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Zusammenfassung

Die verallgemeinerten Gelfand—Graev Charaktere sind ein wichtiges Mittel zur Analyse von
unipotenten Charakteren der endlichen Gruppen vom Lie Typ. Allerdings ist ihre Konstruktion
bekannterweise mit groBen Schwierigkeiten verbunden, da sie unter anderem von einer nicht
eindeutig definierten unipotenten Untergruppe der zugrundeliegenden algebraischen Gruppe
abhingt. Deshalb war es von groem Nutzen, dass S. Andrews und N. Thiem in der Lage wa-
ren, die verallgemeinerten Gelfand—Graev Charaktere der endlichen speziellen linearen Grup-
pe aus Supercharakteren der endlichen Gruppe von unitrianguldren Matrizen zu erzeugen.
Ein unmittelbarer Gedanke ist es, den Zusammenhang zwischen den verallgemeinerten Gel-
fand—Graev Charakteren und der Supercharaktertheorie auf andere endliche Gruppen vom Lie
Typ auszuweiten. So wird in dieser Arbeit der Fall der endlichen speziellen orthogonalen
Gruppe mit gerader Dimension und guter Charakteristik untersucht.

Diese Supercharaktertheorie der endlichen Gruppe von unitrianguldren Matrizen wurde ur-
spiinglich von N. Yan eingefiihrt, um eine Annzherung der Klassifikation der irreduziblen
Charaktere dieser Gruppe, was an sich ein wildes Problem ist, zu schaffen. In ihrem Mittel-
punkt steht ein 1-Cozykel von der Gruppe der unitriangulidren Matrizen in ihre Algebra. Um
ihren Gebrauch auf weitere endliche Gruppen vom Lie Typ auszudehnen, haben C. A. M.
André und A. M. Neto Supercharaktertheorien fiir die maximalen unipotenten Untergruppen
der endlichen Gruppen vom Typ B,, C, und D, definiert, indem sie sogenannte elementare
Charaktere nutzten, die induziert von linearen Charakteren der Wurzeluntergruppen sind. Um
zum Gebrauch eines 1-Cozykel zuriickzukommen, hat M. Jedlitschky die Supercharaktere von
C. A. M. André und A. M. Neto der speziellen orthogonalen Gruppe mit gerader Dimension
und guter Charakteristik zerlegt, die zwar nicht mehr eine Supercharaktertheorie bilden, da
es fiir sie keine zugehorige Menge der Superklassen gibt, aber die restlichen Eigenschaften
der Supercharaktertheorie beibehalten. Fiir die Klassifikation dieser Charaktere kann eine Ab-
wandlung einer Gram Matrix fiir jeden solchen Charakter definiert werden, die es nicht nur
moglich macht identische Charaktere zu identifizieren, sondern die Information iiber ihre Ir-

reduzierbarkeit enthalt.



Wihrend es S. Andrews und N. Thiem moglich war, die verallgemeinerten Gelfand—Graev
Charaktere der endlichen speziellen linearen Gruppe direkt aus den Supercharakteren ihrer
maximalen unipotenten Untergruppe zu bilden, was die aufwendige Konstruktion, die N. Ka-
wanaka definiert hatte, umgeht, ist dasselbe fiir die verallgemeinerten Gelfand—Graev Cha-
raktere der endlichen speziellen orthogonalen Gruppe mit gerader Dimension nicht moglich,
da die Supercharaktere von C. A. M. André und A. M. Neto im Allgemeinenen nicht dafiir
geeignet sind. Allerdings ist es moglich, mithilfe der zuvor genannten Gram Matrix, die von
M. Jedlitschky definierten Konstituenten dieser Supercharaktere nutzen, um die verallgemei-

nerten Gelfand—Graev Charaktere der endlichen speziellen orthogonalen Gruppe zu erzeugen.



Abstract

The generalized Gelfand—Graev characters defined by N. Kawanaka are an important tool for
the analysis of unipotent characters of finite groups of Lie type. But their construction is noto-
riously difficult, as among other things it relies on a not uniquely defined unipotent subgroup
of the underlying algebraic group. Therefore, it was of great benefit that S. Andrews and N.
Thiem were able to construct generalized Gelfand—Graev characters for the finite special lin-
ear group from supercharacters of the finite group of unitriangular matrices. An immediate
idea is to expand this connection between generalized Gelfand—Graev characters and super-
character theory to other finite groups of Lie type. We will investigate the case of the finite
special orthogonal group of even dimension in good characteristic.

This supercharacter theory of the finite group of unitriangular matrices was originally intro-
duced by N. Yan for the purpose of approximating the classification of the irreducible char-
acters of this group, which in itself is a wild problem. It centers around a 1-cocycle from
the group of unitriangular matrices onto its algebra. Expanding their utilization to other fi-
nite groups of Lie type, C. A. M. André and A. M. Neto defined such supercharacter theories
for the maximal unipotent subgroups of the finite groups of type B,, C, and D, by using
so-called elementary characters which are induced from linear characters of root subgroups.
Reintroducing the use of a 1-cocycle M. Jedlitschky decomposed the supercharacters of C. A.
M. André and A. M. Neto for the finite special orthogonal group of even dimension in good
characteristic, which no longer form a supercharacter theory owing to not having an accom-
panying set of superclasses but still retain the other properties of a supercharacter theory. For
the classification of these characters, we can define a derivation of a Gram matrix for each
such character, which not only allows us to identify identical characters but also contains the
information about the irreducibility of such characters.

While S. Andrews and N. Thiem were able to establish the generalized Gelfand—Graev char-
acters of the finite special linear group directly from supercharacters of its maximal unipotent
subgroup, avoiding the laborious construction defined by N. Kawanaka, the extension of the

link between supercharacter theories and generalized Gelfand—Graev characters to the case of



the special orthogonal group of even dimension is not immediately possible, as the superchar-
acters defined by C. A. M. André and A. M. Neto in general do not fit this purpose. Yet, with
the aid of the aforementioned Gram matrix, we can use the constituents of these superchar-
acters defined by M. Jedlitschky to produce the generalized Gelfand—Graev characters of the
finite special orthogonal group.
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Introduction

For the study of representation theory of finite groups Persi Diaconis and I. Martin Isaacs
[DIO8] created an abstaction of the duality of irreducible characters and conjugacy classes,
called a supercharacter theory. Such a supercharacter theory consists of a set X of characters
called supercharacters, such that every irreducible character is constituent of exactly one su-
percharacter, and a set K of unions of conjugacy classes called superclasses, such that every
supercharacter of the group is constant on every superclass, as well as |X| = |X|. The greatest
possible supercharacter theory consists of the set irreducible characters and the set conjugacy
classes, while the smallest possible supercharacter theory has the principal character together
with the sum of all other irreducible characters as supercharacters and the identity element
together with the set of all other group elements as superclasses.

