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Abstract: Friction stir welding, as a solid-state welding technique, is especially suitable for effectively
joining high-strength aluminum alloys, as well as for multi-material welds. This research investigates
the friction stir welding of thin aluminum and steel sheets, an essential process in the production of
hybrid tailor-welded blanks employed in deep drawing applications. Despite its proven advantages,
the welding process exhibits variable outcomes concerning formability and joint strength when utiliz-
ing an H13 welding tool. To better understand these inconsistencies, multiple welds were performed
in this study, joining 1 mm thick steel to 2 mm thick aluminum sheets, with a cumulative length of
7.65 m. The accumulation of material on the welding tool was documented through 3D scanning and
weighing. The integrity of the resulting weld seam was analyzed through metallographic sections
and X-ray imaging. It was found that the adhering material built up continuously around the tool
pin over several welds totaling between 1.5 m and 2.5 m before ultimately detaching. This accretion
of material notably affected the welding process, resulting in increased intermixing of steel particles
within the aluminum matrix. This research provides detailed insights into the dynamics of friction
stir welding in multi-material welds, particularly in the context of tool material interaction and its
impact on weld quality.

Keywords: friction stir welding; tool wear; tool degradation; H13 steel tool; EN AW-6016; DX54D;
hybrid tailor welded blanks; dissimilar welding; stripe light projection

1. Introduction

The combination of different sheet metals, such as aluminum and steel, is of great
interest for lightweight car body design. One possibility for combining the advantages of
both metals in a specific and economical way involves so-called tailor welded blanks. Deep-
drawing blanks, tailored to the different load zones, are welded together from different
alloys and sheet thicknesses prior to forming. As a solid-phase joining process, friction stir
welding (FSW) is particularly suitable for welding these dissimilar materials.

In friction stir welding, the workpieces are joined by a rotating tool which is forced
through the joint gap. The workpiece material is not liquefied in the process as in classic
fusion welding, but is only brought to a plastic state by the friction between the tool and
workpiece and the extreme deformation during stirring. As a result, no solidification
processes take place, and the additional heavy plastic deformation allows fine grained,
high-strength microstructures to be formed in the joint. In addition, the process is suitable
for joining dissimilar materials with different melting temperatures, such as aluminum and
steel. In order to join aluminum and steel as flat sheets of different thicknesses in such a
way that the formability allows for a subsequent deep drawing process, classic overlap
and butt joints are often not sufficiently suitable. Overlap welds show limited tensile and
fatigue strength due to the bending moment resulting from the overlap and the crack-like
incisions, as shown by Kleih [1]. Conventional butt welds, on the other hand, are especially
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suitable for joining sheets of the same thickness, and they limit the joining interface to the
cross section of the thinner sheet.

A special joining configuration, developed at the Material Testing Institute in Stuttgart
(MPA) [2], allows a sheet made of a high-strength aluminum alloy to be joined to a thinner
steel sheet with an increased joining interface. In this novel friction stir welding configura-
tion, the joint consists of a combination of a butt joint on the face and an overlap joint on
the top surface of the thinner sheet. The tool used for this kind of joint has a stepped pin
(see Figure 1). The peripheral surface of the pin and the face of the step are in contact with
steel and aluminum, while the peripheral surface of the step and the tool shoulder are in
contact with aluminum only. The step in the aluminum sheet can be made either by milling
it down by the thickness of the steel sheet, in this case 1 mm, or alternatively by using
a shim sheet of aluminum which compensates for the difference in thickness of the two
sheets. In the welding process, the tool mainly stirs the aluminum, which is significantly
plastically deformed. The steel is only activated by the relative rotation of the tool. The
lateral penetration depth of the tool into the steel, which is set in a range within 0.2–0.6 mm,
is referred to as offset.
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It is crucial to avoid excessive offset, as this can significantly reduce the strength of
the weld joint [3]. Kimapong notes that deeper penetration into the steel leads to increased
formation of brittle intermetallic compounds due to greater heat generation [4]. This obser-
vation is affirmed by Werz, who documents in his dissertation that brittle fractures occur
along intermetallic compounds at offsets exceeding 0.7 mm [5]. Furthermore, Watanabe and
Chen have observed an increase in steel fragments scattering into the aluminum matrix at
larger offsets, also resulting in a decrease in tensile strength [6,7]. These findings underscore
the importance of precise control over the offset to ensure the integrity and strength of
weld joints.

