. (3.30)

Figure 3.3 visualizes the numerical decay behavior of the ∥ ·∥L∞(Ω) error for various values
of β ∈ [0,∞]. In view of the convergence rates provided by Corollary 22, we have the
following comments:
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3.5. Analysis of greedy algorithms in kernel setting

• P -greedy: Here, the error decays only slowly and together with Eq. (3.29) the proven
decay rate due to Corollary 22 seems to be optimal.

• f -greedy: Here we observe the fastest convergence among all the displayed methods.
Corollary 22 gives a main decay rate of n−1, however numerically one can observe
a faster convergence rate. Indeed, the lower bound Eq. (3.30) allows for way faster
convergence, and Figure 3.3 indicates that f -greedy seems to realize this optimal
decay rate in this example.

• β-greedy for intermediate β values: For intermediate values of β, i.e. β ∈ (0, 1) and
β ∈ (1,∞) we observe numerically intermediate convergence rates. However similar
to what was remarked for f -greedy, the rates provided by Corollary 22 do not seem
to be sharp yet.

Thus, this example shows that the provided data-dependent convergence rates do not yet
seem to be sharp, which leaves space for future research.

100 101 102
10−5

10−4

10−3

10−2

10−1

100

β = 0
β = 0.25
β = 0.5
β = 0.75
β = 1
β = 2
β = 4
f/P -greedy

0.2 · n−1/2

0.7 · n−2

Figure 3.3: Decay of the error ∥f − s
(β)
n ∥L∞(Ω) (y-axis) for β-greedy algorithms in the

number n of chosen interpolation points (x-axis) for β ∈ {0, 0.25, 0.5, 0.75, 1, 2, 4,∞} and
f(x) = xω with ω = 0.51. Two additional dashed lines indicate a rate of convergence of
n−1/2 and n−2. Figure taken from [122] and slightly adapted to the β-parametrization in
this thesis.
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3.6 Analysis of generalized greedy kernel methods

The framework presented in Section 3.2 to Section 3.5 is not restricted to kernel interpo-
lation. Indeed, it is possible to generalize the results to generalized kernel interpolation,
see Section 2.4: First, the β-greedy algorithms are extended to generalized β-greedy
algorithms. Then the convenient connection from Eq. (3.15) can be reestablished. Fur-
thermore the Lemmata and Theorems from Section 3.5 can be generalized. Finally, worst
case optimal bounds can be used to derive the same rates of convergence for the greedy
algorithms, with faster convergence rates for target data-dependent greedy algorithms.
We stress that this is indeed a generalization of the theory: If one chooses the gener-
alized interpolation functionals to be point evaluation functionals, then the theory boils
down again to the theory presented in Section 3.5. The details were presented in the
publication [123].

This extended theory can be used to approximate the solution of PDEs: Consider a
suitable linear elliptic PDE of a suitable domain, such as the Laplace equation

−∆u = f,

u|∂Ω = g

with suitable functions f, g. Then one can consider point evaluation functionals δx for x ∈
∂Ω as well as point evaluations of the Laplacian, i.e. δx ◦ (−∆) for x ∈ Ω. The important
and appealing point here is, that the target data-dependency of the greedy algorithms
refers to the functions f, g and not to the unknown solution u. Thus, an adaptive choice
of collocation points can be computed based on the right-hand side functions of the PDE,
which are usually known.

3.7 Discussion, comments and outlook

In Section 3.1 it was explained that for the analysis of greedy kernel algorithms no strong
results were available till the analysis provided in [92], which established the connections
Eq. (3.4) and Eq. (3.5) between the abstract analysis of greedy algorithms in Hilbert
spaces and the analysis of greedy kernel algorithms. Indeed, this connection proved to be
quite fruitful: By modifying, generalizing and extending the abstract analysis (see Sec-
tion 3.2), it was possible to reuse these connections to derive the line of results presented
in Section 3.3, Section 3.4, Section 3.5 and Section 3.6. One key step in the derivation of
target data-dependent convergence rates was to bound the quantity(

2n∏
i=n+1

νi

)1/n

=

(
2n∏

i=n+1

Pi(xi+1)

)1/n

, (3.31)

and to focus on minimum errors mini=1,...,2n ∥f − si∥L∞(Ω) instead of ∥ · ∥L∞(Ω).
Preliminary results (not presented here) indeed indicate that not only the geometric

mean of subsequent power function values from Eq. (3.31) decays independent of the
sequence (xi)i∈N ⊂ Ω, but also (

2n∏
i=n+1

|⟨f, vi⟩Hk(Ω)|

)1/n

(3.32)
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decays independent of the choice of the sequence (xi)i∈N ⊂ Ω, whereby {vi} is the Newton
basis (see e.g. Eq. (2.26)). As it holds

∥f − sn∥L∞(Ω) = Pn(xn+1) · |⟨f, vn⟩Hk(Ω)|

for the f -greedy selection criterion, the observation that the quantity from Eq. (3.32)
decays, might allow for a refined analysis. However, it was not possible to derive an
upper bound on Eq. (3.32).

The analysis presented in this Chapter 3 focussed on the ∥ · ∥L∞(Ω) norm. This makes
sense, as the power function is naturally linked to the ∥ · ∥L∞(Ω) norm and also the
reproducing property gives point evaluations, which are closer to the ∥ · ∥L∞(Ω) norm than
to any other norm. Nevertheless, it would be of interest to generalize the analysis to other
norms, such as the ∥ · ∥L2(Ω) norm. The trivial estimate

∥f − sn∥L2(Ω) ≤ |Ω| · ∥f − sn∥L∞(Ω)

allows transfering any ∥ · ∥L∞(Ω) rate to a ∥ · ∥L2(Ω) rate. Indeed, simple numerical exper-
iments (not shown here) indicate that for non-uniformly distributed f -greedy points one
cannot in general expect faster ∥ · ∥L2(Ω) convergence rates. On the other hand, for well
distributed points, the L2(Ω) error frequently decays faster than the L∞(Ω) error, see e.g.
Duchon’s localization principle [30, 111]. A recent analysis of ∥ · ∥L2(Ω) convergence rates
was done in [115], which showed that the L2(Ω) convergence rates using asymptotically
uniformly distributed points are sharp for the escaping the native space case, i.e. for func-
tions f ∈ C(Ω) of smoothness less or equal to Hk(Ω). Improved upper bounds on L2(Ω)
convergence rates using asymptotically uniformly distributed points were derived in [91]
for the (continuous) superconvergence case. However, the question on optimality of the
derived convergence rates for adaptively chosen points remains open: Generally speaking,
it remains for future research whether it is possible to optimize for a specific norm or
even for a specific quantity of the residual f − sn, i.e. devising “goal oriented selection
criteria” [26].

The line of analysis established through [23,92,121,122] leveraged so far upper bounds
on sampling numbers. These upper bounds on sampling numbers are usually obtained
by using an equivalence to Sobolev spaces and/or directly by using sampling inequalities
[39, 76, 77, 113] or (local) fill distance based arguments [129], see [112, Section 11] for
an overview. Here it would be of interest, how to generalize this to immediately obtain
bounds on sampling numbers from the kernel or its Mercer expansion directly – without
relying on Fourier transform arguments. In view of the Fourier decay of translational
invariant kernels from Eq. (2.2), where upper bounds usually give error estimates while
lower bounds give stability results, it seems likely that similar statements should also
hold with respect to upper and lower bounds on the eigenvalue decay within the Mercer
expansion. Promising results and tools in this direction were recently established in [59,60]
or [25]. Another approach could be possible by using [7], where the spectral asymptotics of
the determinant of the kernel matrix in the flat limit is analyzed. By using the expression
of the power function as ratio of determinants via Eq. (2.12), the monotonicity of the
power function as PXN

(x) ≤ PXn(x) and using

k(∥ϵx− ϵy∥) = Φ(∥ϵx− ϵy∥) = Φ(ϵ∥x− y∥) = kϵ(x, y)
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the results of [7] can be used to bound the worst case error for point sets ϵXn =
{ϵx1, ..., ϵxn}.

Further analysis also needs to be devoted to analytic kernels, such as the Gaussian
kernel or e.g. inverse multiquadric kernels: For these kernels, the standard tools due to
the frequent norm equivalence of the RKHS to Sobolev spaces cannot be reused. Future
research topics in this direction include a better understanding of escaping the native space
and superconvergence, but also whether and when an adaptive point choice is beneficial:
In case of exponential convergence rates, the additional convergence rate of n−1/2 within
Corollary 22 only seems to be beneficial for high-dimensional problems, as it does not
suffer from the curse of dimensionality.
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Deep kernel methods

In contrast to Chapter 3, this section puts more emphasis on the development of new
methods and algorithms rather than analyzing already existing ones. As discussed in
Chapter 1, around ten years ago the field of deep learning and especially deep neural
networks has resurged. Nowadays, these methods tend to outperform standard kernel
methods in several tasks, especially tasks dealing with very high dimensional and huge
data sets. This success is mainly based on leveraging the unprecedented availability of
data in conjunction with the possibility of using increasing computational power. While
learning with large amounts of data is an issue for kernel methods, representation learning
is not available at all: Using a fixed kernel “off the shelves” means using a fixed feature
map. However, kernel methods still provide advantages in specific tasks where they out-
perform neural networks, and they are appealing due to their rich analytic background.
Thus, it is quite natural to ask about the interplay of these two types of machine learning
methods and how to make use of each other: Is it possible to combine both approaches
to derive enhanced models? A promising idea to incorporate the advantages of neural
networks into kernel methods is to make use of the multilayer setup of neural networks.
Furthermore, it is possible to leverage common neural network strategies also for kernel
methods, e.g. for the optimization of kernels. A theoretical foundation for the analysis of
multilayer kernel methods was provided in [13], which proved a deep kernel representer
theorem, see Theorem 8. Using this deep kernel representer theorem and applying ideas
from machine learning, we will derive two different kind of deep kernel models.

In Section 4.1, related literature is reviewed and the the state of the art is discussed. In
Section 4.2, Structured Deep Kernel Networks (SDKNs) are introduced, which are built on
top of the aforementioned deep kernel representer theorem. Their construction, benefits
and approximation properties are discussed. Subsequently in Section 4.3, another deep
kernel model is introduced and analyzed, namely two-layered kernels. Especially their
use in conjunction with greedy algorithms is highlighted, resulting in the 2L-VKOGA
algorithm. Finally Section 4.4 discusses and comments these results while also giving an
outlook.
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4.1 Literature and state of the art

In the last decades, several approaches have been developed to combine the benefits of
kernels with the benefits of neural networks or more general multilayer methods, especially
to obtain some kind of feature learning. This subsection first discusses methods from the
literature, which are relevant for the approach of structured deep kernel networks (SD-
KNs) presented in Section 4.2. These methods mainly revolve around introducing new
models which make use of kernels. Subsequently, relevant methods for the two-layered
kernel approach of Section 4.3 are discussed: Here, the approach sticks more closely to
the use of a base kernel, which is adapted to the data.

In order to obtain improved features of the data (representation learning), models
combining neural networks with kernels have been proposed. All those approaches have
in common, that some sort of neural network is used for the representation learning,
and that the kernel model is used for the final prediction (regression/classification). We
discuss the following approaches more or less in chronological order:

The references [67, 68] introduce convolutional kernel networks in both a supervised
and unsupervised way. Doing so, they derive a kernel acting on images with a kernel
feature map based on the convolutional mappings of a convolutional neural network.
In [61], a neural network is trained such that the in-class similarity of pairs of data
is maximized, while the similarity for instances of different classes is minimized. The
approach proposed in [125] makes use of a neural network which transforms the data, and
of a Gaussian process on top for the final prediction. Both the front end (neural network)
and kernel model (back end) with all their hyperparameters are optimized jointly. The
study [3] uses a related approach, i.e. using a kernel model on top of a neural network,
however they do not optimize the neural network at all anymore: Focussing on image
data, they simply extract features from a pretrained convolutional neural network and
train a kernel model on top of these features leveraging a Nyström approximation. With
this approach, they achieve comparable accuracy compared to also fine-tuning the neural
network, but save several orders of magnitude of training time.

An approach that tries to handle deep forward neural networks and deep kernel ma-
chines in a joint framework was introduced via a conjugate feature duality in [106],
whereby the conjugated features can be interpreted as hidden features. By coupling
existing kernel machines, deep kernel models (so-called deep restricted kernel machines
(deep RKM)) are build. This framework of deep RKMs is general enough to also allow
for e.g. generative models (Gen-RKMs) [80, 81], where (convolutional) neural networks
are used to define kernels in a primal way.

There are also models that do not use neural networks as feature extractor, but imitate
their architecture using kernels: [130] introduces Deep Spectral Kernel Learning, which is
a concatenation of kernel approximation mappings, namely random fourier features. This
can be seen as a neural network with fixed parameters in every second layer, where the
weights are fixed and given by random fourier features. Furthermore, there are approaches
that enhance neural networks by optimizing their activation functions: From the theo-
retical point of view, [109] derives a representer theorem for activation functions, which
are then given by nonuniform linear splines. A connection to splines and sparsity is also
provided, which is related to the discussion of the optimality of the SDKNs introduced in
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Section 4.2. The representer theorem in [109] was enabled by considering an extended loss
functional with a specific regularization term that is motivated by favorable properties of
activation functions which work in practice. The employed proof is related to the proof
of the deep kernel representer theorem in [13]. Another approach was introduced in [96],
namely Kafnets. Here, they assume every activation function to be a (one dimensional)
kernel model based on a few preselected centers within each layer, e.g. a grid. This ap-
proach is related to the SDKNs introduced later on in Section 4.2, however there, the
centers will be given by the deep kernel representer theorem and thus yield optimality of
the approach.

Without relying on neural networks too much, the following approaches still put kernels
into a multilayer setup: In the Gaussian process community, deep Gaussian processes were
introduced in [20]. Using approximation techniques, they were scaled to large datasets.

Recently much work was also devoted to the neural tangent kernel (NTK) [53] (see
also Section 2.6.1) because it was found that for specific scaling limits (where the ratio
between width and depth of the network stays lower bounded away from zero) the NTK
shows a non-trivial evolution [50, 131]. Thus, this could be interpreted as a kernel with
data-dependent learned features, though it does not allow for a closed form expression.
However, such approaches are not treated in the following.

In Section 4.3, a two-layered kernel approach is introduced. In contrast to the approach
within Section 4.2, this approach can be interpreted as a modification of a base kernel. A
simple modification of a base kernel, in particular of RBF kernels, can be done due to the
shape parameter ε > 0 from Eq. (2.1). Several works focussed on selecting or optimizing
such a single hyperparameter for RBFs, see e.g. [112] or [34, §14] for an overview or
[29, 35, 71] for some detailed works regarding the shape parameter. Such a single shape
parameter, that scales the distance behavior within the considered data is suitable, as long
as there is no specific direction-dependent behavior within the data. In order to address
such cases, anisotropic kernels were considered (see e.g. [34, Section 3]) that use one shape
parameter per Euclidean direction of the data. This approach poses two challenges: First,
it is no longer amenable to cross-validation for already medium dimensional datasets due
to the curse of dimensionality. Second, it is only suitable if the Euclidean directions
are of special significance – as no other directions can be identified. Therefore, there
have been developed algorithms for this general challenge of distance metric learning, see
e.g. [40, 41, 103] in general or [2, 14, 21, 88] in the RBF context. Other approaches for
predicting suitable shape parameters or detecting relevant features make use of neural
networks respective neural network like techniques [74, 78]. Another approach, which is
of particular interest for Section 4.3, was introduced under the notion kernel flows [79]
and further used in [48]. This approach can be seen as a non-parametric family of very
deep kernels: Given a base kernel, this kernel is modified by incremental changes applied
to its inputs. This sequence of incremental changes deforms the kernel and gives raise to
the notion of a very deep kernel, which is thus able to learn features from the data. The
optimization method which was used for designing these kernels used e.g. cross-validation
criteria based on a maximal Lyapunov exponent or Maximum Mean Discrepancy (MMD).

Another approach of relevance for the following is given by active subspaces [17, 18]:
These are subspaces along which the target function varies. This is in contrast to inactive
subspaces, where the target function does not vary, and which are therefore not of interest.
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For the determination of these active subspaces, originally gradient information was used,
which is however usually not available in applications.

4.2 Structured Deep Kernel Networks

This subsection is devoted to the introduction of Structured Deep Kernel Networks (SD-
KNs), which use the deep kernel representer theorem from Theorem 8 in a principled way
to put kernels in a multilayer setup. We show that the obtained SDKNs are powerful
models with strong analytic properties, which nevertheless fit into the framework of the
representer theorem. This mostly covers the results, which were presented in [120].

We start by motivating the need for a structured setup of deep kernel networks in
Section 4.2.1, then continue with the construction of the SDKN with help of simple
classes of base kernels in Section 4.2.2. Section 4.2.3 briefly discusses the optimization
of this model, and Section 4.2.4 then elaborates on the approximation, universality and
optimality properties of the SDKNS. Section 4.2.5 presents the relation to neural networks,
while Section 4.2.6 concludes with a discussion.

