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Abstract
Adaptive structures are characterized by their ability to adjust their geometrical
and other properties to changing loads or requirements during service. This con-
tribution deals with a method for the design of quasi-static motions of structures
between two prescribed geometrical configurations that are optimal with regard
to a specified quality function while taking large deformations into account. It
is based on a variational formulation and the solution by two finite element dis-
cretizations, the spatial discretization (the standard finite element mesh) and an
additional discretization of the deformation path or trajectory. For the investiga-
tions, an exemplary objective function, the minimization of the internal energy,
integrated along the deformation path, is used. The method for motion design
presented herein uses the Newton-Raphson method as a second-order opti-
mization algorithm and allows for analytical sensitivity analysis. The proposed
method is verified and its properties are investigated by benchmark examples
including rigid body motions, instability phenomena, and determination of
inextensible deformations of shells.
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1 INTRODUCTION

Energy efficiency and sustainability play an increasing role in engineering and architecture. Reducing the amount of
material used for construction does not only save resources but also reduces embedded energy. One possibility to realize
extreme lightweight design is to make use of adaptive structures that optimally adjust their geometry to current and
changing conditions by active motion. Here, two fundamentally different types of adaption via geometry change can be
distinguished.

The first type of adaptive structure serves the purpose of adapting to changing loads or requirements and is mostly
referred to as a smart structure. A system of sensors and actuators allows the structure to adjust, respond, and actively
counteract to varying loads. Thus, stresses, deformations, or vibrations may be reduced in order to ensure usability
and serviceability.1-4 This approach potentially allows for eminent material savings. Examples for this type of adaptive
structure are the Smart Shell5 or an “infinitely stiff” cantilever beam6 as well as a highrise building, which serves as a
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demonstrator in a current research project dealing with such adaptive structures.7 The shape transition is realized by dif-
ferent types of actuators, from piezoelectric or electroactive polymer actuators,8-10 up to shape-memory alloys,11 which
are usually controlled by optimal control algorithms.12 The aforementioned types of adaptive structures are characterized
by the fact that the individual states differ only by minor changes in geometry such that geometrically linear analyses are
sufficient.

The second type of adaptive structure is not intended to adapt to varying loads but to changing requirements dur-
ing service. This is, for example, the case for deployable and retractable structures. Prominent examples are the opening
and closing of roofs, especially of stadiums (e.g., the Commerzbank-Arena in Frankfurt, Germany13) or adaptive fold-
ing bridges (e.g., the Kiel Hörn Footbridge in Kiel, Germany14). But also adaptive façade elements, beyond conventional
sun-blinds, which can be opened and closed depending on the position of the sun and the control of interior daylight,
belong to this kind of adaptive structures and may significantly contribute to the energy efficiency of a building.15 Real-
izations are, for example, the One Ocean Expo 2012 Pavilion in Korea16 or the biomimetic façade elements Flectofin17

and Flectofold.18 Another current research field, where this type of adaptive structure plays a prominent role, is the shape
change of morphing wings of airplanes.19-23

In this case, the geometries of the individual configurations differ significantly from each other. The standard
approach to achieve variability in geometry is the targeted introduction of joints and hinges between stiff elements
and associated defined kinematics by unfolding, sliding, and similar mechanisms. But particularly these joints and
hinges frequently represent weak spots of the structure and may be prone to failure. Another strategy for geometrical
variability is discrete systems with integrated actuators. Such systems, which can also account for large deformations,
can take the form of trusses,24-26 tensegrity structures,27-31 or lattice structures,32 where individual actuator elements
can vary their length and therefore change the shape of the entire structure. This strategy is in contrast to an over-
all flexibility that is distributed in the entire structure and is therefore able to perform a smoothly distributed motion.
This is, for example, the case for pure bending deformations, so-called inextensional deformations, in flexible and
shape changing shells.33,34 There are also approaches available to combine the discrete flexibility by joints with a dis-
tributed structural flexibility. Recent research investigates the optimization of flexibility and compliance of structures
in order to enable an efficient deformation. These so-called compliant or morphing structures35-43 are characterized by
continuous stiffness changes and a varying stiffness distribution within the structure, leading to the formation of spe-
cific hinge zones. The challenge here is that, despite compliance, the structure remains strong enough to still be able
to withstand loads in all configurations. The concept of multistable compliant structures also represents a possibility
to deal with this problem and, at the same time, to keep the configurations stable without continuously expending
effort.44,45

Not only the geometries of the individual configurations at the beginning and the end of the motion have
to meet specified requirements but also the shape transition between the configurations. The problem formu-
lation of minimizing the effort for a transition between two configurations is treated in optimal transport the-
ory in the field of applied mathematics, as addressed by Peyré and Cuturi46 or Lévy and Schwindt.47 It mainly
deals with the most efficient transport or transition of a distribution, for example, a crowd of people or grains
of sand, from one location to a target location. Because of the nature of the task, also probability theory is
involved in order to consider possible distributions at the beginning and the target configuration. Nowadays, opti-
mal transport theory is widely used in applications such as economics, imaging and graphics science or machine
learning.

This is contrasted by flexible and elastic structures, where shape transitions and movements imply stress onto the
structure itself and therefore require energy. The way of controlling the available actuators plays a decisive role in the
efficiency of the morphing structure. In control theory, especially in optimal control and in motion planning of robots,48,49

exactly this problem of optimal trajectories is already addressed. Most structures that are investigated and calculated in
these research areas, for example, robots, are characterized by a discrete kinematic description and no (or negligible)
elastic deformation. This leads to fewer degrees of freedom compared to continuously morphing structures. However,
in the field of continuum robotics and hyper-redundant manipulation, exactly such continuous robots or systems are
planned and investigated. A review of this field is given in Rus and Tolley.50 But also in this case, consideration of a
large number of degrees of freedom in combination with motion planning and optimal control strategies is challenging.
Therefore, simplifications are made to capture the kinematics, like a piecewise constant curvature (PCC) model.51 This
enables control of such systems and solution of the inverse kinematics problem (calculating the required curvatures for a
given end position), but planning and optimal control methods for continuous robots without a PCC model still remains
a challenge and an open research tasks.
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There are already examples and methods where the mechanics and analysis of structures are combined with optimal
control and motion planning strategies, especially with regard to adaptive structures and large deformations. Ibrahimbe-
govic et al.52 successfully combined optimal control with nonlinear structural mechanics of a beam to reach a deformed
end configuration with certain properties. Furthermore, Veuve et al.,30 Sychterz and Smith,31 and Masic and Skelton29

used motion planning algorithms for the trajectory planning of tensegrity structures.
The focus of this study, however, is analysis and optimization with respect to certain requirements of the

trajectory itself between prescribed configurations of any kind of flexible structure without a control algorithm
and related sensoric equipment. In Werter et al.,53 the required actuation energy was already considered for the
design of a morphing airplane wing and Maute and Reich19 combined geometry optimization of a compliant
wing structure with additional optimization of the adaption mechanism. Also, the pure transition between config-
urations can be formulated as an optimization problem. However, when nonlinear kinematics is considered any
evaluation of the objective function consists of a complete nonlinear analysis, including all pertinent issues like
convergence problems, instabilities, and high computational cost. The use of higher order optimization methods
requires fewer evaluations of the objective function but the required sensitivity analyses again cause computational
expense.

This contribution deals with shape transitions as a motion between two (or more) geometrical configurations,
taking geometrically nonlinear structural behavior into account. The idea is to design shape transitions based on a
variational formulation. A quasi-static process is assumed such that no inertia effects are considered. The solution
is found by a finite element discretization of the path (trajectory) along with a Newton-Raphson solution algorithm,
which can be interpreted as a second-order optimization algorithm. Due to the path discretization, analytical sensitiv-
ities can be calculated by making use of standard components of the spatial finite elements, for example, the stiffness
matrix.

This article is organized as follows. First, we refer to the Brachistochrone problem, which represents one of the first
problems solved by variational principles, as an illustrative example to motivate the use of a variational method for motion
design. Section 2 presents the problem statement and its solution with different strategies. In Section 3, a finite ele-
ment solution algorithm is described to solve the problem of motion design of structures. The underlying weak form is
based on a functional to be minimized to obtain an “optimal” path. The method is developed with the exemplary objec-
tive of minimizing the integral of the strain energy along the entire motion path. By a discretization of the motion path
with finite elements, in addition to spatial discretization, a nonlinear system of equations is obtained. Section 4 presents
several numerical experiments to verify the proposed method by means of problems with known exact solutions, for
instance, the motion of a kinematic system with zero strain energy throughout the entire process. Furthermore, motions
dominated by instability behavior (following the motivation by References 54 and 55) and further potential of motion
design and applications for a number of flexible structures, like the calculation of inextensible deformations of shells,
are investigated. Finally, some conclusions are given and open issues and potential future developments are discussed in
Section 5.