In previous studies, it has been shown that friction stir welding with this special joining
configuration, the combined butt and overlap joint, can produce high-quality joints between
aluminum and steel sheets. Werz [5] reached strengths of up to 90% of the aluminum base
material with this joint during tensile testing transverse to the welding direction. Through
a special heat treatment subsequent to the welding process, the tensile strength could even
be increased above the strength of the aluminum. Additionally, Nakajima tests confirmed
that the joint strength could surpass that of the base [3]. The high strength and formability
of the welded sheets allow for a subsequent deep-drawing process (see Figure 2). This
makes them especially suitable for the production of hybrid aluminum–steel tailor-welded
blanks, which offer a promising approach for the lightweight design of car bodies.

Despite its proven capabilities, laboratory tests indicate that the process, in its current
stage of development, exhibits relative instability. Not all welds produce a satisfactory
outcome in terms of formability and joint strength. Significant differences in quality have
been observed in several welds with identical welding parameters, the same tool, and
on the same machine. These are sometimes expressed in the form of visually clearly
discernible defects. Individual, visually flawless weld seams burst during forming or
revealed significant variation in the maximum elongation during tensile tests transverse to
the welding direction.
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Figure 2. Deep-drawn friction stir-welded aluminum–steel hybrid.

At the same time, the friction stir welding tool, made from H13 tool steel, exhibited
signs of degradation in the form of heavy buildup of workpiece material. Within the first
few meters of welding, in particular, the area between the pin and the step became clogged
with material.

The formation of material buildup on the tool is therefore analyzed and quantified in
this study. Furthermore, the relationship between rapid tool degradation, changing tool
geometry, and quality differences is investigated.

The wear of tools in friction stir welding has been investigated in a variety of publica-
tions. Even some quantitative studies on the wear of H13 tools exist, such as Hasieber [8,9]
on aluminum and Sahlot [10,11] on copper alloys, that observe abrasive wear phenomena.
Extensive abrasive wear also occurs to a greater extent when welding metal–matrix com-
posites, which contain particularly hard particles [12]. For this reason, alternative, harder
tool materials are being investigated in this area in particular [13]. A tool that is harder in
relation to the matrix material is found to reduce the wear rate [14]. However, the excessive
buildup of material on the friction stir welding tool in the form occurring in this case has
not yet been described.

2. Materials and Methods

In this study, sheets of EN AW-6016 aluminum with a thickness of 2 mm in T4 state
and 1 mm thick sheets of DX54D steel were chosen as the workpieces. Another 1 mm thick
shim sheet of EN AW-6016 was used to equalize the thickness between the two sheets.
The friction stir welding tool was made of hot-working steel H13, through-hardened after
turning, and tempered to 52 + 2 HRC (see Figure 3 for the geometric details of the tool and
Table 1 for the alloy composition of the materials used).
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Table 1. Alloy composition of EN AW-6016 T4, DX54D, and the tool material H13 according to DIN
EN 573-3, DIN EN 10346, and DIN EN ISO 4957 [15–17].

EN AW-6016
(AlSi1.2Mg0.4)

Si Fe Cu Mn Mg Cr Zn Ti
[wt.%] [wt.%] [wt.%] [wt.%] [wt.%] [wt.%] [wt.%] [wt.%]

Chemical
Composition [15] 1.0–1.5 0.50 0.20 0.20 0.25–0.6 0.10 0.20 0.15

DX54D
C Si Mn P S Ti

[wt.%] [wt.%] [wt.%] [wt.%] [wt.%] [wt.%]

Chemical
Composition [16] ≤0.12 ≤0.50 ≤0.60 ≤0.10 ≤0.045 ≤0.30

H13
(X40CrMoV5-1)

C Si Mn Cr Mo V W
[wt.%] [wt.%] [wt.%] [wt.%] [wt.%] [wt.%] [wt.%]

Chemical
Composition [17] 0.35–0.42 0.80–1.20 0.25–0.50 4.8–5.5 1.20–1.50 0.85–1.15 -

All welds in this study were performed with an ESAB Legio 3ST friction stir welding
machine, which can perform linear welds with a maximum axial force of 25 kN and a feed
speed up to 4000 mm/min. Welding can be either force- or position-controlled; in this study,
welding was exclusively performed under position control, i.e., with a constant plunge
depth of the tool. A total of 17 welds, each with a length of 450 mm, were performed with a
tool that was new and unused at the beginning, adding up to a total weld length of 7.65 m.
All welds were performed with the welding parameters listed in Table 2.

Table 2. Welding parameters used for all welds throughout this study.