4.2.1 Failure of straightforward deep RBF networks

The deep kernel representer theorem from Theorem 8 could be used in conjunction with
matrix-valued radial basis function kernels, which are frequently used in applications, i.e.
kernels like

k(x, y) = kGauss · Id ∈ Rd×d

for suitable values of the dimension d ∈ N. However, numerical experiments (not presented
here) did not show a good performance of such an ansatz, even for toy data sets. The
main obstacle is likely the abundance of parameters, as for a dataset of N centers, the
ansatz provided by Theorem 8 consists of

∑L
l=1 dl · N = N ·

∑
l=1 dl ≫ N parameters.

This is way more than the number of data points, hence overfitting problems are very
likely.

In order to alleviate this problem, the sparsification motivation of the greedy algo-
rithms from 3.5 can be employed, i.e. one considers only M ≪ N centers which yields
overall

∑L
l=1 dl ·M parameters. Using such an approach, every mapping fl : Rdl → Rdl+1

is given by

fl(·) =
M∑
i=1

kl(·, Fl−1(zi))αi (4.1)

with optimizable parameters αi ∈ Rdl+1 . Nevertheless, also this approach did not yield
convincing performance in numerical experiments, and the optimization was at least one
of the bottlenecks here: Assume the output of the function fl should be slightly adjusted,
s.t. for Fl−1(zi) it holds

fl(Fl−1(zj)) = yj + ϵ

instead of fl(Fl−1(zj)) = yj,
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with ϵ ∈ Rdl+1 . The coefficients αi, i = 1, ...,M from Eq. (4.1) are linked to the outputs yj
respective yj + ϵ via the kernel matrix A ∈ RMdl×Mdl , Aij = kl(Fl−1(zi), Fl−1(zj)) – which
however may be severely ill-conditioned or even singular depending on the mapping Fl−1.
Such an ill-conditioning can yield large changes in the parameters αj, j = 1, ...,M even
for small values of ϵ – which can be very challenging for gradient descent optimization
procedures [66]. A standard way to circumvent this would be to change from the basis
of kernel translates to a Newton or Lagrange basis. However, these bases depend on the
centers which are given by Fl−1(zi) and thus dependent on the previous mappings – i.e.
they had to be recomputed again and again which is infeasible.

To summarize, the main obstacle of this straightforward approach arises from the radi-
ality of the kernels, which do not allow for a disentangling of different features. Hence, the
next subsection introduces structured deep kernel networks, which make use of different
kind of kernels in a structured setup.

4.2.2 Construction of SDKNs

The construction of SDKNs relies on two classes of kernels. The first one is the matrix-
valued linear kernel klin, which is defined as

klin : Rd × Rd → Rb×b,

(x, y) 7→ ⟨x, y⟩Rd · Ib.
(4.2)

The linear kernel will be used to allow linear combinations of features. We recall the
following statement from [120, Proposition 2]:

Proposition 23. The mapping Rd → Rb, x 7→ Ax with A ∈ Rb×d can be realized as a
kernel mapping

s : Rd → Rb, x 7→
M∑
i=1

klin(x, zi)αi, αi ∈ Rb

with given centers {zi}Mi=1 ⊂ Rd by using the matrix-valued linear kernel from Eq. (4.2),
iff the span of the center points is a superset of the row space of the matrix A.

The proof is given in Section A.1. We proceed with the following statement [120,
Proposition 3], which shows that the requirement “iff the span of the center points is a
superset of the row space” is not that restrictive

Proposition 24. Consider a mapping g : Rd0 ⊃ Ω → {(g(1)(x), .., g(d)(x))⊤ | x ∈ Ω} =:
g(Ω) ⊂ Rd, x 7→ (g(1)(x), .., g(d)(x))⊤ with g(1), .., g(d) : Ω→ R.
Then any linear combination

(g(1)(x), .., g(d)(x))⊤ 7→
d∑

j=1

g(j)(x) · βj
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with βj ∈ Rb, j = 1, .., d can be realized with help of a linear kernel klin using propagated
centers g(zi) ∈ g(Ω), i.e.

∃z1, .., zd ∈ Ω, α1, .., αd ∈ Rb ∀x ∈ Ω

d∑
j=1

g(j)(x) · βj =
d∑

i=1

k(g(x), g(zi)) · αi.

The proof is given in Section A.1. The second class of kernels used for the construction
of the SDKNs is given by single-dimensional kernels ks : Rd×Rd → Rd×d, where the index
s refers to single. These kernels are composed of up to d different strictly positive definite
kernels k(1), ..., k(d) : R× R→ R:

ks :R
d × Rd → Rd×d,

(x, y) 7→ diag(k(1)(x(1), z(1)), ..., k(d)(x(d), z(d))).
(4.3)

The notation x(i), z(i) refers to the i-th coordinate entry of the corresponding vectors x
respective z ∈ Rd. We mostly focus on the case where k(1), ..., k(d) are one-dimensional
radial basis function kernels and indeed we mostly use the case k(1) = ... = k(d) for
simplicity.

We remark that both the class of matrix-valued linear kernels and the class of single
dimensional kernels are positive definite kernels, but in general not strictly positive defi-
nite kernels, see [120, Section 3.2.3] for more details.

For constructing the SDKNs, we use an odd number L of layers and proceed by using
the linear kernel for all odd layers and single-dimensional kernels for all even layers. The
input dimension d1 and output dimension dL of the SDKN are given by the problem at
hand, and the intermediate dimensions d2, ..., dL−1 remain free to choose. For convenience,
we usually simply use the same values for all intermediate layers, i.e. d2 = ... = dL−1.
More details on commonly used values can be found in Section 5.1, where the SDKNs are
applied for predicting turbulence closure terms.

An exemplary setup is visualized in Figure 4.1, where also similarities with neural
networks are indicated:

1. Due to Proposition 23 and Proposition 24, the odd layers using the linear kernel
essentially realize linear mappings as in neural networks. Thus, instead of optimizing
the redundant parameters from the coefficients of the linear kernel expansion, we
directly optimize the parameters of the corresponding matrices.

2. Due to Eq. (4.3), the mappings of the even layers are given by

f
(j)
l (x) =

N∑
i=1

α
(j)
l,i kj(x

(j), Fl−1(zi)
(j))

with α
(j)
l,i ∈ R. As all these parameters

(
α
(j)
l,i

)
i,j,l

can be optimized, the functions f
(j)
l

for l = 2, 4, ..., j = 1, .., dl can be interpreted as optimizable activation functions.
This natural extension of fixed activation function as in neural networks is a benefit
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Figure 4.1: Exemplary visualization of a Structured Deep Kernel Network (SDKN) with
5 layers and input dimension 3 and output dimension 2. The braces below the layers
indicate the similarities to neural networks. Figure taken from [116].

of the proposed approach, as it would also be possible to simply initialize but then
not optimize those parameters.
In order to enhance sparsity and allow for a quicker evaluation, we do not optimize
all the occurring parameters: For the even layers we consider only a subset of the
training points, i.e. n ≪ N training points (called as before centers) of the whole
data set XN . Then, we optimize only the corresponding coefficients and leave the
remaining ones constant to zero throughout the optimization of the coefficients:

f
(j)
l (x) =

M∑
i=1

α
(j)
l,i kj(x

(j), Fl−1(zi)
(j)). (4.4)

This gives a tremendous speed-up of the optimization (in terms of computation
time), but does neither harm the practical performance nor the theoretical approx-
imation properties.

Finally, according to Eq. (2.35) and (2.36) the SDKN model using M ≪ N centers has
the form

sSDKN(·) =
M∑
i=1

KL(·, xi)αi (4.5)

with the deep kernel

kSDKN(x, z) = KL(fL−1 ◦ .. ◦ f1(x), fL−1 ◦ .. ◦ f1(z)). (4.6)

The mappings fl, l = 1, ..., L−1 are constructed using the matrix-valued linear kernel (for
the odd layers, i.e. l odd) respective the single-dimensional kernels (for the even layers,
i.e. l even) as elaborated above.
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4.2.3 Optimization

For the optimization of the SDKN models constructed in Section 4.2.2, any loss and
regularization according to Theorem 8 can be considered:

J(f1, .., fL) :=
N∑
i=1

L(yi, fL ◦ .. ◦ f1(xi)) +
L∑
l=1

Θl(∥fl∥H2
l
) (4.7)

Therefore, it is pretty similar to the cost functional of Eq. (2.34), which is used for the
optimization of neural networks, and thus one can leverage the optimization techniques,
which are used for optimizing neural networks: In particular, the use of the Adam op-
timizer, which is “an algorithm for first-order gradient-based optimization of stochastic
objective functions, based on adaptive estimates of lower-order moments” [57], showed
good performance. Further, common state-of-the-art deep learning techniques, like ran-
dom initialization that breaks symmetries, early stopping and gradient clipping [42] can
be employed due to the structured setup of the SDKNs that is related to neural networks.
The numerical experiments, see e.g. Section 5.1, show that the SDKN setup combined with
these optimization techniques taken from the neural network / deep learning community
provide sufficiently accurate models.

For the optimization of the SDKN model

sSDKN(·) =
M∑
i=1

KL(x, xi)αi,

all the coefficients α
(j)
l,i , i = 1, ...,M , l = 1, ..., L, of the (inner) layers (see Eq. (4.4)) are

adjusted to minimize the cost functional J from Eq. (4.7). We remark that in contrast
to Eq. (2.35), only M ≪ N data points were used as centers, which were usually picked

randomly from the input training data set. The initialization of the coefficients α
(j)
l,i was

done according to a normal distribution with a mean value above zero and a standard
deviation of one. Experimentally, not much benefit was found by modifying the initial-
ization or choice of centers. Due to this optimization according to the cost functional J ,
the SDKN model accurately reflects the input-output relation between the input data Xn

and corresponding output data yn. However one cannot expect the deep kernel

kSDKN(x, z) = KL(fL−1 ◦ .. ◦ f1(x), fL−1 ◦ .. ◦ f1(z)),

(see Eq. (2.36) and Eq. (4.6)) of the SDKN model to have special properties. In fact, it
turns out that kSDKN usually does not even generalize to new centers {x̃i}Mi=1: An approach
as

s̃SDKN(x) =
M∑
i=1

KL(·, x̃i)αi

with different centers {x̃i}Mi=1 ̸= {xi}Mi=1 does not yield a good performance, if only the
final coefficients αi, i = 1, ...,M are tuned, but not the kernel KL anymore. This is likely
due to the used cost functional for the optimization. For this a different optimization idea
is used in the two-layered approach introduced in Section 4.3. More details on this are
given in Section 4.4, where the difference between the SDKN and the two-layered kernels
approach are discussed.
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4.2.4 Approximation properties of SDKNs

This section discusses the theoretical approximation properties of the proposed SDKN
approach. For a detailed discussion we point to [120] and only summarize and comment
on the main statements here. The proofs of the Theorems 26, 28 and 30 can be found in
Section A.2, Section A.3 and Section A.4.

In the following, FL,w,M denotes the class of functions that can be realized by any
SDKN using L ∈ N single-dimensional kernel layers, a maximal dimension (width) of
w := max(d0, .., d2L+1) ∈ N andM centers. Like this, the total number of layers is 2L+1.
Furthermore we recall

dist(φ,F) := inf
f∈F
∥φ− f∥L∞(Ω) for φ ∈ C(Ω)

for some F ⊂ C(Ω).

• As a first limit case, the dependence on the number of centers n is discussed. The
assumptions are collected in the following, and Theorem 26 shows a universal ap-
proximation property in the number of centers:

Assumption 25 (Unbounded number of centers case).

1. The kernels k2, k4 used in the single-dimensional mappings are universal ker-
nels, i.e. their RKHSs are dense in the space of continuous functions.

2. The centers can be chosen arbitrarily within [0, 1]d and their number is unlim-
ited (unbounded amount of centers).

Theorem 26 (Universal approx. for unbounded number of centers). Let Ω = [0, 1]d.
Consider an arbitrary continuous function f : Ω → R. Then, it is possible under
the Assumptions 25 to approximate this function f to arbitrary accuracy using an
SDKN of finite width (2d+ 1)d and finite depth L = 2, i.e.

∀d ∈ N lim
M→∞

dist(f,F2,(2d+1)d,M(Ω)) = 0.

• A second limit case is provided by the width of the SDKN. Again, we collect the
assumptions and conclude with the statement in Theorem 28, whereby we note that
the second assumption is pretty trivial.

Assumption 27 (Unbounded width case). 1. The radial basis function φ of the
single-dimensional kernel k2 of the mapping f2 (see e.g. Eq. (4.4)) needs to
satisfy span{φ(ax)|a > 0} = C([0, 1]) for a given φ : R+ → R.

2. At least 2 different centers z1 ̸= z2 are given.

Theorem 28 (Universal approximation for unbounded width). Let Ω = [0, 1]d.
Consider an arbitrary continuous function f : Ω → R. Then, it is possible under
the Assumptions 27 to approximate this function f to arbitrary accuracy using an
SDKN of depth L = 1 and sufficient width, i.e.

∀d ∈ N lim
d1=d2→∞

dist(f,F1,d1,2(Ω)) = 0.
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• The third and probably most important limit case is given in the depth of the
SDKN:

Assumption 29 (Unbounded depth case). 1. The kernels of the single activa-
tion function layers satisfy the requirements of Eq. (A.4).

2. There are 3 centers z1, z2, z3 ∈ Rd
≥0 given such that z

(j)
1 , z

(j)
2 , z

(j)
3 are pairwise

distinct for j = 1, .., d.

Theorem 30 (Universal approximation for unbounded depth). Let Ω = [0, 1]d.
Consider an arbitrary continuous function f : Ω → R. Then it is possible under
the Assumptions 29 to approximate this function f to arbitrary accuracy using an
SDKN of width w = d+ 8 and 3 centers, i.e.

∀d ∈ N lim
L→∞

dist(f,FL,d+8,3(Ω))) = 0.

Theorem 26 and Theorem 30 discuss the cases of unbounded width and depth, which
were also researched for neural networks, for which also universal approximation state-
ments can be derived. Additionally, due to the kernel setup of the SDKNs, Theorem 26
also derives a statement for unbounded number of centers.

Of particular interest is the statement of Theorem 30: Here it is possible to improve
related constructions for neural networks by making use of kernel specific approximation
properties, in particular of the so-called “flat limit” of RBF kernels. For more details we
refer to [120, Section 4.3].

We remark that the theorems were formulated for Ω = [0, 1]d, but generalizations to
other domains are also possible. In the case of bounded domains, one can always consider
a bounding box [−b, b]d for b > 0 large enough and thus rely on the analysis for [0, 1]d.

4.2.5 Connections to neural networks

Instead of using the single-dimensional kernels as before, one could also make use of primal
defined activation function kernels: Given an activation function σ : R → R, x 7→ σ(x)
such as σ(x) = ReLU(x), one can consider the positive definite matrix-valued kernel
defined via the feature map given by the elementwise acting activation function σ as

k : Rd × Rd → Rd×d

(x, y) 7→ ⟨σ(x), σ(y)⟩Rd · Id.
(4.8)

Like this the kernel mapping (in the component µ ∈ {1, ..., d}) has the following form:

s(µ)(x) =
M∑
i=1

(k(x, zi)αi)µ ≡
M∑
i=1

αµ,i⟨σ(x), σ(zi)⟩Rd

=
M∑
i=1

αµ,i

d∑
j=1

σ(x(j))σ(z
(j)
i ).
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Combined with a subsequent linear mapping (see Proposition 23) due to the linear kernel
in the odd layers we obtain

d∑
µ=1

βµs
(µ)(·) =

d∑
j=1

σ(x(j)) ·
d∑

µ=1

βµ

M∑
i=1

αµ,iσ(z
(j)
i ).

This shows that the SDKN setup combined with the primal defined kernels from Eq. (4.8)
yields standard neural networks (if biases are additionaly incorporated). It remains a
future research direction to investigate the implications of the deep kernel representer
theorem to neural networks via the connection established with help of the primal defined
activation function kernels from Eq. (4.8).

4.2.6 Discussion and comments

To the best of the author’s knowledge, the SDKN approach was the first deep kernel ap-
proach, which made explicitly use of the deep kernel representer theorem, see Theorem 8.
Due to this, the SDKN approach is inherently optimal in the sense of the representer
theorem. By using only a subset of the centers for the single-dimensional kernel layers
and leveraging Proposition 23 for the linear kernel layers, it was furthermore possible to
derive a sparse representation of the SDKNs which allowed for an efficient optimization.
As already remarked before in Section 4.3.2, the resulting deep kernel of the SDKN from
Eq. (4.6) is actually not a useful kernel itself, in the sense that it is a proper data adapted
kernel and can be used in conjunction with other kernel algorithms on the same data set
on which the SDKN was trained on.