This concept was a generalization of the supercharacter theory for UT, = UT,(F,), the group
of upper unitirangular n X n matrices over a finite field F,, where g is the power of some
prime p, created by Carlos A. M. André [And95a] and later Ning Yan [YanOl] indepen-
dently.! The classification of the conjugacy classes of UT, is a known wild problem, so
Yan designed a system that can approximate this classification. He used the orbit method
established by Alexandre A. Kirillov [Kir62] to construct UT,- UT,-biorbits on both the al-
gebra of the nilpotent upper n X n matrices ut, and its dual space ut,, where each such
biorbit is a disjoint union of adjoint orbits. For the construction of these supercharacters it
is essential that both the left and right multiplication of UT, on ut, together with the map
f:UT, — ut, with f(g) = g — I for g € UT,, define a 1-cocycle, that is UT,, acts on ut, with
bothgh—-I=gh-1)+(@g—-1)=(g—-Dh+(h—-1) for g,h € UT,. This way the UT,- UT,-
biorbits of ut, applied to f~! are the superclasses, while the UT,- UT,,-biorbits of ut’ give rise
to the supercharacters by taking the sum over all elements of such a UT,- UT,-biorbit applied
to a non-trivial group homomorphism from F, to C*.

For other finite groups of Lie type we do not have access to such constructions of biorbits,

but for the other classical finite unipotent groups of type B,(gq), C,.(q) and D,(q) André and

I'see also [Yan10] as well as [And95b], [And01], [And02] and [And03]



Introduction

Ana M. Neto [ANO06] were able to adjust André’s previous work for the type A,(g) to create
supercharacter theories for the other.? These supercharacters are products of so-called elemen-
tary characters, which in turn are induced from linear characters of root subgroups. We will
focus here on the type D,(q) and the finite special orthogonal group SOy for even N = 2n in
particular. The special orthogonal group SOy depends on a symmetric bilinear form b on F,",
which gives rise to an anti-involution - : My(F,) — My(F,) with g'g =1 for g € SOy. If we
choose this bilinear form such that b(u, v) = u'Jyv for u,v € F,N, where Jy € My(F,) is the

counter-diagonal matrix

‘]N: N )
1 0

then the group of unitriangular matrices Uy = UTy N SOy in SOy is a maximal unipotent
group in SOy. Scott Andrews [And15] has shown that André’s and Neto’s supercharacter
theory is again based on UTy-orbits in uy and u}, respectively using the fact that the group
UTy actson iy by g x X = g Xg € uy for g € UTy and X € uy.

Reintroducing the use of a 1-cocycle, Markus Jedlitschky [Jed13] decomposed the superchar-
acters of André and Neto for the maximal unipotent group Uy of the special orthogonal group
into characters, such that they retain the property that every irreducible character is constituent
of exactly one such character but do not admit a corresponding set of superclasses. This con-
cept was later expanded upon Qiong Guo and Richard Dipper [DG15], and it will be the
topic of the first part of this thesis.> The map 7 : My(F,) — v that restricts a matrix to the
vector space v of the matrices with non-zero entries only strictly above both the diagonal and
counter-diagonal then admits a 1-cocycle together with the right action of UTy on v defined by
Vog =n(Vg)forV e vand g € UTy, such that we have n(gh) = n(g)oh+n(h) for g,h € UTy.
As mrestricted to Uy is a bijection to v, it allows for the construction of characters for the U y-
orbits in the dual space v, which are represented by certain elements in v called core patterns.
These characters are constructed by taking the sum over all elements of an U y-orbit evaluated
at the average value of a conjugacy class of Uy and applied to a non-trivial group homomor-
phism from F, to C*. We will establish a direct link to the characters of André and Neto as
they are the characters constructed in the same way over the sum of certain UTy-orbits in v,

which are represented by elements v called verge patterns. Every core pattern in v is predi-

Zsee also [AN09] and [ANOS].
3see also [GID18] and [GID19]



Introduction

cated on a verge pattern in whose UTy-orbit it is contained, and characters for core patterns
based on different verge patterns are mutually orthogonal. All characters based on the same
verge pattern, that is, their respective core patterns are contained in the same U7 y-orbit, are
either identical or mutually orthogonal. But since the aforementioned 1-cocycle defined for a
left action of UTy on v does not commute with its right action, finding identical characters is
not a straight forward task as it is for the unipotent group of type A,, where supercharacters
are identical if and only if they are based on the same UT,- UT,-biorbit. So in order to classify
these characters, we will construct an n X n matrix, derived from a Gram matrix based on the
bilinear form on F,", that defines the orthogonal group, which is constant on any U y-orbit and

congruent under the operation of a certain group to such a matrix for any identical character.

This Gram matrix has versatile applications, as it can not only be used for the classification of
the characters for core patterns, but also for the construction of core patterns representing the
different unipotent conjugacy classes of the finite special orthogonal group. Tony A. Springer
and Robert Steinberg [SS70] have shown that classifying the unipotent conjugacy classes of
an algebraic group G or the nilpotent orbits of its Lie algebra ut can be done by using the
Jacobson-Morozov theorem by Nathan Jacobson and Valery V. Morozov [Jac79] if the char-
acteristic of the field on which the group is based is either zero or a large enough prime. Here
any nilpotent element A € ut of the Lie algebra is linked with another nilpotent element B € ut
as well as an element 7' € ut of the Cartan subalgebra such that there is an algebra isomor-
phism from the two-dimensional special linear Lie algebra sl, to the subalgebra spanned by
the triple {A, B,T}. This allows for the imposition of a Z-grading of the Lie algebra such
that ut = D.. uty(z) for subalgebras ut,(z) < ut with A € ut,(2). Furthermore, there is a
parabolic subgroup P4 < G linked to the nilpotent element of A and a descending series of
normal unipotent subgroups U,; < P4 of P, for i € N, where U, is the unipotent radical
of P,, such that Lie(P,) = @ _, uta(z) and Lie(Uy,,) = P
taken by Pawan Bala and Roger W. Carter [BC74] by using distinguished parabolic subgroups

uta(z). A further approach was

z>0 >0

of Levi complements for the classification of the nilpotent orbits, which Klaus Pommerening
[Pom77] has proven also holds for smaller characteristic if that characteristic is good.*

Nilpotent orbits of classical groups can be linked to partitions of the dimension of the group
by calculating the rank of the powers of their representatives, which in turn identifies the
dominance order on the set of partitions with the order on the nilpotent orbits, where an orbit
is less or equal than another orbit if the first is contained in the algebraic closure of the latter.