Rotational
Speed
(1/min)

Feed
Speed

(mm/min)

Tool
Offset
(mm)

Heel Plunge
Depth
(mm)

Tool Tilt
Angle

(◦)

Process
Parameters 1200 700 0.2 −0.18 2

After each weld, the tool was removed from the welding machine, the condition was
first documented photographically, and weighing was carried out using a Mettler Toledo
AT400 precision scale. After cooling to room temperature, the tool was then 3D-scanned
using the GOM Atos III Triple Scan, which covers a measuring point distance of 0.019 mm
within the measuring volume of 60 × 45 × 30 mm. To prevent reflections during stripe
light projection and thus improve the scan result, the tool was sprayed with a thin layer
of titanium oxide powder, which was removed with alcohol prior to the following weld.
In order to ensure the angularly accurate allocation of the individual scans, the otherwise
rotationally symmetrical tool was marked on the shaft before the start of the study and
precisely aligned for the 3D scan in a special fixture (see Figure 4).
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The surface models generated from 3D scans could be directly compared with the
scan of the unused tool using the ATOS Professional Software (GOM Software 2019). This
comparison resulted in differential surface models that graphically illustrated adhesions or
abrasions on the used tool.

3. Results and Discussion

In Figure 5, the 3D scans of the unused and used tools at different stages are shown.
The coloration of the tool from 450 mm to 7650 mm illustrates the surface comparison of the
3D scans taken at that point compared to the scanned geometry at 0 mm. The comparison
images are primarily useful for localizing and semi-quantitatively assessing the signs of
degradation on the tool.
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Figure 5. Three-dimensional scanning images of unused and used FSW tools, colored according to
the surface comparison to the unused tool.

After 900 mm of welding, material accumulated significantly around the pin. The
thickness of the buildup material in this area then continued to increase until it dropped
again to a very low level at 2700 mm. Up until 4500 mm, however, the deposit built up
continuously to another maximum. This cycle was repeated one more time within the
measurement series. Minor material adhesions were also increasingly visible on the pin’s
end face.

However, no changes to the tool geometry could be seen on the tool shoulder, which
was only in contact with the aluminum during the process. Furthermore, it was noticeable
that the surface models did not show abrasive wear at any point.

Figure 6 shows macroscopic images of the shoulder and pin of the tool throughout
the degradation study. On the surface of the unused tool (0 mm), marks from the turning
process can be seen in the form of slight spiral patterns in the shoulder area, as well as
microscopic pits on the end face of the pin.

After the first weld of 450 mm, an aluminum-colored coating was visible on all surfaces
that were in contact with the workpiece during the process. This coating was initially so
thin that it was not visible in the surface comparison shown above. In some places on the
outer bevel of the shoulder, an aluminum coating after had not developed 450 mm, so
the base material of the tool was still visible. The base material H13 showed a dark blue
coloration in these areas, which, according to the annealing colors for steel [18], indicates
that temperatures around 300 ◦C prevailed here during the welding process. After 1350 mm
of welding, the material accumulations already shown in the 3D scans were clearly visible
in the area between the pin and the step. The material buildup was so significant that the
originally sharp pin contour was no longer clearly identifiable.
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Plotted over the number of the welds performed, Figure 7 shows the respective mass
difference of the tool compared to the unused tool. Given that the 3D scans suggested mini-
mal, if any, material removal relative to the buildup, the mass differential can be considered
equivalent to the mass of the adhered material. The cyclic adhesion of material to the tool
observed in the 3D scans and macroscopic images can also be observed quantitatively in
the adhesion mass. At welded lengths of 2250 mm, 4500 mm, and 5850 mm, the adhesions
exhibited local maxima, reaching 209%, 277%, and 263% of the average adhesion mass
throughout the study.
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Figure 7. Respective mass difference of the tool compared to the unused tool.

The cross section of another tool of the same geometry and material as that used in the
degradation study (Figure 8) after 5465 mm of welded length of EN AW-6016 and DX54D,
also showed severe material buildup in the step and pin areas. This cross section allows
conclusions to be drawn about the composition of the adhesions. In the area to the left of
the pin at the transition between the pin and the shoulder, as well as on the end face of the
pin, the buildup of steel could be seen. Aluminum deposits could be seen to the right of
the pin and on top of the steel deposit to the left of the pin. The adhering of workpiece
material was limited to the designated areas, and the tool shoulder area remained free of
heavy material buildup.
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Figure 8. Cross section of another tool after 5465 mm welded length of EN AW-6016 and DX54D,
showing aluminum and steel buildup in the step and pin area.