2 THE BRACHISTOCHRONE PROBLEM

2.1 Historical background

To motivate the use of a variational formulation for the solution, the classical Brachistochrone problem is considered and
similarities to the problem of motion design are highlighted. The Brachistochrone problem is one of the first problems
that was solved with the calculus of variations and it represents the base for its development. In 1696, in the journal “Acta
Eruditorum,” published by Gottfried Wilhelm Leibniz, Johann Bernoulli posed to the scientific community the following
challenge:

Given two points A and B in a vertical plane, what is the curve traced out by a point acted on only by gravity,
which starts at A and reaches B in the shortest time?56

Shortly after the publication of the problem, Bernoulli received a letter from Leibniz in which he explained that he
“is attracted by the problem like Eva by the apple,” but at the same time, he asked for an extension of the deadline,
since the problem reached other countries only after a few months. Bernoulli agreed with the proposal and reformulated
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F I G U R E 1 Brachistochrone problem

the problem. At the beginning of 1697, an anonymous solution to the problem appeared in the journal “Philosophical
Transactions of the Royal Society of London”57 and finally in May 1697 Leibniz published a collection of the submitted
solutions,58 in which also the anonymous solution, which Bernoulli identified directly as Newton’s solution (“from the
claw of the lion”), was reprinted. The solution by Jacob, Johann’s brother, was then further developed and a few years
later Leonhard Euler named it the calculus of variations.59

2.2 Solution to the Brachistochrone problem

2.2.1 Derivation of the required time as a functional

Starting point for the calculation is conservation of energy with the kinetic energy Ekin and the potential energy Epot

Ekin + Epot =
1
2

mv2 + mgy(x) = mgyA, (1)

where m represents the mass, v represents the velocity, y is the vertical abscissa, and mgyA = const. defines the potential
energy at point A and, therefore, the reference energy. Solving for the velocity yields

v =
√

2g (yA − y(x)). (2)

By using the definition of the velocity as time derivative of the arc length v = ds
dt

, an infinitesimal time increment can
be written as dt = 1

v
ds. The total time required for traveling from A to B is thus

T = ∫
T

0
dt = ∫

sB

sA

1√
2g (yA − y(x))

ds = min. (3)

The infinitesimal arc length ds can be calculated from the Pythagorean theorem,

ds =
√

dx2 + dy2 =
√

dx2 + dy2 dx
dx

=

√(dx
dx

)
2 +

(
dy
dx

)
2 dx =

√
1 + y′(x)2 dx. (4)

An illustration for this derivation is given in Figure 1. Combining Equations (3) and (4) yields the functional for the
Brachistochrone problem

T = ∫
sB

sA

1√
2g (yA − y(x))

ds = ∫
xB

xA

√
1 + y′(x)2

2g (yA − y(x))
dx. (5)

2.2.2 Euler Lagrange equation and exact solution

The calculus of variations is a mathematical tool that enables the identification of extreme values of integral quantities. As
in differential calculus, the calculus of variations also deals with the question of how a function or a functional behaves in
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the vicinity of a point. The derivative of a function in differential calculus corresponds to the variation of a functional in
the calculus of variation, which should be zero for extremal values. A generalized simple functional J and its variation are

J{y(x)} = ∫
xB

xA

F
(

x, y(x), y′(x)
)

dx and 𝛿J = ∫
xB

xA

[
𝜕F
𝜕y

𝛿y + 𝜕F
𝜕y′

𝛿y′
]

dx. (6)

Partially integrating with a vanishing boundary term further simplifies the variation to

𝛿J = ∫
xB

xA

[
𝜕F
𝜕y

− d
dx

(
𝜕F
𝜕y′

)]
𝛿y dx, (7)

which leads, after application of the fundamental lemma of variational calculus, to the definition of the Euler-Lagrange
equation

𝜕F
𝜕y

− d
dx

(
𝜕F
𝜕y′

)
= 0. (8)

As the integrand F of the functional T (Equation 5) of the Brachistochrone problem depends on the function y and
its derivative y′ only, that is, not explicitly on the variable x itself, multiplication with y′(x) and a subsequent integration
lead to the simplified Euler-Lagrange equation60

F − y′ 𝜕F
𝜕y′

= C, (9)

can be used with C being a constant following from an integration in the derivation of the formula. Application of
Equation (9) to the functional of the Brachistochrone problem yields√

1 + y′2
2g(yA − y)

− y′
y′√

2g(yA − y)(1 + y′2)
= 1√

2g(yA − y)(1 + y′2)
= C1. (10)

A substitution is used for solution of the problem, where trigonometric functions and a parametric form turn out to
be a clever choice:

2gC2
1(yA − y) = sin2

(
t
2

)
= 1

2

(
1 − cos(t)

)
. (11)

The complete derivation is omitted at this point but can be looked up in Appendix A. Eventually, a parametric
representation of the coordinates x and y is obtained that is the function of a cycloid

y(t) = yA − 1
4gC2

1

(
1 − cos(t)

)
x(t) = 1

4gC2
1
(t − sin(t)) + C2. (12)

It must be noted that t does neither represent the time nor the arc length, but is the angle by which a rolling circle
has rotated, a point of which generates the curve (x(t), y(t)). The constants C1 and C2 as well as the parameter value tE at
point B are derived by the boundary conditions at the starting point A and the endpoint B: x(t = 0) = xA, x(t = tE) = xB,
and y(t = tE) = yB, which themselves represent nonlinear functions that need to be solved iteratively. The condition y(t =
0) = yA is fulfilled by definition of the problem. An exemplary solution with fixed points A and B is given in Figure 2 (left).

2.2.3 Solution with finite elements

In general variational problems, a closed form solution is often not available. In such cases, an approximate solution may
be obtained by the finite element method. This requires the functional to be formulated in a parametric form

T = ∫
sB

sA=0

1√
2g (yA − y(s))

ds, (13)
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F I G U R E 2 Exact solution (left), solution with finite elements by a linear (center), and a cubic B-spline discretization (right)

where s represents a path parameter. As the total length of the solution curve is initially unknown, the integration bound
sB is unknown as well. Therefore, a mapping parameter su is defined, enabling integration over a variable s and a fixed
and specified domain s ∈ [0, 1]

∫
sB

0
(… ) ds = ∫

1

0
(… )ds

ds
ds = ∫

1

0
(… )su ds. (14)

The mapping parameter contains information about the arc length itself

su ∶= ds
ds

=
√

dx2 + dy2

ds
=

√(
dx
ds

)2

+
(

dy
ds

)2

=
√

x′(s)2 + y′(s)2. (15)

Inserting this into the functional yields

T = ∫
1

0

√
x′(s)2 + y′(s)2

2g
(

yA − y(s)
) ds. (16)

Variation with respect to the unknown functions x and y then follows as

𝛿T = ∫
1

0

⎛⎜⎜⎜⎝
√

x′2 + y′2

8g (yA − y) 3 𝛿y +
x′𝛿x′ + y′𝛿y′√

2g (yA − y)
(

x′2 + y′2
)𝛿x′

⎞⎟⎟⎟⎠ ds = 0. (17)

This is the weak form of the Brachistochrone problem. The next steps follow the standard procedure of a finite element
formulation. First, a discretization for x and y as well as their variations 𝛿x and 𝛿y is introduced

x ≈ xh = Nx 𝛿x ≈ 𝛿xh = N𝛿x y ≈ yh = Ny 𝛿y ≈ 𝛿yh = N𝛿y, (18)

where the matrix N contains the shape functions and the vectors x, y, 𝛿x and 𝛿y contain discrete nodal values of
the unknowns x and y, respectively. In this case, the discretization is the same for every function, following the
Bubnov-Galerkin approach. By inserting the discretization into the variation