Thus, for future research the following points are of interest:

• (SDKN-kernel): The SDKNs are capable of achieving state-of-the-art performance
in several applications, especially dealing with large datasets, see e.g. Section 5.1
or [116, 117]. However the SDKN-kernel from Eq. (4.6) does not generalize well so
far. Thus, an open question is how to modify the SDKNs or the applied optimization
procedure in order to derive not only a powerful model (the SDKN), but also a deep
kernel that generalizes well (SDKN-kernel). Some comments on this point can be
found in Section 4.4, after the introduction of the two-layered kernels in the next
Section 4.3.

• (Connection to neural networks): Another relevant line of future research related to
the SDKN approach is about its connection to neural networks as explained in Sec-
tion 4.2.5: By picking primal defined kernels using pointwise activation functions as
feature maps, it is possible to exactly represent neural networks. Thus, the implica-
tions of the deep kernel representer theorem for standard neural networks could be
of interest here, possibly giving further insights into the training and generalization
of neural networks.

4.3 Two-layered kernels (2L)

This subsection is devoted to the introduction of two-layered kernels and, in particular,
the 2L-VKOGA algorithm. In contrast to the SDKN model introduced in the previous
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subsection, this approach does not only give an accurate overall kernel model, but in
particular also a suitable deep kernel, which can be used in conjunction with other kernel
algorithms – e.g. greedy algorithms. Most of the content of this subsection was covered
in [118] with some extensions in [116].

We start by motivating and constructing the two-layered kernels in Section 4.3.1,
discussing their optimization and analytical as well as computational properties in Sec-
tion 4.3.2, Section 4.3.3 and Section 4.3.4 and conclude by commenting on possible ex-
tensions in Section 4.3.5.

4.3.1 Construction of two-layered kernels

Radial basis function kernels as in Eq. (2.1) can be chosen depending on a shape parame-
ter. While analytic properties like convergence rates or stability estimates asymptotically
usually do not depend on the choice of that hyperparameter, the performance in numeri-
cal experiments using a finite data set crucially depends on its choice. Therefore several
ways for choosing this shape hyperparameter have been introduced in the literature, as
discussed in Section 4.1. While heuristic choices are a suitable way to go for a first try,
cross-validation usually provides a more principled way and frequently gives better results.
However, this cross-validation can be computational expensive, see also Section 4.3.3 for
a discussion.

For this reason two-layered kernels were introduced in [118], which can be seen as a
generalization of this hyperparameter problem: By generalizing the single shape hyper-
parameter to a d× d matrix of d2 hyperparameters, we allow for arbitrary rotations and
anisotropic scaling of the input space for the kernel. For this we consider the d×d matrix
Aθ

Aθ =

θ
1
1 . . . θd1
...

. . .
...

θ1d . . . θdd

 ,

and consider the corresponding kernel

kθ : Rd × Rd → R

(x, y) 7→ k(Aθx,Aθy).
(4.9)

for some RBF base kernel k : Rb×Rb → R. From here it is evident that this approach is a
generalization: For the choice Aθ = ε · Id we obtain the standard shape parameter scaled
kernel from Eq. (2.1). Using additionally ε → 0 yields the flat limit of kernels, which
was also mentioned in Section 4.2.4. For Aθ = diag(ε1, ..., εd) we obtain again anisotropic
kernels.

Recalling Proposition 23, we saw that linear mappings like x 7→ Aθx can be realized
with the help of a matrix-valued linear kernel. Thus, the concatenation of this linear map
with an RBF kernel k as in Eq. (4.9) fits naturally into the framework of the deep kernel
representer Theorem 8. This connection was also formalized in [118, Corollary 3.1], which
we restate here and also recall the proof:
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Corollary 31. Consider {x1, ..., xN} ⊂ Rd such that the data matrix [x1, ..., xN ] ∈ Rd×N

has rank d. Then, the kernel kθ from Eq. (4.9) is an instance of a two-layered kernel
according to the deep kernel representer Theorem 8.

Proof. Due to the assumption on the rank d of the data matrix, Proposition 23 can be
leveraged to represent the linear mapping x 7→ Aθx as a kernel model using the matrix-
valued linear kernel, i.e. we obtain

N∑
j=1

klin(x, xj)α
(1)
j = Aθx.

Thus, using this mapping as a first layer mapping f1, the general two-layered kernel
k(f1(x), f1(z)) (i.e. Eq. (2.36) for L = 2) specializes to

K2(x, y) = k(f1(x), f1(y)) = k(Aθx,Aθy),

i.e. the hyperparameter tunable kernel kθ from Eq. (4.9) is indeed an instance of a two-
layered kernel.

The assumption on the rank d of the data matrix [x1, ..., xN ] ∈ Rd×N in Corollary 31
deserves some comments: Assume that the data matrix has rank less than d. In this
case the data can be embedded in some lower dimensional space Rd′ with d′ < d, and
there is no data along the orthogonal directions. In this case there is no knowledge about
the behavior of the underlying data generating mechanism in these orthogonal directions
and it makes little sense to use a kernel which varies in those directions. Indeed, using a
proper regularization term during the optimization of the kernel, this can be automatically
detected and achieved, see Section 4.3.2 for more details.

Independent of the rank of the data matrix, the purpose of optimizing such a two-
layered kernel is to incorporate information from the target values [y1, ..., yN ] ∈ RN already
into the kernel kθ: If the target values do not change at all in some direction, then also
the kernel kθ should not change in this direction. Similar behavior can be expected, when
the target values change e.g. only in a slow and smooth way. This will be achieved with
a proper optimization strategy, see the next subsection.

We remark that the first layer with its equivalent matrix Aθ can either be interpreted
as a modification of the kernel itself, or as a transformation of the input space. In the
following, we make use of both interpretations.

A visualization of the two-layered kernel approach is given in Figure 4.2.

4.3.2 Optimization of two-layered kernels

The optimization of the two-layered kernel from Eq. (4.9) is equal to the optimization of
the matrix Aθ ∈ Rd×d. A direct global computation of an optimal matrix Aθ seems to
be infeasible, because this would involve all the data points (XN , YN), which yields huge
matrices:

min
Aθ∈Rd×d

ℓ(XN , YN , Aθ). (4.10)
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Input: x Output:
N∑
i=1

αik(Aθx,Aθxi)

Aθx

k(Aθx,Aθxi)
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fully
connected

layer

shallow
kernel

mapping

Figure 4.2: Exemplary visualization of a two-layered kernel model with x ∈ R3, Aθ ∈ R3×3,
N = 5, xi ∈ R3 and αi ∈ R2 for i = 1, . . . , N . Figure taken from [116] and modified.

Therefore we employ a gradient descent mini batch training: For the initialization we
use the identity matrix for Aθ, i.e. Aθ = Id and then start with the optimization: For
this we choose a batch size nbatch ≪ N and then randomly draw disjoint mini batches
(Xbatch, Ybatch) ⊂ (XN , YN), on which a loss function is evaluated. As a loss function we
pick the sum ofm-fold cross-validation errors with 2 ≤ m ≤ nbatch, which can be computed
efficiently via an extension of Rippa’s rule [69]. The case m = nbatch corresponds to the
leave-one-out-cross-validation:
Denote Xnbatch

= {x1, ..., xnbatch
}, ynbatch

= {y1, ..., ynbatch
} and assume for simplicity that

nbatch/m =: p ∈ N. For every fold, i.e. every j = 1, ...,m:

• Let r := r(j) := (r1, ..., rp)
⊤ be the vector of pairwise distinct validation indices.

• Then the validation set is given by Vp := V
(j)
p := {xri , i = 1, ..., p} ⊂ Xnbatch

and we are interested in the vector of residuals e
(j)
res := (e1, ..., ep) given as ei :=

sXnbatch
\Vp(xri) − yri for i = 1, ..., p. Hereby sXnbatch

\Vp is the kernel approximant
based on the training set Xnbatch

\ Vp ⊂ Xnbatch
.

[70, Theorem 1] then showed, that e
(j)
res can be computed efficiently as the solution

of

(AXbatch
)−1
Vp
e(j)res = (yr1 , ..., yrp)

⊤, (4.11)

whereby (AXbatch
)−1
Vp

is the p × p submatrix (defined by the corresponding indices)
of the inverse kernel matrix AXbatch

.

The loss of interest for the optimization in every step of the mini batch gradient descent
is then given as

ℓp(Xnbatch
, Ynbatch

, Aθ) =

p∑
j=1

∥e(j)res∥22. (4.12)

Depending on the way the kernel approximants sXnbatch
\Vp are computed, further hy-

perparameter can come into play in Eq. (4.10). Especially it is advisable to compute the
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kernel approximant in a regularized way to stabilize the optimization procedure from a
numerical point of view. This can be done by making use of the regularized kernel matrix
AXbatch

+ λInbatch
for some λ > 0 instead of the pure kernel matrix AXbatch

, cf. Eq. (2.8).
Therefore, we denote the loss from Eq. (4.12) also as ℓp,λ. Furthermore, we remark that
it is in principle also possible to consider other norms in Eq. (4.12), however the ℓ2 norm
is convenient.

The overall algorithm is depicted in Algorithm 1, which was taken from [118] with
only minor modifications. The depicted get batch method draws an exhausting col-
lection of batches, though also random drawings should give comparable results. The
early stopping method is optional, and we point the interested reader to [42]. We
remark that for the numerical experiments in Chapter 5 the more sophisticated Adam
optimizer [57] is used instead of a plain stochastic gradient descent update.
The algorithm is intrinsically supervised because in the key computation step in Eq. (4.11)
for building the final loss of Eq. (4.12), the target values y are explicitly used. Here, it is
emphasized that the incorporation of the target values is crucial for the subsequent per-
formance in the numerical applications. Especially in plenty of applications for surrogate
modeling, the input space is randomly or uniformly sampled and the corresponding target
values are subsequently computed. In this view, one cannot expect to obtain any useful in-
formation solely based on the input values without taking into account the corresponding
output values.

While [118] introduced the model originally only for scalar valued outputs, an extension
to the vectorial case is feasible and was done in [116] by using a separable matrix-valued
kernel. In this case, the overall loss (for the multivariate output case) is given by the
ℓ2 norm over the individual output dimensions, i.e. in the framework of Eq. (4.12) the

residuals e
(j)
res are now matrix-valued instead of vector valued.

Concerning the computational complexity of the kernel optimization in contrast to
straightforward cross-validation, we note: The gradient descent kernel optimization with
a maximum number nepoch of epochs and a given batch size nbatch requires

O(nepoch ·N/nbatch · n3
batch) = O(nepoch ·N · n2

batch),

operations for calculating the losses from Eq. (4.11). This is in contrast to a full cross-
validation of the parameters: Assuming nCV runs per parameter, the number of required
loss evaluations scales as nd2

CV for a full validation of the matrix Aθ or nd
CV if only the

diagonal values of Aθ are validated. Both versions clearly suffer from the curse of dimen-
sionality in contrast to the gradient descent optimization of the matrix Aθ.

4.3.3 Analysis and investigation of two-layered kernels

In this subsection, we quickly recall the most important statements from the theoretical
analysis of the two-layered kernels from [118, Section 3.2].

• Symmetry of Aθ: Due to using an RBF kernel k in the second layer, it is enough to
consider symmetric matrices Aθ: Given the singular value decomposition

Aθ = UΣV ⊤ ⇔ Aθvi = σiui for i = 1, ..., d
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Algorithm 1: SGD optimization of the kernel kθ(x, y) ≡ k(Aθx,Aθy).

Input : Data (XN , YN), base kernel k, m-fold parameter m, regularization
parameter λ
learning rate µ, batch size nbatch, number epochs maxepoch

Result: Optimized matrix Aθ

p := ⌊nbatch/m⌋, maxiter := ⌊N/nbatch⌋
Aθ ← diag(1, ..., 1) ; /* Initialization of Aθ */

for nepoch = 1, ...,maxepoch do
Lepoch ← 0;
shuffle (XN , YN);
for niter = 1, ...,maxiter do

(Xbatch, Ybatch)← get batch((XN , YN));
L = ℓp,λ(Xbatch, Ybatch, Aθ) ; /* Using Eq. (4.12) */

Aθ ← Aθ − µ · ∂L
∂Aθ

; /* Gradient descent update */

Lepoch ← Lepoch + L
end
early stopping(Lepoch)

end

with Σ = diag(σ1, ..., σd) and ui and vi for i = 1, .., d being the column vectors of
U, V , i.e. the left and right singular vectors. Then we have

∥Aθ(x− x̃)∥2Rd =
d∑

i=1

(⟨x, vi⟩Rd − ⟨x̃, vi⟩Rd)2σ2
i ,

because the left singular vectors ui, i = 1, ..., d vanish due to taking the norm.
This allows to choose U := V , such that the resulting matrix Aθ is symmetric
without changing its singular values nor its right singular vectors.

• Singular value behavior of Aθ: In order to assess whether the optimized kernel is
likely beneficial in comparison to the standard kernel (i.e. using the initial value
Aθ = Id), the decay of the singular values of the matrix Aθ can be investigated: We
assume the singular values σi(Aθ) to be ordered from the largest to the smallest one
according to their absolute value. Then we consider the cumulative energy

n 7→
∑n

i=1 |σi(Aθ)|∑d
i=1 |σi(Aθ)|

, 1 ≤ n ≤ d, (4.13)

which measures how much energy is captured in the top singular values. The faster
the cumulative energy approaches the value one, the more energy is clustered in
a few singular values, while the remaining singular values need to be comparably
small. The quantity Eq. (4.13) is visualized depending on the ratio n/d of considered
eigenvalues (x-axis) in Figure 4.3:

One can see, that for the considered test datasets (for more details see the experi-
ments in Section 4.3.4), the ratio approaches the value one more or less quickly. In
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Figure 4.3: Visualization of the ratio
∑n

i=1 |σi(Aθ)|/
∑d

i=1 |σi(Aθ)| (mean and standard
deviation over 5 reruns) (y-axis) over the ratio n/d of considered singular values (x-axis)
using m = nbatch = 64. Figure taken from [118].

view of Figure 4.6 and Figure 4.7 (elaborated in Section 4.3.4), one can see that
the kernel optimization in conjunction with a subsequent use of greedy algorithms
yields better results, the faster the ratio Eq. (4.13) approaches the value one. Thus,
the investigation of Eq. (4.13) can serve as an a priori assessment whether it makes
sense to use the optimized kernel for running a subsequent kernel approximation
algorithm (which is likely more costly than the kernel optimization, see comments
in Section 4.3.4 and run times in Table 4.2).

• Stability of the optimization: The optimization provided by Algorithm 1 was investi-
gated numerically in [118, Section 4.3] and found to be sufficiently stable, in the sense
that the final optimized kernel is indeed data-adapted and more or less always the
same independent of the randomness incurred due to the stochastic optimization or
the choice of the m-fold parameter m: For this experimental investigation, the three
exemplary regression datasets mlr knn rng, fried and kegg undir uci [36, 51, 104]
were considered, see Table 4.1 for information about these data sets. For each of
these datasets the two-layered kernel optimization was performed 5 times for the
m-fold values m ∈ {64, 32, 16, 8, 4} using a batch size of 64. In order to analyze
the resulting kernel kθ, the first layer matrix Aθ is analyzed with a singular value
decomposition. Figure 4.4 visualizes the singular values as well as the overlap of
the corresponding right singular vectors. To be precise, for the second quantity, the
principal angle between subspaces spanned by right singular vectors corresponding
to the largest n ∈ {1, ..., 15} singular values is plotted, whereby we compare the
subspaces corresponding to the m = 64 optimization with m ∈ {32, 16, 8, 4}.
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Short name Number of examples Number of features
fried 40768 10
sarcos 44484 21
ct 53500 379
diamonds 53940 29
stock 59049 9
kegg undir uci 64608 27
online video 68784 26
wecs 72000 48
mlr knn rng 111753 132
query agg count 200000 4
sgemm 241600 14
road network 434874 2

Table 4.1: Overview on the machine learning data sets which were used.

For a precise definition of the principal angle between subspaces, the interested
reader is pointed to [58, Section 1] – for the understanding it is sufficient to rec-
ognize it as a measure of the overlap of the subspaces. The left column within
Figure 4.4 shows, that the distribution of the singular values always follows the
same behavior – independent of the actually chosen value m for the m-fold cross-
validation error. The right column shows, that the right singular vectors to the
top singular values are quite aligned, because the corresponding principal angles are
small in the beginning. With growing dimension of the considered subspaces also
the principal angles increase, which makes sense in view of the high dimensionality
of the considered datasets (see Table 4.1). Like this we conclude that the features
(given by the projection on the right singular vectors) identified by the different
optimization criteria as well as their importance (given by the singular values) are
pretty similar independent of the choice of hyperparameter m for the optimization,
i.e. the features and their importance are data related.

