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Zusammenfassung

Im ersten Teil dieser Arbeit betrachten wir das Klein-Gordon-Zakharov-System
(ein Modell in der Plasmaphysik) sowie verwandte Systeme in Abhéngigkeit von
einem kleinen Storungsparameter 0 < ¢ < 1. Im singuldaren Grenzfall € — 0
leiten wir weitere Systeme her. Mit Hilfe von Energieabschatzungen und Nor-
malformtheorie beweisen wir erstmals Approximationsresultate zwischen Losungen
der urspriinglichen Systeme und Losungen der Grenzwertsysteme im Falle raum-
lich periodischer Randbedingungen. Die wesentlichen Schwierigkeiten ergeben sich
aus den Abschatzungen fiir das Residuum, der Konstruktion von Approximatio-
nen hoherer Ordnung und der Tatsache, dass die Nichtresonanzbedingungen zum
Anwenden der Normalformtheorie nicht immer erfillt sind. Fiir den Fall, dass
die Normalformtransformation an Regularitat verliert, verwenden wir eine modi-
fizierte Energie wie sie bei der Approximationstheorie fiir quasilineare Systeme
ihre Anwendung hat.

Im zweiten Teil rechtfertigen wir die Derivative NLS-Approximation im Falle
quadratischer Nichtlinearitaten. Die DNLS-Gleichung taucht im Wasserwellen-
problem als Modulationsgleichung auf. Die Rechtfertigung ist eine nichttriviale
Aufgabe, da Losungen der Ordnung O(g'/?) auf einer O(e72)-Zeitskala fiir 0 < ¢ <
1 kontrolliert werden miissen. Wir leiten die DNLS-Gleichung mittels Multiskalen-
analysis her und zeigen ein Approximationsresultat, indem wir Energieabschéatzun-
gen beweisen und mehrere Normalformtransformationen verwenden. Hierbei treten
komplexere Resonanzstrukturen wie totale Resonanzen, Resonanzen zweiter Ord-
nung und zuséatzliche Resonanzen erster Ordnung auf. Bei quadratischer Nicht-
linearitat konnen diese Resonanzen stabil oder instabil werden. Fiir den stabilen
Fall beweisen wir ein Approximationsresultat, fir den instabilen Fall ein Nicht-
Approximationsresultat.






Abstract

In the first part of this thesis, we consider the Klein-Gordon-Zakharov system (a
model in plasma physics) and related systems depending on a small perturbation
parameter 0 < ¢ < 1. In the singular limit ¢ — 0, we derive further systems.
By using energy estimates and normal form theory, for the first time we prove
approximation results between solutions of the original systems and solutions of
the limit systems in the case of spatially periodic boundary conditions. The main
difficulties arise in the estimates for the residual, the construction of higher order
approximations and the fact that the non-resonance conditions for applying the
normal form theory are not always satisfied. In case that the normal form trans-
form loses regularity, we use a modified energy that is reminiscent of applications
in approximation theory for quasilinear systems.

In the second part, we justify the Derivative NLS approximation in the case of
quadratic nonlinearities. The DNLS equation appears in the water wave problem
as a modulation equation. The justification is a non-trivial task since solutions
of order O('/2) have to be controlled on an O(e72) time scale for 0 < ¢ < 1.
We derive the DNLS equation via multiple scaling analysis and show an approxi-
mation result by using energy estimates and applying several normal form trans-
formations. In doing so, more complex resonance structures such as total reso-
nances, second order resonances, and additional first order resonances appear. For
a quadratic nonlinearity, these resonances can become stable or unstable. For the
stable case, we prove an approximation result; for the unstable case, we prove a
non-approximation result.
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Chapter 1

Introduction

Modulation theory refers to a concept that has applications in various fields of
science and technology, cf. [SUI7, §10-12]. The underlying mathematical idea is to
use knowledge of the behaviour of solutions of so-called modulation equations to
get a better understanding of the dynamics of solutions of more complex physical
systems, such as pattern forming systems, the water wave problem, systems from
nonlinear optics, etc. For this purpose, we need to provide approximation results
for these systems. This thesis deals with modulation theory and is divided into
two parts.

The aim of the first part in Chapter [2| is to improve and to extend the existing
literature on the approximation theory of the Klein-Gordon-Zakharov (KGZ) sys-
tem and related systems describing so-called Langmuir waves in plasma. These
systems have many applications in both astrophysical situations and laboratory
experiments, cf. [SS99] for more details. The KGZ system

Ofu = O*u — u — uv, v = 0%v + O2(|ul?),

with z,t € R, u(z,t) € C, and v(z,t) € R, describes the interaction between
Langmuir waves and ion sound waves in plasma. Here, v(x,t) is proportional
to the ion density fluctuation from a constant equilibrium density and u(x,t) is
proportional to the electric field. The Zakharov system

2i0u = O%u — uv, v = 02v + 02 (|ul?),

with x,t € R, u(z,t) € C, and v(z,t) € R, describes the propagation of Langmuir
waves in an ionized plasma via the envelope u(x,t) of the electric field and the
deviation v(z,t) of the ion density from the equilibrium density. By rescaling
the terms in these systems by a small perturbation parameter 0 < ¢ < 1 and
by considering the limit case ¢ — 0, effective systems for the slow dynamics are
obtained. For small values of the parameter 0 < ¢ < 1, our goal is to estimate the



CHAPTER 1. INTRODUCTION

distance between solutions of the regular limit system and true solutions of the
original singular system by means of energy estimates and normal form theory. We
improve the existing literature by showing convergence rates and by considering
these systems for the first time on the torus where the methods from the literature,
such as dispersive decay estimates, no longer apply. Moreover, our studies include
estimates for the residual and the construction of higher order approximations.
At the beginning of Chapter [2, we present all limits we consider, the problems we
encounter, and the methods we use to solve these.

In the second part of this thesis, in Chapter 3] we extend the approximation theory
of the Derivative Nonlinear Schrédinger (DNLS) equation

i0rA = 110% A + 1 A| A + ivs | APOx A + iy A20x A + vs A A

with 7> 0, X € R, A(X,T) € C, and coefficients v; € R for j = 1,...,5. Via
multiple scaling perturbation analysis, the DNLS equation can be derived from
dispersive wave equations, such as nonlinear Klein-Gordon equations of the form

0P = 0%u — u+ f(Op, u).

This is done to describe slow modulations in time and space of the envelope of a
spatially and temporarily oscillating wave packet of the form

(@, t) & V(. t) = 2 A(e(w — c,t), 2t)eilor—wot),

see Figure Hereby, ¢, € R is the linear group velocity, kg € R the basic spatial
wave number, wy € R the basic temporal wave number, and 0 < ¢ < 1 a small
perturbation parameter.

—— \W\,vv,,, O(e'/?)

Figure 1.1: The envelope (in orange) of a wave packet that advances with group
velocity ¢, and modulates the underlying oscillatory wave (in blue) advancing with
phase velocity c,.




The DNLS equation occurs when the cubic coefficient for the associated NLS equa-
tion vanishes for the basic spatial wave number of the underlying slowly modulated
wave packet. In [HS22al [HS22bh], the DNLS approximation was already justified
for a cubic Klein-Gordon equation. In Chapter 3] we extend the theory of the
DNLS approximation by giving a first proof of the DNLS approximation for a
quadratic Klein-Gordon equation. This is a highly non-trivial problem since the
approximation is of order O(¢/2) and solutions have to be controlled on an O(e~?)
time scale. We show the approximation result by using energy estimates and nor-
mal form theory where additional resonance structures occur in comparison to the
cubic case. Further, we give a first proof of the failure of the DNLS approximation
for a particular Klein-Gordon equation in the case of spatially periodic boundary
conditions.

Notation. Throughout the thesis, we use the following notation which will be

supplemented in the individual sections. The Fourier transform of a function
u € L*(R,K) with K = R or K = C is defined by

F(u)(k) =u(k) = %/Ru(a:)e_““ dz.

The inverse Fourier transform of a function u : R — K is given by
F @) (z) = u(x) = / u(k)e* dk.
R

The multiplication (uv)(z) = u(xz)v(z) in physical space corresponds, in Fourier
space, to the convolution

(@ D) (k) = /R Ak — 1)5(1) dl.

The Sobolev space H*(R,K), s > 0, is the space of functions from R into K, for
which the norm

1/2
lollr-eso = ( [ 18091+ 6 ai
is finite. Many possibly different constants are denoted by the same symbol C| if
they can be chosen independently of the small perturbation parameter 0 < ¢ < 1.
With c.c., we denote the complex conjugate of an expression.







Chapter 2

KGZ and related systems

We consider singular limits of the Klein-Gordon-Zakharov (KGZ) and related sys-
tems which depend on a small perturbation parameter 0 < ¢ < 1. We are in-
terested in these systems due to their relevance in plasma physics. Moreover, the
resonance structures for these systems in the singular limit also appear for other
relevant systems. The aim of this chapter is to prove approximation results for
the KGZ and related systems by estimating the distance between their solutions
and solutions of the regular systems obtained by taking the singular limit ¢ — 0.
Consider, for example, the KGZ system

Otu = 0%u — u — uw, 20t = 02v + 02 (|ul?).

In the singular limit € — 0, we first obtain v = —|u/? and finally the Klein-Gordon
equation
Otu = 0%u — u + ulul?.

This limit has already been studied in [DSS16] for higher dimensions. In [DSS16],
an approximation result was shown for R? with d > 3. It turned out that, on
a n-dimensional torus, the approximation result only holds for a modified Klein-
Gordon equation. In this chapter, we consider additional limits of related systems:

(i) In Section 2.1} we consider the Zakharov system
2i0u = 0*u — uv, e20}v = 02v + O2|ul*.
By letting ¢ — 0, we first obtain v = —|u|? and finally the NLS equation
2i0u = 02u + |u|*u.

This limit is the most straightforward one and has already been studied in
[AASS, [SWS86]. However, these studies focus on convergence and not on error
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(i)

(i)

bounds. In Section [2.1], for the first time, we show an approximation result
for the Zakharov system in case of periodic boundary conditions by means
of energy estimates. It turns out that we need a smallness condition for
solutions of the NLS equation, which was not considered in the corresponding
literature. Moreover, we provide estimates for the residual and construct a
higher order approximation in order to make the residual arbitrarily small.
We remark that the estimates for the residual on the real line are different
from the estimates in case of periodic boundary conditions.

In Section , we consider the KGZ system
e20tu = 02u — e *u — uw, v = 0%v + O2(Jul?).

In the singular limit ¢ — 0 with the ansatz u(z,t) = w(z,t)e’ !, we obtain
the Zakharov system

2i0w = 02w — wo, v = 9%v + 02(Jw]?).

In [BBC96, [CEGT04], the same ansatz has been considered but with a focus
on convergence and not on error bounds. In [Sch19], the Zakharov approxi-
mation of the Klein-Gordon-Zakharov system was already justified under the
assumption that the solutions of the Zakharov system are analytic within a
strip in the complex plane. In Section we show an approximation result
on the real line by using energy estimates. Before that, we have to perform a
normal form transformation to eliminate problematic terms. Here, no reso-
nances occur. In addition to that, we provide estimates for the residual and
construct a higher order approximation.

In Section , we consider the KGZ system in the form
e20%u = 0%u — e %u — uw, vV2e*0}v = 02v + 02 (|ul?),

with a parameter v € R. In the singular limit ¢ — 0 with the ansatz
u(x,t) = w(zx,t)e” !, we obtain the NLS equation

2i0,w = 0*w + w|w|.

We show an approximation result for |y| > 1 in case of periodic boundary
conditions by means of energy estimates and normal form transformations.
Here, we have to distinguish between the following two cases. For |y| > 1,
the normal form transformations are bounded, while, for |y| = 1, they lose
regularity. We can solve this problem by including the normal form trans-
formations into the energy as it has been done in the justification of the




NLS approximation for quasilinear dispersive systems, cf. [Duel7, [HITW15].
The case |y| > 1 has already been considered in [MNO5]] but with a com-
pletely different method of proof. In [MNO5], dispersive decay estimates were
used which are not applicable in our setting due to the periodic boundary
conditions. In contrast to [MNO5], we provide estimates for the residual and
construct a higher order approximation. To the author’s knowledge, the case
|7] = 1 has not been considered in any of the existing literature so far.

We emphasize that the limits, which are considered in (i), (ii) and (iii), build
on each other. To be more precise, in Section [2.1, we use energy estimates to
prove the main result. In Section [2.2) we use similar energy estimates with the
additional difficulty that problematic terms have to be eliminated by a normal
form transformation. In Section [2.3] we proceed analogously, whereby the normal
form transformation is more complex due to the scaling of the original system.

(iv) In Section [2.4] we consider the KGZ system
2
202 = 0%u — e %u — v, —e*0%v = 02v + 02 (|ul?),

with a parameter 7 € R. In the singular limit ¢ — 0 with the ansatz

w(z,t) = wlz, t)e "+ e,

v(z,t) = vo(x, t) 4+ vo o (2, 1)e¥ "t v _(z,t)e 2,
we obtain the singular NLS equation
2@8tw = aiw + 2uj|uj|2 - wA’Y(UJQ):

where A, = —9%(* + 92)~!. This limit has already been studied in [MNT0].
In Section [2.4] we provide estimates for the residual under spatially periodic
boundary conditions. In this context, we choose the period so that the
operator A, is well-defined in Fourier space. Further, we construct a higher
order approximation in order to make the residual arbitrarily small. However,
the estimates for the error using our method of proof remain open since in
the normal form transformation we lose too much powers of ¢.

Note that the paramater v here corresponds to the parameter 1/ in [MNO5].

7
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2.1 From the Zakharov system to the NLS equa-
tion on the torus

2.1.1 Introduction

In this section, we consider the singular limit of the Zakharov system in which
the NLS equation is obtained as regular limit system. Our goal is to estimate
the distance between the solutions obtained through the regular limit system and
the true solutions of the Zakharov system for small values of the perturbation
parameter 0 < ¢ < 1. In detail, we consider the Zakharov system in the form

2i0u = OXu — uv, (2.1)

20}v = v+ 0ul?,

for u = u(z,t) € C, v = v(z,t),z,t € R with spatially 27-periodic boundary
conditions, where 0 < ¢ < 1 is a small perturbation parameter. In the singular
limit € — 0, we first obtain v = —|u|? and finally the NLS equation

2i0u = 0%u + |ul*u (2.3)

with spatially 27-periodic boundary conditions. This corresponds to the spectral
situation in Figure It is a goal of this section to give a proof of

Theorem 2.1.1. There is a Cpap > 0 such that for all C,, € [0, Cpaz) the following
holds. Let ug € C([0, Ty, H®) be a solution of the NLS equation (2.3) with spatially
2m-periodic boundary conditions and

sup |uo(+, t)||gs = Cy < 0.
te[0,To]

Then, there ezist eg > 0 and C' > 0 such that for all ¢ € (0,e9) we have solu-
tions (u,v) of the Zakharov system (2.1)—(2.2)) with spatially 27-periodic boundary

conditions satisfying

sup ||(U,’U)(,t) - (u()) _|u0|2)('7t)||H1><L2 < 052-
tG[O,To}

Remark 2.1.2. Such estimates have been shown in [AA8S,[SWS6] for » € R? with
d € {1,2,3} with the help of energy estimates in order to study the asymptotic
behaviour of the solutions of the Zakharov system (2.1))-(2.2) when e goes to zero.
The approximation only holds, if the nonlinear part on the right-hand side of
has a negative sign. For a positive sign, there exists a counterexample which shows
that the NLS approximation fails to make correct predictions about the dynamics

8



2.1. FROM ZAKHAROV TO NLS

w1 %)

Ww_2

Figure 2.1: The linearized Zakharov system is solved by u(z,t) = e**+1(k)t and

v(z,t) = ekt where w(k) = 1k? and wyo(k) = e 'k for k € R. The
figure shows the curves of eigenvalues w; and wys. The intersection point is at

k=0(1).

of the Zakharov system, cf. [BSSZ20]. In this section, we consider the Zakharov
system (2.1)-(2.2) on the one-dimensional torus T = R/(27Z) and improve the
approximation rate by constructing a higher order approximation with vanishing
mean value, cf. Section 2.1.3] Although our energy estimates are very similar to
the ones of [AAS&S], the higher order approximation allows us to reduce the number
of necessary energy estimates slightly.

Remark 2.1.3. The Zakharov system was introduced by Zakharov ([Zak72]) to
describe the propagation of Langmuir waves in an ionized plasma via the electric
field u and the deviation v of the ions’ equilibrium density. It can be derived

directly from and justified for Maxwell’s equation coupled with Euler’s equation,
cf. [Tex07].

Remark 2.1.4. The Zakharov system can be rewritten as a semilinear evolu-
tionary system for which local existence and uniqueness of solutions in Sobolev
spaces can be established using semigroup theory, cf. [0T92]. Going back to the
original variables for the Zakharov system -, there is local existence and
uniqueness for (u,v,dw) € H™ x H*™ x H* s> 0.

Remark 2.1.5. The local existence and uniqueness of solutions u € H®, s > 1, of
the NLS equation ({2.3)) is well known. It follows by using semigroup theory and a
standard fixed point argument applied to the variation of constants formula.

The approximation theorem is proved by using energy estimates and Gronwall’s
inequality. In the next section, we bound the residual terms appearing for the
Zakharov system.




CHAPTER 2. KGZ AND RELATED SYSTEMS

Notation. We use the notation from Chapter . Further, we write [ for [, and
H* for H*(T,K), unless otherwise specified.

2.1.2 Estimates for the residual
The residual of (2.1)—(2.2) is given by

Res, (u,v) = —2i0u + 0*u — uv,
Res, (u,v) = —£0%v + 02v + 02|ul?

and contains all terms which do not cancel after inserting the approximation into
the Zakharov system. If we directly choose v = —|u|* and u to satisfy the NLS
equation, the residual will be of order O(&?), which is not sufficient for our proof of
the approximation theorem, Theorem [2.1.1} Therefore, we introduce an improved
approximation which brings the residual Res, from O(g?) to O(e?). Inserting the
extended ansatz

Yy (x,t) = ug(x,t), Vo, 1) = vo(,t) + *vy(, 1) (2.4)
into the Zakharov system gives at €% that
2i0yug = xug — oo, 0 = 8w + 92 (|uol),

and at £2 that
8152?}0 = vag.

We choose vy = —|ug|? and then uq to satisfy the NLS equation

2i8tu0 = 8§U0 -+ Uo‘U,Q’g. (25)
Next, we set

Uo(k,t) = —k 2070y (k, 0) (2.6)

for k € Z \ {0}. In order to have vy well-defined, due to the periodic boundary
conditions, it is sufficient to show that the mean value of vy is conserved. This

holds due to
6t/v0 dx = —(%/ luo|? dz = 0,

which is the conservation of the L?-norm for the solutions of the NLS equation.
Therefore, we define v,(0,t) = v2(0,0). Since then, by construction all 9, "0} vy
for m € N, n € Ny are well-defined and have a vanishing mean value.

10



2.1. FROM ZAKHAROV TO NLS

Remark 2.1.6. The function v, can also be well-defined, if z € T is replaced with
x € R since

1
Ofvo = 7 (9 (juol®) — 402(0,u000) + 8 (Juo )
as well as ]
vz = 7 (02(uol*) — 4l0su0l* + luol") = v (o).

If ¢, and v, are defined as in (2.4]), we find for the residual that

Resy (Vu, 1hy) = —€%ugvy,  Resy(Yu, 1) = —'0}v,.
Thus, we directly obtain the following lemma.

Lemma 2.1.7. Let s > 0 and let ug € C([0, To], H**®) be a solution of the NLS
equation (2.3) with spatially 2m-periodic boundary conditions. Then, there exist
g0 > 0 and Cles > 0 such that for all € € (0,e0) we have

sup ||ReSu(¢u, 7vbv>||H5+4 S Cresg2; sup ||R€Sv(1pu, 7vbv)|

t€[0,To] t€[0,To]

4
Hs < C’res8 .

Proof. In order to estimate 0?vy in H®, we can use the representation of vy in terms
of ug, which can be found in Remark 2.1.6] and the NLS equation to express time
derivatives of vy by space derivatives of vy. Thus, the function has to be in H**6.
The rest of the proof is straightforward. O]

In the equations for the error, not only the residual appears but also J; 'Res,.
Hence, we have to estimate the term 0, 10%v,, too. As above, due to the periodic
boundary conditions, it would be sufficient to prove that the mean value of v is
conserved in order to have the term 9, '97v, bounded in some function space on
the torus T, but we already proved this above. Therefore, we have

Lemma 2.1.8. Let ug € C([0,Ty], H®) be a solution of the NLS equation (2.3)) with
spatially 2mw-periodic boundary conditions. Then, there exist € > 0 and Chps > 0
such that for all € € (0,g9) we have

sup ||8;1Resv(¢u,@/zv)||,;z = sup 84||8;18t2v2||L2 < Cese.
te[0,To] te[0,To)

Remark 2.1.9. For x € R a serious difficulty occurs at that point. In this case,
we have to choose vy = v}(ug) from Remark for which however we find

1
E?t/ vy dx = = / 000 Im(ug0,ug) dz # 0
R 2 Jr

after a straightforward calculation.

11
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2.1.3 Higher order approximation

For computing higher order approximations, in case x € T, we make the ansatz
n n
Yun(@,8) =Y ®ug(a,1),  honlz,t) = vy (x,t) (2.7)
k=0 k=0

with the goal to make the residual even smaller. Then, as before vy = —|ug|?
and ug solves the NLS equation (2.5)). For k£ € {1,...,n}, the functions ugy solve
inhomogeneous linear Schrodinger equations of the form

2i0yusy = O2tiay, — UUak — Uokvo — For(uo, . . ., Us(—1)),
and the functions vy satisfy
afvg(k,l) = 821)% + 8§G2k(UO, N ,ng), (28)

where Fy, and Gy, are quadratic mappings. Suppose that vy,—1) has a vanishing
mean value. We look for vy, having a vanishing mean value. Since Gy, in general,
will not have a vanishing mean value, we add a constant Sy € C to vy to get rid

of the non-vanishing mean value of Gy,.. We can do this since the constant will
cancel in (2.8). Then, we set

1

Vo — 8;281521)2(14,1) — ng(uo, e ,UQk) + % / ng(uo, PN ,u2k)<£L'> dl’ (29)

and

1
BQk - % / GQk(u07 cee au2/€)(x> dz.

Remark 2.1.10. It is unclear how to solve this problem for x € R. In space
dimensions d > 3, one may use that A= : L2N L' — L? is a bounded operator,
and that nonlinear terms will be in L' due to Cauchy-Schwarz inequality, if the
ugr, and wvqy, are in some Sobolev space.

We formulate the following lemma.

Lemma 2.1.11. Let n € N and s > 0. Further, let uy € C([0,Ty], H***"5) be a
solution of the NLS equation (2.3)) with spatially 2mw-periodic boundary conditions.
Then, there exist ¢g > 0 and Crs > 0 such that for all € € (0,e0) there is an

approximation (Y, ¥y,) of the form (2.7) with

sup HReSu(wu,n; 7~pv,n)||H3‘*‘1 S Cres€2n+27 sup HReSv(wu,na ¢v,n)’
t€]0,To) t€[0,T0]

2n+2
Hs S C’resg 3

and
2n+2
Hs S C’resg .

sup (|0, Res, (Y, Yon)|

t€[0,Tp)

12



2.1. FROM ZAKHAROV TO NLS

Proof. The term which contains the most derivatives in the residual is 9?vs,,. After
repeatedly replacing vq, with the right-hand side of , inductively the term
972n97" 2y, appears. We remark that vy = —|ug|? and that uy solves the NLS
equation (2.3), i.e., each time derivative of vy generates two spatial derivatives
of ug. Therefore, in order to estimate Res, in H*™!, we have to assume that
uy € H*T2"+5 The estimates for Res, in H* are straightforward. We note that
each term in Res, has either a spatial derivative in front or has a vanishing mean
value by construction. O]

2.1.4 Estimates for the error

Proof of Theorem [2.1.1. We introduce the error £?(R,, R,) made by the improved
approximation (¢, 1,) by

(u, 0) (2, 1) = (P, o) (2, 1) + €*(Ru, Ry)(x,1).
The error functions R, and R, satisfy

2i0,R, = O R, — Y Ry — YRy — RyR, + ¢ *Res,, (2.10)
e°0{R, = O2R,+ 02(VuR,) + 02(YuRy) + €202 Ryl + € *Res,.  (2.11)

Next, we follow [AA8S] and multiply the first equation with —iR, and integrate
this equation w.r.t. z. Since v, and R, are real-valued, we have

Re / iR,y Ry dz = 0, Re/iR_uRuRv dx = 0.
Therefore, adding the complex conjugate yields

d S —
&”RUH%Q = Re/iRu¢uRv dw—Re/iRus_QResu dz.

Further, we multiply the first equation with 9,R, and integrate this equation w.r.t.
x. By adding its complex conjugate, we find

d —
—52 /(RvRuatR_u + RUR_uﬁtRu) dx

—|—2Re/8tR_ue_2Resu dz.

13



CHAPTER 2. KGZ AND RELATED SYSTEMS

Multiplying the second equation with 9,20, R, and integrating w.r.t. z yields
1d 1,d

—— IR, |? Z
2dt|| Iz + 2% it

. / (O,R,) 0 Ry dar — / (OB, TR, dar — <2 / Ru[20,R, da

1010 R |22

+/(8;18t3v)3;1(5_2Resy)dx.

Adding these resulting equations gives

d
dt

= Re/iR_uquv dz — Re/iR_uazResu dx+2Re/8tR_u52Resu dx

1 1
(IRl + 100 Rl + SRR + 310 DI

- [WuRaT+ G oOR) Ao - [0 RO+ 0 OR,) da
—&? / (RyR,O R, + RyR,O:R,) dz — / (O R,y R, dz — / (0:R,) Yy R, dz
—¢? / | Ry|?0; R, d + / (0;'0,R,) (¢ *Res,) dz

= Re / iR R, dz — Re / iR,c *Res, dz + 2Re / O, R,e *Res, dz

dt

d
—l—/(@xlath)axl(azResv)dx — e~ [ RJR,)?dx

—% / YuRy Ry d + / (Op)y) Ry R, dz.

