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Zur Ehre der Immaculata



Confiteo

Viele Stunden saß ich hier

Und viele Stunden saß ich nicht

Viele Fehler waren hier

Manche Fehler sind entwicht

Des alles bekenne ich mich

Des Rühmes weiche ich ab

Denn dies ist wahrlich

nur wenn Gott es gab
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TORIC COHIGGS BUNDLES
Anderson Luis Gama

Zusammenfassung

In der vorliegenden Arbeit studieren wir den Modulraum von tori-
schen pre-Cohiggs-Bündeln. Dieser ist der Raum von Paaren (E, Φ),
wobei E ein torisches Bündel über einer torischen Varietät 𝑋 und
Φ ein Morphismus Φ ∶ E → E ⊗ 𝑇 𝑋 ist. Um die Existenz des
Modulraums zu beweisen, müssen wir einen Rahmen dazu stellen,
das ist ein Isomorphismus zwischen C𝑟 und der generischen Faser
E ∶= E𝑥0

. Ähnlich zu Paynes Ergebnissen für torische Bündeln
finden wir einen feinen Modulraum von eingerahmten pre-Cohiggs-
Bündeln. Außerdem, falls es einen Quotienten dieses Raumes durch
den Rahmenwechsel gibt, dann ist er ein grober Modulraum von pre-
Cohiggs-Bündeln. Dazu können wir auch die Integrabilitätsbedin-
gung Φ∧Φ = 0 stellen und bekommen einen Modulraum von Cohiggs-
Bündeln. Diese Räume sind jedoch nicht separiert. In manchen
Fällen liefert sogar die Einschränkung auf stabile torische Bündeln
keinen separierten Raum. Dies können wir in Beispielen zeigen, wo
der Modulraum sich als Raum projektiver Konfigurationen darstel-
len lässt. Für diese ist der Chow Quotient bekannt und daher auch
ein Stabilitätsbedingung vorhanden. Wir können auch zeigen, dass
der von Altmann und Witt definierte Higgsbereich [AW21] auch über
stabilen Bündeln nicht konstant ist. Insgesamt können wir schließen,
dass torische pre-Cohggs Bündeln viel komplexer sind als zunächst
angenommen. Die Theorie ist von nicht-linearem Charakter, und eine
einfache kombinatorische Beschreibung scheint unwahrscheinlich.





TORIC COHIGGS BUNDLES
Anderson Luis Gama

Abstract

In this work, we concentrate on describing the moduli space of toric
pre-Cohiggs bundles. That is the space of pairs (E, Φ), where E is a
toric bundle over a toric variety 𝑋 and Φ is a morphism Φ ∶ E →
E ⊗ 𝑇 𝑋. To prove the existence of a moduli space, we add a frame,
that is an isomorphism between C𝑟 and E ∶= E𝑥0

, the fibre over a
generic point 𝑥0 ∈ 𝑋. Just like Payne for toric bundles, we find that the
moduli space of framed pre-Cohiggs bundles is fine and if the quotient
by frame change exists, it is a coarse moduli space of toric pre-Cohiggs
bundles. We can also add the integrability condition Φ ∧ Φ = 0 and
get a moduli space of Cohiggs bundles. However, these spaces are
non separated. In some cases this is also true even when restricting
ourselves to stable bundles — this can be shown in examples, where
the moduli space is reduced to a space of projective configurations,
for which the Chow quotient is well known. We can also show the
Higgs range defined by Altmann and Witt [AW21] is not constant over
stable bundles. As a conclusion toric pre-Cohiggs bundles are much
more complex than originally expected; the theory has a non-linear
characterister and a simple combinatorial description is unlikely.
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INTRODUCTION

The Bigger Picture

Where we discuss the context where
this work is situated, the motiva-
tion and meaning behind the res-
ults we achieved.

Well-Known Classification Problems

Before addressing the object of this dissertation in the next subsec-
tion, we present a quick review of classic Higgs bundles, as we shall
compare our case against it.The classification of geometric objects has
been a goal of mathematicians for millennia. Theaetetus classified all
platonic solids†; the projective space classifies all subvector spaces of [EucIX]

dimension one; the fundamental group classifies all closed paths up
to homotopy. Riemann was probably one of the first to use the term
Moduli to denote a geometric space classifying other geometric objects
— in his case Riemann surfaces.The word ‘Modul’ comes from Latin
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and means measurement, so a moduli space is a measuring space.
The search for moduli space is a vast field of research. One example
of particular importance is the classification of vector bundles over
a fixed curve. From a differential point of view, a vector bundle is
given by its rank and degree; however, from a holomorphic or an al-
gebraic point of view, one can create continuous deformations of vector
bundles. The search for a moduli space to classify those is a frustrat-
ing problem since some families are such that they jump from one
bundle to another while being constant everywhere else. This makes
a classifying geometric space impossible. However, there is a satisfy-
ing solution; the bundles that allow this jumping phenomenon are of
a particular kind, which came to be described as unstable. Removing
those allows – in some cases – the construction of a classifying space.

For the case of complex vector bundles over a curve of genus equal to or
greater than 2, this construction is done via a method first developed
by Mumford — this is now known as Git quotient, an abbreviation of
‘geometric invariant theory’. It happens that a certain class of bundles
— more commonly known as semi-stable bundles — can be represen-
ted as the quotient of its global sections. Moreover, if the degree of
the bundle is big enough — which can be assumed without loss of
generality — then the global sections form a vector space of constant
dimension. This means that by choosing a basis of global sections
— let us call this a frame — we can identify the vector bundle with
a point in the Quot scheme. The Quot Scheme is a projective vari-
ety classifying all the quotient morphisms of a given free sheaf; it is
even a fine moduli space, the best kind of classifying space one can
find. Of course, not all quotients form a semi-stable bundle; only a
subset of those. In Addition, although it does not change the vector
bundle, the choice of a framing does change the quotient morphism,
so it corresponds to a different point in the Quot scheme. That means
the classifying space of (unframed) vector bundles is the quotient of a
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Introduction

subvariety of the Quot scheme by the changing of frames. There is an
action of the projective linear group in the Quot scheme representing
this change of frames. The work of Mumford assures us there exists
a good quotient of the semistable locus and even a geometric quotient
of the stable locus. This geometric quotient is a coarse moduli space,
which is not as good of a classification as a fine moduli space, but
still a 1-to-1 relation. A good introduction to this topic is the work of
Victoria Hoskins [Hos15]

The moduli space of Higgs bundles is an expansion of this, introduced
by [Hit87]. It classifies pairs (𝔼, Φ), where Φ is a morphism from
𝔼 to 𝔼 ⊗ 𝑇 𝑋. The construction of the classifying space provided by
Simpson† follows a similar route as above: using the universal fam- [Sim92]

ily of the Quot scheme, one can create a scheme of framed pairs. The
change of frame is an action of GL𝑟(C). Considering the Git quotient
of this action provides the coarse moduli space of stable (unframed)
Higgs bundles. For a fixed bundle 𝔼 the set of Higgs fields Φ is a fi-
nite vector space and if 𝔼 is stable, the dimension of this vector space
is a fixed number. That means the space of (unframed) stable Higgs
bundles is itself a vector bundle over the space of (unframed) stable
vector bundles. For the semistable locus, the picture is more complex.
The stability condition itself depends on the Higgs fields, so it happens
that unstable bundles can turn semi-stable for some Higgs fields. In
other words, the Higgs field acts as a stabilising force. For more on
this construction, we recommend the work of Nitin Nitsure [Nit91].

There are several variations of this construction. This includes a work
on Cohiggs Bundles by Rayan [Ray11]. Here there morphisms go from
𝔼 to 𝔼⊗𝑇 ∗𝑋 — instead of 𝔼⊗𝑇 𝑋 — therefore the name. While the study
of Higgs bundles most restrict itself to surfaces of genus greater or
equal 2, there are several examples of Cohiggs bundles for surfaces of
negative genus. This is a natural choice for us, since this includes toric
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varieties. In fact Rayan’s work already presents a construction of the
moduli space of Cohiggs Bundles, so we know this to exist. However
bundles over toric varieties is not the same as toric bundles, which is
a different question.

Toric Bundles

The topic of our work is dual to the more classical objects. It presents
some important differences, but also some similarities. I even added
the term ‘framed’ in the above description, as so to make the relation-
ship more visible. The advantage of studying toric bundles, as we will
define later, is the multitude of concrete examples. The combinator-
ial description of toric bundles goes back to Klyachko [Kly90]. In that
work, he first shows how a toric bundle can be described by a collection
of filtrations in the generic fiber†. Every ray of the fan defining the toricsee 1.17

variety gives rise to a filtration. Klyachko put his results as an equiva-
lence of categories, between toric bundles and collections of compatible
filtrations of a vector space†. For itself, this does not describe a modulisee 1.21

space; to achieve this Payne in [Pay07] changed the combinatorial de-
scription. It turns out that a filtration can be described by two data:
a multiset representing the index where the dimension jumps and a
flag containing the vector subspaces present in the filtration. The first
data is discrete and encodes the toric Chern class of the toric bundle†see 1.28

and the second data varies in a product of Grassmannians. The com-
pactibility condition present in Klyachko’s work reflects a restriction
of the dimension of intersections†. This means the set of framed toricsee 1.34

bundles of a given Chern class is described as a subvariety of a product
of Grassmannians†.see 1.40

The coarse moduli space of unframed toric bundles is then the geo-
metric quotient of the framed space†. This quotient however may notsee 1.47
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Introduction

exist. Payne did not go this far, but we can compare his construction
with the Quot scheme construction we explained above. In both cases,
there is a fine moduli space for framed objects, although what we call
a frame is not the same in both cases — one is a basis in the space of
global sections and the other a basis on the generic fibre. Also notice
that to go from vector bundles to the Quot scheme one already needs
semistability, while Payne needs at first no stability concept. Another
significant difference is that Git is a natural way of creating the quo-
tient in the first case. One should mention that by itself Git strongly
depends on the choice of an ample bundle — or equivalently to that
of a linearization of the action. However, for the Quot scheme, there
is a natural choice and the stability condition deriving from it can be
expressed in an intrinsic property concerning the rank and degree of
sub-bundles.

It looks more like a happy accident that the semi stability needed to
translate the problem to the Quot scheme is also the semi stability
provided by this natural choice of an ample bundle. This could not be
further from the truth for toric bundles: one can easily construct an
example where the quotient can be translated into the case of C∗ acting
on C2 by hyperboles. There are two main kinds of linearizations one
can choose in this example: one renders the 𝑥-axis unstable, and for
the other one, the 𝑦-axis is unstable. The toric bundles corresponding
to points in the 𝑥-axis and in the 𝑦-axis are symmetric, no intrinsic
distinction can be made between them. So even though we know from
Git that there are open sets such that the geometric quotient exists,
to construct a moduli space of unframed toric bundles properly, we
will need to consider more intrinsic quotients, for instance, the Chow
quotient†. see a.23
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Pre-Cohiggs Bundles

However, we are getting ahead of ourselves. We are not simply in-
terested in toric bundles, but in toric Cohiggs bundles. Those were
studies in [AW21] and [BDPR21]. Those works do not seak a mo-
duli spaces description like in Payne, but follow Klyashko’s formalism
more closely. The difference between [AW21] and [BDPR21] is that
[AW21] does not require the Cohiggs fields to be homogeneous. Since
this does not preserve the integrability condition Φ ∧ Φ = 0, it is more
fitting to speak of pre-Cohiggs fields†. In analysing the deformationsee 2.6

of Cohiggs bundles and extending Payne’s results we also follow this
approach. This means we are mostly focused on pre-Cohiggs bundles.
As it turns out for the toric case there is no need for the integrability
condition; a bounded problem can already be archived by requiring
𝑋 to be complete†.see 2.12

Constructing the moduli space of framed pre-Cohiggs bundles is not
particullary difficult since Payne’s work provides a fine moduli space
for toric bundles. This means we can use the universal family and
construct a universal coherent sheaf of pre-Cohiggs fields. The mo-
duli space of toric pre-Cohiggs bundles is the scheme associated with
this sheaf†. The price we pay is that the resulting space is not as con-see 2.9

crete. We do not have a description as a subset of a product of Grass-
mannians or something like that. We also just get a scheme and not a
variety. This is not easy to remediate. As we learned the moduli space
is often not even separated. Since the moduli space is constructed as
the scheme representing a coherent sheaf this would have to be locally
free for the moduli space to be separated. This is not the case since
examples show the dimension of the space of pre-Cohiggs fields is not
constant†.see 3.3
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Our Main Result

The main contribution of our work is in providing a better under-
standing of how this dimension varies. In fact, since the universal
sheaf of pre-Cohiggs fields is coherent, the dimension of the fibres
varies as a low upper semicontinuous function. This means the set
of degrees admitting a pre-Cohiggs field is minimal — and therefore
constant — on an open set. This was expected, because the experience
working with moduli problems shows that they often contain extremely
wild objects on non-generic sets. We would, however, have expected
stable bundles to be well-behaved and in the beginning, this looked to
be the case. Though Git-stability is non-intrinsic†, one can consider see 1.53

the Chow quotient instead and for at least one group of examples there
is a nice criteria for describing the unframed moduli space†. For in- see 3.13

stance, one can calculate that for the examples presented by [AW21]
for Fano surfaces that the Higgs range is constant for ‘Chow-stable’
bundles†. This is, however, not always the case. Finding counter see 3.18

examples is quite difficult and involves carefully choosing a toric vari-
ety and corresponding toric bundle and even more care if we want the
varieties to be smooth. We were nevertheless able to find 3 interesting
examples. One shows in rank two that the dimension of the space of
pre-Cohiggs fields is not constant, even when considering Chow stable
bundles†. A second shows the same is also true for Cohiggs fields, i.e. see 3.15

fields satisfying the integrability condition Φ ∧ Φ = 0†. The third ex- see 3.16

ample in rank three shows the Higgs range as defined by Altmann and
Witt is not constant over Chow stable bundles†. What these examples see 3.17

indicate is, first of all, how complex the theory of toric pre-Cohiggs
bundles is. The moduli space of pre-Cohiggs bundles is a scheme and
generally not a variety. Even well-behaved toric bundles can present
wild Cohiggs fields, meaning the Cohiggs fields are a destabilising
force. Combinatorial invariants, like the ones defined in [AW21] are
of little use as a classifying tool.
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Structure of this work

In this work, we presume the reader is familiar with basic concepts
of modern geometry, in special algebraic geometry: scheme, sheaves,
(co)homology etc. Not necessary, but highly recommended is some ex-
perience with toric varieties and their quotients [KSZ91], so the exam-
ples will be much easier to understand. For everything else, we try
to provide the relevant concepts and references for further study. We
work fully over C. Some of our work could, in theory, also be done
for other fields. However, we would eventually need to switch back
to the complex numbers. Every chapter is organized in the following
manner: first, an introduction informally covering the content of the
chapter. One could, for instance, just read the introduction of every
chapter and get a pretty good idea of the work, deciding later to ex-
plore the details. After the chapter introduction, we give the formal
definition, proofs and examples in a meaningful and progressing se-
quence. Every chapter also has a set of notes that are placed as ap-
pendixes to the work; those could include definitions of some concepts
used, observations of smaller relevance, lemmas and technical proofs
of theorems in the chapter. The endnotes do not have a meaningful
order and are not made to be read separately, but rather referenced
in the text — the reader may want to use a bookmark to quickly skip
from chapter to endnote. Sides notes are used as referencing mechan-
ism to enable both quick read and detailed study, we vastly use side
notes as a referencing mechanism. A superscripted † always signals
a note on the side of the line. Side notes are either a reference to the
literature or of the form ‘see x.xx’, where x indicates the chapter and
xx a definition/proposition/observation etc. If x is a letter, it is found
in the endnotes; otherwise, one finds it in the main part of the corres-
ponding chapter.
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Introduction

This work is organized as follows: The first chapter contains a recapit-
ulation of the work of Klaychko and Payne in describing the moduli
space toric bundles. In the second chapter we apply Payne’s work to
the problem of toric Cohiggs bundles; although partially based on the
work of Altmann and Witt, the moduli space itself is an original con-
struction. Finally the third and last chapter is an in-depth original
study of the stability of toric bundles and pre-Cohiggs fields. We also
add to the end notes a small revision of important technical tools,
including a mostly categorical exposition on moduli problem and mo-
duli spaces and an introduction to Git and Chow quotients.
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FIRST CHAPTER

Moduli of Toric Bundles

Where we discuss Klyachko’s clas-
sification of toric vector bundles
and Payne’s construction of the
moduli space thereof.

In this section, we concentrate on presenting the moduli space of toric
vector bundles as introducted by [Pay07] as an extension of Klyachko’s
classification theorem [Kly90]. However, before that, we must explain
what a toric variety is. A simple definition† is that of a variety 𝑋 with see 1.2

algebraic torus (C∗)𝑛 ⊂ 𝑋 as an open dense subset such that the action
of the torus on itself extend to 𝑋. This definition, however, is much less
important than how one constructs toric varieties: they can be fully
described by a fan — i.e., a collection of convex cones — in a lattice N,
dual to the space of characters of the torus, which induces a lattice we
denote M. Each one of the cones in N defines an affine variety, and the
fact that those cones intersect in common faces translates into gluing
data for these affine varieties. The result is an abstract variety†. The see 1.1

11



advantage here is that several of the questions concerning the action of
the torus T in such a variety 𝑋 can be reduced to the fan†. So algebraicsee b.4

and geometric questions can be translated into combinatorial ones,
which are easier to calculate given enough computational power. An
easy example is that the set of T-Orbits are given by the cones in the
fan†. Another example is that toric varieties are smooth if and onlysee b.4

if all cones are spanned by a subset of an integral basis†. For furthersee b.7

study of toric varieties we recommend the book by Fulton [Ful93].

An extension of this phenomenon occures when considering a vector
bundle E over the variety 𝑋, with a compatible action of T. In this
case, we also have a similar conclusion: the bundle E — called a toric
bundle — can be described by specific vector spaces associated with
every ray in the fan. We shall present this briefly now: a section of
E is decomposable in eigensections of the T-action† and, since 𝑋 con-see 1.13

tains a dense orbit, their value at a single generic point† 𝑥0 uniquelysee 1.14

defines the eigensections — the rest being given by translating. How-
ever, not all values define sections since translations may create a poll,
rendering the section non-regular. Therefore for every open set 𝑈 and
eigenvalue 𝑢 ∈ M the set of values defining eigensections of E|𝑈 is a
sub-vector spaces of E ∶= E|𝑥0

.

As it turns out, we must only consider the open sets defined by rays —
i.e., cones of dimension one — and decreasing filtrations of E. These
filtrations are not independent but subject to a compatibility condi-
tion†. Klyachko’s classification theorem† states that toric bundles aresee 1.19

see 1.21 uniquely given by any such collection of filtrations, satisfying the com-
patibility condition. Even further, this establishes an equivalence of
categories.

Payne’s work† consists of proving the same theorem for deformations[Pay07]

of toric bundles, so that we may have a moduli space. However, the
formalism of filtrations is not useful here since it has far too much re-
dundant information: E is a finite vector space, so the filtration must
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First Chapter

be constant almost everywhere, except for a few indexes where the di-
mension jumps. Therefore the same information can be provided by
the finite set of subvector spaces and the indexes where the dimension
jumps†. The compatibility condition of Klyachko translates into how see 1.32

the subspaces corresponding to different rays may intersect; it gives
the dimension of the intersection. This restriction is called the rank
condition†. The advantage of this formalism is that the indexes consti- see 1.34

tute discrete data, while the subspaces can vary in a Grassmannian.
Therefore toric bundles with a fixed frame† can be classified by a sub- see 1.39

space of a product of Grassmannians†. see 1.40

At this point, the only thing one must prove to get a moduli space is that
deformations† of toric bundles correspond to subspaces of this classi- see 1.44

fication space. This is better expressed in an isomorphism of moduli
functors. Payne’s classification theorem† states precisely the existence see 1.46

of such isomorphism for the framed case†. For the unframed case, see 1.45

the moduli space is the quotient by the GL𝑟(C)-action if such quotient
exists†. see 1.47

To prove all of this is the objective of this chapter. We shall now dive
into the details. First, a small introduction to toric varieties and toric
bundles introduced by Klyachko. Then Payne’s formalism of flags,
finishing off with the definition of the moduli problems and the proof
of the main theorem†. We also provide — at the risk of being repetitive see 1.46

— examples whenever possible to assist in understanding.
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Toric Bundels

Our first step is to set some notation about our fixed toric variety.

1.1) Construction of a toric variety: Let N be a lattice of finite
rank — i.e. N ≅ Z𝑛 — and M = hom(𝑁,Z) its dual lattice. By 𝜎
we commonly denote a strongly convex rational polyhedral cone in
NR ∶= N ⊗Z R. Then its dual cone �̌�† defines an affine variety 𝑈𝜎 =see b.1

spec(C[�̌�∩M]). If 𝜎 is part of a fan Σ — i.e., a collection of cones closed
under taking intersections and faces — then there are inclusions

𝑈𝜎 ↩ 𝑈𝜎∩𝜎′ ↪ 𝑈𝜎′

defining gluing data. This data constructs a variety 𝑋 = 𝑋(Σ) —
called a toric variety — which has a canonical action of the torus
T ∶= spec(C[M]), free on a dense open set of 𝑋.

We can also take the above construction as a definition since it is equi-
valent to the standard definition, as the following proposition states.

1.2) Proposition: Any irreducible variety 𝑋 containing the torus
T as a zariski open set, such the action of T on itself extend to an
algebraic action of T on 𝑋 is defined by a fan Σ as in 1.1.

For the proof: [CLS11, Corollary 3.1.8]

1.3) Observation: For simplification, we would like to fix an inclu-
sion T ↪ 𝑋, so that we consider T as a dense subset of 𝑋 and points
in T — for instance, the identity 𝑥0 ∶= 𝟙 ∈ T — as points in 𝑋.

14



First Chapter

As we are going to be using the lattice M and N a lot, we should add a
small comment on its notation.

1.4) Notation: Even though the fan Σ is in N, most of the algebraic
calculation takes place in the lattice M. It has two interpretations:
First, M = hom(T,C∗), that is, M is the lattice of characters of T. At
the same time M = N∗ ∶= hom(N,Z), that is, M is the set of inte-
gral linear functions on N. This creates a notation conundrum since
the first is usually regarded as a multiplicative and the second as an
additive group. To work around this problem, we write 𝜒𝑢 for the
character defined by an element 𝑢 ∈ N∗ = M. So when using simple
letters, the elements of M are additive. In contrast, when using 𝜒
they are multiplicative. The lattice N is always additive since — as
already mentioned — its main use is for defining the vector space
NR, where our cones form a fan. We also do often work with the dual
cones in 𝑀R, but they do not create a fan there.

Regarding notation, it should also be mentioned that by definition the
faces of any polyhedral cone in a fan are also in that fan. Therefore
we define in Σ the relation 𝜎′ ⪯ 𝜎, whenever 𝜎′ is a face of 𝜎. We will
also work a lot with rays, i.e. one-dimensional cones. We normally
denote them by the letter 𝜌, instead of 𝜎, and by Σ(1) we denote the
set of rays in the fan Σ.

Let us now see how we may construct the projective space as a toric
variety.

1.5) Example: Consider 𝑋 = P𝑛 and T = (C∗)𝑛 with the inclusion
T ↪ 𝑋 given by (𝑡1, … , 𝑡𝑛) ↦ [1 ∶ 𝑡1 ∶ ⋯ ∶ 𝑡𝑛]. There are characters
𝜒𝑖𝑗([𝑥0 ∶ ⋯ ∶ 𝑥𝑛]) = 𝑥𝑖/𝑥𝑗, for [𝑥0 ∶ ⋯ ∶ 𝑥𝑛] ∈ T. Then for the open set
𝑈𝑗 = {[𝑥0 ∶ ⋯ ∶ 𝑥𝑛] ∈ P𝑛 | 𝑥𝑗 ≠ 0} we conclude that

O𝑋(𝑈𝑗) = C[𝜒0𝑗, … , 𝜒𝑛𝑗].
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That means every 𝑈𝑗 corresponds to the dual cone

̌𝜎𝑗 = span{𝜒𝑖𝑗, 0 ≤ 𝑖 ≤ 𝑛} ⊂ 𝑀R ∶= M ⊗Z R.

One can quickly check that the cones {𝜎𝑗} induce a fan on NR. Of
course, we also have open sets 𝑈𝑖𝑗 = 𝑈𝑖 ∩ 𝑈𝑗, which correspond to the
common faces between 𝜎𝑖 and 𝜎𝑗 and are also part of the fan. One
dimensional cones, i.e. rays, are spanned by primitive generators 𝛼𝑘
defined by the condition ⟨𝛼𝑘, 𝜒𝑖𝑗⟩ = 𝛿𝑘𝑖. The following diagram shows
the fan and the dual cones of P2 in the two- dimensional plane.Notice the open sets 𝑈𝑗

are symmetrical in the
projective plane, but
the inclusion T ↪ 𝑋 is
not, which is reflected
in the asymmetry of the
diagram.

𝜒10

𝜒20𝜒21

𝜒01

𝜒02 𝜒12

̂𝜎1 ̂𝜎0

̂𝜎2

𝜎1
𝜎0

𝜎2

𝛼2

𝛼0

𝛼1

Quod erat faciendum

Now we turn to a central object of our study:

1.6) Toric Bundle: A toric bundle E over a toric variety 𝑋 is a vector
bundle 𝜋 ∶ 𝔼 → 𝑋 with an algebraic equivariant action of the torus T
— i.e., 𝜋(𝑡 ⋅ 𝑣) = 𝑡 ⋅ 𝜋(𝑣) for all 𝑣 ∈ 𝔼 and 𝑡 ∈ T.

16



First Chapter

Together with this definition we shall also present the most trivial
form of a toric bundle. Actually, this is a local model for toric bundles,
as we will see later.

1.7) Affine Toric Line Bundles: Given a cone 𝜎 and a 𝑢 ∈ M, we
denote by L[𝑢] = 𝑈𝜎 × C the toric line bundle given by 𝑡 ⋅ (𝑥, 𝑣) =
(𝑡 ⋅ 𝑥, 𝜒𝑢(𝑡) ⋅ 𝑣) — as the notation suggests this only depends on the
equivalence class [𝑢] ∈ M𝜎 ∶= M/(𝜎⊥ ∩ M)†, which correspond to an see b.2

integral linear function on 𝜎.

1.8) Proposition: All toric line bundles over 𝑈𝜎 are of the form L[𝑢]
for some [𝑢] ∈ M𝜎.

For the proof: [CLS11, Prop 4.2.2]

Before proceeding, let us illustrate that L[𝑢] only depends on [𝑢].

1.9) Example: Consider the toric variety P2 and the one-dimensional
cone — that is, the ray — 𝜎 = 𝜎01 ∶= 𝜎0 ∩ 𝜎1

†. Then 𝜎⊥
01 = {𝜆𝜒01 ∈ see 1.5

𝑀R ∶ 𝜆 ∈ R} and M𝜎 can be represented by the integer powers {𝜒20
𝑖}

as well as for the powers {𝜒21
𝑖} = {(𝜒20𝜒01)𝑖}. Let 𝑢 = 𝜒20, then L[𝑢]

is the vector bundle 𝑈01 × C over the open set 𝑈01 = {[𝑥0 ∶ 𝑥1 ∶ 𝑥2] ∶
𝑥0, 𝑥1 ≠ 0} with the toric action given by:

(𝑡1, 𝑡2) ⋅ ([𝑥0 ∶ 𝑥1 ∶ 𝑥2], 𝑧) ↦ ([𝑥0 ∶ 𝑥1𝑡1 ∶ 𝑥2𝑡2], 𝑡2𝑧)

where
(𝑡1, 𝑡2) ∈ C∗2 ≅ {[1 ∶ 𝑡1 ∶ 𝑡2] ∈ P2 ∶ 𝑡1, 𝑡2 ≠ 0}

and ([𝑥0 ∶ 𝑥1 ∶ 𝑥2], 𝑧) ∈ 𝑈01×C. Had we chosen 𝑢′ = 𝜒21, then [𝑢] = [𝑢′]
but the toric action is given by:

(𝑡1, 𝑡2) ⋅ ([𝑥0 ∶ 𝑥1 ∶ 𝑥2], 𝑧) ↦ ([𝑥0 ∶ 𝑥1𝑡1 ∶ 𝑥2𝑡2], 𝑡−1
1 𝑡2𝑧).
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Both these actions are isomorphic over 𝑈01. To see that, let 𝜓 ∶ 𝑈01 ×
C → 𝑈01 × C be the vector bundle isomorphism given by ([𝑥0 ∶ 𝑥1 ∶
𝑥2], 𝑧) ↦ ([𝑥0 ∶ 𝑥1 ∶ 𝑥2], 𝑥0

𝑥1
𝑧). Then the following diagram commutes

([𝑥0 ∶ 𝑥1 ∶ 𝑥2], 𝑧) ([𝑥0 ∶ 𝑥1 ∶ 𝑥2], 𝑥0
𝑥1

𝑧)

([𝑥0 ∶ 𝑡1𝑥1 ∶ 𝑡2𝑥2], 𝑡2𝑧) ([𝑥0 ∶ 𝑡1𝑥1 ∶ 𝑡2𝑥2], 𝑡2𝑥0
𝑡1𝑥1

𝑧)

where the horizontal arrows are the isomorphism 𝜓 and the vertical
arrows are the actions of C∗2 induced by 𝑢 at the left and by 𝑢′ at the
right. So we see the bundle only depends on the equivalence class
[𝑢] = [𝑢′]. Quod erat faciendum

A famous theorem by Gubeladze states that an arbitrary vector bundle
on an affine toric variety is trivial. The following proposition proves
this for toric vector bundles.

1.10) Proposition: Every toric vector bundle on an affine toric vari-
ety splits equivariantly as a sum of toric line bundle. The underlying
line bundles are geometrically trivial as topological vector bundles.

For the proof: b.14

It immediately follows that:

1.11) Corollary: There is a natural bijection between finite multis-
ets† 𝕦(𝜎) of elements of M𝜎 and isomorphism classes of toric vectorsee b.3
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bundles on 𝑈𝜎, which is given by:

𝕦(𝜎) ↦ ⨁
𝑢∈𝕦(𝜎)

L[𝑢].

Since any (toric) bundle can be restricted to a collection of bundles
over affine spaces 𝑈𝜎, we may associate for every toric bundle E a
collection Ψ ∶= {𝕦(𝜎)}𝜎∈Σ such that

E|𝑈𝜎
= ⨁

𝑢∈𝕦(𝜎)
L[𝑢].