The nilpotent orbits of the Lie algebra of the general linear group Gly are represented by

“see also [Pom80]
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all partitions of N, whereas the nilpotent orbits of the Lie algebra of the special orthogonal
group SOy are represented by partitions of N where every even element occurs with even
multiplicity, unless the partition only comprises even elements, in which case there are two
nilpotent orbits for each such partition. Relating this to the finite groups, the fixed points of
nilpotent orbits of the Lie algebra of the general linear group are themselves nilpotent orbits
of the finite algebra, while the fixed points of nilpotent orbits of the Lie algebra of the special
orthogonal group split into multiple nilpotent orbits of the finite algebra depending on the
number of unique odd elements in their respective partition. Representatives of these nilpotent
orbits can be can be constructed from the core patterns defined by Jedlitschky by again using

the aforementioned Gram matrix.

Linking the topic of supercharacter theory to another vital concept in the field of repre-
sentation theory, Andrews and Nathaniel Thiem [AT17] were able to describe generalized
Gelfand—Graev characters for the classical finite group of type A,(g) by the method of super-
characters of UT,,;,. The Gelfand—Graev character, developed by Israil M. Gel’fand and Mark
I. Graev [GG62], is the character of a finite group of Lie type induced from a character of a
maximal unipotent subgroup in general position. This character is not irreducible, but all its
irreducible constituents occur with multiplicity one. From this character, Noriaki Kawanaka
[Kaw85] derived the generalized Gelfand—Graev characters in order to prove Veikko Ennola’s
[Enn63] conjecture on the irreducible characters of the finite unitary group. These are char-
acters of a finite group of Lie type representing each unipotent conjugacy class of the corre-
sponding algebraic group, and they are constructed by inducing a character related to each
such conjugacy class from a unipotent subgroup U, s, situated between the groups U; and U,
that is maximal such that this character is linear. Using George Lusztig’s [Lus92] concept of
unipotent support, Meinolf Geck and David Hézard [GHO7] have shown that if the prime p is
large enough the generalized Gelfand—Graev characters are up to their rank fully determined
by the fixed points of the unipotent conjugacy classes of the algebraic group on which the
character as well as its dual character vanishes, where the dual character is here with regard to
the Alvis-Curtis-Kawanaka duality defined by both Charles W. Curtis [Cur80] and Kawanaka
[Kaw81] independently. Imposing the dominance order on the set of unipotent conjugacy
classes of the algebraic group, a generalized Gelfand—Graev character then vanishes on every
unipotent conjugacy class that is not smaller than the conjugacy class aligned to the character,
while its dual vanishes on every unipotent conjugacy class that is not larger than this conju-

gacy class. Here the Gelfand—Graev character, considered the character aligned to the largest
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unipotent conjugacy class of regular unipotent elements, vanishes on no unipotent conjugacy
class, whereas its dual is zero for every unipotent element but the regular unipotent elements.
The generalized Gelfand—Graev characters are notoriously hard to construct, among other
things, because the unipotent group from which they are induced is not uniquely defined. This
makes the Andrews’ and Thiem’s approach appealing, as we can circumvent this complex con-
struction and use characters induced from the group of upper unitriangular matrices instead. It
is a palpable idea to try the same method for the special orthogonal group with the superchar-
acters of André and Neto, but these supercharacters are in general too "large" for this cause.
Yet, the characters defined by Jedlitschky, which are constituents of such supercharacters, fit
this purpose. While unlike in the case of the general linear group, we cannot define the group
U, s from which the generalized Gelfand—Graev character is induced, but we can construct a
suitable character for the group U, containing U, 5. Imposing comparable restrictions on core
patterns for nilpotent orbits to the "non-nesting" condition for nilpotent elements by Andrews
and Thiem, we can reduce the corresponding character to the normal unipotent group U; and
induced again to the full group SOy we obtain the generalized Gelfand—Graev character for
this nilpotent orbit up to some scalar. If we impose further restrictions on this core pattern,
we can find a set of core patterns such that the sum of their characters induced to SOy is just
this character. This way we can describe the generalized Gelfand—Graev characters as sums
of characters of Uy induced to SOy over a set of core patterns, but the restrictions on the core
pattern for this nilpotent orbit is so severe that there are not many choices left. Therefore, we
will limit our endeavour to a singular core pattern for each nilpotent in which case the rank
of the character is minimal, that is, it is as close to the rank of the corresponding generalized

Gelfand—Graev character as possible.

Content of this thesis

Chapter one: The special orthogonal group

In chapter one we will outline basic results about the special orthogonal group over fields of fi-
nite characteristic. For this purpose in the first section we will give a rudimentary introduction
into linear algebraic groups and their Lie algebras.

In the second section we define a bilinear form b on the vector space F;V over the algebraically
closed field Fq for a "good prime" 2 # p € N such that the special orthogonal group SOy
comprises the elements that preserve b and have determinant one. We choose the bilinear form

b such that the group of upper triangular matrices in SOy is a Borel group and its unipotent

11
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radical Uy < SOy is the group of upper unitriangular matrices, while the group of diagonal
matrices in SOy is a maximal torus in this Borel group.

In the third section we introduce reduced root systems both for the general linear group GLy
and the special orthogonal group SOy for their respective maximal torus of diagonal matrices.
With this we can define pattern subgroups for both groups, which are subgroups of the upper
unitriangular matrix groups that are normalized by the maximal torus. A pattern subgroup
of GLy is defined by its support above the diagonal, that is the sets of positions above the
diagonal of N X N-matrices, on which entries can be non zero. As we will show in lemma
1.3.9, the same holds for pattern subgroups of SOy, which are defined by their support above
both the diagonal and counter-diagonal. As the map x — x — I defines a bijection from the
variety of unipotent elements in GLy onto the variety of nilpotent elements of its Lie algebra,
so does the Cayley transformation x +— (x—I)(x + I)~! defined in lemma 1.3.12 for the variety
of unipotent elements in SOy, which moreover defines a bijection from the pattern subgroups
of SOy onto their respective Lie algebra.