As a consequence,

E = ||RulL> + 10 Rullzz + | RollZz + %10, O Ro 12 +/%!Rul2dx

+/¢URUR_udx+/%R,,Rudx+52/RU|RU|2dx

satisfies the estimate

d .
= Wule=llRull 2l Rollz2 + € | Rl 2l Resul| 2

+2Re + ||8;18tRU||L2||8;1(6_2Resv)||L2

/ O R, *Res, dz

+2||at7v/}U||L°°||Rv”L2||RU||L2 + HatqvvaL"o“RuH%?‘

14



2.1. FROM ZAKHAROV TO NLS

, we replace 0;R,, with

In order to estimate the expression Re ' / O, R,e *Res, dz
the right-hand side of (2.10]). Integration by parts finally gives

Re

/ 0, R,e *Res, dx

= Re

/(azRu — Yy Ry — YRy — 2Ry R, + ¢ *Res, )e *Res, dz

< e || Rullm [Resullar + &7 lullnoe [ Rull 2 [ Resull 2
e [[Yull o | Rull 2 [Resull 2 + ([ Rullm | Boll 2 [ Resull 22 + &~ [ Resy 72
< C’OEQ/2 + Cresng + 02

res”

Hence, by using £'/? <1+ F and Lemma [2.1.8] we obtain

d
—E < Cy+ CLE + 2|0, 0, Ry |22 4 2|0, (e *Res,) |22

dt
< CyYF + Cs.
Consequently, with Gronwall’s inequality, we have E(t) < M for all ¢t € [0, T] for

a constant M = O(1). For ug sufficiently small but O(1), the square root of the
energy on the left-hand side is equivalent to the H! x L%norm of (R,, R,) . O

2.1.5 Higher regularity

The aim of this section is to give a proof of the following approximation result,
which gives estimates for the error in Sobolev spaces with higher regularity.

Theorem 2.1.12. Let s € Ny. There is a Cpap > 0 such that for all C, € [0, Crraz)
the following holds. Let ug € C([0,To], H**®) be a solution of the NLS equation
(2.3) with spatially 2w-periodic boundary conditions and

sup |Jug(+, t)||gs+e = Cy < 00.

t€[0,To]

Then, there ezist eg > 0 and C > 0 such that for all ¢ € (0,e9) we have solu-
tions (u,v) of the Zakharov system (2.1)—(2.2)) with spatially 2m-periodic boundary
conditions satisfying

s < Ce2.

sup [|(u, v)(-,t) — (uo, —[uo|*) (-, 1)]
te[0,To]

Proof. First, we apply the operator J; to the system (2.10)—(2.11). Then, we
multiply the first equation with 9,0;R,,, integrate w.r.t. z, and add its complex

15



CHAPTER 2. KGZ AND RELATED SYSTEMS

conjugate. Further, we multiply the second equation with 9720, R, and integrate
w.r.t. x. Adding the resulting equations together yields

1d
2dt

- / (02 (YuRy) 0,0 R, +8S(¢u )00, Ry ) A

S S 1 S—
Ha P Rullze + 5 100 Rz + 5 Ha 'O R, |72
- / (02 (Vo R, 0105 Ry + 02 (Y, Ry) 0,05 R,) A
_ / (02 (s Ra) 0,0 T + 2 (40y ) 0102 R)
—g? / (05(RyRy)0:0: Ry + 0%(RyRy)0:0: Ry + O3 (| Ru|?)0:05 R,) dz
+2Re/8t8;R_u5_28§Resu dx+/(82_18,5]%1})8;_1(5_2}{%@)dx.

In contrast to the proof of Theorem [2.1.1] the problematic terms on the right-hand
side cannot directly be written as a time derivative. Therefore, we have to rewrite
some terms on the right-hand side. For the first two integrals, we use the Leibniz
rule in order to get

/ (02 (¥u )00, Ry + O ($uR)0:0; Ro) da
s S " - — s S ) o
+ ; (k) /&C?ﬁu@x R,0,0; R, dx + ; <k) /awuax R,0,0°R, du

= % / V02RO R, do — / O, 0: RO R, dx
+y (Z) / O, R, O,0°Ry A
k=1
+ 4 Z ° / (b FRyO5R,) dar —
dt 2= \k o¥uls " Tuletty
- % / 02 (1buRa) R, dar — / Dbud R,O° R, dz

+Z( )/akwuas *R,0,0 R, du — Z( )/at (k20,0 Ru) LR, da.

k=1 k=1

S

(1) [oetue: rezn, o

k=1

The third integral will be estimated subsequently. For the fourth integral on the

16



2.1. FROM ZAKHAROV TO NLS

right-hand side, we again apply the Leibniz rule and obtain
/ (92(RyR,) ISR, + 05 (RyRy) D05 R,, 4 03(| R} 00 R,) da

= / (R, O:R,0:0: R, + O R,R,0;0° R, + R, R,0;0: R, + 0:R,R,0;0°R,) dz

S s L L
+> (k) / (OFR, O R,00: R, + OFR,0:"R,0,0: R,,) dw
k=1

s—1
S I
+> (k) / " R,05"R,0,0° R, du
k=1

d — — — S
=3 (R.O:R, R, + O:R,R,O:R,) do — / (O, R,O:R,O: R, + O R, O R,O:R,,) do
s s—1
+ 2Re (Z) / 0RO R0,0: R, dx + (2) / OFR,0°"R,0,0° R, dz.
k=1 k=1

Besides, we define the energy £ = E + E , where
~ 1 1
B = 057 Rullfs + 51 03Ruls + 562103 3
s [@ROR, + 2 R)OR,) b
+ &? / (RWOER,OER, + O°R,R,03R,) dx.
Then, for uy sufficiently small but O(1), £ is equivalent to the H*™! x H*-norm
of (Ry, R,). We remark that the term 0;0;R, cannot be estimated directly by
the energy & since the term 9¢T2R, occurs after replacing the time derivative by

the right-hand side of (2.10). However, via integration by parts, we can shift the
derivatives away from these terms. Thus, the energy E satisfies

d~ 9
—F = I
dt ; 7

17



CHAPTER 2. KGZ AND RELATED SYSTEMS

where
1| = 2|Re / Oyu0 R, By | < C0y0u | Rol | Rull
11| =2 Rez (Z) / 0p (0,057 * R, 0,057 Ry, dxz| < C||[tul| osr || Rol| 24| 0¢ Rea| r1o-1,
k=1
S s L
I;] =2 |Re / 0, (0F4p, 05 *R,)OER, dar
EEELDY (1) [oetnem
< C(10sull s | Rl =1 + [0l 225 || Oc R zrs=1) | R || 125,
’]4| =2 Re/aas:—i_l(vau)ata;_lR_udx S C||¢u| HS+1||Ru| Hs+1||atRu| Hs—1,
|I5] = 2¢? Re/@tRuﬁijﬁjR_udx < CY|0,Ru|| 2| R || 15 || Rua | 1541
15| = 26° [Re ) | (Z) / 0x(0F R, 057 R,)0,0:7 R, dw| < C2|| Ryl st || Rol| 1151 0s Rua | o1,
k=1
s—1 s
|I;| = & Z (k) / 0p(0F R, 057" R)0,0° Ry da| < C2||Ryl| ot | Rl 41 || 0005 Ry || 12,
k=1

< Ce?||0,R.|

|Ig] = 2 ‘Re/aﬁj_lR—ue_zaiﬂResu dz ms—1||Resy || ms+1,

< 06_2H3t8;_1RUHL2||Resv|

Hs—1.

|Lo| = ’/(ai_lath)ai_l(€_2Resv)dx

We note that £Y/2 < 1+ €. Since R, satisfies (2.10)), it follows that

|0y Ry o1 < C + CEY? 4 CEE.
Using Lemma and the calculations from the previous section, we can conclude
d
—&ELSCE+C
dt — *

for e£3/2 < 1. With Gronwall’s inequality, we have £(t) < M for all ¢t € [0, Tp] for
a constant M = O(1). Finally, the result follows from choosing ¢y > 0 sufficiently
small such that eqM3/? < 1. ]

Remark 2.1.13. For u; in a Sobolev space with sufficiently high regularity, the
approximation rate can be significantly increased in both Theorem and The-
orem [2.1.12] In the following, we outline how to achieve this. Unlike in Section
2.1.4] for the error we make the ansatz

(u, 0)(@,t) = (WYums Vo) (@, 1) + 7 (Ru, Ro) (2, 1)

18



2.1. FROM ZAKHAROV TO NLS

where 8 > 2 and (¢ n,Yyn) is the higher order approximation (2.7). Then, the
error functions R, and R, satisfy

zzatRu = aiRu - quv - vau - gﬁRuRv + 57/6Resu(wu,na w’v,n)a
207 R, = 2R, + O2(V,Ry) + 2 (v Ry) + P 2| Ru|” + € PResy (Vs Yun)-

The energy estimates are analogous to those in Section [2.1.4] and Section [2.1.5] In
the time derivative of the energy £, the term which loses most powers of ¢ is given
by

/(8;18th)8;1(55Resv) dz.

With Lemma [2.1.11] we can choose 8 = 2n + 1 in order to obtain

< Ce ™Y Res, || g Y2 = CEV2.

‘/(a;_latRu)ai_l(ﬁ_ﬁResv)dx

In total, we have the following theorem.

Theorem 2.1.14. Let n € N and s € Ng. There is a Cper > 0 such that for all
Cy € [0,Chaz) the following holds. Let ug € C([0,Ty], HS2") be a solution of
the NLS equation (2.3|) with spatially 2m-periodic boundary conditions and

sup ||u0(~,t)| gstents = Oy < 00.

t€[0,To)
Then, there ezist eg > 0 and C > 0 such that for all ¢ € (0,g9) we have solu-
tions (u,v) of the Zakharov system (2.1)—(2.2)) with spatially 2m-periodic boundary

conditions satisfying

sup ||, v) (1) = (Yugns Yon) (O [ xms < C™ L
te[0,To]
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CHAPTER 2. KGZ AND RELATED SYSTEMS

2.2 From KGZ to Zakharov

2.2.1 Introduction

In this section, we consider a KGZ system on the real line with a small parameter
¢ > 0 such that we obtain a Zakharov system in the limit € — 0. The proof of the
corresponding approximation result is similar to the one in Section [2.1], where we
have considered the limit from the Zakharov system to the NLS equation. However,
in the limit from the KGZ to the Zakharov system, an additional difficulty is the
elimination of oscillating terms by applying a normal form transform.

Remark 2.2.1. The KGZ system is a model from plasma physics which is used to
describe the interaction between so-called Langmuir waves and ion sound waves in
plasma. Here, v(x,t) is proportional to the ion density fluctuation from a constant
equilibrium density and w(z,t) is proportional to the electric field. It is derived
from a coupled system that consists of the Euler equation for the electrons and ions
and the Maxwell equation for the electric field. For details, we refer to [Tex(7].

We consider the KGZ system in the form
202 = 0%u — e *u — uv, Otv = 02v + 02 (|ul?) (2.12)

with u(z,t) € C, v(z,t),z,t € R, and 0 < € < 1. This corresponds to the spectral
situation in Figure

Figure 2.2: The spectral situation corresponding to the linearized KGZ system
with k € R. It is solved by u(x,t) = e**Tws1)t and y(z,t) = ekr+ws2(bt where
wii(k) = £672/1 + (ek)? and wis(k) = £k. We emphasize that w; asymptoti-
cally scales like 7! |k|.
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2.2. FROM KGZ TO ZAKHAROV

In the singular limit € — 0 with the ansatz
w(, t) = W, (z,t) = (2, ) v(z,t) = ,(x, 1), (2.13)
the Zakharov system

can be derived from the KGZ system (2.12)). Our goal is to prove that the Zakharov
system (2.14)) correctly predicts the dynamics of the KGZ system ([2.12)) for small
values of € > 0. Specifically, we have the following approximation result.

Theorem 2.2.2. Let s € N. There is a Cpae > 0 such that for all C,,C, €
[0, Croaz) the following holds. Let (1,1,) € C([0,Ty], H*® x H*™) be a solution
of the Zakharov system (2.14) with

sup ||ul||gs+s =: Cyy < 00,  sup |1y
te(0,To) te(0,To]

Hs+4 = Ov < 0.

Then, there exist g > 0 and C' > 0 such that for all € € (0,g9) we have solutions
(u,v) of the KGZ system (2.12)) satisfying

sup | (u,0) — ($ue® " 10,)|

t€[0,To)

s < Ce2.

Remark 2.2.3. The KGZ system can be written as a semilinear evolution-
ary system. The local existence and uniqueness of solutions (u,v) € H**1 x H*,
s > 1, of the KGZ system follows with a standard fixed point argument applied
to the variation of constants formula, cf. [DSS16].

Remark 2.2.4. The Zakharov system can be written as a semilinear evolutionary
system [Sch19] for which we have local existence and uniqueness in H*~! x H* x H*,
s > 1, using semigroup theory [Paz83|]. Reverting to the original variables of
the Zakharov system , we then have local existence and uniqueness for
(u, Yo, Othy) € HST x H® x H*™1, cf. [OT92).

Remark 2.2.5. The Zakharov system can be used for a robust numerical descrip-
tion of the KGZ system for small values of . Resolving the highly oscillatory
behavior of the solutions in this regime is numerically very delicate. Severe time
step restrictions have to be imposed, which results in high computational costs.
However, this can be avoided by passing to the regular limit system, cf. [BSS20].
This also applies to all other limits that are considered in Section [2]

Remark 2.2.6. This approximation question has been addressed in a number of
papers, cf. [BBCI6, [CEGT04, [Sch19]. In [Tex(7], the Zakharov approximation has
been justified for the original Euler-Maxwell system.
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Remark 2.2.7. For the KGZ system, many different singular limits have been
considered and a number of approximation results have been established in the
literature, cf. [BBC96, MNO02, MNO05, [MNOS, MN10]. In particular, the same
ansatz has been considered in [BBC96]. However, the focus of [BBC96] is

on convergence and not on error bounds.

Remark 2.2.8. The proof of the approximation theorem given in this section
only holds, if the nonlinear part on the right-hand side of the u-equation of
has a negative sign. In [Sch19], the Zakharov approximation of the KGZ system
is justified under the assumption that the solutions of the Zakharov system are
analytic in a strip in the complex plane. There, the proof holds in both cases.

Notation. We use the notation from Chapter . We write [ for [, and H* for
H*(R,K), unless otherwise specified.

2.2.2 Estimates for the residual

First, we want to estimate the residual that contains all terms which do not cancel
after inserting the approximation into the original system ([2.12)). Inserting the
ansatz (2.13) into the u- and v-equation yields

528§¢u + 2Z(9t¢u = @%wu - Zﬁu%, at%bv = ang + a§(|wu‘2)

We choose (1, 1,) to satisfy the Zakharov system (2.14)). The remaining terms
are collected in the residual, namely,

ReSu(‘Pm%) = —6281521%“ RG‘SU(\IJU, %) =0.

In order to estimate the residual, we substitute e20%¢, by the right-hand side of
the first equation of ([2.14]). More precisely, we have

H8t2¢u‘ Hs+1 = C’H(‘)t (a§¢u - lﬁuwv) \ Hs+1
= C“%(dﬂ#u) — Ophuthy — ¢uat¢u| Hs+1
< Cl|07(5thu — Yutpo) [l + Cll(thu — uth)tho s
+ Ol |
< Oldbullmsss + Ol
+ Cll¢by ]
+ Ol

Hs+1

T
e (ullazess + [ullazess 195 o)
ms+1]| Oy |

Here, we can bound 0,1, in H**! since 0,4, € H**3 as a consequence of Remark
and the assumptions on (¢, 1) given in Theorem [2.2.2] Thus, we have

shown the following lemma.

H5+3

Hs+1 .
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2.2. FROM KGZ TO ZAKHAROV

Lemma 2.2.9. Let s > 0 and let (¥, ,) € C([0, To], H¥™ x H**) be a solution
of the Zakharov system (2.14]). Then, there exist £g > 0 and C\es > 0 such that for
all € € (0,e0) we have

sup [|Resy(Wy, )| ms+1 < Clrese?, sup [|Res,(¥y, ¥y)||ms = 0.

te[0,To] t€[0,To]

2.2.3 Higher order approximation

We can make the residual arbitrarily small by constructing a higher order approx-
imation. Consider the system

207w + 2i0w = OPw — wv, v = 0%v + 02(Jw]?).

For n € N, we make the improved ansatz
n n
w = ¢u,n = Zgzkak, v = wv,n = Z €2kU2k. (215)
k=0 k=0

Then, (wo,v9) = (Yu,1h,) solves the Zakharov system ([2.14) and (wa, var), k €
{1,...,n}, solve linear inhomogeneous Zakharov systems of the form

2i0way = O2Wap — Wty — WoLay — O Wa—1)
- FQk(w07 ooy Wo(k—1), Vo, - - - 7U2(k—1))7 (2'16)
07 vag, = O2vay + 02 (WarWo + Wagwo) + 2 (Gog(wo, . . ., Wagk—1)))s

where Fy, Goy, are quadratic mappings. Hence, all terms up to order O(e*") cancel
and only terms of at least order O(¢2"*2) remain. The term which contains the
most derivatives in both Res, and Res, is 8fw2n. We replace the time derivative
with the right-hand side of the first equation of . Then, the term Qf’wz(k_l)
appears. After repeating this process n times, the term 07" %w, appears. Further,
we repeatedly replace the time derivatives of wy with the right-hand side of the
first equation of the Zakharov system (2.14)). Then, the terms 02" *w, and 92"
appear. Therefore, in order to estimate Res, in H*T!, we have to assume that
wy € H* 25 and vy € HT2"+3. The estimates for Res, in H* are straightforward.
We note that, by the choice , each term in Res, has a spatial derivative in
front. Thus, we can conclude the following lemma.

Lemma 2.2.10. Letn € N and s > 0. Further, let (1,,,) € C([0, Ty], H¥T2"5 x
H2"3) be a solution of the Zakharov system (2.14). Then, there exist ey > 0

and Chres > 0 such that for all ¢ € (0,g0) there is an approzimation (V. ,, Vyn),
where ¥, ,, = @Du,ne“—% and where (Vyn, Yypy) is of the form (2.15), with

sup ||Resu<\llu,n7 ¢v,n)||HS+1 < Cres€2n+27 sup HReSv(\I]u,nv ¢’U,n)|
t€[0,Tp)] t€[0,T0]

2n+2
Hs S Cvres8 9
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and

sup |0, ' Resy (W, Yol s < Crese® 2.
t€[0,Tp]

2.2.4 Error equation and normal form transform
We write the KGZ system as
Ot = —wiu — e 2uw, 020 = —wiv — w3 (|ul?),

where, in Fourier space,

wik) = e 2(K* +72) =41 + (¢k)?), w; (k) = k2.
We define the error £2(R,, R,) of the approximation (¥,,,) by

(w,0)(w, 1) = (W, ) (,8) + *(Ry, Ro) (2, 8). (2.17)

The error functions R, and R, satisfy

O'R, = —w!Ry — e (VU Ry + YRy + 2Ry R,) + € “Res,,
PR, = —wiR, — wi(V, R, + VU, R, + &°|R,)?) + £ *Res,.

We rewrite this system as the first order system

GtRu = iwléu,
&ﬁu = iw Ry — e 2(iwy) (U Ry + Yy Ry + 2Ry R,) + ¢ *(iwy) ' Res,,,
(9th = iWQEU,

Ry = iws Ry + iws(Vy Ry + Wy Ry + 2| Ru|?) + £ 2(iws) ' Res,.
By introducing

R,=Ri+R.1, Ru=R,— R, tesp. 2R, =R, + Ry, 2R_1 = R, — R,
R,=Ry+ Ry, Ry=Ry—R_o rtesp. 2Ry =R, + Ry, 2R_o = R, — Ry,

we diagonalize this system and find for Ry, and R4,

atRil = iiwlRil + 5_2(2iw1)_1 (\Ifu(Rg + R_Q) + ¢U(R1 + R_l)

+ 52(R1 + R_l)(RQ -+ R_g)) + 5_4(2iw1)_1Resu,

. 1 - = = (2.18)
OiRyg = Fiws Ryy £ 5w2 (‘I’u(Rl +R_1) + V(R + Ry)

+ &2|Ry + R_1|2) + 7% (2iw;) " Res,.
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2.2. FROM KGZ TO ZAKHAROV

In order to estimate the solutions of this system, we split the right-hand side into
terms which can be handled by energy estimates, collected in B;, terms which
can be handled by normal form transformations, collected in By, and terms with
sufficiently high order in €, collected in G. Thus, we can write the system as

OR = AR+ B (¥, R) + By(¥,R) + G(V,R) + e *RES(¥),

where
R = (Ri,R_1, R, R5)", A = diag(iwy, —iwr, iws, —iws),
U= (wb 1?71, 7wb27 wa)T = (\Ijuvﬁua wva —%)T,
and
—5’2(2iw1)*1(‘11u(R2 + R_Q) + Q/JUR;[ + 52R1(R2 + R_Q))
B (‘1/ R) _ 5‘2(2£w1)_1(va_,1 + €2R,1(R2 + R,Q))
Y giwa (Wl + Uy Ry + (R * + [R4]?)) ’
—%iWQ(\IIuRl + \IfuRl + 62(|R1’2 + ‘R,1‘2)>
—£72(2iw1) " (Yo R1)
6_2(2’iw1)_1(\11u<R2 + ng) + val)
Bo(¥,R) = Lion(T Ry + U, R_) 7

_%iWQ(EuRfl + \I/uﬁfl)

Q(\Il, R) = (gl(\p7 R>7 gfl(\Ilv R)v gQ(‘P7 R)? g*2<\p> R))T
—(2iw)) Y R_1(Ry + R_3))

(i) (R + R3)
| i RE) |
_%827:(&]2(R1R71 + RlRfl)

<2iw1)_1ReSu(\I}u> %)
—(2%01)_11:{68“(\11”, wv)
€%(2iws) ' Res, (W, 1)
—&2(2iws) " Res, (U, 1)

RES(T) =

(i) G(V,R) contains all terms which provide high enough orders w.r.t. ¢ and
cause no difficulties in arriving at the O(1) time scale. More precisely, by

using
2w (k) =/1+ (k)2 >1  forall k € R,
and assuming (¢, 1,) € H*™ x H*™ we have

e < Ce?||R_4|

e < |lefwign| me+1|| R + R_o|

1911 Hs s
lg-1llzs < ll®wrgallas < Ce?|| Ryl ot || Ry + Ra| s, (2.19)
g2l s < C2|| Ryl gsa || Roa || o, '
lg—2llzzs < C®|| Ryl o | Ry o
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(ii) In order to get rid of the O(¢7?) terms in By, we use normal form transforma-
tions. We aim to eliminate By with the near identity change of coordinates

R =R+ Q(T,R),

where R = (El, R_1, R, E,Q)T. Here, Q = (91,9 1, Qs, Q »)T consists of
bilinear mappings Q;, j € {1, +2}, which, in Fourier space, have the form

QU R) = > Qi Ry)

Ji,J2€{£1,£2}

with
B By) = / G0k — DR, dl, € {+1),

and

~

/Q\J}jlyh ({p\ju ﬁjz) = /q]'7j17j2(k)’g/b\_jl(k — l) o (l) dl
+ /q;:jh]é(k){p\jl (k - l)ﬁ_jz<l> dl, ] < {:i:Q}

We also write

Q(\I” R) = Z leij (wjd ) Rjz)?

Ji,je€{£1,+2}

where Q;;, j, are the components of Q; j,. Using the bilinearity of Q, we
obtain

R =R+ QO,¥,R) + Q(¥,)R)
= AR — AQ(U,R) + QA(0)¥, R) + > iw;, Q;, (15, Ry,)
Ji.J2

+ Q(8,¥ — A(0)¥,R) + Q(V,9,R — AR)
+ Q(\Il7 AR) - Z iij thjz (%’n Rjz)'

Ji,J2

In order to eliminate the problematic Bs-terms, we want to choose Q in such
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2.2. FROM KGZ TO ZAKHAROV

a way that the underlined terms cancel. Hence, O has to satisfy

By(¥,R) = AQ(¥, R) — Q(A(0)¥, R) — ) " iw;, D, o (151, Ryy)

J1,J2
= Z AQJ'LJ'Q (¢j1v ]2 Z 2(’")Jl Qh 22 w]l» Jz)
J1,J2 J1,J2
- Z in2 thjz (¢j1> Rjz)
J1,J2
= Z th iw]’z I) le \J2 (wjl ) Rjz )7
J1,J2

where I denotes the unit matrix. In Fourier space, this leads to

120 (F) = €7 s o () F l0) + ()
(k) = g () + 1 (0) £ ()

1) = g 4 (8) = Sen(B) (k) e (0) + (),
G2 ()= oy 1 (F) = sl eak) = a(0) — ()

The remaining coefficients are set to 0. In order to show the boundedness of
the mapping Q, we need the following lemma.

Lemma 2.2.11. Let s > 0 and let h € (H*(R,C))*. The mappings R
Q41(h, R) are continuous from (H*(R,C))* into H**(R,C) and the mappings
R — Quis(h, R) are continuous from (H*(R,C))* into H*(R,C). In particular,
there exist £9 > 0 and C > 0 such that for all € € (0,ey) we have

1Q1 (7, R)|
1Qu1(h, R)[[ gz < Cellhl|zreys
1Qu2(h, R)[|ms < Cel[ha]|s15)s

Hs S C€2HhH(HS)4||RH(HS)4;
IR || (r2)4, (2.21)
|R||(Hs)4

Proof. Let k € R. We recall that w (k) = e2\/1 + (¢k)? and wy(k) = k. In order
to prove (2.21)), we have to bound the functions (1 + | - |)gx1,,., and guo;, j, for
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J1,J2 € {£1,£2}. By using /1 + (¢k)? > e|k| > +e2k, we obtain

1

2

\%1,2;1(’“)‘

2¢/1+ (k) \/1+

1, |k 1

1
(k)2 F 0+ /1 + (ek)? 41+(5k)2

elk| < 1

|kllgz1251(k)| = —¢ — e

47 14 (k)2 4
1

1+ (ek)? — 15

2
€ 12

|Q—1,1,j:2(k)| =

1 elk
|k||Q—1,1,j:2(k)| | |

2¢/1+ (ek)? /1 +

(ek)?+1+e%k 2

1

'_l

2° V14 (ek)2 1+

Thus, it directly follows that

sup
j1,j2€{£1,+2}, keR

|qj:17j17j2(k)| =

Further, the function

1 k

P +1+e2k 2

sup (L [R])g1,51,50 (R) | = O(e).

j1,j2€{+1,+2}, keR

L,

(k) ==
221-1(k) 2k +e2+e2

is strictly increasing as

d 1, 1

Q2,1,71(]<7)

k
= ¢
2 1+ (ek)?+1+e%

+ (ek)?

1+\/1+ (ek)?

dk
Thus, ¢21,—1 is O(e) bounded since

2° V1+ (ek)?