𝛿T = ∫
1

0

⎛⎜⎜⎜⎝
√

(N′x)2 + (N′y)2

8g (yA − (Ny)) 3 N𝛿y +
N′xN′𝛿x + N′yN′𝛿y√

2g (yA − (Ny)))
(
(N′x)2 + (N′y)2

)
⎞⎟⎟⎟⎠ ds = 0, (19)

moving the vectors 𝛿x and 𝛿y out of the integral and applying the discrete form of the fundamental lemma of the calcu-
lus of variations, a residual is obtained. After linearization it can be solved iteratively for the nodal values x and y, which
provide an approximation for the solution functions x and y in a parametric form. This discretization represents a dis-
cretization of the path that the point with mass m follows from A to B and is therefore referred to as path discretization
in the following.
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F I G U R E 3 Two bar truss with
initial configuration, target configuration
and visualization of the functional

Figure 2 (center) shows the result with a path discretization with linear Lagrange shape functions and 15 elements.
As the parametrization of the curve, and thus the placement of the nodes along the solution curve, is not unique, an
equal length of the path elements is enforced for the regularization of the solution. This extra constraint is enforced by
Lagrange multipliers. It can be seen that the solution with finite elements and linear shape functions approximates well
the exact curve, obtained in Section 2.2.2, but, due to the linear functions, it still contains kinks. The number of degrees of
freedom is twice the number of internal nodes (x- and y-coordinate at each node). An improvement of the approximation
is possible by using an interpolation by B-spline-functions, which can also be seen in Figure 2 (right), where the solution
for a discretization with two elements and cubic shape functions is illustrated. The higher continuity enables a better
approximation without kinks and fewer internal nodes (or control points) resulting in fewer degrees of freedom.

This problem formulation of the Brachistochrone can be taken as a simplified template for what is intended to be
done in motion design. The goal is finding a path between two configurations, for example, the points A and B or an open
and a closed geometry of an adaptive element that fulfills specified demands like minimization of the total required time,
energy or effort for traversing from A to B, or any other objective.

3 MOTION DESIGN OF STRUCTURES

3.1 Functional and its variation as the starting point for motion design

3.1.1 Integrated internal energy as objective function

The objective of motion design is mathematically expressed as minimization of a functional. In the Brachistochrone
problem, this was the required time for the mass point to run from A to B. In motion design, it can be any property that
the motion is expected to have. One objective could be to minimize the straining that a structure is subjected to while
undergoing a certain motion. This is comparable to the dimensionless quantity cost of transport that is used in various
disciplines like biology and robotics. It represents a measure to quantify the cost or energy efficiency of different transport
methods, that is, walking, swimming, or flying of an animal or driving of a vehicle from one location to an other. Here,
the notion is transferred to a cost of deformation for flexible structures, where an energy criterion is utilized. Thus, the
internal energy in the entire spatial domain Ω, integrated over the entire motion path s, is chosen here as an exemplary
functional that represents the strain energy integrated along the motion path:

J = ∫s
Πint ds = ∫s∫Ω

1
2

ETS dΩ ds = ∫s∫Ω

1
2

ETCE dΩ ds = min. (20)

Here, the energetically conjugate Green Lagrange strain E and the second Piola-Kirchhoff stress S in Voigt notation
are employed for the formulation of the internal energy. Assuming small strains (but large displacements and rotations),
a linear elastic St. Venant-Kirchhoff material law with the material matrix C is used for the relationship between these
two measures. Incidentally, it is pointed out that this functional serves as a proof of concept and can be replaced by other
objectives.

For further explanation of the problem and objective, an illustrating example is introduced in Figure 3. A simple truss
structure (Young’s modulus E = 30, 000, cross section area A= 0.1), forming a shallow arc, is supposed to deform from a
starting configuration, shown in black, to a target configuration, shown in blue. This scenario is obviously inspired by the
bi-stable setup of a snap-through problem. The blue target configuration, however, is not the stress-free snapped-through
configuration of the black one but deviates from it by a horizontal shift of the central node.
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F I G U R E 4 Illustration of the displacement field

displacement field

undeformed geometry Ω

deformed geometry

A motion that minimizes the integrated internal energy, that is, the functional, is to be found. The structure contains
two unconstrained displacement degrees of freedom and it is assumed that forces can be applied to both of them to reach
the target configuration. During deformation, the point P follows the, yet unknown, trajectory (red) until it arrives at the
end position P′. This trajectory can also be found on the plane which is spanned by the axes D1 and D2 in the diagram on
the right in Figure 3. On the vertical axes, the internal energy Πint throughout the motion is plotted as a curved line, lying
on the corresponding potential function. The area of the resulting surface is the value of the functional. The goal of this
specific motion design task is to find the trajectory (the motion) that minimizes this area.

3.1.2 Specification of motion and arc length

The length of the path, along which the internal energy of the structure is integrated, can be associated with the arc
length of the displacement field (cf. Figure 4) of the underlying motion, which in turn is a function of the position X of
the structure as well as the progress of the motion, the pseudo-time t

u(X, t) =
⎡⎢⎢⎢⎣
u1(X, t)
u2(X, t)
u3(X, t)

⎤⎥⎥⎥⎦ . (21)

In order to consider the motion in its entirety within the functional, the internal energy is integrated along the
deformation path s. This deformation path s represents a scalar measure that indicates by how much the structure has
already moved and deformed. Unlike the pseudo-time or the physical time t, it does not proceed independently, but is
directly coupled to the deformation. Consequently, it is defined here as the arc length of the displacement field u(X, t).
To obtain one scalar quantity from the displacement field, depending on the position vector X (Figure 4), the mean value
of the displacement arc length inside the spatial domain Ω is used. Based on the same derivation as in the Brachis-
tochrone problem (see Figure 1 and Equation 4), an infinitesimal arc length can then be specified for a three-dimensional
problem as

ds = 1
V ∫Ω

√
du2

1 + du2
2 + du2

3 dΩ, (22)

including the volume V of the domain, which can be integrated in order to obtain the total arc length stot = ∫ ds. In the
illustrating example of Figure 3, the total arc length turns out to be the length of the trajectory of point P multiplied with
the length of one bar (due to symmetry), because this problem involves only two degrees of freedom that are located at
the same node. As this length of the trajectory is initially unknown, the integration limits of the functional are not fixed
and remain unknown, as it was the case in the Brachistochrone problem.

Therefore, another parameter must be introduced that indicates the motion progress with fixed integration bounds.
In quasi-static structural analysis, often a normalized pseudo-time t is used, which runs from t = 0 to t = 1. This idea is
adopted here and the motion parameter is re-defined as a normalized arc length of the deformation path. To use this path
parameter as integration variable, a substitution is necessary,

∫
s

0
(… ) ds = ∫

1

0
(… )ds

ds
ds = ∫

1

0
(… )su ds. (23)
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The mapping parameter

su ∶= ds
ds

=
1
V
∫Ω
√

du2
1 + du2

2 + du2
3 dΩ

ds
= 1

V ∫Ω

√(
du1

ds

)2

+
(

du2

ds

)2

+
(

du3

ds

)2

dΩ = 1
V ∫Ω

√
u2

1,s
+ u2

2,s
+ u2

3,s
dΩ,

(24)

can be interpreted as a kind of velocity with respect to the path parameter s (instead of time t) and is, therefore, referred
to as pseudo-velocity. The functional J transforms to

J = ∫
1

0 ∫Ω

1
2

ETCE dΩsu ds = min. (25)

3.1.3 First variation of the functional

The strain and the pseudo-velocity are functions of the unknown displacements. The variation is computed according to
the chain rule and set equal to zero,

𝛿J = ∫
1

0

[
∫Ω

𝛿ETCE dΩsu + ∫Ω

1
2

ETCE dΩ𝛿su

]
ds = 0. (26)

3.2 Spatial discretization and path discretization

3.2.1 General concept

In order to solve the variational problem in Equation (26), two discretizations are introduced. They divide both the spatial
domain and the path into elements. Thus, a continuous problem is transferred into a discrete problem with a finite amount
of degrees of freedom. Those degrees of freedom are located at the nodes forming the elements.