These multisets are compatible in the sense that for 𝜏 = 𝜎 ∩ 𝜎′ it
follows that

𝕦(𝜏) = 𝕦(𝜎)|𝜏 = 𝕦(𝜎′)|𝜏
where elements of 𝕦(𝜎) are interpreted as integral linear functions
on 𝜎†. see 1.4

How to calculate the multiset we will learn as this Chapter proceeds.
For now we just present an example without proof.

1.12) Example: The tangent space of the projective space is a toric
bundle. The table below shows the multisets associated to it. The
elements of M are written as pairs (𝑎, 𝑏) ∶= 𝜒10

𝑎𝜒20
𝑏†. The brackets see 1.5

[ ] represent the equivalence class in M𝜎 for the respective cone.

𝜎 𝕦(𝜎)
span{𝛼1} {[(0, 0)], [(1, 0)]}

span{𝛼1, 𝛼2} {(1, 0), (0, 1)}
span{𝛼2} {[(0, 0)], [(0, 1)]}

span{𝛼2, 𝛼0} {(−1, 1), (−1, 0)}
span{𝛼0} {[(0, 0)], [(0, −1)]}

span{𝛼0, 𝛼1} {(1, −1), (0, −1)}
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Notice that in this example the elements do not repeat, so the multis-
ets are actually just normal sets. Also notice when passing from a
maximal cone to a ray, one just takes the equivalence class. How-
ever, for passing from the ray to a maximal cone a representant
must be choosen and the representant is not the same for every cone.

Quod erat faciendum

The collection of multisets is a discrete invariant and, therefore, the
first step toward classifying general toric bundles. The full classific-
ation, however, is more complicated. To achieve that we need some
preparatory work.

1.13) Decomposition in T-eigenspaces: Let 𝑠 ∈ Γ(𝑋,E) be a section of
the toric bundle. A 𝑡 ∈ T acts on this section by (𝑡 ⋅ 𝑠)(𝑥) = 𝑡(𝑠(𝑡−1𝑥)).
This action induces a decomposition into T-eigenspaces

Γ(𝑋,E) = ⨁
𝑢∈M

Γ(𝑋,E)𝑢

where for 𝑠 ∈ Γ(𝑋,E)𝑢 we have 𝑡 ⋅ 𝑠 = 𝜒𝑢(𝑡)𝑠†. Conversely, this eigen-see 1.4

space decomposition of the module of sections determines the action
of T in E.

For the proof: [Kan75, Proposition 3.4]

These eigensections are, however, uniquely determined by their value
at the identity in T — actually in any point of the dense orbit of 𝑋. Let
us examine this in more detail:

1.14) Evaluation at the Identity: Two sections in the eigenspace
Γ(𝑋,E)𝑢 that agree at the identity 𝑥0 ∈ T† must by translation agreesee 1.3
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on T. Since T is dense, they also agree on all of 𝑋. So the evaluation
at 𝑥0 gives an injection Γ(𝑋,E)𝑢 ↪ E, where 𝑢 ∈ M and E ∶= E𝑥0

is
the fiber over 𝑥0. We denote by E𝜎

𝑢 ⊂ E the image of Γ(𝑈𝜎,E)𝑢 under
evaluation at 𝑥0.

Now for 𝑢′ ∈ �̌� ∩ 𝑀 the character 𝜒𝑢′ is a well-defined regular func-
tion over 𝑈𝜎 and multiplication by it gives a canonical linear map
Γ(𝑈𝜎,E)𝑢 → Γ(𝑈𝜎,E)𝑢−𝑢′. This multiplication commutes with the
evaluation at 𝑥0, giving rise to an inclusion E𝜎

𝑢 ⊂ E𝜎
𝑢−𝑢′.

This point can be difficult to understand at first, so let us see an ex-
ample that will follow us throughout this section.

1.15) Example: Let 𝑋 = P2 and consider the toric bundle E =
L𝜒10

⊕ L𝜒20
⊕ L𝜒12

. We can calculate the T-Eigenspaces of E: Let
𝑠 ∶= (𝑠0, 𝑠1, 𝑠2) ∈ Γ(E, 𝑋) be a section of E, then for instance we have
(𝑡 ⋅ 𝑠0)(𝑥) = 𝜒10(𝑡)𝑠0(𝑡−1𝑥) = 𝑡1𝑠0(𝑡−1𝑥). So 𝑠 is in the T-Eigenspace
Γ(𝑋,E)𝑢 if and only if

𝑠(𝑡) = 𝑠(𝑡 ⋅ 𝑥0) = (𝜒−𝑢(𝑡)𝑡1𝑠0(𝑥0), 𝜒−𝑢(𝑡)𝑡2𝑠1(𝑥0), 𝜒−𝑢(𝑡)𝑡1
𝑡2

𝑠2(𝑥0)).

We can see that since T is dense in 𝑋, the value of 𝑠 in the whole of
𝑋 is uniquely given by its value at the identity 𝑥0 = [1 ∶ 1 ∶ 1].

Now consider the restriction of E to the open set 𝑈0
†. Since 𝜎⊥

0 = {0} see 1.5

we have M𝜎0
= M, which will make things easier for a while. In this

case, our lattice is spanned by 𝜒10 and 𝜒20, so we may write 𝜒𝑢 =
𝜒10

𝑎𝜒20
𝑏. For 𝑠 to be well-defined in 𝑈0 independent of the value at

𝑥0 the conditions 𝑎 ≤ 0 and 𝑏 ≤ −1 must hold. Otherwise, if for
instance 𝑎 = 1 then

lim
𝑡1→0

𝑡 ⋅ 𝑥0 = [1 ∶ 0 ∶ 𝑡2] ∈ 𝑈0,
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but
lim
𝑡1→0

𝑠1(𝑡 ⋅ 𝑥0) = ∞.

So it follows that 𝑠1(𝑥0) = 0 unless 𝑎 ≤ 0 and 𝑏 ≤ 1 . With similar
arguments unless 𝑎 ≤ 1 and 𝑏 ≤ −1 it follow that 𝑠2(𝑥0) = 0 and
unless 𝑏 ≤ 0 that 𝑠0(𝑥0) = 0 . The following graphic illustrates E𝜎1𝑢 in
dependence of 𝑎 and 𝑏.

𝑏

𝑎

ℂ × 0 × 0

ℂ × ℂ × ℂ ℂ × 0 × ℂ

ℂ × ℂ × 0

0 × ℂ × 0 0 × 0 × 0

In this example, �̌� is the positive span of 𝜒10 and 𝜒20, therefore we see
in the figure that moving down or left, we have canonical inclusions.

Quod erat faciendum

We can express this in a more general way

1.16) Example: Consider the line bundle L[𝑢] over 𝑈𝜎. Then the
constant section is an eigensection with eigenvalue 𝑢 and 𝜒𝑢′ is a
well-defined section of L[𝑢] over 𝑈𝜎 if and only if 𝑢′ ∈ �̌�. Therefore
there exists a non zero 𝑣-eigensection if and only if 𝑣 = 𝑢 − 𝑢′ for
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𝑢′ ∈ �̌� ∩ M. That is to say

E𝜎
𝑣 = { C if 𝑢 − 𝑣 ∈ �̌� ∩ 𝑀

0 otherwise

Quod erat faciendum

A particular case of the evaluation at identity arrives by considering
rays, as we see in the following.

1.17) Filtration on E: For a character 𝑢′ orthogonal to the cone 𝜎
— i.e., 𝑢′ ∈ 𝜎⊥ — the inclusion E𝜎

𝑢 ⊂ E𝜎
𝑢−𝑢′ is an isomorphism since

−𝑢′ ∈ 𝜎⊥. Therefore E𝜎
𝑢 only depends on the class [𝑢] ∈ M𝜎. For a

ray 𝜌 ∈ Σ(1) one can identify the equivalence class with the product
𝑖 = ⟨𝑢, 𝑣𝜌⟩ ∈ Z, where 𝑣𝜌 is the primitive generator of 𝜌. In this case,
we write E𝜌(𝑖) for E𝜌

𝑢 and get a decreasing filtration:

E ⊃ ⋯ ⊃ E𝜌(𝑖 − 1) ⊃ E𝜌(𝑖) ⊃ E𝜌(𝑖 + 1) ⊃ ⋯ ⊃ 0

Let us see this in our example

1.18) Example: Consider once more 𝑋 = P2 and the toric bundle
E = L𝜒10

⊕ L𝜒20
⊕ L𝜒12

, but this time over 𝑈01 = 𝑈0 ∩ 𝑈1. The cor-
responding cone 𝜎01 is the ray between 𝜎0 and 𝜎1, with primitive gen-
erator 𝛼2 given by the condition ⟨𝛼2, 𝜒𝑖𝑗⟩ = 𝛿2𝑖. That is, 𝛼2 measures
the exponent of 𝑥2 in the character. Since 𝑥2 is the only coordinate
that can be zero in 𝑈10, the question whether a given value of 𝑠(𝑥0)
yields an eigensection over 𝑈10 depends only on the limit 𝑥2 → 0. In
terms of Example 1.15 there are no constraints on 𝑎 anymore, since
the limit points [1 ∶ 0 ∶ 1] and [0 ∶ 1 ∶ 0] are not in 𝑈01 — so the the
orbit of C∗ × {1} is open in 𝑈01 . We conclude that characters 𝑢 and
𝑢′ with the same exponent for 𝑥2 yield the same space E𝜎01

[𝑢] . In the
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example above, we called this exponent 𝑏, and the constraints on 𝑏
give the filtration:

… ⊃ C × C × C ⊃ C × C × 0 ⊃ 0 × C × 0 ⊃ 0 ⊃ …
q q q q

… ⊃ E𝜎10(−1) ⊃ E𝜎10(0) ⊃ E𝜎10(1) ⊃ E𝜎10(2) ⊃ …

This filtration is also the one we get from 1.15 by choosing a small
enough value for 𝑎. This is no coincidence. Quod erat faciendum

The filtrations we get in this way are not independent, but rather com-
patible with each other for every cone the rays span. This gives us a
critical condition.

1.19) Compatibility Condition: Let E be a toric bundle over 𝑋(Σ).
Then the filtrations {E𝜌(𝑖)} satisfy the following compatibility condi-
tion: For every cone 𝜎 ∈ Σ there is a decomposition

E = ⨁
[𝑢]∈M𝜎

E[𝑢],

such that for every ray 𝜌 ⪯ 𝜎 and integers 𝑖 ∈ Z we have

E𝜌(𝑖) = ∑
⟨[𝑢],𝑣𝜌⟩≥𝑖

E[𝑢]

where ∑ denotes the sum of subspaces.

For the proof: From 1.8 we know that E|𝑈𝜎
is isomorphic to the sum

of line bundles ⨁𝑢∈𝕦(𝜎) L[𝑢]. With 1.16 we conclude that there is a
decomposition E ∼ ⨁[𝑢]∈M𝜎

C#𝑢, where #𝑢 is the multiplicity of [𝑢] in
𝕦(𝜎). So set

E[𝑢] ∶= C#𝑢.

Now restricting the direct sum of line bundles to the open set 𝑈𝜌 and
again using 1.16 we get the equation for E𝜌(𝑖), as needed.
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We can see this clearly in our example.

1.20) Example: We continue with example 1.15. The filtrations for
the ray 𝜎10 = ⟨𝛼2⟩ were already calculated in 1.18. The filtration for
𝜎20 = ⟨𝛼1⟩ is

… ⊃ C × C × C ⊃ C × 0 × C ⊃ 0 ⊃ …
q q q

… ⊃ E𝜎20(0) ⊃ E𝜎20(1) ⊃ E𝜎20(2) ⊃ …

This we can read off directly from the figure in 1.15 for 𝑏 ≪ 0. We
further notice in the figure that the intersection E𝜎

𝑢 ∩(C×0×0) = {0}
if and only if 𝑎 > 1 and 𝑏 > 0. On the other hand, the intersection
with 0 × C × 0 is trivial if and only if 𝑎 > 0 and 𝑏 > 1 while the
intersection with 0 × 0 × C is trivial if and only if 𝑎 > 1 and 𝑏 > −1.
We therefore may set

E[𝜒10] = C × 0 × 0, E[𝜒20] = 0 × C × 0, E[𝜒10𝜒20−1] = 0 × 0 × C

and E[𝑢] = 0 × 0 × 0 otherwise. It is straightforward to check the
compatibility condition for the rays 𝜎10 and 𝜎20.

We leave it for the reader to calculate the filtration for 𝜎12.
Quod erat faciendum

This condition allows us to classify toric bundles according to the fol-
lowing theorem.

1.21) Klyachko’s Classifications Theorem: A toric vector bundle is
classified by a vector space with filtrations† (E, {E𝜌(𝑖)}𝜌∈Σ(1)) satisfy- see b.8

ing the compatibility condition†. Moreover, the category of toric vec- see 1.19

tor bundles on 𝑋(Σ) is naturally equivalent to the category of finite-
dimensional C-vector spaces E with filtrations {E𝜌(𝑖)} satisfying the
compatibility condition.
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Here we provide proof for that, following mostly [Pay07].

1.22) Proof of 1.21: In one direction the equivalence is given by
associating to E the fiber E = E𝑥0

over the identity, together with its
filtrations {E𝜌(𝑖)} for every ray 𝜌 ∈ Σ(1). A morphism of (toric) vector
bundles 𝑓 ∶ E → Fmaps the fibers linearly. Hence it induces a linear
map 𝜓𝑓 ∶ E → F. The map 𝜓𝑓 preserves T-Eigenspaces, because it
maps Γ(𝑈𝜎,E)𝑢 to Γ(𝑈𝜎,F)𝑢 for every cone 𝜎 ∈ Σ and 𝑢 ∈ M and in
particular for every ray 𝜌 ∈ Σ(1). Hence 𝜓𝑓 takes {E𝜌(𝑖)} into {F𝜌(𝑖)}
for every 𝑖 ∈ Z as required.

On the other hand, consider a vector space with filtrations (E, {E𝜌(𝑖)})
satisfying the compatibility condition. From the filtrations, we can
reconstruct E𝜎

𝑢 for every cone 𝜎 ∈ Σ and degree 𝑢 ∈ M:

E𝜎
𝑢 = ⋂

𝜌⪯𝜎
E𝜌(⟨𝑢, 𝑣𝜌⟩).

From that we get natural inclusions E𝜎
𝑢 ↪ E𝜎

𝑢−𝑢′ for 𝑢′ ∈ �̌� ∩ M.

With this information, we want to recreate the sheaf structure. For
that, define

E𝜎 = ⨁
𝑢∈M

E𝜎
𝑢

and therefore there is a natural inclusion map:

⨁
𝑢∈M

E𝜎
𝑢 ↪ ⨁

𝑢∈M
E𝜎

𝑢−𝑢′.

This map induces the structure of multiplication by 𝜒𝑢′. That means
E𝜎 has a natural C[𝑈𝜎]-module structure, where C[𝑈𝜎] = C[�̌� ∩ M].
There is also an action of T on E𝜎, where 𝑡 ∈ T acts on E𝜎

𝑢 by multiplic-
ation with the eigenvalue 𝜒𝑢(𝑡) ∈ C∗. The C[𝑈𝜎]-module E𝜎 induces a
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quasicoherent sheaf Ẽ𝜎 on 𝑈𝜎 torically isomorphic to

⨁
[𝑢]∈M𝜎

L[𝑢] ⊗ E[𝑢].

In particular is Ẽ𝜎 locally free and defines a toric bundle E𝜎. Since in
the compatibility condition E = ⨁[𝑢]∈M𝜎

E[𝑢] it follows that E𝜌(𝑖) = E
for 𝑖 ≪ 0. Therefore the natural inclusion E𝜎′

𝑢 ⊂ E𝜎
𝑢−𝑢′ for 𝜎′ ⪯ 𝜎 and

𝑢′ ∈ 𝜎′⊥ induces a toric isomorphism:

E𝜎|𝑈𝜎′ ≅ E𝜎′.

The intersection of two cones 𝜎1 and 𝜎2 is always a common face 𝜎′ be-
longing to both, so this gives an isomorphism E𝜎1|𝑈𝜎′ ≅ E𝜎2|𝑈𝜎′ . One
can also verify the cocycle condition since the intersection of three
cones is also a common face. Therefore, these isomorphisms consti-
tute gluing data and give rise to a toric bundle E. Using the same
process one shows that a morphism of vector bundles with fibrations
gives rise to a corresponding equivariant morphism of toric bundles.
The functor so defined is inverse to the functor E ↦ (E, {E𝜌(𝑖)}) up
to a natural isomorphism. So we have an equivalence of categories.

Quod erat demonstrandum

The following example may clarify the proof.

1.23) Example: As an exercise, let us go through the proof 1.22 again
with example 1.15. But this time, we consider E = L𝜒10

⊕L𝜒20
⊕L𝜒12

as a toric bundle over P2. The underlying vector bundle is trivial, and
the toric action is given by multiplication with 𝜒10(𝑡), 𝜒20(𝑡), or 𝜒12(𝑡)
respectively. We have three rays: 𝜌0, 𝜌1 and 𝜌2 spanned by 𝛼0, 𝛼1
and 𝛼2 respectively. We may also call these rays 𝜎12, 𝜎02 and 𝜎01 in
reference to the maximal cones, to which they are a common face. We
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already showed how to calculate the filtrations and the compatibility
condition. The three filtrations may be given as a table:

𝑖 ≤ −1 𝑖 = 0 𝑖 = 1 𝑖 ≥ 2
𝜌0 C × C × C 0 × 0 × C 0 × 0 × 0 0
𝜌1 C × C × C C × C × C C × 0 × C 0
𝜌2 C × C × C C × C × 0 0 × C × 0 0

We have also shown how to calculate E[𝑢]: it is 0 almost everywhere,
except for three [𝑢]’s corresponding to each factor of C × C × C. We
also give those in the table below: for every cone and every factor, we
give the corresponding 𝑢 where it appears. The 𝑢’s are given as pairs
(𝑎, 𝑏), just as before.

C × 0 × 0 0 × C × 0 0 × 0 × C
𝜎0 (1, 0) (0, 1) (1, −1)
𝜎1 (1, 0) (0, 1) (1, −1)
𝜎2 (1, 0) (0, 1) (1, −1)

For the rays, there are several 𝑢’s in the same equivalence class. We
give the defining equations in 𝑎, 𝑏 or 𝑐 ∶= −𝑎 − 𝑏.

C × 0 × 0 0 × C × 0 0 × 0 × C
𝜌1 = 𝜎02 𝑎 = 1 𝑎 = 0 𝑎 = 1
𝜌2 = 𝜎01 𝑏 = 0 𝑏 = 1 𝑏 = −1
𝜌0 = 𝜎12 𝑐 = −1 𝑐 = −1 𝑐 = 0

We have thus fully described the vector space with filtrations
(E, {E𝜌(𝑖)}) we get from this example — including the compatibility
condition. One may easily calculates that the filtration E𝜎0𝑢 we calcu-
lated in 1.15 can be reconstructed by

E𝜎0𝑢 = E𝜌1(𝑎) ∩ E𝜌2(𝑏)
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and therefore the module E𝜎0 constructed in the proof is

E𝜎0 = ( ⨁
(𝑎,𝑏)∈Z2

E𝜌1(𝑎) ∩ E𝜌2(𝑏)) ⊂ Z2 × C3.

Here multiplication by 𝜒𝑢′ is given by translating (𝑎, 𝑏) ↦ (𝑎 − 𝑎′, 𝑏 −
𝑏′), which is well-defined since 𝑎′, 𝑏′ ≥ 0 for 𝑢′ = (𝑎′, 𝑏′) ∈ �̌� ∩ M. The
action of T = C∗2 on E𝜎0 is given by

(𝑡1, 𝑡2), (𝑣0, 𝑣1, 𝑣2)(𝑎,𝑏) ↦ 𝑡𝑎
1𝑡𝑏

2(𝑣0, 𝑣1, 𝑣2)(𝑎,𝑏)

where (𝑡1, 𝑡2) ∈ T, (𝑎, 𝑏) ∈ Z2, and (𝑣0, 𝑣1, 𝑣2) ∈ C3.

Since E𝜎
𝑢 is the image of the inclusion Γ(𝑈𝜎,E)𝑢 ↪ E given by the

evaluation at identity and Γ(𝑈𝜎,E) = ⨁𝑢∈𝑀 Γ(𝑈𝜎,E)𝑢 there is a nat-
ural bijection Γ(𝑈𝜎,E) ≅ E𝜎. Since 𝜒𝑢′(𝑥0) = 1 for all 𝑢′, multiplica-
tion does not change the image of Γ(𝑈𝜎,E) ↪ E, but it does map the
T-eigenspaces Γ(𝑈𝜎,E)𝑢 → Γ(𝑈𝜎,E)𝑢−𝑢′. Therefore, it is clear that
the bijection above agrees with the C[𝑈𝜎]-module structure. This iso-
morphism of modules induces an isomorphism of sheaves.

Since 𝑈𝜎 = spec(C[𝑈𝜎]), this gives rise to a second isomorphism of
sheaves

Ẽ𝜎0 ≅ [L𝜒10
⊗C× 0 × 0] ⊕ [L𝜒20

⊗ 0 ×C× 0] ⊕ [L𝜒10𝜒20−1 ⊗ 0 × 0 ×C],

i.e. Ẽ𝜎0 ≅ L𝜒10
⊕L𝜒20

⊕L𝜒10𝜒20−1 and that is exactly what we began
with, since 𝜒10𝜒20

−1 = 𝜒12. We also get the same sheaf for the other
cones, which reflects the fact that the bundle E is topologically trivial.

Quod erat faciendum

In order to consider examples that are not topologically trivial, we
shall present some more complex examples without further proof.

1.24) Example†: Let 𝑋 be a generic toric variety with fan Σ. For every [Kly90, example 2.3]
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ray 𝜌 ∈ Σ(1) the affine space 𝑈𝜌 ⊂ 𝑋 let 𝐷𝜌 be the closure of the orbit
defined by 𝜌†. We may consider the invertible sheaf O𝑋(𝐷𝜌) definedsee b.4

by the divisor 𝐷𝜌. In this sheaf, sections are rational functions, such
that they have at most an order one pole in 𝐷𝜌. That results in more
sections than O𝑋, since we just weaken the conditions for a section
to be regular. This moves the trivial fibration to the right.

E𝜌(𝑖) = { C if 𝑖 ≤ 0
0 if 𝑖 ≥ +1

} ⊂ C = E.

More generally, let 𝐷 = ∑𝜌 𝜆𝜌𝐷𝜌 be a divisor, then the inversible
sheaf O𝑋(𝐷) is encoded by

E𝜌(𝑖) = { C if 𝑖 ≤ 𝜆𝜌
0 if 𝑖 ≥ 𝜆𝜌 + 1

} ⊂ C = E.

The tangent space 𝑇 𝑋 also has a canonical action of T and the fiber
at 𝑥0 is canonicaly isomorphic to NC. The filtration is then given by

(𝑇 𝑋|𝑥0
)𝜌(𝑖) =

⎧{
⎨{⎩

𝑁C if 𝑖 ≤ 0
span(𝜌) if 𝑖 = 1
0 if 𝑖 ≥ 2

⎫}
⎬}⎭

⊂ NC =∶ E.

Dual to that, the cotangent space 𝑇 ∗𝑋 has fiber at 𝑥0 isomorphic to
MC and filtrations

(𝑇 ∗𝑋|𝑥0
)𝜌(𝑖) =

⎧{
⎨{⎩

𝑀C if 𝑖 ≤ −1
𝜌⊥ if 𝑖 = 0
0 if 𝑖 ≥ 1

⎫}
⎬}⎭

⊂ MC =∶ E.

Quod erat faciendum
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Toric Chern Class

In this section, we calculate the equivariant Chern class of a toric vec-
tor bundle. It is essential since it fixes the discrete part of the filtra-
tions and leaves the continuous data free. But we will see this in detail
later. For now, we make some definitions.

1.25) Definition: Given a fan Σ, we associate its ring of integral
piecewise polynomial functions 𝑃𝑃 ∗(Σ). That is the ring of functions
𝑓 ∶ ⋃𝜎∈Σ 𝜎 → R, such that 𝑓 is polynomial with integral coefficients
over every cone. Alternatively 𝑓 associates to every cone 𝜎 ∈ Σ an
element 𝑓(𝜎) ∶= 𝑓|𝜎 ∈ Sym(M𝜎), such that they agree at intersections

𝑓(𝜎)|𝜎′ = 𝑓(𝜎′) for every 𝜎′ ⪯ 𝜎.

This ring gives us a concrete representation of the Chow cohomology
ring, as stated below.

1.26) Proposition: The equivariant Chow cohomology ring 𝐴∗
T(𝑋) is

naturally isomorphic to 𝑃𝑃 ∗(Σ). The isomorphism is given by

𝑢 ↦ 𝑐1
T(L[𝑢])

taking the linear function 𝑢 ∈ M to the first equivariant chern class
of the line bundle L[𝑢].

For the proof: [Pay05]
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The second definition we need is the following.

1.27) Definition: Fix 𝑟 ∈ N and let 𝕦(𝜎) be a multiset of size 𝑟 of
linear functions 𝑓 ∈ M𝜎 for every 𝜎 ∈ Σ, just as in 1.11. Denote by Ψ ∶=
{𝕦(𝜎)}𝜎∈Σ a collection of such multisets, agreeing at intersections,
i.e.:

𝕦(𝜎′) = 𝕦(𝜎)|𝜎′

for 𝜎′ ⪯ 𝜎. Let 𝑐𝑖(Ψ) be the piecewise polynomial function, whose
restriction to 𝜎 is 𝑒𝑖(𝕦(𝜎)), the 𝑖th elementary symmetric function in
the multiset of linear functions 𝕦(𝜎). We define

𝑐(Ψ) = 1 + 𝑐1(Ψ) + ⋯ + 𝑐𝑟(Ψ)

This brings us directly to the following proposition:

1.28) Proposition [Pay05]: The equivariant total Chern class of a
toric vector bundle E is 𝑐T(E) = 𝑐(ΨE), where by ΨE we denote the
collection of compatible multisets of linear functions determined by
a toric vector bundle E.

For the proof: Since the restriction of E to 𝑈𝜎 is

E|𝑈𝜎
= ⨁

[𝑢]∈𝕦(𝜎)
L[𝑢]

and since the first Chern class of L[𝑢] corresponds to the linear func-
tion [𝑢], the proposition follows from the naturality of the isomorph-
ism 𝐴∗

T(𝑋) ≅ 𝑃𝑃 ∗(Σ)

We can therefore calculate the Chern class explicitly:

1.29) Example: Consider the same example as before†, that is 𝕦(𝜎) =see 1.23
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{𝜒10, 𝜒20, 𝜒12} for every cone. Writing 𝑥 for 𝜒10 and 𝑦 for 𝜒20, we can
easily calculate

𝑐T(E) = 1 + 2𝑥 + 𝑥2 + 𝑥𝑦 − 𝑦2 + 𝑥2𝑦 − 𝑥𝑦2

since 𝜒12 = 𝜒𝑥−𝑦. Quod erat faciendum

1.30) Observation: The collection of multisets ΨE is itself sometimes
called the toric Chern class of E, since by 1.28 describing it as multis-
ets is easier than calculating the polynomial itself and in the end, it
makes no practical difference since

Ψ = Ψ′ ⇔ 𝑐(Ψ) = 𝑐(Ψ′).

For the proof: The ⇒ direction is evident, we prove the ⇐ direction:
Consider the function on a variable 𝑋.

𝑐𝑋(Ψ) = 𝑋𝑟 + 𝑐1(Ψ)𝑋𝑟−1 + ⋯ + 𝑐𝑟(Ψ).

Since every 𝑐𝑖(Ψ) is a piecewise polynomial of degree 𝑖, the above
is the homogenisation of 𝑐(Ψ) and therefore uniquely defined by it.
Now 𝑐𝑖 are the symetrical function, so over every 𝜎 this is equal to
the Newton polynom

𝑐𝑋(Ψ)|𝑈𝜎
= ∏

𝑢∈𝕦(𝜎)
(𝑋 + 𝑢),

so the multiset 𝕦(𝜎) gives the roots of 𝑐𝑋(Ψ) — to be more precise the
additive inverse of the roots. Since the roots of 𝑐𝑋(Ψ) are unique, we
get from 𝑐(Ψ) = 𝑐(Ψ′) that 𝕦(𝜎) = 𝕦(𝜎)′ for every 𝜎, that is Ψ = Ψ′.
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Flags and rank conditions

We now turn to the moduli space. The classification of toric bundles
given by Klyachko’s formalism cannot be easily described by a moduli
space since writing it via filtrations is too redundant. Payne’s idea to
overcome that is to express a filtration through a finite set of subvector
spaces and a finite set of indexes. The purpose of this section is to
introduces Payne’s formalism.

1.31) Definition: Let E be a toric bundle over 𝑋(Σ). For every ray
𝜌 ∈ Σ(1) we reduce the filtration {E𝜌(𝑖)} to a partial flag† of E bysee b.10

removing repeating subspaces. Let 𝐹𝑙(𝜌) be this flag. We also denote
by 𝐽(𝜌) ⊂ {0, 1, … , 𝑟} the set of dimensions present in 𝐹𝑙(𝜌) and by
F l𝐽(𝜌)(E) the set of flags with given dimensions. That is:

𝐹𝑙(𝜌) ∈ F l𝐽(𝜌)(E)

This formalism is equivalent to the filtrations provided by Klyachko,
as stated below.

1.32) Proposition: Klyachko’s classification theorem implies that E
is determined up to isomorphism by the data (ΨE, 𝐹 𝑙(𝜌)), i.e., by its
collection of multisets† and a flag of E for every ray.see b.9

For the proof: It is possible to reconstruct the filtrations {E𝜌(𝑖)} since
for a ray 𝜌 the multiset 𝕦(𝜌) tells us exactly at which 𝑖’s there is a jump
in the dimension of {E𝜌(𝑖)} and the multiplicity of elements gives the
size of the jump†. The flag 𝐹𝑙(𝜌), on the other hand, provides thesee 1.19

spaces, but not where the jump occurs. Both information together
construct the filtration.
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Note in the following example that the flag data is much more compact
to write.

1.33) Example: In the case of the ray 𝜌1 in example 1.23 we have

𝐹𝑙(𝜌1) ∶= 0 ⊂ (C × 0 × C) ⊂ (C × C × C) = E

and if we allow the index 𝑖 = ⟨𝑢, 𝛼1⟩ to represent [𝑢] ∈ M𝜌1
we have

𝕦(𝜌1) = {1, 1, 0}.