In the last section we will relate these linear algebraic groups over an algebraically closed field
to their counterparts of groups over a finite field F, where g € N is a power of the prime p.
For that purpose we use the standard Frobenius endomorphism, where its fixed points applied
to Gly and SOy are the finite linear algebraic group GLy and the finite special orthogonal
group SOy, where the structure of the upper unitriangular matrix groups as well as the pattern

subgroups is preserved.

Chapter two: Decomposition of supercharacters for SOy

In chapter two we will classify the characters of Uy established by Jedlitschky, by extracting
their information into a symmetric n X n-matrix that is derived from a Gram matrix for the
bilinear form b.

In the first section we will discuss the 1-cocycle of the group of upper unitiriangular matrices
UTy < GLy on the vector space v of N X N-matrices with non-zero entries only above both the
diagonal and couter-diagonal, which moves non-zero entries of v into positions to the right,
and its "dual" group action, which moves non-zero entries of v into positions to the left.

In the second section we will focus on the super-character-theory of Uy introduced by André
and Neto, which gives us a set of mutually orthogonal characters, each represented by an
element in the nilpotent orthogonal algebra of upper triangular matrices with at most one non-

zero entry per row and column, and the restriction of these representatives to v will be called
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verge patterns. In theorem 2.2.14 we can then use the "dual" action of the 1-cocycle, defined in
the previous section, to express these characters as sums over the UT y-orbit of a verge pattern.
In the third section we turn to the characters of Uy introduced by Jedlitschky, which are, as
we will show in theorem 2.3.1, similarly defined as sums over Uy-orbits for the elements
of the UTy-orbit of a verge pattern. We can then immediately see that these characters are
constituents of a character, defined in the previous section, if they are based on the same verge
pattern. The UT y-orbit for a verge pattern splits into different Uy-orbits and for the rest of this
section we will restrict the discussion to the special case of Uy-orbits of verge patterns. These
have multiple advantages, such as the stabilizer being a pattern subgroup, which we will show
in lemma 2.3.2. Moreover, in theorem 2.3.6 we can show that for a verge pattern A € v there
is a pattern subgroup R4 < Uy that defines all other pattern whose character is equal to the
character of A.

In the last section we will generalize the previous discussion of characters of Uy-orbits for
verge patterns to characters of all Uy-orbits in the UT y-orbit of a verge pattern, which repre-
sentatives are called core patterns. In lemma 2.4.2 we define a subset D4, C UTy for a verge
pattern A € v such that the D4-orbit of A is the set of core patterns based on A. In theorem
2.4.6 we will then show that D is a set of representatives of the (Uy, Staby 7, (A))-double coset
of UTy, which shows that indeed the core patterns are representatives of the Uy-orbits in the
UTy-orbit of a verge pattern. Returning to the subgroup Ry, defined in the previous section,
in theorem 2.4.10 we will define a group action of it on D4. Then two characters are mutually
orthogonal unless they are based on the same verge pattern and their respective representatives
are contained in the same orbit of this group action. Furthermore, the size of its stabilizer is
equal to its inner product, which especially means that a character is irreducible if and only
if its representative in D, has a trivial stabilizer under the action of R4. In lemma 2.4.12 we
can then define a map from D, into the set of symmetric n X n-matrices, which is derived
from a Gram matrix for the bilinear form 5. We will then define an operation of R4 on these
matrices in lemma 2.4.13, which maps one matrix to a congruent matrix, such that this action
commutes with the action on D4. This reduces the question of finding equal characters and

whether they are irreducible to a task of finding congruent matrices with certain restrictions.

Chapter three: Classification of the nilpotent orbits

In chapter three we will classify the nilpotent Uy-orbits in the orthogonal algebra over both

the algebraically closed field E as well as the finite field F,. We can then use core patterns to

13
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produce representatives of these orbits for the finite case, which depend on the determinant of
certain sub-matrices of the n X n-matrix defined in the previous section.

In the first section in theorem 3.1.1 we will first define a basis for a nilpotent element in
the orthogonal algebra over any field, such that the Gram matrix is a specific block matrix.
Then the size of these blocks and equally the rank of all powers of this matrix determines a
partition A + N for which every even element occurs with even multiplicity, that is constant
for every element of one Uy-orbit. The centralizer of a nilpotent element in the orthogonal
group over the algebraically closed field then is the semidirect product of the centralizer of a
one-dimensional torus, determined by the nilpotent element, acting on its unipotent radical,
as we will show in theorem 3.1.6. This second centralizer then is a direct product of multiple
orthogonal and symplectic groups, where their number of occurrences is determined by the
number of different odd and even elements in A respectively. Since orthogonal groups have
two connected components, while symplectic groups are connected, the centralizer of the
nilpotent element is connected if and only if the partition A4 only contains even elements.
Therefore, we will be able to show in theorem 3.1.8 that the 6N—orbit of a nilpotent element
is also its SOy-orbit, unless its partition contains only even elements, in which case the orbit
splits into two unique orbits.

In the second section we will determine the nilpotent orbits over a finite field F,. As we will
show in lemma 3.2.1, for a nilpotent element in the finite orthogonal algebra the fixed points of
the SOy-orbit splits into different SOy, where their number is equal to the number of elements
in the component group of the centralizer in SOy. We have shown that the centralizer in Oy
splits into two connected components for every unique odd element in the respective partition
A, so the centralizer in EN contains half that number. Finally, in lemma 3.2.2 we will be able
to distinguish these by taking the product of the elements of the Gram matrix representing
the odd elements of A, which will stay the same under conjugation modulo (F,*)?. Since
F,/(F,*)* = Z/2Z, we get the desired result of splitting into two orbits for every but one
unique odd element in A.

In the third section we define centred Young diagrams for partitions 4 + N for which even
elements have even multiplicity. Creating a Young tableau T by filling such a diagram with
elements {1, ... N} by certain rules will give us a verge pattern A € v. This together with a
symmetric matrix S, that is a sub-matrix of the previously defined Gram matrix, will give us
a core pattern d.A. As we will show in theorem 3.3.5, the nilpotent matrix representing this

core pattern will then fit the partition A, while their affiliation to a certain SOy is determined
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by the determinant of sub-matrices of S. In theorem 3.3.8 we will then construct tableaus and

corresponding matrices for every nilpotent orbit, which is possible in any case but for g = 3.