3.2.2 Spatial discretization

First, a standard spatial discretization of Ω is introduced. The same continuity requirements apply as in a standard non-
linear structural finite element analysis. The space is divided into nele subdomains Ωe, the finite elements, on which
integration is performed,

∫Ω
(… ) dΩ =

nele∑
e=1∫Ωe

(… ) dΩe. (27)

The unknown displacement field is approximated by shape functions, interpolating the unknowns between discrete
values at nnd, ele nodes per element

u(X, s) ≈ uh(X, s) =
nnd,ele∑
k=1

Nk(X)dk(s) = N(X)d(s). (28)

With the mapping of Ωe to a reference element with the natural coordinates 𝛏 by a Jacobian Je =
𝜕Xe
𝜕𝛏 , the interpolation

of the displacement field, as well as the reference and current geometry in an isoparametric concept, can be expressed as

uh(𝛏, s) =
nnd,ele∑
k=1

Nk(𝛏)dk(s) = N(𝛏)d(s), (29)
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Xh(𝛏, s) =
nnd,ele∑
k=1

Nk(𝛏)Xk = N(𝛏)X, (30)

xh(𝛏, s) =
nnd,ele∑
k=1

Nk(𝛏)xk(s) = N(𝛏)x(s). (31)

In a Bubnov-Galerkin approach, identical interpolation functions are used for the approximation of the variations

𝛿u(𝛏, s) ≈ 𝛿uh(𝛏, s) =
nnd,ele∑
k=1

Nk(𝛏)𝛿dk(s) = N(𝛏)𝛿d(s). (32)

In order to obtain a system of equations for all parameters of the problem, the nodal values of the single elements need
to be assembled. This can be formally written with an assembly operator

D(s) =
nele⋃
e=1

de(s), (33)

containing the information about element connectivity (topology). The nodal values of the displacement field and the
current configuration still depend on the path variable s. The dimension of the vector D(s) is equal to the number of spatial
degrees of freedom ndof.

3.2.3 Path discretization

As the spatial degrees of freedom D(s) are still functions of the path, a second discretization, the path discretization is
required. It can also be denoted as a discretization of motion. This differs from a discretization in time, because the path
also depends on the deformation of the structure, whereas time is considered an independent and autonomous value.
The path, parametrized by the normalized arc length s ∈ [0, 1], is subdivided into nele path elements

∫
1

0
(… ) ds =

nele∑̄
e=1∫sē

(… ) dsē
. (34)

The shape functions can either be defined in the normalized parameter space s ∈ [0, 1] or they can be transformed
by a Jacobian. Variables referring to the path discretization are marked with a bar ̄(◦). Element numbers are indicated
with a superscript (instead of a subscript, as in spatial discretization) for distinction. Also for the path elements, inter-
polation functions, a mapping to a reference element by a Jacobian J

ē
= 𝜕sē

𝜕𝜉
, as well as a Bubnov-Galerkin approach are

used

dh(𝜉) =
nnd,ele∑
k=1

N
k
(𝜉)d

k
= N(𝛏)d, (35)

𝛿dh(𝜉) =
nnd,ele∑
k=1

N
k
(𝜉)𝛿d

k
= N(𝛏)𝛿d. (36)

The nodes of the path discretization k represent the different geometric configurations throughout the motion,
including the initial, intermediate, and end configurations,

d
k
= Dk = D(s = sk) (37)

𝛿d
k
= 𝛿Dk = 𝛿D(s = sk). (38)
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F I G U R E 5 Illustrating example with
motion elements and the illustration of the
discretized functional

The shape functions serve for interpolation between the individual configurations and the total degrees of freedom
are all ndof spatial degrees of freedom in every configuration k. Therefore, the vector d consists of nnd,ele subvectors

d =
[
D1 D2 … Dk … Dnnd,ele

]T
(39)

𝛿d =
[
𝛿D1 𝛿D2 … 𝛿Dk … 𝛿Dnnd,ele

]T
, (40)

where the length of d is the amount of total degrees of freedom in one path element

ndof = nnd,ele ⋅ ndof. (41)

Path elements are one-dimensional. In the case of two spatial degrees of freedom, as in the illustrative example
(Figure 5), the path elements discretize the trajectory of point P. With an increasing number of degrees of freedom in
space, they form a one-dimensional subspace within an ndof-dimensional hyperspace.

The matrix of shape functions can contain any type of function. In Figure 5, a discretization with linear Lagrange
shape functions is illustrated, but B-splines and higher-order functions are also possible. As the variational index in the
calculation of the arc length is equal to 1, at least C0-continuous functions are needed. Assembly is performed in the same
manner as in spatial discretization with the assembly operator

D =
nele⋃̄
e=1

dē. (42)

Path discretization is further visualized in the illustrative example of the two bar truss in Figure 5, where the vectors
Dk are displayed. In this example, the vectors consist of two components due to the two spatial degrees of freedom

Dk =
[

Dk
1 Dk

2

]T
. (43)

For this prescribed path discretization by four linear elements, the degrees of freedom per path element are

d1 =
[

D0
1 D0

2 D1
1 D1

2

]T
(44)

d2 =
[

D1
1 D1

2 D2
1 D2

2

]T
(45)

d3 =
[

D2
1 D2

2 D3
1 D3

2

]T
(46)

d4 =
[

D3
1 D3

2 Dend
1 Dend

2

]T
. (47)

The vector with all degrees of freedom can then be built by assembly

D1 =
[

D0
1 D0

2 D1
1 D1

2 D2
1 D2

2 D3
1 D3

2 Dend
1 Dend

2

]T
, (48)
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where the parameters D0
1 = 0, D0

2 = 0, Dend
1 , and Dend

2 are already defined in the problem formulation as the initial and the
target configuration. The method for motion design therefore aims to move the intermediate configurations such that the
functional J is minimized.

One issue with the motion design problem described so far is its potential ill-posedness for special cases.
Within path discretization, nodes may be located anywhere on the trajectory, while still approximating the same
curve (take a straight line as the simplest example for such a situation). Thus, the solution is no unique.
This issue is well-known from, for instance, shape optimization and form finding problems of thin-walled struc-
tures, where nodes can be dislocated in-plane without changing the geometry. A corresponding regularization
can be realized by either enforcing a constant path element size or by controlling the increments of a spec-
ified displacement degree of freedom throughout the deformation process. This aspect is further elaborated
in Section 3.6.

At a first glance, path discretization resembles time integration in dynamic problems by space-time finite elements
as presented by Argyris and Scharpf61 and Hughes and Hulbert.62 oth approaches have striking parallels, especially
regarding the second discretization with finite elements, but are also fundamentally different: The arc length in motion
design depends on the deformation of the structure, whereas time represents an independent and autonomous value.
As a result, the length of the individual path elements is not fixed, but it is obtained iteratively, like the displace-
ment field, and mapped with the mapping function su. The time increments in a space-time formulation are constant
and independent. Time keeps on running even without progress of the deformation process, while the path parame-
ter is directly coupled with the accompanying deformation. In space-time finite elements, often unstructured meshes
are used, thus, facilitating a space discretization that is nonuniform in time and vice versa. In the motion design
concept presented herein, however, the two discretizations are decoupled, each with their own, independent shape func-
tions. Another difference lies in the application of the two approaches. While space-time elements are mostly used to
calculate and represent dynamic problems containing inertia effects, the motion path discretization is developed for
quasi-static loading situations and static problems. This has an impact on the required element size, as dynamic effects,
which can potentially be missed by using a time discretization that is too coarse, do not play a role in motion design
problems.

In the next section, the discretized variations of the individual terms are introduced, where the two discretizations for
space and path are introduced separately and successively.