Once again we can see that the flag provides the subvector spaces
of the filtration and the multiset contains the index where the di-
mension jumps. The fact that 1 has double multiplicity in 𝕦(𝜌1) is, of
course, redundant because the jump from 0 to (C × 0 × C) is of two
dimensions. Quod erat faciendum

The price that we pay for considering flags is that the compatibility
condition is challenging to express.

1.34) Rank condition: Let

Δ𝜌(𝑗) = max{𝑖 ∈ Z| dim E𝜌(𝑖) ≥ 𝑗},

that is the last index before the filtration E𝜌(𝑖) drops below dimen-
sion 𝑗 — for 𝑗 = 0 we put Δ𝜌(𝑗) = ∞ and E𝜌(∞) = 0. The function
Δ depends exclusively on the multiset 𝕦(𝜌) since from the compatibi-
lity conditions† it follows that dim E𝜌(𝑖) = #{[𝑢] ∈ 𝕦(𝜌)|⟨[𝑢], 𝑣𝜌⟩ ≥ 𝑖}, see 1.19

where the [𝑢]’s are counted with multiplicity. Now let 𝐹𝑙(𝜌)𝑗 be the 𝑗-
dimensional subspace of E in the flag 𝐹𝑙(𝜌) for 𝑗 ∈ 𝐽(𝜌). Then for any
collection of rays 𝜌1, … , 𝜌𝑠 of a cone 𝜎, and for any set of dimension
𝑗1, … , 𝑗𝑠 such that 𝑗𝑙 ∈ 𝐽(𝜌𝑙), we have† see b.11
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dim
𝑠

⋂
𝑙=1

𝐹𝑙(𝜌𝑙)𝑗𝑙
= # {[𝑢]∈𝕦(𝜎) such that ⟨[𝑢],𝑣𝜌𝑙 ⟩≥∆𝜌𝑙 (𝑗𝑙)

for 1≤𝑙≤𝑠 } .

This condition is called rank condition since it is related to the rank
of the natural map

E →
𝑠

∏
𝑙=1

E/𝐹 𝑙(𝜌𝑙)𝑗𝑙

whose kernel is precisely ⋂𝑠
𝑙=1 𝐹𝑙(𝜌𝑙)𝑗𝑙

.

Since the dimension of the intersection is an upper semicontinuous
function in the product of Grassmannians†, the rank conditions cor-see b.12

responds to the intersection of certain Zariski open and closed sub-
sets of the following product of Grassmannians:

∏
𝜌∈Σ(1)

⎡⎢
⎣

∏
𝑗∈𝐽(𝜌)

Gr(𝑗, E)⎤⎥
⎦

.

The condition for a point in ∏𝑗∈𝐽(𝜌) Gr(𝑗, E) to define a flag is also
closed, namely, the vector-subspaces must contain each other. That
is, the set of admissible flags for a given collection Ψ of multisets is a
quasi-projective subvariety of the above product of Grassmannians.
We denote by M𝑓𝑟

Ψ this subvariety.

This formalism also allows us to easily see an important property.

1.35) Proposition: Over toric varieties of dimension two the compa-
tibility condition is always satisfied, that means any set of filtrations
defines a toric vector bundle.

For the proof: Consider the formalism of 1.27 and see the collection of
multisets Ψ as a collection of piecewise linear functions on the fan. In
this light the collection Ψ(1) ∶= {𝕦(𝜌)}𝜌∈Σ(1) is a collection of linear
functions over the rays. Therefore the information in Ψ is just an
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interpolation of Ψ(1) to the whole fan. Essentially it is a bijection
𝕦(𝜌) → 𝕦(𝜌′) such that 𝑢 ↦ 𝑢′ if and only if there is a 𝑣 ∈ 𝕦(𝜎) for
which 𝑢 = 𝑣|𝜌 and 𝑢′ = 𝑣|𝜌′. This is well defined since the multisets
in Ψ agree in intersections. For dimension greater than 2 a cone
may be spanned by as many rays as wanted. A linear interpolation
of the functions on those rays may not exist. However for dimension
two, a full-dimensional cone is spanned by just 2 rays, therefore it is
always possible to find a linear interpolation. In other words, for any
bijection 𝑢 ↦ 𝑢′ we can always construct a 𝑣 respecting the condition
above.

That means the following: given a set of filtrations, one can extract
the collection {𝕦(𝜌)}𝜌∈Σ(1). From the intersection of the flags, one
reads out which functions to interpolate. For instance, if the vec-
tor spaces with the lowest dimension for both flags agree, this would
mean the linear function corresponding to the greatest index must
be interpolated together. This interpolation is always possible, there-
fore resulting in a valid Ψ and the rank condition is satisfied. If the
rank condition is satisfied, so is the compatibility condition†. see 1.41

1.36) Observation: Proposition 1.35 does not mean the the collection
Ψ is given by its restriction to the rays. That would be false, it is not
difficult to find of examples of distinct Ψ’s with the same restriction
to the rays. In terms of Chern classes we can express it as follows:
different flags may lie on different Chern classes, but always lie on a
Chern class. For dimension greater 2 some flags don’t belong to any
Chern class at all.
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There is also an alternative proof for the proposition. As explained
in [AW21] on smooth surfaces if we drop the compatibility condition
from Klyachko’s formalism we get to classification of toric sheafs.
Those are reflexiv sheafs and reflexiv sheafs over smooth surfaces
are always locally free, therefore they are also toric bundles and the
compatibility condition must apply.

The variety of admissible flags may be quite complicated for higher
ranks. However, upon the choice of a hermitian metric for rank strict
smaller than 4 all relevant Grassmannians are isomorphic to projec-
tive spaces. In this case, we may write it down quite easily.

1.37) Example: Let us see how example 1.23 fits with the rank condi-
tions. One can read off the collection Ψ of multisets directly from the
tables in 1.23. From that we get 𝐽(𝜌0) = {0, 1, 3}, 𝐽(𝜌1) = {0, 2, 3},
𝐽(𝜌2) = {0, 1, 2, 3}. In this case, there are only five combinations of
rays and dimensions where the rank condition is not trivial, that is,
the dimension of the intersection is not defined by the dimension of
the flags. Those are

𝜌 𝑗 𝜌′ 𝑗′ dim 𝐹𝑙(𝜌)𝑗 ∩ 𝐹𝑙(𝜌′)𝑗′

𝜌0 1 𝜌1 2 1
𝜌0 1 𝜌2 1 0
𝜌0 1 𝜌2 2 0
𝜌1 2 𝜌2 1 0
𝜌1 2 𝜌2 2 1

One can see that the result of the first line is the greatest possible di-
mension for the intersection, so this is a closed condition. The other
lines give the smallest possible dimension. Those are open condi-
tions. The set of flags satisfying this table is a subset of a product
of Grassmannians. Actually, if we fix a hermitian product in C3, it
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is a subset of (P2)4, where the first two coordinates give the flags
𝐹𝑙(𝜌0)1 and 𝐹𝑙(𝜌2)1 and the last two coordinates give the orthogonal
spaces 𝐹𝑙(𝜌1)⊥

2 and 𝐹𝑙(𝜌2)⊥
2 . Let ([𝑣0], [𝑣1], [𝑣2], [𝑣3]) be those coordin-

ates. Then the previous table translates into

⟨𝑣0, 𝑣2⟩ = 0
⟨𝑣0, 𝑣1⟩2 − |𝑣0|2|𝑣1|2 ≠ 0

⟨𝑣0, 𝑣3⟩ ≠ 0
⟨𝑣2, 𝑣1⟩ ≠ 0

⟨𝑣2, 𝑣3⟩2 − |𝑣2|2|𝑣3|2 ≠ 0

In order for [𝑣1] and [𝑣2] to define a flag 𝐹𝑙(𝜌2)1 ⊂ 𝐹𝑙(𝜌2)2 they need
to be orthogonal. So the set of flags defining a toric bundle with the
collection of multisets ΨE = Ψ is the intersection of the variety given
by ⟨𝑣1, 𝑣3⟩ = 0 with the 1 closed and the 4 open sets defined by the
polynomial equations above. Quod erat faciendum

Let us also consider a second example

1.38) Example: Over P2 let Ψ = Ψ𝑇P2
†, which means we are interes- see b.9

ted in toric bundles with the same Chern class of the tangent bundle
𝑇P2†. For the rays we have 𝕦(𝜌0) = 𝕦(𝜌1) = 𝕦(𝜌2) = {0, 1}; for the see 1.24

maximal cones — using the (𝑎, 𝑏) notation — we have

𝕦(𝜎0) = {(1, 0), (0, 1)}
𝕦(𝜎1) = {(1, −1), (0, −1)}
𝕦(𝜎2) = {(−1, 0), (−1, 1)}

Therefore, our flags are given by just three lines in NC ≅ C2, where
the rank condition means they do not coincide. From that we con-
clude that M𝑓𝑟

Ψ is the open subset of (P1)3 given by points ([𝑥], [𝑦], [𝑧])
with [𝑥], [𝑦] and [𝑧] distinct from one another. This is the space of
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three distinct lines in C2. We can localize 𝑇P2 in this space by the
point

(span(𝜌0), span(𝜌1), span𝜌2, )

provided we fix the framing to be the canonical isomorphism 𝑇𝑥0
P2 ≅

NC ≅ C2.

It is straightforward to generalize this result for higher dimensions:
for Ψ = Ψ𝑇P𝑛 we conclude that M𝑓𝑟

Ψ is the space of 𝑛 + 1 distinct lines
in C𝑛. Quod erat faciendum

Considering the equations defining the flags as points in a product of
Grassmannian depends on fixing an isomorphism between E and C𝑟.
Therefore let us add this in a definition.

1.39) Definition: A framed toric bundle on 𝑋 is a toric bundle
E together with a framing isomorphism E → C𝑟. A morphism of
framed toric vector bundles is an equivariant morphism of toric vec-
tor bundles that is compatible with the framing — i.e., the following
diagram commutes

E ∶= E𝑥0
E′ ∶= E′

𝑥0

C𝑟 C𝑟

With this extra constraint, we translate Klyachko’s classification the-
orem into the flag framework.

1.40) Proposition: The map E ↦ {𝐹𝑙(𝜌)} gives a bijection between
the set of isomorphism classes of framed toric vector bundles on 𝑋
with equivariant total Chern class 𝑐(Ψ) and the set of C-points of
M𝑓𝑟

Ψ
†.see 1.34
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For the proof: This map’s injectivity follows from Klyachko’s classi-
fication theorem†. For surjectivity, we can reconstruct the filtrations see 1.21

using the multiset 𝕦(𝜌) and the flags. Now lemma 1.41 says that the
rank condition implies the compatibility condition. Therefore we can
apply Klyachko’s classification theorem in the other direction.

To complete the proof, we need to prove the following lemma.

1.41) Lemma: The rank condition implies the compatibility condi-
tion. In other words: Let 𝕦(𝜎) ⊂ M𝜎 be a multiset of size 𝑟 and
(E, {E𝜌(𝑖)}) be a vector space of dimension 𝑟 together with a collec-
tion of filtrations indexed by the rays of 𝜎 such that, for any set of
integers {𝑖𝜌}

dim (⋂
𝜌

E𝜌(𝑖𝜌)) = #{[𝑢] ∈ 𝕦(𝜎)|⟨[𝑢], 𝑣𝜌⟩ ≥ 𝑖𝜌 for all 𝜌}.

Then there is a splitting E = ⨁[𝑢]∈𝕦(𝜎) E[𝑢] such that

E𝜌(𝑖) = ∑
⟨[𝑢],𝑣𝜌⟩≥𝑖

E[𝑢]

for all 𝜌 and all 𝑖.

For the proof: b.15

Since the framing introduces an extra GL𝑟(C) freedom, we get this
immediate corollary from the theorem.

1.42) Corollary: There is a natural bijection between the set of
isomorphism classes of toric vector bundles on 𝑋 with equivariant
total Chern class 𝑐(Ψ) and the set of GL𝑟(C)-Orbits of M𝑓𝑟

Ψ .
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Families of toric vector bundles

Until now, we just worked with single toric bundles, and the results
we got were bijections. In order to describe the moduli space as a
geometric object — for instance, as a scheme — we need to consider
how toric bundles can deform. So let us add this to our context.

1.43) Notation: In this subsection, let 𝑆 be a scheme of finite type
over C and T𝑆 be the relative torus T × 𝑆. Likewise, let 𝑋𝑆 be the
product 𝑋 × 𝑆. We fix a collection Ψ ∶= {𝕦(𝜎)}𝜎∈Σ of multisets of
integral linear functions of size 𝑟 such that 𝕦(𝜎′) = 𝕦(𝜎)|𝜎′ for 𝜎′ ⪯ 𝜎.

With this language we define a deformation, i.e., a family, of toric
bundles and the moduli functors resulting from it:

1.44) Definition: An 𝑆-family of toric vector bundles on 𝑋 is a vector
bundle E on 𝑋𝑆 with an action of the relative torus T𝑆 compatible
with the action on 𝑋𝑆. We say that such a family has total Chern
class 𝑐(Ψ) if

𝑐T(E|𝑋×𝑠) = 𝑐(Ψ)

for every geometric point 𝑠 ∈ 𝑆.

Likewise, a morphism of 𝑆-families is a morphism of vector bundles
over 𝑋𝑆, which is compatible with the action of T𝑆. This defines a
moduli functor MΨ ∶ Sch → Set given by

MΨ(𝑆) = { isomorphism classes of S families of toric vector
bundles on X with equivariant total Chern class 𝑐(Ψ)}

We also define the same for the framed case.

1.45) Definition: An 𝑆-family of framed toric vector bundles on 𝑋 is a
family of toric vector bundles with an isomorphism E|𝑥0×𝑆 ≅ O⊕𝑟

𝑆
†. Asee b.16
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morphism of such families is a morphism compatible with the fram-
ing. This defines a functor M

𝑓𝑟
Ψ ∶ Sch → Set, given by

M
𝑓𝑟
Ψ (𝑆) = {isomorphism classes of S families of framed toric vector

bundles on X with equivariant total Chern class 𝑐(Ψ) }

To say that the classifying space we found before is a fine moduli space,
we must prove the following.

1.46) Theorem: There is a natural isomorphism of functors

M
𝑓𝑟
Ψ ≅ hom(__,M𝑓𝑟

Ψ )

For the proof: 1.50

1.47) Corollary: A scheme MΨ is a coarse moduli space for MΨ if
and only if it is a good quotient of M𝑓𝑟

Ψ for the action of GL𝑟(C) and
its set of points is bijective to the set of GL𝑟(C)-Orbits of M𝑓𝑟

Ψ . This is
the case mainly if PGL𝑟(C) acts freely on M𝑓𝑟

Ψ .

For the proof: The set of equivalence classes of toric vector bundles
is bijective to the set of orbits in M𝑓𝑟

Ψ . This is Klyachko Classific-
ation Theorem†. Therefore we must only prove the respective uni- see 1.21

versal properties. Lemma b.13 establishes that a GL𝑟(C)-invariant
morphism is equivalent to a functor MΨ → ℎMΨ. Under this corres-
pondence, the universal property of a categorical quotient† translates see a.11a

directly into the universal property of a coarse moduli space. It is just
a question of comparing definitions and using the Yoneda lemma.
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Before we can prove the theorem, we must introduce the flag and rank
formalism for families.

1.48) Family of filtrations: Let E be a 𝑆-family of toric vector
bundles. Over every affine variety 𝑈𝜎 there is a splitting in O𝑆-
Modules:

(𝜋𝑆)∗E|𝑈𝜎×𝑆 ≅ ⨁
𝑢∈M

E𝜎
𝑢

where T𝑆 acts in E𝜎
𝑢 by 𝜒𝑢. The restriction to 𝑥0 ×𝑆 gives an injection

E𝜎
𝑢 ↪ E ∶= E|𝑥0×𝑆, whose image depends only on the class of [𝑢] ∈ M𝜎.

The image of this inclusion is a subvector bundle E𝜎
𝑢 → 𝑆 of the vector

bundle E → 𝑆; in the case of framed families E ≃ C𝑛 × 𝑆.

We also get from this a rank condition.

1.49) Proposition: The category of 𝑆-families of toric vector bundles
on 𝑋 is naturally equivalent to the category of vector bundles E on 𝑆
with a collection of decreasing bundle filtrations {E𝜌(𝑖)} indexed by
the rays of Σ, satisfying the following rank condiction.

For each cone 𝜎 ∈ Σ, there is a multiset 𝕦(𝜎) ⊂ M𝜎 such that, for any
rays 𝜌1, … , 𝜌𝑠 of 𝜎 and integers 𝑗1, … , 𝑗𝑠, the vector bundle E𝜌1(𝑖1) ∩
⋯ ∩ E𝜌𝑠(𝑖𝑠) is of rank equal to

#{[𝑢] ∈ 𝕦(𝜎) | ⟨[𝑢], 𝑣𝜌𝑙
⟩ ≥ Δ𝜌𝑗

(𝑗𝑙) for 1 ≤ 𝑙 ≤ 𝑠}

For the proof: b.17
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Finally, we can prove the main theorem:

1.50) Proof of 1.46: Let E be an 𝑆-family of toric vector bundles on
𝑋 with equivariant total Chern class 𝑐(Ψ), and let 𝜙 ∶ E|𝑥0×𝑆 → O⊕𝑟

𝑆
be a framing of E. For each ray 𝜌 in Σ (1), let 𝐽(𝜌) ⊂ {0, … , 𝑟} be the
set of ranks of bundles E𝜌(𝑖) appearing in the filtrations associated to
E and let 𝐹𝑙(𝜌) be the flag consisting of precisely those subbundles.
Then it follows from 1.49 that E → {𝐹𝑙(𝜌)} gives a bijection between
M

𝑓𝑟
Ψ (𝑆) and the set of collections of partial flags in ∏𝜌 F l𝐽(𝜌)(O⊕𝑟

𝑆 )
satisfying the rank conditions, which is canonically identified with
hom(𝑆,M𝑓𝑟

Ψ ) since the Grassmannian is also a fine moduli space.
Quod erat demonstrandum

Before ending, we should revisit our examples.

1.51) Example: We calculated in 1.37 the variety M𝑓𝑟
Ψ for example

1.23. However, PGL3(C) does not act freely in general, for instance,
𝑣0 = 𝑣3, 𝑣3⊥𝑣2 and 𝑣2 = 𝑣1 is a valid configuration where the action
is not free. So there may be no general coarse moduli space for MΨ.

On the other hand for example 1.38, PGL2(C) does act freely on M𝑓𝑟
Ψ .

Moreover, it’s an easy linear algebra exercise that PGL2(C) can map
any three distinct lines of C2 onto any other three distinct lines.
Therefore the coarse moduli space for MΨ is a single point {[𝑇 𝑋]}.

For higher dimension, there is no good quotient. Any set of 𝑛 + 1
lines in a generic position can be mapped by GL𝑛(C) to any other
such set. There are other orbits, but this one is a dense orbit, so the
only possible good quotient is the point. However, if all lines fall in
the same two-dimensional plane, the orbit of GL𝑛(C) is closed in the
moduli space, and for four or more lines there is more than one such
orbit. Since the fibers of a good quotient must contain exactly one
closed orbit, the quotient M𝑓𝑟

Ψ → {∗} is not a good one. This means,
there is no coarse moduli space for this problem. Quod erat faciendum
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Let us also present an example where the calculation of the unframed
moduli space is not that trivial

1.52) Example: We calculate the moduli space of toric bundles over
𝑋 = P1 × P1 with the same Chern Class† as the tangential space —see 1.30

i.e., Ψ = Ψ𝑇 𝑋. In this case the toric variety is given by the fan Σ
spanned by the vectors {𝑒1, 𝑒2, −𝑒1, −𝑒2}, where {𝑒1, 𝑒2} is a Z-basis
of N. Let 𝜌1 = −𝜌−1 and 𝜌2 = −𝜌−2 be the 4 rays in Σ. Those span 4
maximal cones

𝜎++ = span{𝑒1, 𝑒2}
𝜎−+ = span{−𝑒1, 𝑒2}

𝜎−− = span{−𝑒1, −𝑒2}
𝜎+− = span{𝑒1, −𝑒2}

From 1.24 we can read off Ψ = {𝕦(𝜎)}𝜎∈Σ and write it as follows

𝕦(𝜌) = {0, 1} for all rays 𝜌
𝕦(𝜎𝑖𝑗) = {(𝑖𝑒1, 0), (0, 𝑗𝑒2)} for 𝑖, 𝑗 ∈ {+, −}

That means the flags are

0 ⊊ 𝑅1 ⊊ C2 0 ⊊ 𝑅2 ⊊ C2

0 ⊊ 𝑅−1 ⊊ C2 0 ⊊ 𝑅−2 ⊊ C2

So the moduli space is given by the space of 4 lines {𝑅1, 𝑅2, 𝑅−1, 𝑅−2}
in C2. The compatibility condition here is satisfied, if for every maxi-
mal cone the 2 corresponding lines do not coincide. In a way similar
to 1.38 the moduli space M𝑓𝑟

Ψ is the open subset of P1 × P1 × P1 × P1

given by 𝑅1 ≠ 𝑅2, 𝑅1 ≠ 𝑅−2, 𝑅2 ≠ 𝑅−1 and 𝑅−1 ≠ 𝑅−2. The tangent
space 𝑇P1×P1 is given by 𝑅1 = 𝑅−1 and 𝑅2 = 𝑅−2. In fact in a standard
choice of frame it’s filtrations are

0 ⊊ span(𝑒1) ⊊ C2 0 ⊊ span(𝑒2) ⊊ C2

0 ⊊ span(𝑒1) ⊊ C2 0 ⊊ span(𝑒2) ⊊ C2
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The space M𝑓𝑟
Ψ has an action of GL2(C) given by change of frame. We

want to calculate this quotient. With a change of frame we can always
set

𝑅1 = C × {0} and 𝑅2 = {0} × C,

i.e. we map them into the coordinate axis. Now the compatibility
condition states that 𝑅−1 must not fall in the 𝑦-axis and 𝑅−2 not in
the 𝑥-axis. Therefore we can write

𝑅−1 = span((1, 𝑧1)) and 𝑅−2 = span((𝑧2, 1))

where 𝑧1 and 𝑧2 are in C. Therefore we can represent any filtration
by the tuple (𝑧1, 𝑧2) ∈ C2. This is however still not the quotient. We
do have fixed axes, but we can still modify the framing by acting with
diagonal maps. This means we reduced the action of GL2(C) to a
(C∗)2-action on C2. On our tuples (𝑧1, 𝑧2) this action looks like

(𝑎, 𝑏)(𝑧1, 𝑧2) = ( 𝑏
𝑎𝑧1, 𝑎

𝑏 𝑧2).

By writing 𝑡 = 𝑏
𝑎 we can further reduce this to an action of C∗ via

𝑡(𝑧1, 𝑧2) = (𝑡𝑧1, 𝑡−1𝑧2).

Since 𝑅−1 ≠ 𝑅−2 the orbit of (1, 1) is not in the moduli space, other-
wise there is a quotient

C2 \ {𝑧1𝑧2 = 1} → C \ {1}

given by the product (𝑧1, 𝑧2) ↦ 𝑧1𝑧2. This is a good quotient; however,
it is not a coarse moduli space according to 1.47 since there is not a 1-
to-1 relation between orbits and points in the quotient. In particular
the fiber of the origin 0 ∈ C is the union of 3 orbits: the two coordinate
axes and the origin. That means those toric bundles where the flags
are not in a general position. Restricted to the generic bundles the
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quotient
(C∗)2 \ {𝑧1𝑧2 = 1} → C \ {1}

is a coarse moduli space, which can be proven with a small modifica-
tion of 1.47.

Quod erat faciendum

This previous example, although simple, is extremely important. It
discards any hopes of a meaningful Git theory of toric bundles:

1.53) Observation: We see that the quotient in example 1.52 is pretty
similar to a.25. Actually if we replace P1 × P1 by its blow-up, we get
a toric surface whose fan is spanned by 5 rays. The resulting quo-
tient is exactly a.25. We therefore can apply its conclusion to the
moduli space of toric bundles: there are several choices of a linear-
isation, non of which is really canonical. Futhermore, the choices
are symmetrical, so any Git concept of stability is necessarily not in-
trinsic. This is not the case for instance in the theory of algebraic
vector bundles over a curve since in there the stability of a vector
bundle is indeed intrinsic.
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SECOND CHAPTER

Toric Cohiggs Bundles

Where we examine the classifica-
tion of toric Cohiggs bundles and
construct the moduli space for
them.

In this chapter, we introduce the study of Cohiggs fields in toric
bundles. Those are similar to classic Higgs fields E → E ⊗ 𝑇 ∗𝑋.
However, instead of the cotangent bundle, we take the tangent bundle
E → E ⊗ 𝑇 𝑋. While using the cotangent bundle is the classical
approach, when working with complete toric varieties, Higgs fields
are always nilpotent and in many prominent cases trivial. There
are, however, multiple examples for Cohiggs fields [AW21, Remark
9]. Since we will be working with the tangent space we will assume 𝑋
is smooth to avoid technical difficulties, however, a generalisation to
non-smooth toric varities seems to be possible.

Like sections in Γ(𝑋,E) — with which we worked previously —
Cohiggs fields can also be decomposed by degrees in M since E ⊗ 𝑇 𝑋
has a canonical toric structure. This allows us to apply Klyanchko’s
classification of toric morphisms. It states that an equivariant — i.e
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degree zero — toric morphism is given by a morphism of vector spaces
with fibrations†. Morphism with different degrees can also be clas-see 1.21

sified by simply shifting the filtrations†. Since the filtrations of 𝑇 𝑋see 2.1

are quite simple†, we may easily describe such conditions for Cohiggssee 1.24

fields: a map 𝜙 ∶ E → E ⊗ NC induces a field E → E ⊗ 𝑇 𝑋 of degree
𝑢 ∈ M if and only if:

⟨𝜙(E𝜌(𝑖)), 𝑠⟩ ⊂ { E𝜌(𝑖 + ⟨𝑢, 𝑣𝜌⟩) if 𝑠 ∈ 𝜌⊥

E𝜌(𝑖 − 1 + ⟨𝑢, 𝑣𝜌⟩) if 𝑠 ∉ 𝜌⊥ }

for all 𝑠 ∈ M, all rays 𝜌 ∈ Σ(1) and all 𝑖 ∈ Z.

In order to agree with the nomeclature of the classical theory, we also
impose on proper Cohiggs fields the integrability condition Φ ∧ Φ = 0.
This non-linear condition does not communicate well with the toric
structure. Therefore we will focus our study first on fields Φ ∶ E →
E ⊗ 𝑇 𝑋 as above. We call those pre-Cohiggs fields and pairs (E, Φ)
pre-Cohiggs bundles.

We already know from the general theory that there must be a mo-
duli space for pre-Cohiggs bundles under some restrictions. The toric
case is, however, considerably more manageable than the general one.
We may follow two approaches, one is building a moduli space of
morphisms of vector spaces with filtrations† and by assuming com-see 2.9

pleteness we build a moduli space of toric pre-Cohiggs bundles†. Asee 2.12

second approach is to use the universal family of the fine moduli space
of framed toric bundles M𝑓𝑟

Ψ . Considering this universal family as a
sheaf E over M𝑓𝑟

Ψ × 𝑋 we build a ‘universal framed pre-Cohiggs sheaf’
Hom(E,E ⊗ 𝜋∗

𝑋𝑇 𝑋)†. Now, this is a coherent flat sheaf, so if we as-see 2.19

sume 𝑋 is complete it can be represented by a scheme. More specific-
ally we get here a linear scheme over M𝑓𝑟

Ψ , which can be seen as a
‘vector bundle with varying rank†’. This (linear) scheme is automatic-see 2.16

ally a fine moduli space for the problem of framed toric pre-Cohiggs
bundles†.see 2.15
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The moduli spaces for related problems follow from this one. For
instance, the problem of unframed pre-Cohiggs has a coarse moduli
space if and only if the framed case has a quotient by GL𝑟(C)†. There see 2.20

are sub-moduli spaces given by fixing a degree 𝑢 ∈ M. These spaces
induce a canonical decomposition of the general moduli space†. On see 2.21

the other hand, since the integrability condition Φ ∧ Φ = 0 can be
expressed in algebraic terms, it is likewise not difficult to show that
the moduli space of (framed or unframed) Cohiggs bundles is a sub-
scheme. This however is no longer a linear scheme†. see 2.23

Those constructions are mostly standard techniques; it is, however,
still worth going through the details.

Toric Cohiggs Bundels

Before we tackle our specific case, let us review Klyachko’s classifica-
tion of toric morphisms.

2.1) Morphism of Toric Vector Bundles: Let E and F denote two
toric vector bundles over 𝑋(Σ) and E and F represent the fibers over
the identity†. Then T acts on a homomorphism of vector bundles Φ ∶ see 1.14

E → F by 𝑡(Φ(𝑡−1𝑣)). The characters of T are eigenvalues for this
action and create a decomposition

hom(E,F) = ⨁
𝑢∈M

hom(E,F)𝑢
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where hom(E,F)𝑢 is the eigenspace for the character 𝜒𝑢. For an
eigenmorphism with degree 𝑢 — i.e. Φ ∈ hom(E,F)𝑢 — one may
easily check that Φ(𝑡𝑣) = 𝜒𝑢(𝑡−1) 𝑡 ⋅ Φ(𝑣). For instance, equivariant
homomorphisms are the ones with degree 0 ∈ M. †Those are the

morphisms in the
category of toric

bundles, see 1.21.
Similar to the sections 𝑠 ∈ Γ(𝑋,E) in 1.14, an eigenmorphism Φ ∈
hom(E,F)𝑢 is uniquely defined by its value at the identity of the
torus— that is the linear map 𝜙 ∶ E → F. The character 𝜒𝑢 gives
therefore an inclusion hom(E,F) ⊂ hom(E, F) ⊗ C[M].

On the other hand, if 𝑠 ∈ Γ(𝑈𝜎,E)𝑢 is of degree 𝑢 and Φ ∈
hom(E,F)𝑢′ is of degree 𝑢′, then the section Φ(𝑠(𝑥)) in Γ(𝑈𝜎,F)
has degree 𝑢 + 𝑢′. So it follows directly from 1.16 that a linear map
𝜙 ∶ E → F defines an eigenmorphism with eigenvalue 𝜒𝑢 if and only
if

𝜙(E𝜌(𝑖)) ⊂ F𝜌(𝑖 + ⟨𝑢, 𝑣𝜌⟩) (*)

Be aware of some important notation choices:

2.2) Observation: In some places in the literature — most import-
antly for us in [AW21] — the opposite notation is used: a homo-
morphism is said to have degree 𝑟 if Φ(𝑡𝑣) = 𝜒𝑟(𝑡)𝑡Φ(𝑣). The con-
sequence being that eq. (*) in the definition above gets a negative
sign: 𝜙(E𝜌(𝑖)) ⊂ F𝜌(𝑖 − ⟨𝑢, 𝑣𝜌⟩). We will continue to use the notation
established above.