4.3.4 Two-layered greedy algorithms: 2L-VKOGA

As motivated and elaborated before, the two-layered kernel kθ can be used in conjunction
with general kernel-based algorithms. The combination of two-layered kernel optimization
with subsequent greedy kernel approximation, in particular together with the VKOGA
algorithm [93], was labeled 2L-VKOGA in [118], whereby the actual treatment of the
vectorial case was done in [116]. An implementation can be found at

https://gitlab.mathematik.uni-stuttgart.de/pub/ians-anm/2l-vkoga.

Usually the computational cost for the kernel optimization is significantly smaller than
running the subsequent greedy algorithm, such that the kernel optimization does not bear
much computational overhead: As analyzed in Section 4.3.2, the computational cost for
the kernel optimization using (up to) nepoch epochs is

O(nepoch ·N/nbatch · n3
batch) = O(nepoch ·N · n2

batch),
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Figure 4.4: Analysis of the optimized matrices Aθ for three datasets. Left: Visualization
of the singular values of the matrix Aθ. Right: Visualization of the principal angle (y-
axis) between subspaces spanned by the first n right singular vectors (x-axis). We set the
number of folds as nfold = 64 as reference and compare to nfold ∈ {64, 32, 16, 8, 4} and no
optimization (i.e. the classical “1L”-VKOGA). Error bars are used to visualize the mean
and standard deviation for 5 reruns. Figure taken from [118].
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Short name Time for optimization [s] Time for greedy [s]
fried 13.90± 3.51s 83.16± 0.66s
sarcos 12.94± 2.32s 92.71± 0.43s
ct 64.66± 5.79s 250.93± 1.57s
diamonds 19.40± 2.25s 113.61± 0.74s
stock 16.48± 2.20s 116.63± 0.49s
kegg undir uci 25.48± 4.29s 133.85± 0.75s
online video 20.66± 1.94s 140.72± 0.99s
wecs 28.92± 3.65s 162.33± 0.85s
mlr knn rng 95.57± 12.90s 308.29± 0.79s
query agg count 62.73± 7.66s 351.29± 0.98s
sgemm 90.66± 4.41s 446.20± 1.99s
road network 133.23± 8.91s 733.22± 13.27s

Table 4.2: Overview of time spent for kernel optimization and subsequent model compu-
tation via greedy (mean and standard deviation over 5 reruns).

and thus in particular independent of the VKOGA expansion size nvkoga. In contrast, the
computational cost of VKOGA scales even quadratically in the expansion size nvkoga:

O(n2
vkoga ·N).

Typical values, which were also used in the numerical experiments (see below and Fig-
ure 4.6, 4.7) are nbatch = 64, nepoch = 10, nvkoga = 1000. These values typically yield that
the kernel optimization before running VKOGA is only a small computational overhead.
This is also reflected in the timings of the numerical examples related to Figure 4.6, 4.7,
see also Table 4.2.

For the convergence analysis of these two-layered greedy algorithms we recall [118, The-
orem 3.2] and [118, Theorem 3.3]. The proofs are deferred to Chapter B. Both theorems
are formulated in terms of fill distances which corresponds to the target data-independent
P -greedy algorithm. By applying the analysis of Chapter 3, it is possible to also derive
target data-dependent convergence rates for e.g. the f -greedy algorithm. As this is a
straightforward application of the theory, it is not included explicitly here.

Theorem 32. Consider an RBF kernel k that satisfies Eq. (2.2) with τ > d/2 on a
bounded Lipschitz domain Ω ⊂ Rd. Consider f ∈ Hk(Ω) and the kernel interpolant sXn

using the two-layered kernel kθ with Aθ ∈ Rd×d and rank(Aθ) = d.
Then the following pointwise error estimate holds:

|f(x)− sXn(x)| ≤ Ch
τ−d/2
Xn,Ω

.

For asymptotically uniformly distributed points hXn,Ω ≍ n−1/d it then holds

|f(x)− sXn(x)| ≤ Cn1/2−τ/d.

Theorem 33. Consider a Matérn kernel k with τ > d/2 on a bounded Lipschitz domain
Ω ⊂ Rd. Consider f ∈ Hk(Ω) and the kernel interpolant sXn using the two-layered kernel
kθ with Aθ ∈ Rd×d and rank(Aθ) =: deff < d.
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Assume that f ∈ Hk(Ω) is invariant along the subspace Null(Aθ) ⊂ Rd, i.e. f(x) = f(x′)
for any x, x′ ∈ Ω with x−x′ ∈ Null(Aθ). For points Xn ⊂ Ω such that hAθΩ,AθXn ≍ n−1/deff

it then holds

|f(x)− sXn(x)| ≤ Cn
d

2deff
− τ

deff .

Theorem 32 shows for the case rank(Aθ) = d that the asymptotic convergence rate
does not decrease when using the two-layered kernel compared to using a standard one-
layered kernel (i.e. Aθ = Id). Theorem 33 shows for the case rank(Aθ) < d that the
asymptotic convergence rate is even improved, which is due to reducing the effective
dimension of the problem. Although Theorem 32 does not give any advantage in terms
of faster convergence rate over using the standard kernel k, the two-layered kernel still
usually performs better in the preasymptotic regime.

From the theoretical point of view it remains unclear whether it is possible to obtain
faster asymptotic convergence rates for target data-dependent greedy algorithms when
using a two-layered kernel instead of a standard shape tuned kernel, for the case where
all the singular values si(Aθ) of Aθ are bounded away from zero: In order to answer these
questions, a more refined analysis of the f -greedy algorithm seems to be required.

In order to demonstrate the usefulness of the 2L-VKOGA approach and also elucidate
Theorem 32 and Theorem 33, we recall two numerical examples [118, Section 4.1] and [118,
Section 4.2]. First, the performance of the f -greedy algorithm using an optimized two-
layered kernel (with a basic Matérn kernel k(x, y) = exp(−∥x − y∥/

√
d) as base kernel)

versus using standard kernels of different shape parameter (10 logarithmically equally
spaced values in between 0.05 and 10) was investigated numerically in [118, Section 4.1]:
The domain Ω = [0, 1]d for d ∈ {5, 6, 7} and the three test functions

fd(x) =


e−4(

∑5
j=1 x

(i)−0.5)
2

, for d = 5,

e−4
∑6

j=1(x
(i)−0.5)2 + 2|x(1) − 0.5|, for d = 6,

e−
∑7

j=1(x
(i)−0.5)2 + e−9

∑2
j=1(x

(i)−0.3)2 , for d = 7.

were used. The resulting decay of the ∥ · ∥L∞(Ω) training error (which was checked to
coincide with a test error) for the approximation is depicted in Figure 4.5. There seem
to be two different cases for the convergence behavior of the f -greedy algorithm using a
two-layered kernel:

• Test function f5 (top row in Figure 4.5) shows a faster convergence rate for f -greedy
using the optimized two-layered kernel over using a standard shape parameter tuned
kernel.

• Test function f6, f7 (middle and bottom row in Figure 4.5) show the same conver-
gence rate for the optimized two-layered kernel as for the standard shape parameter
tuned kernel. However, the occurring prefactor is way smaller, such that one obtains
constant multiplicative benefit.

However, as stressed before, for numerical experiments also the preasymptotic range is of
interest for practical applications.

Such numerical experiments related to real world machine learning regression data sets
were done in [118, Section 4.2]: For this the data sets listed in Table 4.1 were considered

65



Chapter 4. Deep kernel methods

100 101 102
10−3

10−2

10−1

100
2L
0.05
0.09
0.162
0.292
0.527
0.949
0.171
3.081
5.55
10

0 5 10 15 20 25

0.2

0.4

0.6

100 101 102

10−1

100

0 5 10 15 20 25
−1

0

1

2

100 101 102
10−1

100

0 5 10 15 20 25

0

2

4

6

8

Figure 4.5: Top: 5D experiment, middle: 6D experiment, bottom: 7D experiment. Left:
Visualization of the ∥ · ∥L∞(Ω) error (y-axis) in the number of greedily selected points
(x-axis) for both the standard kernel and the 2L-VKOGA. Right: Visualization of the
change of the diagonal matrix entries as well as A(2, 1), A(1, 2) of the matrix Aθ (y-axis)
during the optimization epochs (x-axis). Figure taken from [118].
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for the same numerical experiments as before (i.e. comparing approximation with 2L-
VKOGA against standard shape parameter modified VKOGA). For this nepoch = 10,
nbatch = 64, nvkoga = 1000 were used as well as a regularization of λ = 10−3 for the kernel
optimization and a regularization of λ = 10−4 for the VKOGA (see [95]). The kernel is
again the basic Matérn kernel. The results are depicted in Figure 4.6 and Figure 4.7,
where one can see the test mean squared error for intermediate sizes of the model (up to
an expansion size nvkoga):

• For the datasets ct, sgemm, wecs, mlr knn rng, fried and kegg undir uci (see Fig-
ure 4.6) one can observe that the 2L-VKOGA model (black line) consistently out-
performs the standard shape parameter modified kernels. In particular for several
datasets, a given test accuracy can be achieved with a model expansion size which
is an order of magnitude smaller.

• For the datasets diamonds, sarcos, stock, road network, online video as well as
query agg count (see Figure 4.7) the 2L-VKOGA approach is not consistently bet-
ter but shows mixed performances. Anyway the 2L-VKOGA approach is never
significantly worse than any standard shape parameter modified kernel.

Recalling the cumulative energy of the singular values from Eq. (4.13) from Section 4.3.3,
we observe a connection between the cumulative energy and the performance of the 2L-
VKOGA algorithm: The faster the cumulative sum of Eq. (4.13) approaches the value one,
the better the 2L-VKOGA algorithm performs. The plots within Figure 4.6 and Figure 4.7
where ordered according to the improvement achieved by the 2L-VKOGA. Like this it
highlights the the connection to the cumulative energy as plotted in Figure 4.3.

4.3.5 Discussion and comments

We conclude this section with a discussion of the following points, which serve partly also
as directions for future research:

1. (Dimensionality of Aθ): The dimensionality of the matrix Aθ is not intrinsically
limited to d×d. It is possible to consider Aθ ∈ Rb×d, which is equal to an upsampling
of features for b > d or a downsampling for b < d.

The first case of upsampling, i.e. b > d, is useless from the theoretical point of view:
As rank(Aθ) ≤ min(b, d) = d, the effective dimension of the transformed dataset
XN · A⊤

θ cannot increase. This means that the transformed dataset XN · A⊤
θ does

not contain more information, i.e. no improved approximation using a two-layered
kernel Aθ ∈ Rb×d is possible. An upsampling thus only makes sense, if a nonlinear
mapping is considered – see the fourth point.

The second case of downsampling, i.e. b < d seems to make sense only in the
setting described in Theorem 33 – i.e. if the considered function respective data
(XN , YN) is invariant in some directions. In this case, the matrix Aθ can reduce the
dimensionality by removing the invariant directions. However, preliminary numer-
ical experiments (not shown here) indicated that beyond those “invariant in some
direction” cases, a downsampling (e.g. by removing the directions of the smallest
singular values of an optimized matrix Aθ) is rather detrimental for the subsequent
kernel model.
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Figure 4.6: Visualization of the test MSE (y-axis) over the number of greedily selected
centers (x-axis) for the first six datasets. The black line shows the 2L-VKOGA, while the
colored lines show the use of standard kernels with different length scale parameters ε.
Figure taken from [118].
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Figure 4.7: Visualization of the test MSE (y-axis) over the number of greedily selected
centers (x-axis) for the last six datasets. The black line shows the 2L-VKOGA, while the
colored lines show the use of standard kernels with different length scale parameters ε.
Figure taken from [118].
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2. (Least squares instead of interpolation): In the numerical experiments in Sec-
tion 4.3.4, the optimized two-layered kernel is combined with greedy algorithms
to derive accurate and sparse kernel models. In case the performance of the model
is measured in the ∥·∥L2(Ω) error or a mean squared error, it makes sense to compute
the final kernel model coefficients via a least squares fit instead of using the inter-
polation coefficients returned by running the greedy algorithm. This improves the
accuracy even further. Such a least squares fit can be easily obtained even for huge
datasets by leveraging existing software such as the FALKON algorithm [72,73], be-
cause the first layer matrix Aθ can be seen as a transformation of the input dataset.

3. (More than two-layered): In principle it is easily possible to use a deeper setup, i.e.
more than two layers, and apply the same optimization procedure. However, we
remark that it does not make sense to use several matrix-valued linear kernels after
each other, because the corresponding linear transformations can be summarized
into a single one. Assume L linear transformations with matrices Aθ,1, ..., Aθ,L, then
they can be summarized into a single matrix and thus a single kernel mapping as
Aθ :=

∏L
i=1Aθ,i.

4. (Nonlinear first layer kernels): Further possible extensions are to use nonlinear
kernels in the first layer. However this turned out to be challenging. Both, too
sophisticated kernels as well as simple polynomial kernels showed only poor or at
most mixed performances.

4.4 Discussion, comments and outlook

In Section 4.2 and Section 4.3, two different kind of deep kernel models were introduced.
The first approach – SDKNs – is a new machine learning model itself, which puts more
focus on deriving a powerful kernel model resembling ideas from neural networks. The
second approach – two-layered kernels – which can be seen as a generalization of hyper-
parameter optimized kernels, puts more focus on deriving a powerful kernel itself, which
can subsequently be used in conjunction with e.g. standard greedy kernel methods. This
is indeed one of the major differences between both approaches: The resulting deep kernel
from Eq. (4.6) for the SDKN approach can not be used in conjunction with standard ker-
nel methods such as greedy kernel algorithms – whereas the two-layered kernel of Eq. (4.9)
can be used. The following points seem to be of importance for this:

1. (Optimization strategy): A randomized mini batch optimization was employed, that
aimed at optimizing the kernel instead of directly calculating a suitable kernel model
that fits the dataset. This second approach was followed in Section 4.2, where the
loss from Eq. (4.7) aimed at directly optimizing the full deep kernel model.

2. (Structure of the kernel): The kernel kθ of Eq. (4.9) is only a slight modification of
a well understood RBF based kernel k. This is in contrast to Section 4.2, where the
multiple layers including strong dimensionwise nonlinearities modified the inputs
significantly before feeding them into the kernel of the final layer.
Furthermore, also the kernel of the last layer is different: For the two-layered kernel
approach, an RBF base kernel was used as the kernel of the last layer. For the
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SDKN, the kernel of the last layer is a linear kernel – or when arguing that the linear
kernel is only a linear combination of the previous features – a single-dimensional
kernel. In any case, the expressivity of the last layer kernel of the SDKN is limited
in comparison to a universal base kernel k for the two-layered approach.

Possible future research on the SDKN or the two-layered kernel approach was al-
ready discussed in Section 4.2.6 respective Section 4.3.5. Further future research on the
combination and interplay of both approaches are the following directions:

• (Combination of both approaches): The SDKN models from Section 4.2 provide
powerful kernel-based deep learning models while not giving a proper kernel as dis-
cussed in Section 4.2.3. The two-layered kernels of Section 4.3 provide proper kernels
and if used in the 2L-VKOGA approach, also the resulting models are powerful –
however due to the restricted first layer mapping in comparison to the SDKN ap-
proach, only little feature learning can be expected. In order to overcome these
limitations it would be natural to extend the first layer mapping of the two-layered
kernel approach, e.g. by using a SDKN-like setup here – while (partly) keeping the
optimization idea of the two-layered kernels. Preliminary results indicated that such
a straightforward combination does not work out. A possible reason for this could
be the non-injectivity of the SDKNs, which were used as feature modifications. This
could be alleviated by using invertible mappings, see e.g. [4] for invertible neural
networks. Another more advanced idea could be a joint optimization, i.e. combining
the loss of Eq. (4.7) (MSE loss) with the loss of the kernel optimization from the
2L approach Eq. (4.12).

• (Data-adapted kernel via NTK): In the introduction in Section 4.1 it was elaborated
on the neural tangent kernel, which emerges from the training of infinite width neural
networks. Recent research [50,131] focussed on different parametrization and scaling
limits, which allow for feature learning also in the infinite width limit. Such a feature
learning limit allows the corresponding NTK to learn features of the data. However,
it remains unclear whether this can be used in a computational feasible way, as it
is unclear whether or how such a kernel allows for a closed form expression or some
economically computable function.
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Applications

One of the driving motivations of analyzing and improving kernel methods throughout
this thesis was their potential for surrogate modeling purposes [45, 93, 127], which is the
case for various scenarios in optimization or process control, where multi-query or real-
time responses are required. The main goal of surrogate modeling is to replace some costly
high-fidelity model by a surrogate model, which can be easily and quickly evaluated while
still satisfying given accuracy demands. This corresponds to a trade-off between a minor
loss in accuracy, but a huge benefit in terms of computational time.

The following Section 5.1 and Section 5.2 briefly showcase two important applications
in the field of closure term prediction and the modeling of the human spine to demonstrate
the usefulness of the novel approaches proposed in Section 4.2 and Section 4.3.