3.3 Discretized variation and linearization

3.3.1 Spatial discretization

Green-Lagrange strains
For improved readability, in the following parameters depending on the path variable s are written with a
superscript s

(•) (s) =∶ (•) s. (49)

The first variation of the Green-Lagrange strain with respect to the spatially discrete parameters d(s) can then be
written as

𝛿Es =
(
𝜕Es

𝜕ds

)
T𝛿ds. (50)

The strain-displacement matrix

Bs =
(
𝜕Es

𝜕ds

)
T (51)

of the spatial elements is still continuous in the path variable s. Furthermore, it strongly depends on the displacements
d(s) of the spatial discretization in this geometrically nonlinear formulation.
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influence volume

node

trajectory of node

F I G U R E 6 Illustration of a nodal displacement trajectory and the influence volume

Pseudo-velocity
The pseudo-velocity from Equation (24) is now expressed in a spatially discretized form. First, the lengths of the tra-
jectories of the individual nodes of the spatial discretization are generated. The pseudo-velocity of one node then
follows as

ss
u,k =

√√√√ndisp,nd∑
i

Di
k,s(s)

2. (52)

Simply building the mean value of all nodal displacement velocities results in a dependency of the spatial discretiza-
tion. Therefore, a mean value, in this case the root mean square, of the nodal trajectory lengths is determined, taking into
account the influence volume V k of each individual node k, as illustrated in Figure 6. The root mean square can then be
computed as

ss
u =

√√√√ 1
V

nnd∑
k

Vks2
u,k. (53)

This represents the spatially discretized pseudo-velocity. As the pseudo-velocity su
s depends on the derivative of the

total displacements only, its first variation is

𝛿ss
u =

(
𝜕ss

u

𝜕Ds
,s

)
T𝛿Ds

,s, (54)

which includes the gradient of su with respect to the derivatives of the displacement degrees of freedom.
For a concise notation, the following abbreviations for the derivatives of the pseudo-velocity with respect to the spatial

parameters are introduced

ss
u ∶=

𝜕ss
u

𝜕Ds
,s
, Ss

u ∶=
𝜕2ss

u

(𝜕Ds
,s)2 . (55)

Variation
Together with Equation (26) the discretized variation of the functional reads

𝛿J = ∫
1

0

[ nele∑
e=1∫Ωe

(𝛿ds)T
(
𝜕Es

𝜕ds

)
CEs dΩess

u + (𝛿ds
,s)Tss

u

nele∑
e=1∫Ωe

1
2

EsTCEs dΩe

]
ds = 0 . (56)

As the vectors 𝛿ds and 𝛿ds
,s only contain discrete values in Ω, they can be extracted from the integral and by assembly

Equation (56) can be written as

𝛿J = ∫
1

0

[
(𝛿Ds)T

nele⋃
e=1 ∫Ωe

(Bs)TSsdΩe

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Fs

int

ss
u + (𝛿Ds

,s)Tss
u

nele⋃
e=1 ∫Ωe

1
2

EsTSs dΩe

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Πs

int

]
ds = 0, (57)
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where
⋃

denotes the usual assembly operator. In this equation, the global vector of internal forces Fs
int and the internal

energy Πs
int, both still continuous in the path s, are identified

𝛿J = ∫
1

0

[
(𝛿Ds)TFs

ints
s
u + (𝛿Ds

,s)Tss
uΠs

int
]

ds = 0. (58)

Linearization
Both terms can now be linearized separately

LIN (Fs
ints

s
u) = Fs

ints
s
u +

𝜕Fs
ints

s
u

𝜕Ds ΔDs +
𝜕Fs

ints
s
u

𝜕Ds
,s

ΔDs
,s (59)

= Fs
ints

s
u +

⎛⎜⎜⎜⎜⎜⎝
𝜕Fs

int

𝜕Ds
⏟⏟⏟

=Ks
T

ss
u + Fs

int
𝜕ss

u

𝜕Ds
⏟⏟⏟

=0

⎞⎟⎟⎟⎟⎟⎠
ΔDs +

⎛⎜⎜⎜⎜⎜⎝
𝜕Fs

int

𝜕Ds
,s

⏟⏟⏟
=0

ss
u + Fs

int
𝜕ss

u

𝜕Ds
,s

⏟⏟⏟
ss

u

⎞⎟⎟⎟⎟⎟⎠
ΔDs

,s (60)

= Fs
ints

s
u + Ks

Tss
uΔDs + Fs

ints
s
uΔDs

,s (61)

LIN (ss
uΠs

int) = ss
uΠs

int +
𝜕ss

uΠs
int

𝜕Ds ΔDs +
𝜕ss

uΠs
int

𝜕Ds
,s

ΔDs
,s (62)

= ss
uΠs

int +

⎛⎜⎜⎜⎜⎜⎝
𝜕ss

u

𝜕Ds
⏟⏟⏟

=0

Πs
int + ss

u
𝜕Πs

int

𝜕Ds
⏟⏟⏟
=Fs

int

⎞⎟⎟⎟⎟⎟⎠
ΔDs +

⎛⎜⎜⎜⎜⎜⎝
𝜕ss

u

𝜕Ds
,s

⏟⏟⏟
Ss

u

Πs
int + ss

u
𝜕Πs

int

𝜕Ds
,s

⏟⏟⏟
=0

⎞⎟⎟⎟⎟⎟⎠
ΔDs

,s) (63)

= ss
uΠs

int + ss
uFs

intΔDs + Ss
uΠs

intΔDs
,s. (64)

Inserting these terms into the variation leads to the spatially discretized linearized variation

𝛿J = ∫
1

0

[
(𝛿Ds)T (Fs

ints
s
u + Ks

Tss
uΔDs + Fs

ints
s
uΔDs

,s
)
+ (𝛿Ds

,s)T (ss
uΠs

int + ss
uFs

intΔDs + Ss
uΠs

intΔDs
,s
)]

ds = 0. (65)

3.3.2 Path discretization

Equation (65) is still continuous along the path, so the path discretization from Section 3.2.3 is introduced for the
parameters ds, their variation 𝛿ds, the linearized parameters Δds, and the corresponding partial derivatives

Ds = ND 𝛿Ds = N𝛿D ΔDs = NΔD (66)

Ds
,s = N,sD 𝛿Ds

,s = N,s𝛿D ΔDs
,s = N,sΔD. (67)

Inserting the path discretization into Equation (65) yields the completely discretized and linearized variation

𝛿J =
nele∑̄
e=1∫sē

[
𝛿D

T
N

T (
Fintsu + KTsuNΔD + FintsuN,sΔD

)
+ 𝛿D

T
N

T
,s

(
suΠint + suFintNΔD + SuΠintN,sΔD

)]
dsē = 0.

(68)
This can further be modified by extraction of 𝛿D from the integral and by rearranging the terms to
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𝛿J =
nele∑̄
e=1

𝛿D
T
[∫sē

(
N

T
Fintsu + N

T
,ssuΠint

)
dsē (69)

+ ∫sē
(N

T
KTsuN + N

T
FintsuN,s + N

T
,ssuFintN + N

T
,sSuΠintN,s) dsΔD] dsē = 0. (70)

3.4 Global linearized system of equations

From the condition that the discretized variation must vanish for any 𝛿d, the following system of equations can be
derived

nele⋃̄
e=1 ∫sē

(
N

T
KTsuN + N

T
FintsuN,s + N

T
,ssuFintN + N

T
,sSuΠintN,s

)
dsēΔD = −

nele⋃̄
e=1 ∫sē

(
N

T
Fintsu + N

T
,ssuΠint

)
dsē

. (71)

With the definitions

Kmod =
nele⋃̄
e=1 ∫sē

(
N

T
KTsuN + N

T
FintsuN,s + N

T
,ssuFintN + N

T
,sSuΠintN,s

)
dsē (72)

Rmod =
nele⋃̄
e=1 ∫sē

(
N

T
Fintsu + N

T
,ssuΠint

)
dsē

, (73)

we obtain the system of equations in the familiar format,

KmodΔD = −Rmod. (74)

Note that with this system the entire problem is solved monolithically, instead of incrementally proceeding along the
path. On convergence of the iterative solution method, all intermediate configurations along the path are obtained in one
go.

The system of equations depends on the used element as it includes the stiffness matrix and the internal forces. How-
ever, all ingredients can be combined in a modular manner. Thus, it does not pose any problem to use various element
types, like mixed elements or isogeometric spatial discretizations.

In the solution of the illustrating two bar truss problem, the path is discretized by 14 linear path elements. The predic-
tor represents an entire motion and it is chosen as a linear interpolation between the initial configuration and the target
configuration.

The solution process of the nonlinear problem with Newton’s method converges after nine iterations below the
tolerance value of 10−8 of the L2 norm of the residual. As a result of this simple motion design problem, it is found
that for minimizing the integrated internal energy it is beneficial to first enforce a purely vertical snap-through,
followed by a horizontal movement (as opposed to following the straight path of the linear predictor motion).
Therefore, the motion design method yields an optimized motion in a purely formalized way without the need
to put any engineering expert knowledge into the analysis. The trajectory of the midpoint (as well as the path)
is longer in the solution than in the predictor, but the proposed detour leads to a smaller accumulated internal
energy throughout the motion. The difference is visualized in a plot of the internal energy over the two spatial
degrees of freedom in Figure 7 (center) and a projection of the resulting functional surfaces where the internal
energy is plotted versus the arc length in Figure 7 (right). The snap-through characteristics can also be detected in
the progress of the internal energy for the final solution. After snap-through, the internal energy reaches the value
zero.