Now let us calculate this condition for the example of pre-Cohiggs
fields — a formal definition will be given later.

2.3) Example: We can calculate from 2.1 the condition for a linear
map E → E⊗NC to induce a morphism E → E⊗𝑇 𝑋 of degree 𝑢. Let 𝑋
be smooth and F = E⊗ 𝑇 𝑋. By letting 𝑡 ∈ T act in both coordinates
— which is well defined since it preserves the tensor properties —
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one gets a natural toric action on F. The fiber over the identity is
E⊗NC and if 𝑣 and 𝑣′ are eigensection in E and 𝑇 𝑋 with degrees 𝑢 and
𝑢′, then 𝑣 ⊗ 𝑣′ is an eigensection of F with degree 𝑢 + 𝑢′. Therefore
the filtration F𝜌(𝑖) is given by the sum of tensor E𝜌(𝑗) ⊗ N𝜌

C(𝑗′) with
𝑖 = 𝑗 + 𝑗′. One concludes from 1.24 that

F𝜌(𝑖) = E𝜌(𝑖) ⊗ NC + E𝜌(𝑖 − 1) ⊗ span(𝜌).

Now we may decompose an element 𝜙 ∈ hom(E, E⊗NC) = End(E)⊗NC

into
𝜙 = ∑

𝑠
𝜙𝑠 ⊗ 𝑠∗

where the sum goes over a set {𝑠} forming a basis of M and the 𝑠∗’s are
the dual basis. Preferentially we may also write 𝜙𝑠 = (idE ⊗ 𝑠) ∘ 𝜙 ∈
End(E) for any integral functional (𝑠 ∶ NC → C) in M. Either way we
get the following

2.3A) Assertion: A C-linear map 𝜙 ∶ E → E ⊗ NC induces a homo-
geneous field E → E⊗ 𝑇 𝑋 of degree 𝑢 if and only if the associated
contraction 𝜙𝑠 satisfy

𝜙𝑠(E𝜌(𝑖)) ⊂ { E𝜌(𝑖 + ⟨𝑢, 𝑣𝜌⟩) if 𝑠 ∈ 𝜌⊥

E𝜌(𝑖 + ⟨𝑢, 𝑣𝜌⟩ − 1) if 𝑠 ∉ 𝜌⊥ } ⊂ E𝜌(𝑖 + ⟨𝑢, 𝑣𝜌⟩)

for all 𝑠 ∈ M, rays 𝜌 ∈ Σ(1) and 𝑖 ∈ Z.

Quod erat faciendum
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We have previously mentioned the importance of describing Klaychko’s
compatibility conditions with a finite number of equations. This is
also the case here.

2.4) Observation: The conditions on 2.3a are finite. For every ray
𝜌 ∈ Σ(1) let 𝑆𝜌 ⊂ M be a basis of 𝑀C including a basis of 𝜌⊥. Then
one must only verify the condition for 𝑠 ∈ 𝑆𝜌 and for a finite number
of indeces:

𝜙𝑠(𝐹 𝑙(𝜌)𝑗) ⊂ { 𝐹𝑙(𝜌)∇𝜌(⟨𝑤𝑗+𝑢,𝑣𝜌⟩) if 𝑠 ∈ 𝜌⊥

𝐹𝑙(𝜌)∇𝜌(⟨𝑤𝑗+𝑢,𝑣𝜌⟩−1) if 𝑠 ∉ 𝜌⊥ } ⊂ 𝐹𝑙(𝜌)∇𝜌(⟨𝑤𝑗−𝑢,𝑣𝜌⟩)

where
∇𝜌(𝑖) = dim E𝜌(𝑖)

and 𝑤𝑗 ∈ M is such that ⟨𝑤𝑗, 𝑣𝜌⟩ = Δ𝜌(𝑗)†. One verifies that the mapsee 1.34

𝑗 ↦ ∇𝜌(⟨𝑤𝑗 + 𝑢, 𝑣𝜌⟩)

or respectively
𝑗 ↦ ∇𝜌(⟨𝑤𝑗 + 𝑢, 𝑣𝜌⟩ − 1)

is non decreasing. This must be the case since this is just a re-writing
of 2.3a.

For a fixed ray these conditions create a staircase matrix, as the lemma
below shows.

2.5) Lemma: Let
{0} = V0 ⊊ ⋯ ⊊ V𝑘 = V

be a partial flag of a finite dimensional vector space 𝑉 . For every
index 𝑗 between 0 and 𝑘, let 𝑗′ be another index such that the map
𝑗 ↦ 𝑗′ is non-decreasing. Then the dimension of

𝑊 = {𝑓 ∈ hom(𝑉 , 𝑉 ) ∶ 𝑓(𝑉𝑗) ⊂ 𝑉𝑗′, ∀𝑗 ∈ {0, ⋯ , 𝑘}}
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depends only on the set of dimensions {dim 𝑉𝑗}𝑗∈{0,⋯,𝑘} and on the
mapping 𝑗 ↦ 𝑗′, but not on the flag itself.

For the proof: Choose a basis (𝑣1, ⋯ , 𝑣𝑘) for 𝑉 such that

𝑉𝑗 = span{𝑣1, ⋯ , 𝑣𝑛𝑗
}

where 𝑛𝑗 = dim 𝑉𝑗. Then 𝑓 ∈ 𝑊 if and only if 𝑓(𝑣𝑖) ∈ 𝑉𝑗′ for all
𝑖 ∈ {𝑛𝑗 + 1, ⋯ , 𝑛𝑗+1} and all 𝑗 ∈ {0, ⋯ , 𝑘 − 1}. In other words, the map
𝑓 written in the basis (𝑣1, ⋯ , 𝑣𝑛) is a staircase matrix, whose form
is given by the mapping 𝑗 ↦ 𝑗′ and the dimensions {dim 𝑉𝑗}𝑗∈{0,⋯,𝑘}.
The dimension of 𝑊 is given by the form of this matrix or more pre-
cisely by

dim 𝑊 =
𝑘−1
∑
𝑗=0

(𝑛𝑗+1 − 𝑛𝑗) dim 𝑉𝑗′

Before concluding this section, we introduce a proper nomenclature.

2.6) (Pre-)Cohiggs field: A pre-Cohiggs field in a toric bundle E

is a morphism of vector bundles Φ ∶ E → E ⊗ 𝑇 𝑋. If Φ is in
hom(E,E⊗𝑇 𝑋)𝑢, we say that Φ is a homogeneous pre-Cohiggs field of
degree 𝑢. We drop the prefix ‘pre-’ if the field satisfies the integrabil-
ity condition Φ ∧ Φ = 0, where ∧ is the exterior power in the tangent
space 𝑇 𝑋. The toric vector bundle E, together with a (pre-)Cohiggs
field Φ is a toric (pre-)Cohiggs bundle.
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Notice that the integrability condition is a non-toric feature coming
from the general theory of Higgs bundles [Sim92]. Therefore the fol-
lowing is not surprising.

2.7) Observation: A pre-Cohiggs bundle Φ can be separated in its
homogeneous parts Φ = ∑𝑢∈𝑀 Φ𝑢. But the same does not apply
for proper Cohiggs fields: the homogenous parts of a Cohiggs field
may not satisfy the integrability condition, and likewise, a sum of
homogenous Cohiggs fields need not be a Cohiggs field, merely a pre-
Cohiggs field.

Morphisms of Vector Spaces with Filtra-
tions

This section addresses the moduli problem of pre-Cohiggs bundles
from the point of view of vector spaces with filtrations. We must there-
fore work with framed bundles.

2.8) Framed Pre-Cohiggs Bundles: A toric pre-Cohiggs bundle is
said to be framed if the underlying toric bundle is framed. Likewise,
a family of framed pre-Cohiggs bundles over a scheme 𝑆 is a family
E𝑆 of framed toric bundles together with a pre-Cohiggs field E𝑆 →
E𝑆 ⊗ 𝜋∗

𝑋𝑇 𝑋, where 𝜋𝑋 ∶ 𝑋 × 𝑆 → 𝑋 is the projection. Such a family
is homogeneous of degree 𝑢 if the pre-Cohiggs field induced on E𝑠 is
of degree 𝑢 for every geometric point 𝑠 ∈ 𝑆.
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The conditions established in 2.3a can be written as a kernel, allowing
us to construct a fine moduli space thereof. The techniques of the proof
will be useful later.

2.9) Theorem: Fix a collection Ψ of multisets. There exists a fine
moduli space (N𝑓𝑟

Ψ )𝑢 for the moduli problem of framed homogeneous
pre-Cohiggs bundles† of degree 𝑢 ∈ M and rank 𝑟. It comes with a see 2.8

natural projection (N𝑓𝑟
Ψ )𝑢 → M𝑓𝑟

Ψ , such that over an open set, this has
the structure of a vector bundle.

2.10) Proof of 2.9: Consider the vector bundle

EM ∶= M𝑓𝑟
Ψ × C𝑟

over M𝑓𝑟
Ψ . The fine moduli space M𝑓𝑟

Ψ of framed toric bundles is con-
structed as a subscheme of a product of partial flag varieties;

M𝑓𝑟
Ψ ⊂ ∏

𝜌∈Σ(1)
⎡⎢
⎣

∏
𝑗∈𝐽(𝜌)

Gr(𝑗,C𝑟)⎤⎥
⎦

.

Remember that a multiset 𝕦(𝜌) ∈ Ψ contains the indexes of a fil-
tration, where a jump in dimension of the filtration occures†. The see 1.32

multiplicity of an elements is the size of that jump. From this in-
formation we can construct 𝐽(𝜌) — that is the dimensions contained
on a filtration — and

𝑖 = Δ𝜌(𝑗)

which denotes the last index before the dimention jumps below 𝑗†. A see 1.34

point in M𝑓𝑟
Ψ can be represented as a set of subvector spaces, to be

precise we write it as (E𝜌(𝑖))𝜌,𝑖 where 𝜌 varies over all rays in Σ(1)
and 𝑖 = Δ𝜌(𝑗) for 𝑗 varying over 𝐽(𝜌)†. Therefore there exists a tau- see 2.4
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tological bundle 𝐹𝑙M over M𝑓𝑟
Ψ . Its fibers are

𝐹𝑙M|(E𝜌(𝑖))𝜌,𝑖
= ⨁

𝜌,𝑖
E𝜌(𝑖).

Now for every ray ̃𝜌 and index ̃𝑗 there is a canonical morphism 𝐹𝑙M →
EM, mapping

⨁
𝜌,𝑖

E𝜌(𝑖) ↦ E ̃𝜌(Δ ̃𝜌( ̃𝑗)) ⊂ E.

We denote by (𝐹 𝑙( ̃𝜌) ̃𝑗)M the image of this morphism, this is a vector
bundle over M𝑓𝑟

Ψ with fiber

(𝐹 𝑙( ̃𝜌) ̃𝑗)M|(E𝜌(𝑖))𝜌,𝑖
= E ̃𝜌(Δ ̃𝜌( ̃𝑗)).

That is the vector space of the filtration associated to the ray ̃𝜌 and
with dimension ̃𝑗.

We want to express the condition in 2.4 using these bundles: for that
fix a ray ̃𝜌, an element 𝑠 ∈ M and for a fixed ̃𝑗 let

̃𝑗′ = { ∇ ̃𝜌(⟨𝑤 ̃𝑗 + 𝑢, 𝑣 ̃𝜌⟩) if 𝑠 ∈ ̃𝜌⊥

∇ ̃𝜌(⟨𝑤 ̃𝑗 + 𝑢, 𝑣 ̃𝜌⟩ − 1) if 𝑠 ∉ ̃𝜌⊥ } .

Since M is the dual of N there is a map ⟨𝑠, _⟩ ∶ NC → C, from which
we get a morphism:

id ⊗ id ⊗ ⟨𝑠, _⟩ ∶ EM ⊗ E∗
M ⊗ NC → EM ⊗ E∗

M

where the tensor ⊗NC is shorthand for ⊗(M𝑓𝑟
Ψ × NC). On the other

hand there is an inclusion 𝜁 ∶ (𝐹 𝑙( ̃𝜌) ̃𝑗)M → EM, from which we get a
dual morphism

id ⊗ 𝜁∗ ∶ EM ⊗ E∗
M → EM ⊗ (𝐹𝑙( ̃𝜌) ̃𝑗)∗

M.
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Since 𝐹𝑙( ̃𝜌) ̃𝑗′ is a subvector bundle, there is also a quotient 𝜂 ∶ EM →
EM/(𝐹 𝑙( ̃𝜌) ̃𝑗′)M, from which we build

𝜂 ⊗ id ∶ EM ⊗ (𝐹𝑙( ̃𝜌) ̃𝑗)∗
M → (EM/(𝐹 𝑙( ̃𝜌) ̃𝑗′)M) ⊗ (𝐹 𝑙( ̃𝜌) ̃𝑗)∗

M.

The morphism 𝜂 ⊗ 𝜁∗ ⊗ 𝑠 is the composition of these morphisms

EM⊗E∗
M⊗NC → EM⊗E∗

M → EM⊗(𝐹𝑙( ̃𝜌) ̃𝑗)∗
M → (EM/(𝐹 𝑙( ̃𝜌) ̃𝑗′)M)⊗(𝐹 𝑙( ̃𝜌) ̃𝑗)∗

M.

Over a point (E𝜌(𝑖))𝜌,𝑖 ∈ M𝑓𝑟
Ψ , this induces the following linear maps

between the fibers

C𝑟 ⊗ C𝑟∗ ⊗ NC → C𝑟 ⊗ C𝑟∗ → C𝑟 ⊗ E ̃𝜌( ̃𝑖)∗ → (C𝑟/E ̃𝜌( ̃𝑖′)) ⊗ E ̃𝜌( ̃𝑖)∗

where ̃𝑖 = Δ ̃𝜌( ̃𝑗) and ̃𝑖′ = Δ ̃𝜌( ̃𝑗′). An arbitrary linear map 𝜙𝑠 ∶ EM →
EM ⊗ NC is in the kernel of 𝜂 ⊗ 𝜁∗ ⊗ 𝑠 if and only if it satisfies the
conditions

𝜙𝑠(𝐹 𝑙( ̃𝜌) ̃𝑗) ⊂ 𝐹𝑙( ̃𝜌) ̃𝑗′

coming from 2.4, which for the fibers means

𝜙𝑠(E ̃𝜌( ̃𝑖)) ⊂ E ̃𝜌( ̃𝑖′).

This is not difficult to see, ⟨𝑠, _⟩ is just the same as the mapping 𝜙 ↦
𝜙𝑠, applying the dual 𝜁∗ restricts the domain to 𝐹𝑙( ̃𝜌) ̃𝑗 and 𝜂 is the
quotient of 𝐹𝑙( ̃𝜌) ̃𝑗′. So if the linear map is in the kernel, it means
that 𝐹𝑙( ̃𝜌) ̃𝑗 maps into 𝐹𝑙( ̃𝜌) ̃𝑗′.

Now consider this for a flag, that is the intersection of the kernels
over all 𝑗’s. The flag 𝐹𝑙(𝜌) may itself vary wildly, but it remains a
flag, so on a suitable basis matrixes representing the kernel of this
morphism are just stair-case matrixes — see 2.5. That is to say, the
rank of this map is constant. Therefore the kernel is a subvector
bundle of EM ⊗ E∗

M ⊗ NC. Now let 𝑆𝜌 be a basis of 𝑀C such that it
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contains a basis of 𝜌⊥ and let (N𝑓𝑟
Ψ )𝑢 be the finite intersection of these

kernels for every ray 𝜌 ∈ Σ(1), and every 𝑠 ∈ 𝑆𝜌 as explained in 2.4:

(N𝑓𝑟
Ψ )𝑢 ∶= ⋂

𝜌∈Σ(1)
𝑠∈𝑆𝜌

𝑗∈𝐽(𝜌)

ker 𝜂𝜌,𝑠,𝑗 ⊗ 𝜁∗
𝜌,𝑠,𝑗 ⊗ 𝑠 ⊂ EM ⊗ E∗

M ⊗ NC.

This is our candidate for a fine moduli space, since it contains the
subset of morphisms 𝜙 ∶ EM → EM ⊗ NC which respect all conditions
of 2.4 and therefore define a homogeneous pre-Cohiggs field.

Now let us see what this means for a family (E𝑆, Φ ∶ E𝑆 → E𝑆 ⊗
𝜋∗

𝑋𝑇 ∗𝑋). Since M𝑓𝑟
Ψ is a fine moduli space, every family of pre-

Cohiggs bundles induces a scheme-morphism 𝑓 ∶ 𝑆 → M𝑓𝑟
Ψ and just

like in 2.1 we can restrict the family of pre-Cohiggs fields to {𝟙} × 𝑆,
where 𝟙 is the identity of the torus T and

E𝑆 = 𝑆 × E.

This results in a section 𝜙 of E𝑆⊗E∗
𝑆⊗NC. Since E𝑆 ≅ 𝑓∗EM, this means

𝜙 is a section of 𝑓∗(EM ⊗ E∗
M ⊗ NC). So we can lift 𝑓 to a morphism

̂𝑓 ∶ 𝑆 → (N𝑓𝑟
Ψ )𝑢 by pushing 𝜙 forward:

̂𝑓 ∶ 𝑆 𝑓∗(EM ⊗ E∗
M ⊗ NC) (N𝑓𝑟

Ψ )𝑢 ⊂ EM ⊗ E∗
M ⊗ NC

𝜙

where the second arrow is the natural morphism arising from the
pullback- It must fall into (N𝑓𝑟

Ψ )𝑢 because Φ is a homogeneous morph-
ism between toric bundle. This constructs a mapping

(E𝑆, Φ) ↦ (𝑓, 𝜙) ↦ ̂𝑓.
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On the other hand, the fibers of (N𝑓𝑟
Ψ )𝑢 overM𝑓𝑟

Ψ are a subspace of E⊗
E∗ ⊗NC, so any morphism ̂𝑓 from 𝑆 to (N𝑓𝑟

Ψ )𝑢 induces also a morphism
E𝑆 → E𝑆 ⊗ NC. By translating this morphism via the action of T,
we can extend it to an eigenmorphism of eigenvalue 𝜒𝑢. Since the
conditions of 2.3a are satisfied this induces a morphism Φ ∶ E𝑆 →
E𝑆 ⊗ NC of degree 𝑢, which turns the family of toric bundles E𝑆 into a
family of pre-Cohiggs bundles of degree 𝑢. So there is also a mapping:

̂𝑓 ↦ (𝑓, 𝜙) ↦ (E𝑆, Φ).

These processes define functors between the category of 𝑆-points of
(N𝑓𝑟

Ψ )𝑢 and the category of 𝑆-families of framed homogeneous toric
pre-Cohiggs bundles. Up to a natural isomorphism they are inverse
to one another, as we shall show:

Let M be the moduli functor of framed toric bundles of total Chern
class 𝑐(Ψ) and 𝜇 ∶ M ⇒ ℎM𝑓𝑟

Ψ the isomorphism of functors given
by 1.46. Let N be the moduli functor of homogeneous framed pre-
Cohiggs bundles of total Chern class 𝑐(Ψ). We have to show the above
process defines an isomorphism 𝜈 ∶ N ⇒ ℎ(N𝑓𝑟

Ψ )𝑢. This means there
is a bijection between the set of morphisms 𝑆 → (N𝑓𝑟

Ψ )𝑢 and equi-
valence classes of 𝑆-families of framed pre-Cohiggs bundles. This
bijection agrees with pullbacks — in simple words 𝑔∗ ∘ 𝜈𝑆 = 𝜈𝑇 ∘ 𝑔∗,
where 𝑔 is a morphism 𝑇 → 𝑆.

Therefore let us begin with a family of framed pre-Cohiggs bundle
(E𝑆, Φ). Extract from it 𝑓 = 𝜇𝑆(E𝑆) and 𝜙 by restricting Φ to E𝑆. The
lift of 𝑓 via 𝜙 is a morphism ̂𝑓 ∶ 𝑆 → (N𝑓𝑟

Ψ )𝑢 as wanted. On the other
hand, any such ̂𝑓 is by inclusion also a morphism 𝑆 → EM ⊗ E∗

M ⊗ NC.
Push this down to 𝑓 ∶ 𝑆 → M𝑓𝑟

Ψ . Next we can pull ̂𝑓 back via 𝑓 to form
a section of E𝑆 ⊗ E∗

𝑆 ⊗ NC — this is done by applying the universal
property of the pullback, in other words 𝜙 = (id𝑆, ̂𝑓). The diagram
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below illustrates the situation.

𝑆

E𝑆 ⊗ E∗
𝑆 ⊗ NC EM ⊗ E∗

M ⊗ NC

𝑆 M𝑓𝑟
Ψ

̂𝑓

id

𝜙

𝑓

Now 𝑓 defines via 𝜇 a framed toric bundle E𝑆, and 𝜙 is extended to
a pre-Cohiggs field Φ. Since 𝜇 is an isomorphism, the toric bundle
we end up with is isomorphic to the one we started. Also the field
Φ is uniquely determined by 𝜙 — its evaluation at the identity —
and the pullback and pushforward operations are inverse to each an-
other up to isomorphism. Notice that on this processes the frame
is preserved by pushing it forward and backwards together with the
bundle. Any bundle isomorphism that may arise from the pullbacks
and pushforwards is not a change of frame, but an isomorphism of
framed bundles. This means we end up within the same equivalence
class of homogeneous framed pre-Cohiggs bundles as wanted.

To show the bijection is compatible with pullbacks just introduce a
morphism 𝑔 ∶ 𝑇 → 𝑆 in the diagram above. That the bundles agree
is clear, since 𝜇 is an isomorphism of functors. That the fields must
agree means that the pullback by 𝑔 ∘ 𝑓 is equivalent to consecutive
pullbacks — which is a known property of pullbacks. In other words
𝑔∗𝜙 = (𝑔∗id𝑆, 𝑔∗ ̂𝑓) = (id𝑇 , ̂𝑓 ∘ 𝑔). Therefore we proved that (N𝑓𝑟

Ψ )𝑢 is a
fine moduli space, as wanted.
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(N𝑓𝑟
Ψ )𝑢 was created as the intersection of vector bundles over M𝑓𝑟

Ψ .
The dimension of vector bundle intersections is an upper semicon-
tinuous function†, so over an open set the dimension is minimal and see b.12

(N𝑓𝑟
Ψ )𝑢 is a vector bundle. Quod erat demonstrandum

In the general case, the space of (non-homogeneous) pre-Cohiggs fields
may be infinite-dimensional. That means the problem is not bounded,
and there is no moduli space. To get a bounded problem, an extra
assumption is needed, for instance completeness.

2.11) Proposition: We call a 𝑢 ∈ M admissible if there exists a non-
zero pre-Cohiggs field of degree 𝑢. Over a complete toric variety there
is only a limited number of admissible degrees. To be more concrete,
let 𝑁𝜌 be the maximum length of the filtration E𝜌 for a ray 𝜌 ∈ Σ(1),
that is to say, there exists an index 𝑙(𝜌) such that E𝜌(𝑙(𝜌)) = E, but
E𝜌(𝑙(𝜌) + 𝑁𝜌) = 0. Then

{𝑢 ∈ M ∶ 𝑢 is admissible} ⊂ {𝑟 ∈ M ∶ ⟨𝑟, 𝑣𝜌⟩ ≤ 𝑁 for all 𝜌 ∈ Σ(1)}

For the proof: [AW21, Proposition 19]

2.12) Corollary: Let 𝑋 be a complete toric variety, then there is
a fine moduli space of framed pre-Cohiggs bundles of rank 𝑟 and
equivariant total Chern class 𝑐(Ψ).

For the proof: If 𝑋 is complete, we can limit ourselves to a finite
number of 𝑢’s in view of 2.11†. Similarly to pre-Cohiggs fields, a family see c.1

of pre-Cohiggs fields is decomposable into homogeneous parts. So for
a fine moduli space, we can simply set

N𝑓𝑟
Ψ = ⨁

𝑢
(N𝑓𝑟

Ψ )𝑢
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where ⨁ is the direct sum of vector bundles.

We already know every component (N𝑓𝑟
Ψ )𝑢 is a fine moduli space, we

need just to generalize it to the direct sum. So start with a framed
pre-Cohiggs family E𝑆 and Φ. Decompose Φ into its homogeneous
parts — consider only 𝑢’s that admit a non-trivial pre-Cohiggs field.
Since 𝑋 is complete and 𝑐(E𝑆) = 𝑐(Ψ) this is a finite collection of ho-
mogeneous framed pre-Cohiggs bundles (E, Φ𝑢). Via 2.9 every one
of those defines a morphism 𝑆 → (N𝑓𝑟

Ψ )𝑢. We sum those morphism
together and get a morphism 𝑆 → N𝑓𝑟

Ψ , which is possible since it is
a finite sum. These steps are all invertable operations, so in order
to go back, starting with a morphism 𝑆 → N𝑓𝑟

Ψ , use the projections
to the coordinates to create morphisms 𝑆 → (N𝑓𝑟

Ψ )𝑢. Now 2.9 gives
us 𝑆-families of homogeneous framed pre-Cohiggs bundles. Sum the
homogeneous pre-Cohiggs fields into a single field — which is pos-
sible since this is a finite sum. We end up with a family of framed
pre-Cohiggs bundles (E𝑆, Φ). This is isomorphic to the original fam-
ily since taking sums and projection are inverse operations by the
universal property of fiber products. So we have a bijection between
the set of morphisms 𝑆 → (N𝑓𝑟

Ψ ) and equivalence classes of 𝑆-families
of framed pre-Cohiggs bundles. For every homogeneous component
we have already shown this bijection is compatible with pullbacks†see 2.9

and it is a general property that pullbacks commute with finite sums,
therefore the whole bijection is compatible with pullbacks. We con-
clude that N𝑓𝑟

Ψ is a fine moduli space.

To show that the completeness condition above is necessary, we give a
counterexample by considering affine toric varieties.

2.13) Example: Let 𝑋 be an affine toric variety. For a given 𝑢 ∈ M let
E be the toric bundle L[𝑢]; in 1.16 we already calculated the filtration
thereof. Since the maximal cone defining 𝑋 is convex, there is a 𝑢′ ∈
M, such that ⟨𝑢′, 𝑣𝜌⟩ << 0 for every ray 𝜌 in the fan Σ. Therefore the
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conditions in 2.3a are always satisfied by any map 𝜙 ∶ E → E ⊗ NC.
Hence there are non-trivial pre-Cohiggs field of degree 𝑢′. Moreover,
there are infinitely many such 𝑢′, for instance, any positive multiple
of one thereof. That means the space of pre-Cohiggs fields on L[𝑢] is
infinite-dimensional.

By reading the proof of [AW21, Proposition 19] one sees that it de-
pends only on the non-convexity of Σ to bound the number of 𝑢’s with
non-trivial pre-Cohiggs fields. On the other hand, the example above
shows the non-convexity of Σ is not only sufficient, but also a neces-
sary condition for that. So we may expand 2.12 to the following

2.13A) Assertion: Let 𝑋 be a toric variety, then there is a fine mo-
duli space of framed pre-Cohiggs bundles if and only if the support
of the fan Σ is not convex.

Quod erat faciendum

As the title of this section suggests, the moduli spaces we construc-
ted are more precisely described as moduli spaces of ‘pre-Cohiggs-
morphisms of vector spaces with filtrations’. It is only according to
Klaychko’s classification that we may call them moduli spaces of pre-
Cohiggs bundles. However, this problem can also be addressed in a
more direct way, as we do in the next section.
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Moduli Space of Toric Cohiggs Bundles

Before we can state and prove our theorems, let us expand the nomen-
clature.

2.14) Cohiggs Bundle: In 2.8 we defined framed pre-Cohiggs
bundles and their families. We expand this definition and say such
a bundle or such a family is instead unframed if we drop the fram-
ing from the underlying toric bundle/family. Instead of writing ‘un-
framed’, we may just drop the qualifier ‘framed’. Likewise, we drop
the qualifier ‘pre-’ if the pre-Cohiggs field satisfies the integrability
condition Φ ∧ Φ = 0.

We first present an alternative proof for the moduli space of framed
pre-Cohiggs bundles. This time, however, we make a direct proof
without using homogeneity.

2.15) Theorem: Let 𝑋 be complete. Then there is a fine moduli space
for the moduli problem of framed toric pre-Cohiggs bundles. That is
— fixing a collection Ψ of multisets — the functor given by

𝑆 ↦ { isomorphism classes of S families of framed toric
pre-Cohiggs bundles on X with equivariant total Chern class 𝑐(Ψ)}

is representable by a scheme N𝑓𝑟
Ψ . Furthermore there is a canon-

ical projection N𝑓𝑟
Ψ → M𝑓𝑟

Ψ , given by taking the underlying framed
toric vector bundle, such that over an open set this projection has the
structure of a vector bundle.
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The proof of theorem is also key to understanding the subsequent
proofs. It depends strongly on the following technical lemma.

2.16) Lemma: Let 𝑌 be a reduced scheme, 𝑋 a variety and E a cohe-
rent sheaf over 𝑌 × 𝑋, flat over 𝑌 . Let 𝜔E be the functor

𝜔E ∶ Sch𝑌 → Set

(𝑆
𝑓
−→ 𝑌 ) ↦ Γ(𝑆, (𝜋𝑆)∗(𝑓 × id𝑋)∗

E)

from the category of 𝑌 -schemes to the category of sets. There exists
a 𝑌 -scheme 𝐸, representing this functor, i.e. 𝜔E is isomorphic to the
functor of points ℎ𝐸†. Furthermore the scheme 𝐸 is what one calls a see a.4

linear 𝑌 -scheme [Nit05, p. 16], so that a functor isomorphism exists
also in the category of groups – in addition to the category of sets. As
a consequence, if (𝜋𝑌 )∗E is locally free of rank 𝑛, the scheme 𝐸 is a
vector bundle of rank 𝑛 over 𝑌 .

For the proof: [Nit91, Lemma 3.5]

Before adressing the theorem, let us give an example of the lemma, to
help the reader to understand how it can be used.