5.1 Closure term prediction

In order to showcase the applicability and flexibility of the introduced Structured Deep
Kernel Networks (SDKNs) from Section 4.2, the application of SDKNs for the modeling of
closure terms in turbulent flow simulations from [117] is presented here. The general idea
hereby is, that in the field of computational fluid dynamics (CFD), often large amounts of
high dimensional data occur. However, one is often only interested in a low dimensional
quantity which can be extracted from this data, e.g. the drag of lift acting on a body
within a flow. This is where machine learning tools come into play, as they are suitable
to learn from large amounts of data. The reader is referred to [8–10] for more background
information on the use of machine learning for turbulence modeling and to [102] for general
background information on the mathematical description of fluid mechanics. Compressible
fluid flows can be described by the Navier-Stokes equations (NSE), i.e.

Ut +R(F (U)) = 0 (5.1)

in short and general form. Here U = U(x, t) is the vector of conserved quantities that
depends on both time t and location x. Ut denotes its time derivative, F (U) the applica-
tion of the nonlinear fluxes to U and R(·) denotes the divergence operator. Turbulence is
generally characterized by the non-dimensional Reynolds number. Small Reynold num-
bers refer to less turbulent or even laminar flows, and an increasing Reynolds number
leads to more turbulent flow, which exhibits chaotic behavior and an increasingly more
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pronounced multiscale character from the small to large scales. Therefore, a solution of
the full equation (e.g. via direct numerical simulation (DNS)) is unbearable for most prac-
tical applications, because most flows of interest are at least partly turbulent. To alleviate
this challenge, large eddy simulation (LES) is employed: The governing equations from
Eq. (5.1) are split into fine-scale and coarse-scale contributions applying a low-pass filter
(·). The exact choice of the low-pass filter here specifies the concrete method, and the
effect of different filter functions on the full solution (DNS) can be seen in Figure 5.1.
Eq. (5.1) is thus transformed into the coarse-scale governing equation

U t +R(F (U)) = 0.

However, as the flux F is nonlinear, the filtered flux term R(F (U)) still depends on the
solution U instead of on the coarse-solution U – this is the so-called closure problem.
Using an appropriate numerical discretization R̃(U) and adding 0 = R̃(U) − R̃(U), we
obtain

U t + R̃(U) = R̃(U)−R(F (U))︸ ︷︷ ︸
perfect LES closure

. (5.2)

The right-hand side of Eq. (5.2) is called perfect LES closure. However, the computation
of the exact closure term depends on U , since due to the nonlinearity of F , the filter does
in general not commute with the nonlinear fluxes, i.e. R(F (U)) ̸= R(F (U)). Therefore it
is replaced by a model M which depends only on the coarse-scale solution U .(

R̃(U)−R(F (U))
)
≈M(U). (5.3)

These models used to be heuristic or physics- and mathematics-inspired, which however
did not accurately enough capture the complexity of the closure terms, and no overall
best model has been found yet. Nowadays, data-based machine learning models have
been shown to be useful to recover these perfect closure terms.

For this task, also Structured Deep Kernel Networks (SDKNs) are suitable. In order
to obtain a fair comparison with benchmark machine learning models from the literature,
the same setup as in [8, 10] was used. In those publications, recurrent neural networks
were used as machine learning models. In the following, we briefly recall the key settings
and then elaborate on the results achieved by using SDKNs [117]:

The considered dataset stems from a high-fidelity DNS and is filtered by applying
a projection filter, a top-hat filter as well as an Fourier filter, see Figure 5.1 for a vi-
sualization of their corresponding effects. The resulting dataset then consists of three-
dimensional time series as inputs, namely the time-dependent coarse-scale filtered ve-
locities v(1), v(2), v(3) and the corresponding three-dimensional output time series given
by the three closure terms R(F (U))1,2,3. However, only the final time step for the
outputs is of interest here. The discretization of the (input) time series was given by
the number of time samples (Nseq) and the time increment (∆tseq) between successive
steps. Three different choices were investigated, namely (Nseq,∆tseq) = (3, 10−3) (GRU1),
(Nseq,∆tseq) = (10, 10−4) (GRU2), (Nseq,∆tseq) = (21, 10−4) (GRU3). As a preprocessing
step, the (training) data was scaled according to a normal distribution, i.e. zero mean and
unit variance.
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As a baseline model, the neural network from [10] was considered, which is a recurrent
neural network using a gated recurrent unit (GRU, [15]) module and the ReLU activation
function. The input and output dimension are both 3 according to the data set description
above, where the input uses 3, 10 or 21 time instances per sample depending on the choice
of case GRU1, GRU2 or GRU3. Two hidden layers of dimension 32 and 64 were used
before the GRU module, and two further hidden layers of dimension 48 and 24 were used
after the GRU module. The optimization of the neural network was performed using a
standard mini batch learning using the Adam optimizer with initial learning rate of 10−3

and a batch-size of 256 for 50 epochs. A step learning rate scheduler reduced the learning
rate by a factor of 1/2 every 10 epochs. These learning settings for the NN were found to
work well by empirical testing.

In order to have a fair comparison with the SDKN model, the same network structure
was employed. For the optimization, only 25 epochs were used, such that the overall
optimization time was approximately the same. The reason for this was the slightly more
costly optimization steps due to the single dimensional kernel layers, that can be viewed
as optimizable activation functions: Within those single dimensional kernel layers, the
Gaussian kernel from Eq. (2.3) was used. Therefore, also the reduction of the learning
rate was done every 5 instead of every 10 epochs, such that the final learning rate has
been the same as for the NN case. As for the NN, the (same) GRU module was employed
in the SDKN at the same position. We emphasize two points: First, the incorporation of
the GRU module was easily possible due to the structured setup of the SDKN. Second, in
contrast to the NN, no hyperparameter optimization was applied to the SDKN. Instead,
the same training setup was adopted, which turned out to be highly suitable due to the
flexibility of the SDKNs.

The performance of both the NN and the SDKN were evaluated via the mean squared
error LMSE (MSE) and the Pearson’s correlation coefficient CC, that is defined as

CC(a, b) = Cov(a, b)√
Var(a) ·

√
Var(b)

using the covariance Cov(·, ·) and the variance Var(·). The mean squared error is given
as

LMSE(a, b) =
1

n
·

n∑
i=1

∥ai − bi∥2.

The results on the unseen test data are listed in Table 5.1: Throughout all the three
test cases GRU1, GRU2 and GRU3 and the three applied filters (projection, top-hat and
Fourier), the Pearson’s correlation coefficient and the MSE-loss for the NN and the SDKN
are very similar except for one case: For the combination of GRU2 and the projection filter,
the NN performed significantly worse compared to the other cases (correlation coefficient
of 0.8163 instead of usually 0.999, MSE-loss larger than 101 instead of smaller than 4·10−1):
We remark that this could be observed both in the original results within [10] as well as
in the reproduced results in [117]. As the NN setup is large enough, it should be in theory
capable of also learning a proper input-output mapping. However, for some unknown
reason, the NN seems to get stuck during the optimization in a local minimum. Such a
significant drop in performance is not observed for the SDKN. Instead, here the results
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Figure 5.1: Two-dimensional slices of the three-dimensional z-velocity field v(3) for the
high-fidelity DNS and for the corresponding filtered velocity fields v(3) of the three in-
vestigated LES filters. Each slice of the filtered flow field contains 482 solution points.
Figure taken from [117]

.

are similar to the results for the other filters. The convincing performance of the SDKNs
supports again the increased flexibility of the SDKNs, which is likely due to the single
dimensional kernel layers, that can be interpreted as optimizable activation functions.
This can also be seen in the visualization within Figure 5.2, where two exemplary single-
dimensional kernel layers are shown. On the left, a mapping using the Gaussian kernel
(as in the experiments) is visualized, while on the right a mapping using the Wendland
“k = 0” kernel (see Eq. (2.3)) is visualized.
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Figure 5.2: Visualization of two single-dimensional kernel mappings, that can be viewed
as optimizable activation functions: The Gaussian kernel and the Wendland kernel (see
Eq. (2.3)) are used on the left respective right. In red, the function before the optimization
is visualized, while green visualizes the function after the optimization. The background
histogram shows the distribution of the training data after the optimization. Figure taken
from [117]

5.2 Spine modeling

While Section 5.1 showed the use of the SDKNs for surrogate modeling, here we highlight
the use of greedy kernel models for this purpose in the context of spine modeling. We
begin with a general introduction to the modeling of the human spine, and then continue
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Table 5.1: Overview of the final MSE and Pearson’s correlation coefficient on the unseen
test data after optimization of the two machine learning models for the three test cases
GRU1, GRU2, GRU3: Neural network (NN) and structured deep kernel network (SDKN).

MSE GRU1 GRU2 GRU3

Projection NN 3.235e-01 4.996e+01 3.233e-01
SDKN 3.253e-01 3.261e-01 3.368e-01

Top-Hat NN 3.155e-02 2.917e-02 2.888e-02
SDKN 3.222e-02 2.989e-02 2.893e-02

Fourier NN 1.179e-02 9.737e-03 9.452e-03
SDKN 1.177e-02 1.007e-02 9.587e-03

Corr. coeff. GRU1 GRU2 GRU3

Projection NN 0.9989 0.8163 0.9989
SDKN 0.9989 0.9989 0.9988

Top-Hat NN 0.9992 0.9992 0.9992
SDKN 0.9991 0.9992 0.9992

Fourier NN 0.9992 0.9993 0.9993
SDKN 0.9992 0.9993 0.9993

by showing the use of different (greedy) kernel methods:

• First in Section 5.2.1, the application of stabilized greedy methods is shown, which
were originally introduced in [119]. These γ-stabilized greedy algorithms combine
standard selection criteria as introduced in Section 2.5 (or more general β-greedy
algorithms from Definition 18) with a stabilization parameter γ ∈ (0, 1), that allows
to derive more stable kernel models.

• Second in Section 5.2.2, the use of curl-free kernels for the modeling of the human
spine is described, such that the resulting models ensure the physical requirement
of energy conservation [47].

• Finally in Section 5.2.3, we comment on ongoing work, namely the combination
of curl-free models explained before with the two-layered approach described in
Section 4.3.

The human spine is an integral part of the human body and for its biomechanical
analysis the vertebral bodies, ligaments, muscles and intervertebral discs (IVDs) are most
important. In order to understand the biomechanical behavior of the human spine and
derive accurate models for it (e.g. for the force-length characteristics of passive tissue
compartments), its parts need to be modelled. The motivation for such a modeling is
multiple fold, as those models can be used in a variety of applications such as injury
prevention or medical research.

In this investigation, the focus was put on the intervertebral discs (IVDs), which
connect two adjacent vertebral bodies. These allow for movements in six degrees of
freedom (DOFs): Three translational and three rotational displacements, see Figure 5.3.
For the accurate modeling of the IVDs including the nonlinear couplings of the different
degrees of freedom, finite element models are used – which are however costly to compute
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as well as to evaluate. In case the detailed and accurate modeling of a single IVD is not
of utmost importance, but rather its biomechanical contribution to the overall model,
surrogate models are a feasible option. For this, classical models like linear mappings
(which are called stiffness-matrix or bushing element) or polynomial mappings were used
[54, 55, 89]. However, especially linear approximations miss the nonlinear behavior and
couplings of the stiffnesses of the IVDs. In order to improve the accuracy of such simple
models on the one side, but still keep their speed and efficiency advantages on the other
side, more sophisticated kernel models have been started to be used [127]. Especially
when using target data-dependent greedy kernel methods, the derived models are even
sparser and more efficient, in accordance with the analysis in Chapter 3.

5.2.1 Modeling via γ-stabilized greedy algorithms

The class of γ-stabilized algorithms [114, 119] modifies standard greedy selection criteria
by restricting the set of possible inputs from which the next point is chosen from. This is
done with the help of the power function Pn(x): For a given selection criterion η(n), the
next point is usually selected as

xn+1 := argmax
x∈Ω

η(n)(x).

For the γ-stabilization, a value γ ∈ [0, 1] is selected and the next point is selected from

the restricted set Ω
(n)
γ := {x ∈ Ω | Pn(x) ≥ γ · ∥Pn∥L∞(Ω)} according to

xn+1 := argmax
x∈Ω(n)

γ

η(n)(x).

The motivation for this modification lies in the properties of those algorithms as analyzed
in [119]. Due to using the restricted set Ω

(n)
γ for the selection of the next point, the

new point xn+1 cannot be too close to previously chosen points Xn. This results in a
stabilization effect, which means in practice that the computation does not terminate too
early, see also Figure 5.4. More details on this class of stabilized algorithms, including
the full analysis can be found in [119].

In [123], a particular data set resulting from the modeling of the IVDs was considered,
where a symmetry in sagittal and frontal plane was used. This symmetry halved the
number of independent components, such that the resulting dataset was three-dimensional
in both input and output. It was presplit into 1238 training and validation points and
132 testing points and no preprocessing steps were required. For the computation of
the numerical models, the linear Matérn kernel was used in conjunction with both the f -
greedy and the f/P -greedy selection criterion. As base models, unstabilized kernel models
were computed using a 5-fold cross-validation on the kernel shape parameter ϵ > 0 (see
Eq. (2.1)) and a subsequent 5-fold cross-validation on the regularization parameter λ > 0
(see Eq. (2.8)). For this, 20 logarithmically equally spaced values of ϵ in-between 10−2

and 101 and 20 logarithmically equally spaced values of λ in-between 10−16 and 103 were
cross-validated. The stabilized models made use of the same shape parameter, and applied
a 5-fold cross-validation instead to the stabilization parameter γ ∈ [0, 1] and subsequently
to the regularization parameter. For this, 11 equally spaced γ values in-between 0 and 1
were used as well as again 20 logarithmically equally spaced λ values in-between 10−16 and
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103. In both cases, the algorithm is terminated when the residual drops below a threshold
of 10−7 or the power function drops below 10−3 or if all training points are used.

The results of the best base model and best stabilized model for both the f -greedy and
the f/P -greedy method are listed within Table 5.2. Both the selected hyperparameters
as well as the resulting errors are presented, where the absolute and relative maximum as
well as root-mean squared error (RMSE) were considered:

Emax,rel := max
i=1,..,|X|

∥s(xi)− yi∥2
∥yi∥2

,

ERMSE,rel :=

 1

|X|
·

|X|∑
i=1

∥s(xi)− yi∥22
∥yi∥22

1/2

.

(5.4)

Within Table 5.2 one can observe that the stabilized model always outperforms the base
model: All the considered error measures are (partly by orders of magnitude) smaller
for the stabilized models. From the listed hyperparameters, one can observe that this
might be due to the increased expansion size of the kernel models: The calculation of the
unstabilized kernel models terminates way earlier (142 compared to 690 and 63 compared
to 358 centers) because the instability threshold due to τp is reached earlier. Thus, the
stabilization allows defering the instability in favor of a larger expansion size, which allows
obtaining more accurate models. This is also visualized within Figure 5.4: The left part
of Figure 5.4 shows the number of selected centers within the five cross-validation runs.
One can see that the number of selected centers increases with the stabilization parameter
γ up to some saturation around γ = 0.4, where likely the stopping criteria due to τf is
met. Thus, a (small) stabilization allows to obtaining a larger expansion size, while a
full stabilization γ = 1 does not provide a larger expansion size than an intermediate
stabilization (like γ = 0.4), however unnecessarily restricts the freedom to choose suitable

centers due to Ω
(n)
γ ⊂ Ω. In the right part of Figure 5.4 the exemplary decay of the RMSE

error in the number of selected centers is visualized: For γ = 0, i.e. the fully unstabilized
algorithm, the expansion is stopped early. For γ = 1, i.e. the fully stabilized algorithm,
the expansion is quite large – however, the corresponding error decay is rather slow. For
the intermediate case of γ = 0.2 (which is also the optimal γ value as listed in Table 5.2),
an intermediate expansion size with a proper decay rate of the error is obtained. Hence,
this visualization again highlights the tradeoff between approximation rate and size of
expansion.
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f -greedy f/P -greedy
Hyperparameters Results Hyperparameters Results

b
a
se

ϵbase = 6.158 · 10−2 Emax = 347.22 ϵbase = 4.281 · 10−2 Emax = 4729.19
γbase = 0 ERMSE = 39.58 γbase = 0 ERMSE = 1104.12
λbase = 10−5 Emax,rel = 6.95 λbase = 10−2 Emax,rel = 116.02
nbase = 142 ERMSE,rel = 9.00 · 10−1 nbase = 63 ERMSE,rel = 14.83

st
a
b
il
iz
e
d ϵstab = ϵbase Emax = 344.91 ϵstab = ϵbase Emax = 234.40

γstab = 0.5 ERMSE = 35.69 γstab = 0.2 ERMSE = 30.22
λstab = 10−5 Emax,rel = 1.79 · 10−1 λstab = 10−15 Emax,rel = 6.77 · 10−1

nstab = 690 ERMSE,rel = 2.26 · 10−2 nstab = 358 ERMSE,rel = 7.97 · 10−2

Table 5.2: Overview of the selected hyperparameters and the error measures from Eq. (5.4) for the kernel models. Table taken
from [46].
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5.2.2 Modeling via curl-free kernels

While Section 5.2.1 mostly puts emphasis on modeling the input-output relation within
the (training) data accurately, there can also be the requirement to model the underlying
physics: In the case of models for the spine or in particular the IVDs, the underlying
physics obeys in particular the conservation of the overall mechanical energy (kinetic
energy and potential energy), as the motion of the spine model must not annihilate or
produce any energy during its motions. This conservation of energy is equivalent to the
existence of a potential U : Rd → R such that the forces Fj, j = 1, ..., 6 can be obtained
as its gradients, i.e.