(V1+

2+ 1+e2%k)?

1 €

1
lim ¢o1,-1(k) = —5 lim
k—o0

koo k2 4 €2 4+ k1 + &2

P R

—1 €

1
lim g1 -1(k) = —5 lim
k——o0

ko0 /R €2 4 kL —

“o-n ~9Ek

By analogous calculations, the remaining function g_5; _; is strictly decreasing

and O(e) bounded. Thus, we get

sup |g22,j1.52 (F)] = O(e).
Ji,J2€{£1,£2}, keR
The assertation now follows from the multiplicativity of the H®*-norm. O]

With Lemma [2.2.11] we conclude that R is a small perturbation of R. In partic-

ular, we have that
| R —
| Re1 —

R:l:Q”Hs S CEHRH(HS)AL,
R4

(2.22)
Hs+1 S C€||R||(Hs)4.
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2.2. FROM KGZ TO ZAKHAROV

Thus, the normal form transformation is invertible for ¢ > 0 sufficiently small.
After the elimination, according to the calculations in ([2.20]), we are left with

R = AR+ By(U,R) + H(¥,R) + e *RES(¥),

where

HU,R) = (hi (¥, R), h_1(V,R), hae(¥,R), h_o (¥, R))"

(2.23)
= 81+ S9 + S3+ S4 + S5

with

s1= Q0¥ — A(0)V, R),

55 = Q(U,0,R — AR),

s3 = B (¥, R) — By (¥, R),

sy =G(V,R),

s5= QW AR) — > iw;, Q5 (1), Ryo)-
J1,J2

With the help of Lemma [2.2.11], we can bound H(¥, R) in (H*)* given the assump-
tion that (@Du, %) € H5 x H*t* and (Rl, R_1, Ry, R_Q) € HSH x HsHU x H® x H*.

Bound for s;:  Via (2.21)), we get
[51][(rzsys = | QO — AO)W, R) || (srsys < Ce|0p¥ — AO)Y || (groya || R | (14
It is to note that w;(0) = 72 and wy(0) = 0. Therefore, we estimate

1008 — AO) | sreys < ClO1(ne™ ™) — it (0) e’ ™|
= C0bull s + C|| 0o -

ms + C||0hy, — twa(0)1y |

Hs

By exploiting that (t,,,) solves the Zakharov system (2.14)), we obtain

10bull s < CNOZullms + Cllwtbullms < Clltpullzssz + Cllabo || ars |3l s

With Remark [2.2.4) we have ||0;1,|| s < C. Thus, we conclude

H81’|(HS)4 < CEH,R’H(H‘)‘I
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Bound for s;: With (2.21)), we first get
||52||(H5)4 S C’eHE)ﬂQ — AR||(H5)4
Further, we estimate

||8t7€ — ARH(HS)AL S C(||8tR1 — iW1R1|

Hs + ||8tR2 — iW2R2|

He)
by replacing the time derivatives 0;R; and 0;Rs with the right-hand side of the
error equation (2.18). With Lemma and Sobolev’s embedding theorem, we
directly obtain
||8tR — ARH(HS)‘* < C(l + HR||(H3)4 + ||R1||Hs+l + ||R_1|
+ ([ Rillgssr + || R

Hs+1

o) [R ey,

which gives us a bound for s,.

Bound for s3: We divide the term s3 into a linear and a nonlinear part, i.e.,

s3 = sim 4 stonlin . By linearity, we can express s" as a function of the difference

R — R, which we can replace with Q(¥,R). Thus, with Lemma [2.2.11] we can
estimate the linear part of sz in (H*)* by

HS?”H(HS)4 S O€||R”(Hs)4.
Using ([2.22), the nonlinear part in s3 can be estimated by

| 4 S C€Q(||R1| Hst+1 ‘l‘ ||R_1| Hs+1)||R2 + R_2| Hs
+ 082(||R1| 2Hs+1 + ||R_1| 12qs+1) + 0(63).

nonlin
83

s

Bounds for s;: With (2.19)), we have
Isallzreys < C*(|| Rl e+t ) ([ Rl zoys + [ Ra

Hs+1 + ||R_1|

e+ | Ryl

Hs+1 ) .

Bounds for s;:  Subsequently, w.l.o.g., let j € {£1}. With the triangle inequal-
ity, we obtain

(Q5(T,AR) = iw;, Qjjrjo (U Rin)) ()

J1,J2

S [ ) = i, )35, = DR (D

< sup OIS / w3, (K) — w3, (D15, (6 — DI Ry, (1) .

je{£1},j1,j2€{£1,£2},keR i

N
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2.2. FROM KGZ TO ZAKHAROV

Next, we use the relation
jwi (k) —wi ()] < —Ik Uk +1 <5 (Iff — 1+ 201k = 1])
which follows from a Taylor expansion, in order to obtain
|11 = r01n - - Resy |
< H/—r T (-~ DR ()

H/’ 1y, (- = DU R (1) I

HS
< §||3§?/)j1| s || Rt || s + ||5z¢j1| o
< O, | s+ || Rt || mrs+r.
By using |wa(k) — wo(l)| = |k — ], we find
H [ bin) = a0 = DRty H [ 115 = DRty
Hs

S ||¢Jl|

Thus, we only generate terms of order O(1) when replacing wj,(l) with wj, (k).
Moreover, since

sup (45515 ()| = O(e),

Jujt,g2€{£1,£2} kER
we conclude

H Q(\Ija AR)_Z iij ij]é (ij Rj2> H(Hs)4 < 05<”R”(HS)4+HR1|

J1,J2

Hs+1+||R_1|

H5+1 ) .

2.2.5 Estimates for the error

In this section, we want to prove Theorem [2.2.2l The proof is a non-trivial task
since we have 9?u = O(e™?), while solutions have to be bounded on an O(1) time
scale. The idea is to derive an energy & with € = O(1) in order to control
the O(¢72) terms. We consider the system resulting from the elimination in the
previous section

R = AR + By (U, R) + H(¥,R) + e *RES(¥).

In the following, we make the ansatz Ry, = Waijet® *t. The idea behind this
ansatz is to shift the linear operator w; of the KGZ system (2.12) by —e~2 such
that, in Fourier space, the resulting operator &; = w; — £~ 2 touches the origin.
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Then, the spectral situation corresponding to the linearized KGZ system for the
new variables W, is similar to the one of the Zakharov system from Section ,
cf. Figure 2.1] and Figure 2.2l The reason for this is that, in Fourier space, the
linear operator from the Zakharov system is the second order Taylor expansion of
w1 at the wave number £ = 0. Hence, we can adapt the proof of the approximation
result in Section to the situation here. The ansatz yields

AWy = i Wy — e 2(2iw;) " (wu(ég + R_y) + Wi + Wi (R + ﬁ_g))
+ hi (¥, R) + ¢ *(2iw;) 'Res,,
8tW_1 = —2'531W_1 + E_Q(inl)_l (@/JUW_l + €2W_1(§2 + §_2)>
+ h_1 (U, R) — e *(2iw;) ' Res,,
_ - 1 .
atR:tg = :]:iCUQR:tQ + éiWQ (wuwl + wuwl + €2|W1‘2 + €2|W_1’2)
+ hio(U, R) £ e %(2iwy) 'Res,.
Defining the variables
WU = ég —+ E,Q, Wq - EQ - E,Q
allows us to write the error equation as
oW1 = i Wy — &% (2iwr) ™" (YW + Y, Wi + Wi W)
+ hi (U, R) + & *(2iw; ) 'Res,,,
6tW_1 = —Z'LAJ1W_1 + 5_2(2iw1)_1 (¢UW_1 + €2W_1WU)
+h_1 (¥, R) — e *(2iw; ) 'Res,, (2.24)
oW, = 0. W, + ho(V,R) + h_o(V,R),
Wy = Wy + 0, (W1 + G W1 + W1 + (W, )
+ ho(U,R) — h_o(¥, R) + £ 20, 'Res,.
We observe that there are no more terms with a factor e¥ ** as all oscillatory
terms have already been eliminated by a normal form transformation. This is
necessary for the following energy estimates since we will rewrite some problematic
terms as time derivatives. The next step is now to derive an energy. For this, we
first apply the operator 9., with [ € {0, s}, to the error system (2.24). Multiplying

the resulting W.,-equation with 0.W.,, integrating this equation w.r.t. z, and
adding the complex conjugate yields

d _ L
EHa;vmn; = Im / (e%w1) TLOL (P Wy + Y, W 4 2 W W) 0L W, dae

+2Re/8ih1(\P,R)8iW1dx+Im/5_4(w1)_16iResu6iW1dx
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and
d L
Euaiw,ln‘; = —Im/(a%l)la;(wvwl + 2 W_ W) 0LW_, dz

+ 2Re / OLh (U, R)OW_; dz — Im / e (w1)*OLRes, OLW_ da.

Multiplying the W4 -equation with 2ic?w; 0.9, W4, integrating this equation w.r.t.
x, and adding the complex conjugate yields

d _ —
2825/w18iW1w18iW1 dz
_ / (0L (s TV ) TTr + O (W) 0T, + 2200 (W, V1) 0,077 da
— / (0L (Y, W) 0,0 W 4 L (W) 0,0L Wy + €204 (W, W), 0L W) de
— 4Im / OLhy (¥, R)e*w, 0.0, dz
+ 25_2Re/8iResu8i8tW1 dz
and
2 d ~ Al LT17
2e &/wlazW_lwlamW_l dx
= — / (DL (W, W_1)0,0LW_| + 20L (W, W_1)0,0.W_ 1) da
- / (L (W )00 Wy + 2L (W, W_1)0,0LW_1) da
+ 4Im/Bih_l(‘I/,R)gwl&i@tW_l dz
+2:7?Re / 0. Res, 0LO,W_, dz.
Here, we can write
! ~ Al T d ~ gl 2 I+1 2
2¢e E wlﬁxWilwléxWil dox = E (nglamWiIHL? + ||8$ Wj:lHLQ)

due to the relation
2e%w1 () (-) = (e@n(-))* + (),
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We multiply the W,-equation with 9,0.1W, and the W,-equation with 9,0.~1W,
and integrate the equations w.r.t. . Summing the resulting equations yields

1d — —
5 1EWallze + [0 7) = — / (0% (W) DLW, + 8, (W)L W,) da

- oW PRI, + oW P00 da
+/a;(h2(xp,n) +h (U, R))0:0 W, da
+/a;(h2(\11,7z) — h_y(¥,R))0,05 W, da
+ 62/821Resv8tﬁilwv dz.

Then, we define the energy £ by £ = Ey + E + F, with

1 1
Ey = | 0iWA3: + [|0SW 1|72 + §HaiWqH%2 + 5’\3§;Wv’|i2
+ [|e@r W 172 + e O W1 172 + |05 Wh |72 + |05 Wy |7

and

E. - / (AW, + TV, + (WA 4 [Woa2) (4, + €2T0,)) da
s [ @I, + 02V, do
+ &2 / (WL W, 05 Wy + W1OEW,05 W) dae
+ e / (W_ W, 5y + W0 W,0W_y) da.

In Section [2.2.6] we will explain in detail where the part F, of the energy £ comes
from. There, we also find some auxiliary calculations in order to understand the
following representation of the time derivative of the energy £. With the results
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from Section [2.2.6 we obtain

d d l L T17 [ 17 [
TE=gb- le%js} ( / (0L (1, W) 0, 0L TV 4 0 (40, W) D,0L W) d

b [ @ 0T + oL T )0 ) da

+ [ W00+ LTI, o

+ / (0L (LW, 0, 0L W + 0L (0, W1)D,0L W) da

w2t [0V + 2LV, + DLW 0L, o

+ &2 / (OL (W, W_1)0, 0L W_| + 0L (W, W_1)0,0.W_y + 0L (|W_|*)0,0L W) dx)

11
2

1€{0,s} i=1

8 11
:Ztﬁ— Z Zrl,i-

i=1 1€{0,5} i=1
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Here, tq, ..., tg are given by and
Ty = Im/(&tzwl)l&i(%Wv + Y, W + W W)L W, da,
o =~ [ (%n) 10TV + ST )OIV
13 = —4Im / Ly (U, R)e2w, 0.0, W du,
714 = 4Im / OLh_1 (¥, R)e*w,0L0,W_; du,
Ti5 = 25_2Re/8iRquﬁiﬁtW1 dzx,
T = 27 2Re / 8LRTsuﬁiatW_1 dx,
17 = 2Re / OLhy (¥, R)OLW, du,
rs = 2Re / OLh_1 (U, R)O-W_, du,
Tig = Im/5_4(w1)_18iResuaiW1dx,
10 = —Im/5_4(w1)_18iResu8iW__1dx,
T = / O (ha(U, R) + h_o(¥, R))0;0L ' W, dx
+ / O (ha(¥,R) — h_5(¥, R))D, 0L W, dz

+ 8_2/855_11%681,3,58;_1“/@ dx.

Energy equivalence: The following lemma shows that the square root of the
energy £ is equivalent to the H*T! x H*T! x H* x H*-norm of the error functions
(R1, R_1, Ry, R_5) for sufficiently small ¢ > 0 and under additional assumptions
on the functions v, and 1,,.

Lemma 2.2.12. Let s > 0. There is a Cpar > 0 such that for all C,,C, €
[0, Crnaz) the following holds. Let (1., 1,) € C([0,Ty), H*® x H*™) be a solution
of the Zakharov system (2.14) with

sup ||ty ||gs+s =: Cy <00,  sup ||| gs+e =: C < 0.

t€[0,To] t€[0,Tp]
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Then, there exist g > 0, C; > 0 and Cy > 0 such that for all € € (0,g¢) we have

2
Hs+l + HR,1’ Hs+l + HRQ‘ Hs + ”R,QHHs)
2
S Clg S 02(||R1HH3+1 + HRleHs+l + HRQHHS + HR,Q”HS) .

(7]

Proof. We note that R is a small perturbation of R according to Lemma [2.2.11
see also (2.22)). Further, we have

| R

e+t = |[Wai|lgser ~ [[Warllmgs + ||0:War || mrs-

Making use of the fact that W, and W, are linear combinations of }N%Q and }Nz_Q, the
square root of the energy Ey+ E, allows to estimate the H™! x H**1 x H*® x H*-
norm of (Ry, R_1, Ra, R_5), if £ > 0 is sufficiently small. It remains to show that
E, is a small perturbation of Ey + E. Obviously, it is

’g*’ < 6Cmax(EO + ES) + 482(E0 + E8>3/2'

Thus, the result follows, if we choose C),4. > 0 and gy > 0 sufficiently small. [

According to Lemma [2.2.12] it is sufficient to find an O(1) bound for & in order
to prove Theorem [2.2.2] This is achieved by estimating ry1,...,7511 in terms of
& and applying Gronwall’s inequality. The terms rg1,...,7011 can be estimated
in the same way. Estimates for the terms ¢y, ..., ts can be found in Section [2.2.6
We will use the inequality £'/2 < 1 + £ in several places.

Bound for H: For the subsequent estimates, we need a precise bound for H,
which is defined in . We note that each term in the first two components of
Q, By and G contains a factor (¢%w;)~!'. Thus, with the estimates for si,...,ss,
we have

1Pl s < [le®wihalms < Ce + CeE,
A 1|lms < ||E2wih_1||gs < Ce + CeE,
||hellgs < Ce+ Ce€,
|h—a|lms < Ce+ CEeE.

(2.25)

Trivial bounds: We use the Cauchy-Schwarz inequality, Sobolev’s embedding

theorem, Lemma (2.25)), and the relation

1
2 -1
e‘w o = SUp ——— < 1.
H( 1) ”L ke]g 1 (6k)2 =~
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Then, a pure counting of e-powers directly yields
Ire1| < CEV? + C2E32,
el < CEV? 4+ C2E32,
Ire7| < CeEY? + CeE3/?,
ros| < CeEY? 4 CeE3/2,
7ol < CEV?,

|’I“8710| S 081/2.

Bounds for 7,3 and r;4: In the definition of r,3, we replace 0;W; with the
right-hand side of the error equation (2.24]). Then, we obtain

/ O hi(V, R)e%w 020, dx = / O hi(V, R)e*w i, 5 Wy da
— / a;m%a; (LuWy + LW + E2W1W,,) da
+ / O hy (¥, R)e%w 0%hy (U, R) da
+ / 8;m5_22ii@;Resu dz
=11+ 1o+ I3+ I

With the Cauchy-Schwarz inequality and (2.25]), we find

|IS71| S C€_1||€2w1h1(\II,R)|
| Lol < 1ha (W, R) |l azs (11900l

< Ce + Ce& + Ce2&2,
|IS,3| S Cth(\I/,RM Hs 52w1h1(\11,7?,)|
Lol < e72[|ha (¥, R)| s || Resy|

e < C+CE+C282,
o+ [0l ms (Wl s + €2(|Wh|

6(:51W1|
W, |

Hs

W

Hs Hs Hs Hs)

e < Ce+ Ce& + Ce282,
s < Ce+ Ce€.

Hs

This yields
[res| < C + CE + C*E2.

Analogously, we obtain
[rea] <O+ CE + C2E2
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Bounds for 7,5 and r,4: In the definition of ry5, we replace 9,1V, with the
right-hand side of the error equation (2.24]). This yields

82/85Resu8t8;W1 dx
= 6_2/1'@18;W18;Resu dz
—e / (2iwy) 1O (Yu W,y + 0, Wy + W W,) 0 Res,, dx

+82/8jh1(\11,72)8;%dx +86/(2iw1)18;Resu8;de
=I5+ Is6+ Is7+ I 5.
Since |@ (k)| = |wi(k) — 72| < 1k?, we can use integration by parts to obtain
[Io5] < Ce™2||Wi gos1||Res,|| gorr < CEV2.
With Sobolev’s embedding theorem, Lemma and , we have
Lol < Ce 2 [Resu [ (IWllzrs + [Wollzs + [Willzgea [[Wo ]l ) < €'+ CE,

o

[Is7] < e 2|y (¥, R)|| ms || Resy | s < Cc + CeE,
L] < e %||Res,||3. < C.
This yields
|T’s75| S C —+ Cg
and, analogously,
Irs6] < C+ CE.

Bound for ry;;: In rgq;, we replace the time derivatives with the right-hand
side of the last two equations of the error equation (2.24). Then, we obtain

ron = /8;(h2(\11,72) b (U, R))DE(Wo + T + Wi + 2 Wi 2 + 2 W4 [?) da
+ / O (ha(U,R) — h_o(V,R))IEW, dz + &2 / 95 "Res, W, dx
+/a;—1(h2(\11,7z) +h_o(¥,R))e 205 Res, (V) dx
+ / 9% (ha(U, R) + h_y(V, R))e 205 *Res, (V) dz
+/a;—1(h2(\1:,72) + h_o(VU, RO (ha(¥, R) — h_o(¥,R)) dx

+ /8;‘1(h2(\11,72) — o (U, R (ha(W, R) + h_s(W, R)) daz.
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The last four lines vanish after integration by parts. Thus, with (2.25)), the term
rs11 can be estimated by

P11 < Ce + Ce€ + C*E2.
Final estimates: Finally, after using £/2 < 1+ & and ££2 < 1, we are left with

d

—E<CHCE.

dt— — *
With Gronwall’s inequality, we have £(t) < M for all ¢ € [0,T;] for a constant
M = O(1). We choose gy > 0 such that £gM?* < 1. This concludes the proof of
Theorem 2.2.2] []

Remark 2.2.13. Analogous to Remark [2.1.13] the approximation rate can be
increased in Theorem [2.2.2/ Instead of making the ansatz ([2.17)), we can introduce
the error by

(,0)(,1) = (Yume’™ ' 0y 0)(2,1) + &% (R, Ry) (2, 1),

where (¥, ¥y,) is the higher order ansatz from Section Then, the error
estimates are analogous to those that have just been made. In order to find an O(1)
bound of the H*™! x H*mnorm of (R,, R,), we can choose 3 = 2n + 2. Therefore,
we have the following theorem.

Theorem 2.2.14. Let n € N and s € N. There is a Cyae > 0 such that for all
Cy, Cy € [0, Crnaz) the following holds. Let (y,1,) € C([0, Ty], H¥T275 x HsT2n+4)
be a solution of the Zakharov system (2.14]) with

sup ||V gs+ents =: Cy < 0, sup ||y gsrznre =: Cy < 0.

te[0,To) te[0,To]

Then, there exist eg > 0 and C' > 0 such that for all € € (0,eq) we have solutions
(u,v) of the KGZ system (2.12)) satisfying

ie—2
sup H (U, ’U) - (wu,ne ta wv,n)’
te[0,To]

et < Ce¥ 2

2.2.6 Auxiliary calculations and estimates

In the following, we show some calculations and estimates which are necessary to
understand the energy estimates from Section [2.2.5| For this purpose, we consider
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2.2. FROM KGZ TO ZAKHAROV

the terms

o= [[@LI)O0TE + LTIV do

b= /( L (W), 0L Wy + 0L (¢, W_1)8,0W_4) du,

tis = / (8. (W) D, 0LV, + 8 (10, W) D, 0L W) daz

tia = / (OL (W) 0,0 W + 0L (W) 0,0L W) dar

t1s = € / (OL(W, W) 00 + OL(W,W1) 0,0 Wy + OL(IWh [*) 0,0, W) d
fe = & / (LW, )O3 + OL (W T D)L 1 + AL (W 1 [)3,0LIW,) da

which appear in the time derivative of E;. The problem with these terms is the
occurence of the term iw; 93 W in the time derivate of 95W,. Since |w; (k)| < %k‘2,
the H*-norm of the term iw; W, can only be estimated by the H*"2-norm of W4,
which is not contained in the energy £. Analogously, the H*-norm of the time
derivate of W, can only be estimated by the H*"'-norm of W,, which is also not
contained in the energy £. However, we can rewrite the terms ¢;; such that the
terms containing the highest possible derivative of W, and W, will be written as
a time derivative and all other terms can be estimated in terms of the energy &.
In the following, we proceed as in Section [2.1.5, For [ = 0, we obtain

ZtO’L = /@Z)quW +¢uWIW +(|Wl|2+ |W—1| )(¢v+52Wv)) dz

- /(8t¢U|W1|2 + a15¢U|VV—1|2 + atquUWl + at%WUW1> dCL’

For [ = s € N, the terms cannot be written as a time derivative directly. Thus, we
have to proceed separately. The terms ¢,; and ¢52 do not have to be written as a
time derivative since, subsequently, they will be estimated directly. For the term
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ts3 and, analogously, for the term ¢, 4, we use the Leibniz rule and obtain
/ (03 (VW)W + 05 (0, Wh) 0,05 W,,) da

_ / (D WD, 0575 + DT OOEW,) da

S s o s < -
k=1 —1

= % / VY, OEW, 0 W, dor — / O OSW, 05 W, da

+y (2) / O, 5P W, 0,05, d
k=1

d S S k s—kT17 Qs S i R p— .

k=1 k=1

= %/a;(wum)a;m dz — /@wu@jWﬁ;Wldx

s s - s ) B
+ Z (k> /%%&ikw@ajwl dx — Z (k> /3t(5f¢u3§kW1)8;WU A,
k=1

k=1

For t, 5 and, analogously, for the term ¢, 4, we again use the Leibniz rule and find
/ (05 (W, W) 0,05, + 05 (W, W) 0,05 W + 92 (|W [2) 8,05 W,) da
= / (WO W, 0,05 Wy 4 OEW W1 0,0: Wy 4 OEW I W10,0: W, + OSW W1 0,05 W,,) dr

+) (Z) / (OFWL0:FW,0,05 W, + OF W, 057 W,0,0: W) dr
k=1

s—1
+y (Z) / W05 W, 0,0 W, dar
k=1

d - — — —
(Wﬁ;an;Wl + 8;WUW1(9§W1) de — /(@Wﬁ;WU@;WI + a;antW18;W1> dx

Tt
s s—1

+2Re Y (Z) / W10 "W, 0,0 Wy dz + > <Z) / WO MW, 0,0: W, dx.
k=1 k=1

The terms, that we have written as a time derivative in these calculations, will
be collected in the energy FE, which is a part of the full energy £. The remaining
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2.2. FROM KGZ TO ZAKHAROV

terms ¢; will be estimated subsequently. They are given by
b= [ AW + 0000V + D WLTT + OV, W) i

== Y [ @00 + 00 TT)AI,) ds

je{£1}

t3 = 2Re/8twu8;WU8;W1dw,

ti=—2ReY (Z) / Ok KW, 0,05, da,
k=1

=Y () [awotuer e,

k=1

(2.26)

te=e" ) / (OW,0:W,05 W + OEW,0,W;0: W) dz,

Jje{£1}
t; = —g2 Z 2Rez (2) /8’;Wjagkwvata;Wjdx,
je{£1} k=1
s—1
ts=—c> Y Y (Z) / oW, 05 W00, .
je{£1} k=1

Bounds for t;, t3, t5 and t5: We use the Cauchy-Schwarz inequality to obtain

t1] < CIWA |72 + CIW_i][72 4+ Cl[Wy | r2]|[Wi |2 < CE,

ts| < CIWollus |Willas < CE,
Its| < CU|106bull mrs Wi || zs=1 + 80l s |01 || s15=2 ) [ Wl [ 1re < C + CE + CeE¥?,
|t6| < 52 Z ||ath||L2HWv| Hs Wj||HS+1 < 08253/2.

je{£1}

Bounds for t,, t4, t7 and tg: As described above, the H*-norm of 0;WW; and
0,W,, cannot be estimated by the energy £. However, in the H* !-norm, we have

o1 < C + CEV? 4+ CeE,
o1 < C 4 CEV? 4 CeE,

10:W]
10|
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where we have used the estimate |&; (k)| < $k2. Thus, we use integration by parts
in order to shift one derivative away from the problematic terms. This yields

th= Y / (D5 (W) 8,05 YW, + 851 (10, W) 0,051 W;) dla,

je{£1}

ty = 2R€Z (Z) /8x(6f¢uai—kwv)0t(“);—lwl dl’,

k=1

tr=e2 3 2Re Y (Z) / 0, (O W, 05~ W,),05 1T d,

je{£1} k=1

s—1
ts=e> ) Y (Z) / 0, (OFW,05"*W))9,0: W, du.

je{x1} k=1

Finally, we obtain

[t <C Y 1l

je{£1}

ta] < Cllullirs i IWo 110005~ Wil rsr < C + CE + Ce€2,

tz] < C D (Wil [Woll s |0:Wi | < C2E + CE2€2,
Jje{£1}

tsl < Ce® Y W

je{£1}

o1 < C + CE + Ce&3?,

e W

e 10,0571

HS

o1 < Ce28 + Ce3&2.

atVVv|

2
Hs
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2.3 From KGZ to NLS on the torus

We consider the singular limit from the KGZ system to the NLS equation, where
the v-equation of the KGZ system depends on a parameter v € R, |y| > 1. In order
to prove an approximation result, we distinguish the cases |y| = 1 and |y| > 1 as
for each case different difficulties occur.