Chapter four: Core patterns for generalized Gelfand—Graev characters

In the last chapter we will tend to the topic of generalized Gelfand—Graev characters and the
connection thereof with the Jedlitschky characters. First we will briefly recapitulate Kawanakas
construction of generalized Gelfand—Graev characters, which are characters of SOy induced
from a unipotent subgroup U, s. This group is situated in the middle between the two normal
unipotent subgroups U, and U, of the fixed points of a parabolic group of SOy, which arise
from the Z-grading of soy with respect to a nilpotent element of soy.

In the second section we will show that the Jedlitschky character for a standard core tableau,
reduced to the normal subgroup Uy, is the induced character of the linear character of U,
giving rise to the generalized Gelfand—Graev character down to a scalar. In order to do so,
we first show in theorem 4.2.5 that such a reduced character is zero except on U,, which is
where we can convert the Jedlitschky character into the linear character for the generalized
Gelfand—Graev character, as we will do in theorem 4.2.6. In theorem 4.2.8 we will see that
such a character of U, induced back to Uy is a sum of Jedlitschky characters. Therefore
the generalized Gelfand—Graev characters are sums of Jedlitschky characters induced to SOy
down to a scalar, which we will calculate in lemma 4.2.9.

We conclude this chapter with a description of the generalized Gelfand—Graev characters of

the group SOy as Jedlitschky characters.
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Introduction

Notations

e For a field K and m,n € N let M,,.,(K) be the set of m X n-matrices over K and M,,(K)
be the set of quadratic n X n-matrices over K.

e For a matrix X € M,,,,(K)and 1 <i<m, 1 < j<nletX;; € K be the entry of X in the

i-th row and j-th column.

e Forl <i<mand1 < j<nlete; € M,x,(K) be the matrix with 1 being the entry in

i-th row and j-th column, while every other entry is 0.

e Forn € N let [n] = {1,2,...n} be the set of natural numbers ranging from 1 to n and

[[n]] =1{G, j) | 1 <i,j < n} be the set of tuples with entries ranging from 1 to n.

e For i, j € N let ¢;; € {0,1} be the Kronecker delta with §;; = 1 if i = jand 6;; = 0

otherwise.

e For a prime p € N let F, = Z/pZ be the prime field with p elements and Fq the alge-
braically closed field with characteristic char(Fq) = p.

e For 1 si<j§Nwithi+j<N+1andceKletxij(c):I+c(e,»j—eﬁ)betheelement

of a root subgroup.

o Letd=(1™,2",3"_...)F N be the partition of N, where for i € N the number m; € N,

is the multiplicity with which i occurs in A.
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1 The special orthogonal group

In order to summarize general results about the finite special orthogonal group SOy for even
N = 2n with n € N over a finite field F,, where ¢ = p* € N for some k € N is the power of
a prime p € N, we will first introduce some basic information about linear algebraic groups.
In the second section, we will introduce the special orthogonal group SOy over the algebraic
closure E of the prinE:Nﬁeld IF, for a prime p € N as the group of N X N matrices that preserve
a bilinear form b on [, and have determinant equal to 1. To ensure certain properties of the
group, we restrict the prime p to be a "good prime", which in this case means p # 2.! In the
third section we define root systems both for the general linear group and special orthogonal
group, which allow us to define pattern subgroups of their respective groups, that is subgroups
of the unipotent radical of a Borel group that are products of root subgroups. In the fourth
section, we will relate these groups back to their finite counterparts. The general linear group
and special linear group over the finite field [, are the fixed points of the standard Frobenius
endomorphism for ¢ defined on the vector space of 2n X 2n matrices over Fq.

In general, we will denote algebraically closed fields as well as groups and algebras over such

fields with a line above, while the finite variants of those will have no line.

1.1 Linear algebraic groups

First we will state some rudimentary facts about algebraic geometry and algebraic groups
following Geck’s [Gec13] introduction to this topic.

Let K be an algebraically closed field. For a positive integer n € N let K" be the n-dimensional
vector space over the field K and K[X] the polynomial ring of K over n independent variables
X = (Xy,...X,). For asubset S C K[X] the subset V(S) C K" with

VES)={veK | fv)=0forall feS)

lcf. [SS70, 4.3, p. 178]
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1.1. Linear algebraic groups

is called an affine variety. The ideal I = (S') generated by S gives rise to the same affine variety
V(I) = V(S). Forasubset VC K the ideal I(V) < K[X] with

I(V)={f € KIX]| f(v) = 0 forall v € v}

is called vanishing ideal of V. The Zariski topology on K arises by defining the affine varieties
as closed sets. Then for any set V C K its closure is V = V (Z(V)). On the other hand the
radical VI of an ideal I < K[X] is the ideal

\/j:{fef[X]|fe€If0rsorneeeN}

and we have VI = 7(V(I)).2 Therefore, 7 and <V define bijections between the set of radical
ideals of K[X] and the set of affine varieties of K. The ideal T (V) of an affine variety V C K
is prime if and only if the variety V is irreducible in the Zariski topology.? The coordinate ring
K[V] of V is defined to be the quotient ring K[V] = K[X]/Z(V)and itis a integral domain if
the variety is irreducible.

For a K-algebra A and an A-module M a derivation D : A — M is a K-linear map with
D(ab) = a-D(b) + b -D(a) for all a,b € A and we denote the space of derivations from A to M
by Derg(A, M). For1 <i < nlet aixi € Derf(f[X 1, K[X]) be the partial derivation with respect
to X;. Let A = E[X]/ I be the quotient ring for some ideal I < E[X], where ? € A denotes an
element of the quotient ring for f € K[X]. Let M be an A-module and define T} ,; by

Tay = {v =W,...v,) €M

0
—f|-vi=0forall fel;.
;;ﬂ(&Xif) v or all f }
T4y 1s an A-module and there is an A-module isomorphism @ : T4 — Derg(A, M) that

maps v € M" to the derivation D, with

D,(f) = Z (%f) v forall feA*

1<i<n !