Fj = −
dU

dx(j)
, j = 1, ..., d. (5.5)

Following the ansatz of generalized interpolation as described in Section 2.4, an approxi-
mant sU for U is built on the Riesz representer of those generalized interpolation conditions
from Eq. (5.5). The Riesz representer of (δxi

◦ d
dx(j) ) for xi ∈ Ω is given by w

(j)
xi := Dj

2k(·, xi)
– where the notation Dj

2 refers to the derivative d
dx(j) applied to the second argument of

the kernel. In order to satisfy Eq. (5.5) in the points xi for i = 1, ..., n we need

Fj(xi) = −
dU

dx(j)
(xi) 1, .., N, j = 1, ..., d,

and using the corresponding Riesz representer we obtain a model sn for U as

sn(·) =
n∑

i=1

d∑
j=1

α
(j)
i Dj

2k(·, xi).

Taking derivatives, we obtain predictions for the forces Fj as


dsn
dx(1)

...
dsn
dx(d)

 =


∑n

i=1

∑d
j=1 α

(j)
i D1

1D
j
2k(·, xi)

...∑n
i=1

∑d
j=1 α

(j)
i Dd

1D
j
2k(·, xi)



=
n∑

i=1

D
1
1D

1
2k(·, xi) . . . D1

1D
d
2k(·, xi)

...
. . .

...

Dd
1D

j
2k(·, xi) . . . Dd

1D
d
2k(·, xi)


︸ ︷︷ ︸

−kcurl free(·,xi)

·

α
(1)
i
...

α
(d)
i

 .

The matrix above can be interpreted as a matrix-valued curl-free kernel [27,28], such that
the (vector-valued) prediction ( dsn

dx(1) , . . . ,
dsn
dx(d) )

⊤ for the forces is directly a kernel model
using this matrix-valued kernel. The curl-free kernel can be compactly written for any
base kernel k : Rd × Rd → R as

kcurl free(x, z) = −∇1∇⊤
2 k(x, z) ∈ Rd×d, (5.6)
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where the index of the nabla operator refers to the argument to which it is applied.
Using this curl-free kernel, the theory and whole zoo of algorithms for greedy kernel

algorithms can be applied, as most of the analysis for scalar-valued kernels carries over to
matrix-valued kernels [128]. In particular, it was possible to use again stabilized greedy
algorithms. For a detailed description of the data set, results and upcoming challenges
we refer the interested reader to the publication [47].

5.2.3 Modeling via curl-free two-layered kernels

The kernel models introduced in Section 5.2.2 satisfy the requirement of energy conserva-
tion intrinsically due to the curl-free kernel from Eq. (5.6). On the other hand, for n data
points in d dimensions, the resulting equation system will be of size nd × nd which can
be challenging in terms of the stability of the greedy selection procedure. The stabilized
algorithms used in the previous two sections can alleviate this partly. However, one is not
restricted to using the greedy methods analyzed in Chapter 3, one can also make use of
the deep kernel methods introduced in Chapter 4. In particular, it is possible to combine
the curl-free kernel with the idea of a two-layered kernel and thus consider matrix-valued
kernels of the form

kcurl free(x, z) = −∇1∇⊤
2 k(Aθx,Aθz) ∈ Rd×d, (5.7)

which is a generalization of the curl-free kernel from Eq. (4.9) by using Aθ = Id. Ini-
tial experiments using this approach were done in [84], which showed that tremendous
speedups are possible in case the force field does not vary much in some directions. For
the case of spine modeling with six DOFs, and thus a six dimensional force field, this can
likely happen. The details of this approach are left for future work.

Figure 5.3: Visualization of the biomechanical model. On the left, the whole spine model
is depicted, on the right the modeling scheme of an IVD reduced to a 3-d force/torque
element is shown [55]. Figure taken from [46].
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Figure 5.4: Visualization of the effect of the stability parameter for f/P -greedy on the
number of chosen centers and the error decay: Left plot: Number of chosen centers (y-
axis) over the stabilization parameter γ ∈ [0, 1] (x-axis) for the 5 cross-validation runs
(black crosses) and their mean value (red line). Right plot: RMSE error (y-axis) over
the number of selected centers (x-axis) for three exemplary γ parameters. Figure taken
from [46].
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Chapter 6

Software

The experimental and computational work presented in this thesis was mainly done using
python. The following list provides an overview on the software packages that have been
extended and developed during this work:

1. VKOGA extensions: Code related to [122], see especially Section 3.5.1.

2. ecVKOGA: Code related to [47], see Section 5.2.

3. PDE-VKOGA: Code related to [123], see Section 3.6.

4. 2L-VKOGA: Code related to [118], see Section 4.3.

5. SDKN: Code related to [120], see Section 4.2 and Section 5.1.

The software packages 1, 2, 3 and 4 are mainly based on the software package VKOGA
[93]1. While the software package 1 mostly adds new greedy algorithms (β-greedy and
random greedy), the other packages indeed implement new techniques: The software pack-
age 2 implements greedy algorithms to derive energy conserving models (see Section 5.2),
software package 3 implements algorithms to approximate the solutions of PDEs (see
Section 3.6) and software package 4 extends the classical VKOGA by optimizing the two-
layered kernel first (see Section 4.3).
Software package 5 provides an implementation of the SDKNs introduced in Section 4.2.
The software packages 4 and 5 heavily make use of automatic differentiation, which is
provided by using pytorch [83].

All the implementations can be found online at

https://gitlab.mathematik.uni-stuttgart.de/pub/ians-anm.

1See https://github.com/GabrieleSantin/VKOGA
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Chapter 7

Conclusion

7.1 Summary

Machine learning techniques, which comprise the development of models and algorithms
that learn with data, are ubiquitous in life nowadays. In recent years the subfield of deep
learning was of particular interest due to its remarkable success in real world challenges.
Nevertheless, more traditional kernel methods still provide reliable models for small to
medium sized data sets, as they are based on a solid mathematical framework. This
thesis presented and summarized advances in kernel-based methods from the analysis,
algorithmic and application point of view. In particular, ideas and tools from deep learning
were leveraged to introduce some kind of depth into the rather shallow kernel methods.

The first part of the thesis, i.e. Chapter 3, was more theoretical and showed improve-
ments in the analysis and theory of standard kernel-based approximation: By generalizing
an abstract framework for the analysis of greedy methods in Hilbert spaces, it was possible
to derive strong utility statements as formulated in Section 3.3. Due to the convenient
link, which was first established in [92] and then generalized in Section 3.4, it was possi-
ble to apply these results to kernel approximation and to show that L∞(Ω) convergence
rates for kernel interpolation do not significantly depend on the shape of the domain, see
Theorem 17 for a precise formulation. Section 3.5 proceeded by unifying greedy kernel
algorithms from the literature into a joint framework of β-greedy algorithms and pro-
viding a joint analysis for them. In particular, it was proven for the first time that the
target data-dependent f -greedy algorithm provides a better convergence rate than the
target data-independent P -greedy algorithm, see Corollary 22. Section 3.7 discussed and
commented on the overall findings of Chapter 3, and in particular, elaborated on possible
future research directions related to kernel approximation using standard kernels.

The second part of the thesis, i.e. Chapter 4, introduced two different deep kernel
models: First, so-called structured deep kernel networks (SDKNs) were introduced in Sec-
tion 4.2, which combined simple classes of kernels in a structured way to put them into
a multilayer setup. Theoretical statements showed their strong approximation proper-
ties, which were analyzed in three different asymptotic regimes: The number of centers,
the width of the network and the depth of the network. Of particular importance was
the limit of infinite depth, where kernel approximation properties from the “flat limit”
of RBFs could be leveraged to show improved approximation constructions (see Theo-

87



Chapter 7. Conclusion

rem 30) in comparison to corresponding constructions in the neural network’s literature.
The utility of these SDKNs was also highlighted in different numerical applications, see
e.g. Section 5.1. Here, the structured setup of the SDKNs allowed for a combination with
other common machine learning tools.
Second, two-layered kernels and the so-called 2L-VKOGA (two-layered VKOGA) algo-
rithm were introduced in Section 4.3, which combined a kernel optimization with a sub-
sequent greedy algorithm to derive an efficient and sparse model. In comparison to the
SDKN approach, this 2L-VKOGA did not only yield an efficient kernel model, but also
a proper data-adapted kernel itself, which was due to a different optimization criterion:
Instead of directly computing the final kernel model, first an optimization of the kernel
itself was done with a subsequent computation of the final kernel model. The provided
analysis on the optimized two-layered kernel gave insights into the underlying mechanics
of the observed computational and experimental benefits of the methods.

The third part of the thesis, i.e. Chapter 5, gave an overview on two use cases of
the introduced methods. The first application was about the challenging prediction of
closure terms for turbulence flow simulation, where the used SDKNs were able to achieve
the same accuracy as hyperparameter optimized neural networks and even outperformed
them in some cases. The second application is related to the modeling of the human spine:
Greedy kernel models were used as surrogate models for intervertebral discs, thus working
as submodels in a larger model. Furthermore, an outlook on current work involving energy
conserving models as well as the use of two-layered kernels for this task was provided.

7.2 Future work

Detailed comments on possible follow-up work were already provided in the respective
discussion-and-comments sections, see in particular Section 3.7 for comments regarding
(greedy) kernel approximation and Section 4.4 (as well as Section 4.2.6 and 4.3.5) for
comments on deep kernel methods. Here, we briefly summarize those points from a high
level point of view and elaborate on further points which concern the interplay of these
topics:

For the kernel approximation research within Chapter 3, future research directions
include improving the convergence rates and/or showing their optimality, extending the
result to other norms and a closer investigation of analytic kernels, as most of the results
considered finitely smooth kernels.

For the deep kernel research within Chapter 4, where structured deep kernels and
two-layered kernels were introduced, a future research direction is how to combine these
two approaches in a fruitful way: The SDKN are powerful expressive models, while the
two-layered kernel optimization procedure results in a kernel that is useful in conjunction
with standard kernel algorithms – e.g. greedy kernel methods.

Also, the interplay of the more theoretical work from Chapter 3 and the novel deep
kernel models Chapter 4 can be investigated: The advantage of the two-layered kernel
optimization (or even deeper kernels) in terms of the approximation error in the number
of used data points can be further analyzed, in particular also for the non-asymptotic
case which is of importance for practical applications. Moreover devising new greedy
methods, which merge the benefits of kernel optimization and greedy selection in a joint
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procedure seems to offer further improvements. Furthermore, the interplay of these novel
results with other machine learning methods is of interest, e.g. the interplay with neural
networks in terms of the neural tangent kernel: As the optimization of the two-layered
kernels can be seen as a feature optimization, this might be related to a training of neural
networks in a feature learning regime.

From the practical point of view – i.e. applying kernel methods to huge datasets –
the literature already offers various approaches [1, 72, 73]. While greedy methods can be
accelerated by introducing randomization [90], the combination of kernel optimization
and scaling to large datasets is not yet investigated – however randomized methods also
seem to be useful for this purpose.

89



Chapter 7. Conclusion

90



Bibliography

[1] A. Abedsoltan, M. Belkin, and P. Pandit. Toward large kernel models. arXiv
preprint arXiv:2302.02605, 2023.

[2] F. Aiolli and M. Donini. Learning anisotropic RBF kernels. In International Con-
ference on Artificial Neural Networks, pages 515–522. Springer, 2014.

[3] P. D. Alfano, V. P. Pastore, L. Rosasco, and F. Odone. Fine-tuning or top-tuning?
Transfer learning with pretrained features and fast kernel methods. arXiv preprint
arXiv:2209.07932, 2022.

[4] L. Ardizzone, J. Kruse, C. Rother, and U. Köthe. Analyzing inverse problems with
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Appendix A

Proofs related to SDKNs

The proofs in the following sections are copied more or less directly from [117] with
notation adapted to this thesis and some minor modifications.

A.1 Utility statements

Proof of Proposition 23. We consider b = 1. The extension to b > 1 is obvious. Thus
A ∈ Rb×d is simply a row vector and the linear mapping x 7→ Ax simplifies to a dot
product, i.e. Ax = ⟨A⊤, x⟩Rd .
Using the linear kernel, the kernel map s reads

s(x) =
M∑
i=1

αik(x, zi) =
M∑
i=1

αi⟨x, zi⟩Rd = ⟨x,
M∑
i=1

αizi⟩Rd

Thus we have Ax = s(x) iff there are αi ∈ R such that
∑M

i=1 αizi = A⊤.

Proof of Proposition 24. We consider b = 1. The extension to b > 1 is obvious. Thus
βj ∈ R for j = 1, .., d. Set β = (β1, .., βd) ∈ Rd and decompose β = β∥ + β⊥ with
β∥ ∈ span g(Ω) ⊂ Rd, β⊥ ⊥ span g(Ω).

1. The mapping

(g(1)(x), .., g(d)(x))⊤ 7→
d∑

j=1

β
∥
j g

(j)(x) = ⟨β∥, g(x)⟩Rd

can be realized as a kernel mapping, if the centers z1, .., zd ∈ Ω are chosen such
that span{g(zi), i = 1, .., d} ⊃ span g(Ω): Like this, we have β∥ ∈ span g(Ω) =
span{g(z1), .., g(zd)} and Proposition 23 yields the representation via the linear ker-
nel.

2. For β⊥ we have

d∑
j=1

β⊥
j g

(j)(x) = ⟨β⊥, g(x)⟩Rd = 0

as g(x) ∈ span g(Ω), β⊥ ⊥ span g(Ω).

103



Appendix A. Proofs related to SDKNs

A.2 Unbounded number of centers

Proof of Theorem 26. Using the Kolmogorov-Arnold theorem [65], we can represent the
given function f as

f(x(1), .., x(d)) =
2d∑
q=0

Φ

(
d∑

j=1

λjϕq(x
(j))

)

with continuous functions Φ : R→ R and continuous strictly increasing bijective functions
ϕq : [0, 1] → [0, 1] for q = 0, .., 2d, and scalar values λj > 0, j = 1, ..., d which satisfy∑d

j=1 λj ≤ 1. For our construction, we make use of the function decomposition depicted
in Figure A.1.

Input Output

x(1)

x(2)

x(1)

x(2)

x(1)

x(2)

x(1)

x(2)

x(1)

x(2)

ϕ0(x
(1))

ϕ0(x
(2))

ϕ1(x
(1))

ϕ1(x
(2))

ϕ2(x
(1))

ϕ2(x
(2))

ϕ3(x
(1))

ϕ3(x
(2))

ϕ4(x
(1))

ϕ4(x
(2))

∑
λjϕ0(x

(j))

∑
λjϕ1(x

(j))

∑
λjϕ2(x

(j))

∑
λjϕ3(x

(j))

∑
λjϕ4(x

(j))

Φ(..)

Φ(..)

Φ(..)

Φ(..)

Φ(..)

∑2d
q=0 Φ(..)

Figure A.1: Visualization of the unbounded number of centers case for d = d0 = 2, d2L+1 =
1: Unbounded number of centers, but otherwise fixed setup. The first, third and fifth
mapping use a linear kernel, the second and fourth one use a single dimensional kernels
k2 respective k4. Within the linear kernel layers, not all connections are required. The
first layer just duplicates the inputs, the second layer approximates the mappings ϕq(·),
the third layer builds the sum

∑d
j=1 λjϕq(x

(j)) and the fourth layer approximates the

mappings Φ while the last layer builds the sum
∑2d

q=0Φ(..). Figure taken from [117].

1. Approximation of ϕq : [0, 1]→ [0, 1]: As the kernel k2 is universal, it holds that the
RKHS Hk2([0, 1]) ⊂ C([0, 1]) is a dense subspace in the continuous functions. By
construction of the RKHS, it holds span{k2(·, u), u ∈ [0, 1]} = Hk2([0, 1]). Therefore,
since all ϕq, q = 0, .., 2d are continuous, it holds

∀ϵ > 0 ∃N (q) ∈ N, {u(q)i }N
(q)

i=1 ⊂ [0, 1], {α(q)
i }N

(q)

i=1 ⊂ R

such that

∥∥∥∥∥∥ϕq(·)−
N(q)∑
i=1

α
(q)
i k2(·, u(q)i )

∥∥∥∥∥∥
L∞([0,1])

< ϵ.