2.3.1 Introduction

We consider the Klein-Gordon-Zakharov system
202 = 0?u — e %u — v, 220} = 0%v + 02 (|ul?) (2.27)

on the one-dimensional torus T = R/(27Z) with a parameter v € R\ (—1,1),
where u(x,t) € C, v(z,t),z,t € R, and 0 < ¢ < 1. This corresponds to the
spectral situation in Figure 2.3 The spectral situation depends on the choice of
the parameter ~.

(a) The case |y| > 1. (b) The case |y| = 1.

(c) The case |y| < 1.

Figure 2.3: Spectral situation corresponding to the linearized KGZ system with
k € R. The system is solved by u(x,t) = e*ketwa Bl and y(x,t) = etkatiwrzk)t
where wy(k) = +e72/1+ (¢k)? and wis(k) = +(ye)~'k. We note that wi;
asymptotically behaves like 4|ws| for |y| = 1. The case (c) is not considered here,
but we show it anyway for illustration purposes.

45



CHAPTER 2. KGZ AND RELATED SYSTEMS

In the singular limit ¢ — 0, the NLS equation

2i0p)y = 0ot + Yulthu]® (2.28)

with spatially 27-periodic boundary conditions can be derived with the ansatz

w(z,t) = vz, )€ L v(a,t) = by(z, b), (2.29)

where 1, and 1, are spatially 27-periodic. Our goal is to prove that the NLS
equation ([2.28]) with spatially 27w-periodic boundary conditions makes correct pre-
dictions about the dynamics of the KGZ system (2.27), with |y| > 1, on the
one-dimensional torus T for small values of € > 0. We have the following approxi-
mation result.

Theorem 2.3.1. Let s € N and vy € R with |y| > 1. There is a Cpar > 0 such that
for all C, € [0, Crraz) the following holds. Let 1, € C([0,Ty], H**®) be a solution
of the NLS equation ({2.28)) with spatially 2m-periodic boundary conditions and

sup ||yl gs+s =: Cy < 0.

t€[0,T0)

Then, there ezist eg > 0 and C > 0 such that for all € € (0,&q) there are solutions
(u,v) of the KGZ system with spatially 2m-periodic boundary conditions
satisfying

e < Ce2

sup |[(u,v) = (e =[]

te[0,To)

In Section [2.3.5] we prove Theorem by using energy estimates and Gronwall’s
inequality. Ahead of that, in Section and Section [2.3.3] we use periodic
boundary conditions in order to estimate the residual and construct a higher order
approximation. In Section [2.3.4, we use normal form transformations to eliminate
problematic terms. It turns out that the normal form transformations are bounded
for |y| > 1, while they lose regularity for |y| = 1. Hence, instead of carrying out
the normal form transformations directly, we only use them to define an energy,
cf. [Duel?, HITWI5].

Remark 2.3.2. We have local existence and uniqueness of solutions (u,v) €
H**' x H*, s > 1, of the KGZ system (2.27)), cf. Remark [2.2.3] and local ex-
istence and uniqueness of solutions v, € H®, s > 1, of the NLS equation (2.28]),
cf. Remark 2.1.5]

Remark 2.3.3. If we consider spatially L-periodic boundary conditions for L > 0,
with our methods it is also possible to prove an approximation result for |y| < 1. In
this case, resonances occur which can be handled by using the periodic boundary
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conditions such that each k € (27/L)Z is bounded away from the resonances.
However, since the resonances are of order O(s7!), the period L should be of order
O(e). Since this corresponds to spatially constant functions, the statement of such
a theorem would be empty.

Remark 2.3.4. The same ansatz as in equation has been considered in
[MNO5] with a parameter v € R, |y| > 1. However, our proof differs significantly
from that in [MNO5] since dispersive decay estimates are used there, which are
not applicable in the case of periodic boundary conditions. Moreover, our work
involves residual estimates and the construction of a higher order approximation.
The case |y| =1 is not discussed in the literature.

Remark 2.3.5. The proof of the approximation theorem given in Section [2.3.5
only holds, if the nonlinear part on the right-hand side of the u-equation of ({2.27))
has a negative sign.

Notation. We use the notation from Chapter |1} We write [ for fT and H*® for
H*(T, K), unless otherwise specified.

2.3.2 Estimates for the residual

The residual of the original system contains all terms which do not cancel
after inserting the approximation into this system. In this section, we want to
estimate the residual for x € T and construct an approximation such that the
residual becomes sufficiently small. Inserting the ansatz into the u- and
v-equation yields

202, 4 21040, = 0%y — Vb, V2208, = 02y, + 02 (|0hu|?). (2.30)

We can choose v, to satisfy the NLS equation (2.28)) and 1, = —|¢,|?. However,
this would result in a residual of order O(g?), which is not sufficient to prove
Theorem In order to make the residual smaller, we make the improved
ansatz

w(z,t) = Uy(z,t) = o, 1), v(x,t) = Uy(x,t) = oz, 1) + 2y 2z, 1).

After inserting this ansatz into the KGZ system ([2.27)), a comparison of coefficients
yields
at order £ and

’YQatzwv = aﬁ%,z
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at order €2. We choose 1, = —|1,|* and v, to satisfy the NLS equation ([2.28).
Further, we set R N
Dok, t) = 7k 20F1b, (K, 0) (2.31)

for k € Z \ {0}. We remark that, up to some constants, the functions t,, ¥, and
Yy are defined in the same way as the functions wg, vy and v, in Section m,
where the limit from the Zakharov system to the NLS equation is considered. In
fact, we can proceed analogously here. As the mean value of vy is conserved for
spatially 27-periodic boundary conditions, we can set ¢, 2(0,t) = 1,,2(0,0). Thus,
the functions 0, "0, 2 for m € N, n € Ny are well-defined and have a vanishing
mean value. With the choices (2.28) and (2.31)), the residual of is given by

Resu(qjua \I]v) = _52(8?¢u + %Uu%g), Resv<\11ua \Pv) = _'7254613277/%72'
Thus, we can formulate the following lemma.

Lemma 2.3.6. Let s > 0 and v € R\ {0}. Let ¢, € C([0,Tp], HT®) be a solution
of the NLS equation (2.28)) with spatially 2m-periodic boundary conditions. Then,
there exist eg > 0 and C.es > 0 such that for all € € (0,g9) we have

sup ||Resu(\ljua \Ilfu>| Hst2 S Cr5552a sup ||R€‘Sv(\l’u, \Ilv)| Hs S Cresg4-

t€[0,7T0] t€[0,T0]

Proof. We can estimate [|071), 2|

g+ in terms of ||t || gs+s due to

1
o = 77" (0 (luol®) — 4l0suo|* + uol*)
and the fact that 1, solves the NLS equation. For the same reason, we can
estimate ||02¢,||gs in terms of |[th,||gs+4. Thus, we directly get an estimate for
|Res, (¥, ¥,)| rs+2 when assuming v, € C ([0, Tp], H*T). O

For the subsequent error estimates, it is sufficient to find a bound for 9, 'Res,. We
note that Res, has no derivative in front but it has a vanishing mean value since it
contains the term 1), 5. Therefore, we can directly conclude the following lemma.

Lemma 2.3.7. Let v € R\ {0}. Let ¥, € C([0,Tp], H®) be a solution of the NLS
equation ([2.28|) with spatially 2m-periodic boundary conditions. Then, there exist
g0 > 0 and Cles > 0 such that for all € € (0,e0) we have

Sup |’a;1ReS”(\I]U7 lIIU)HL2 = Ssup 7284”89;1831}2”[/2 S Cres€4-
t€[0,T0] t€[0,T0]
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2.3.3 Higher order approximation

In order to make the residual arbitrarily small, we insert the ansatz

n n

wu,n — Z 52ku2k7 77Z)v,n — Z 52kv2k (232)

k=0 k=0

into (2.30). Then, vy = —|up|* and uy = v, solves the NLS equation ([2.28). For
k > 1, the functions wug; solve inhomogeneous linear Schrédinger equations of the
form

2i0pua), = O2Uak — UgVy — Ugvak — O Un(e—1) — For(Ug, - - -, Ua(e—1))
and the functions vy, satisfy
207 =02 02G 2.33
Y207 Vag—1y = OZva + 05 Gar(Uo, - - ., Usp), (2.33)

where Fy, and G are quadratic mappings. Analogous to Section [2.1.3] we set

_ 1
Vop, = 728m Z@EUQ(k—l) — ng(w), - ,u2k) + — / ng(UO, . ,u%)(x) dz

27
in order to achieve that, on the one hand, (2.33) is satisfied, and, on the other hand,
the vy, have a vanishing mean value. The following lemma is a direct consequence

of Lemma 2.1.11] and Lemma [2.2.10L

Lemma 2.3.8. Let n € N and s > 0. Further, let ¢, € C([0,Tp], H*2") be a
solution of the NLS equation with spatially 2m-periodic boundary conditions.
Then, there exist ¢g > 0 and Crs > 0 such that for all ¢ € (0,eq) there is an
approzimation (Y, ¥y,), where ¥, , = 1/1%,16“72’5 and where (Vyn, ¥ypn) is of the

form (2.32)), with

sup ”Resu(\l/u,na 77Z}v,n)| Hs+1 S Cr6552n+27 sup ||Resv(\pu,n7 wv,n”
te[0,To] te[0,To]

2n+2
Hs S Cresg 9

and

sup ||855_1Resv(\1/u,na 77Z}U,n)| Hs S Ores€2n+2-

te[0,To)

2.3.4 Error equation and normal form transform

In this section, we derive an equation for the error which is made by the approxi-
mation (¥, ¥,). Since there are some oscillating terms left in the error equation,
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we use normal form transformations to eliminate them. First, we write the KGZ

system as
O*u = —wiu — e 2w, 0t = —wiv — wi(|ul?),
where, in Fourier space,
wik) =e 2(kK* + &%) = e (1 + (ek)?), wi(k) =y 2 2k2

We introduce the error £2(R,, R,) made by the improved approximation (¥, ¥,,)
by
(u,v) (2, t) = (U, U,) (2, 1) + e*(Ry, Ry) (2, 1).

The error functions R, and R, satisfy

O’R, = —w’R, — e (U Ry, + U R, + Ry R,) + ¢ *Resy,
O’R, = —wiR, — wi(V, R, + U, R, +*|R,[*) + ¢ *Res,.

We rewrite this system as the first order system

atRu = inéu,
&R, = i Ry — e 2(iwr) " (Wu Ry + U, R, + 2R, R,) + e (i) "'Res,,,
8,5Rv = /éCL)QRq,

O R, = iwa R, + iwa(V, Ry, + W, R, + €| Ry|?) + 7 (iwa) "' Res,.
By introducing
R,=Ri+ R4, Ru=R,— R, tesp. 2R, =R, + Ry, 2R_1 = R, — R,
R,=Ry+R 5, Rj=Ry—R_5 resp. 2Ry =R,+R,, 2R o =R, — R,,
we diagonalize this system and find for Ry; and R4s
O Ri1 = tiwi Ry F e ?(2iw1) " (Vy(Ro + Ros) + U (R + R_y)
+*(Ry + R_1)(Ra + R_2)) £ *(2iwi) 'Res,,
O Riy = +iwyRyy £ %m (Uu(Ri 4+ R_q) + V(R + R_y) (2:54)
+ &Ry + R_1|2) + ¢ *(2iws) " Res,.

In the energy estimates, cf. Section , we will work with the system .
However, in order to understand the subsequent normal form transformation, we
divide the right-hand side of into non-oscillating terms that will be collected
in B; and oscillating terms that will be collected in By and Bs. Therefore, we write

OR = AR+ Bi(Vy,R) + Ba(Vy, R) + Bs(1py, R) + G(¥,, R) + ¢ *RES(¥),
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where

R = (R17 R—17 R27 R—Q)T7 A= diag(itdl, _Z.wb iw?a _Z.WQ)’ V= (qjua \Ijv)v

and
—6_2(2iw1)_1(\11u<R2 + R72) + val + €2R1 (R2 + R,Q))
B (\If R) _ E_Q(inl)_l(va;1 + €2R,1(R2 + R,Q))
135 5iwa (W Ry + U, Ry +*(|Ry[* + | R4 ) :
—%’iWQ(\I/uRl + \PuRl + 82(|R1|2 + |R_1’2))
0
- 8_2(2iw1)_1(\11u(R2 + R 1))
BQ(\Ijua R) - %Z.Cdg(__uR_l 4 \PUE_—I) )
—%iw2<\11uR_1 + uR—l)
e (2itor) " (Yo 1)
2(9; 1
BS(wva R) _ € (22&) )O ( le) 7
0
—(2iw1) Y (R-1(Ro + R_3) + ¢y 2(R1 + R_1))
i (inl) 1( (RQ + R ) —|- 1/11;72(31 + R_l))
GV R) = % e¥iwy(RiR_1 + RiR ) ’
— 1wy (RiR_1 + RiR_y)
(2iw;) " 'Res, (¥)
| —(24wr) " TRes, (P)
RES(Y) =1 (i)~ 'Res, (1)

—(2iwy) ' Res, (V)

G(V,, R) contains all terms with sufficiently high order in e such that they cause no
difficulties when passing to the O(1) time scale. In order to get rid of the O(g7?)
terms, we use energy estimates to control B; and normal form transformations
to control By and Bs. Specifically, we try to eliminate By and Bs with the near
identity change of coordinates

R=R + Q(¥y, R) + P(¥y, R).

We have ﬁ = (El, .lzé_l, ﬁQ, .fi_Q)T. The mapplng Q = (Ql, Q_l, QQ, Q_Q)T con-

sists of bilinear mappings Q; of the form

(W, R) = Y QW Ry,

jle{ilviz}
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in Fourier space, with

~ ~

0T B) = [ (BTl —DRLD AL € (1),

and

[ 0T - DR, O e (22),
Further, P = (P1,P_1,0,0)” consists of bilinear mappings P; which have the form
Pj (u, R) = Z P (v, Rj1)7
j1e{£1,£2}

in Fourier space, with

PP Bo) = [ s (R = DR, @), 5 € (201}
In the following, we also write
Q(\IJWR) = Z Qj1(\Ilu7Rj1)v P(qu)v’R) = Z le (¢U7Rj1)'
J1e{£1,£2} J1e{£1,£2}

We understand Q;(¥,,, R) as the components of Q(V¥,, R) and Q;, (¥, R;,) as the
vector with components Q; ;, (V,, Rj,). The same holds for P. By the linearity of
the mappings Q and P, we obtain

R = R+ Q(0,¥,, R) + Q(V,, AR) + P(0shy, R) + P (1, R)
= AR - AQ(¥,,R) — AP(,,R)
+ BV, R) + Ba (U, R) + Bs(1hy, R) + G(¥,, R) + e *RES(¥)
+ Q(iw, (0)W,,, R) + Q(0,¥, — iw; (0)T,, R)
+ Y iw,Q; (W, Ry,) + Q(T,, 0R — AR)

J1e{£1,£2}
+ QU AR) = Y iw;, Q;(u, Ry,)
jre{£1,+2}
+ ’P(atwva R) + Z Z‘("')jl le (¢U> Rj1) + ,P(wva 8tR - AR)
jre{£1,+2}
+ P(¢U? AR) - Z iwjl le (%, Rj1)'
jre{£1,+2}
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In order to eliminate the problematic B,- and Bs-terms, we set the equally under-
lined terms to zero. Thus, Q and P have to satisfy

BQ(‘IJua R) = AQ(\IJu’ R) - Q(iw1<0>\1jm R) - Z iwjl QJ'l(\Ijuv le)v
jie{£1,£2}

Bs(thy, R) = APy, R) — > iw;, Py (v, Ry,).

jre{£1,42}

(2.35)

In Fourier space, this leads to

paazm(k) = 2 )+ (K)
s2(h) = =72 s () e (0) n(l)

1 (8) = g 1K) = () n() + 1 (0) + (k)
42,2 (8) = g1 (R) = Sn(k) (wn(R) — 1 (0) — r (R) ™

Since no further terms have to be eliminated, the remaining kernels are set equal
to 0. In the following two lemmas, depending on the value of the parameter ~, we
will analyze the properties of the mappings R — Q,(V,,R) and R — P;(¢,, R)
for j € {£1,+2}.

Lemma 2.3.9. Let s > 0 and v € R with |y| > 1. Fiz h € H*(R,C). Then, R —
Q+1(h,R) and R — P+i(h,R) define continuous mappings from (H*(R,C))* into
H*"YR,C) and R — Qis(h,R) define continuous mappings from (H*(R,C))*
into H*(R,C). More precisely, there exist €9 > 0 and C > 0 such that for all
e € (0,e0) we have

1Q:1(h, R)llms < C2||l| s (| Rall s + || B=2lae),
1Q1(h, R)||gs+1 < Cel|h|| s (| Rall s + |R-2|ms),
1Qu2(h, R)|[ars < Cllbllas (| Rallms + | R-1llms), (2.36)
P11 (R, R) || s < C||Al|ars (|| Rall s + || Rt =),
HP:tl(h,R)l Hs+1 S C&Hh| Hs( R1| Hs —+ ||R_1| Hs).
Additionally, for h € H*TY(R, C), it holds
|Qu2(h, R)|| s < Cel|h||rs+a (| Rall o1 + [[ B[ o+ ). (2.37)

Proof. Let k € R. We recall that wy(k) = e72y/1 + (¢k)? and wy(k) = v ek,
We show that the functions (1+|-|)g—1.42, (14 - |)ps1+1 and g1 are bounded
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for |[y| > 1. By using \/1 + (¢k)? > e|k| > ek > £y~ ek, we obtain

ilelg i (k)] =< keR 2y/1+ : ek)? /1 + (ck)? %1— 1+ (ek)?
- ig'?&éﬂ% ﬁ <3
sl 8] = g3 | | < 30
ilélg a-122(k)] = ;62 22£ V1+ 1 + (ek)? 1+ (51@)2:— 1+~ tek = %g’
iﬁg"f'q—lvﬂ(k” 16 ilelxg i ekgk ST 1+1 p—— <%

The function g9 _; is strictly increasing due to the relation

d 1 1+ /14 (ek)? >0

@qz’_l(k) -2 V14 (ek)2(y/1 + (k)2 + v + ck)?

Thus, g2.—1 is O(1) bounded as we have

’ (k) = lim 1 v~ lek 1
1m _ )
fome 2 O Tk 1+ /Tt R 20+ 7)

. (k) = lim 1 —v~lek 1
1m = 11m - .
ke 2 R Y T T 1 IS R 21— )

Analogously, one can show that ¢, _; is strictly decreasing and O(1) bounded.
Thus, we get

sup |qso, -1 (k)| < C.
keR

With Sobolev’s embedding theorem, we now directly obtain (2.36)). The estimate
(2.37)) follows from Sobolev’s embedding theorem and

1 7 'e
_ k < — k - su < CE k 5
IQZy 1( )’ — 2‘ ‘ kEIIR? ’y*lek 4 1 + /1 + <€k)2 - ‘ ’
1 7 'e
o k — — k - su < CE k .
lq 2, 1(K)| 2| | ke]g v lek —1—/1+ (ek)2| ||
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Lemma 2.3.10. Let s > 0 and v € R with |y| = 1. Fiz h € H*(R,C).
Then, R +— Qi1(h,R) and R — Pxi(h,R) define continuous mappings from
(H*(R,C))* into H"™(R,C) and R — Q42(h,R) define continuous mappings
from (H**1(R,C))*x (H*(R, C))? into H*(R,C). More precisely, there exist €9 > 0
and C' > 0 such that for all € € (0,g0) we have

1Qw1 (b, R)lls < C2|| Al s (| Rall s + | R-alms),

Q1 (h, R) [ s < Cel|hlars (|| Roll s + | R-2llar),
|1Qxa(hy R)||rs < Cel||h||grs+1 (|| R || rs+1 + || R=1]| grs+1)s (2.38)
[Pas (B, R)rs < C2|| s (1Rl s + | Rl ms),

[Pei(h, R) [+ < Cel|hflas (| Rallmrs + || B=al 1)

Proof. We want to show that the functions (1 + |- |)g_1,42 and (1 + | - |)pr1,51
are bounded and that the functions g9 _; are asymptotically linear. By using

V/1+ (¢k)? > ¢|k| > +ek, analogous to the proof of Lemma[2.3.9, we can conclude

s (

s

1 1 1
su k)| = =& sup |—————| < =€,
k;e]g Ps171(F)] 4 keﬂg 1+ (ek)?| ~ 4
1 ek 1
sup |k - k)| =-¢e-sup | ————=| < -¢,
ke]g’ P17 (R)] 4 keg 1+ (ck)?| ~ 4
1 1 1 1
sup |q— k)| = =% su < =2,
k@g’q 122(h) 2" ek V14 (k)2 \/1+ (k)2 +1Lek| ~ 2
1 ek 1 1
sup |k - q_ k)| = —e-su < —e.
k@g’ d-1:22(h) 2" ek V14 (k)2 \/1+ (k)2 +1£ek| ~ 2
The remaining kernels g4 1 are not bounded. Instead, we have that
1 1
qro—1(k) = iésk + 3 +O(k™")  for k — Foo.
Thus, with
42 (B) < 2=l 1 < Celk
_ —elk| - su elk|,
ot =5 vek ek+ 14+ 1+ (ek)?| —
1 1
_o_1(k)| < =€lk| - su < Celk|.
g-21( )‘_2” ke]g ek —1— /14 (ek)?| I+
and Sobolev’s embedding theorem we directly obtain ([2.38)). ]

Remark 2.3.11. Lemma [2.3.9and Lemma [2.3.10[ were formulated and proved for
x € R. However, they are also valid for x € T.
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2.3.5 Estimates for the error

In this section, we want to prove Theorem [2.3.1] The proof is a non-trivial task
since 02u, 92v = O(e72) but solutions have to be bounded on an O(1) time scale.
The idea is to define an energy £, which is equivalent to the H**1 x H*T! x H® x H*
norm of R and satisfies %5 = O(1). In order to eliminate the problematic Ba-
and Bs-terms from Section [2.3.4] the energy £ has to contain the mappings Q and
P in such a way that these problematic terms cancel in the time derivative of £.
However, there are some terms left of order O(s~!). By setting Ry = Wijee ™,
we can write the sum of all remaining O(¢™!) terms as a time derivative and, thus,
include them in the energy €. Analogous to Section [2.2.5] the idea of the ansatz is
to shift the linear part of the Rj-equation by —e~2 such that the resulting spectral
situation of the linearized Wi-equation is similar to the situation in Section [2.1],
cf. Figure 2.1] and Figure 2.3l It turns out that the time derivative of £ then
only contains terms of order O(1) which can be estimated by the energy £. An
application of Gronwall’s inequality delivers an O(1) bound of the error R. In the
following, we consider the system

O Ri1 = tiwi Ry F e ?(2iw) " (WuR, + Wy (R1 + Rq) + €°(R1 + R_1)R,)
+ ¢ 4(2iw;) 'Res,,
O R, = iwa Ry,
R, = iwy Ry + iws (W, (Ry + R_1) + W, (Ry + R_y) + €| Ry + R_4|?)
+ e *(iwy) ' Res,,

which was derived in Section [2.3.4] and the energy
1 1
By = | 0;Rall7e + 100 R ll7e + 5100 RallZ2 + 5110 RullZ2
+|e@18;, Rallz: + €010 Roillfz + 105 Rullf2 + 11057 Roa |12,

which was derived in Section [2.2.5] Subsequently, we calculate the time derivative
of E; step by step. We will underline all terms that need to be eliminated. First,
we have

d
N (1L R (172 + (0L R_11|72) = Lo + Ly + L1z,

where

Iy = /(iwlaiRlaiE + c.c.)dx,
I, = /(—iwlaiR_laiR__l + c.c.)dx,

I, =1Im / (e%w1) 0L (W Ry + (U, + 2R, (R, + R_) — ¢ *Res,)0L(R; — R_;) da.
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2.3. FROM KGZ TO NLS

Next, we calculate

d 1 [ 2 1 [ 2
i (SILR I + SR

_ /ma; (TalBa + Ry + (B + B) + (R + R 1)) LR, da
+ g+ Lia+ Iis,

where
L3 = / (0L Ryiwn0L R, + O Ryiws0L R,) da,
Iy = /Ezinﬁi(RlR__l + R_lR_l)é?qu dz,
L5 = /64(iw2)18vaesv8qu dz.

We continue with the time derivative of the second line in the energy FEj, where
we use that

26701 (Jan (-) = (€@ (-))* + (),
We obtain
% (e B [I72 + [ledn &L Rall72 + 105 Ry |17 + 105 Ry |72)
- / (ia; (%Rv +u(Ri+ Ry) + 52R1RU) 510L R, + c.c.) dz
— / (10, (Vy R, + tu(Ry + R_1) + € R4 R,) 010, R_1 + c.c.) da
+ D+ D7+ Lig + L1,

where
L= / (w110, Rie 0L Ry + iw 05T R1OLT Ry) + c.c.) da,
I = / (—(iwlgfulaiR,lgfulaiR_,l 4w 05 RO R ) + c.c.) dz,
Lig = 52/ ((i@i(R_le)@@iE — 0L (R R, 0L R_y
+ 0L (Py2(Ry + R_1))an OL(Ry — R_,l)) + c.c.) duz,

I1g = 2Im / e %00 Res, 0. (R, — R_y) dz.
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The terms I; ; will be estimated subsequently. The remaining terms in the time
derivative of Ej, including the underlined terms, cannot be estimated directly since
they are at least of order O(¢7!). In order to eliminate the underlined terms, we
add an additional energy E; to the energy Fj. According to Section m, the
energy F; has to depend on the mappings Q and P. Thus, we define

E = / (201 Ry0% Qo (W, R) + 20LR_50L.Q_5(¥,, R)) dz
+ / (9L R12e%01w10L(Q1 (W, R) + Pi(¢0, R)) + c.c.) da

/ (8l 128 wlwlﬁl (Q_l(\lju, R) + P_1(1/1v7 R)) + C.C.) dzx.