2.17) Example: It is a well known fact that vector bundles over an
algebraic variety 𝑌 correspond to locally free sheaves. Let E be a
locally free sheaf over 𝑌 , applying the lemma 2.16 with 𝑋 = {∗} gives
us exactly the vector bundle 𝐸 corresponding to this sheaf. To see
that notice that morphisms ̂𝑓 ∶ 𝑆 → 𝐸 correspond to sections of 𝑓∗𝐸,
where 𝑓 ∶ 𝑆 → 𝑌 is 𝜋𝑌 ∘ ̂𝑓 . Also notice that

Γ(𝑆, (𝜋𝑆)∗(𝑓 × id𝑋)∗
E) = Γ(𝑆, 𝑓∗E).
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Now replace 𝑆 by a subset 𝑈 ⊂ 𝑌 . In this case 𝑓∗E is just the sheaf
E restricted to 𝑈 . So we have that sections 𝑈 → 𝐸 correspond to
elements of Γ(𝑈,E). In other words sections of 𝐸 correspond to sec-
tions of E, so 𝐸 is the vector space corresponding to the sheaf E.

Quod erat faciendum

2.18) Lemma: Let E be a coherent sheaf over a reduced local Noethe-
rian scheme 𝑋. For every point 𝑥 ∈ 𝑋 we can calculate the dimension
of the fiber E𝑥/m𝑥E𝑥, where E𝑥 is the stalk over 𝑥 and m𝑥 the maximal
ideal of 𝑋 in 𝑥. If this dimension is constant, than E is locally free.

For the proof: We just need a local proof. So let E be a coherent
sheaf over an affine scheme given by a Noetherian ring. This sheaf
is therefore given by a finitely generated module [Uen97, prop 4.27].
As stated by [EE95, Ex 20.13], a finitely generated module over a re-
duced ring and with constant rank is a projective module. We how-
ever work over C, so the ring is a polynomial ring and by the famous
theorem of Quillen–Suslin this must be a free module.

2.19) Proof of 2.15: The moduli space of framed toric bundlesM𝑓𝑟
Ψ is

a fine moduli space. That means there is a universal family E, which
is essentially a vector bundle over 𝑋 ×M𝑓𝑟

Ψ . From that, consider the
sheaf of homomorphisms

Cohig ∶= Hom(E,E ⊗ 𝜋∗
𝑋𝑇 𝑋)

where 𝜋𝑋 ∶ 𝑋 × M𝑓𝑟
Ψ → 𝑋 is the standard projection. E and 𝑇 𝑋 are

coherent sheaves, and therefore, the sheaf of homomorphisms is also
coherent. Furthermore, E is flat by definition since it is the sheaf
of a family of vector bundles and the pullback 𝜋∗

𝑋 always creates a
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flat sheaf since the projection 𝜋𝑋 is a flat morphism. Therefore Cohig

is also flat over M𝑓𝑟
Ψ because the tensor product and taking duals

preserve flatness. Of course as algebraic varieties 𝑋 and M𝑓𝑟
Ψ are

reduced. That means all conditions of 2.16 are satisfied and there
is a scheme N𝑓𝑟

Ψ representing 𝜔Cohig, i.e. there is an isomorphism of
functors between ℎN𝑓𝑟

Ψ and the functor

𝜔Cohig ∶ (𝑆
𝑓
−→ M𝑓𝑟

Ψ ) ↦ Γ(𝑆, (𝜋𝑆)∗(𝑓 × id𝑋)∗
Cohig).

Now we analyse what this means. Write

E𝑓 ∶= (𝑓 × id𝑋)∗
E

and remember that Γ(𝑆, (𝜋𝑆)∗__) = Γ(𝑆 × 𝑋, __). With that rewrite
the right side of the functor:

Γ(𝑆, (𝜋𝑆)∗(𝑓 × id𝑋)∗
Cohig) = Γ(𝑆 × 𝑋, (𝑓 × id𝑋)∗

Cohig) =
= Γ(𝑆 × 𝑋,E𝑓 ⊗ E𝑓 ⊗ 𝜋∗

𝑋𝑇 𝑋) = hom(E𝑓 ,E𝑓 ⊗ 𝜋∗
𝑋𝑇 𝑋)

where 𝜋∗
𝑋 is the pullback to 𝑆 × 𝑋. This means the set on the right is

the set of pre-Cohiggs fields on E𝑓 . However since E is an universal
family, any 𝑆-family of framed toric bundle is of the form E𝑓 for some
𝑓 .

In order to conclude that the functor 𝜔Cohig is also the moduli functor
of framed pre-Cohiggs bundles there is one small technical detail we
need to adress: the functor 𝜔Cohig takes place on the category of M𝑓𝑟

Ψ -
schemes, not on the category of schemes, so we have to rewrite it to:

𝑆 ↦ {𝑆
𝑓
−→ M𝑓𝑟

Ψ } ↦𝜔Cohig ⋃
𝑓∈{𝑆→M𝑓𝑟

Ψ }
Γ(𝑆, (𝜋𝑆)∗(𝑓 × id𝑋)∗

Cohig)
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where {𝑆
𝑓
−→ M𝑓𝑟

Ψ } is the set of all morphism 𝑆
𝑓
−→ M𝑓𝑟

Ψ . Using the
same natural associations as before we may write

⋃
𝑓∈{𝑆→M𝑓𝑟

Ψ }
Γ(𝑆, (𝜋𝑆)∗(𝑓 × id𝑋)∗

Cohig) = ⋃
𝑓∈{𝑆→M𝑓𝑟

Ψ }
hom(E𝑓 ,E𝑓⊗𝜋∗

𝑋𝑇 𝑋).

That means

𝜔Cohig(𝑆) = {pre-Cohiggs fields on E𝑓 for some 𝑓 ∶ 𝑆 →→ M𝑓𝑟
Ψ } .

Now families of toric pre-Cohiggs bundles are just families of toric
bundles with a pre-Cohiggs field, so rewriten in the category of
schemes, the functor 𝜔Cohig is isomorphic to

𝑆 ↦ {isomorphism classes of S families of toric pre-Cohiggs
bundles on X with equivariant total Chern class 𝑐(Ψ)} .

Since 𝑋 is complete and properness is stable under base change
the projection 𝜋M𝑓𝑟

Ψ
is a proper morphism. So the pushforward

(𝜋M𝑓𝑟
Ψ

)∗Cohig is a coherent sheaf overM𝑓𝑟
Ψ . SinceM𝑓𝑟

Ψ is noetherian we
conclude† the rank of (𝜋M𝑓𝑟

Ψ
)∗Cohig is upper semi-continuous. It is also[Har10, Theorem III

12.7.2] minimal and constant in an open set of M𝑓𝑟
Ψ . Therefore (𝜋M𝑓𝑟

Ψ
)∗Cohig

is locally free† and the linear scheme N𝑓𝑟
Ψ is a vector bundle over thissee 2.18

open set.

To prove this consider a inclusion 𝑈
𝑓
↪−→ M𝑓𝑟

Ψ . Then Γ(𝑈, 𝑓∗__) =
Γ(𝑈, __) and 𝑓 × id𝑋 is also the inclusion 𝑈 × 𝑋 ↪ M𝑓𝑟

Ψ × 𝑋, so we
may calculate

𝜔Cohig(𝑓) = Γ(𝑈, (𝜋𝑈)∗(𝑓 × id𝑋)∗
Cohig) =

= Γ(𝑈 × 𝑋, (𝑓 × id𝑋)∗
Cohig) = Γ(𝑈 × 𝑋,Cohig) =

= Γ(𝑈, (𝜋M𝑓𝑟
Ψ

)∗Cohig)
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On the other hand, for some open set 𝑈
𝑓
↪−→ M𝑓𝑟

Ψ the set ℎN𝑓𝑟
Ψ (𝑓) is by

definition the set of morphisms 𝑈 → N𝑓𝑟
Ψ over 𝑓 , which is the same

as the set of sections over 𝑈 . Since 𝜔Cohig is isomorphic to ℎN𝑓𝑟
Ψ we

conclude

Γ(𝑈,N𝑓𝑟
Ψ ) = ℎN𝑓𝑟

Ψ (𝑓) = 𝜔Cohig(𝑓) = Γ(𝑈, (𝜋M𝑓𝑟
Ψ

)∗Cohig)

so (𝜋M𝑓𝑟
Ψ

)∗Cohig is the sheaf of sections of N𝑓𝑟
Ψ . This completes the

proof. Quod erat demonstrandum

Similarly to the case of unframed toric bundles, a coarse moduli space
exists if and only if it is a quotient of the framed case:

2.20) Corollary: Let 𝑋 be complete. A schemeNΨ is a coarse moduli
space for the moduli functor of unframed toric pre-Cohiggs bundles
— defined in the obvious way, by removing the frame from 2.15 — if
and only if it is a good quotient of N𝑓𝑟

Ψ by the action of GL𝑟(C) and its
set of points is bijective to the set of GL𝑟(C)-Orbits of N𝑓𝑟

Ψ .

For the proof: This follows the same argument as 1.47. Just as previ-
ously, any two frames can be mapped into one another by the action
of GL𝑟(C). Therefore the orbits of this action on N𝑓𝑟

Ψ are in a 1-to-1
correspondence with the equivalence classes of unframed toric pre-
Cohiggs bundles. The rest of the proof is the same, as it follows from
general arguments involving quotients and fine moduli spaces, which
are independent of the underlying functor.
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We should now also verify that the decomposition found in 2.12 still
holds.

2.21) Proposition: Let 𝑋 be complete. For every 𝑢 ∈ M, there exists
a fine moduli space (N𝑓𝑟

Ψ )𝑢 of framed toric pre-Cohiggs bundles of
degree 𝑢, which are linear schemes over M𝑓𝑟

Ψ and such that there is
a decomposition

N𝑓𝑟
Ψ = ⨁

𝑢∈M
(N𝑓𝑟

Ψ )𝑢.

Here, the direct sum here is defined by the fiber product over M𝑓𝑟
Ψ ,

similar to the direct sum of vector bundles.

Likewise, if there exists a moduli space of unframed toric pre-Cohiggs
bundles, there is also a decomposition

NΨ = ⨁
𝑢∈M

(NΨ)𝑢

where (NΨ)𝑢 is a quotient of (N𝑓𝑟
Ψ )𝑢 by the GL𝑟(C) action.

2.22) Proof of 2.21: There is a natural action of T in the sheaf
Hom(E,E ⊗ 𝜋∗

𝑋𝑇 𝑋), where E is the universal family of framed toric
vector bundles. Therefore this is a graded sheaf and there is a de-
composition [Dem70, p. i.4.7.3]

Hom(E,E ⊗ 𝜋∗
𝑋𝑇 𝑋) = ⨁

𝑢∈M
Hom(E,E ⊗ 𝜋∗

𝑋𝑇 𝑋)𝑢.

Set (N𝑓𝑟
Ψ )𝑢 to be the linear scheme representing every component.

In a way similar to 2.15 those are moduli space of the homogeneous
problem. Since 𝑋 is complete only finitely many 𝑢’s give rise to non-
trivial components, so we can replace ⨁𝑢∈M by a finite sum. This
sum moves smoothly into a sum of functors 𝜔Cohig = ⊕𝜔Cohig𝑢

, where
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𝜔Cohig is the same functor as in 2.19. Here ⊕ means the sum in the
category of sets, that is, the cartesian product. That is to say N𝑓𝑟

Ψ is
the linear scheme representing the functor

𝜔Cohig ∶ (𝑆
𝑓
−→ M𝑓𝑟

Ψ ) ↦ ⨉
𝑢∈M

Γ(𝑆, (𝜋𝑆)∗(𝑓 × id𝑋)∗
Cohig𝑢).

This is the same decomposition one sees for the functor of points of a
sum of M𝑓𝑟

Ψ -schemes

ℎN𝑓𝑟
Ψ ∶ (𝑆

𝑓
−→ M𝑓𝑟

Ψ ) ↦ ⨉
𝑢∈M

{𝑆 → (N𝑓𝑟
Ψ )𝑢}

which is just a long way of saying there is also a decomposition

N𝑓𝑟
Ψ = ⨁

𝑢∈M
(N𝑓𝑟

Ψ )𝑢.

Since the degree of a pre-Cohiggs field is a discrete invariant and
depends only on the field, the factors are also fine moduli spaces —
just rewrite 2.19 for homogeneous pre-cohiggs bundles. The degree
is also invariant under the GL𝑟(C) action, and therefore if there is
a quotient as before†, it also decomposes into a direct sum of coarse see 2.20

moduli spaces
NΨ = ⨁

𝑢∈M
(NΨ)𝑢.

Quod erat demonstrandum

The next moduli space we are interested in are proper Cohiggs
bundles, that is when the field satisfy the integrability condition.

2.23) Proposition: There is a subscheme H𝑓𝑟
Ψ ⊂ N𝑓𝑟

Ψ , which is a fine
moduli space of framed toric Cohiggs bundles. The GL𝑟(C)-quotient
thereof — if it exists — is a coarse moduli space of unframed toric
Cohiggs bundles.
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For the proof: Let E be the universal family of toric bundles over
M𝑓𝑟

Ψ . There is a morphism of coherent sheafs

_ ∧ _ ∶ (Hom(E,E ⊗ 𝜋∗
𝑋𝑇 𝑋))⊗2 → Hom(E,E ⊗ 𝜋∗

𝑋𝑇 𝑋∧2)
Φ ⊗ Φ′ → Φ ∧ Φ′

This defines a scheme morphism between N𝑓𝑟
Ψ ⊗M𝑓𝑟

Ψ
N𝑓𝑟

Ψ and the
scheme representing the coherent sheaf Hom(E,E ⊗ 𝜋∗

𝑋𝑇 𝑋∧2). The
moduli space of framed toric Cohiggs bundles is the intersection of
the diagonal Φ = Φ′ and the pre-image of the zero section of the
second scheme. The subscheme we get from this corresponds to the
points with Φ ∧ Φ = 0. It is straightforward to show this is also a
fine moduli space: fix Ψ and let N be the moduli functor of framed
pre-Cohiggs bundles:

N ∶ 𝑆 ↦ { isomorphism classes of S families of framed toric
pre-Cohiggs bundles on X with equivariant total Chern class 𝑐(Ψ)}

and consider also the functor of points of N𝑓𝑟
Ψ

ℎN𝑓𝑟
Ψ ∶ 𝑆 ↦ {𝑆 → N𝑓𝑟

Ψ }.

These two functors are isomorphic according to 2.15, i.e. there exists
an isomorphism of functors 𝜈. Now let H𝑓𝑟

Ψ be the subscheme of N𝑓𝑟
Ψ

we described above. By the process explained in the proof of 2.15 any
map 𝑆 → H𝑓𝑟

Ψ corresponds to a family of pre-Cohiggs bundles, which
in this case also satisfies Φ∧Φ = 0. Therefore, it is a family of Cohiggs
bundles. In the other direction any family of Cohiggs bundles corres-
ponds to a morphism 𝑆 → H𝑓𝑟

Ψ ⊂ N𝑓𝑟
Ψ . This means the bijection 𝜈𝑆

restricts to a bijection

{ isomorphism classes of S families of framed toric
Cohiggs bundles on X with equivariant total Chern class 𝑐(Ψ)} ↔ {𝑆 → H𝑓𝑟

Ψ }.
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So the isomorphism of the functors above restricts to an isomorphism
between

𝑆 ↦ { isomorphism classes of S families of framed toric
Cohiggs bundles on X with equivariant total Chern class 𝑐(Ψ)}

and the functor of points

ℎH𝑓𝑟
Ψ ∶ 𝑆 ↦ {𝑆 → H𝑓𝑟

Ψ }.

The condition Φ ∧ Φ is independent of the framing. Therefore the
second part of the proposition follows from the same arguments used
before†. see 2.20
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Discrete Invariants

Where we take a further look at
stable toric bundles and analyse
how pre-Cohiggs fields vary on the
moduli space.

In the previous chapter, we proved the existence of a moduli space of
framed toric (pre-)Cohiggs bundles. Now we are interested in describ-
ing those spaces, specifically how the space of pre-Cohiggs fields varies
in the moduli space. For that Altmann and Witt† have defined some [AW21]

invariants which we desire to analyse further: as we have seen before,
the pre-Cohiggs fields of a given degree form a finite-dimensional vec-
tor space. The dimension of this space is the first discrete invariant,
called multiplicity of thr degree. The second invariant is obtained
by considering which degrees admit non-trivial pre-Cohiggs fields.
This is called the Higgs range†. We already encountered this indir- see 3.2

ectly when we noticed the moduli space of framed pre-Cohiggs bundles
may not exist†. We need some condition on 𝑋, for instance, complete- see 2.13
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ness, so we get a bounded moduli problem†. This corresponds to asee 2.12

bounded Higgs range — otherwise, the moduli space would be infinite-
dimensional. The last invariant comes from considering the extremal
degrees which are ‘present’ in a given pre-Cohiggs field. This is called
the Higgs polytope†, which is necessarily a sub-polytope of the Higgssee 3.1

range.

From our construction of the moduli space we can extract some prop-
erties of those invariants previously unknown to Altmann and Witt.
For instance, the conditions for the existence of a pre-Cohiggs field are
kernel conditions†. This means the multiplicity of a degree varies assee 2.3a

an upper-semi-continuous function†. Moreover, the Higgs range variessee 3.4

in the same way, and therefore it is minimal in a Zariski open set†. Onsee 3.5

the other hand, the presence of a given degree in a pre-Cohiggs field
is an open condition†. So the Higgs polytope is maximal in an opensee 3.6

set†. At the same time, GIT theory provides us with an open subset ofsee 3.7

stable toric bundles, so that a moduli space of unframed toric bundles
exists. The hope would be that those sets coincide.

In their paper Altmann and Witt calculated the Higgs range and cor-
responding multiplicities for the Fano surfaces — to be precise for the
toric bundle defined by the tangent space of the Fano surfaces. While
calculating example 1.52 we noticed the tangent bundle is not neces-
sarily a stable point in the moduli space. We then recalculated the
Higgs range for the corresponding generic points. While doing so we
noticed that the existence of pre-Cohiggs fields is essentially restricted
by the flags†. Whenever flags coincide the restriction weakens — justsee 2.3a

one component of the field became restricted and the other was free.
We also found out that this condition — namely flags not coinciding
— can in some cases be used to identify the generic points in the Chow
quotient3.13. So we may observe that for the Fano surfaces in the work
of Altmann and Witt the Higgs range of stable bundles is constant.
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This is an important finding since this is a precondition for the moduli
space of pre-Cohiggs bundles to be separated. However, it is not true in
general. Finding a counterexample is tricky and somewhat artificial.
We present three of those in increasing order of complexity. The first† see 3.15

shows that the Higgs multiplicity is not constant over stable bundles.
The second† shows that the moduli space of stable Cohiggs bundles is see 3.16

not separated. And finally, the third† shows a case of stable bundles see 3.17

with non-constant Higgs range. For the reader who do not wish to read
through the examples, we explain what is happening in an analogous
circumstance. The conditions in 2.3a describe when a Higgs field is
toric and always look like 𝑓(𝑉 ) ⊂ 𝑊 for some linear spaces 𝑉 and
𝑊 . Consider also 𝑓 ∶ C2 → C2 the condition 𝑓([1 ∶ 0]) ⊂ [1 ∶ 0], 𝑓([0 ∶
1]) ⊂ [0 ∶ 1] and 𝑓([1 ∶ 1]) ⊂ [1 ∶ 2]. Now consider a fourth condition
𝑓([3 ∶ 2]) ⊂ [3 ∶ 𝛼] depending on a parameter 𝛼. Normally there is
no non-trivial solution for these four equations. However for 𝛼 = 4 a
numerical coincidence occurs: [3/3 ∶ 2/𝛼] = [1/1 ∶ 1/2]. As a result,
there are non-zero solutions. All spaces continue to be distinct, but this
does not prevent them from creating linearly dependent conditions.
This is because in the end the conditions involve the product 𝑉 ∗ ⊗ 𝑊 ,
so they are by nature non-linear.

There are two lessons to be taken from this chapter. First, the moduli
space of toric Cohiggs bundles tends to be not separated, and there
does not seem to be a good way of preventing that. So a general theory
must be made in the language of schemes and sheaves — varieties are
not enough. Second, when analyzing the stability of toric pre-Cohiggs
bundles one must not only consider the underlying toric bundles. In
the classical theory the Higgs field is a stabilizing force the toric world
pre-Cohiggs fields are more like a destabilizing force. A third possib-
ility would be to further analyze toric Fano varieties.
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Combinatorial Invariants

First, we define the invariants proposed by Altmann and Witt, which
we want to explore in this section.

3.1) Definition: Let Φ be a pre-Cohiggs field. We define the support
of Φ to be the set of degrees where it has a non-zero component

supp Φ = {𝑢 ∈ M ∶ Φ𝑢 ≠ 0}.

The Higgs polytope is the convex hull of the support

∇Φ = conv supp Φ

3.2) Definition: For a toric bundle E let 𝑉𝑢(E) be the subspace of
hom(E, E ⊗ NC) satisfying 2.3a, that is, the space of C-linear maps
defining a pre-Cohiggs field of degree 𝑢. The dimension of 𝑉𝑢(E) is
the Higgs multiplicity of a point 𝑢 ∈ 𝑀 . Admissible points are the
ones with multiplicity greater than zero and the convex hull of these
points is the Higgs range, denoted by

𝐻(E) ∶= conv {𝑢 ∈ M ∶ 𝑉𝑢(E) ≠ 0}.

The first question that comes to mind is whether these invariants are
constant in a moduli space. We can clearly deny that, as shown below.

3.3) Example: The following example shows that the Higgs range
is not constant in general. Let Σ be the complete fan defined by the
primitive vectors (1, 0), (−1, 0), (1, 1) and (1, −1) in R2 and 𝑋 be the
smooth† toric variety defined by this fan.see b.7
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𝑣𝜌1𝑣𝜌−1

𝑣𝜌2

𝑣𝜌−2

We consider a family of rank 2 bundles with the following filtrations,
where 𝑧 varies over C =∶ A1:

𝑖 = 0 𝑖 = 1 𝑖 = 2
E𝜌1 ∶ ⋯ ⊃ C2 ⊃ 0 ⊃ 0 ⊃ ⋯
E𝜌−1 ∶ ⋯ ⊃ C2 ⊃ ⟨(0, 1)⟩ ⊃ 0 ⊃ ⋯
E𝜌2 ∶ ⋯ ⊃ C2 ⊃ ⟨(1, 0)⟩ ⊃ 0 ⊃ ⋯
E𝜌−2 ∶ ⋯ ⊃ C2 ⊃ ⟨(1, 𝑧)⟩ ⊃ 0 ⊃ ⋯

Let Ψ be the collection of multisets defined by the filtrations above
with 𝑧 = 0. The moduli spaceM𝑓𝑟

Ψ is analogous to example 1.52. That
means M𝑓𝑟

Ψ is given by 3 points in P1. The compatibility condition
requires that the points correspondig to the rays 𝜌−1 and 𝜌2 — i.e
[0 ∶ 1] and [1 ∶ 0] — do not coincide, which is the case. The same
is also valid for 𝜌−1 and 𝜌−2 — i.e [0 ∶ 1] ≠ [1 ∶ 𝑧] — which is also
always the case. For 𝜌1 there is no compatibility condition, since the
filtration E𝜌1 is trivial. And since the rays 𝜌2 and 𝜌−2 do not have a
common cone, there is no compatibility condition between the points
[1 ∶ 0] and [1 ∶ 𝑧].

The (framed) bundle corresponding to the filtrations above is then
identified by 3 points in the projective space: 𝑅2 = [1 ∶ 0], 𝑅−1 = [0 ∶
1] and 𝑅−2 = [1 ∶ 𝑧]. This defines a curve in M𝑓𝑟

Ψ , that is a family
of framed toric vector bundles. Applying 2.4 we may calculate the
Higgs range. [AW21] provides a simplified way to proceed in this cal-
culations, however on such small dimensions brute force verification
of the conditions in 2.3a is still possible by hand. The diagram below
shows the dimension of 𝑉𝑢(E) for all 𝑢 ∈ N, depending on the whether
𝑧 = 0 or 𝑧 ≠ 0 — no number implies dimension 0.
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𝑧 = 0

5
3
1

3
4
3

3
1

1

1

𝑧 ≠ 0

5
3
1

3
4
3

3
1

1

For our case the most relevant degree is 𝑢 = (1, 0). Therefore we
calculate 𝑉𝑢(E) explicitly. First of all, 𝜌−1 is not relevant in this case,
since ⟨𝑢, 𝑣𝜌−1

⟩ < 0 and the filtration has length 1. Now since ⟨𝑢, 𝑣𝜌1
⟩ =

1 and the filtration E𝜌1 is trivial, we conclude that 𝜙(0,1) = 0. On the
other hand, there is no restriction on 𝜙(1,0) because ⟨𝑢, 𝑣𝜌1

⟩ − 1 = 0.
Now take 𝜌2, applying 2.4 gives

𝜙(1,−1)(C2) ⊂ ⟨(1, 0)⟩ and 𝜙(1,−1)(⟨(1, 0)⟩) = 0.

That means 𝜙(1,−1) is nilpotent with kernel ⟨(1, 0)⟩. However 𝜙(1,−1) =
𝜙(1,0) since 𝜙(0,1) = 0. So 𝜙(1,0) is nilpotent with kernel ⟨(1, 0)⟩. The
same calculation with 𝜌−2 gives kernel ⟨(1, 𝑧)⟩. For 𝑧 ≠ 0 both those
condition together implies 𝜙(1,0) = 0 and therefore there is no non-
trivial pre-Cohiggs field with degree (1, 0). For 𝑧 = 0 on the other
hand:

𝑉(1,0)E|𝑧=0 = span {( 0 1
0 0

)}

Quod erat faciendum

84



Third Chapter

If the Higgs range is not constant, then we should try to understand
how it varies. The following observation will provide an initial an-
swer to this question.

3.4) Proposition: Let E be a family of (framed) toric bundles over
a scheme 𝑆 and 𝑢 ∈ M be a degree, then the dimension dim 𝑉𝑢(E|𝑠)
of the vector space of u-homogeneous pre-Cohiggs fields on E|𝑠 is an
upper-semi-continuous function of 𝑠 ∈ 𝑆. In particular, there is a
Zariski open set of 𝑆, such that the dimension is minimal.

For the proof: This is essentially already implicit in 2.10, however,
let us make this more explicit. As a geometric object, E is just a
vector bundle over 𝑆 × 𝑋. Restricting it to 𝑆 × {𝑥0} gives us a vec-
tor bundle E over 𝑆. By the classification theorem†, homogeneous see 2.3a

pre-Cohiggs fields over E are given by morphisms of vector bundles
𝜙 ∶ E → E ⊗ (NC)𝑆, where (NC)𝑆 is just the trivial bundle NC × 𝑆. This
morphism must satisfy some condition, which, as we saw in 2.10 can
be written in terms of a kernel. The dimension of a kernel is semi-
upper-continuous in the Zariski topology†, therefore the statement of see d.1

the proposition follows.

Now we apply this proposition to the Higgs range.

3.5) Corollary: Let 𝑋 be a complete toric variety, 𝑆 an irreducible
scheme andE an 𝑆-family of (framed) toric bundles over 𝑋, then there
is a nonempty Zariski open set of 𝑆 such that the Higgs range is min-
imal, meaning it is contained as a polytope in the Higgs range of E𝑠
for any 𝑠 ∈ 𝑆.

For the proof: Since 𝑋 is complete, we already know that the Higgs
range is bounded. Furthermore, in 2.11 we found a concrete bound.
For every degree 𝑢 ∈ M inside that bound, pick the open set such
that dim 𝑉𝑢(E|𝑠) is minimal. The intersection of all these sets is the
desired Zariski open set and it is not empty because 𝑆 is irreducible.
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We can do this same analysis for the Higgs polytope, as follows.

3.6) Proposition: Let (E, Φ) be an 𝑆-family of pre-Cohiggs bundles
over a toric variety 𝑋, 𝑆 irreducible and a fixed degree 𝑢 ∈ M. Then
the set

{𝑠 ∈ 𝑆 ∶ (Φ𝑢)|𝑠 ≠ 0}

is a Zariski open — possibly empty — set of 𝑆.

For the proof: Just as in 3.4, a pre-Cohiggs field of degree 𝑢 is equi-
valent to a morphism 𝜙 ∶ E → E ⊗ (NC)𝑆 of the vector bundle E over
𝑆. The condition (Φ𝑢)|𝑠 ≠ 0 is the same as dim ker(𝜙|𝑠) < dim E,
which ends the proof since the dimension of a kernel is upper-semi-
continuous†.see d.1

3.7) Corollary: Let 𝑆 be irreducible and (E, Φ) be an 𝑆-family of
pre-Cohiggs bundles over a complete toric variety 𝑋. Then there is a
nonempty Zariski open set of 𝑆, such that the Higgs polytope ∇(Φ|𝑠)
is maximal, meaning it contains the Higgs polytope of any other 𝑠 ∈
𝑆.

For the proof: Since 𝑋 is complete, the Higgs range is bounded†. Forsee 2.11

every 𝑢 in the Higgs range, pick either the open set

{𝑠 ∈ 𝑆 ∶ dim ker(Φ𝑢)|𝑠 < dim E}

or the whole 𝑆 if that is empty. The intersection of these sets gives
the desired open set.

3.8) Observation: Corollaries 3.5 and 3.7 are probably valid also for
incomplete varieties, but one needs more complex arguments to limit
the number of open sets in the intersection.
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3.9) Corollary: Let 𝑋 be a complete variety, then if the moduli
space of pre-Cohiggs bundles N𝑓𝑟

Ψ is irreducible, the Higgs range is
constant.

For the proof: There is a projection N𝑓𝑟
Ψ → M𝑓𝑟

Ψ , so if N𝑓𝑟
Ψ is irredu-

cible than M𝑓𝑟
Ψ is also irreducible. So we can apply 3.7 and 3.5 to the

universal families of this spaces. Meaning there are non empty open
sets of N𝑓𝑟

Ψ such that the Higgs polytope is maximal and the under-
lying Higgs range is minimal. If the moduli space is irreducible, the
intersection of those two sets is also not empty. So there are points
where the Higgs range is minimal and the Higgs polytope is maxi-
mal. However, over a complete variety for every Higgs range we can
construct a pre-Cohiggs field so that the the Higgs polytope and the
Higgs range coincide†. Since the Higgs range always contains the see 2.7

Higgs polytope, we conclude the Higgs range cannot be bigger than
the minimal Higgs range, otherwise the corresponding Higgs poly-
tope would be bigger than the maximal one. Therefore it must be
constant.