In order to realize the prescribed deformation that results from motion design, forces are needed. Those forces are
evaluated after convergence from the internal forces and equilibrium of internal and external forces. This means that for
the special case considered so far, where all degrees of freedom are controlled, the equilibrium conditions are not needed
for the solution of the motion design problem, but the equilibrium equations can be used in post-processing of the nodal
forces.
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F I G U R E 7 Predictor motion and solution of illustrating example

3.5 A generalized system of equations for any objective function

So far, the minimization of the internal energy, integrated along the path, was used as a proof of concept for the pro-
posed motion design framework. However, in principle any functional or objective function can be used. In general,
we define a quantity F that depends on the displacements and integrate it along the path to obtain the generalized
functional

J = ∫
1

0
Fsu ds = min . (75)

After spatial discretization, the variation is built by the product rule

𝛿J = ∫
1

0

[
𝛿(Ds)TFs

,Ds su + (𝛿Ds
,s)Tss

uFs
]

ds = 0. (76)

The linearization can then be derived for the two terms

LIN (Fs
,Ds su) = Fs

,Ds su + (Fs
,DsDs ss

u)ΔDs + (Fs
,Ds ss

u)ΔDs
,s (77)

LIN (ss
uFs) = (ss

uFs) + (ss
uFs

,Ds)ΔDs + (Ss
uFs)ΔDs

,s. (78)

Path discretization and reordering the terms leads to

nele∑̄
e=1∫sē

(
NF,DsDs suN + NF,Ds suN,s + N

T
,ssuF,Ds N + N

T
,sSuFN,s

)
dsēΔD = −

nele∑̄
e=1∫sē

(
N

T
F,Ds su + N

T
,ssuF

)
dsē

. (79)

This is the system of equations for a general objective function for which analytical derivatives can be
calculated. The minimized quantity must depend on the displacements to apply this method for motion
design, but they can as well be calculated numerically. In a lot of cases, quantities and their deriva-
tives, for example, strains and stresses, can be used that are routinely available in standard finite element
codes.

3.6 Aspects of convergence

The derived nonlinear problem needs to be solved iteratively. The degrees of freedom are all spatial degrees of freedom
in every single configuration. Some configurations are known, like the initial, starting geometry and the final, target
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geometry. It is also possible to define only parts of the target geometry. As the entire motion has to be found by one
monolithic solution of the system of equations, the predictor describes an entire motion. It can be seen in Figures 3,5, and 7
that is a problem with two spatial degrees of freedom in one point P, the path elements discretize the trajectory of this
point P until it reaches the endpoint P′. However, the distribution and length of the path elements are not yet specified,
which leads to an ill-posed problem. This can be fixed by additional controls. Either the progression of one (or multiple)
spatial degrees of freedom can be prescribed by, for example, constant increments between the configurations or equal
length of the path elements can be enforced by the introduction of Lagrange multipliers and the corresponding changes
in the system of equations. The second method, the use of Lagrange multipliers, was applied in the illustrating example
(see Figure 7).

As the difference between the predictor motion and the final result may be large, the solution process some-
times suffers from convergence problems and the Newton method occasionally diverges after a number of iterations.
There is no straightforward analogy to incremental-iterative solution procedures with the option to decrease the
size of the increments in order to improve convergence behavior. There are, however, some other measures that
can be taken:

Fewer degrees of freedom by path approximation with B-splines The path may be approximated more efficiently by
B-spline functions compared to linear Lagrange functions. The resulting reduction in the number of degrees of freedom
leads to better convergence behavior.

Improved predictor from solution with coarse path discretization Likewise, a calculation with a small number of
path elements, and therefore fewer degrees of freedom, improves the convergence of the Newton algorithm. This might
result in a poor approximation due to the coarse discretization. This solution, however, can be used as an improved
predictor for a computation with a finer path discretization. More generally, a hierarchically modified predictor improves
convergence.

Better predictor by a preanalysis This method also focuses on the improvement of the first guess, the pre-
dictor. Instead of a linear interpolation, a standard nonlinear analysis of the structure can be carried out to
already approach a feasible motion. To this end, the internal forces in the end configurations are taken as the
external forces (load case) for the nonlinear analysis. The obtained equilibrium path is then used as a predictor
motion.

Modification of the Newton method with a relaxation factor To improve convergence, a modification of the Newton
method can be applied in which a relaxation factor prevents off-shooting from a possible solution during iterations in
which the norm of the residual increases. This method has been presented in Reference 63 and further investigated and
developed in Reference 64.

All the described methods can also be combined.

4 NUMERICAL EXPERIMENTS

Numerical experiments are presented to test and verify the potential of the proposed method for motion design. Some
examples serve for quantitative benchmarking of the solution and others contribute to a better understanding of the
solution and possible applications.

4.1 Kinematic structures for benchmarking

First, benchmarking examples, for which the exact solutions are known, are used for verification. Obvious sce-
narios are kinematic mechanisms for which the internal energy is identically zero throughout the entire motion.
The examples are shown here not for the purpose of validating particular capabilities of motion design, but rather
to verify that the correct result is found in examples where the exact solution, namely a kinematic motion, is a
priorily known.
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F I G U R E 8 Kinematic structure for benchmarking

4.1.1 Kinematic truss system

The first example is a kinematic truss system with four nodes, three bars and two supports, as shown in Figure 8.
This kinematic system allows for a purely energy-free rigid body movement during which the lengths of the
bars do not change. Pretending that the target configuration is unknown, it is sufficient to specify the vertical
displacement of the second node, that is, the upper left node as indicated in Figure 8, to obtain a well-posed
problem. The same displacement is also prescribed throughout the motion for a regularization. The other dis-
placements are expected to adjust to allow the kinematic movement (to minimize the functional of motion
design).

The path is discretized by 14 linear Lagrange elements, resulting in ndof = 42 degrees of freedom. The predictor
is—intentionally naive—chosen to be a linear interpolation between the initial and the prescribed end configuration for
the upper left node, while the upper right node does not move at all, as seen in Figure 8. As this is not a rigid body motion,
forces are needed to enforce it, which are shown as red arrows. The predictor is far off the expected solution, with a
functional value of J = 12, 843.

The table in Figure 8 shows a comparison of seven snapshots, that is, every second intermediate configura-
tion, of the converged solution and the predictor motion. It can be seen that the solution obtained from motion
design provides the expected result with zero length changes of the individual bars despite the naive predictor.
The difference between the linear interpolation and the final solution is also visible in the diagram on the right,
where the internal energy is plotted versus the arc length along the path. The value of the functional represents
the integral of the curve, that is, the area of the blue and red area, respectively. The length of the path differs
between the two motions. In the predictor motion, the moving node moves directly to the end position while
the other node does not move at all. This results in a shorter path compared to the resulting path of the solu-
tion. The internal energy is much smaller as almost no strain is present in the bars. The fact that the energy is
not exactly zero results from the error due to path discretization errors (note the difference in the y-axis of the
factor 104).

The value of J = 0.05 of the functional is not exactly zero for the obtained solution due to the error from path dis-
cretization with linear elements. By a refinement of the path discretization, as seen in Figure 9, center, the approximation
quality increases and the value of the functional approaches zero. The analysis with a discretization by B-splines, shown
on the right, enables an even better approximation of the curved motion trajectory and results in a smaller value of the
functional with fewer degrees of freedom.
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F I G U R E 9 Convergence study for kinematic structure

F I G U R E 10 Kinematic structure with quadrilateral elements

4.1.2 Folding motion with quadrilateral elements

In the next example, a fold-like motion of an assembly of four quadrilateral elements, as shown in Figure 10, is modeled.
The elements are connected with hinges either on the upper or on the lower corner. This enables mirroring of the geometry
solely by rigid body translations and rotations. The path is approximated with quadratic B-splines and nele = 6 elements.
Again, the target geometry is assumed to be unknown, only the vertical displacement of the upper second and fourth node
is prescribed and the vertical displacement increments are controlled during motion. The predictor motion is a linear
interpolation and shows an unphysical movement with self-penetration of the elements.

By an iterative solution with the linearized system of equations presented in Equation (74), the correct motion with
zero internal energy throughout the motion is found (see Figure 10).