In the following, we calculate the time derivative of El. We use that R; solves the
error equation (2.34). Using integration by parts yields

% / (20LR20., Qo (W, R) + 20 R_50LQ_5(¥,, R)) da

=2 / (0,01 R20.. Qo (W, R) + 0L R20! Q2(0, ¥, R) + 0L Re0. Qo (U, O,R)
+ 0,0LR_50LQ_5(V,, R) 4+ 0L R_50,Q 5(0,V,, R) + 0. R_20.Q_5(V,, &R)) da
= 2/ (avaﬁi( — W9 Qz(\lfu, R) + Q2(iwl (O)\Ijua R) + Z Z'le QQJI (\I[w Rj1)>
Ji

+ aiR_gai <iCU2 Q_g(\lju, R) + Q_2<iw1 (0)\1/“, R) —+ Z ’inl Q_Q’jl (\Iju, le )> ) dx
Ji

+ Lo+ Do + Dpae + 113,

where
Tt = 2 / (0(0 Ry — itonRo)0.Qy + AL (DR + iwnR_2)0LQ_,) du

L1 =2 / (9L R20L Q2(0,V,, — iw: (0) Wy, R) + OLR_20LQ_5(9, ¥, — iw; (0) 0, R)) du,
Do =2 / (0L R20LQ5(V, R — AR) 4 0LR_50.Q _»(V,, ;R — AR)) dx,

I113 =2 / (al R0 (QQ(\PU,AR) =) iw;, Qo (T, le))

Ji

+ 6l Qal (Q_2(\I/u, AR) — Z inl Q_Qle(\I/u, le))) dzx.

J
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2.3. FROM KGZ TO NLS

Further, we obtain

d
dt

_ / (0,0 T 2201010 (Q1 (W, R) + Pr (100, R)) + coc.

+ 0L R126%01w10L(91(0,9 4, R) + P10y, R)) + c.c.
+ 0L R 2601w 0L (Q1 (W, OR) + P1(y, R)) + c.c.) da

g / (8;?1282@1001

X 8;(( — w1 Q1(Vy, R) + Qu(iwi(0)¥, R) + Z iwj, Qujr (Y, Rj1>>

J1
+ < iw1P1 (Y, R) + Zzwyﬂ% 1 (Yo, g1))> +C.c.> dx

+ Liaa + Dias + Lie + 17,

(8l R, 2e* w1w18 (Q1(Vy,R) + P1(¥y, R)) + c.c.) dz

/ (Gi(GtRl — w1 R1)2e%0,w10L(Q1 (W, R) + Pr(y, R)) + c.c.) dz,
/ (8 E2€2c~ulw18§c(Q1 (8t\11u — iwl (O)qfu, R) —+ Pl (8twv; R)) -+ C.C.) d.I‘,
1171 / (8l R12€ wlwla (Ql(\llu, 875R AR) + 731(1/)1,, atR AR)) + c.c. ) d

(‘3’ R12€ wlwlal <Ql(\lju,AR leﬂ Ql ]1(\IIU7R]1)> + c.c.

Ji

+ 0 R 2620w, 0. (791 (o, AR) = > iw;, Prj, (thy, le)) + c.c.> dz.
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Moreover, it is

d

T (al _,2e? wlwla (Q_1(Vy,R) + P-1(¢, R)) + c.c.) dz
/ (87581]% 128 wlwlai(Q,l(\I/u,R) + P71<¢U,R)) + c.c.

+ 8l 128 w1w18 (Q_1<8t\11u, R) + 73_1(8,5%, R)) + c.c.
+ 0L R_12%01w0L(Q_1(Vy, O R) + P_1(¢y, %R)) + c.c.) da

/<8lR 12620 w1

x 8, ( (im Q 1(Vy, R) + Q1 (1w (0)¥, R) + Z iwj, Q1,5 (Vu, Rj1)>

(zwlp_ (Y, R) + Zzwﬂp_l i1 (U, 31))) + c.c.) dx

+ Ljag + 1119 + I o0 + 11,21,

(OL(OR-1 + iwi R_1)2e*01w10L(Q -1 (Vs R) + P—1(ty, R)) + c.c.) du,
- 128 wlwla (Q,l(at\lfu — z'w1 (O)‘I’u, R) -+ 77,1(8{%, R)) + C.C.) d&?,
R_128°01w105(Q_1(Vy, R — AR) + P_1 (¢, R — AR)) + c.c.) dz,

(0. R
(3;]%_1252&}10@8; (Ql(\lfu, AR) — Z iwjl Q,le (‘Ifu, le)) + c.c.

Ji

+ 813 12€ w1w18 < ,1<1/J,U, AR) — Ziwjlp,l,jl (1/11,, le>> —+ C.C.> dx.

We consider the time derivate of E; + Ej. By using the diagonalized variables
R, =Ry + R_5, R, =Ry —R_,

and the construction of the mappings Q;, cf. (2.35]), the remaining terms in the
time derivative of Fj, except for the terms I; ;, cancel with the underlined terms
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in the time derivate of E;. Hence, we can set Ri; = Wilei“—% to obtain

d ~ _ _
S+ By = /ma; (DaWi + W + 2L + W ) 8-R, da

+ / (i0. (YuRy + Wi + E2WiR,) 010, W1 + c.c.) da

- / (10L (W + W1 R) 310571 + e.c.) da

21
1 Z L.
j=0

We proceed to rewrite the right-hand side of this equation. For the first integral,
we use integration by parts and the fact that iws R, = 0;R,. For the second and
third integral, we use that W; and W_; solve

Wy = iy Wi — 2(21wn) " (VR + (U, + 2Ry) (Wi + Woge 27
+ 674(2iw1)’1Resue’i572t,
AWy = =i Wy + &7 2(2ien) ™ (YuRue® ™ 4 (B, + 2R, (Wi 4 W) )

— 8’4(2iw1)’1Resuei€_2t.

(2.39)
Therefore, we can combine the integrals in the time derivative of F; + El to obtain
d ~
—(E;+ E
AR

= - ( / (0 (1, W) 0:0L W + 0L (1, W) 0, 0L W ) da
+ / (0, (W) 0, Wy + 8., (0, W_1)8,0, W) dz
+ / (0. (1 Ry)0,0L W + L (4, W) 8,0\ R, da
+ / (0L (Yo Ry) 0,0 W, + O (0 W1)0,0 Ry) da
+e? / (L (R, WH)0,0L W, + OL(R, W) 9,0L Wy + OL(|W1[*)8,0L R,) da

+ &2 / (OL(RW_1)0, 0L W1 + 0L (RW_1)0,0.W_y + OL(IW_1|*)0,0LR,) dx)

23
+> 1,
j=0
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where

I199 = / (3l (YuRy + VW1 + EWIR )6 (OWy — i Wy) + c.c.) dz,

s = [ (G0 + WG+ T + ) do

With the results from Section [2.2.6] we can conclude
G- Zt FY >
le{0,s} j=0

where the terms ¢; are given by (2.26)), with W, replaced by R,,, and the full energy
£ is defined by

£=FEy+E,+ Ey+ E, + E.,
with

E, :/(EW1R0+¢UW1RU+(IW1|2+ W 2) (0 + €2R,)) da
= [@TOR, + 2R b
g / (WhO:R,O:Wy + W10 R,05Wh) da

+€2/(W V2R OEW_ + W_105R,0:W ) du.

Energy equivalence: In the following lemma, we show that the square root of
the energy & is equivalent to the H**! x Hs™! x H* x H*-norm of the error function

(Ry, R_1, Ry, R_5). We note that, with (2.36) and (2.37)), we can infer (2.38)).

Lemma 2.3.12. Let s > 0 and v € R with |y| > 1. There is a Cyqp > 0 such that
for all C,, € [0, Crnaz) the following holds. Let ¢, € C([0,Ty], H*°) be a solution
of the NLS equation (2.28|) with spatially 2m-periodic boundary conditions and

sup ||yl gs+s =: Cy < 00.

te[0,To)
Then, there exist g > 0, C; > 0 and Cy > 0 such that for all € € (0,2¢) we have

(I[ Ba

gert + [[Roq || gser + || Ro s + | R-2|
< C1€ < Co|| Ry

ms)’
w1+ || R

e+ [ Rollae + |1 Rosllae)

62



2.3. FROM KGZ TO NLS

Proof. Since we have that

[ R

et ~ || R He

the square root of the energy Fy+ E, allows to estimate the H*™' x H*™1 x H*® x H*-
norm of (Ry, R_1, Ry, R_5). Therefore, it suffices to estimate Ey + E, and E, by
FEoy + E,. In the following, we use the inequality ew; (k) < e~ + |k| for all k € R
and, consequently,

lews £

With ([2.38]), we can estimate EO + ES by Ey+ Es. Omitting the arguments for the
sake of brevity, we obtain

-1 s+1
< H . .
gs < ¢ ||f| ss1 for fe H (2 40)

ue + || £

|EO + E8|
< CRullms (|| 2l s + 1| Q=2llms) + Cllewi Ry || s (||ewr Qul| s + |lewiPi||a=)

+ Cllewr R-a| s (|lewr Q-1 s + ||ewrP-1]| r+)
< C(Ey + Es)l/Q(HQzﬂHs + | Q2| s + 871“@1”}15 + 571HQ—1”H5

—|— ||Ql| Hst1 —|— ||Q_1| Hst+1 + 5_1||P1| Hs —|— 5_1||7D_1| Hs —I— ||P1| Hst1 —|— ||P_1| Hs+1)
S 06<E0 + Es)
Further, with Sobolev’s embedding theorem, we obtain

E| < Ol (Wil + IW-illin) + O Rollars (Wi [ + IW-a][3er)
+ Cllbull s | Rl s Wil gy
< C2% (Ey+ E,) + Craa(Eo + E,) + C2(Ey + E,)*2.

The result now follows by choosing ¢y > 0 and C),,, > 0 sufficiently small. m
In Section [2.2.6] we already have estimates for the terms ¢q,...,ts. Thus, in order
to use Gronwall’s inequality, it remains to estimate I, ..., 523 by the energy £.
The estimates for Iy, ..., lo 23 are obtained in the same way.

Bounds for I, I51, I3, Is6 and I,7: Due to the skew symmetry of iw;, we
obtain
]s,O - Is,l - Is,3 - Is,6 - Is,? =0.

Bounds for I;,, I;4, Is5 and I;g: We use the Cauchy-Schwarz inequality,
Sobolev’s embedding theorem, Lemma |2.3.6] Lemma|2.3.7, and ||(%w;) |1~ < C.
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Then, we obtain

Lol < C(|Rullas + (1 + || Rull s ) (IRl s + [ Rl sz ) + 7% Resul|ars)
X (|B=1llg=+1 + [ Rallgs+1)
< CEVE 4 CE + Ce28%2,
[Io4] < Ce||Ru||gost || Ror || o || Ryl s < CeE32,
Ios| < Ce™)|0; Resy[| o || Ryl - < Ce€?,
I, 5| < Cel||Ryl s (|e@1 Ra s | Rt || ot + ||€@y R || sz || Ra || gro+1)
+ Ce(||[ewr1 Ry || s + ||er R_1||ms ) (|| Rul| s+ + [[R-1 || rs+1)

< Ce€ + CeE32,

Bounds for I;9: By using a Taylor expansion, we find
- _ 1
@1 (k)| = |wr (k) — 72| < §k2-

Thus, we use integration by parts and Lemma to obtain
|Ls9| < Ce™?|[Resy|| ot (| R er1) < CEV2,

Hs+1 + ||R_1|

Bounds for [ 1, I514 and I, ;5: In the definition of I; 19, we replace 9, R, with
the right-hand side of the error equation ([2.34]). Then, we obtain

| Ls, 0] < C|0eRy — iws Rol| i (| Q2 (Vu, R) || 1re + || Q2( W, R)|1r2)
< 05_1(||R1| Hs+1 + ||R_1| Hs+1 + 62(||R1| Hs+1 + ||R_1| Hs+1)2 + 8_3||8;1RGSU| Hs)
X (1Q2(Wu, R) s + [|Q—2(¥u, R)l )

Further, in the definition of I 14, we replace 0,R; with the right-hand side of the
error equation (2.34). Since for all k € R it holds @y (k) < e !|k|, we can use

||a1f| Hs S 5_1||f| Hst1 fOl" f c HS+1

to obtain
\[s,l4| < C'||€2C<11(5t]‘21 - iW1R1)| H( CNUlQl(\I’u,RN Hs T ||C711731(%,R)’ H)
<OV (Ry+ R_p) + (¥, +e*(Ry + R_5))(Ry + R_1) — & *Res,|
x e (101 (W, R) g1 + [Pr(th, R)| 1),
With Lemma Lemma and , we conclude
[ Is10|, [Ls14] < C+CE + Ce2E3/?

Hs

and, analogously,
[I,18] < O+ CE + C2E32.
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2.3. FROM KGZ TO NLS

Bounds for I; 1, I, 15 and I;19: First, we write
10,0, — w1 (0)0, | = |8, (1ue™ 1) —ie~2hue™ | = |01l

Since 1, = —|1b,|* and 1, solves the NLS equation ([2.28)), we obtain

10:Wy — w1 (0) Uyl s < ClZPullirs + Clltvulul*ls < Clltbullgsr2 + Clltbulls,
10l s < CllOull s [ Vullers < Cullrsv2 + Cllvbullgrs) [l as-
Thus, with (2.38]), we estimate
[s11] < Cl|Rel| s Qa0 Vo — iw: (0) Wy, R) || s
+ C||R_2| Hs Q_g(at\llu — ZOJl(O)\IIu,R)| Hs
< Cel|0yW,, — iwr (0) W[ = ([ Rl s + [[R-alrs) (| Rall o2 + | Rl s+1)
< Ce€.
With ([2.38) and ([2.40]), we conclude
’13,15’ S C’H&T}lRlHHs (871HQ1<8,5\I’H — iwl(O)\Ilu, R)HHS
+ | Q1(0 ¥y, — i (0) Wy, R) || st
+ e [P0, R)|| s + [|P1(0tbw, R rs+1)
S C€H€L~01R1HHsHat\I/u — ’iwl(O)\IjuHHs+1(HR2 |Hs + HR,QHI_Is)
‘|‘ O€||EU~J1R1| Hs aﬂﬁvl H5+1(||R1| Hs + ||R_1| Hs)
< Ce€
and, analogously,
|I&19| S Ce€.

Bounds for I 12, 516 and I;9: We replace 0;R; with the right-hand side of

the error equation (2.34). With Lemma and Lemma [2.3.7, we obtain

#s < C([Rll oyt + 2[Ry + BR[| gosi | Ra + Roslms + 1),
Hs S 08_1(||R1||Hs+1 + ||R—1HHS+1 + €2||R1 + R_l‘ %54-1 + 82).

|e%w1 (0 Ry F iwi Ray)|
10 Rao F iws Ras|

Further, since for all & € R we have (1 + |k|?)'/2 < cw, (k), we can use

/]

o1 < C€_l|’€2w1f| gs for f e Hstt

to obtain

o1 < C’s_l||52w1(6tRi1 + iwlRi1)|

|0; Re1 F iwy R |

HS.
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Therefore, with (2.38)), we get

2o(Vy, R — AR) || 1

I,12| < C||Rol| 1+ ]| Q2(Wo, &R — AR)|| 115 + C||R_a |1 ]| Q-
< CeEY2(|0,Ry — iwy Ry || grs+1 + |0y R_y + iwi Ry || rst1)
< CEY?(||e®wy (8, Ry — iwr Ry)|| s + ||€%w1 (B R_y + iwy R_1)||1+)
< CEYV? 4 CE + C2832,

Furthermore, with (2.38)) and (2.40)), we find

|Is,16| S C||6@1R1| HS( 8W1Q1(\I/u,8t72 — AR)| Hs -+ ‘|€W1Pl(¢v,atn — AR)| HS)
S CH€L~U1R1HHS(H€71Q1(\IJU,atR — AR)‘ s + |‘Q1<\Iju,at72, — AR)’ Hs+1>
+ Clle@1 Ry || z+(||e™ P1 (0, OR — AR) || s + || P1L (0, R — AR) || grs1)

S CE:nglRIHHS H(?{R — AR||(H3)4
< C+CE+ Cee32

and, analogously,

[Io00| < O+ CE + C2E32.

Bounds for I3, I517 and I;9;: We use
jwa (k) — wa(1)] = e~y 7Hk — 1]
and the Lipschitz continuity of w;, namely,
jwi(k) —wi(1)] < e Mk =1,
in order to obtain

H/'wﬁ('>_“ﬁ1(”|‘f’u('—l> dl <c

'/ =Wy (- = DR;, (D) dl
§ Ce 0,9,

Hs

He |44

We remark that the loss of e-powers in this estimate causes no problems since,
according to the proofs of Lemma, [2 and Lemma [2.3.10] for all k € R we have

lg—1,42(k)| < Ce?, |k - q_1,12(k)| < Ce, |qo—1(k)| < Celk],
|pﬁ:1,:|:1(k>| < 0527 |k7 'pﬂzl,:Fl(k)| < Ce.
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2.3. FROM KGZ TO NLS

Therefore, by using (2.38)), we can conclude

[Qu1(Wu, AR) = > iw;, Qi1 (T, Ry,

HS
jre{£1,+2}
< Cel|0: V|| ms (| Ral s + || R=2] mr+),
H Q:I:l(\lluv AR) — Z ijl Q:I:l,jl (\Ijua le)} s+l
jre{£1,+2}
< OO0Vl ms (| Rall s + [|R-2||z+),
[Qua(Wu, AR) = D i, Qo (W, By,
j1e{£1,+2}
< Cll0p Wl st (| Rull s 4 [ R-al[ 1),
||,Pi1(wv7 AR) - Z iwjlpil,jl (%7 Rj1>‘ Hs
jie{£1,£2}
< 05||aac¢v| HS( R1| Hs + ||R—1| Hs)a
[Pea (o, AR) = D iy Py (80, By || o
jre{£1,42}

< Cll0utpoll s (I Ball s + ([ Bl 2.
With the Cauchy-Schwarz inequality and ([2.40]), we obtain

’15,13‘ S CS:
[Is17| < CE,
[Is01| < CE.

Bounds for ;5 and I 23:  We replace 0, with the right-hand side of ([2.39).
Sobolev’s embedding theorem and Lemma yield

[Ls00] < C(|Rollms + |[Whllms + €| Roll s | Wi || rss2) | W — i Wi || s
S C<||Rv| Hs + HW1| Hs +€2||R’U| Hs W1| H5+1)
X ([[Rylszs + (C + || Rollm=) (Wil s + [[W_-ill1zs) + €| Resul| m2)

< CEV? 4 CE + O 1 Cele?
and, analogously,
[Loos| < CEV2 4 CE + C26% 4 Cete?

Final estimates: Finally, after using £/2 < 1+ € and €€ < 1 we are left with

d
dtS_C—l—CS
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With Gronwall’s inequality, we have £(t) < M for all ¢t € [0, 7] for a constant
M = O(1). We choose gy > 0 sufficiently small such that egM < 1. This completes
the proof of Theorem [2.3.1]

Remark 2.3.13. In fact, we can increase the approximation rate in Theorem[2.3.1]
The following outlines how this is done. As in Remark 2.1.13] we introduce the
error by

(u, 0)(2,8) = (Pune’™ " o) (@,1) +€° (Ruy Ro) (1),

where (¢yn, %y 5) is the higher order approximation from Section [2.3.3] In order
to find an O(1) bound of the H**! x H*-norm of (R,, R,), we can apply the above
energy estimates and choose § = 2n+1. Therefore, we have the following theorem.

Theorem 2.3.14. Letn € N, s € N, and v € R with |y| > 1. There is a Cpaz > 0
such that for all C, € [0, Cpaz) the following holds. Let v, € C([0,Ty), HST2"5)
be a solution of the NLS equation with spatially 2m-periodic boundary con-
ditions and

sup ||yl gs+2ents =: C, < 00.

t€[0,T0)
Then, there exist £g > 0 and C' > 0 such that for all € € (0,eq) we have solutions
(u,v) of the KGZ system with spatially 2m-periodic boundary conditions
satisfying
et < O

: -2
sup ”(ua U) - (wume : t>¢v7n)|

te€[0,T0)]
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2.4. FROM KGZ TO SINGULAR NLS

2.4 From KGZ to singular NLS on the torus

In this section, we consider a KGZ system with a parameter € > 0 such that we
obtain a singular NLS equation in the limit ¢ — 0. We consider spatially periodic
boundary conditions in order to have this NLS equation well-defined in Fourier
space. Besides, we give estimates for the residual and construct a higher order
approximation. However, error estimates are not possible since we lose too much
powers of € in the normal form transformation.

2.4.1 Introduction
We consider the KGZ system
2
e20tu = O%u — e *u — uv, %546@2@ = 020 + 02(|ul?) (2.41)

posed on the one-dimensional torus T = R/(LZ) for L > 0 with u(z,t),v(z,t),z,t €
R,y € R\ {0}, and 0 < ¢ < 1. This corresponds to the spectral situation in Fig-
ure 2.4

Figure 2.4: The spectral situation corresponding to the linearized KGZ system
with & € R and v = 2. It is solved by u(z,t) = e*otws1b)t and y(x,t) =
etkrtivr2 (0 where w. (k) = +e24/1 + (ek)? and wao(k) = i%a_%. We note that
wi (k) asymptotically behaves like e~!|k|. Since |w; (k)| = O(7Hk|) and |w (k)| =
O(e7?|k|), the spectral situation is similar for every choice of the parameter .

We make the ansatz

w(z,t) = U, (z,t) = by (z,8)e” t+ cc.,

2.42
U(ZE, t) =Y, (ZL’, t) = 1y (ZE, t) + ¢fu,+(l’7 t)62i€_2t + Yy — (l‘, t>6_2i€_2t, ( )
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CHAPTER 2. KGZ AND RELATED SYSTEMS

where v, 1, and v, + are spatially L-periodic. In the singular limit e — 0, this
yields

¢v = _2|wu|27 Q/Jv,—l— = Aﬂ/ﬁ, ¢v,— = ./47%2, (243)

where the operator A, is defined by A, = —92(v* + §2)~*. Then, one can derive
the singular NLS equation

with spatially L-periodic boundary conditions in the limit ¢ — 0.

Remark 2.4.1. In Fourier space, the operator A, (k) = k2/(72 — k2) is not well-
defined for wave numbers k& € R as singularities arise for |k| = |vy|. Since we
consider periodic boundary conditions, we can choose the period L > 0 in such a
way that we are bounded away from the singularities for k € (27/L)Z. Therefore,
the operator is well-defined on the torus T for a reasonably chosen period L.
Furthermore, A, is self-adjoint w.r.t. to the L%scalar product since —9? and
(72 + 0%)7! are self-adjoint differential operators w.r.t. to the L%-scalar product.

Remark 2.4.2. According to Remark [2.2.3] we have local existence and unique-
ness of solutions (u,v) € H*™ x H* s > 1, of the KGZ system ({2.41]).

Remark 2.4.3. Due to Remark [2.4.1] the singular operator A, is well-defined on
the torus T. Therefore, analogous to Remark [2.1.5] we have local existence and
uniqueness of solutions u € H*, s > 1, of the singular NLS equation (2.44]) on the
torus T.

Remark 2.4.4. The same limit has been considered in [MNI10], where formal
convergence results can be found. Furthermore, [MN10] involves neither residual
estimates nor error bounds and the method of proof is completely different from
our methods.

Our goal would be to prove that the KGZ system makes correct predic-
tions about the dynamics of the singular NLS equation for small values of
¢ > 0. But with our methods of proof we lose too many powers of € in the normal
form transformations such that error estimates are not possible at that point. In
the subsequent section, we provide estimates for the residual on the torus T and
construct a higher order approximation in order to make the residual arbitrarily
small.

Notation. We use the notation from Chapter . We write [ for fT and H*® for
H*(T, K), unless otherwise specified.
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2.4. FROM KGZ TO SINGULAR NLS

2.4.2 Estimates for the residual and higher order approx-
imation

The residual of (2.41]) is given by

Res, (u,v) = —20fu + 02u — e *u — uv,
2
Res, (u, v) = —%54@% + 020 + 2([uf?).

It contains all the terms which do not cancel after inserting the approximation
into the KGZ system. If we insert the approximation (2.42]) into the residual and
choose ¥, = =2[¢, [, ¥, + = A, (¢2), and 9, to satisfy the singular NLS equation
([2.44), the residual Res, will be of order O(1) and the residual Res, will be of
order O(e?). However, in this section, we are interested in making the residual
arbitrarily small. Thus, we introduce the following higher order approximation

n k
_ Z Z 2k 2j+1)ie 2t
\Iju,n = g (¢u,2k,2j+16( 1) + C.C.),
k=0 7=0

(2.45)

k+1

n
\Ijv,n = Z 52k (7/)1)7216,0 + Z(¢v,2k,2j€2ji€72t + C-C-))-
k=0 j=1

Then, the residual of the KGZ system ([2.41]) is given by

Resy (Vs Yon)
n k

= ( — &?2(k+1)8t2¢u,2k,2j+1 - 2(27 + 1)2’&2’“8152/1“7%,2]-“
k=0 j=0

+ ¥y ok + (25 +1)° — 1)52(k1)¢u,2k,2j+1> eGIHETE e
- \Ilu,nqjv,n

and

Resy (W, Uyn)

n 2
f)/
( — 152("”*2)8,521%,21@,0 + €2k3§¢v,2k,0)
k=0
n k+1 ,YQ
n ( _ Z€Q(k+2)8t2¢v,2k72j — §in? ¥ Oy o 0

+ e (j272 + 3§)¢v,2k,2j) €2ji6_2t + c.c.

+07(| W)
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We remark that, in the definition of ¥, ,, and ¥, ,,, we have ¥, 01 = Yy, V0,0 = Vv,
and ¥, 02 = ¥, 4. In the following, we consider several e-balances. First, we
consider the terms contained in Res, (V. n, Vyn):

e We consider the (9(52’“6“72’5) terms for 0 < k < n. At %t we find
the singular NLS equation for v, 01. At e2e¢ k> 1, since for
j = 0 we have (2j + 1)* = 1, we find that the functions ¢, 9x 1 solve linear
inhomogeneous Schrodinger equations of the form

2i0iu k1 = Otbu okt — O ua—1)1 + Gog 1, (2.46)

where Gagi1 is a quadratic mapping which does only depend linearly on
¢u,2k‘,1-

o At 2 De@itDie™® with 1 < k < nand 1 < j < k, we find that the
functions 1, o 2541 solve algebraic equations of the form

Pugkajrr = (27 +1)% = 1)—1(83%72%_2)72%1 +2(25 + 1)i0bu2(e—1),2j11
- 8:i¢u,2(l<:—1),2j—|—1 + GQk,2j+1)7

where Gap 2541 is a quadratic mapping which does not depend on ¥, 25 2j41-
We note that we set ¢, ;2,41 = 0 for m < 0.