3.10) Observation: Knowing if the moduli space N𝑓𝑟
Ψ is irreducible

is probably not easy while calculating the Higgs range is much more
feasible. So a pratical version of the corollary is: if the Higgs range
is not constant, then the moduli space is not irreducible.
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Projective Configurations

We have already shown in an example† that the Higgs range is notsee 3.3

constant in general and therefore the moduli space is not irreducible†.see 3.10

This is not particularly surprising since we are considering all kinds
of toric bundles. One could hope, however, that the Higgs range is con-
stant for well-behaved bundles. Hier, the concept of stable bundles
comes to mind. Unfortunately, another example† already showedsee 1.53

this concept is not intrinsic to the bundle and depends strongly on
the choice of a linearisation. The alternative is to consider generic
bundles — in the sense of the Chow quotient. For one special case,
this can be reduced to a quotient known in the literature as moduli of
projective configurations. It gives rise to the following concept:

3.11) Linearly generic: Let (𝑝1, ⋯ , 𝑝𝑘) be a collection of points in
C𝑁+1. We say that these points are linearly generic if any subset
({𝑝𝑖1

, ⋯ , 𝑝𝑖𝑚
}) spans the largest possible space. In other words any

such subset is linearly independent if 𝑚 ≤ 𝑁 + 1. Obviously this con-
dition is invariant under scalar multiplication, therefore we use the
same definition for collections of 𝑘 points in P𝑁 . This is equivalent to
Kapranovs notion of ‘in general position’ used in [Kap93, Proposition
2.1.4].

3.12) Example: The following collection of points in C3 is not linearly
generic

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
(1, 1, 1)
(1, 1, 2)
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because the last three vectors are linearly dependent. However,
replacing the last vector by (−1, 1, 2) gives a linearly generic set.

Quod erat faciendum

3.13) Theorem: Consider collections of multisets Ψ such that the
flags are all given by one-dimensional subspaces, that is, 0 ⊊ C ⊊ E
— for instance for rank 2 this is always the case if we ignore the trivial
filtrations 0 ⊊ E. LetM𝑓𝑟

Ψ
𝑔𝑒𝑛

be the submoduli space given by linearly
generic flags — that is, the flags define a linearly generic collection
of points in P𝑟−1. Then the set M𝑓𝑟

Ψ
𝑔𝑒𝑛

satisfies the property in a.22,
meaning it is in the generic part of the Chow quotient†. Therefore the see a.22

geometric quotientM𝑓𝑟
Ψ

𝑔𝑒𝑛
/GL𝑟(C) exists and is an open subset of the

Chow quotient M𝑓𝑟
Ψ //chGL𝑟(C).

For the proof: Under the conditions of the theorem, the moduli space
of unframed toric pre-Cohiggs bundles corresponds to the moduli
space of projective configuration. The Chow quotient of this problem
is already known and the generic part corresponds to our definition of
linearly generic. We present in d.5 a complete proof based on [Kap93,
Proposition 2.1.7].

3.14) Observation: Considering how the moduli space of toric
bundles is composed of a product of Grassmannians, it would be
extremely interesting to have a version of the previous theorem for
Grassmannians instead of projective spaces. One could try to expand
the concept of linearly generic† for subvector spaces of higher dimen- see 3.11

sion. One may eventually demand not only for the span to be maxi-
mal but also the dimension of intersections to be minimal — after
all, those are distinct conditions†. The homology of the Grassman- see d.3
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nian can be described by Schubert cycles, which involve constraining
the dimension of the inversection of a vector space with some gene-
ric total flag†. However, constraining the dimension is equivalent to[GH14, Ch. 1.5]

constraining the rank of a matrix. For rank greater than 1 this is a
non-linear problem, so generalizing the above proof is not trivial. As
far as we know this is still an open problem.

Generic Bundles

Now that 3.13 gives us a characterization of generic bundles, we may
start checking how the Higgs range behaves in relation to them. For
simple examples, it actually behaves quite well†, so that one could hopesee 3.18

to find a correspondence between the generic bundles and the open set
described in 3.4. However more elaborated and somewhat artificial
examples show this is not the case. Begin by considering the following.

3.15) Example: Consider the 2-dimensional fan spanned by the fol-
lowing primitive generators: 𝜌1 = (0, 1), 𝜌2 = (1, 0), 𝜌3 = (−1, −1),
𝜌4 = (−1, 1), 𝜌5 = (−2, −1) and 𝜌6 = (−1, 0). Now consider the follow-
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ing filtrations, for the rays 1 to 6, respectively:

𝑖 = 0 𝑖 = 1 𝑖 = 2
E𝜌1 ∶ ⋯ ⊃ C2 ⊃ [ 1 ∶ 0] ⊃ 0 ⊃ ⋯
E𝜌2 ∶ ⋯ ⊃ C2 ⊃ [ 0 ∶ 1] ⊃ 0 ⊃ ⋯
E𝜌3 ∶ ⋯ ⊃ C2 ⊃ [ 1 ∶ −1] ⊃ 0 ⊃ ⋯
E𝜌4 ∶ ⋯ ⊃ C2 ⊃ [ 1 ∶ 1] ⊃ 0 ⊃ ⋯
E𝜌5 ∶ ⋯ ⊃ C2 ⊃ [ 1 ∶ −2] ⊃ 0 ⊃ ⋯
E𝜌6 ∶ ⋯ ⊃ C2 ⊃ [ 1 ∶

√
2] ⊃ 0 ⊃ ⋯

We want to show that the toric bundles defined by this data is stable.
However, the Higgs multiplicity at the origin — i.e. dim 𝑉(0,0)E — is
3, while the generic multiplicity at the origin is 2. This means the
Higgs multiplicity is not constant on the locus of generic bundles.

Let the flags of this bundle be generated by the following vectors 𝑣1 =
(1, 0), 𝑣2 = (0, 1), 𝑣3 = (1, −1), 𝑣4 = (1, 1), 𝑣5 = (1, −2) and 𝑣6 =
(1,

√
2). We are interested in calculating what is the dimension of

the space of pre-Cohiggs fields of degree 0. This is a straightforward
application of 2.3a. We nonetheless present the computations here
for better understanding.

Since ⟨𝑢, 𝑣𝜌⟩ is always zero, for every ray there is just one relevant
constraint — namely 𝜙𝑠𝑖

(𝑣𝑖) ⊂ span{𝑣𝑖} where 𝑠𝑖 is orthogonal to 𝜌𝑖
†. see 2.4

In this case this condition can be better expressed as 𝜙𝑠𝑖
(𝑣𝑖) ⋅ ̂𝑣𝑖 = 0,

where ̂𝑣𝑖 is orthogonal to 𝑣𝑖 — for the sake of notation fix ̂𝑣𝑖 to be
the 90∘ clockwise rotation of 𝑣𝑖. We can represent this constraint as
linear equations on the entries of a matrix representing 𝜙𝑠𝑖

. The
coefficients of this equation are given by the matrix product ̂𝑣𝑖

𝑇 𝑣𝑖
†. from simple linear

algebra if 𝑦 and 𝑥 are
line vectors and 𝐴 is a
square matrix then
𝑦𝐴𝑥𝑇 = 0 if and only
if 𝐴 ⋅ 𝑦𝑇 𝑥 = 0, where
the dot ⋅ is the
elementwise product of
matrixes

This means that in the example of the first filtration the condition

𝜙𝑠𝑖
(1, 0) ⊂ ⟨(1, 0)⟩
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is equivalent to

𝜙𝑠𝑖
⋅ ( 0

−1
) ( 1 0 ) = 𝜙𝑠𝑖

⋅ ( 0 0
−1 0

) = 0.

That means we know how to write the constraints of 𝜙𝑠𝑖
. In order

to compare those we need a common coordinate system, meaning we
need to remove the dependency on 𝑠𝑖. Use that M = N = Z2 and pick
𝑠𝑖 = ̂𝜌𝑖 — all other relevant 𝑠𝑖 are a multiple of this one and yield the
same restriction. Using the formula

𝜙 = ∑
𝑠

𝜙𝑠 ⊗ 𝑠∗

a simple change of basis yields 𝜙𝑠 = 𝑎𝜙(1,0) + 𝑏𝜙(0,1), where 𝑠 = (𝑎, 𝑏).
That means we can represent the restriction 𝜙𝑠𝑖

(𝑣𝑖) ⊂ span{𝑣𝑖} on
the matrixes 𝜙(1,0) and 𝜙(0,1) by multiplying the matrix ̂𝑣𝑖

𝑇 𝑣𝑖 by the
coefficient of 𝑠𝑖. For the first filtration 𝜌1 = (0, 1), so we choose the
orthogonal degree 𝑠𝑖 = (1, 0) and the equation looks like the following

𝜙𝑠𝑖
⋅( 0 0

−1 0
) = 𝜙(1,0)⋅[1 ( 0 0

−1 0
)]+𝜙(1,0)⋅[0 ( 0 0

−1 0
)] = 0

Likewise every ray gives us a pair of matrixes as the coefficients of a
linear system on (𝜙(1,0), 𝜙(0,1)). The coefficients we get for the filtra-
tions 1 to 6 are as follows:

𝐶1 ∶ ( 0 0
−1 0

) , ( 0 0
0 0

)

𝐶2 ∶ ( 0 0
0 0

) , ( 0 −1
0 0

)

𝐶3 ∶ ( −1 1
−1 1

) , ( 1 −1
1 −1

)
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𝐶4 ∶ ( −1 −1
1 1

) , ( −1 −1
1 1

)

𝐶5 ∶ ( 2 −4
1 −2

) , ( −4 8
−2 4

)

𝐶6 ∶ ( 0 0
0 0

) , (
√

2 2
−1 −

√
2

)

Notice that 𝐶1 to 𝐶4 are linearly independent. However, 𝐶5 = 𝐶4 −
3𝐶3 − 6𝐶2 + 3𝐶1 and 𝐶6 is independent from the other because it is
the only one containing

√
2. So we have a system of 8 variables and 5

equations. We conclude the space of pre-Cohiggs fields of degree zero
has dimension 3. This is but a coincidence using that 𝑠5 = 𝑣5. A small
variation on 𝑣5 makes the system of 6 equations linearly independent.
That is to say, generically in the moduli space containing this bundle
the space of pre-Cohiggs fields of degree zero has dimension 2.

We can easily calculate the moduli space of toric bundles. We pro-
ceed in a way similar to 1.52. For the framed case M𝑓𝑟

Ψ is a subset
of ((P1)6) — since flags are given by one-dimensional subsets of C2.
The compatibility condition just states that neighboring flags shall
not coincide — which is the case in our example. For the unframed
case, we must calculate the quotient by a change of basis. We can fix
two of the flags to be the coordinate axis. Of course, we can still scale
the axis, which is a linear action on (P1)4:

𝜆 ⋅ ([𝑥1 ∶ 𝑦1], [𝑥2 ∶ 𝑦2], [𝑥3 ∶ 𝑦3], [𝑥4 ∶ 𝑦4]) =
= ([𝜆𝑥1 ∶ 𝑦1], [𝜆𝑥2 ∶ 𝑦2], [𝜆𝑥3 ∶ 𝑦3], [𝜆𝑥4 ∶ 𝑦4])

.

That means the unframed moduli spaceMΨ is a subspace of the quo-
tient of (P1)4 by C∗. To simplify the calculation consider the case
that the third, fourth, fifth and sixth flags do not coincide with the
coordinate axis. This is the subset (C∗)4 ⊂ (P1)6 and we can para-
metrise the flags by its inclination in relation to the coordinate axis.
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The quotient (C∗)4/C∗ is isomorphic to (C∗)3. This is a geometric quo-
tient, meaning those points are stable for an adimissable GIT quo-
tient. The bundle defined by the filtrations above fits this criteria
and is stable.

That shows the multiplicity dim 𝑉𝑢(E) is not constant even over stable
points. Quod erat faciendum

The previous example is basically the worst that can happen in rank
2, there is just not enough space in such a low rank. For further exam-
ples, we need to increase the rank, as in the following.

3.16) Example: We wish to modify example 3.16 to show the same
behaviour is also observable for Cohiggs fields. That means an ex-
ample satisfying the integrability condition Φ ∧ Φ = 0. Normally
Cohiggs fields do not form a vector space — the condition is not li-
near — the phenomenon is however still valid: when the multiplicity
dim 𝑉𝑢(E) jumps down, it means there are pre-Cohiggs fields that
cannot be deformed parallel to a deformation of the underlying toric
vector bundle. The same could also happen for fields satisfying the
integrability condition. In the following example the Cohiggs fields
actually do create a vector space, but this is not necessary.

Consider the 2-dimensional fan spanned by the following primitive
generators: 𝜌1 = (1, 0), 𝜌2 = (0, 1), 𝜌3 = (−1, −1), 𝜌4 = (−1, 1),
𝜌5 = (−1, 0) and 𝜌6 = (−2, −1). Over the corresponding smooth†

see b.7 toric variety we consider a toric vector bundle of rank 3 given by the
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following filtrations, for rays 1 to 6 respectively:

𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 3
E𝜌1 ∶ ⋯ ⊃ C3 ⊃ ( 1, 0, 0)⊥ ⊃ [ 0 ∶ 0 ∶ 1] ⊃ 0 ⊃ ⋯
E𝜌2 ∶ ⋯ ⊃ C3 ⊃ ( 0, 0, 1)⊥ ⊃ [ 1 ∶ 0 ∶ 0] ⊃ 0 ⊃ ⋯
E𝜌3 ∶ ⋯ ⊃ C3 ⊃ ( 4, −4, 1)⊥ ⊃ [ 1 ∶ 2 ∶ 4] ⊃ 0 ⊃ ⋯
E𝜌4 ∶ ⋯ ⊃ C3 ⊃ ( 1, 2, 1)⊥ ⊃ [ 1 ∶ −1 ∶ 1] ⊃ 0 ⊃ ⋯
E𝜌5 ∶ ⋯ ⊃ C3 ⊃ ( 3, −1, 1)⊥ ⊃ [ 2 ∶ 1 ∶ −5] ⊃ 0 ⊃ ⋯
E𝜌6 ∶ ⋯ ⊃ C3 ⊃ (−7, −3, 1)⊥ ⊃ [−1 ∶ 3 ∶ 2] ⊃ 0 ⊃ ⋯

where by [𝑎 ∶ 𝑏 ∶ 𝑐] we mean the one-dimensional space spanned by
(𝑎, 𝑏, 𝑐) and by (𝑎, 𝑏, 𝑐)⊥ the two-dimensional space composed of vec-
tors orthogonal to (𝑎, 𝑏, 𝑐) — with respect to the standard hermetian
product. This may be an unusual way of writting a filtration, but
those are the informations we will need in the calculations bellow.

Now consider the pre-Cohiggs fields of degree 𝑢 = (1, 0). We go step
by step and apply 2.3a just to the first filtration. For this we have
⟨𝑢, 𝑣𝜌1

⟩ = 1. The resulting 𝜙 we represent as a pair of matrixes
(𝜙(1,0), 𝜙(0,1)), just as in the example before. It must look like this:

⎛⎜⎜⎜
⎝

∗ 0 0
∗ ∗ 0
∗ ∗ ∗

⎞⎟⎟⎟
⎠

,
⎛⎜⎜⎜
⎝

0 0 0
∗ 0 0
∗ ∗ 0

⎞⎟⎟⎟
⎠

where by ∗ we mean there is no restriction on this coordinate, it may
vary freely. For the second ray we have ⟨𝑢, 𝑣𝜌2

⟩ = 0. So adding this
restriction results in pre-Cohiggs fields looking like this:

⎛⎜⎜⎜
⎝

∗ 0 0
0 ∗ 0
0 0 ∗

⎞⎟⎟⎟
⎠

,
⎛⎜⎜⎜
⎝

0 0 0
∗ 0 0
0 ∗ 0

⎞⎟⎟⎟
⎠

.
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For the ray 3 to 5 we have ⟨𝑢, 𝑣𝜌𝑛
⟩ = −1. Therefore the only con-

ditions left are 𝜙(1,−1)(1, 2, 4) ∈ (4, −4, 1)⊥, 𝜙(1,1)(1, −1, 1) ∈ (1, 2, 1)⊥

and 𝜙(0,1)(1, 1, −2) ∈ (3, −1, 1)⊥. As in the example before we present
those as a pair of matrixes with coefficients — for instance the first
matrix we calculate is

⎛⎜⎜⎜
⎝

4
−4

1

⎞⎟⎟⎟
⎠

( 1 2 4 ) =
⎛⎜⎜⎜
⎝

4 8 16
−4 −8 −16

1 2 4

⎞⎟⎟⎟
⎠

the relevant degree 𝑠 for this filtration is (1, −1), therefore the cooe-
ficients of the equation 𝜙(1,−1)(1, 2, 4) ∈ (4, −4, 1)⊥ are

𝐶3 ∶
⎛⎜⎜⎜
⎝

4 8 16
−4 −8 −16

1 2 4

⎞⎟⎟⎟
⎠

,
⎛⎜⎜⎜
⎝

−4 −8 −16
4 8 16

−1 −2 −4

⎞⎟⎟⎟
⎠

where we underlined the relevant coefficients in view of the consid-
erations above. For the remaining equations we get

𝐶4 ∶
⎛⎜⎜⎜
⎝

1 −1 1
2 −2 2
1 −1 1

⎞⎟⎟⎟
⎠

,
⎛⎜⎜⎜
⎝

1 −1 1
2 −4 3
1 −1 1

⎞⎟⎟⎟
⎠

𝐶5 ∶
⎛⎜⎜⎜
⎝

0 0 0
0 0 0
0 0 0

⎞⎟⎟⎟
⎠

,
⎛⎜⎜⎜
⎝

6 3 −15
−2 −1 5

2 1 −5

⎞⎟⎟⎟
⎠

The last ray does not impose any restriction on pre-Cohiggs fields of
degree (1, 0) because ⟨𝑢, 𝑣𝜌⟩ = −2 for this ray.

Now consider which Cohiggs fields of degree (1, 0) are possible in
this configuration. When writing the equation 𝜙 ∧ 𝜙 = 0 in terms
of (𝜙(1,0), 𝜙(0,1)) it means both matrixes must commute. Commuting
matrixes have the same Jordan normal form on the same basis. So
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in view of the restrictions provided by the first and second filtrations
any solution of the integrability condition must have either 𝜙(1,0) = 0
or 𝜙(0,1) = 0. The following is one such solution that also satisfy con-
ditions 𝐶3 to 𝐶5:

𝜙 =
⎛⎜⎜⎜
⎝

1 0 0
0 2 0
0 0 3

⎞⎟⎟⎟
⎠

,
⎛⎜⎜⎜
⎝

0 0 0
0 0 0
0 0 0

⎞⎟⎟⎟
⎠

.

This however depends strongly on the fact that the underlined diag-
onals ( 4 − 8 4) of 𝐶3 and ( 1 − 2 1) of 𝐶4 are a multiple of one
another. If this was not the case only the multiple of the identity in
the first matrix would be possible solutions. This is the case for any
generic deformation of the third and fourth filtrations, however the
Cohiggs fields above cannot be deformed accordingly since it would
need to jump into a multiple of the identity. So this is the example
we are looking for.

It is only left to show this is a stable toric bundle. The moduli space
M𝑓𝑟

Ψ containing this toric vector bundle is given by 6 full flags in C3.
This means 6 pairs of a plane and a line in that plane. Normally
one would represent that as a subset of a product of projective spaces
P2 and Grassmannians Gr(2,C3). However, calculating the quotient
like this is challenging. One may be tempted to use an isomorphism
Gr(2,C3) ≃ P2. However, this does not preserve the action of GL3(C),
since the inner product is not invariant. Instead, we use a trick for
this specific case: in C3 a generic pair of two planes and two lines
contained in such planes can be described by the two lines and the
line given by the intersection of the two planes. In other words if
⋯ 𝑉1 ⊃ 𝑉2 ⋯ and ⋯ 𝑉3 ⊃ 𝑉4 ⋯ are generic filtrations, then we can write
(𝑉1 = span{𝑉2, 𝑉1 ∩ 𝑉3}) and (𝑉3 = span{𝑉4, 𝑉1 ∩ 𝑉3}). So instead of
describing the moduli space by (𝑉1, 𝑉2, 𝑉3, 𝑉4) we choose to describe
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it by (𝑉2, 𝑉4, 𝑉1 ∩ 𝑉3). This has the advantage that it only consists
of lines — i.e. points in the projective space— and it preserves the
action of GL3(C). Of course, for that to work the lines and the planes
must be distinct, which is our case.

This means we can map an open set of M𝑓𝑟
Ψ containing our toric

bundle into (P2)9. Now according to 3.13 the generic points of this
quotient are given by configurations in (P2)9 such that any 3 lines —
from the 9 defining a point — are linearly independent. Let us locate
our vector space in this configuration and see if it is generic. The first
6 lines are already given by the flags: [0 ∶ 0 ∶ 1], [1 ∶ 0 ∶ 0], [1 ∶ 2 ∶ 4],
[1 ∶ −1 ∶ 1], [2 ∶ 1 ∶ −5] and [−1 ∶ 3 ∶ 2]. The exact choice of which
planes to intersect is irrelevant, as long as we keep it consistent. We
therefore make the opportunistic choice of intersecting the first with
the fourth plane, the second with the third and the sixth with the
fifth. The 3 missing lines are therefore calculated by the products
(1, 0, 0) × (1, 2, 1), (0, 0, 1) × (4, −4, 1) and (−7, −3, 1) × (3, −1, 1). So
the vector bundle is identified in (P2)9 by:

[ 0 ∶ 0 ∶ 1]
[ 1 ∶ 0 ∶ 0]
[ 1 ∶ 2 ∶ 4]
[ 1 ∶ −1 ∶ 1]
[ 2 ∶ 1 ∶ −5]
[−1 ∶ 3 ∶ 2]
[ 0 ∶ −1 ∶ 2]
[ 1 ∶ 1 ∶ 0]
[−2 ∶ 10 ∶ 16]

With some patience one may show that any three of those are linearly
independent. In other words all subdeterminantes of the correspond-
ing 9x3-matrix are non zero. This means our toric vector bundle is
in the generic Chow quotient†and therefore stable in all admissablesee 3.13
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linearisations†. Quod erat faciendum see a.29

Of course by itself this does not prove the Higgs range is not constant.
For that, we need to choose our filtrations with even more care:

3.17) Example: The purpose of this example is to expand the previ-
ous ones. It shows the Higgs range is not constant, even when con-
sidering stable toric bundles. Instead of writing the example down
from the start, we choose to show how to construct it. We eventually
need to restrict the pre-Cohiggs fields to zero. So let us first remove
unnecessary degrees of freedom. For that let our first ray be spanned
by 𝜌1 = (1, 1) and the corresponding filtration:

E𝜌1 ∶ ⋯ ⊃ C3
𝑖=0 ⊃ (1,0,0)⊥

𝑖=1 ⊃ (1,0,0)⊥
𝑖=2 ⊃ [0∶0∶1]

𝑖=3 ⊃ 0
𝑖=4 ⊃ ⋯

Now we are interested in pre-Cohiggs fields of degree 𝑢 = (1, 2). For
the first rays this means ⟨𝑢, 𝑣𝜌⟩ = 3. From 2.3a it follows that 𝜙 must
have the following form, where stars ∗ mean this coordinate can vary
freely:

⎛⎜⎜⎜
⎝

0 0 0
∗ 0 0
∗ 0 0

⎞⎟⎟⎟
⎠

,
⎛⎜⎜⎜
⎝

0 0 0
0 0 0
0 0 0

⎞⎟⎟⎟
⎠

.

However, differently from before we choose the basis (1, 1) and (1, −1)
rather than the standard one. So the first matrix is 𝜙(1,1) and the
second 𝜙(1,−1). We choose the second ray to be 𝜌2 = (−1, 0) with fil-
trations:

E𝜌2 ∶ ⋯ ⊃ C3
𝑖=0 ⊃ (−2,1,1)⊥

𝑖=1 ⊃ (−2,1,1)⊥
𝑖=2 ⊃ [1∶1∶1]

𝑖=3 ⊃ 0
𝑖=4 ⊃ ⋯

Since ⟨𝑢, 𝑣𝜌⟩ = −1 this filtration gives 3 restrictions based on 2.4.
First, for 𝑠 = (0, 1) the only condition is 𝜙(0,1)(1, 1, 1) ⊂ (−2, 1, 1)⊥

since 𝑠⊥𝜌. However for 𝑠 = (1, 0) this does not apply so we have
two conditions: 𝜙(1,0)(1, 1, 1) ⊂ (−2, 1, 1)⊥ and 𝜙(1,0)((−2, 1, 1)⊥) ⊂
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(−2, 1, 1)⊥. To express this last condition better, just choose a vector
in (−2, 1, 1)⊥ — for instance (0, 1, −1) — and in the view of the second
condition we can replace this third by 𝜙(1,0)(0, 1, −1) ⊂ (−2, 1, 1)⊥. We
should therefore consider the following equations

𝜙(0,1)(1, 1, 1) ⋅ (−2, 1, 1) = 0

𝜙(1,0)(1, 1, 1) ⋅ (−2, 1, 1) = 0

𝜙(1,0)(0, 1, −1) ⋅ (−2, 1, 1) = 0

Translating these conditions into the non-standard basis 𝜙(1,1) and
𝜙(1,−1) results in the following matrixes — in view of the first filtration
we underline the important coefficients, the other ones are irrelevant
and provided just for information:

𝐶2 ∶ 1
2

⎛⎜⎜⎜
⎝

−2 −2 −2
1 1 1
1 1 1

⎞⎟⎟⎟
⎠

, 1
2

⎛⎜⎜⎜
⎝

2 2 2
−1 −1 −1
−1 −1 −1

⎞⎟⎟⎟
⎠

𝐶3 ∶ 1
2

⎛⎜⎜⎜
⎝

−2 −2 −2
1 1 1
1 1 1

⎞⎟⎟⎟
⎠

, 1
2

⎛⎜⎜⎜
⎝

−2 −2 −2
1 1 1
1 1 1

⎞⎟⎟⎟
⎠

𝐶4 ∶ 1
2

⎛⎜⎜⎜
⎝

0 −2 2
0 1 −1
0 1 −1

⎞⎟⎟⎟
⎠

, 1
2

⎛⎜⎜⎜
⎝

0 −2 2
0 1 −1
0 1 −1

⎞⎟⎟⎟
⎠

.

For the third ray we choose 𝜌3 = (0, −1) with filtrations:

E𝜌3 ∶ ⋯ ⊃ C3
𝑖=0 ⊃ (3,1,𝛼)⊥

𝑖=1 ⊃ (3,1,𝛼)⊥
𝑖=2 ⊃ [1∶−2∶−𝛼−1]

𝑖=3 ⊃ 0
𝑖=4 ⊃ ⋯
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In this case ⟨𝑢, 𝑣𝜌⟩ = −2 so we have just one condition 𝜙(0,1)(1, −2, −𝛼−1) ⊂
(3, 1, 𝛼)⊥. This translates into the following matrixes:

𝐶5 ∶ 1
2

⎛⎜⎜⎜
⎝

3 −6 −3𝛼−1

1 −2 −𝛼−1

𝛼 −2𝛼 −1

⎞⎟⎟⎟
⎠

, 1
2

⎛⎜⎜⎜
⎝

−3 6 3𝛼−1

−1 2 𝛼−1

−𝛼 2𝛼 1

⎞⎟⎟⎟
⎠

.

Notice that for 𝛼 = 1 all underlined coefficients are the same, there-
fore there are still non-trivial solutions for these conditions; for in-
stance the following is a solution inducing a Cohiggs field of degree
(1, 2) — we remember the first matrix is 𝜙(1,1) and the second 𝜙(1,−1):

⎛⎜⎜⎜
⎝

0 0 0
1 0 0

−1 0 0

⎞⎟⎟⎟
⎠

,
⎛⎜⎜⎜
⎝

0 0 0
0 0 0
0 0 0

⎞⎟⎟⎟
⎠

.

This means dim 𝑉(1,2)(E) = 1. However, for 𝛼 ≠ 1 this is not the case
and only the trivial solution exists, so dim 𝑉(1,2)(E) = 0.

If 𝑢 = (1, 2) were in the center of the Higgs range this would not
change the range itself. So we must also show it is a corner: For
𝑢 = (𝑎, 𝑏) with 𝑎 + 𝑏 > 3 there is no non-trivial pre-Cohiggs field.
This follows from the first ray alone. Now consider 𝑢 = (𝑎, 𝑏) with
𝑎 + 𝑏 = 3 and 𝑎 ≤ 0. For the first ray we still have ⟨𝑢, 𝑣𝜌⟩ = 3 , so the
Cohiggs fields must have the same form as above:

⎛⎜⎜⎜
⎝

0 0 0
∗ 0 0
∗ 0 0

⎞⎟⎟⎟
⎠

,
⎛⎜⎜⎜
⎝

0 0 0
0 0 0
0 0 0

⎞⎟⎟⎟
⎠

.
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However, for the second ray ⟨𝑢, 𝑣𝜌⟩ ≥ 0 which means 𝜙(1,0)(1, 1, 1) ⊂
[1 ∶ 1 ∶ 1]. These two conditions imply that 𝜙 must be trivial. These
two cases 𝑎 + 𝑏 > 3 or 𝑎 + 𝑏 = 3 with 𝑎 ≤ 0 surround the point (1, 2)
from one side, so this is a vertex of the Higgs range for 𝛼 = 1. For
𝛼 ≠ 0, it is outside of the Higgs range.

Finally, to show that the Higgs range is not constant even for stable
points, we need to show that the toric bundle for 𝛼 = 1 is stable. To
apply the trick presented in the previous examples we need an even
number of rays. So we add a fourth ray with some generic filtration so
that it does not change any of the considerations above. For instance
pick 𝜌4 = (−1, −1) with filtration:

E𝜌4 ∶ ⋯ ⊃ C3
𝑖=0 ⊃ (3,3,−1)⊥

𝑖=1 ⊃ [1∶0∶3]
𝑖=2 ⊃ 0𝑖=3 ⊃ ⋯

which is a good choice since it preserves the smoothness† of 𝑋 andsee b.7

because ⟨(1, 2), 𝑣𝜌⟩ = −3, it does not create any restriction on the
Cohiggs fields we analysed above. With this choice we get that the
toric bundle is represented by the following points in P2

[ 0 ∶ 0 ∶ 1]
[ 1 ∶ 1 ∶ 1]
[ 1 ∶ −2 ∶ −1]
[ 1 ∶ 0 ∶ 3]
[ 0 ∶ 1 ∶ −1] = (1, 0, 0)⊥ ∩ (−2, 1, 1)⊥

[ 2 ∶ −3 ∶ −3] = (3, 1, 1)⊥ ∩ (3, 3, −1)⊥

Simple calculations show that any 3 of the 6 lines above are linearly
independent. It follows also from 3.13 that our toric bundle is in the
generic Chow open set for 𝛼 = 1 and is therefore stable†. This com-see a.29

pletes the example of a Higgs range that is not constant over stable
points. Quod erat faciendum
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Fortunately, not all news are bad news. There are examples where the
moduli space works nicely. We present one such example considering
the Fano surfaces studied by [AW21].