The analysis of the two kinematic structures verifies that the proposed method finds the correct solution for this
specific class of problems.

4.2 Motion design for problems with instabilities

4.2.1 Motivation

Another interesting aspect to further understand and validate the properties of the proposed motion design method is
the analysis of structures and motions where snap-through or bifurcation can occur. Various structures with potential
instabilities are investigated next. A two-bar truss system that performs snap-through has already been presented during
the derivation of the method in Section 3.
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4.2.2 Motion design with multiple snap-through processes

The combination of three pairs of hinged bars, shown in Figure 11, represents a system for which the static equilibrium
path may exhibit multiple limit points, that is, horizontal tangents in the hyperspace that is spanned by the displacements
and the load parameter, where snap-through occurs. The upper two-bar truss with a larger cross-sectional area A2 is
supported by two other two-bar trusses (cross section A1) that can perform snap-through as well. The path is discretized by
32 linear elements. Only the vertical displacement of the upper node is prescribed and controlled throughout the motion.
To improve convergence behavior, the predictor is first calculated from a solution with a coarse path discretization, using
only eight elements. In two subsequent steps, the discretization is refined by doubling the number of elements in each step,
thus hierarchically approaching the fine mesh solution, as explained in Section 3.6. Therefore, the linear interpolation
with 32 elements does not represent the predictor motion in this case.

The solution is compared to a linear interpolation between the initial and a mirrored geometry, which is expected to
represent a better approximation than the naive linear interpolation of only the upper central node to the target position.
This results in a motion dominated by global snap-through. The result of motion design provides a different type of motion.
When the side structures do not perform the snap-through at the same time, internal energy can be “saved” in the upper
truss. This behavior can also be detected in the progress of the internal energy. The surface of the two “snap-through
bulges” are clearly identifiable. The resulting end configuration is found to be the horizontally mirrored geometry, which
reduces the internal energy back to zero. The value of the functional decreases significantly from J = 440 to J = 11.

4.2.3 Motion design in a bifurcation problem

In a high two-bar truss subject to a vertical load, as shown in Figure 12, bifurcation occurs before a limit point
(snap-through) is reached, as it is the case in a shallow two-bar truss. Here, a system with a width-to-height ratio of 1 : 3 is
investigated. The path is discretized by 20 linear elements and the vertical displacement is controlled for motion design.
For the vertically flipped geometry as target configuration, linear interpolation describes a purely vertical snap-through
motion. Indeed, this happens to represent a stationary point for the functional of motion design. However, it provides
a relative maximum of J, not a minimum, meaning that it is a worst case scenario. Therefore, the predictor needs to be
modified significantly to improve convergence of the motion design algorithm to the desired solution.

For example, instead of a linear interpolation, a combination of the primary path—up to the critical point—followed
by an arbitrarily chosen branch of the secondary equilibrium path, describing the deformation after buckling of the struc-
ture, can be used as predictor. The optimized motion found on the basis of this predictor is shown in Figure 12 and yields
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F I G U R E 13 arch with quadrilateral elements and the influence of locking on motion design

a functional value of J = 779. It is significantly smaller than the value of J = 1449 obtained from linear interpolation, the
“worst case scenario” mentioned above. But it is also superior to the value J = 845 obtained for the improved predictor
based on the secondary path, which confirms the virtue of the method of motion design.

It can be observed, however, that the maximum value of the internal energy during deformation is higher for the
optimized motion than for the secondary path (diagram on the right in Figure 12). The fact that the functional value
is still lower for the optimized motion follows from two aspects: During the first phase of the deformation process, the
internal energy value is higher in the predictor than in the optimized motion and the deformation path is slightly longer.
These aspects are dominant and lead to the reduction of the functional value, even though the maximum value of internal
energy is higher in the optimized solution.

Yet an alternative predictor is the so-called critical path. It is defined as the path that connects configurations for which
the determinant of the stiffness matrix is zero, det K = 0. It leads to a functional value of J = 956, which is worse than both
the optimal solution and the solution obtained from following the secondary path. Nevertheless, it is a valid predictor for
obtaining convergence of the motion design algorithm.

4.2.4 Snap-through of a shallow arch

The last example with a snap-through is a shallow arc, which is modeled as a two-dimensional structure under plane stress
conditions, using quadrilateral finite elements, as shown in Figure 13. The fully prescribed target geometry is artificially
chosen and represents the (approximately) mirrored geometry of the initial configuration. The path is discretized by five
elements with cubic B-splines as shape functions and the vertical displacement of the center node is controlled for motion
design.

First, purely displacement-based bilinear quadrilateral elements are used for spatial discretization. The predic-
tor motion is again a linear interpolation between the initial and end configuration and represents a symmetric
snap-through-dominated motion. By motion design, an antisymmetric swaying motion is found, which decreases the
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value of the functional from J = 1263 to J = 144. In this symmetric example, the mirrored deformation is equivalent to the
calculated solution.

It is well known that displacement-based finite elements suffer from locking. Therefore, the influence of locking on
the result of motion design is investigated next by using quadrilateral finite elements including an Enhanced Assumed
Strain (EAS) formulation, proposed by Reference 65. The resulting stiffness matrix and internal forces of this formulation
can simply be plugged into the system of equations from Section 3. With four additional strain parameters per element,
shear locking and volumetric locking can be eliminated. Already in the snapshots of the motion shown in Figure 13
the difference in the result obtained with finite elements that suffer from locking and locking-free elements is visible,
although the overall character of the motion seems to be similar. As the arc is very thin, the element aspect ratio is not
particularly large. Moreover, Poisson’s ratio is far from the incompressible limit. Therefore, neither shear locking nor
membrane locking are particularly pronounced, with shear locking being the dominant phenomenon. Nevertheless, it can
be observed that the EAS-elements exhibit more bending throughout the motion. The artificial energy that results from
locking effects increases the internal energy along the path and acts as a penalty for bending modes. Locking-free elements
avoid this penalty and the value of the functional decreases significantly from J = 144 to J = 58. It can therefore be expected
that for structures that are more prone to locking, like slender thin-walled structures, locking has a significant effect on
the result of motion design. Corresponding observations have been made for optimization problems in Reference 66.

4.3 Specification of intermediate configurations

Beyond the possibility to specify initial and target configuration, also intermediate configurations can be included as an
objective for motion design. Figure 14 shows a three-dimensional curved cantilever beam, discretized by trilinear volume
elements. There are two intermediate and a final target configuration. First, the cantilever tip is rotated by -90◦ around
the z-axis (Configuration 1). Configuration 2 is defined as a straight, vertical bar. The final target configuration is identical
to the initial configuration, rotated by 90◦ about the z-axis, as shown in Figure 14, right.

Path discretization is accomplished with a total of nine quadratic elements—three elements for every deformation
stage—using B-splines as shape functions. While path discretization with quadratic B-splines is usually C1-continuous,
continuity is reduced to C0 at path nodes that correspond to the intermediate configurations in order to respect the
expected nonsmoothness of the solution.

For stabilization, the displacement in y-direction of one node at the cantilever tip was controlled in stage 1. In this
case, the C1-continuity of the path discretization was reduced to a C0-continuity at the node of configuration 1.

The final solution with the individual stages is shown in Figure 14. In the first stage, the curved beam changes its
orientation by 90◦. This results in a twisting of the beam near the support in Configuration 1. This twist is resolved
in the following stage, that is, the transition of the curved and twisted beam into a straight beam (Configuration 2).
During the last deformation stage (Stage 3), the beam could perform a simple uniaxial bending from a straight geom-
etry to the curved geometry in the final configuration. However, a movement sideways is recognizable during the
motion. This is a consequence of the incorporated internal stress state due to the preceding deformation from the initial
configuration.

4.4 Calculation of inextensible deformations of shells

4.4.1 Basic concept

Motion design can also be performed for shells. One interesting option in this context is a modification of the functional
by replacing the complete internal energy by the membrane energy only. This provides a method to compute motions
that try to avoid membrane strains during deformation while bending remains without any penalization. The results are
(nearly) inextensional deformations. Inextensional deformations of surfaces are defined as deformations that preserve
lengths and angles of infinitesimal line elements at each point. Gaussian curvature remains constant during inexten-
sional deformations. For thin shells (and beams), inextensional deformations can also be classified as pure bending
deformations.