Next, we consider the terms contained in Res, (¥, ,, ¥,,):

e We consider the O(e?*) terms for 0 < k < n. At £°, we find that

02y 0.0 + 202([0uoa|?) = 0, (2.47)

and at €2, we find that

O21hy2.0 + 202 (Vu01%u21 + Yuo1Puz1) = 0. (2.48)

At €%k > 2, we find that the functions 1), 21 ¢ solve algebraic equations of
the form

2
’yzatzwvﬁ(ka),O — 2ty or0 = 02 Hopy, (2.49)

where Hyy o is a quadratic mapping which does not depend on ), 95.0. Sup-
pose now that 1, 2x—2),0 has a vanishing mean value. We look for ¢,
satisfying and having a vanishing mean value. According to Section
2.1.2] we can achieve this by setting

2 1
Vu,2k,0 = %afafﬁbu,z(k—m,o — Hopp + 17 /H%O(x) dz.
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2.4. FROM KGZ TO SINGULAR NLS

In total, all terms up to order O(e

Therefore, it remains to show that ¢, o resp. 1, 2 satisfy (2.47)) resp. (2.48))
and have a vanishing mean value, because then this also applies inductively

to Yy k0 TESP. Yy art20, With & > 1. Using integration by parts and the
self-adjointness of the operator A, see Remark we obtain

o, / o d = 0,
T

which is the conservation of the L?-norm for the solutions of the NLS equa-
tion. Thus, ¥, 00 = —2|thu01|* satisfies (2.47) and has a vanishing mean

value. Moreover, if we set

Y20 = =2y 0,1%u21 + Vu01Vu21),

then (2.48)) is satisfied, but 1, 2o has a non-vanishing mean value. To fix this
problem, we set

~ 1 [~
Yy20 = l/)v,zo I /%;,2,0@) dz,
where B
Vu2,0 = =2(Vu01Vu2,1 + Vu01%Pu2,1)-
Then, (2.48) is still satisfied and the mean value of 1, 5 vanishes.

At e with 0 < k <nand 1 <j < k+ 1, we find that the functions
Yy 2k,2; SOlve algebraic equations of the form

2
—%9,:2%,2(1972),2]' — §iY’ Oy a(k—1).2; + (7277 + 02 Uy ok.2j + 02 Hagoj = 0,

where Hyy 25 is a quadratic mapping which does not depend on v, 21 2;. We
note that we set ¢, ,2; = 0 for m < 0. In order to solve this equation for
Yy 25,25, We have to choose the period L in such a way that, in Fourier space,
each wave number in (27/L)Z is O(1) bounded away from the wave numbers
kij« = £j7v. Then, we set

2
. 177 ..
Uooroj = (727" + 02) l(zaf%,z(k—z)gj + Jiv 0y k-1 25) + Ay Hok 25,

and 1, 21, 2; is well-defined due to the choice of the period L.

2n=2) cancel in Res, and all terms up to order

(9(62”) cancel in Res,. The term which needs the most derivatives in both Res,
and Res, is 021, 2n1. As in Section [2.2.3] we can repeatedly replace the time
derivatives of 1), 2,1 with the right-hand side of (2.46). Then, the term 8?*21#“,0,1
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appears. Further, we can repeatedly replace the time derivatives of v, o1 with the
right-hand side of (2.44). Then, the term 92"*4, ¢ appears. Therefore, in order
to estimate Res, in H*™! we have to assume that 1,01 € H*"?"*°. The estimates
for Res, in H® are straightforward. We note that each term in Res, has either a
spatial derivative in front or has a vanishing mean value by construction. Thus,
we can formulate the following theorem.

Theorem 2.4.5. Let n € N, s > 0, and v € R\ {0}. Consider spatially L-
periodic boundary conditions with L > 0 satisfying that each k € (2n/L)Z is O(1)
bounded away from the wave numbers ki ;. = £jv for all 1 < j <n+1. Further,
let ¢, € C([0,Tp], H*"5) be a solution of the singular NLS equation (2.44]).
Then, there exist eg > 0 and Crs > 0 such that for all € € (0,gq) there is an
approzimation (Y, ,, ¥, ) of the form (2.45) with

sup ||Resu(\llu,n7 \Ijv,n)| gs+1 < Cres€2n7 sup HReSU(\Iju,nv \I[U,’Vl)|
tE[O,TQ] tG[O,To]

2n+2
Hs S C’res8 )

and

sup ||8;1Resv<\11u,n7 \I/’U,'fl>|
t€[0,To]

2n—+2
Hs S C’res6 .
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Chapter 3

The validity of the Derivative
NLS approximation for systems
with quadratic nonlinearities

3.1 Introduction

Modulation equations or amplitude equations are relatively simple PDEs, which
can be derived by perturbation analysis. They are used for modeling more com-
plicated PDEs in the sense that the modulation equation makes correct pre-
dictions about the dynamics of the original systems. There are many PDEs
which serve as modulation equations for various dissipative and dispersive sys-
tems. For instance, the Ginzburg-Landau equation, which has been justified
for pattern forming systems [SH77, [CE90, [Sch94al [Sch94b], or the Korteweg-De
Vries (KdV) equation, which has been justified for some dispersive equations in
plasma physics, the Fermi—Pasta—Ulam system and the water wave equation, cf.
[Cra85, [SWO00, SWO02, [Diil12]. Another example of such a modulation equation
is the Nonlinear Schrodinger (NLS) equation, which can be derived as an ampli-
tude equation describing slow modulations in time and space of oscillatory wave
packets in dispersive wave systems, for instance the quadratic and cubic Klein-
Gordon equation, the water wave problem [Zak68, [Osb10], waves in DNA [Pell1],
Bose-Einstein condensates [SH94|, and, most importantly, systems from nonlinear
optics, e.g., [AgrO1]. For more details, we refer to [SUIT, §10-12]. In this chapter,
we consider the Derivative Nonlinear Schrodinger (DNLS) equation

zf)TA = Vlﬁng + V2A|A|2 + iV3|A|28xA + Z'V4A28Xz + 1/5A|A|4, (31)

with 7" > 0, X € R, A(X,T) € C, and coefficients v; € R for j = 1,...,5.
The DNLS equation has been derived, for instance, as a long wave limit equation
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from the one-dimensional compressible magnetohydrodynamical equations in the
presence of the Hall effect [Mjg76, [CLPS99, [JLPS19], and the propagation of
circular polarized nonlinear Alfvén waves in magnetized plasmas [MOMT76]. In
this chapter, we are interested in its appearance as an envelope equation describing
slow modulations in time and space of an oscillating wave packet e!(0z=«ot)  The
ansatz for the derivation of the DNLS equation is given by

u(z,t) = e *ppyrg = /2 (A(e(z — ¢yt), g%t)eikor—eat) 4 c.c.) + O(e).

Hereby, ¢, is the linear group velocity, ky = 1 the basic spatial wave number, wy
the basic temporal wave number, and 0 < € < 1 a small perturbation parameter.
For original dispersive wave systems with a quadratic resp. cubic nonlinearity,
the justification of the DNLS equation is more complicated than the justifica-
tion of the NLS approximation [Kal88, BSTU06, TW12, DSWI6]. The reason
for this is that in the error equation, terms of order O(¢'/?) resp. O(g) have to
be controlled on an O(e7?) time scale. There already exist proofs of the DNLS
approximation for a special cubic Klein-Gordon equation in case of analytic solu-
tions as well as solutions in Sobolev spaces [HS22al, [HS22h]. In this chapter, we
consider a Klein-Gordon equation with a quadratic nonlinearity. This one is actu-
ally a general Klein-Gordon equation for which the DNLS approximation can be
justified, since the justification includes all problems which occur in case of higher
order nonlinearities. For the sake of simplicity, and with the intention of handling
upcoming resonances, we also add a fourth order term to the nonlinearity, cf. Re-
mark Thus, we consider the most simple toy problem, namely, the following
Klein-Gordon equation with a special nonlinearity

at2u = 35“ — U+ Q(ar)UQ + Ql<ax)u4v (3.2)
with z € R, t € R, u(z,t) € R, and
k? —1
E2+1

For the choice of the operator g;(0,), we refer to Theorem m By inserting the
ansatz

0(8,) = —(1=0)'(1+92),  resp.  o(ik) =

u(z,t) = V2N = 51/2(a1 +a_1) +e(as + a_g) + €ao, (3.3)
-7

where a_; and

aj(z,t) = Aj(e(x — cyt), et)ed For—wot) j=0,1,2,

with kg = 1, into the equation (3.2) and equating the coefficients in front of
E := ¢'(kor=w0t) with zero, we obtain the linear dispersion relation w? = k2 + 1 at
O(e'/?), and the linear group velocity ¢, = ko/wy at O(e3/?). Using the expansion

o(i +ieK) =1+ ceK + O(g?),
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gives at O(£%/?)

—2iw08TA1 = (1 — C§)6§(A1 — 228X<A_1A2 + AoAl)
+ 01(ko) (443 Ay + 1241 A1 P Ay + 1241 A1 Ap).

At O(g) and O(cE?), we find the relations

Ofe) : Ay =20(0)|A1f,
0(2ko) 2

1>

E?): A, =
OeE’) 2T 4 AR 1

which are well-defined since the denominator does not vanish as a result of
—m?wi +m?ky +1 = —(mw(ko))® + w(mko)* # 0 for all m > 2. (3.4)

Inserting the equations for Ag and A, into the equation for A; finally yields the
DNLS equation

—2iw08TA1 = (1 — 03)82(141 — 22’}/18)((141‘141‘2> -+ ’)/Q(A1|A1‘4>, (35)

where

0(2ko)

ko) = 2
7 (ko) @(0)+_4w3+4k3+1,

Ya(ko) = 01(ko) (240(0) + 160(2ko) ) .

—dwi + 4k +1

The goal of this chapter is to prove that the DNLS equation (3.5) makes correct
predictions about the dynamics of the Klein-Gordon equation (3.2), i.e., that the
following approximation property holds.

Theorem 3.1.1. Let the operator o1 in be chosen such that the subsequent
condition is satisfied. Let s4 > 6 and Ay € C([0,Ty], H*4) be a solution of
the DNLS equation (3.5)). Then, there exist £¢ > 0 and C' > 0 such that for all
e € (0,e9) we have solutions u of the Klein-Gordon model such that

sup sup ‘u(a:,t) - 51/21/)DNLS(x7t)‘ < 053/2,
t€[07T0/€2] z€eR

where €Y% prs is given by (3.3)).

The condition is necessary to handle resonances appearing at the fourth
order terms. We can always choose the operator g; to satisfy this condition. Only
then, the approximation result holds. Otherwise, if the condition is not satisfied,
we will be able to prove a non-approximation result, cf. Section [3.6]
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Remark 3.1.2. The proof of Theorem is a non-trivial task as solutions of
order O(e'/?) have to be controlled on an O(¢2) time scale. Since we have a
quadratic nonlinearity, a simple application of Gronwall’s inequality would only
give control on an O(¢~'/2) time scale. The proof is based on energy estimates
and normal form transformations. In contrast to the DNLS approximation, for the
cubic Klein-Gordon equation, cf. [HS22a, [HS22bh], we have to perform multiple
normal form transformations. Thereby, the same difficulties occur as in the cubic
case due to total resonances and second order resonances. In addition to that, new
difficulties occur due to further resonant terms arising from the fourth order terms
and due to more problematic terms produced by the elimination of the second
order resonant terms.

Remark 3.1.3. In contrast to the DNLS approximation (3.3)), for the quadratic
Klein-Gordon equation, the ansatz for the derivation of the NLS equation

z@TA = ylé??(A + DQA|A|27 (36)
with coefficients 14,75 € R, is given by
U(ZL‘, t) = E?/JNLS = 6(&1 + a_l) + 62(CL2 + a,_g) + E2CL0.

The DNLS approximation appears in the degenerated situation when the cubic
coefficient 7y = 5(ky) in the NLS equation (3.6)) vanishes for the chosen basic wave
number kq. In this case, the DNLS equation takes the role of the NLS equation.
This situation appears, for instance, in the water wave problem for certain values
of surface tension and basic spatial wave number ko, cf. [AS&]].

Remark 3.1.4. For the derivation of the DNLS equation, in the nonlinearity of
the original system only the terms of order two, three, four and five are relevant.
For the approximation result, only the terms of order two, three and four are prob-
lematic. The fifth order terms do not cause any problems since in the equation
for the error, see Section they are of order O(g?). Thus, they can be easily
controlled on the natural time scale O(¢72) of the DNLS approximation. Hence,
in order to avoid longer calculations, we discard any fifth order terms in our model
problem. We also discard any third order terms since, in the equation for the error,
the cubic terms will be produced by the quadratic terms anyway. Nevertheless, we
include fourth order terms because we need them to handle upcoming resonances.
In total, for completeness we could also consider third and fifth order terms but
for notational simplicity we discard them. Our model problem is sufficient
enough in the sense that all terms, which are necessary to derive the DNLS equa-
tion, are contained and all possible difficulties for the proof of the approximation
result are covered.

78



3.1. INTRODUCTION

Remark 3.1.5. In case that 75 = 0, the DNLS equation is a completely
integrable PDE solvable through the inverse scattering method [KNT78, [JLPST9).
It was shown in [TF80] that smooth solutions exist uniquely in Sobolev spaces
H* with s > 3/2. Further papers [TF80, [HO92, [Tak99, ICKS™02, Wul5, (GW16,
JLPS19, BP20] extend these results to solutions of lower regularity and investigate
global existence. However, for ug € H® with s < 1/2, the Cauchy problem is ill-
posed and uniform continuity with respect to initial conditions fails [Tak99).

This chapter is structured as follows. In the subsequent section, we construct a
higher order DNLS approximation such that the so-called residual of the Klein-
Gordon equation becomes sufficiently small. The residual of contains
all terms, which do not cancel after inserting an approximation into the original
system , and measures how much the approximation fails to solve the original
system. Further, we sketch how to estimate the residual.

We continue by preparing the proof of the justification of the DNLS approximation
considering solutions in Sobolev spaces. In Section we derive an equation for
the error which is an e%-scaled difference of the real solution of the original system
and the higher order DNLS approximation. Further, we write this error equation
as a first order equation and diagonalize it. We note that a goal of this chapter is
to find an O(1) bound for the error over the natural O(e~?) time scale of the DNLS
approximation. However, since the DNLS approximation is of order O(¢'/2), the
problem occurs that quadratic, cubic and quartic terms of order O(g'/2), O(¢) and
O(£%2) show up in the error equation. As these are obviously not O(1) bounded
on the O(¢7?) time scale, they have to be eliminated by so-called normal form
transformations.

In order to eliminate the problematic terms which are oscillatory in time, in Section
3.4 we perform these three normal form transformations and an additional one.
The use of normal form transformations goes back to [Kal88]. When using normal
form transformations, a number of non-resonance conditions has to be satisfied.
For the first normal form transformation, see Subsection [3.4.1] the non-resonance
conditions are satisfied such that the O(¢'/?) terms can be eliminated without
further problems. For the second normal form transformation, see Subsection [3.4.2]

the non-resonance conditions for the elimination of terms of the form b} , . (aj, *

aj, * ﬁjg), with 7, 71, 72,73 € {£1}, in the j-th component of the error equation
reads
Jw(k) + jrw(ko) + jaw(ko) — jsw(k — jiko — jako) # 0.

It turns out that some terms violate the non-resonance conditions, i.e., resonances
occur which prevent the elimination of these resonant O(e) terms. In detail, we
have so-called totally resonant terms and second order resonant terms:

e The totally resonant terms correspond to the indices with j3 = 7 and j, =
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CHAPTER 3. THE VALIDITY OF THE DNLS APPROXIMATION

—71 such that the left-hand side of the non-resonance condition completely
vanishes for all £ € R. This seems to be a huge problem, but it turns out
that the totally resonant terms can be controlled by energy estimates.

e The second order resonant terms correspond to the indices with j3 =7 = —1
and jo = j; such that the left-hand side of the non-resonance condition
vanishes quadratically for the wave number £ = j;. In order to solve this
problem, by adding and subtracting irrelevant terms of order O(&?) to and
from the error equation, one can achieve to shift the quadratic singularity
O(e?) away from zero. Thus, the non-resonance condition can be satisfied
but we lose powers of £. However, in the energy estimates most of these
terms gain an ¢ power. The reason for this is the choice of the quadratic
nonlinearity which also vanishes for the same wave number k£ = j;.

The problems that stem from these resonances were already solved in [HS22D]
for the cubic Klein-Gordon equation and can be handled the same way in our
case. However, in the third normal form transformation, see Subsection [3.4.3]
further resonances occur. To be more precise, for the resonant quartic terms the
left-hand side of the corresponding non-resonance conditions vanishes linearly for
the resonant wave numbers. By a certain choice of the operator p;, in the original
system, one can make the resonances stable in the sense that the resonant terms can
be controlled by energy estimates, cf. [Sch05]. Furthermore, we need to perform an
additional normal form transformation, see Subsection in order to eliminate
certain sixth order terms generated by the second order resonant terms. This is
due to the fact that the operator g, in general, does not vanish for the basic wave
number kq. Here, additional resonances arise. However, as these are bounded away
from the second order resonances at k = ji1kg, we do the elimination by cutting off
the normal form transformation around the wave numbers k = j; k.

In Section [3.5 we close the proof of Theorem by giving energy estimates. In
order to get the O(1) boundedness of the error, we include the four normal form
transformations to the energy and use Gronwall’s inequality.

In fact, approximation results should not be taken for granted. There are a number
of counterexamples which show that the approximation fails, cf. [Sch95l [SSZ15]
HS18, BSSZ20]. In Section , we consider the case where we choose the operator
01 in a way so that the resonances appearing at the quartic terms become unstable.
By modifying the original system, we can achieve that these unstable resonant wave
numbers lie on an integer multiple of the basic wave number k. Then, in case
of spatially 27 /ko-periodic boundary conditions, we give a rigorous proof that the
DNLS approximation fails to predict the behaviour of solutions of the modified
original system. This proof resembles the one that a spectrally unstable fixed point
is unstable, cf. [SUL7, §2.3].
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Finally, in Section we discuss whether the DNLS approximation is still valid
when we consider solutions that are analytic in a strip of the complex plane instead
of solutions in Sobolev spaces. It turns out that the alternative method for proving
the approximation property, cf. [Sch98, [DHSZ16, [HS22al, can be applied without
further problems. According to [HS22al, in our approximation theorem, there is a
restriction regarding the time due to the resonant cubic terms. However, despite
of the resonances appearing at the fourth order terms, we show that there is no
additional time restriction as it should normally be the case.

Notation. We use the notation from Chapter [l Further, we define the space
LE(R,K) by
u€ (R, K) & u(-)(1+(-))** € L"(R,K).

We write [ for [, H® for H*(R,K), and L? for L2(R, K), unless otherwise specified.

3.2 The higher order DNLS approximation
The residual of is defined by
Res(u) = —0fu + 0%u — u + 0(0,)u® + 01(9,)u’ (3.7)

and contains all terms which do not cancel after inserting an approximation into
the original system . To be more precise, the residual measures how much an
approximation fails to solve the Klein-Gordon equation. When inserting the DNLS
approximation into the original equation (3.2), the residual is of order O(g?)
which is not sufficient enough to prove Theorem [3.1.1} For the further course of
this chapter, we need the residual to be at least of order O(g?). We can achieve
this by adding higher order terms to our DNLS approximation in order to
eliminate all terms up to order O(¢7/2).

First, we modify the original approximation /?¢pnrg by replacing A; in the
definition of e/?¢pxrs by

AS (5( — cgt),52t) = F! (X[_(g,g](-)}" (A1 (5( — Cgt),€2t)) ()) ,

where x|_s4] is the characteristic function on the interval [—6, §] and § € (0, ky/20)
is a fixed chosen constant that is independent of the parameter €. The error made
by replacing A; by A¢ is of order O(£°) due to the estimate

Ixtsae ™ Fe™) = e Fle™ e, < C@O™ M2 flmens

and the fact that A, € C([0,Tp], H*4(R, C)) solves the DNLS equation (3.5)), cf.
[SULT, §11.5] for more details. Since A has a bounded support in Fourier space,
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CHAPTER 3. THE VALIDITY OF THE DNLS APPROXIMATION

the use of A{ instead of A; subsequently allows us to control the terms in the
normal form transformations more efficiently.

We continue by constructing an improved DNLS approximation for such that
the residual is of formal order O(e*) which is necessary to prove Theorem m
The higher order DNLS approximation £'/2W¥ is given by

V2 (x,t) = V2 Upnig(z, t) + 32T (2, 1), (3.8)
where
2V (z,t) = (¥ a1 (x,t) + c.c.) + Z (%% M ag (2, 1) + c.c.)
n=0,1,2
+ Z 5/2+” (2, 1) + c.c.) + (57/2a770(:1;,t) + c.c.)
n=0,1
+ Z e ag ,(z,t) + Z (e"ag,(z,t) + c.c.)
n=1,2 n=1,2
+ Z (" agu(z,t) + c.c.) + (E2aso(x, t) + c.c.)
n=0,1
and

aj,n(I, t) = Ajm(g(g; _ Cgt), €2t)eji(k0$_w0t)'

Remark 3.2.1. In contrast to [HS22b], the ansatz (3.8) for the higher order
DNLS approximation not only contains terms of order O(/?+") but also terms
of order O(e"). Therefore, the ansatz can be also used for a more general
Klein-Gordon model including third and fifth order terms.

Let E := ¢'(hoz=wot) - Gince, in Fourier space, ASE has a small support near the
wave number &y and since we have a polynomial nonlinearity, also the A, ,, can be
chosen so that, in Fourier space, the support of 4;,,E7 lies in a small neighborhood
of the wave number jky. If we insert the improved approximation (3.8) into the
residual (3.7)), equating the coefficients at O(c'/?E) and O(¢%?E) to zero yields
w? = k24+1 and ¢, = ko/wy. Equating the coefficients at O(¢%/2E) to zero yields the
DNLS equation . Equating the coefficients at O(¢7/?E) to zero, we obtain that
A1, is determined by solving a linear, but inhomogeneous, Schrodinger equation.
For this equation, the inhomogeneous term only depends on A{. Equating the
coefficients at O(¢""'E’) and O(***"E7) with |j| # 1 to zero results in linear
algebraic equations for A, which can be solved with respect to A;,, since their
coefficients do not vanish due to (3.4). For more details, we refer to [SUL7, §11.2].
Finally, all terms up to formal order O(¢7/2) vanish such that we are left with
terms of order O(g*) depending on A§. Since A; € C([0,Ty], H*4(R,C)) and due
to the fact that A; solves the DNLS equation , these remaining terms can be
easily estimated in H®. Hence, we can conclude the following lemma.
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Lemma 3.2.2. Let s4 > 6 and A; € C([0,Tp], H*4(R,C)) be a solution of the
DNLS equation (3.5)) with

sup ||A1||HSA S CA.
T€[0,Tp)

Then, for all s > 0 there exist Cgres, Cy, and €9 > 0 depending on C4 such that
for all € € (0,&0) the approzimation €'/?V, defined in (3.§)), satisfies

sup  ||Res(eY2W)|| g5 < Cresc?, (3.9)
tG[O,To/EQ]
sup  [|e¥?W — 2 pypsllco < Cype®?, (3.10)
t€[0,To /2] b
and R
sup (Il + il + 1%z, ) < Co. (3.11)

tE[U,To/EQ}
Remark 3.2.3. We state a number of remarks concerning Lemma [3.2.2]

a) We refrain from recalling the proof since such estimates are carried out in the
existing literature of the NLS approximation. For further details, we refer
to [SULT, §11]. We note that the residual can be made arbitrarily small by
adding even higher order terms to the DNLS approximation.

b) We note that, due to the scaling property of the L2-norm with respect to the
scaling X = ex, we lose half an e-power when estimating A; in H*®. Instead,
we use the estimate

lavf| fl
which prevents the loss of powers in € due to (3.11)).

ns < Cllay]

ns < Cllay]

/1

c; L Jlas

¢) The reason for the order of regularity s4 > 6 is as follows. In the inhomo-
geneity of the equation for A, ;, the term 2¢,0x0rA; occurs. After replacing
the time derivative with the right-hand side of the DNLS equation ,
the term 0% A; appears, i.e., we need s4 > 3 for the well-posedness of the
equation for A; ;. Finally, since in the residual the term 924, ; F occurs and
since there is no higher spatial derivative of A;, we need s4 > 6.

3.3 The error equation
Our model problem is of the form

0*u = —wgpu — WopPopl® + WopP1.optt™ (3.12)
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with pseudo differential operators wey, pop and p; 4, defined by

w(k‘) = sign(k)\/l + k2, p(k’) _ _%’ Pl(/f) _ Ql(

In order to estimate the error é’R that is made by the improved DNLS approxi-
mation /2, we make the following ansatz

=’V 4+ R (3.13)
for § = 2. The error function R satisfies
OR=—-wl R~ WopPop(26'* TR + 2 R?)
+ WopP1.op(463 WP R + 62U R? 4 4°WR® + R*) 4 e *Res(e'/?0).
We write this equation as a first order system
8tR = iwopé,
OR = iWop Ry + ipop(251/2\IfR + £2R?)
— ip1op(4e3P VPR + 63T R? + 492U R + ORY)
+ (iwgp) ~te2Res(e'/2W).