3.18) Example: We have already calculated the moduli space of toric
bundles for the component containing the tangential bundle of the
projective space P2† and P1 × P1†. These are two examples of Fano see 1.38

see 1.52surfaces. In dimension 2 there are a total of 5 Fano surfaces†. The
[Øb07]full list is shown in the image below.

P2 P1 × P1 P2′ P2″ P2‴

1
3 3
3 5 3
1 3 3 1

2
2 4 2

2

3
2 4 2

2
3 2 2

Now for every Fano surface 𝑋 consider the moduli space containing
the tangential space — i.e., Ψ = Ψ𝑇 𝑋. Calculating the framed moduli
space for these surfaces is not difficult and follows analogously to P2

and P1 × P1. All filtrations look like

⋯ ⊃ C2 ⊃ C ⊃ 0 ⊃ ⋯

so the flags are all given by 1-dimensional subvector space of C2, so
the moduli space of framed toric bundles is a product of P1 — with
some diagonals removed for the compatibility conditions.

The image above shows the Higgs multiplicity of generic points in
M𝑓𝑟

Ψ . This is different from the multiplicity calculated by [AW21] for
two reasons: first they only considered trace zero pre-Cohiggs fields.
Second and more importantly, they calculated it only for the tangent
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space 𝑇 𝑋 ∈ M𝑓𝑟
Ψ ; we, on the other hand, are interested in generic

toric bundles with same Chern class as the tangent space. For the
case of the projective space however, the space 𝑇P2 is generic, so our
calculation does agree with [AW21, Fig. 6] up to the different con-
vention† from 2.1, that causes the triagle to appear upside down. Thesee 2.2

generic Higgs range can either be calculated by hand, or the follow-
ing heuristic can by applied: the maximal possible multiplicity is 8.
From that we remove multiplicities based on each ray, the calcula-
tion behind these are similar to the examples above. If ⟨𝑢, 𝑣𝜌⟩ < 0,
there is no dimension drop. If ⟨𝑢, 𝑣𝜌⟩ = 0 the multiplicity drops one
dimension. If ⟨𝑢, 𝑣𝜌⟩ = 1 the multiplicity drops 4 dimensions — three
for the case 𝑠 ∈ 𝜌⊥ and one for the case 𝑠 ∉ 𝜌⊥. If ⟨𝑢, 𝑣𝜌⟩ = 2 the
dimension already drops by 7. If ⟨𝑢, 𝑣𝜌⟩ > 2 there exists no non-
trivial pre-Cohiggs field. This however just works if we consider the
restrictions coming from different rays are linearly independent. We
assert this is the case for linearly generic flags. That is to say, the
phenomenon described in 3.15 does not occur here.

We would like to quickly explain why this is the case, but proper
proofs can only be provided by calculating it. The following are just
some observations we made during these calculations. We must fo-
cus on 𝑢 = (0, 0). For other degrees the dimension drops quickly, so
there is not much space for dependencies to manifest and it is also
easy to calculate the multiplicity by hand. We also can discard any
surface with less than 5 rays: speaking in the language of 3.15 the
coefficient matrixes of three rays — with linearly generic flags — are
always independent. Matrixes of the form ̂𝑣𝑖

𝑇 𝑣𝑖 are always linearly
dependent on four rays, however, since the rays are not all equal they
will become independent when considering both matrices 𝜙(1,0) and
𝜙(0,1). That means there are just two important cases to analyze. We
take the one with 6 rays and therefore most likely to create depend-
encies. We can always make a change of basis so that two of the flags
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are the coordinate axes and a third is the diagonal [1 ∶ 1]. We can
therefore write a generic case as follows:

( 1 1
−1 −1

) , ( 0 0
0 0

)

( 𝑎 𝑎2

1 𝑎
) , ( 0 0

0 0
)

( 0 1
0 0

) , ( 0 1
0 0

)

( 0 0
1 0

) , ( 0 0
1 0

)

( 0 0
0 0

) , ( 𝑏 1
−𝑏2 −𝑏

)

( 0 0
0 0

) , ( −𝑐 −𝑐2

1 𝑐
) .

In order for these conditions to be linearly dependent it must happen
that

𝑎(−1 + 𝑎) = 𝑐(−1 + 𝑏𝑐)

(−1 + 𝑎) = 𝑏(−1 + 𝑏𝑐).
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Dividing the two equations — which can be done since the flags are all
distinct — we get 𝑎 = 𝑐

𝑏 . Replace 𝑎 in the equations and then isolate
𝑐𝑏2 in the second one. Apply this to the first equation to reduce the
degree of 𝑏. Eventually one gets that 𝑏 = 1, so the fifth flag must agree
with the first. This is not possible under linearly generic conditions.
We conclude the following:

3.18A) Conclusion: For toric bundles over Fano surfaces such that
Ψ = Ψ𝑇 𝑋 the Higgs multiplicity is constant over linearly generic
points. Since the framed moduli space is the space representing a
locally free sheaf†it has naturally the structure of a vector bundlesee 2.18

Nfr|Mfrgen → Mfrgen.

Also the existence of a coarse moduli space M𝑓𝑟
Ψ

𝑔𝑒𝑛
//GL𝑟(C) of un-

framed generic toric bundles follows from the Chow quotient con-
struction plus 3.13. Using the ‘Lemme de Decente’† we concludesee d.4

there exists a coarse moduli space N𝑓𝑟
Ψ

𝑔𝑒𝑛
//GL𝑟(C) of unframed

generic pre-Cohiggs bundles — for that we must only show the
stabilizer in GL𝑟(C) acts trivially: in our case, the stabilizer of a
generic toric bundles are the multiples of the identity and they
act on 𝜙 via conjugation, therefore trivially.

Quod erat faciendum

3.19) Observation: Notice how in 3.18a we used the existence of a
coarse moduli space of unframed toric bundles to conclude the exist-
ence of a coarse moduli space of unframed toric pre-Cohiggs bundles,
which is a quite nice property. However, also notice that using the
‘Lemme de Decente’ in 3.18a is necessary. If the stabilizer does not
act trivially the moduli space of unframed toric pre-Cohiggs bundles
may not exist. This is the case for instance if Ψ is such that all
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flags are trivial — i.e. {0} ⊊ E without intermediary steps. In this
case M𝑓𝑟

Ψ is a single point. The change of frame still acts on 𝜙 via
conjugation. The quotient, that is the equivalence classes of toric
pre-Cohiggs bundles, corresponds to the Jordan normal form of the
pre-Cohiggs field. But a family of pre-Cohiggs fields can easily jump
between normal forms. This is a jumping phenomen, so there can be
no coarse moduli space whatsoever†. see a.10
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END NOTES

A Technical Tools

We begin with a definition:

A.1) Moduli Problem: A moduli problem in a category C is given by:

• For all objects 𝑆 ∈ C a set A𝑆 and an equivalence relation ∼𝑆
in this set

• For all morphisms 𝑓 ∶ 𝑇 → 𝑆 a function A𝑓 ∶ A𝑆 → A𝑇
so that the following properties hold:

• For the identity we have Aid𝑆
= idA𝑆

• From 𝐹 ∼𝑆 𝐺 it follows A𝑓(𝐹) ∼𝑇 A𝑓(𝐺)
• For 𝑓 ∶ 𝑇 → 𝑆, 𝑔 ∶ 𝑆 → 𝑅 and every element 𝐹 ∈ A𝑅 it holds

that A𝑔∘𝑓(𝐹) ∼𝑇 A𝑓 ∘ A𝑔(𝐹)
Elements of the set A𝑆 are normally called families over 𝑆, families
parametrized by 𝑆 or 𝑆-families. If {∗} is a terminal object of the
category C , then one may restrict every family to points: that is,
given a family 𝐹 ∈ A𝑆 and a point 𝑠 ∶ {∗} → 𝑆, one may consider the
element A𝑠(𝐹) ∈ A{∗}. In this way 𝑆-families are seen as variations
parametrized by 𝑆 of elements in A{∗}, this explains the nomeclature.

For a family 𝐹 over 𝑆 and a point 𝑠 ∶ {∗} → 𝑆 we use 𝐹𝑠 to denote the
pullback A𝑠(𝐹).
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Verifying all the conditions above may be tiresome. Instead we will
look to work inside an special case: a variety of configurations with
the action of a group of symmetries. Therefore, to some extent, it is
more important to understand the following example.

A.2) Example – Groupoids and Equivalences: The simplest example
of a moduli problem is a set 𝐶 with the action of a group G. In this case
we name G the symmetry group of the configuration space 𝐶. This
defines a moduli problem in Set — the category of sets. To show that
let A𝑆 = {𝑆 → 𝐶} be the set of maps from 𝑆 to 𝐶. Two maps 𝑎 and 𝑎′

are equivalent, if there is a map 𝑔 ∶ 𝑆 → G so that 𝑎(𝑠) = 𝑎′(𝑠) ⋅ 𝑔(𝑠).
This defines the needed equivalence relation and A𝑓 is the canonical
pullback of maps: 𝑎 ↦ 𝑎 ∘ 𝑓 .

A pair (𝐶, G) composed of a set and its symmetry group can also be
seen as a groupoid: elements of 𝐶 are the objects while morphisms
are arrows 𝑚

𝑔
−→ 𝑔𝑚 with 𝑚 ∈ 𝐶 and 𝑔 ∈ G. Therefore we can use of

the language of groupids to speak of moduli problems. This has the
disadvantage that other structures of 𝐶 — for instance a topology
etc. — are neglected. In the literature, moduli problems in Set are
also called naive moduli problems for this reason [Hos15]. However,
there is a way around: let us suppose that 𝐶 is an object in a locally
small category C, for instance the category of varieties. We can define
a moduli problem just as above, with the extra conditions that the
morphisms 𝑆 → 𝐶 must be in C instead of any general map between
sets. Quod erat faciendum
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End Notes

In any case, whether the moduli problem is described with the catego-
rical definition or when possible with a groupoid, for us the important
part is the moduli functor.

A.3) Lemma – Moduli Functor: Any moduli problem defines a func-
tor M ∶ C → Set given by:

M(𝑆) = A𝑆/∼𝑆

M(𝑓 ∶ 𝑇 → 𝑆) = A𝑓/∼𝑆 ∶ M(𝑆) → M(𝑇 )

A.4) Functor of points: There exists a covariant functor ℎ ∶ 𝐶 →
Psh(𝐶), which naturally associates every object to a pre-sheaf . This
is defined in the following way:

• For an object 𝐶 ∈ C is ℎ𝐶 the contravariant functor C → Set

given by:
ℎ𝐶(𝐶′) ∶= hom(𝐶′, 𝐶)

ℎ𝐶(𝑓 ∶ 𝐶′ → 𝐶″) ∶= (𝑔 ↦ 𝑔 ∘ 𝑓)

• For a morphism 𝑓 ∶ 𝐶 → 𝐶′, is ℎ𝑓 ∶ ℎ𝐶 ⇒ ℎ𝐶′ a morphism of
functors given by the mappings ℎ𝑓

𝐶″ ∶= 𝑔 ↦ 𝑓 ∘ 𝑔 from ℎ𝐶(𝐶″) to
ℎ𝐶′(𝐶″)

This functor ℎ is called the functor of points.

A.5) Fine Moduli Space: A moduli functor M is said to admit a
fine moduli space, if there is a 𝑀 ∈ C and a functor isomorphism
𝜈 ∶ M ⇒ ℎ𝑀 , where ℎ𝑀 is the functor of points† of 𝑀 . Such a fine see a.4

moduli space always admits a so-called universal family. This is any
element 𝐹𝑀 in the equivalence class given by 𝜈−1

𝑀 (id𝑀).
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A.6) Observation: A universal family 𝐹𝑀 has the following property:
for any family 𝐹 ∈ A𝑆 there exists a morphism 𝑓 ∶ 𝑆 → 𝑀 so, that
A𝑓(𝐹𝑀) ∼𝑆 𝐹 .

One may notice that a fine moduli space is something like a complete
solution for a moduli problem, since M is completely represented by
𝑀 . However, this may be much too optimistic for most cases and
therefore we must loosen our conditions.

A.7) Coarse Moduli Space: A coarse moduli space for a moduli func-
tor M is an 𝑀 ∈ C with a functor morphism 𝜈 ∶ M ⇒ ℎ𝑀 , satisfying
the properties

• 𝜈{∗} ∶ M({∗}) → ℎ𝑀({∗}) is a bijection, where {∗} is a terminal
object in C — considering such an object exists.

• For all 𝑁 ∈ C and functor morphisms 𝜈′ ∶ M ⇒ ℎ𝑁 there is a
unique morphism 𝑓 ∶ 𝑀 → 𝑁 , that factorizes 𝜈′ as 𝜈′ = ℎ𝑓 ∘ 𝜈.

In this case, we may not have an universal family, but we still have
uniqueness.

A.8) Proposition: The coarse moduli space is unique up to isomorph-
ism.

That means both coarse and fine moduli spaces are unique. If they
exist, they must be equal, since a fine moduli space is also coarse.
The next proposition will demonstrate the conditions under which
the converse is true.

A.9) Proposition: Let (𝑀, 𝜈) be a coarse moduli space for a functor
M. This is a fine moduli space, if the following properties hold.

• There exists an universal family 𝐹𝑀 over 𝑀 such, that 𝜈𝐹𝑀
=

id𝑀
• If 𝐹 and 𝐺 are two families over 𝑆, then 𝐹 ∼𝑆 𝐺 if and only if

𝜈𝑆([𝐹 ]) = 𝜈𝑆([𝐺])
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End Notes

The following question comes from the other perspective: is there
always a (coarse) moduli space? The answer is clearly no.

A.10) Lemma – Jumping Phenomen: Let M be a moduli functor in
the category of complex algebraic varieties. Assume there is a family
𝐹 over C with the property that 𝐹𝑧 ∼ 𝐹1 for all 𝑧 ≠ 0 but 𝐹0 ≁ 𝐹1.
Then for any 𝑀 and functor morphism 𝜈 ∶ M ⇒ ℎ𝑀 , it results that
𝜈C([𝐹 ]) ∶ C → 𝑀 is constant. Therefore there can be no coarse moduli
space for M.

For the proof: Let 𝑓 = 𝜈C(𝐹). For every 𝑧 ∶ spec(C) → C we have
𝑓 ∘ 𝑧 = 𝜈spec(C)(𝐹𝑧). Therefore it holds for 𝑧 ≠ 0, that 𝐹𝑧 = 𝐹1 ∈
M(spec(C)). That means 𝑓|C∗ is constant.

Since the points of 𝑀 are closed and 𝑓 is a morphism, 𝑓 must be
constant over the whole of C. That would violate the bijectivity of
𝜈spec(C) ∶ M(spec(C)) → ℎ𝑀(spec(C)) since 𝐹1 ≁ 𝐹0 in M(spec(C)) and
should not be mapped to the same point in 𝑀 .

A.11) Quotient: Let 𝑋 and 𝑌 be two schemes, with a morphism of
schemes 𝑝 ∶ 𝑋 → 𝑌 , and a group G acting on 𝑋. We present some
different way we may say 𝑌 is a quotient of 𝑋 according to [Hos15,
sections 3.4 and 3.5].

A.11A) Categorical Quotient: 𝑌 is a categorical quotient if 𝑝 ∶ 𝑋 →
𝑌 is a G-invariant universal morphism. This means for any other
G-invariant morphism of schemes 𝑞 ∶ 𝑋 → 𝑍 there is one and only
one ℎ ∶ 𝑌 → 𝑍 such that 𝑞 = ℎ ∘ 𝑝.

A.11B) Good Quotient: The scheme 𝑌 is a good quotient, if the
following holds:
• 𝑝 is G-invariant.
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• 𝑝 is surjective.†Notice the second
condition is

redundant, it follows
from the third and

fourth conditions. We
included it for better

understanding.

• Functions on 𝑌 correspond to G-invariant functions on 𝑋. That
means 𝑝∗ ∶ O𝑌 (𝑈) → O𝑋(𝑝−1(𝑈))G is a ring isomorphism for
every open subset 𝑈 ⊂ 𝑌 .

• 𝑝(𝑊) is closed if 𝑊 ⊂ 𝑋 is closed and G-invariant.
• If 𝑊1, 𝑊2 ⊂ 𝑋 are closed and G-invariant with 𝑊1 ∩ 𝑊2 = ∅ it

follows that 𝑝(𝑊1) ∩ 𝑝(𝑊2) = ∅
• 𝑝 is an affine morphism — i.e pre-images of affine opens are

affine
A.11C) Geometric Quotient: 𝑌 is a geometric quotient if it is a good
quotient and the fibers of 𝑝 are orbits — that is to say 𝑝(𝑥) =
𝑝(𝑥′) ⇔ G ⋅ 𝑥 = G ⋅ 𝑥′.

A.11D) Remark: Good quotients are categorical quotients, and
therefore so are geometric quotients [Hos15, Proposition 3.30].

For better understanding consider the following example: Finding a
good quotient is a way to turn the topological quotient 𝑋/G — which
always exists — into a scheme or even in most cases into an algebraic
variety. With this in mind, let us fix the following notation.

A.12) Notation: Let 𝑋 be a complex variety with the action of a
group G. We use 𝑋//G to denote the good quotient†, if it exists; thesee a.11

notation 𝑋/G is used, when it is a geometric quotient. Pure topolo-
gical quotients play no role here, so there is no risk of confusion. The
notation is also appropriate since for the geometric quotient every
fiber of the morphism 𝑋 → 𝑋/G is an orbit of G. That is, as a topolo-
gical space the geometric quotient matches the topological quotient.
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End Notes

This already allows us to state the main result:

A.13) GIT’s Fundamental Theorem: Let G be a reductive group, act-
ing on an irreducible variety 𝑋 ⊂ P𝑁 via linear maps . Then there
are certain open sets 𝑋𝑠 ⊂ 𝑋𝑠𝑠 ⊂ 𝑋† and a good quotient see a.30

𝑝 ∶ 𝑋𝑠𝑠 → 𝑋𝑠𝑠//G,

which can be restricted to form a geometric quotient:

𝑝 ∶ 𝑋𝑠 → 𝑋𝑠/G.

Further, 𝑋𝑠/G is an open set on 𝑋𝑠𝑠//G.

It is also possible to show that 𝑋𝑠𝑠//G is always quasi-projective. If
𝑋 is projective, then the quotient is also projective.

For the proof: [Dol03, Section 8.2]

This theorem is extremely useful to find moduli spaces under the
condition that the space 𝑋 has the following key property:

A.14) Configuration spaces and local universal families: Let A be
a moduli problem in the category of the schemes. A family 𝐹 over the
scheme 𝑆 is a local universal family, if for all other families 𝐺 over
schemes 𝑇 and for all points 𝑡 ∈ 𝑇 , a neighborhood 𝑈 of 𝑡 exists with
a morphism 𝑓 ∶ 𝑈 → 𝑆 such that:

𝐺|𝑈 ∼𝑈 A𝑓(𝐹)

The scheme 𝑆 will be called a configuration space for the moduli prob-
lem A.
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With this condition, the next proposition gives us a formula for find-
ing moduli spaces.

A.15) Proposition: Let A be a moduli problem with a local universal
family 𝐹 over a scheme 𝑋. Further let an algebraic group G act on
𝑋 with the following property: two points 𝑠 and 𝑡 are in the same
G-orbit if and only if 𝐹𝑠 ∼ 𝐹𝑡. Under this condition the geometric
quotient 𝑋/G, if it exists, is also a coarse moduli space for A.

For the proof: [Hos15, Proposition 3.35]

For groupoids – of finite dimension – this proposition always applies
since:

A.16) Observation: If a moduli problem is given by the action of
G on 𝑋†, then 𝑋 is a configuration space with the identity map id ∶see a.2

𝑋 → 𝑋 as its local universal family and the conditions of a.15 are
automaticaly satisfied.

We now turn our attention to a different, but somewhat related, form
of quotient. For that, we must explain the Chow variety, beginning
with the Chow form.

A.17) Chow Form†: Let 𝑌 ⊂ P𝑁 be a 𝑘-dimensional irreducible vari-[KSZ91]

ety of degree 𝑑. Denote by ̃𝑌 its cone in C𝑁+1 and by 𝑍(𝑌 ) the set

{𝑉 ∈ Gr(𝑁 − 𝑘,C𝑁+1) ∶ 𝑉 ∩ ̃𝑌 ≠ {0}}.

This set forms a hypersurface of degree 𝑑 in the Grassmannian. That
means that 𝑍(𝑌 ) is defined by a polynomial 𝑅𝑌 ∈ 𝐵𝑑, where 𝐵𝑑 is the
homogenous part of degree 𝑑 in the coordinate ring of Gr(𝑁−𝑘,C𝑁+1).
We call 𝑅𝑌 the Chow Form of 𝑌 , which is unique up to multiplication
by a scalar.
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End Notes

This would, however, be of little importance without the following
proposition, which assures a variety is uniquely given by its Chow
form.

A.18) Proposition: The mapping 𝑍 ∶ 𝑌 ↦ 𝑍(𝑌 ) is injective

For the proof: [GKZ94, Corollary 2.6]

This can be generalized for algebraic cycles.

A.19) Chow form of a cycle: A 𝑘-dimensional algebraic cycle in P𝑁

is a formal linear combination 𝐶 = ∑𝑖 𝑚𝑖𝐶𝑖, where 𝑖 takes values on
some finite set, the 𝐶𝑖’s are 𝑘-dimensional irreducible subvarieties
and the coefficients 𝑚𝑖 are integers.

We can expand the definition of the Chow form for cycles:

𝑅𝐶 = ∏
𝑖

𝑅𝑚𝑖
𝐶𝑖

∈ 𝐵𝑑

where 𝑑 = deg(𝐶) ∶= ∑𝑖 𝑚𝑖deg(𝐶𝑖).

A.20) Family of effective algebraic cycles: An effective algebraic
cycle, that is, a cycle with positive coefficients, can also be represen-
ted by a scheme. Furthermore, a relative scheme 𝑌 → 𝑆, such that
over every point 𝑠 ∈ 𝑆 the fiber 𝑌𝑠 has constant degree, defines a
family of effective algebraic cycles. Together with the isomorphism
of schemes and the standard pullback of schemes, this describes a
moduli problem, as one can see by verifying the properties of a.1.
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A.21) Chow Variety†: The Chow variety is a variety parameterizing[GKZ94]

cycles of dimension 𝑘 and degree 𝑑 in P𝑁 . Formally it can be defined
to be the subset Chow𝑘,𝑑(P𝑁) ⊂ P(𝐵𝑑), given by the Chow forms of
such cycles. Furthermore this variety is a fine moduli space to the
moduli problem of effective algebraic cycles.

We can also define it for every quasi-projective variety by restricting
ourselves to cycles that are contained in said variety†. When it is clearsee a.33

from the context, we may drop the references for dimension, degree
and projective space, referring to the Chow variety simply as Chow.

Well-definedness: To show that the Chow variety defined above is a
moduli space is not a trivial task. The theorem was first proven by
Chow and van der Waerden, whence its name. A complete proof can
be found in [GKZ94, Section 4.1].

A.22) Proposition: Let 𝑋 be an irreducible variety with an action of
an algebraic group G. There exists an invariant Zariski open subset
𝑈 ⊂ 𝑋, so that for 𝑥 ∈ 𝑈 the closure of orbits G ⋅ 𝑥 have constant
homology in H∗(𝑋,Z).

The Chow Quotient is then the closure of the image of this generic
set in the Chow variety:

A.23) Chow Quotient: Let 𝑋 be an irreducible variety with the ac-
tion of an algebraic group G. Let 𝑈 be an open subset of 𝑋, so that
the closure of orbits 𝐺 ⋅ 𝑥 have constant homology 𝛿. The mapping
𝑥 ↦ G ⋅ 𝑥 ∈ Chow𝛿(𝑋)† gives a quotient 𝑈 → 𝑈/G. The closure of thissee a.33

quotient in Chow𝛿(𝑋) we call the Chow Quotient of 𝑋 by G and denote
it by

𝑋//chG ∶= 𝑈/G ⊂ Chow𝛿.
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End Notes

This is independent of the choice of 𝑈 .

Well-definedness: The map 𝑈 → 𝑈/G is a geometric quotient. This
derives from the Chow variety being a fine moduli space: for that
create a variety 𝑌 with a morphism 𝑌 → 𝑈 such that for 𝑥 ∈ 𝑈 the
fiber 𝑌𝑥 = G ⋅ 𝑥. This is a family of cycles, therefore it is represented
by a morphism 𝑈 → Chow. The fibers of this morphism are individual
orbits G ⋅ 𝑥, so restricting the morphism to the image 𝑈/G gives the
quotient.

It is important to mention that despite its name, the Chow quotient
is not a quotient as commonly understood.

A.24) Corollary: The Chow quotient is not a quotient in itself, there
is in general no morphism 𝑋 → 𝑋//chG, not even a set theoretic map.
However, there is a fibering 𝑌 → 𝑋//chG, given by restricting the
universal family of the Chow variety . This is sometimes called the
Chow family or the Chow fibering.

A.25) Example: In order to understand the Chow quotient, it is use-
ful to keep the following example in mind: the group C∗ acts on C3

by
𝑡 ⋅ (𝑥, 𝑦, 𝑧) = (𝑡𝑥, 𝑡𝑦, 𝑡−1𝑧).

The Chow quotient is isomorphic to (C2)′ — the blow-up of C2 at the
origin — as the following indicates: The generic orbits are hyper-
boles and they cross the plane 𝑧 = 1 in exactly one point. So we can
conclude there is a geometric quotient 𝑈 → C2 \ {0}, where 𝑈 is the
3-dimensional space without the 𝑧-axis and the 𝑥𝑦-plane. In the limit
to the origin, however, a hyperbole degenerates into the sum of two
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lines, one is the 𝑧-axis and the other is a line by the origin on the 𝑥𝑦-
plane. So for non-generic points there is no geometric quotient, since
points in the 𝑧-axis are present in more than one fiber — namely
those fibers distinguish themselves by the line in 𝑥𝑦-plane, whence
the blow up at the origin. To achieve a Chow fibering we also need a
blow-up of C3 at the 𝑧-axis. That is to say the Chow family looks like

𝑌 = (C2)′ × C → (C2)′ = C3//chC∗.

Now let us consider the Git quotients of this example. There are
mainly two relevant linearizations, one rendering the 𝑧-axis as un-
stable and another rendering the 𝑥𝑦-plane unstable. Generic orbits
intersect the plane 𝑧 = 1 in exactly one point, therefore the gene-
ric quotient is C2 \ {0}. In the first linearization, the orbits in the
𝑥𝑦-plane are semistable and parameterizable by a projective line P1,
which means we need to glue a projective line into the origin — i.e.
perform a blow-up. The semistable quotient is therefore (C2)′. On
the second linearization, the quotient is C2 since the 𝑧-axis is a stable
orbit and must thus map to a single point. In both cases, the Chow
quotient maps to the Git quotient: the identity (C2)′ → (C2)′ in the
first case and the blow-down (C2)′ → C2 in the second case. We say
that the Chow quotient dominates the Git quotient.

Since this is such a simple example, one of the Git quotients is equal
to the Chow quotient. This is not always the case, for instance with
one extra dimension 𝑡 ⋅ (𝑥, 𝑦, 𝑧, 𝑤) = (𝑡𝑥, 𝑡𝑦, 𝑡−1𝑧, 𝑡−1𝑤), the Chow quo-
tient has 2 blow-ups, each one collapsing into a Git quotient.

Quod erat faciendum

A.26) Theorem: The Chow quotient dominates all Git quotients,
that is to say, for any choice of linearization there is always a regular
birational morphism 𝑋//chG → 𝑋𝑠𝑠//G.
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End Notes

For the proof: As originally proven in [Kap93, Theorem 0.4.3], this
consists of two steps, first showing there are semistable orbits in the
Chow fibers† and then showing the map so defined is a morphism†. see a.27

see a.28The first step rests on the symplectic description of stability while
the second step follows from some calculations with the Chow form.

A.27) Lemma: For any cycle 𝐶 in the Chow quotient 𝑋//chG there are
semistable orbits in its support and they are all equivalent, meaning
they map to the same point in the Git quotient.

A.28) Lemma: The map 𝑝 ∶ 𝑋//chG → 𝑋𝑠𝑠//G — taking a cycle 𝐶
to the point 𝑋𝑠𝑠//G representing any of the semistable orbits in its
support — is a morphism of algebraic varieties.

The following corollary shows that the generic points used in the con-
struction of the Chow quotient are some kind of super-stable points.

A.29) Corollary: For an admissable linearization† the points in 𝑈 see a.32

are all stable and the morphism in a.26 is an isomorphism 𝑈//chG ≃
𝑈//G, meaning the Chow quotient and the Git quotient agree over
the generic points.

For the proof: This follows from the symplectic stability criterion†. see a.32

For generic points the cycle G ⋅ 𝑥 have one big orbit and several smal-
ler ones on the edges — remember stable orbits are closed on 𝑋ss, but
not necessarily on 𝑋. Admissable linearization are exactly the ones
with momentum charge in the interior of Ω(G ⋅ 𝑥) = Ω(𝑋). From the
continuity of Ω it follows that the momentum charge is in Ω(G ⋅ 𝑥).
This means this orbit is stable, therefore the only semistable orbit in
this Chow fiber. But the fiber is generic, so the orbit G ⋅ 𝑥 is present
in no other fiber. This means the morphism in a.26 is a bijection
between varities and therefore an isomorphism.
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A.30) Stability Criterium: Let 𝑋 ⊂ P𝑁 be a variety with a linear
action of G, that means G acts via a representation 𝜌 ∶ G → GL𝑁+1(C).
Let 𝑥 ∈ C𝑁+1 be a representant of [𝑥] ∈ 𝑋. By definition, a point [𝑥]
is semi stable if and only if 0 ∉ G ⋅ 𝑥. In addition to that, if for every
1-parameter subgroup C∗ ↪ G the orbit C∗ ⋅ 𝑥 is closed in C𝑁+1, then
[𝑥] is stable. This is equivalent to the following numerical condition:

Let 𝜆 ∶ C∗ → G be a 1-parameter subgroup. The representation 𝜌
turns it into a 1-parameter subgroup of GL𝑁+1(C). Therefore it must
be diagonalizable† — i.e. there is a basis where the action is given by[Wil19]

𝜆(𝑡)𝑥 = (𝑡𝑚0𝑥0, ⋯ , 𝑡𝑚𝑁𝑥𝑁).

From that define 𝜇([𝑥], 𝜆) ∶= min{𝑚𝑖 ∶ 𝑥𝑖 ≠ 0}. The point [𝑥] is semi
stable if and only if 𝜇([𝑥], 𝜆) ≤ 0 for all 𝜆 and stable if 𝜇([𝑥], 𝜆) < 0.
Since every 1-parameter subgroup has an inverse 𝜆−1 this means that
stable points most always act with positive and negative degrees —
i.e.