2cf. [Gecl3, 2.1.9, p. 82]
3cf. [Gecl3, 1.1.12, p. 6]
4cf. [Gecl3, 1.4.3, p- 28]
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1.1. Linear algebraic groups
For a fixed point p € K" and f € K[X] we define the linear polynomial dy(f) € K[X] as

d(f)= ). (%f(p)) X;.3

1<i<n

Definition 1.1.1. Let V be an algebraic variety and for p € K" let Ep be the field K with
K[X]-module structure defined by the evaluation of polynomials at p. Then the tangent space
T,(V) of V at the point p is defined to be the K[V]-module Txpyx, With

T,(V) ={ve K [d,(H)v) = 0forall f € I(V)}
If 7(V) is finitely generated by polynomials fi, ... f,, € K[X] for m € N, we have
Ty (V) = V(dp(fi), - dp(fn))

and the map @ : T,(V) — Derf(E[V],fp) : v +— D, is a K-linear isomorphism with
Dy(f) = dp())v) for f € K[V

Definition 1.1.2. Let V < K and W < K for m,n € N be affine varieties. Amapp : V - W
is called regular if there are polynomials ¢y, ... ¢, € K[Xi,...X,] with

e(v) = (1(v), ... @u(v))

forve V. Let ¢ : K[W] — K[V] be the E—algebra homomorphism of the coordinate rings,
defined by ¢*(f)(v) = f(e(v)) for f € K[W] and v € V. Then the differential of ¢ at p € V is
defined to be the linear map of the tangent spaces

dg, : Derg(K[V],K,) — Derg(K[W1,K,)) : D+ Dog".

On the side of the tangent spaces the differential of ¢ is the map

dgy : Ty(V) = Typy(W) v 5 (dp(@) ). .. dy(0) ().

Scf. [Gecl3, 1.4.7, p. 31]
6cf. [Gecl3, 1.4.9, p. 32]
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1.1. Linear algebraic groups

For an affine variety Z < Ek with k € N and another regular map ¢ : W — Z we have
AW o @)p = AWy © d(@),.”

Definition 1.1.3. Let M,(K) be the set (n X n)-matrices over K. The matrix multiplication
u: M,(K)x M, (K) » M,(K)is a regular map regarding M, (K) as the affine variety K' . An
algebraic variety G C M, (K) is called an algebraic group if

e it contains the identity element / € G,
e it is closed under multiplication u(A, B) € GforA,BeG,
e every element of G has an inverse in G and the inverse map ¢ : G — G is regular.

The general linear group of the vector space K
GL(K") = {A € M,(K) | det(A) # 0]

is an affine open subvariety of M, (K) with respect to the determinant. Therefore, it is an alge-
braic variety in Enm and a linear algebraic group.® Its tangent space at the identity element is
the complete set of matrices T,(GL(En)) = M,(K) and is denoted by gl(E”).

Let the dimension of a linear algebraic group G be defined by the dimension of its tangent

space at the identity element as a K-vector space:
dim G = dim¢ T,(G)

Since G contains no singular points, this definition is equivalent to the Krull dimension of the
coordinate ring K[G] or the degree of the Hilbert polynomial of K[G].”

For linear algebraic groups G, H a group homomorphism ¢ : G — H is called a homomor-
phism of linear algebraic groups if it is a regular map. Then ker(¢) < G and im(¢) < H are
closed subgroups and we have dim G = dim ker(p) + dim im()."°

The differential of the matrix multiplication u and the inverse map ¢ at the identity are

du; TG, ®T(G); - T(G);: (A, By A+B and di :T(G); = T(G);: Ar —A"

Tcf. [Gecl3, 1.4.13, p. 34]

S¢f. [Gecl3, 2.1.14, p. 83; 2.4.1, p. 99]

9¢f. [Gecl3, 1.2.15, p- 15; 1.2.18, p. 16; 1.5.2, p. 36]
10¢f. [Gec13, 2.2.14, p. 91]

ef, [Gecl3, 1.5.6, p. 39]
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1.1. Linear algebraic groups

With this we can define the adjoint representation of G and its tangent space based of the group

of inner automorphisms of G.

Lemma 1.1.4. For g € G let Inn, : G — G be the inner automorphism with Inng(h) = ghg™
for h € G. Then its differential is

d(Inny); : TI(G) — T(G) : A — gAg™".

Let the adjoint representation Ad G — GL(T(G)) be the derived homomorphism with
Ad(g) = d(Inny), for g € G. Then its differential is

ad = d(Ad); : T/(G) — gi(T(G))

with ad(A)B = AB — BA for A, B € T;(G).

Proof. Inn, is a regular map with Inn,(/) = I for any g € G. It is linear in every component,
so we have d(Inng);(A) = gAg~! for A € T,(G). For g h e G we have Inn, o Inn;, = Inng,
and therefore Ad(gh) = d(Inn, o Inn,); = d(Inny); o d(Inn,); = Ad(g)Ad(h), so Ad is a
representation of G.

For a fixed B € T;(G) let €5 : GL(T/(G)) — T4(G) with eg(M) = MB for M € GL(T;(G)).
Then its differential €, = deg : gl(T/(G)) — Tp(T1(G)) = Ti(G) is the evaluation of gl(T;(G))
at B with €,(N) = NB for N € gl(T/(G)).

eg © Ad = idzB 1 is a morphism of affine varieties, so we have

d(eg o Ad)(A) = d(idg);(A)Bu(I) + idg(I)Bdi;(A) = AB — BA

for A € T;(G). Since d(es o Ad); = €}, o ad, it follows that ad(A)B = AB — BA. O

The adjoint representation ad now gives rise to a Lie algebra structure on the tangent space of
G at the identity 7,(G) and this Lie algebra will be denoted by Lie(G).

Theorem 1.1.5. Let G be a linear algebraic group and let [-, -] be the operation defined by
[1: THG) X Ti(G) — Ty(G) : (A, B) + ad(A)B.

Then T(G) is a Lie algebra with its Lie bracket |-,-], and we define Lie(G) = Ti(G) to
be the Lie algebra of G. For any homomorphism ¢ : G — H of linear algebraic groups
do : Lie(G) — Lie(H) is a Lie algebra homomorphism.
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1.1. Linear algebraic groups

Proof. As we have [A,B] = AB— BA for A,B € T,(E) the bracket operation is bilinear and
alternating.

Let G, H be linear algebraic groups and ¢ : G — H a homomorphism of linear algebraic
groups. So for g € G we have ¢ o Inn, = Inny, o ¢ and therefore dy o dInn, = dInn,,) o de.
By the definition of the adjoint representation it follows that dp Ad = (Ad o ¢)dy and thereby
dyad = (ad o dp)dp. So we have do([A, B]) = [dg(A), dp(B)] for A, B € T;(G).

Since Ad itself is a homomorphism of linear algebraic groups, its differential commutes with
the bracket operation, and we have ad([A, B]) = [ad(A),ad(B)] for A, B € T/(G), where the
latter bracket operates on gl(T,(E)). For C € T;(G) it follows that

[[A, B],C] = ad([A, B))C = ad(A)(ad(B)C) — ad(B)(ad(A)C) = [A,[B,C]] - [B,[A,C]],

which gives us the Jacobi identity making 7,(G) a Lie algebra.
O

For a linear algebraic group G let G < G denote the irreducible component of G that con-
tains the identity. Then G is a closed normal subgroup of G with finite index, and we have
dimG = dimG."? Since the tangent space only depends on the identity component, we have
T/(G) = T,(Eo). For a homomorphism of linear algebraic groups ¢ : G — H we have
¢(G) = ¢G)."