Via the transformation

m= () =20 ) (®)

we obtain a diagonalized first order system. This system is written as

IR = AR+ e2By(T,R) 4+ eBo(T, T, R) + */2B5(T, T, T, R)

3.14
+ 2B, (Y,R) + 2B5(T, R) + e 2RES(eV/21), (3.14)
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where T = (a1, a_,)” and where, in Fourier space, A(k) = diag(iw(k), —iw(k)) is
a skew symmetric operator. Further, we have

Bi(Y,R)(k,t) = ip(k) —(?%1++aa_13)**%f+}%2>) (k, 1),

s @) (B4 R
BT TR ht) = ip(k) [ (G0t B2t a2)x (Bt Roy) ) )y
o1 )(k,t) = ip(k) (G0 + T+ ) * (B + By) (k,t)

AAAAA . (ag —1—6,3) * (ﬁl + éfl)
By(T, T, R) (ko) — ip(k) [ (%3 @) x Ut fia) g gy
3( )(k,t) = ip(k) (@t a) * (R + R) (k,t)

_ Qigl(k) ( (a1 +afl)*3 * (Efl\ + Efl) > (k, 1),

w(k) \ —(a +a—1)*3 * (R + E—l)

= A . (al 1 +6_1 1) * (§1 + §_1>
By(Y,R)(k,t) = ip(k 1,1 A, P kot
2(T, R)(k, t) = ip( )<_(a171+a_171)*(R1+R_1) (k,7)

and

_ N Res(e!/20
RES(=2F) (k) — le( 5 <_R§e\§gl /;I%) (k. 1),

The mapping 2B5(T, R) contains all terms of at least order O(g?) such that we
have

|e2B5(Y, R < Ce* (||R|

M sry2 me + | Rl + 2RI + IRl -

3.4 The normal form transformations

We note that, due to Lemma [3.2.2] the last two terms on the right-hand side of
are at least of order O(g?). These terms cause no problems in uniformly
bounding the error R on the long time scale O(e72). Since A is a skew symmetric
operator, the first term on the right-hand side does not cause any problems, too.
However, all other terms are at most of order O(e%?) which is a serious problem
in bounding the error independently of the parameter . Hence, we try to get
rid of the problematic terms by making a near identity change of variables. By
these so-called normal form transformations one can gain half an e-power, if a
number of non-resonance conditions is satisfied. Due to the fact that for every
normal form transformation we normally gain half an e-power and since we also
have to eliminate terms of order @(c'/?), we have to perform three normal form
transformations and an additional one since we have to distinguish between fourth
and sixth order terms of order O(¢3/2). However, the non-resonance condition is
not always satisfied which prevents the elimination of some terms.
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3.4.1 The first normal form transformation

We consider the diagonalized first order system (3.14). By the first normal form
transformation, we want to get rid of the term ¢!/23,(T,R). This term is of the
form L R
BT, R) = > by, (R)(@; = Rp)(k),  j€{+1},
Ji.j2€{£1}

where B! denote the components of B;. Obviously, we have that

sup‘b }<C<oo.

J1 J2
In order to eliminate the terms above, we make the near identity change of variables

R=R+¢c7?Q(T,R), (3.15)
where Q = (9, 9717 is a bilinear mapping which, in Fourier space, has the form

IR = D, k)@ Ry k), je{*1}

j1,j2€{%1}

We also write R
QT,R) = Qjup(@y, I
Ju.g2
where N R ' R
Qo (@51s Bjy) = @i, 5, (K) (@, = Ry, ) (F)
denote the components of Q;, ;.. It is well-known that the reduced non-resonance
condition for the elimination of a term of the form zbj i (A, * RJQ) reads

inf |L

inf |5, 5, (k)] := inf [jw(k) + jiw(ko) — jaw(k — jiko)| = C >0

and is satisfied, cf. [SUL7]. Thus, we can set

; bl o (k)
4q; 2 (k) - = . J1.2 . - )
I Jw(k) + jiw(ko) — jow(k — jiko)

where '
sup |q§17j2(k)’ < C < o0. (3.16)
keR

Therefore, the first normal form transformation can be inverted for £ > 0 suffi-
ciently small. Finally, by construction of the mapping Q, the problematic O(g'/?)

86



3.4. THE NORMAL FORM TRANSFORMATIONS

terms cancel and we are left with
R = AR +¢ (Bo(T,T,R) + Q(T, B (T, R)))
+&32B5(T, T, T, R) + 2Q(T, Bo(Y, T, R))
+ QT AR) — 23" juitw(—id, — jiko) Qi (a5, Ryy)  B17)

Ji,J2

+&Y2Q(0,Y + A(ko)Y,R) + G(Y,R),

where w(—i0,) is defined via its Fourier transformation F(w(—i0,))(k) = w(k)
and where the mapping G(T,R) contains all terms, for which one can show that

IG;(T, R)|

s < Ce* (|| R|

s + | Rl % + 2| R||3 + || R ) - (3.18)

We note that the equation (3.17) does not contain any terms of order O(g!/?)
anymore. The three terms with prefactor £'/2 are actually of order O(g%?) since
for the last term we have

(3.19)

oY —+ A(k; )T _ ( _Cg&"aXAlei(koz—wot) + SQaTAlei(kox—wot) )
t 0 =

_cggaXAile—i(kow—wot) + 828TA,16_i(k0$_w0t)

and for the first two terms we use the following Lemma |3.4.1} cf. [SUI7], in com-
bination with the Lipschitz-continuity of w.

Lemma 3.4.1. Let n,m € N and let g(k) satisfy |g(k)| < C|k — ko|™. Then,

ch)e% ( | ;’“O)

With this lemma, we could reduce the non-resonance condition to a one-dimensional
problem, cf. [SUIT7, §11.5] for more details.

< Ce"Alry,,,
Ll

m

Remark 3.4.2. From the above, we can conclude that the terms with prefactor
e'/? are actually of order O(¢%/?), which is still not sufficient enough to prove
Theorem [3.1.1, Therefore, we have to eliminate them by another normal form
transformation. However, these mentioned terms are of the form £32B(Y,R),
where B is a bilinear mapping. Thus, the elimination goes exactly like the one
just carried out, i.e., no further problems, such as resonances, occur. Since the
same holds for the term £%2B,(T,R), we refrain from carrying out the normal
form transformations in the remainder of Section [3.4
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3.4.2 The second normal form transformation

In this subsection, similar problems occur which were already handled in the Klein-
Gordon equation with a cubic nonlinearity [HS22b]. Thus, we only summarize the
procedure briefly.

We consider the equation after the first normal form transformation. By
the second normal form transformation, we want to eliminate the terms of order
O(g), namely,

BT, T, R) + Q/(T, B (T, R))
= D i M@ @ xRy (k). j e (£,

jl7j2’j3€{:t1}
where with (3.16]) we have

iu]g }b§17j27j3(k>‘ < C <oo

In order to do so, we make the near identity change of variables
R=R+eP(T,T,R), (3.20)
where P = (P!, P71)T is a trilinear mapping which, in Fourier space, has the form
PILTR) = > phon(B)@, #ay, =« Ry)(k), g€ {£1}.
J1.J2,d3€{£1}

For the elimination of the term b’ (aj, xaj, * ﬁjg), the following reduced non-

71,3233
resonance condition has to be satisfied

inf |LJi

LER 317j27j3(

k)| >C >0, (3.21)
where

L§17j27j3(k) = jw(k) 4+ jrw(ko) + jaw(ko) — jsw(k — jiko — jako)-

It turns out that there are terms that violate the non-resonance condition (|3.21]),
including totally resonant terms as well as second order resonant terms.

The totally resonant terms: For the indices (4, j1, jo, j3) = (J, j1, —Jj1,J), there
is a total resonance since obviously for all £ € R it holds

Jjw(k) + jrw(ko) — jrw(ko) — jw(k) = 0.
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Therefore, a normal form transformation is not possible. However, an elimination
is not even necessary since it turns out that the totally resonant terms can be
controlled by energy estimates. To be more precise, when calculating the evolution
of the L*-norm of Rj, the totally resonant terms arise in the form

C’a/ (R; z'b?h_jhj(ajla,jléj) + c.c.) da.

By using the skew symmetry of ib;:l’_‘-l - and 0,(aja—;) = O(e) in combination
with Plancherel’s identity and Lemma [3.4.1] one can show that ([HS22b, Lemma
4.2])

€ < Ce?||R; || (3.22)

/ (]v%_] ibj:hfjl’j(ajla_jl R;) + c.c.)dx

Hence, an elimination is really not necessary and we set pj-l = 0.

—J1,J
The second order resonant terms: For (j,71,72,73) = (—1,71,71,—1), the
non-resonance condition is also not satisfied. To be more precise, we have a second
order resonance since the term

w(k) = 2j1w(ko) — w(k — 2j1ko) = j1w" (j1)(k — j1)> + O(|k — ju|’)

vanishes quadratically at k = j;. Thus, an elimination of these terms by a normal
form transformation seems to be not possible. However, the quadratic singularity
can be shifted O(e?) away from zero by adding and subtracting terms of the form

..o 3 1
J1iKE pjl’jh_lajlale_l

to and from the equation for R_; with x = O(1) chosen sufficiently large. Sub-
sequently, the added term will be included in the definition of the normal form
transformation, while the subtracted counterpart is of order O(g?) and can be
easily estimated by Gronwall’s inequality. Due to the added terms in the error
equation (3.17)), the second order resonance is shifted O(e?) away from the k-axis.
More precisely, the non-resonance condition ((3.21]) is transformed into

inf L' (k) — jike®| > C >0,

kcR ]17j17_1

which is now satisfied. Therefore, we can set

—1
p'—l' 1( ) _ - bj17j1,—1(k) .
J15J15 L;17j17_1(k) _ j1li€2
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We would expect that pj_l}jl,fl is of order O(¢7%). However, we note that the
numerator bj_jjl,fl also vanishes at k = j kg since B} and Q7 both contain p as an

factor. Thus, we have that
k — jiko
(k - j1k0)2 + Ke?

|epjig -1 (k)| ~ €

is of order O(1) for € — 0 and of order O(e+ 1) for kK — co. Further, we remark
that we gain another power of ¢ when multiplying pj_l:}jl,*l by a function which
vanishes at £ = j;1kq.

The non-resonant terms: For the remaining indices, the non-resonance con-
dition (3.21)) is satisfied. Thus, we can easily eliminate these non-resonant terms
by setting

p§11j2,j3(k> = ; . J1,J2,J3 : . |
jw(k) + jiw(ko) + jow (ko) — jaw(k — jiko — jako)

for (j27j3) # (_jlaj) and (j7j27j3) # (_17j17_1)' FinallY? for all g7j27j3) 7é

(=1,41,—1) and a neighborhood U;(j1) around k = j; with a radius 6 > 0 suffi-
ciently small, we have that

Sup ‘p§17j27j3(k)| < ¢ < o0,
keER

-1
sup |p;, . 1(k)| < C < oo,
keUg(m’ -1 )] (3.23)
sup ‘€pjfj17_1(k:)| <(C < 0.
k!EUg(]l)

Consequently, the second normal form transformation is invertible for ¢ > 0 suffi-
ciently small and x > 0 sufficiently large. In total, after the second normal form
transformation, we are left with the following system

atéj = Aéj + 53/2B§(T7 T, Ta R) + 53/2 Qj(T7 BQ<T7 T’ R>>
+ P, BUT, R)) =2 ) it (0505, (T R)) (394
J1

+E2PI(YT, T, By (T, Y, Y, R)) + GU(T, R),

with G(Y,R) obeying the same property (3.18) as G(T,R). The second term in

the second line comes from the totally resonant terms when replacing R; by }u%j.
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Remark 3.4.3. We write P = Psor + Pnon, Where Pgogr contains all the second
order resonant terms in P, and Pyon contains the non-resonant ones. We remark
that e”/2Psor(Y, T, Bs(T, Y, T, R)) is actually of order O(£*?) since the mapping
Bs from contains terms with a prefactor g;(k) which, in general, does not
vanish for k = £1. Thus, near the wave numbers +ky the corresponding kernels
are of order O(¢7!). Therefore, we have to perform an additional normal form
transformation, see Section [3.4.4]

3.4.3 The third normal form transformation

By the third normal form transformation, we want to get rid of the quartic terms
of order O(£%?), namely,

A~ AN AN A A P e e

AN AN AN AN A ~

+7>f<r T,B,(T, R)) Zzbﬂ (@, %, x Q(T,R))

J1,=J1,J
Ji

= Y W )@ w < Ry)(R), € {1}

J1,92,93,Ja€{£1}

where by ([3.16) and (3.23) we have that

sup| ]1J2J3J4< )| S C< 0.

In order to carry out the elimination, we make the near identity change of variables

R=R+e2S(T,T,T,R), (3.25)
where S = (8',871)T is a multilinear mapping which, in Fourier space, has the

form

J1,72,]3,54
j17j27j37j4e{:t1}

SOYTR) = > shuna(B)@, #ay, + a5, + Ry (k),  j € {£1}.

For the elimination of the term zbgl o ja (@ % Wy x Ty §j4), the following reduced

non-resonance condition has to be satisfied

inf |L

kER J1,J2,73,:74

(k)| > C >0, (3.26)
where

L7 (B) = jw(k) + (i + j2 + ja)w(ko) — jaw(k — (j1 + j2 + j3) ko).
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We notice that there are further resonant terms. In contrast to the previous
normal form transformation, the left-hand side of does not touch the k-axis
but intersects it. Thus, we have to handle them in a different way. Let us consider
the system (|3.24)), which we write as

8t§j = jzwé] + 83/2 Z zbj

J1,J2,93:34

ajlaj2aj3Rj4 —+ éj(T,R), (327)

J1,J2,J3,Ja€{£1}

and the energy
E = Z /aj|li’j|2d:v,
je{+1}

with some operators o011 = 041(—i0,). We ignore the first term in the last line of
(3.24)) since this term gets eliminated in the subsequent section anyway. By taking
the time derivative of the energy E, we obtain

d v o
EE — Z / (gjatRjRj + c.c.) dx

je{£1}
= Z / (53/20j Z (ib;hjms’ﬂajlaj2aj3Rj4E + c.c.)) dz + O(e?),
Je{£1} J1.J2,33,ja€{£1}

where we used the skew symmetry of iw, the estimate (3.18]), and é]‘ = R; +
O(£/?). In order to get rid of the O(¢%/?) terms, we add

E= Z /(53/28j(T,T,T,R)R_j+c.c.) dx

je{+1}

to the energy E. Taking the time derivative yields

d ~

—(E+E

3B+ E)

= Z / (53/20j Z (Z.b§17j2,j37j4aj1 Ay A Rj‘lﬁj T C.C.)) dz
Je{£1} J1,J2,J3,Ja€{£1}

3/2 g ; I 9
o / (5 / Z (ZL;E,j27j37j45;17j2,j3,j4aj1aj2aj3Rj4Rj + C‘C')> dz + 0(5 )

J1,J2,d3,Ja€{£1}

The non-resonant terms: All terms with indices (jo, js,j1) # (j1,71,—J) are
non-resonant and, thus, can be easily eliminated by setting

S;1J2,J'37j4<k) = O-j(k)bi'hjz,j&jzx(k)<L;17j2,j3,j4(k’i))_1'
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The first order resonant terms: For (j, 1, 2,73, j1) = (J,J1, 71, J1, —J) res-
onances occur. To be more precise, L’ vanishes linearly at k = k;l =
A (‘ —J >, ie. le v ](k] ) = 0 and 8kL§1 v J(kj ) # 0. Thus, a direct

elimination is not possible and we have to study the resonant terms in a more
detailed way.

J1,31,J1,—J

Remark 3.4.4. To understand the behaviour at the resonant wave numbers k;,
where (-); = (-)? % i with j = £1, in Fourier space, we consider a subsystem of
(13.27), namely,

O R (kj,t) = jiw(k;)R;j(kj, t) + 53/2z'b,-(kj)ajf<3k0)zé_j(k;_j, t) + O(2).

We make the ansatz 0;(k;,t) = e/™(* tR (k;,t) to obtain
005 (kj, t) = e¥%ib;(k;)a3 (3ko)v_;(k—j, t) + O(e%)

resp.

025, (kv t) = —3by (k1 )by (k)[@1 |50 (K1, 1) + O(£2).

Thus, for
bl(k’l)b_l(k_l) > 0, (328)

we expect that the resonances can be stable in the sense that the resonant modes
grow as O(exp(ic*/?t)) and stay bounded on the natural time scale O(s~2) of the
DNLS approximation. To be more specific, we consider the energy

E = Zaj )|V (k;

By taking the time derivative of E, we obtain
E Zal (at% k)i (k;) +5j(/fj)3t@(/fj)>
= 283/ (O’l(l{il)bl(kil) — J_l(k_l)b_l(k_l))
X (2:1)’(3750)5—1(743—1)51(]{?1) - 1@1(3%)5—1(7{?—1)@1(7@)) +0(e?).
At this point, we note that the operator g; in the original system (3.2)) was not
chosen yet. The operator appears in the error equation ((3.14)) within the definition
of the term Bs, but not in the definition of @ and P such that, in Fourier space,
the b,(k) are of the form
bi(k) = fi(k) — 2jw(k) ™ 01(k)
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for certain functions f;. We note that w(k)™' > 0, for k¥ > 0, and w(k)™! < 0,
for £ < 0. Since the k;’s have the same sign and are bounded away from ko,
we can choose p; appropriately, but independent of the parameter ¢, such that
is satisfied. A possible choice would be, for instance, g1(k) = |a|, where the
parameter a € R is sufficiently large. Consequently, we can choose o1, o_; the
same sign so that the energy E is positive definite and

O'1<k1)b1(]€1) - 071(k71>b,1(l€,1) = 0. (329)

Finally, we can conclude

d
aE O(e?).

We call the resonances stable, if (| - holds, and unstable, if not.

We proceed to make the considerations of Remark rigorously. Since the
non-resonant terms cancel, with Plancherel’s identity, we are left with

d

E+E
' ETE)
—or Y (//( S, (k)A;f’(k—l—3]1k30)R_j(l)Rj(k)—|—c.c.)> al dk
je{£1} J1€{:|:1}
// ( (iL%, (k)s (k)as(k — 1 — 3j1ko) R_j (1) R; (k) + c.c.)) dl dk)
JlE{:tl}
+O(e
in Fourier space, where (- )J1 = (- );1 Jrir_j- Inorder to achieve & (E+E) O(e?),
we have to find s7 ’s and 0;’s such that
> // i(o;(k — L% (k)s], (k))a;? (k — 1 — 3j1ko) R_j () R; (k) + c.c.) Al dk
Jue{£1}
-y // ( (o1 ()DL (k) — L}, (k)s, ()2 (k — 1 = 3juko) Roa(D R (k) + c.)
Jre{£1}

—~

+ (o1 (k)b (k) — Ly,M(k)sj, (k))as? (k — 1 — 3jako) Ry (1) R

J1 J Jl

(k) + c.c.)) dl dk

= ¥ //( i(on (k)DL (k) — L (k)s) (B))azd (k — 1 — ko) R_y (D) Ra () + c.c.)

jie{£1}

— (i(o_1 (k)b (k) — L3 (K)s;, M (k)as (1 — & + 3j1ko) Ry (1) R_y (k) + c.c.)) dldk

J1
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Swapping the integration variables in the last line yields
5[] ([ownsm - 2 ws 09 -1~ ik
Je{£1}

—i(o_ (DbN1) — LMD s (1)@ (k — 1+ 3jiko) | By (D) Ry (k) + c.c.) dl dk

J1 J1 J1

=0.
Therefore, we have to find s?l’s and o;’s such that
i(01(k)by (k) — Ly(k)si(k)) — i(o1(D)b=1(1) — LZ1(D)sZ1(1) = 0
and
i(o1 (k)b (k) — LLy(k)sy (k) — (o (DDr (1) — LT (1)sy (1)) = 0,

where we restrict ourselves to the indices (j, 71) = (4, ). For the remaining indices
(4,71) = (4, —J), the procedure can be applied analogously. In the following, we

use the indices (-); := (-)7,,_;, if (:)];,_; is defined. Outside a sufficiently small
neighborhood of the resonant wave numbers k;, we choose o; = 1 and

Inside the neighborhood of the resonant wave numbers, the problem then consists
in finding s;’s and o;’s such that

0 = igu(k) — i1 (K)sy (k) + i (k1 )br (1)
— (ig-1(l) =il (D)s-1(1)) —do_1(k_1)b_1(k-1),

where
9i(-) = (03 (-) = 0;(k;))b; (-) + 7 (k;) (b; () — bj(k;))-
According to Remark , we can choose o1 in (3.2]) in such a way that
o1(k1)b1 (k1) — o_1(k_1)b_1(k_1)
vanishes. Finally, inside the neighborhood of the resonant wave numbers, we can

set
si(-) = (L;(1))"g;()- (3.30)

We note that we have

l9;()| < Cl-=kj| and [L;(+)] < C|- —kjl,
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due to the relation 0yL;(k;) # 0, such that the resonance becomes trivial in the
sense that the numerator and denominator both vanish for the same wave number.
Accordingly, by analogous approach for the s’ ;'s, we have the boundedness of sg .
near k:gl Finally, by a suitable choice of the operator p;, for all possible indices
we have that .
;1 1J2,J3574 (

k)| < C < . (3.31)

sup |s
kER

Consequently, the third normal form transformation is invertible for ¢ > 0 suffi-
ciently small. After the elimination, we are left with the system

R = AR + /*Pgor(T, T, Bs(Y, T, T, R)) +G(T,R), (3.32)

with G(T,R) obeying the same property (3.18) as J(T, R).

3.4.4 The fourth normal form transformation

According to Remark [3.4.3] we have to get rid of the last remaining term in
. We note that this step is not necessary, if the operator o; in (3.2) vanishes
at k = +ky. Since the second order resonant terms correspond to the indices
(7,71, J2,J3) = (=1, 41, j1, —1), the term to be eliminated is of the form

D DR T (k) (@2 %@y, @, % 05, * Ryy) (R),
J15ejs€{E1}

where, with (3.16) and (3.23)), there exists a neighborhood Usz(jiko) of jiko with
radius 0 > 0 sufficiently small such that

ilelﬂg !51)}121,]-27]-3’]»4’]-5(]{)} < C <oo forall ke Us(jiko)
and
ilel]g }bj_l}jl,j2,j37j4,j5(k>‘ < C <oo forall k¢ Us(jiko).

Hence, all terms restricted to the complement of this neighborhood are of order
O(%?) and do not have to be eliminated at all. Inside of this neighborhood,
they are of order O(£%2) and have to be eliminated. The corresponding reduced
non-resonance condition reads

inf L7 .. (k)| > C >0, (3.33)

kER J11,71,J2,73,74,35
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where

L=t (k)

J1,71,72,73,74,]5
= —w(k) 4+ (251 + Ja + js + Ja)w(ko) — jsw(k — (251 + Ja + js + Ja)ko)-

For the indices
J=-1 j=g2o+Jys+4 Js=1,

we get the exact same resonances as in the third normal form transformation.
Beside these, for the indices

J=-1 n=j=Jj3=4, J5s=1,

we get further first order resonances, namely, at k = j; (g + ,/22—1). We remark

that all these resonant wave numbers are sufficiently bounded away from any inte-
ger multiple of the wave numbers +ky. Therefore, we can choose 6 > 0 sufficiently
small such that all upcoming resonances lie outside of Us(j1ko). As a consequence,
the part which has to be eliminated is non-resonant. In order to make this rigor-
ously, we make the near identity change of variables

R=TR+2Z(T,T,7T,T,T,R), (3.34)

where Z = (Z', Z7H7 is a multilinear mapping which, in Fourier space, has the
form

P e o e

- Z 251,j27j3,j4,j5,j6(k)(ajl * aj2 *ajs *a]?t * Eij5 * Rjﬁ)(k)v J € {il}'
jl,..~7j6€{:|:1}
Further, we define the cut-off functions £} and EJ by

r 1, ke UN(jlkO) n r
Ejl(k) - { ’ ) Ejl =1- Ej1'

0, else
Then, we set
Ll (k) = eE; (/g)bfl ..... (k;)(Lfl ,,,,, (k;))—l
J1,71,72573,74,15 J1 J1,71,725735J45]5 J1,J1,72573,74515

and all remaining kernels to zero. Hence, the fourth normal form transformation
is invertible for € > 0 sufficiently small.
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3.5 Estimates for the error

In this section, we complete the proof of Theorem [3.1.1 We use energy estimates
to control the error R;. In order to eliminate problematic terms, we have to include
the normal form transformations from Section in our energy. The estimates
for the non-resonant and totally resonant terms will be straightforward. The most
interesting aspect of this section is the handling of the second order resonant terms
and the first order resonant terms.

3.5.1 Equivalence of the energy and the Sobolev norm

Let the energy € be defined by € = £° + &', where €' = E} + F! + E} and

je{£1}

Ef= )" /(53/28i8j(T,T,T,R)aiR_j—I—c.c.) da,
je{£1}

EBy= ) /(sS/QOja;Zj(T,T,T,T,T,R)a;é_j+c.c.) dz.
je{£1}

We note that due to the relation
R; = R; +Y2QI(T,R) + &P/ (T, T, R),

the energy £ contains all terms which are necessary to eliminate the problematic
terms. Since the mappings Q, P, S and Z are all O(1) bounded, one can conclude
the equivalence of the energy £ and the H'-norm of the error terms R;.

Lemma 3.5.1. There exist ¢g > 0, C7 > 0 and Cy > 0 such that for all e € (0, &)
we have

(IRl + [ Roillz)?* < C1& < Coll| Rl + |1 R-all)*.

Proof. We note that ep;'; _; is O(1) but can be made small by choosing £ > 0
sufficiently large and independent of €. Hence, all terms with an e-factor in front
are a small perturbation of the H'-norm of R;. O
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3.5.2 Energy estimates

In the following, we calculate the time derivative of the energy E). By combining
the results from Section and Section |3.4.2] we obtain

%Eé_ > /((53/20ja;(B§(T,T,T,R)+Qj(T,B2<T,T,R))
je{*1}

+PIY, Y, BT, R)) = ) il

J1,=J1,J

(ah a—j Qj (Ta R)))aglcéj

Ji

+ %2000 PI(Y, T, By(Y, Y, Y, R))ILR,) + c.c.) dx

8
+ > D i

je{#£1} =0
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where
lo; = / (jo-jiw|8iéj|2 + c.c.) dz,

[Lj - Z (81/203'81 <<Zb;1 gz ZLzl J2q11,j2)aj1Rj2)aalch + C.C.) dz,
j17j2

L= [ (0,0, + Ak T R)

+ Q/(T,AR) — ngzw 10 — jlko)Qﬂ (@, R;,))OLR; + c.c.) dz,

Ji,J2

326,0LBI(Y, R)DLR, + c.c.) da,

h= e
/ (0;0L(?BL(T,R) + je~ 2(2iw) " Res(e/20))LR; + c.c.) dz,
/( 26,0LQ1 (T, ;R — AR — /2By (T, R) — eBy(T, T, R))OLE, + c.c.) da,

} : l j S &) j . R
/ 80]8 Zb]l ,J2,J3 ZLJl \J2 Jdp;hjz,jzs)ajlaﬁRJS

J1,92,33

+e'/ Z Zb§1 —Jj1, J<a31a—J1 Qj(Ta R)»&i]éj + C.C.) dzx,

7
= [ Codh(P(0+ ME)T.T.R) + PAT, (04-+ AGko)) Y, R)
+P7(T,T,AR)
— Z j3iw(_iaw - (]1 + jQ)kO)le,jg,jg (ajl’ g RJ%))agcRJ + C'C‘> dz,

J1,J2,33

Iy; = / (0,0, P (Y, T, R — AR — &'/°By (T, R) — &%/ By(Y, T, T, R))

x OLR; + c.c.) dz.