Figure 9 shows photographs as well as X-ray images of welds No. 3 (a) and No. 6 (b)
at 1160 mm and 2570 mm of welded length, respectively. Despite the same welding
parameters, differences in seam quality are clearly visually noticeable. While weld No. 3
produced an optically clean seam, the seam in weld No. 6 had surface defects along its full
length and an extensive, frayed flash. Over the remaining 15 welds, the weld quality also
proved to be visually very inconsistent, with frequent surface defects.
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Figure 9. Photographs and X-ray images of (a) weld No. 3 at 1160 mm and (b) weld No. 6 at 2570 mm
of welded length.

The X-ray images also showed clear differences between the two seams in the form
of differing steel inclusions, which appeared as light gray fringe on the aluminum–steel
interface. In weld no. 6, there was also one single major steel intrusion. This intrusion
cannot be seen visually, although the pattern of the surface defects changed at that point
from coarse and irregular to more even.

Further detailed examinations of the welds using X-ray images are shown in Figure 10.
Radiation intensity and exposure time were selected so that the aluminum part of the seam
would be clearly visible, while the steel was barely penetrated. The red rings represent
the relevant tool diameters. The inner ring is the pin rubbing against the steel with its
peripheral surface. And the outer rings represent the tool’s step and shoulder. The welding
direction was from left to right. The steel particles stirred into the aluminum are clearly
visible as fringes protruding into the aluminum. This fringe of steel particles clearly differed



Materials 2024, 17, 874 8 of 12

in the various welds, and also within individual weld seams. In some cases, there was little
agitation, and in others, like in (a), the steel particles appeared more as a line seemingly
separated from the steel sheet. Another notable detail in the radiography is the hook-shaped
steel intrusion in the lower image. Further back in the weld seam, i.e., to the left of the
intrusion, a comparatively high level of intermixing of steel particles into the aluminum is
visible. On the right, in the subsequent part of the seam, the aluminum contains noticeably
fewer and finer particles.
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Figure 10. X-ray images of friction stir welds made with identical tools and welding parameters. Im-
ages (a,b) show varying degrees of steel particles protruded into the aluminum. Images (c,d) highlight
different steel intrusions, with (d) displaying a prominent hook-shaped feature. Red rings indicate
tool dimensions.

The cross sections in Figure 11 show exactly the location of the conspicuous major
steel intrusion in Figure 10d, as well as locations 20 mm before and 20 mm behind it. The
part on the left side that appears darker is the steel. The right part, which also overlays the
steel on the left, is the aluminum. The flashes on the left and right of the aluminum indicate
where the tool was engaged. In cross section 1 (a), before the steel intrusion, it can be seen
that the edge of the steel was significantly flattened in the process and that most of the
steel particles stirred into the aluminum were located near the seam root. There were only
few smaller particles in the upper area of the stirring zone. In addition, a pore is visible,
which was not visible in the visual inspection nor in the radiography. Therefore, it can be
assumed that this is not a wormhole, but a local, single pore in the microsection plane. At
the location of the steel intrusion (cross section 2 (b)), there was a massive accumulation of
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steel at mid-height in the weld. It is noticeable that the steel part roughly corresponded to
a negative impression of the tool. In the follow-up of the steel intrusion (cross section 3 (s)),
only a single steel particle stirred into the aluminum remained visible. Otherwise, there
was a sharp division between aluminum and steel.
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Figure 11. Cross sections of the aluminum steel weld (see location in Figure 10d) at (a) 20 mm before
the steel intrusion, (b) exactly the location of the steel intrusion, and (c) 20 mm behind it.

The investigations show that, even within less than 1 m of the weld seam, severe
deviations in the geometry of the tool occurred due to adhering workpiece material. This
led to significant optical differences in weld quality, as the appearance of the weld seam
fluctuated between a clean look and one showing severe surface defects. Moreover, these
variations contributed to considerable inconsistency in the offset at which the tool laterally
penetrated the steel, which depends on the extent of material buildup. The effect of this
occurrence could be observed when examining the weld via radiography and cross sections
in the form of different types of steel inclusions. The gradually increasing buildup on the
tool led to deeper penetration into the steel, thereby stirring more steel particles into the
aluminum. In the radiograph, it can also be seen how, after around 2.5 m, the accumulated
workpiece material detached from the tool and remained in the weld seam. However, only
the steel portion of the adhered material was visual. Subsequently, adhesion built up again
over another 2 m of welding.

As highlighted in the introduction, the accurate control of the offset is crucial in
dissimilar FSW of aluminum and steel to maintain the integrity and strength of the joints.
The scattering of larger steel pieces into the aluminum matrix and the formation of brittle
intermetallic compounds, which occur due to increased heat generation at larger offsets,
significantly compromise mechanical strength [4,6,7].