Definition 1.1.6. A a maximal closed connected solvable subgroup B < G of an algebraic
group is called a Borel subgroup. Any closed subgroup of G containing a Borel subgroup

B < P <G is called a parabolic subgroup.

All Borel subgroups of an algebraic group are conjugate." For a parabolic subgroup P <
G the quotient G/P is a projective algebraic variety. Therefore, the projection morphism

p:G/PxV — V for an affine variety V is closed."

Definition 1.1.7. A subgroup T < G that is isomorphic to 7 = K X% EX, where K|
denotes the multiplicative group of K, is called a torus. A group isomorphic to a maximal

.oEX .
number of copies K is called a maximal torus.

12¢f. [Geel3, 1.3.13, p. 23; 1.3.14, p. 24]
Bef. [Gecel3, 2.2.14, p. 91]
l4cf. [Gecl3, 3.4.3, p. 149]
Scf. [Gecl3, 3.2.7, p. 134]
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1.2. The special orthogonal group

Any maximal torus T < G is contained in a Borel subgroup 7 < B < G and all maximal tori

in a Borel subgroup are conjugated. Therefore, all maximal tori in G are conjugated.'®

Definition 1.1.8. For a connected linear algebraic group G the unipotent radical Ry(G) is
defined to be the maximal closed connected unipotent subgroup of G. The group G is called
reductive if Ry(G) = 1.

Let G be a connected linear algebraic group and 7 < G a maximal torus. Then the Weyl Group
is W = Ng(T)/T, where Ng(T) is the normalizer of 7 in G and is independent of the choice
of T. For a Borel subgroup T < B < G we have a semi direct product B = T < Ry(B)."”

1.2 The special orthogonal group

Let IF, be the field with g elements, where g is the power of a prime p # 2. Then Fq denotes

the algebraic closure of F, and Gl, = GL(FZ) the general linear group over the vector space

—=n

g

Definition 1.2.1. For n € N and N = 2n let Jy be the N X N matrix

00 --- 01
00 -~ 10
Iv=1: . Do
O1 ---00
1 0 -- 00

Let b be the non degenerate symmetric bilinear form with
—_N —N —
b:F, xF, = F,:(u,v) u'Jyv,

where - : M N(R) - M N(R) is the involution mapping a matrix to its transposed matrix.
Then Oy = ON(E, b) denotes the orthogonal group over the algebraically closed field Fq with
respect to b:

O = {g e My(F,) ‘b(gu, gv) = b(u, v) for all u, v € Fj}

Furthermore, let the special orthogonal group be defined as SOy = {g € Oy | det(g) = 1}.

16¢f. [Car85, p. 16]
17¢f. [Car85, p. 23]
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1.2. The special orthogonal group
Oy is an linear algebraic group in MN(Fq) and comprises two connected components. The
identity component 67\, < Oy is the special orthogonal group SOy.'8

Definition 1.2.2. For n € N let [n] = {1,...,n} be the set of natural numbers ranging from 1
ton. Forl1 <i,j< Nlete;; € MN(E) be the matrix that is one at the (i, j)-th position and zero

at all other positions. The map
i IN]>[N]:i—>»N+1-i
defines an involution on the set [V].

Then we have Jy = Zﬁl e;;, and therefore Jye;; = e;; as well as e;;Jy = e; for1 <i,j<N.

Definition 1.2.3. Let - be the involution on M, N(E) defined by
T My(F,) = My(F) 0 X = JyX'Jy.

While the involution - on MN(E) mirrors elements X € M N(Fq) along the diagonal with
(X")ij = Xjfor 1 < i,j < N, the above defined involution -7 mirrors elements along the

counter-diagonal with (X');; = X7.

i=j |

Lemma 1.2.4. The Lie algebra soy = Lie(SOy) of SOy is given by

o = {4 € My(B)) [b(Au ) = b, Av) for all u,v € 7 |.

18¢f. [Gecl3, 1.7.8, p. 65]
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1.2. The special orthogonal group

Proof. Let E[X] be the polynomial ring for X = (Xj;)i<; j<y and f;;(X) € E[X] the polyno-
mials for 1 <i < j <N be defined as f;;(X) = Zszl X3 Xij — 6. For A € MN(E) we then

have

1

N
filld) = Y ApAyj - 65 = €A JAe; — ele; = blAe;, Ae)) - biei,¢)),
k=1

where 6;; is Kronecker delta of i and j. Therefore, the vanishing ideal 7(Oy) is generated by
the f;;(X) for 1 <i < j < N and we have

di(fij) = X;; + X5, = eiJXe; + eX'Je; = b(e;, Xe;) + b(Xe;, e)).
It follows that A € Lie(Oy) if and only if
d](fl])(A) = A;j + A;l = €§JA€J' + €§AIJ€]' = b(ei,Aej) + b(Ae,-, ej)

forall 1 <i < j < N. This is equivalent to b(u, Av) + b(Au,v) = 0 for all u,v € F;v, which

concludes the statement, since Lie(SOy) = Lie(Oy). O

For X € My(F,) and u,v € F;v we have b (Xu,v) = u'X'Jyv = u' Iy X'v=b (u,X*v). Therefore,
for g,A € MN(IE,]) with detg = 1 we have g € SOy and A € oy if and only if

g'=g' and A" =-A.

Let By = By(N,q) < Gly be the standard Borel group of upper triangular matrices and
Ty = To(N, q) < Gly the standard maximal torus of diagonal matrices. Let W, the Weyl group
of permutation matrices isomorphic to the symmetric group Xy and Uy = Ry (B,) be the group
of the upper unitriangular matrices with By = T < U,. Let the intersection of these groups
with SOy be denoted by

E:EOF\%N, T:T()mEN,

W:W()QEN and ﬁ:ﬁoﬂﬁl\/.

Then B is a Borel group and T a maximal torus of SOy. Furthermore, W is the Weyl group of
SOy, and we have B =T = U."

Y¢f. [Gecl3, 1.7.8, p. 65]
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1.2. The special orthogonal group

The standard maximal torus 7 < SOy is of the form:

n - 0 0O --- 0

— 0 tn 0 0 —s

T = " t;€F foralll <i<n
0 0 ! 0 1
0 0 0 !