We define the abbreviation
∑N(q)

i=1 α
(q)
i k(·, u(q)i ) =: ϕ̃q(·). As the argument before

104



A.2. Unbounded number of centers

holds for any q = 0, .., 2d, we have for all x(j) ∈ [0, 1]

∀q = 0, .., 2d

∥∥∥∥∥
d∑

j=1

λjϕq(x
(j))−

d∑
j=1

λjϕ̃q(x
(j))

∥∥∥∥∥
∞

≤
d∑

j=1

|λj|
∥∥∥ϕq(x

(j))− ϕ̃q(x
(j))
∥∥∥
∞
≤ ϵ ·

d∑
j=1

λj ≤ ϵ

(A.1)

For any q = 0, .., 2d, i = 1, .., N (q) we define u
(q,0)
i := u

(q)
i · (1, .., 1)⊤ ∈ Rd. Using this

definition, we have Pju
(q,0)
i = u

(q)
i for all j = 1, .., d, where Pj : [0, 1]

d → [0, 1], x 7→
x(j) denotes the projection operator.
The points

⋃2d
q=0{u

(q,0)
i }N(q)

i=1 ⊂ [0, 1]d are used as centers.

2. Approximation of Φ on Iq := (
∑d

j=1 λjϕ̃q)([0, 1]
d) ⊂ R for q = 0, .., 2d: We employ

the same reasoning as in the first step: The RKHS of k4 is dense in the continuous
functions, and as Φ is continuous on Iq it holds

∀ϵ > 0 ∃M (q) ∈ N, {v(q)i }M
(q)

i=1 ⊂ Iq, {β(q)
i }M

(q)

i=1 ⊂ R

such that

∥∥∥∥∥∥
M(q)∑
i=1

β
(q)
i k4(·, v(q)i )− Φ(·)

∥∥∥∥∥∥
L∞(Iq)

< ϵ. (A.2)

We define the abbreviation
∑M(q)

i=1 β
(q)
i k4(·, v(q)i ) =: Φ̃q(·).

As Iq is the range of
∑d

j=1 λjϕ̃q(·(j)) on [0, 1]d, there exists some v
(q,0)
i ∈ [0, 1]d for

every v
(q)
i ∈ Iq such that

∑d
j=1 λjϕ̃q

((
v
(q,0)
i

)(j))
= v

(q)
i .

3. We use the abbreviation ϕq,j(·) := λjϕq(·) and ϕ̃q,j(·) := λjϕ̃q(·), j = 1, .., d. Com-
bining the two previous steps:

Φ

(
d∑

j=1

ϕq,j(x
(j))

)
− Φ̃q

(
d∑

j=1

ϕ̃q,j(x
(j))

)

=Φ

(
d∑

j=1

ϕq,j(x
(j))

)
− Φ

(
d∑

j=1

ϕ̃q,j(x
(j))

)
︸ ︷︷ ︸

(∗1)

+Φ

(
d∑

j=1

ϕ̃q,j(x
(j))

)
− Φ̃q

(
d∑

j=1

ϕ̃q,j(x
(j))

)
︸ ︷︷ ︸

(∗2)

(∗1): The interval (
∑d

j=1 ϕq,j(x
(j)))([0, 1]d) ∪ (

∑d
j=1 ϕ̃q,j(x

(j)))([0, 1]d) ⊂ R is a com-
pact set. Therefore, Φ is uniformly continuous on this set. Thus the estimate
from Eq. (A.1) of the first step allows to bound (∗1).

(∗2): This difference is bounded by Eq. (A.2) from the second step of the proof.
There, ∥Φ̃q(·)− Φ(·)∥L∞(Iq) < ϵ was proven.
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4. Finally steps one, two and three can be applied for all q = 0, .., 2d. For this, define
f̃(x) =

∑2d
q=0 Φ̃q(

∑d
j=1 ϕ̃q,j(x

(j))). Then it holds

∥f − f̃∥L∞([0,1]d) =

∥∥∥∥∥
2d∑
j=0

(
Φ

(
d∑

j=1

ϕq,j(x
(j))

)
− Φ̃q

(
d∑

j=1

ϕ̃q,j(x
(j))

))∥∥∥∥∥
L∞([0,1]d)

≤
2d∑
q=0

∥∥∥∥∥Φ
(

d∑
j=1

ϕq,j(x
(j))

)
− Φ̃q,j

(
d∑

j=1

ϕ̃q,j(x
(j))

)∥∥∥∥∥
L∞([0,1]d)

.

The estimate from the third step finishes the estimation.

The set of centers required for the approximation is finally given by the union of the
centers within the steps above, that is

2d⋃
q=0

(
{u(q,0)i }N(q)

i=1 ∪ {v
(q,0)
i }M(q)

i=1

)
.

The realization of the linear combinations is possible based on Proposition 24.

A.3 Unbounded width

For the proof of Theorem 28, we need the utility statements 34 and Theorem 35 (see [85,
Theorem 3.2]):

Lemma 34. Consider a continuous function h ∈ C([a, b]), a < b and two points z1 < z2 ∈
[a, b]. Then it is possible to construct a decomposition h = h1 + h2 such that h1 : R → R
and h2 : R→ R have the following symmetry property:

h1(z1 + x) = h1(z1 − x), h2(z2 + x) = h2(z2 − x), ∀x ≥ 0.

Sketch of proof of Lemma 34. We give a constructive proof and refer to Figure A.2: De-
fine d := |z2 − z1| > 0. Subdivide the interval I := [a, b] into pieces of length up to 2d,
starting at z1: Il := [z1+2ld, z1+2(l+1)d] and Jl := [z1−2(l+1)d, z1−2ld] for l = 0, 1, ...
Observe that Il, Jl are reflected wrt. z1. Then it holds I =

(⋃
l≥0 Il ∪

⋃
l≥0 Jl

)
∩ I.

We define the functions h1 and h2 in an iterative fashion starting on the interval I0 and
continuing with the intervals J0, I1, J1, I2, ... :

1. Start: For x ∈ I0 set h1(x) := h(x) and h2(x) := 0.

2. Iteratively:
For x ∈ Jl, l ≥ 0:

• Define h1(x) via the symmetry condition h1(z1 − x) = h1(z1 + x).

• Define h2(x) := h(x)− h1(x) to satisfy h(x) = h1(x) + h2(x).

For x ∈ Il, l ≥ 1:

106



A.3. Unbounded width

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4

−5

0

5

J2 J1 J0 I0 I1 I2 I3

h
h1
h2

Figure A.2: Visualization of the decomposition of a function h : R → R (black) into two
symmetric functions h1 (red) and h2 (green), such that it holds h = h1 + h2. Here we
have z1 = −0.4 and z2 = −0.3 and thus d = 0.1. Figure adapted from [117].

• Define h2 via the symmetry condition h2(z2 + x) = h2(z2 − x).
• Define h1(x) := h(x)− h2(x) to satisfy h(x) = h1(x) + h2(x).

By construction it holds h(x) = h1(x) + h2(x) for x ∈ I. The continuity of h1, h2 follows
from the continuity of h via induction.

Theorem 35 (Special case of Vostrecov and Kreines, 1961). The space span{g(a⊤x) | g ∈
C(R), a ∈ A} for a given A ⊂ Rd is dense in C(Rd), if A contains a (relatively) open
subset of the unit sphere Sd−1 ≡ {y | ∥y∥ = 1}.

Input Output...

Figure A.3: Visualization of the unbounded width case for d0 = d = 3, d1 = d2, d3 = 1:
Unbounded width, i.e. d1 = d2 →∞, but otherwise fixed setup. Figure taken from [117].

Proof of Theorem 28. The proof is split into several steps:

1. Based on a single center, we can approximate any given function that is symmetric
with respect to that center on a finite interval:
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Let φ be a radial basis function as specified in Assumption 27. As we only consider
a single center for now, say z1, we have

F
(j)
2 (x) := (f2 ◦ f1)(x)(j) =

1∑
i=1

α
(i)
2,iφ(|(A(x− zi))(j)|), 1 ≤ j ≤ d1 = d2

Now we choose the rows of the matrix A as positive multiples of each other, i.e.
σj · a, with 0 ̸= a ∈ Rd0 , σj ≥ 0, i = 1, .., d1 = d2. Then we have

F
(j)
2 (x) = α

(j)
2,1φ(|σja⊤(x− z1)|), 1 ≤ j ≤ d1 = d2

= α
(j)
2,1φ(|σjxa|), xa := a⊤(x− z1) ∈ R,

which is a scalar valued function in xa. Now choose the last mapping f3 such that
a summation is realized, i.e. A3 = (1, 1, .., 1)⊤, such that

s1(xa) :=

d2∑
j=1

α
(j)
2,1φ(|σjxa|). (A.3)

This expression satisfies s1(−xa) = s1(xa), thus only consider xa ≥ 0:

Due to Assumption 27 it holds that span{φ(σxa), σ ≥ 0} is dense in C([0, 2
√
d∥a∥]).

Hence for sufficiently large d2 and suitable coefficients α
(j)
2,1 and σj ≥ 0, the sum

s1(xa) =
∑d2

j=1 α
(j)
2,1φ(|σjxa|), xa ≥ 0 from Equation (A.3) approximates any function

on C([0, 2
√
d∥a∥]) to arbitrary accuracy:

∀ϵ>0,f∈C([0,2
√
d∥a∥]) ∃d2∈N,α

(j)
2,1,σj∈R,j=1,..,d2

∀xa∈[0,2
√
d∥a∥]

∣∣∣∣f(xa)− d2∑
j=1

α
(j)
2,1φ(|σjxa|)︸ ︷︷ ︸
s1(xa)

∣∣∣∣ < ϵ.

For xa ∈ [−2
√
d∥a∥, 2

√
d∥a∥] the function s1(xa) corresponds to a symmetric func-

tion in C([−2
√
d∥a∥, 2

√
d∥a∥]).

2. Leveraging Lemma 34, it is possible to approximate any given function that is
univariate in direction a ∈ Rd0 on a finite interval:
First of all, according to Lemma 34, decompose h ∈ C([−2

√
d∥a∥, 2

√
d∥a∥]) into

h = h1+h2, whereby hi satisfies hi(a
⊤zi+y) = hi(a

⊤zi−y) for y ≥ 0, i = 1, 2. Here
we assume for now that both symmetry centers are different, i.e. a⊤z1 ̸= a⊤z2 ⇔
a⊤(z1 − z2) ̸= 0 ⇔ a ̸⊥ z1 − z2 is required. This requirement will be addressed in
the next step. We have:

h(a⊤x) = h1(a
⊤x) + h2(a

⊤x)

= h1(a
⊤z1 + a⊤(x− z1)) + h2(a

⊤z2 + a⊤(x− z2))
=: h̃1(a

⊤(x− z1)) + h̃2(a
⊤(x− z2))
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Both h̃(1) and h̃(2) are symmetric in their input with respect to zero. Therefore
according to the first step, there exist s1, s2 such that

∀y ∈ [−2
√
d∥a∥, 2

√
d∥a∥] |h̃1(y)− s1(y)| <

ϵ

2

and |h̃2(y)− s2(y)| <
ϵ

2
.

Thus it is possible to estimate:

|h(a⊤x)− s1(a⊤(x− z1))− s2(a⊤(x− z2))|
≤ |h̃1(a⊤(x− z1))− s1(a⊤(x− z1))|+ |h̃2(a⊤(x− z2))− s2(a⊤(x− z2))|

≤ ϵ

2
+
ϵ

2
= ϵ

which holds for x ∈ [0, 1]d, as |a⊤(x− zi)| ≤ 2
√
d∥a∥, i = 1, 2.

3. Finally the approximation of arbitrary univariate functions from the second step
is extended to the multivariate input case. For this, we leverage a theorem from
Vostrecov and Kreines (see Theorem 35) and pick A := {y ∈ Sd−1 | ∥y− z1−z2

∥z1−z2∥∥ <
1
2
} ⊂ Sd−1, which is a relatively open subset. This choice of A yields

1

4
>

∥∥∥∥y − z1 − z2
∥z1 − z2∥

∥∥∥∥2 = ∥y∥2 + ∥∥∥∥ z1 − z2
∥z1 − z2∥

∥∥∥∥2 − 2

〈
y,

z1 − z2
∥z1 − z2∥

〉
⇔

〈
y,

z1 − z2
∥z1 − z2∥

〉
> 1− 1

8
=

7

8
> 0,

i.e. a⊤z1 ̸= a⊤z2 for any a ∈ A. Thus, the requirement a⊤z1 ̸= a⊤z2 of the last step
is satisfied.
Consider f ∈ C([0, 1]d) arbitrary. For any ϵ > 0, Theorem 35 gives the existence of
N ∈ N, ai ∈ A, gi ∈ C(R), i = 1, .., N such that∣∣∣∣∣f(x)−

N∑
i=1

αigi(a
⊤
i x)

∣∣∣∣∣ < ϵ

2
.

Step 2 of the proof guarantees arbitrarily accurate approximation of those αigi(a
⊤
i x)

for x ∈ [0, 1]d, i.e. |a⊤i x| ≤ 2
√
d∥ai∥. This is possible, as a⊤i z1 ̸= a⊤i z2, which is

ensured by the choice of A.
The realization of the linear combinations is possible based on Proposition 24.

A.4 Unbounded depth

Input Output. . .

Figure A.4: Visualization of the unbounded depth case for d0 = 3, d1 = .. = dL−1 =
4, dL = 1: Unbounded depth, i.e. L ∈ N arbitrary, but otherwise bounded width and
number of centers. Figure taken from [117].
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Appendix A. Proofs related to SDKNs

We recall a utility statement from the literature, which can be found in [29, Theorem 3.1].

Theorem 36. Let N ∈ {2, 3} distinct data nodes XN = {x1, .., xN} ⊂ R and correspond-
ing target values {f1, .., fN} ⊂ R be given. Suppose the basis function

φ(r) =
∞∑
j=0

ajr
2j

is strictly positive definite (i.e. the kernel k(x, y) := φ(ϵ∥x − y∥) is strictly positive defi-
nite). If

a0 ̸= 0, a1 ̸= 0 in the case N = 2

a1 ̸= 0, 6a0a2 − a21 ̸= 0 in the case N = 3,
(A.4)

then the kernel interpolant s(x, ϵ) = s(x) based on the nodes XN satisfies for any x ∈ R:

lim
ϵ→0

s(x, ϵ) = pN−1(x). (A.5)

Here, pN−1(x) ∈ PN−1 is the interpolating polynomial for f on the nodes XN .

Lemma 37 (Identity and squaring operation). Let Ω ⊂ R≥0 be a compact interval. The
functions ψ1 : Ω → R, x 7→ x and ψ2 : Ω → R, x 7→ x2 can be approximated by a SDKN
satisfying the Assumptions 29 to arbitrary accuracy:

dist(ψ1(x) = x, F1,1,3(Ω)) = 0

dist(ψ2(x) = x2, F1,1,3(Ω)) = 0

Proof. Since both the mappings ψ1, ψ2 are R → R, we choose d0 = d1 = d2 = 1. The
linear mapping in the beginning acts only as a scaling x → σ · x, the linear mapping in
the end is not required, i.e. its weight can be set to 1. Thus the output of the SDKN is
given by

fσ(x) =
3∑

i=1

αik(σx, σzi)

with αi ∈ R, σ > 0 for a kernel k satisfying the requirements within Theorem 36. We
choose αi such that we have fσ(zi) = ψj(zi) for i = 1, 2 (j = 1) respective i = 1, 2, 3
(j = 2). These are standard interpolation conditions that give the linear equation system
(in case of j = 3)k(σz1, σz1) k(σz1, σz2) k(σz1, σz3)

k(σz2, σz1) k(σz2, σz2) k(σz2, σz3)
k(σz3, σz1) k(σz3, σz2) k(σz3, σz3)

α1

α2

α3

 =

ψ2(z1)
ψ2(z2)
ψ2(z3)

 .

For σ → 0 the flat limit is encountered: Leveraging Theorem 36 yields

lim
σ→0

fσ(x) = p2(x),

where p2(x) is the interpolating polynomial for the data (z1, ψj(z1)), (z2, ψj(z2)), (z3, ψj(z3)),
which is given by p2(x) = x for j = 1 or p2(x) = x2 for j = 2.
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A.4. Unbounded depth

We remark that the mapped centers after the identity or squaring operation are still
pairwise different due to the injectivity of ψ1, ψ2 on Ω ⊂ R≥0, i.e. we have that ψj(z1),
ψj(z2), ψj(z3) are pairwise distinct for both j = 1, 2.