According to Section |3.4.3, adding E! to E} yields

d
dt(El +E)= > / (£¥26;0LPI (T, T, B3(Y, T, T, R)OLR; + c.c.) da
Je{£1}

12
+ > Dl

je{#£1} =0
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where
]97j - Z / ( 3/28l ((ZO-J J1,J2,J3574 ZLil NENEWD 8;1 ,J2,J3 J4)aj1 aj2 ajS Rj4)
J1,J2,73534
x OLR; + c.c.) dx,
[100' = / (53/2855(5]((8t + A(ko))T, T, T, R)
+ S7(7, (O + A(ko))Y, T, R) + Sj(T, T, (0 + A(ko)) Y, R)
+ ST, T, T,AR)
> daiw(=i0y — (1 + 2 + §3)k0)S, 4y s ia (s @y gy, Ry,)

J1,J2,73,34

x OLR; + c.c.) dz,

Ty = [ (POLSI(LTTOR - AR)DE, + ) da,

Inpj = / (32087 (T, 0, T, R)OL(OR; — jiwR;) + c.c.) d.

Finally, with Section we are left with

—El > Z i (3.35)

Jje{*1} =0

101



CHAPTER 3. THE VALIDITY OF THE DNLS APPROXIMATION

/( 20,0 P (Y, Y, By(Y, Y, T, R))ILR, + c.c.) da,
— 5/2 !
]13’_1 = ( o_ 18 (PNON(T T B3<T T T R))
+Z " Pl (@i, ajy, Bs(0, 0, T, R))OLE, + c.c.) da,

[14,1 = 07

_ 3/2 l r -
Ly = E /( 010, (1B, 57,751 ia svins

J1,J2,73,34,5

AL o dsdus i dosinings) G Qi Gia s Ris )OLR_1 + c.c.) da,
L5 :/(53/20]0;(23((@+A(k0))T,T,T,T,'r,R)

+ o+ 20,0, (0 + Ako)) Y, R)

2T, ... T, AR)

- Z jGiw(_iaﬂc - (]1 ..t 35)k0)zjjl ..... je (aj17 e Uy, Rjﬁ))

x OLR; + c.c.)dz,

Iigj = / (20,027 (0,0, T, T, T, R — AR)LR; + c.c.) dx,

1177j = / (63/20'jaizj(T, T, T, T, T, R)@é(@téj - ]ZOJRJ) + C.C.) dzx.

In order to find an O(1) bound of the error R; on the O(¢7?) time scale, we
want to apply Gronwall’s inequality. Thus, the right-hand side of ([3.35)) should be
subsequently estimated by O(g?)(1 + &).

3.5.3 Bounds on [yj,...,[17;

We want to find O(e?) bounds for the terms I;;, i = 0,...,17. We note that P’
is bounded but can be of order O(¢~!) such that the estimation is more than a
pure counting of powers of e. We use £/2 < 14 & several times and choose gy > 0
sufficiently small such that /2€ < 1.

Trivial bounds: First, we show some trivial estimates.
(i) Using the skew symmetry of iw, we directly obtain

]07]‘ =0.
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(ii) Since in the first and fourth normal form transform no resonances occur, cf.
Section and Section |3.4.4] we can conclude that

Ilvj - [14"7' — O

(iii) The following terms can be directly estimated by a pure counting of € powers
using Lemma and the O(1) boundedness of the mappings ©7, &/ and
ZJ

1I,;] < Ce*(14€),
I5;] < Ce*(148),
|| < C2(1+€),
|l < Ce*(1+€),
|l | < C2(1+€E),
|Li7j| < CE2(1+€E).

(iv) With Lemma [3.4.1] the identity (3.19), and the O(1) boundedness of the
mappings @7, 8’ and Z7, we can conclude

|Ilg7j| S C€2<1 +(€),
‘[15,j’ S C€2<1—|—€)

Remark on I, and I3;: As we conclude from Section [3.4.1} the terms I5; and
I3 ; are actually of order O(%/2)(1+&), which is obviously not sufficient enough to
prove Theorem [3.1.1] As a consequence of Remark [3.4.2] we can eliminate these
terms by another normal form transformation without resonances occuring. Thus,
we can handle I5; and I3; by adding another term containing this normal form
transformation to the energy £. However, here no further problems arise and, for
the sake of brevity, we refrain from carrying this out.

Auxiliary remark: One problem is that Epj_l%jl,q(k) = O(1) holds due to the
second order resonance. Thus, for some terms we first do not obtain an O(g?)
bound. However, we note that o(k) vanishes at k = jko. Hence, for terms which
contain a factor o(k), we have

_ (k= jiko)?
Q(k)pjl}jl,—l(k) ~ C(k o j1k0)2 + K]E2 = 0(1) (336)

This also applies to terms that contain any factor which vanishes at k = jkq.
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Bounds on I ;: We write

]6’j - Z / (go-jai«ib;l,jmjs - iLg'l,j27j3p;1,j2,j3)aj1aj2Rj3)aalnRj + C'C'> dz

J1,J2,J3

+ Z/ (53/2@8;(2'19?1’_]-173.(ajla,jl Q' (T, R)))IR; + c.c.)dx
J1

=Ty T

In the following, we use our results from Section [3.4.2] Since the non-resonant
terms cancel in 71 ;, we are left with the totally resonant terms (TOT) and the
second order resonant (SOR) terms, i.e.,

r1,j = T1,;:70T + T1,j:SOR;

where

rugror = ) /(Eajai(ibgl,jl,j(aﬁa—lej))aﬂlcéj+C'C') dz,

j1e{+1}

_ Uifip—1 P -1 1T
,-1;,50R = E : / (€010, (b5, 1 = L5 5 1P, —1)ai 0 R)OL R + c.c.) da.
Je{£1}

We add 2,5 to T1,45;T7OT and obtain

,j;70T -+ To; = Z / (gaj(?i(ib;l’_jhj(ajla,jléj))ai]?j —+ C.C.) dx
jre{£1}

- Y / (20,0 (ib), _,, i(aja_;, PI(L, T, L, R))OLR; + c.c.) dz
j1e{£1}
= Sl,j + 82,j-
With ([3.22)), we already have
’817j| < 0825.

(k) contains a factor g(k). Then, by using the rela-

For sy ;, we use that b’

J1,—J1,J
tion (3.36)), we find

’SQJ‘ S 0828.

For the second order resonant terms, using the definition of pj_llj1 _1, we conclude

Tl _1.50R = — Z / (j1€30'_1alx(7;fipj_1{jh_1ajlajlR_l)aiR_l + c.c.) dz,
jie{*1}

which can be easily estimated by |r1 _1.50r| < Ce£. In total, we have

|]6,j| S 0525.
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Bounds on I7;: In the non-resonant part of I ;, we gain a power of € by using
(3.19)) for the first line and Lemma for the second and third line. Thus,
I7 j.nvon can directly be estimated by O(£2)€ and it remains to estimate the second
order resonant part, which is a non-trivial task since 5pj_1{j17_1 = O(1). By using a
Taylor expansion, we find

i(w(n) —w(k —241)) = iw' (k= 251)(n — k +241) + O((n — k + 251)?).
Then, with Plancherel’s identity and (3.19)), for the second order resonant part of
I7 j, we obtain

I7 j.sor = QWZ/ (26?01 (k) (ik)' (' (k — 2j1) — ¢)p;, 5, —1 (k)
J
X 5;1]-1 (k —m)a;, (m — n)R_1(n)(ik)' R_1 (k) + c.c.)dndmdk
+ O(*)E.
Due to the relation
w'(k —2j1) — ¢g = w'(k — 2j1) —w'(—j1) = O(k — jr),

we have
(w'(k = 2j1) = ¢g)pj, 15, -1 (k) = O(1).
Thus, we can conclude
|17 j.s0r| < CE*E.

Bounds on Ig;: All terms contained in the difference
OR — AR — ?By(T,R) — 32B5(Y, T, T, R)

have a ¢ as a factor, except for the residual. For the terms with prefactor g, we can
use . For the residual, with Lemma and a pure counting of € powers,
we conclude

|I&j| < 0828.

Bounds on I;: This term was already analyzed in Section [3.4.3] The non-
resonant terms cancel and, outside of a neighborhood of the resonant wave num-
bers, also the resonant terms cancel. Then, inside of the neighborhood of the
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resonant wave numbers, with Plancherel’s identity, we are left with

Z Iy

—or Y / / ( (k) = L1, (k)s], (k) — (o1 ()b~ (n) — L1 (n)s™, ()]

jie{£1}

x (ik) @ (k — n — 3j1ko) R_y (n) (ik) Ry (k) + c.c.) dn dk
By the choice (3.30)), we obtain
Z Lyj=2m > // i(oy (k3 (kL) — o1 (k21025 (K21)

j1e{x1}

x (ik)'a;®(k — n — 3j1ko) R_1(n)(ik) Ry (k) + c.c.) dn dk.

According to Section [3.4.3] this expression vanishes for an appropriate choice of
the operator p;.

Bounds on [;3;: Since the mapping P! does not contain any second order
resonant terms, the mapping is O(1) bounded. The same holds for Py/y. Further,
the cut-off function E7 is chosen in such a way that we are sufficiently bounded
away from the wave numbers +kq in Fourier space. In total, we find

|]13,j| S 0528.

3.5.4 Gronwall’s inequality

By the bounds on I; ;, we finally achieved to show

d 2

dtg <Ce(1+4€).

Using Gronwall’s inequality, one obtains the O(1) boundedness of & for all ¢ €
[0,Ty/€?] as long as g5 > 0 is chosen sufficiently small. Consequently, with
Lemma we have the O(1) boundedness of R in H' x H' for all t € [0, T/&?]
and for ¢y > 0 chosen sufficiently small. Finally, Theorem follows from
Sobolev’s embedding theorem H' C Cf combined with the triangle inequality,

and (3.10).
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3.6 A non-approximation result

According to Remark [3.4.4] the proof of Theorem is based on the choice of
the operator p; to make the resonances stable. In this section, we prove that non-
trivial resonances are able to destroy solutions far before the end of the natural
time scale of the DNLS approximation. In detail, for spatially 2m/ko-periodic
solutions, we prove that the DNLS approximation breaks down after a time scale
O(£73/?|1In(¢g)|) which is much smaller than the natural time scale O(e72) of the
DNLS approximation. In order to do so, we want to investigate the situation
where the operator p; is chosen in such a way that the resonances are unstable.
We construct a counterexample such that Theorem [3.1.1] does not necessarily hold,
and so the solutions of the original system behave differently than predicted by
the DNLS equation ((3.5]).

As already pointed out, we consider spatially 27 /kg-periodic boundary conditions,
i.e., we have k € koZ in Fourier space. Thus, in order to prove that the DNLS
approximation makes wrong predictions, we need the resonances to be an integer
multiple of the basic wave number ky = 1. In the Klein-Gordon equation ,
this is not the case. However, this can be achieved by replacing the linear operator
02 —1 with 92 —4, for example. Furthermore, according to the subsequent Remark
3.6.2 we discard the quadratic terms and, instead, we consider the reduced original

system

O*u = 0%u — du + 01(0,)u?, (3.37)
withx € R, t € R, u(z,t) € R. The operator p;(0,) is chosen such that ([3.28)) is not
satisfied. A possible choice of 0;(9,) would be, for instance, o;(k) = —|«a|, where

the parameter o € R is sufficiently large. We insert the DNLS approximation
u(x,t) = eV *hpnrs = €2 A, (e(x — ¢ t), e%t)eFor=wot) ¢ ¢

into (3.37). Then, the dispersion relation is given by w2 = 4 + k2 and the DNLS
equation changes into

—2in8TA1 = (1 — 03)83(141 (338)

We remark that spatially periodic boundary conditions on the original system
correspond to X-independent solutions of (3.38]). Thus, the ansatz of the approx-
imation is of the form

Uper (1, 1) = e 2PB o (2, 1) = /2 A (2t)eiRor—wod) 1 ¢ ¢ (3.39)
and the DNLS equation (3.38)) degenerates into the ODE

—2iwe0rA; =0 resp. A =C eC. (3.40)
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With the modified equation , we skip the first two normal form transfor-
mations in the proof of Theorem [3.1.1| presented in the previous sections. The
difference now is that the resonant wave numbers, which arise in the fourth order
terms, are given by k:;l = % J1(5—37), which are actually an integer multiple of k.
According to Remark with the choice of the operator p;, we expect that
the resonances can be unstable in the sense that the resonant modes grow as
O(exp(e*?t)) which is not O(¢7?) bounded on the natural time scale O(¢72) of
the DNLS approximation. Hence, the DNLS equation can make wrong pre-
dictions about the dynamics of the Klein-Gordon equation . The purpose of
this section is to give a rigorous proof of the failure of the DNLS approximation in

case of periodic boundary conditions, i.e., to give a proof of the following theorem.

Theorem 3.6.1. Let the operator o be chosen such that is not satisfied.
Consider the Klein-Gordon equation (3.37)) with spatially 27/ ko-periodic boundary
conditions. Further, let Ay be a solution of . Then, for all n > 2 there exist
g0 >0,Cy >0, Cy >0 andn € (2/3,2) such that for all ¢ € (0,20) there are
spatially 2w [ ko-periodic solutions of satisfying initially

Huper('v 0) — et/ %EJQLS(H 0)| &, + ||8tuper('v 0) — 51/28tw%61<m5('7 0)||a, < Cre™

per per —

for which the associated solutions satisfy

Sup  Sup |uper(x, ) — 2B (@, )| > Coc /2,
tel0,Tp/em] z€R

where Yy ¢ is given by (3.39).

In simple terms, Theorem m states that under 27 /kq-spatially perdiodic bound-
ary conditions, the error made by the DNLS approximation is of the same order as
both the solution of the original system and the DNLS approximation, although
the initial error is sufficiently small. This happens far before the end of the nat-
ural time scale of the DNLS approximation. Therefore, the DNLS approximation
fails to predict the behaviour of solutions of the original system. The proof of

the theorem resembles the proof that a spectrally unstable fixed point is unstable,
cf. [SUIT, §2.3].

Remark 3.6.2. When considering the full model containing also a quadratic
nonlinearity, we have to face even more complicated problems since, in the subse-
quent error equation, terms of the form O(1)R? occur. Since these terms should be
of order O(e), we would have to eliminate them which is only possible under loss
of regularity. We note that the non-resonance condition cannot be reduced this
time since, in Fourier space, no spatially localized approximation is contained in
the problematic terms. However, this problem is automatically fixed since in the
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diagonalized first order error equation we divide by w, which gains one derivative.
Nevertheless, after the elimination, terms of the form O(1)R?® occur. Since these
should be of order O(c'/?), we would have to eliminate them by another normal
form transformation. Hereby, the non-resonance condition is not satisfied for an
uncountable set of wave numbers. Thus, an elimination is not possible. However,
since the focus of this section lies on the proof of the failure of the DNLS approx-
imation we discard the quadratic terms in the original system and only consider
quartic terms.

3.6.1 Some preparations

Analogous to Section [3.3] we derive the error equation for the system ([3.37). But
instead of making the ansatz (3.13) with 8 = 2 as before, we take § = 0. Conse-
quently, the error satisfies

OFR = —w2 R+ wopp1,op(4e* U R + 6 U2 R? + 4'/*UR® + R') + Res(e'/2 D).

When writing it as a diagonalized first order system, for the j-th component of
the error we obtain

1%

8téj = jZWRJ + 83/2 Z Zb] ajlaj2aj3éj4 + ij(T, R),

J1,J2:73:74
J1:J2:33,ja€{£1}
with G7 (T, R) satisfying

IG7(T, R)| fre €2 RlGe + | Rllgps + [IRes(e20))

e < C (IR

According to Section [3.4.3] we perform the normal form transformation (3.25)) to
first eliminate only the non-resonant quartic terms. Then, we obtain

O R; = jiwR; + ¥2(ibla +ib’ (a® ) R_; + §;(R),
with g; obeying
19;(R)]

By slightly reshaping the equation, we can restrict ourselves to the system

wo < C (2| Rllas + el Rl + €| BRI + | RIl%e + | Res(e'/*@)]

i)

OiR; = jiwR; + i alR_; + §;(R).
Since we consider spatially 27 /kq-periodic solutions, we make the Fourier ansatz

Rper(,t) =) r(t)ek”.

kEZ
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Ahead of that, we eliminate all remaining quartic terms except for the resonant
terms around the resonant wave numbers k; := ki and kg := k';. Then, for the
Fourier coefficients we obtain

. 3/2; 3
N1, = Wiy T, + € / 01,4y G713k + 91 (T 218, )
~ 3/2. 3
Our—1ipy = =iy 1y + €720 1,02 gy + g1 (Paay),

Oy = Jiwgr e + G5(Te1:k)

for k # k41, kio. Accordingly, for g; we have

< C (N

195 (71) e + el + eI + 171 + HRGS(é”Z‘@)Heg) :

Remark 3.6.3. The Fourier transformation u +— U = (ug)kez 1S an isomorphism

between H,,. and

C={a:Z—C: |allz =) |ul’(1+k*)* < o0}

keZ
Since H,, is closed under multiplication for s > 1/2, the same holds for 22, too.
By setting
Tk = €y,
we obtain

3/2 - 3
Opvrgy, = € 2ibi i1, + ha(riig,),
3/2 - 3
atv—l;k‘z = / Zb—l;k:ga_lvl;k‘l + h—l(r:l:l;k‘z)v

Ok = hji(ren),

where the nonlinear terms h; again satisfy

1hi(Fa)lle < € (2Nl + 7

?g + &7

B+ 17 + IRes( D)1z

We linearize the first two equations, differentiate the first linearized equation and
insert the second one to obtain a second order ODE for vy,

Ofvig, = = b borpy lar| v,
Thus, the eigenvalues je3/2p of the Ujik, ,-Part are given by

n= <_b1;k1b—1;k2)1/2 |a1|3 .
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We note that, for the following section, we need these eigenvalues to be real-valued.
In order to achieve that, we choose the operator p; in such a way that

bl;klb*h’@ < 0. (341)

Since (3.29) cannot be fulfilled, the resonances become unstable and the eigenvalues
are real-valued. Consequently, we can diagonalize the equations for v;y, , and
finally obtain

ORy = 2Ry, + hy,
O R, = —*?uR, + hy,

where h, and hg obey the same properties as the h;. These equations obviously
show exponential growth since growth rates of order O(exp(3/?t)) occur which are
not O(¢72) bounded on the natural time scale O(£72) of the DNLS approximation.

3.6.2 Estimates for the unstable sector

We define the quantity £ by F = E, — FE,, where

E,=|R.?  E,=|R*+ > 05 2(1 + &2).
je{£1}, keZ\{+ky,£ko}

In the following, we estimate the time derivative of . Keeping the estimates as
simple as possible, we assume that p < 1. For ¢35 > 0 sufficiently small, we find

d
= 2632 B, + 2%,

+ 2Re(Ryhy — Rohy) — 2 > Re(Tj5h,) (1 + 2)
je{£1}, keZ\{tk1,+ko}
> 232 uE, + 2632 E,

— 2| Ryhy| — 2| Rshs| — 2 > Re(Tirh,) (1 + k?)
je{£1}, keZ\{xk1,tka}
> 253/2uEu — C1e%E, — C1%E, — 028E3/2 — 025E3/2
— C3'PE2 — C3e'PE2 — C3E}? — CE? — Cs||Res(e'2T)||
> e E, — pe*?E, — C3||Res(e"? V) 2
1
2
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with constants C; > 0 for ¢ = 1,...,5 under the assumptions
0181/2 S ,U/4, ( )

CoEy* < pe'’? /4, (3.43)

CyEY? < pe'/? /4, (3.44)

G| Res(2/20) |2 < ps*/2E 2. (3.45)

We define
t, = inf{t : EV2(t) > ue'?/(4Cy)}.

Note that the failure of the DNLS approximation will happen on an O(|In(¢)]|/%/2)
time scale. For the purpose of this section, it is sufficient to take an O(e~") time
scale with a n € (3/2,2) chosen appropriately. Theorem follows, if we prove
t, < &7 . In other words, if the assumptions and are not satisfied
for a t € [0,67"], we are done. Thus, in the following, we assume that and
are satisfied.

The assumption can be easily satisfied by choosing ¢( sufficiently small.
Further, we show that can be satisfied. According to the conditions in
Theorem [3.6.1] we have that £'/2(0) = O(¢") and thus,

Cs||Res(e"?W) |2 < pe®?E(0) (3.46)

is satisfied for
sup [|Res(c/20)]2 = O(>™+2).
te[0,e— 1]

Since the procedure for estimating the residual was already sketched in Section [3.2]
we abstain from recalling this; we just note that the residual can be made arbi-
trarily small by adding higher order terms to the DNLS approximation, cf. [SU17,
§11.2]. Thus, by continuity with respect to the time variable ¢, implies that
(3.45)) is also satisfied for all ¢ > 0 in a neighborhood of ¢ = 0. By repeating
this procedure for an increasing ¢, one can extend this neighborhood such that the
assumption holds for all ¢ € [0,t,]. Hence, under the assumptions ([3.42])—

(3.45)), for all ¢t € [0,t,] we have

d 1
—E > Zu3?E,
- =2t

Therefore, we can conclude
E(t) > E(0)e2#""", (3.47)

By construction and continuity, we then have E,(t) > E4(t). On the one hand,

from ([3.43))—(3.44]), it follows that
EY2(t) = O(Y/?).
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On the other hand, from and E/2(0) = O(e"), it follows that
EV2(t) = et O ().
These relations both hold for
t=0((n—1/2)|In(e)|/*?).

We choose n € (3/2,2) sufficiently big such that ¢ < e~ holds for ¢ < 1 sufficiently
small. Since ¢ € [0,t.], this contradicts the assumptions (3.43)—(3.44). Thus,
t, < e holds. This completes the proof of Theorem m

3.7 Discussion

We close this chapter by discussing the justification of the DNLS equation (3.5
for the Klein-Gordon equation in case of solutions which are analytic in a
strip of the complex plane, instead of solutions in Sobolev spaces. The idea of
considering such solutions is based on a Cauchy—Kowalevskaya-like method and
was explained in [Sch98] and carried out in [DHSZ16]. We refer to [Sch19), [HS22a]
for further applications of this method.

In [HS224)], the DNLS approximation was justified for a Klein-Gordon model with
a cubic nonlinearity considering solutions in Gevrey spaces. They used similar
methods of [KN86, [Sch96] for the justification of the KdV approximation. Gevrey
spaces G for o, s > 0 are defined by G, = X with ¥, (k) = exp(o(|k|+1)) where

Xy ={u:R—=C: |ju

x5, = [0a () (4] ) 2a() 12 < oo}

For initial conditions in G£'!, the DNLS approximation is initially in M = x5
with weight 9, (k) = exp(—oinf,,cz |k — mko|). In [Sch98, [DHSZ16, [HS22a], the
idea is to make the width of analyticity linearly smaller in time, i.e., we replace o
in the MZ-norm by

o(t) = oo/e — e/t

for 0g > 0 and n = 0¢/Ty. Since we require that the resonances are bounded
away from any integer multiple of the basic wave number ky, this generates some
damping with an exponential rate, and hence, allows to regain missing powers of
€. In general, this method leads to a restriction in time, i.e., the approximation
result holds for ¢ € [0, T} /&% with a Ty € (0, Tp]. It is the purpose of this section to
answer the question whether these methods also apply to the setting considering
the Klein-Gordon equation with quadratic and quartic terms. For local existence
and uniqueness of the DNLS equation in Gevrey spaces, we refer to [HS22a]
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whose proof is based on the one given in [Kat75]. We note that the DNLS equa-
tion contains an additional A;|A;[*-term in the nonlinearity but the proof goes the
same way.

We remark that, in [HS22a], the problems arising from the totally resonant and
second order resonant terms were already solved. For the totally resonant terms,
we again use energy estimates. For the second order resonant terms, we exploit
the fact that in lowest order the system near the wave numbers k = £k is given
by the DNLS equation. The exponential localization of the solutions in Fourier
space allows us to use the derivative in front of the nonlinearity and to come to
the correct time scale. Since in the quadratic terms no resonances occur, the only
question is how to handle the resonances arising at the fourth order terms. As
these resonances are bounded away from any integer multiple of the basic wave
number kg, see Section [3.4.3] one can use the method from [DHSZ16] to control
them. However, instead of using the variation of constants formula, we have to
use energy estimates since the totally resonant terms also have to be controlled.
According to [HS22a], there is a restriction in time coming from the second order
resonances in the cubic terms. However, in the following we show that there is no
further restriction in time arising from the resonances at the fourth order terms.
Note again that the resonances in the fourth order terms are bounded away from
any integer multiple of the basic wave number ky. By nonlinear interaction, the
solutions of the original system have a Fourier mode distribution which is strongly
localized at integer multiples of ky. Consequently, the modes associated to the
resonant wave numbers are exponentially small. In detail, following the course of
[DHSZ16], due to the spatial scaling of order O(s7!), these modes are initially of
order O(e=?/%) for a oy > 0 independent of 0 < £ < 1. At the same time, since
the resonances arise at terms of order O(g%?), these modes grow with some expo-
nential rate of order O(e”ls3/2t) for a 0y > 0 independent of 0 < ¢ < 1. Hence,
these modes are less than O(g?) for all ¢ € [0, %5‘5/ 2]. Since this is no restriction
in the natural O(e7?) time scale of the DNLS approximation, the modes associated
to the resonant wave numbers are less than O(e?) for all t € [0,T,/?]. In total,
there is a restriction in time when we handle the resonant cubic terms but there
is no further restriction in time when we handle the resonant fourth order terms
given that these resonances are bounded away from any integer multiple of the
basic wave number k.

Finally, we can conclude that the methods from [Sch98, [DHSZ16, [HS22a] com-
bined can be applied to the setting of this chapter without further problems. We
formulate the following theorem.

Theorem 3.7.1. Let s4 > 6, 09 > 0, and A, € C([0,Ty), G*) be a solution of the
DNLS equation (3.5)). Then, there exist e > 0, Ty € (0,Tp], and C > 0 such that
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for all e € (0,g¢9) we have solutions u of the Klein-Gordon model (3.2) such that

sup sup [u(z, 1) — Y2 pugs(a, )] < CV2
tE[O,Tl/EQ] zeR

where eY?pnrg is given by (3.3)).
Remark 3.7.2. Theorem holds regardless of whether the resonances are

stable or not. Hence, if we discard the quartic terms in the Klein-Gordon model,
the result remains unchanged.
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