In the following examples, isogeometric Kirchhoff-Love elements, as presented in Reference 67, are used. It has to
be noted that these elements still suffer from membrane locking, although by integration of the internal energy, strain
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oscillations are leveled out to a certain extent. However, when recovering the forces required to realize the found
deformations, the effect of locking leads to values that are too large.

4.4.2 Deformation of a cantilever beam

One important special case are inextensional deformations of developable structures with Gaussian curvature equal to
zero, for example, bending of a cylinder to a flat plane. The deformation of a cantilever beam illustrated in Figure 15
represents the same phenomenon in a simple two-dimensional configuration. The left side is clamped and for the target
configuration, the final location of the tip is prescribed. It is defined in a way that allows the final configuration to be a
perfect half-circle.

Initially, the beam is discretized with only two quadratic isogeometric elements to improve convergence due to the low
number of degrees of freedom. The path is discretized by two quadratic elements with B-spline shape functions. By motion
design, an inextensional deformation is found, where the straight cantilever is bent to a half-circle while preserving its
length.

However, despite the good geometry approximation by using NURBS as shape functions, this mesh is too coarse to
provide reasonable results in terms of stress and strain (and therefore the internal energy). Therefore, in the following an
improved approximation of the geometry is realized by using 12 quadratic elements and the motion obtained with the
coarse mesh is used as a predictor. The resulting motion is shown in Figure 15 and it closely resembles the one obtained
with the coarse mesh, but does not represent the perfect half circle. The value of the functional, however, significantly
decreases from J = 4.8 to J = 0.01.
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It has to be noted that in this numerical experiment the solution is not unique. Any deformed geometry for which
the cantilever has the same length as the original flat configuration can be reached by an inextensional deformation.
Accordingly, the problem is ill-posed. Nevertheless, one valid solution is found with apparently no numerical problems.
In order to understand this surprising phenomenon one has to first understand that the finite elements used are based
on a displacement based standard Galerkin formulation with no measures to avoid locking. For the problem at hand,
membrane locking is crucial. For the given discretization with 12 quadratic elements the effect is not very strong. However,
the corresponding parasitic nonzero membrane strains are large enough to have a regularizing effect on the process of
motion design.

4.4.3 Transformation of a helicoid to a catenoid

A classical example for an inextensional deformation is the transformation of a helicoid to a catenoid, shown in Figure 16.
It is a rare example from the field of analytical differential geometry for which an analytical solution for large inextensional
deformations exists in the case of Gaussian curvature being nonzero.

The helicoid is discretized with 4× 4 cubic elements with B-spline shape functions. For the target geometry, only the
final position of the upper and lower Edge (A−B, C −D) are prescribed. The path is also coarsely discretized with two
quadratic elements with B-spline shape functions. For motion design, the vertical displacement of a point at the upper
edge is controlled.

Since the final geometry is only defined at the edges, the predictor, again obtained from a linear interpolation, shows
a relatively bad first guess. The solution of the motion design problem not only determines the correct inextensible defor-
mation, but also the correct final geometry, the catenoid. The value of the functional is J = 0.2, that is, again close to zero.

5 CONCLUSIONS

In this article, a variational method for the design of motions of continuously deformable structures between two geo-
metrical configurations, fulfilling certain desired properties and considering large displacements, has been presented. As
a proof of concept, a functional defining the integrated internal energy along the motion path was defined. A combina-
tion of spatial discretization and path discretization is used for the numerical solution of the underlying problem. The
convergence behavior of the motion design problem is enhanced by various methods. In problems, where continuous
deformation paths are expected, B-spline shape functions can be used to reduce the number of degrees of freedom
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compared to standard Lagrange discretization. An advantageous side effect of fewer degrees of freedom is a further
improvement of convergence behavior in the iterative process.

The applied solution procedure can be interpreted as a second-order optimization algorithm. For the problems studied
herein, the derivatives (sensitivities) are calculated analytically. In the given framework, this can be accomplished for any
kind of finite element for spatial discretization.

Implementation of the motion design method was successfully verified by benchmark problems for which the exact
solution is known. Additionally, the effect of instability and snap-through phenomena for motions with the prescribed
functional was investigated in corresponding examples. The feasibility of the method for the design of inextensible
deformations of shells was also demonstrated.

The successful application of motion design to detect or develop kinematic mechanisms reveals a genuine potential for
application to adaptive and deployable structures. The evolution of the required actuation forces during the deformation is
recovered after the motion is found. The restriction to those cases results from the fact, that the realization of the designed
motion potentially requires forces at every degree of freedom, whereas usually, prescribed load cases or actuators are
at hand. The future and subsequent steps in the development of the motion design method are therefore investigations
on how to incorporate discrete actuator elements and that a resulting motion can be realized only with a restricted and
specified amount of possible load cases.

So far, the initial and at least parts of the end geometry were always considered as being given. However, the original
shape of the deforming structure also significantly influences the efficiency of the motion and can lead to additional
energy savings. A similar point is already addressed in the design of compliant structures, where an initial geometry is
optimized for flexibility or, in kinematic structures, for motility. However, some commonly used objective functions, such
as maximizing a specific displacement value, are not applicable here, as the implied motion direction might restrict the
solution space of possible optimized motions and thus avoid benefitting from advantageous detours. Nevertheless, the
combination of a shape and topology optimization of the initial configuration with the presented motion design method
might represent an intriguing starting point for future research in this direction.
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APPENDIX A. EXACT SOLUTION OF THE BRACHISTOCHRONE PROBLEM

The starting point is Equation (5) in the main text, where the simplified Euler-Lagrange equation is applied for the
functional of the Brachistochrone problem√

1 + y′2
2g(yA − y)

− y′
y′√

2g(yA − y)(1 + y′2)
= 1√

2g(yA − y)(1 + y′2)
= C1. (A1)

Solving it for y′ yields

y′ =
√

1
2gC2

1(yA − y)
− 1 =

√
1 − 2gC2

1(yA − y)
2gC2

1(yA − y)
. (A2)

A substitution is necessary for a solution and a clever choice for this problem is the parametric representation of
trigonometrical functions

2gC2
1(yA − y) = sin2

(
t
2

)
= 1

2
(1 − cos(t)), (A3)

and the resulting equation for y

y = yA − 1
2gC2

1
sin2

(
t
2

)
= yA − 1

4gC2
1
(1 − cos(t)), (A4)
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is now the ansatz. Inserting it into Equation (A2)

y′ =

√√√√√√1 − sin2
(

t
2

)
sin2

(
t
2

) =
cos

(
t
2

)
sin

(
t
2

) =
dy
dx

, (A5)

enables the substitution

dx =
sin

(
t
2

)
cos

(
t
2

) dy. (A6)

The derivative of y with respect to t is still necessary

dy
dt

= 1
2gC2

1
sin

(
t
2

)
cos

(
t
2

)
→ dy = 1

2gC2
1

sin
(

t
2

)
cos

(
t
2

)
dt, (A7)

and can now be inserted into Equation (A6)

dx =
sin

(
t
2

)
cos

(
t
2

) dy =
sin

(
t
2

)
cos

(
t
2

) 1
2gC2

1
sin

(
t
2

)
cos

(
t
2

)
dt = 1

2gC2
1

sin2
(

t
2

)
dt = 1

4gC2
1
(1 − cos(t))dt. (A8)

By integration

x = ∫ dx + C2 = ∫
1

4gC2
1
(1 − cos(t))dt + C2 = 1

4gC2
1
(t − sin(t)) + C2, (A9)

the equations for x and y can be obtained

y = yA − 1
2gC2

1
sin2

(
t
2

)
= yA − 1

4gC2
1
(1 − cos(t)) (A10)

x = 1
4gC2

1
(t − sin(t)) + C2. (A11)

As already explained in the main text, the constants C1, C2 as well as the parameter value tE at point B can be derived by
the boundary conditions of the starting point A and the end point B: x(t = 0)= xA, x(t = tE) = xB, and y(t = tE) = yB, which
represent themselves nonlinear functions that need to be solved iteratively. The condition y(t = 0) = yA is fulfilled by
definition of the problem. Exemplary values are given for the starting point xA = 1.0, yA = 5.0 and the end point xB = 10.0,
yB = 2.0 (calculated with the rounded gravitation constant g= 10)

C1 = 0.116 C2 = 1.0 tE = 4.05. (A12)