Lemma 38 (Depth adjustment). Under the Assumptions 29, given an SDKN of depth
L1, it is possible to approximate this SDKN to arbitrary accuracy using another SDKN of
depth L2 > L1:

∀w ∈ N ∀f ∈ FL1,w,3(Ω) dist(f,FL2,w,3(Ω)) = 0.

Proof. It suffices to prove the existence of a depth L2−L1 SDKN that realizes an arbitrary
accurate approximation Ĩd0 of the identity mapping Id0 : Rd0 → Rd0 : If this is the case, we
have FL1,w,3 ∋ f = f ◦ Id0 ≈ f ◦ Ĩd0 ∈ FL2,w,3. The realization of such an approximation
Ĩd0 is possible due to Lemma 37 which states that ψ1(x) = x can be approximated to
arbitrary accuracy. This can be employed in every input dimension L2 − L1 times.

Lemma 39 (Product module). Let Ω ⊂ R2
≥0 be a compact domain. The function ψ :

Ω → R, (x, y) 7→ xy can be approximated by an SDKN satisfying the Assumptions 29 to
arbitrary accuracy:

dist(ψ(x, y) = xy, F1,3,3(Ω)) = 0

Proof. In case the inputs x and y are linearly dependent (that means: the vectors
(xi)

N
i=1 ∈ RN , (yi)

N
i=1 ∈ RN (first and second dimension of the training data XN) are

linearly dependent), the output xy = c · x2 for some c ∈ R can be approximated by ap-
plying the squaring operation to one of its inputs with a proper scaling.
Thus assume linear independence in the input. The product module for this case is de-
picted in Figure A.5. We make use of

xy =
1

2β

[
(x+ βy)2 − x2 − β2y2

]
, β > 0 (A.6)

The linear combination (x, y) → x + βy can be computed by the linear layer in the
beginning, which is possible based on Proposition 23 due to the linear independence of
the inputs. The linear combination of the squares is possible for the same reason. The
parameter β ̸= 0 is chosen such that the assumptions for the application of Lemma 37
are satisfied: It is required that z

(1)
i + βz

(2)
i , i = 1, .., 3 are pairwise distinct, which can be

enforced based on β ̸= 0 and the pairwise distinctness of z
(j)
1 , z

(j)
2 , z

(j)
3 for j = 1, 2.

In the following we will waive to explicitly elaborate on the realization of the linear
layers via Proposition 23. Even in case of linear dependency, all required linear layers can
be realized as proven in Proposition 24.
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x

y

x

y

x + βy

x2

y2

(x + βy)2

xy

=
x

y P
xy

Figure A.5: Visualization of the product module (left) with corresponding abbreviation
(right), which approximates the function ψ(x, y) = xy based on Eq. (A.6) to arbitrary
accuracy. The weights of the final linear layer of the left figure are each 1

2β
. Figure taken

from [117].

Lemma 40 (Univariate monomial module). Let Ω ⊂ R≥0 be a compact interval. The
function ψ : Ω → R, x 7→ xn with n ∈ N can be approximated by a SDKN from FL,4,3

satisfying the Assumptions 29 to arbitrary accuracy:

dist(ψ(x) = xn, FL,4,3(Ω)) = 0

with depth L = max(⌈log2(n)⌉, 1).

Proof. The univariate monomial module is depicted in Figure A.6. The case n = 1 is
simply the identity, whereas n = 2 corresponds to the squaring operation, which were
treated in Lemma 37. Thus focus on n ≥ 3: The approximation of x2

⌊log2(n)⌋
can be

realized easily by using the squaring operation from Lemma 37 ⌊log2(n)⌋ times. The

remaining factor xn−2⌊log2(n)⌋
can be multiplied (in case n − 2⌊log2(n)⌋ ̸= 0) in the end by

the multiplication operation: The factor xn−2⌊log2(n)⌋
was built in parallel and collected in

the first dimension (i.e. in the top of Figure A.6)

The assumption on the pairwise distinctness of the centers transfers through the whole
monomial module, as the approximation of the squaring and the product module is exact
in the respective centers, and the pairwise distinctness of z1, z2, z3 implies the pairwise
distinctness of zn1 , z

n
2 , z

n
3 due to Ω ⊂ R≥0.

x

x

x2 P

x3

x4 P

x3

x8 P

x11

=
x

M
x11

Figure A.6: Visualization of the monomial module (left) with corresponding abbreviation
(right), which approximates the function ψ(x) = xn to arbitrary accuracy. Here, we have
n = 11. The grey circles “P” refer to the product module. The dashed lines indicate the
position of another potential product module, which is however not required as there is
no x4 contribution to build x11. Figure taken from [117].

The following Lemma 41 shows that the approximation of polynomials in two inputs
is possible, by combining the monomial and the product module.
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A.4. Unbounded depth

Lemma 41 (Bivariate monomial module). Let Ω ⊂ R2
≥0 be a compact domain. The

function ψ : Ω → R, (x, y) 7→ xayb with a, b ∈ N can be approximated by a SDKN from
FL,8,3(Ω) satisfying the Assumptions 29 to arbitrary accuracy:

dist(ψ(x, y) = xayb,FL,8,3(Ω)) = 0

with depth L = ⌈log2(max(a, b))⌉+ 1. Furthermore the following extension holds:

dist(ψ̃(x, y, z) = xayb + βz,FL,9,3(Ω)) = 0, β ∈ R.

Proof. The standard bivariate monomial module for the approximation of ψ(x, y) is de-
picted in Figure A.7, top: Based on the two inputs x and y, the univariate monomial
module is applied to each of them. In case of a ̸= b, the depth of the univariate
monomial modules is adjusted to max(a, b) using Lemma 38. This requires a depth
of L1 = max(⌈log2(max(a, b))⌉, 1). Subsequently, the product module from Lemma 39
is used to compute the final approximation of xayb. Thus the total depth is given by
L = L1 + 1.
For the proof of the extension, i.e. the approximation of ψ(x, y, z), the same construction
can be extended with a final linear layer that adds the +βz term. This is depicted in
Figure A.7, bottom.

It might happen that the centers collapse after the standard bivariate monomial mod-
ule, i.e. that ψ(z

(1)
1 , z

(2)
1 ), ψ(z

(1)
2 , z

(2)
2 ), ψ(z

(1)
3 , z

(2)
3 ) are no longer pairwise distinct. There-

fore the extension to ψ̃ was introduced. As β ∈ R can be chosen arbitrarily, this alleviates
the beforementioned center collapse.

x

y

M

M

xa

yb P
xayb

=
x

y B
xayb

x

y

z

M

M

xa

yb

z

P
xayb

z

xayb + βz

=

x

y

z

B’
xayb + βz

Figure A.7: Top: Visualization of the bivariate monomial module (left) with correspond-
ing abbreviation (right), which approximates the function ψ(x, y) = xayb to arbitrary
accuracy. The grey circles “M” refer to the univariate monomial module, whereas the
grey circle “P” refers to the product module.
Bottom: Visualization for the extension, i.e. the approximation of ψ̃. Figure taken
from [117].

Using these preliminary construction results, we can finally show how to add succes-
sively arbitrary polynomials to build a sum:
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Appendix A. Proofs related to SDKNs

Lemma 42 (Addition module). Let Ω ⊂ Rd
≥0 × R be a compact domain. Under the

Assumptions 29, a SDKN can approximate the mapping

ψ : Ω→ Rd+1,


x(1)

...
x(d)

S

 7→

x(1)

...
x(d)

S ′

 ,

with S ′ := S + α ·
d∏

j=1

(x(j))nj + βx(d)

to arbitrary accuracy with α, β ∈ R, ni ∈ N arbitrary, i.e.

dist(ψ(x),FL,d+8,3(Ω)) = 0, L ≤ d · ⌈log2( max
i=1,..,d

ni + 1)⌉.

Remark 43. The additional summand βx(d) is included for the same reason why we
included the parameter β in the proof of Lemma 39: It might happen, that the used centers
z1, z2, z3 coincide after the mapping ψ, that is that ψ(d+1)(z1), ψ

(d+1)(z2), ψ
(d+1)(z3) are no

longer pairwise distinct. By including the β-summand, we can always find a β ∈ R such
that the mapped centers ψ(z1), ψ(z2), ψ(z3) are pairwise distinct also in the dimension
d+ 1.

Proof of Lemma 42. The idea is to build the product
∏d

j=1(x
(j))nj in an iterative way:

The first step starts with (x(1))n1 , then in the next steps the factors (x(j))nj , j = 2, .., d
will be combined multiplicatively. Finally, the product is added to the sum. We assume
nj > 0 for j = 1, .., d, otherwise the inputs with nj = 0 will simply be ignored.

1. The first step is realized with help of the univariate monomial module (and a linear
layer contribution in case of d > 1) to build

r1 :=

{
(x(1))n1 d = 1

(x(1))n1 + βx(2) d > 1.

This is depicted in Figure A.8 left. If d = 1, the next step is skipped. This step
requires a depth of L1 = max(⌈log2(n1)⌉, 1), see Lemma 40.

2. In the k-th step, k ∈ {2, .., d − 1}: We have rk−1 =
∏k−1

j=1(x
(j))nj + βx(k). A

bivariate monomial module multiplies the intermediate result rk−1 from the last
step. Furthermore, a univariate monomial module builds (x(k))nk+1. A subsequent
linear layer combines these parts and the possible summand βx(k+1) to yield the
intermediate result rk:

rk = rk−1 · (x(k))nk − β(x(k))nk+1 + βx(k+1)

=

(
k−1∏
j=1

(x(j))nj + βx(k)

)
· (x(k))nk − β(x(k))nk+1 + βx(k+1)

=
k∏

j=1

(x(j))nj + βx(k+1)
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A.4. Unbounded depth

The corresponding setup is depicted in Figure A.8, middle. The required depth Lk

for this step is given by the depth of approximating (x(k))nk+1, which is given by
Lk = ⌈log2(nk + 1)⌉ due to Lemma 40 and nk > 0.

3. The d-th step, where we have rd−1 =
∏d−1

j=1(x
(j))nj + βx(d), simply multiplicatively

combines the last contribution (x(d))nd . Instead of an additional part like βx(d+1),
we will add βx(d): A subsequent linear layer adds the product rd =

∏d
j=1(x

(j))nj

and the additional ”+βx(d)” to the sum S:

rd = rd−1 · (x(d))nd − β(x(d))nd+1 + βx(d)

=

(
d−1∏
j=1

(x(j))nj + βx(d)

)
· (x(d))nd − β(x(d))nd+1 + βx(d)

=
d∏

j=1

(x(j))nj + βx(d)

As explained in Remark 43, the ”+βx(d) part is required to ensure that the three
centers within the last dimension d+1 are pairwise distinct, i.e. z

(d+1)
i +

∏d
i=1(z

(j)
i )nj+

βz
(d)
i for i = 1, 2, 3 are pairwise distinct. This will be required in order to stack such

sum-modules on top of each other later.
The required depth for this step can be infered from the bivariate monomial module
(Lemma 41) and is thus given by Ld = max(⌈log2(nd)⌉, 1).

Overall, the depth is limited by

L =
d∑

j=1

Lj ≤
d∑

j=1

⌈log2(nj + 1)⌉ ≤ d · ⌈log2( max
j=1,..,d

nj + 1)⌉.
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x(1)

x(2)

x(d)

S

...

...

x(1)

x(2)

x(d)

r1

S

M

...
...

...
...

x(1)

x(k)

x(k+1)

x(d)

rk−1

S

M

B’

x(1)

x(k)

x(k+1)

x(d)

rk

S

...
... ...

x(1)

x(2)

x(d)

rd−1

S

B

x(1)

x(2)

x(d)

rd

S

x(1)

x(2)

x(d)

S′

Figure A.8: Visualization of the construction in Lemma 42. Left: Adding a monomial
in x(1). Middle: For k ∈ {2, .., d − 1}, extend rk−1 =

∏k−1
j=1(x

(j))nj + βx(k) to rk =∏k
j=1(x

(j))ni + βx(k+1). Right: Extend rd−1 =
∏d−1

=1 (x(j))nj + βx(d) to rd =
∏d

j=1(x
(j))nj

and add it to S. The grey circles “M”, “B” and “B′” refer to the modules introduced
earlier. Figure taken from [117].

Now it is time to state and prove the main result of this section, which is based on an
iterative application of Lemma 42:

Proof of Theorem 30. By stacking the addition modules from Lemma 42 after each other,
it is possible to approximate any polynomial

∑
l∈Nd αlx

l to arbitrary accuracy, where l
is a multiindex. This means that

⋃
L∈NFL,d+8,3 is dense in the space of polynomials.

As the space of polynomials is dense in the continuous functions (Stone-Weierstrass) and
denseness is a transitive property, this implies that

⋃
L∈NFL,d+8,3(Ω) is dense in C(Ω).
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Appendix B

Proofs related to two-layered kernels

The proofs in the following are copied more or less directly from [118] and adapted to the
notation of this thesis.

Proof of Theorem 32. We consider the two-layered kernel kθ as a standard RBF kernel k
applied to the transformed data AθXn from the transformed domain AθΩ. As it holds
rank(Aθ) = d and Ω is a Lipschitz domain, we have dim(AθΩ) = dim(Ω) = d. By standard
Sobolev arguments (as x 7→ Aθx is just a linear full rank transformation) we haveHτ (Ω) ≍
Hτ (AθΩ), in particular f ◦ A−1

θ ∈ Hτ (AθΩ). Furthermore, due to rank(Aθ) = d all the
singular values of Aθ are positive, i.e. it holds smin(Aθ)∥x∥2 ≤ ∥Aθx∥2 ≤ smax(Aθ)∥x∥2 or
in short ∥ · ∥2 ≍ ∥Aθ · ∥2. Thus we obtain for the respective fill distances

hAθΩ,AθXn ≡ sup
x̃∈AθΩ

(
min

x̃j∈AθXn

∥x̃− x̃j∥2
)

= sup
x∈Ω

(
min
xj∈Xn

∥Aθx− Aθxj∥2
)

≍ sup
x∈Ω

(
min
xj∈Xn

∥x− xj∥2
)

= hΩ,Xn .

Hence we can make use of the error bounds provided by Theorem 7 to derive the final
statement.

Proof of Theorem 33. Define N := Null(Aθ) and consider the orthogonal projector ΠN⊥ :
Rd −→ N⊥. The mapping AN⊥

θ : N⊥ −→ R(Aθ), x 7→ Aθx is now full rank and thus
invertible. Consider x ∈ Ω and decompose x = x∥ + x⊥ with x∥ ∈ N , x⊥ ∈ N⊥. Using
the invariance assumption on f along N , we have

|(f − sXn)(x)| = |f(x∥ + x⊥)−
n∑

j=1

α
(n)
j k(Aθ(x∥ + x⊥), Aθ(xj,∥ + xj,⊥))|

= |(f(x⊥)−
n∑

j=1

α
(n)
j k(Aθx⊥, Aθxj,⊥)|

= |(f ◦ (AN⊥

θ )−1)(AN⊥

θ x⊥)−
n∑

j=1

α
(n)
j k(Aθx⊥, Aθxj,⊥)|. (B.1)
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Appendix B. Proofs related to two-layered kernels

As dim(AθΩ) ≡ deff, the native space Hk(AθΩ) is now norm-equivalent to the Sobolev
space Hτ ′(AθΩ) of smaller smoothness τ ′ = τ − d−deff

2
< τ . Therefore we obtain f ◦

(AN⊥

θ )−1 ∈ Hτ ′(AθΩ) ≍ Hk(AθΩ).

Furthermore
∑n

j=1 α
(n)
j k(·, Aθxj,⊥) ∈ Hτ ′(AθΩ) and due to the kernel interpolation

condition it holds

n∑
j=1

α
(n)
j k(yi, Aθxj,⊥) = (f ◦ (AN⊥

θ )−1)(yi)

for all yi ∈ {Aθxi | xi ∈ Xn}. Therefore we can leverage Theorem 7 to bound the error as∣∣∣∣∣(f ◦ (AN⊥

θ )−1)(y)−
n∑

j=1

α
(n)
j k(y, Aθxj,⊥)

∣∣∣∣∣ < Ch
τ ′−deff/2
AθΩ,AθXn

, y ∈ {Aθx | x ∈ Ω}

⇔ |(f ◦ (AN⊥

θ )−1)(AN⊥

θ x⊥)−
n∑

j=1

α
(n)
j k(Aθx⊥, Aθxj,⊥)| < Ch

τ ′−deff/2
AθΩ,AθXn

, x ∈ Ω,

such that in conjunction with Eq. (B.1) we obtain

|(f − sXn)(x)| ≤ Ch
τ ′−deff/2
AθΩ,AθXn

, x ∈ Ω.

Using finally hAθΩ,AθXn ≍ n−1/deff which is possible due to dim(AθΩ) ≡ deff we obtain the
desired statement:

− 1

deff
· (τ ′ − deff/2) = −

τ − d−deff
2

deff
+

1

2
= − τ

deff
+

d

2deff
.
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