Consistent with these observations, a study by Kaushik, which involved welding with
different tool rotation-to-feed rate ratios at a consistent offset of 0.5 mm, revealed similar
effects. An increase in heat input led to a greater intermixing of steel particles, contributing
to a reduction in the mechanical strength of the welds [19].

Furthermore, accurate modeling of the complex contact conditions in friction stir
welding simulations, through well-calibrated contact models between the workpiece mate-
rial and the tool, is crucial for precisely calculating thermomechanical responses. Various
approaches, including Smoothed Particle Hydrodynamics (SPH), Computational Fluid
Dynamics (CFD), and Coupled Eulerian–Lagrangian (CEL) methods, as exemplified by
Shishova and Wang [20,21], utilize the diverse capabilities of these modeling techniques to
accurately depict frictional and heat transfer-related contact behavior. Analytical models
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have also been developed, providing comprehensive analyses of the generated heat and
mechanical responses [21]. A commonality among these approaches is the assumption of
constant tool geometry conditions, which, as our findings illustrate, does not align with
reality due to cyclic material buildup on the tool. Varying geometrical contact conditions,
as observed in this study, should have a significant impact on simulation results.

The phenomenon of material buildup on the tool bears similarities to the buildup of
cutting material observed in machining processes, known as buildup edge formation. This
behavior involves a cyclic pattern consisting of formation, growth, and detachment, and
occurs within specific ranges of (low) cutting speeds [22,23]. Factors such as temperature
and roughness of the tool, as well as the general inclination for adhesion between the
tool and workpiece, significantly influence the buildup of material on the tool [23]. In the
case of welding EN AW-6016 aluminum and DX54D steel with an H13 tool, it would be
relevant to investigate the tribological system between these three materials to understand
the critical value at which the friction coefficient results in material adhesion. Possible
preventative measures used to prevent buildup edge formation include deviation from
critical parameter sets (feed rate/rotational speed), coatings to prevent adhesion, texturing
of the tool surface, and the use of coolants, although the latter may not be practical in
friction stir welding. Varying the speed and feed rate is also not readily feasible in friction
stir welding, as these parameters have a great influence on the quality of the weld, such
as the formation of intermetallic compounds at the aluminum–steel interface as well as
microstructure formation in the stir zone.

It should be considered that the tool was completely cooled down at the beginning
of each weld due to the intermediate time-consuming measurement. Furthermore, it can
be assumed that the repeated reinitiation of the welding process, i.e., every 450 mm, had
an influence on the degradation phenomena on the tool, an issue with this type of wear
investigation which is also mentioned by Sahlot [10]. The results of this investigation
and, in particular, the frequency at which the buildup on the tool develops and detaches,
therefore cannot be transferred to a continuous weld without further ado.

Additionally, the identification of cyclic behavior from 3D imaging and buildup mass
measurements presumes that the frequency of these occurrences is not less than the 450 mm
sampling interval, a presumption that is supported by radiographic imaging.

4. Conclusions

This study explores tool degradation during friction stir welding of aluminum and
steel sheets in a combined butt and overlap joint, and its effect on the resulting weld seam
is investigated.

The main findings are as follows:

1. When welding EN AW-6016 aluminum and DX54D steel in combined butt and overlap
joint configuration using a tool made of H13, tool degradation occurs in the form
of material buildup on the portion that is in direct contact with the steel during
the process.

2. The material adhering to the tool accumulates over several welds, reaching a maxi-
mum after a total welded length of 1.5 to 2.5 m before detaching. This cycle of buildup
and detachment recurs throughout the welding process.

3. The effect of the enlarged tool pin caused by material adhesion is evident in the
welding process and, consequently, in the manufactured weld, as confirmed by ra-
diographic imaging and cross-sectional analysis of the weld seam. Increased ad-
hesion to the tool causes a higher degree of steel particle intermixing within the
aluminum matrix.

4. Different processing regimes, in terms of largely varying offset conditions due to the
material adhesion, occur even when the same tool, machine, materials, and parameters
are used.

5. The robustness of the process is not yet sufficient for an industrial-scale production,
indicating a need for further optimization.
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The investigations presented here reveal the phenomenology of the effect. The mech-
anisms that generate or stabilize the different regimes, and how or why the adhesions
are detached above a certain size, are not yet fully understood. Furthermore, the influ-
ence of the varying process regimes on the mechanical properties is also not yet known.
Considering these findings, it is recommended that future research focus on these aspects.
Such research should include different tool materials and different workpiece materials,
alongside a systematic mechanical analysis of the welds in their different states.

Initial welding experiments utilizing ceramic and coated tools suggest that tool degra-
dation due to excessive material buildup can be mitigated, potentially leading to a more
stable and consistent welding process.
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