𝑚0 ⪇ ⋯ ≤ 0 ≤ ⋯ ⪇ 𝑚𝑛

For the proof: [Dol03, Theorem 9.1]

A.31) Symplectic Stability Criterion: The stability criterium in
a.30 is equivalent to the following symplectic version. Let K be the
compact real form of G, for instance if G = (C∗)𝑛, then K = (S1)𝑛. A
linearization is equivalent to the choice of an ample line bundle 𝐿 on
𝑋 with an action of G. By fixing a K-invariant Hermitian metric on
it, we get a momentum map

Ω ∶ 𝑋 → k
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from the variety 𝑋 to the Lie algebra of K. In this context, a point 𝑥
is semi stable if and only if 0 ∈ Ω(G ⋅ 𝑥) and it is stable if and only if
0 ∈ Ω(G ⋅ 𝑥).

There is nothing significant about the zero here, actually any point in
k defines a different stability criterion, as we will now explain: let 𝑟 be
a rational point in k, then its integral multiple 𝑚𝑟 is identifiable with
a character 𝜉 of G. We can twist the G action of the bundle 𝐿𝑚 by the
character −𝜉. In terms of moment maps, this represents a new map
Ω′(𝑥) = 𝑚Ω(𝑥)−𝑚𝑟. That means a point 𝑥 is stable in relation to the
twisted bundle 𝐿𝑚(−𝜉) if and only if 𝑟 is in Ω(G ⋅ 𝑥), or respectively
semi stable if the closure is taken.

For the proof: [Hu05, section 2.1]

A.32) Observation: Let 𝐶 be a Chow fiber, that is, the support of
the cycle corresponding to a point in the Chow quotient, and by Ω the
momentum map as in a.31, then

Ω(𝐶) = Ω(𝑋).

This was first proven for generic points by Atiyah in [Ati82] and than
completed in the general case in [Hu05, prop 3.3].

So by the symplectic stability criterion above, if the Git quotient is
not empty — i.e. 𝑟 ∈ Ω(𝑋) — generic points are always semistable.
Further, if 𝑟 is in the interior of Ω(𝑋), generic points are stable. In
accordance with the literature, we call such quotients admissable. In
his doctoral thesis, Yi Hu remarked that 𝑟 is in the boundary of Ω(𝑋)
if and only if the corresponding Git quotient degenerates, meaning
its dimension is smaller than dim𝑋 − dimG [Hu09, Sec 1.3]. He was,
however, just working in the case of G being a torus, we believe this
is also valid for the general case, but were not able to track down a
reference.
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A.33) The Chow variety of an abstract variety: In order to define
the Chow variety of an abstract quasi-projective variety, one must fix
the homology of the cycles, instead of the degree. This is because for
any embedding 𝑓 ∶ 𝑋 → P𝑁 , cycles of constant homology are mapped
to cycles of constant degree via the push forward 𝑓∗ ∶ H∗(𝑋,Z) →
H∗(P𝑁 ,Z). So we have Chow𝛿(𝑋) as a subvariety of Chow𝑓∗(𝛿)(P𝑛).
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B Notes on the First Chapter

B.1) Definition: Let 𝜎 be a cone in a vector space V. We define the
dual cone and orthogonal space as follows:

�̌� ∶= {𝑤 ∈ V∗ ∶ ⟨𝑣, 𝑤⟩ ≥ 0, ∀𝑣 ∈ 𝜎}

𝜎⊥ ∶= {𝑤 ∈ V∗ ∶ ⟨𝑣, 𝑤⟩ = 0, ∀𝑣 ∈ 𝜎}

where V∗ is the dual space of V and ⟨_, _⟩ is the natural pairing
between V and V∗.

B.2) Proposition: The lattice M is the character lattice of T ∶=
spec(C[M]). So there is a canonical equivalence between the set of
integral linear functions on NR and the set of linear characters of T.
For a cone 𝜎 in NR

M𝜎 ∶= M/(𝜎⊥ ∩ M)

is thus the group of integral linear function on 𝜎, where 𝜎⊥ denotes
the orthogonal linear space†. see b.1

B.3) Definition: A multiset is a set where the elements have an
associated multiplicity; it is a set where an element can be present
more than once.
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B.4) Theorem: There is a bijective correspondence between cones 𝜎
in a fan Σ and T-orbits in the corresponding toric variety 𝑋(Σ), given
by

𝜎 ↦ 𝑂𝜎 ≅ HomZ(𝜎⊥ ∩ M,C∗).

This correspondence is such that the dimension of the orbit is com-
plementary to the dimension of the cone. For instance

{0} ↦ 𝑂{0} ≅ HomZ(M,C∗) = T.

Moreover, there are decompositions

𝑈𝜎 = ⋃
𝜎′⪯𝜎

𝑂𝜎′

𝑂𝜎 = ⋃
𝜎⪯𝜎′

𝑂𝜎′

where the closure 𝑂𝜎′ is the same in both classical and Zariski topo-
logies.

For the proof: [CLS11, Theorem 3.2.6]

B.5) Corollary: From the decomposition in the theorem above†, wesee b.4

get that 𝑂𝜎 is the minimal T-orbit in 𝑈𝜎, which is necessarily closed
since

𝑂𝜎 ∩ 𝑈𝜎 = 𝑂𝜎.

Over the whole of 𝑋, there are several of these orbits, one for every
maximal cone.
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B.6) Corollary: Every non-empty closed and T-invariant subset of
𝑋 must contain a closed minimal orbit†, since it is the finite union of see b.5

orbits, and the closure of every orbit contains an orbit of smaller di-
mension. Therefore an induction on the dimension provides an easy
proof.

B.7) Theorem: A toric variety 𝑋(Σ) is smooth if and only if every
cone in Σ is generated by a subset of a Z-Basis of N.

For the proof: [CLS11, Theorem 3.1.19]

B.8) Vector Space with Filtrations: Let E be a C-vector space. We
equip E with a collection of decreasing filtrations {E𝜌(𝑖)} for every
ray 𝜌 ∈ Σ(1) and call it a vector space with filtrations. Given a second
vector space with filtration (F, {F𝜌(𝑖)}𝜌∈Σ(1)), we define a morphism
of vector spaces with filtrations as a linear map 𝜓 ∶ E → F, that maps
E𝜌(𝑖) into F𝜌(𝑖) for every ray 𝜌 and every 𝑖 ∈ Z. This provide us with
a category.

B.9) Notation: Given a toric bundles E we denote by ΨE = {𝕦(𝜎)}𝜎∈Σ
the collection of multisets given by 1.8 so that for all cones 𝜎 in the
fan Σ

E|𝑈𝜎
≅ ⨁

[𝑢]∈𝕦(𝜎)
L[𝑢].

As a collection of functions over N, the multisets agree in intersec-
tions, so for 𝜎′ ⪯ 𝜎

𝕦(𝜎′) = 𝕦(𝜎)|𝜎′

since
⨁

[𝑢]∈𝕦(𝜎)
L[𝑢]|𝑈𝜎′ ≅ ⨁

[𝑢]∈𝕦(𝜎)|𝜎′

L[𝑢].
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B.10) Definition: A flag over a vector space V is a set of sub-vector
spaces constructing a sequence

{0} = V0 ⊊ ⋯ ⊊ V𝑘 = V.

We say this is a complete flag if there is a sub-vector space for every
dimension between 0 and the rank of V and a partial frag otherwise.

B.11) Proposition: The compatibility condition† implies the ranksee 1.19

condition†.see 1.34

For the proof: The compatibility condition states that

E𝜌(𝑖) = ∑
⟨[𝑢],𝑣𝜌⟩≥𝑖

E[𝑢],

therefore 𝑠
⋂
𝑙=1

E𝜌𝑙(𝑖𝑙) = ∑
⟨[𝑢],𝑣𝜌𝑙 ⟩≥𝑖𝑙 ∀𝑙

E[𝑢].

And since the dimension of E[𝑢] is the multiplicity of [𝑢] in 𝕦(𝜎) we get

dim
𝑠

⋂
𝑙=1

E𝜌𝑙(𝑖𝑙) = #{[𝑢] ∈ 𝕦(𝜎)|⟨[𝑢], 𝑣𝜌𝑙
⟩ ≥ 𝑖𝑙 ∀𝑙}.

Furthermore 𝐹𝑙(𝜌𝑙)𝑗𝑙
= E𝜌𝑙(Δ𝜌𝑗

(𝑗𝑙)), which completes the proof.

B.12) Proposition: The dimension of the intersection defines an up-
per semi-continuous regular function on the product of Grassmanni-
ans.
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For the proof: Let Gr1 = Gr(𝑛1, V) and Gr2 = Gr(𝑛2, 𝑉 ) be two Grass-
mannians with universal families Gr1 and Gr2, respectively — i.e.
the sheaves of sections of the tautological bundles. Then on the
product Gr1 ×Gr2 we can consider the locally free sheaf 𝜋∗

1Gr1 ⊕𝜋∗
2Gr2

and the morphism of sheaves

𝜋∗
1Gr1 ⊕ 𝜋∗

2Gr2 → OGr1×Gr2
⊗ V

(𝑣1, 𝑣2) ↦ 𝑣1 − 𝑣2

The kernel of this morphism is the sheaf of sections on the inter-
section of the tautological bundles. To see this let 𝑊1 ∈ Gr1 and
𝑊2 ∈ Gr2. Since 𝑣1 − 𝑣2 = 0 it follows that 𝑣1(𝑊1) = 𝑣2(𝑊2), how-
ever, 𝑣1(𝑊1) ∈ 𝑊1 and 𝑣2(𝑊2) ∈ 𝑊2. So 𝑣 = 𝑣1 = 𝑣2 takes value on
𝑊1 ∩ 𝑊2. The kernel of a morphism of coherent sheaves is coherent,
and therefore the dimension of the fibers is upper semi-continuous
[Har10, II 5.7 and III 12.8]. This completes the proof since the fiber
— i.e. the stalk — of a kernel sheaf is the kernel of the morphism
between stalks, that means it is the kernel of

𝑊1 × 𝑊2 → 𝑉
(𝑤1, 𝑤2) ↦ 𝑤1 − 𝑤2

which we already saw is isomorphic to 𝑊1 ∩ 𝑊2. This easily extends
to a finite product of multiple Grassmannians.

B.13) Lemma: In the context of 1.47 let M𝑓𝑟
Ψ be a fine moduli space

for M
𝑓𝑟
Ψ . Then a scheme MΨ has a GL𝑟(C)-invariant morphism of

schemes M𝑓𝑟
Ψ → MΨ if and only if there is a functor MΨ → ℎMΨ.

For the proof: Consider a GL𝑟(C)-invariant morphism M𝑓𝑟
Ψ → MΨ

and pick a family of toric bundles over 𝑆. Locally — that is, over an
affine open set — we can choose a frame, giving us a locally framed
family of toric bundles. Since M𝑓𝑟

Ψ is a fine moduli space, there are
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local morphisms from 𝑆 to M𝑓𝑟
Ψ . These morphisms descend to MΨ,

and they must agree in intersections since different frames fall in
the same GL𝑟(C)-Orbit. This means those local morphisms glue to a
global morphism 𝑆 → MΨ. This induces a functor MΨ → ℎMΨ.

On the other hand, consider we have such a functor. The functor
ℎM𝑓𝑟

Ψ is isomorphic to M
𝑓𝑟
Ψ and removing the frame gives a forgetful

functor M
𝑓𝑟
Ψ → MΨ. Combining all those functors gives a functor

ℎM𝑓𝑟
Ψ → ℎMΨ, and the Yoneda lemma provides a scheme morphism

M𝑓𝑟
Ψ → MΨ, which must be GL𝑟(C)-invariant by construction.

B.14) Proof of 1.10: A short proof is provided by [Pay07, Proposition
2.2]: Let E be a toric vector bundle on 𝑈𝜎 and 𝑥𝜎 a point in the min-
imal T-Orbit 𝑂𝜎 ⊂ 𝑈𝜎

†. Choose T-eigensections 𝑠1, … , 𝑠𝑟 such thatsee b.5

{𝑠𝑖(𝑥𝜎)} form a basis of the fiber E𝑥𝜎
. Such a set exists since over

an affine set there are enough sections, and actions of a torus over a
vector space are always diagonalisable†. These sections form a basis[Kly90, Proposition

2.1.1] for every point since the set of points where they do not is closed, T-
Invariant and does not include 𝑥𝜎, therefore it must be empty†. Assee b.6

these are eigensections, every 𝑠𝑖 spans a toric line bundle that must
be isomorphic† to L[𝑢𝑖], for some 𝑢𝑖 — which may or may not be thesee 1.8

eigenvalue to 𝑠𝑖. We get E ≅ ⨁𝑖 L[𝑢𝑖].

Quod erat demonstrandum

B.15) Proof of 1.41: We may assign to 𝕦(𝜎) a partial order, where
[𝑢] ≥ [𝑢′] if and only if — as a function over 𝜎 — the difference
[𝑢] − [𝑢′] is nonnegative. By moving down throughout 𝕦(𝜎) with re-
spect to this order, we can inductively choose E[𝑢] in the following
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matter: If [𝑢] is maximal, then the multiplicity of [𝑢] in 𝕦(𝜎) is ex-
actly dim ⋂𝜌 E𝜌(⟨𝑢, 𝑣𝜌⟩). So we can set

E[𝑢] = ⋂
𝜌 ray of 𝜎

E𝜌(⟨𝑢, 𝑣𝜌⟩).

Starting from such a maximal [𝑢] and moving down, the index ⟨𝑢, 𝑣𝜌⟩
decreases. That means we are moving left in the filtrations, so the in-
tersection above increases. In particular, dim ⋂𝜌 E𝜌(⟨𝑢, 𝑣𝜌⟩) is given
by #{[𝑢′] ∈ 𝕦(𝜎)|[𝑢′] ≥ [𝑢]}. Therefore, let E[𝑢′] be fixed by the induc-
tion hypothesis for every [𝑢′] > [𝑢]. We have

∑
[𝑢′]>[𝑢]

E[𝑢′] ⊂ ⋂
𝜌 ray of 𝜎

E𝜌(⟨𝑢, 𝑣𝜌⟩).

Choose also E[𝑢] to be any subspace of ⋂𝜌 E𝜌(⟨𝑢, 𝑣𝜌⟩) complementary
to ∑[𝑢′]<[𝑢] E[𝑢′]. Independently of our choices, we get at the end of
the process a direct sum E = ⊕E[𝑢], since all filtrations eventually
stabilize at E — to see that choose 𝑖𝜌 ≪ 0. Finally we check that for
any ray 𝜌 and integer 𝑖

E𝜌(𝑖) = ∑
⟨𝑢,𝑣𝜌⟩≥𝑖

E[𝑢]. (*)

For that, we apply the convexity of the cone 𝜎: find an [𝑢] such that
⟨𝑢, 𝑣𝜌⟩ = 𝑖 and ⟨𝑢, 𝑣𝜌′⟩ ≪ 0 for all other rays then ⋂𝜌′ E𝜌′(⟨𝑢, 𝑣𝜌′⟩) =
E𝜌(𝑖). Such [𝑢] may not be in 𝕦(𝜎), but there is a [𝑢] ∈ 𝕦(𝜎) just before
the dimension of the intersection jumps down. Use this [𝑢], and eq.
(*) follows. Quod erat demonstrandum
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B.16) Observation: [Pay07] requires for framed families that E ∶=
E|𝑥0×𝑆 be a trivial bundle while for unframed families it does not.
Since we do not know of any fine moduli space for the unframed case,
the precise definition of unframed families is not relevant. However,
for the framed case it is; the bundle E must be trivial, since those are
the families we get via pullbacks of the universal family.

B.17) Proof of 1.49: The equivalence of categories is in one direc-
tion given by associating to an 𝑆-family the vector bundle E ∶= E|𝑥0×𝑆
and the filtration E𝜌(𝑖) assigned according to 1.48 by the image of E𝜌

𝑢,
where 𝑖 ∶= ⟨𝑢, 𝑣𝜌⟩. Since the rank is defined over any single geometric
point 𝑠 ∈ 𝑆 and the multiset 𝕦(𝜎) is constant over all 𝑆, the rank con-
dition† follows from the classification theorem† for E|𝑋×𝑠. A morph-see 1.41

see 1.21 ism of 𝑆-families preserves the relative torus action, and therefore
restriction to E|𝑥0×𝑆 gives a morphism of vector bundles with filtra-
tions.

On the other hand, let (E, {E𝜌(𝑖)}) be a vector bundle over 𝑆 with
filtrations satisfying the rank conditions for our fixed collection of
multisets. Define the vector bundle on 𝑆

E𝜎
𝑢 = ⋂

𝜌 ray of 𝜎
E𝜌(⟨𝑢, 𝑣𝜌⟩)

for any 𝜎 ∈ Σ and 𝑢 ∈ M. Construct as previously† a C[𝑈𝜎 ×𝑆]-modulesee 1.21

E𝜎 = ⨁
𝑢∈M

E𝜎
𝑢

where multiplication by 𝜒𝑢′ is given by the natural inclusion E𝜎
𝑢 ⊂

E𝜎
𝑢−𝑢′. This induces a T𝑆-equivariant sheaf Ẽ𝜎 on 𝑈𝜎 × 𝑆 and these

sheaves glue together to form an 𝑆-family of toric vector bundles E on
𝑋. A morphism of vector bundles with filtrations induces a morphism
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of 𝑆-families of toric vector bundles by the same arguments as before.
The functor so defined is inverse to the functor E → (E, {E𝜌(𝑖)}) up
to natural isomorphism. This results in the desired equivalence of
categories. Quod erat demonstrandum
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C Notes on the Second Chapter

C.1) Observation: Altmann and Witt proved using the convexity of
the fan, that for degrees far away from the origin there is no pre-
Cohiggs field [AW21, Proposition 19]. The proof even gives a concrete
bound. They do not use this formalism, but it is evident in the proof
that this bound does not depend on the flag, just on the multiset given
by the toric bundle. This means the same proposition is also valid for
families of toric bundles with constant toric Chern class.
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D Notes on the Third Chapter

D.1) Proposition: Let 𝐸 and 𝐹 be two complex vector bundles over
a scheme 𝑋, by this we mean two linear 𝑋-schemes corresponding
to some locally free coherent sheaf over 𝑋 according to 2.16. Let 𝑞 ∶
𝐸 → 𝐹 be a morphism of vector bundles, i.e. a 𝑋-morphism between
𝐸 and 𝐹 which is linear on the fibers. Then dim{𝑣 ∈ 𝐸𝑥 ∶ 𝑞(𝑣) = 0} is
an upper-semi-continuous function on the Zariski topology of 𝑋.

D.2) Proof of d.1: According to 2.16 we may formulate the ques-
tions as a statement on sheaves: applying 𝜈 to an open subset 𝑈 ↪ 𝑋
provides a mapping between sections of 𝐹 and maps 𝑈 → 𝐹 , those
can be pulled back to 𝑈 → 𝐸 via 𝑞 and therefore correspond to sec-
tions of 𝐸. This means 𝑞 is a sheaf-morphism of the corresponding
locally free coherent sheaves of 𝐸 and 𝐹 . Let ker 𝑞 be kernel-sheaf.
The statement is, therefore, that the dimension of the fiber ker 𝑞|𝑥 is
upper-semi-continuous.

As a kernel sheaf of coherent sheaves ker 𝑞 is also a coherent sheaf
and the identity 𝑓 ∶ 𝑋 → 𝑋 is trivially a flat morphism, therefore
[Har10, III Theorem 12.8] states that dim 𝐻(𝑖)(𝑋𝑥, (ker 𝑞)𝑥) is upper-
semi-continuous, where 𝐻(𝑖) is the i-th right derived functors of the
functor of sections. However (ker 𝑞)𝑥 is just the stalk over the point
𝑥 ∶= 𝑋𝑥 consisting of the fiber ker 𝑞|𝑥. Since

𝐻0(𝑋𝑥, (ker 𝑞)𝑥) = Γ(𝑋𝑥, (ker 𝑞)𝑥) = ker 𝑞|𝑥

the proposition follows by considering 𝑖 = 0. Quod erat demonstrandum

135



D.3) Observation: To see that maximal span and minimal inter-
section are distinct conditions, consider the following two examples:
First, three lines through the origin in C3, all falling in the same 2-
dimensional plane. The intersection of any subset of those is always
0, therefore minimal. However, they do not span C3. The second
example are three planes through the origin in C3, all distinct but
containing the same line. The intersection of the 3 planes is of di-
mension one, therefore not minimal since the minimal intersection
is a single point. However, the planes are distinct, so any two of those
already span C3.

D.4) Lemme de Descente: Let 𝑋 be a variety with an action of G,
and 𝑋/G a geometric quotient. Let 𝐸 be a vector bundle over 𝑋 with
a transitive action of G. Then there is a vector bundle 𝐸/G over 𝑋/G
if and only if the stabilizer G𝑥 of a point 𝑥 ∈ 𝑋 in a closed G-orbit acts
trivially on the fiber 𝐸𝑥.

For the proof: [DN89, Théorème 2.3]

D.5) Proof of 3.13: On the conditions of the theorem, the space of
framed toric bundles is a product of projective spaces (P𝑟−1)𝑛: for
every ray 𝜌 the filtration is defined by a 1-dimensional subvector
space 𝑉𝜌 on C𝑟. A change of frame acts as GL𝑟(C) on 𝑉𝜌. The space
of unframed toric bundles is nothing else than the space of projective
configurations (P𝑟−1)𝑛//GL𝑟(C). This is a well-known example, found
for instance in [Hu08] and [HKT19]. For the proof, we follow [Kap93,
Proposition 2.1.7]. To arrive at the conclusion, we only need to show
that the closure of orbits in M𝑓𝑟

Ψ
𝑔𝑒𝑛

has constant homology. We will
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even be able to exactly calculate this homology for 𝑛 > 𝑟 + 1 — in
the opposite case 𝑛 ≤ 𝑟 + 1 there is only one generic orbit as seen in
1.51 and the theorem is trivial. This means we need to only prove the
following:

D.5A) Assertion: Let [𝑚𝑖] be the homology class of the projective
space P𝑚𝑖 inside P𝑟−1, then according to the Künneth formula the
elements [𝑚1] ⊗ ⋯ ⊗ [𝑚𝑛] form a basis of the graded homology of
(P𝑟−1)𝑛. The closure of a GL𝑟(C)-Orbit in M𝑓𝑟

Ψ
𝑔𝑒𝑛

— for 𝑛 > 𝑟 + 1
— has homology class given by

𝛿 = ∑
𝑚1+⋯+𝑚𝑛=𝑟2+1

[𝑚1] ⊗ ⋯ ⊗ [𝑚𝑛].

For linearly generic points the GL𝑟(C)-stabilizers are just multiples
of the identity. To see that just consider for instance how the only
linear transformations fixing [1 ∶ 0 ∶ 0], [0 ∶ 1 ∶ 0] and [0 ∶ 0 ∶ 1] are
diagonal matrixes. From those the only ones fixing [1 ∶ 1 ∶ 1] are the
multiple of the identity. This reflects the fact that [1 ∶ 0 ∶ 0], [0 ∶ 1 ∶ 0],
[0 ∶ 0 ∶ 1] and [1 ∶ 1 ∶ 1] are linearly generic. On the other hand,
[1 ∶ 0 ∶ 0], [0 ∶ 1 ∶ 0], [0 ∶ 0 ∶ 1] and [1 ∶ 1 ∶ 0] are not linearly generic
and therefore have non-trivial stabilizers. Any set of linearly generic
points can be reduced to an example like this by just choosing 𝑟 of
those points to form a basis.

The dimension of an orbit is the dimension of the group minus the
dimension of the stabilizer. Therefore for points in M𝑓𝑟

Ψ
𝑔𝑒𝑛

the orbits
have dimension 𝑟2 − 1. So the closure of the orbit has homology class
in H2(𝑟2−1)((P𝑟−1)𝑛), that means it must be of the form

∑ 𝑎𝑚1,⋯,𝑚𝑛
[𝑚1] ⊗ ⋯ ⊗ [𝑚𝑛]
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where ∑𝑛
𝑖=1 𝑚𝑖 = 𝑟2 − 1. That makes the formula in the assertion

plausible. We only have to prove that the coefficient 𝑎𝑚1,⋯,𝑚𝑛
of every

basis element is indeed 1. From general homology theory we know
that we can count the coefficients by intersecting with the dual of
a basis element, which is a generic linear space of respective codi-
mension. That is to say, for a point 𝑥 ∈ M𝑓𝑟

Ψ
𝑔𝑒𝑛

the intersection of
GL𝑟(C) ⋅ 𝑥 with a generic 𝐿1 × ⋯ × 𝐿𝑛 should be exactly one point,
where 𝐿𝑖 is a linear subspace of P𝑟−1 with codimension 𝑚𝑖. To do
that we first use a linear argument to show the intersection is at
most one point. Then we count dimensions and use 3.11 to show it
must be exactly one point.

The intersections between GL𝑟(C) ⋅ 𝑥 and 𝐿1 × ⋯ × 𝐿𝑛 are equivalent
to finding a 𝑟 × 𝑟 matrix 𝑔 with the property

𝑔(𝑥𝑖) ∈ 𝐿𝑖 for every 𝑖 (*)

where 𝑥 = (𝑥1, ⋯ , 𝑥𝑛) — for notation’s sake we do not differentiate
between the linear subspace 𝐿𝑖 ⊂ C𝑟 and its image in the projective
space P𝑟−1. These equations form a linear system, the matrix 𝑔 has
𝑟2 variables and every equation 𝑔(𝑥𝑖) ∈ 𝐿𝑖 adds 𝑚𝑖 restrictions to this
system. One way to see that is to write

𝑔(𝑥𝑖) = 𝑏1𝑣1 + ⋯ + 𝑏𝑟−𝑚𝑖
𝑣𝑟−𝑚𝑖

where the 𝑣’s form a basis of 𝐿𝑖. This equation adds 𝑟 linear equal-
ities to the system, but also 𝑟 − 𝑚𝑖 new unknowns — the coefficients
𝑏1, ⋯ 𝑏𝑟−𝑚𝑖

. That means the whole system has 𝑟2 variables and 𝑟2 − 1
restrictions, and the 𝑥𝑖’s are linearly generic†. So there is at leastsee 3.11

a 1-dimensional subvector space of solutions for 𝑔. However for di-
mension reasons and generality of 𝐿1 × ⋯ × 𝐿𝑛 the intersection with
GL𝑟(C) ⋅ 𝑥 must be a discrete set of points in (P𝑟−1)𝑛 (Bertini’s the-
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End Notes

orem). So the set of solutions must be 1-dimensional. So the cooefi-
cients of 𝑚1 ⊗ ⋯ ⊗ 𝑚𝑛 is at most one. However if the solutions we get
for 𝑔 are degenerated matrixes it could happen that 𝑔(𝑥𝑖) = 0 and this
would not correspond to a point in P𝑟−1. So we are still not finished.

To conclude that 𝑔 is not degenerated, we must invert our logic. In-
stead of acting with GL𝑟(C) in M𝑓𝑟

Ψ , we act in the space of tuples
(𝐿1, ⋯ , 𝐿𝑛). Let Π be this space — which is a product of Grassmani-
ans — and let Π𝑌 be the subspace such that 𝑥𝑖 ∈ 𝐿𝑖. If the matrix 𝑔
is degenerated, it means that the union of GL𝑟(C)-orbits of points in
Π𝑌 is not dense in Π. To see that start with a (𝐿′

1, ⋯ , 𝐿′
𝑛) ∈ Π𝑌 . If 𝑔

is degenerated, (𝑔𝐿′
1, ⋯ , 𝑔𝐿′

𝑛) is not generic since

∑
𝑖

𝑔𝐿′
𝑖 ⊂ 𝑔(C𝑟) ⊊ C𝑟.

If we count dimensions we get

∑
𝑖

dim 𝐿𝑖 = 𝑛𝑟 − 𝑟2 − 1

but 𝑛 > 𝑟 + 1 so a generic tuple must satisfy

∑
𝑖

𝐿𝑖 = C𝑟.

That means even though we have a solution 𝑔(𝑥𝑖) ∈ 𝐿𝑖 for generic but
fixed 𝐿𝑖’s, we cannot find (𝐿′

1, ⋯ , 𝐿′
𝑛) ∈ Π𝑌 such that (𝐿1, ⋯ , 𝐿𝑛) is in

the closure of its orbit. The codimension of Π𝑌 in Π is 𝑟2 − 1, since

𝐿𝑖 ∈ Gr(𝑟 − 𝑚𝑖,C𝑟)
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and the locus 𝑥1 ∈ 𝐿1 is isomorphic to Gr(𝑟 − 𝑚𝑖 − 1,C𝑟−1),. Hence,
counting the dimension of this Grassmannians we get to codimension
𝑚𝑖 and again ∑𝑖 𝑚𝑖 = 𝑟2 −1. That means a degenerated matrix 𝑔 im-
plies that the generic tuple (𝐿′

1, ⋯ , 𝐿′
𝑛) ∈ Π𝑌 has a PGL𝑟(C)-stabilizer

with positive dimension. We will show this is not the case.

For this we use that 𝑥 is linearly generic. Let us choose 𝐿𝑖’s, with 𝑥𝑖 ∈
𝐿𝑖, such that the stabilizer is trivial. For every 𝐿𝑖 the equation 𝑔𝐿𝑖 =
𝐿𝑖 reduces the stabilizer in 𝑚𝑖(𝑟 − 𝑚𝑖) dimensions. Since ∑ 𝑚𝑖 =
𝑟2−1 even in the worse case 𝑚𝑖 = 1 the system is still overdetermined.
To be more concrete, in this case one could pick 𝐿𝑖 to be the span of a
𝑟−1 subset from {𝑥1, ⋯ , 𝑥𝑛} and also pick the 𝑥𝑗’s to always minimise
the dimension of any intersection �̂� = 𝐿𝑗1

∩ 𝐿𝑗2
∩ ⋯ ∩ 𝐿𝑗𝑟−1

, this is
possible because {𝑥1, ⋯ , 𝑥𝑛} is linear generic. There are more than
𝑟 + 1 such �̂�’s and they are all one-dimensional. The only possible
stabilizer of (𝐿1, ⋯ , 𝐿𝑛) are the multiples of the identity.

This means the 𝑔 provided as solution to the linear system is invert-
ible and provides one single intersection point between GL𝑟(C) ⋅ 𝑥 and
𝐿1 × ⋯ × 𝐿𝑛. Quod erat demonstrandum
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