The standard Borel group B is of the form:

z_1l8 &m
0 J.g7',

Let S, be the symmetric group on {1,...,n}. For a permutation o € S, let s,, € M,Z(Fq) be its

g € By(n,q), m € My, (F,) with J,m +m'J, = 0}

corresponding permutation matrix and define

S 0
7T:6,»>W:iom
[O J,,s(,Jn]

For 1 <i < nletB; € W be the matrix corresponding to the permutation (i,7) € Sy and for
IC{l,...,n}letB; = [1,; Bi- Then the Weyl group W of SOy is the semi direct product

W =1(S,) =< {61 C{1,...,n} with |I| even}.

Let wy = B,, then for any 1 < i < n we have ; = 7(i,n)wy and W is generated by the set
{tG,i+ 1|1 <i<n—1}U{w}. %

1 00 0O 0

0 1 0 00 -0

0 0010 0
Wo =

0 01 00 0

0 00 0 1 -0

0 0 0 0O 1

2ct. [GW09, 3.1.4, p. 132]
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1.2. The special orthogonal group

Springer and Steinberg [SS70, 5.3 ,p. 184] have shown that there is a faithful representation

of soy that admits a non degenerated trace form of soy.

Theorem 1.2.5. Let p : SOy — GL(F;V) be the standard representation with p(g)v = gv for
g €SOy andv e quv Then the bilinear form

R : 50y X 50y — F, : (X, Y) = Tr(dp(X)dp(Y))

is non degenerated, Ad-invariant and skew with respect to ad. Furthermore, K is the trace
form of the product of its arguments with k(X,Y) = Tr(XY) for X, Y € soy.

Proof. Letk : gly x gly — Fq be the bilinear form defined by k(X, Y) = Tr(XY) for X, Y € gly.
Let m < gly be the subspace defined by

m = {A € gly | b(Au,v) = b(u, Av) for all u,v € F, }

For A € gly we have A = $(A — A") + 1(A + A") with }(A — A") € S0y and 1(A + A") € m. Let
B € soyNnm then we have b(Bu,v) = b(u, Bv) = —b(Bu, v) forall u,v € ﬁ;\,, which forces B = 0.
Furthermore, we have XY € soy for X € soy and Y € m and therefore k(X,Y) = Tr(XY) = 0.
So gly = soy @ m is an orthogonal direct sum with respect to &, and since & is non degenerated
on g_IN, its restriction to soy cannot be degenerated as well.

For the derived representation dp : soy — gI(FZ) we have dp(X)v = Xv for X € soy and
V€ F;V, sofor 1 <i < N and X,Y € soy it follows that do(X)dp(Y)e; = Zﬁ’k:] X Yiie; and
therefore Tr(dp(X)dp(Y)) = XY XuYu = Tr(XY).

For g € %N and X, Y € soy we have k(Ad(g)X, Ad(g)Y) = Tr(g"'XYg) = Tr(XY) = k(X,Y)
and k is Ad-invariant. Finally, k is skew with respect to ad since for X, Y,Z € soy we have
k(@d(X)Y,Z) = Tr(XYZ) = Tr(YXZ) = Tr(XYZ) — Tr(XZY) = k(X, ad(Y)Z). O

Since & is non degenerated, it follows by Carter [Car85, 5.5.1, p. 151] that SOy is a reductive
group.

Definition 1.2.6. For a linear algebraic group G and its Lie algebra g = Lie(G) let the central-
izers of A € g in G and g be defined as

Cs(A)={ge G|gAg'=A} and c;(A) ={Beg]|[A B]=0)}.
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1.2. The special orthogonal group

In general we have Lie(Cz(A)) < c5(A), but sine soy admits the aforementioned non degen-
erated bilinear form we have equality here, which can be shown in an analogous argument to
Springer and Steinberg [SS70, 5.2, p. 183].

Theorem 1.2.7. For A € soy we have
Lie (Cg5,(A)) = cs5,(A)

Proof. Let G, H be linear algebraic groups and ¢ = (@ij<ij<n - G — H a morphism of
linear algebraic groups. For v € Lie(ker(¢)) we have dj(¢;;))(v) = Oforalll < i,j < n
and therefore dy;(v) = 0, which concludes Lie(ker(¢)) < ker(dy;). Furthermore, we have
im(dy;) < Lie(im(y)).

For a fixed A € Soy let now ¢ : Gly — gly with ¢(g) = gAg™! for g € Gly be the adjoint
representation of Gly evaluated at A. Its differential is the adjoint representation of gly eval-
vated at A with dg;(B) = [B, A] for B € soy, as shwon in lemma 1.1.4. The kernel of (dy;)
is the centralizer of A in gly, with c5; (A) = {B € My(F,) | AB = BA} and the kernel of
¢, the centralizer of A in Gly with Cqi,(A) = {g € caN(A) | det(g) # 0}, is open in caN(A).
By Carter [Car85, p. 6] we then have dim Lie(ker(¢))) = dim ker(¢) = dim dy,; and therefore
im(dy;) = Lie(im(p)) by the nsion argument.

Let now @ : soy — soy be the restriction of ¢ to soy. We have im(@) < im(¢) N soy and

therefore
Lie(im(p)) < Lie(im(¢) N soy) = Lie(im(¢)) N soy = im(de;) N soy

For B € @N there are B; € soy and B, € m with B = B; + B, as defined in the proof of
theorem 1.2.5. Assume that [B,A] € soy, then we have [B,,A] = [B,A] — [B;,A] € soy
as well. For every C € soy we have k([B,,A],C) = k(B,,[A,C]) = 0 since soy and m are
orthogonal with respect to k. But & is non degenerated on soy, which forces [B;,A] = 0 and
we have [B,A] = [B;,A] € im(d®;). This shows that im(dy;) N soy = im(d@;) and therefore
Lie(im(p)) = im(d@;). By the dimension argument, we finally have Lie(ker(®)) = ker(d@;),

which proves the claim. O
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1.3. Root systems and pattern subgroups

1.3 Root systems and pattern subgroups

In order to interpret pattern subgroups of SOy, defined by their support on positions above
both the diagonal and counter-diagonal, we must briefly introduce the concept of root systems

for linear algebraic groups.

Definition 1.3.1. Let G be a connected linear algebraic group and T < G a maximal torus. The
group of homomorphisms Hom(7, F*) is called the group of characters of G and Hom(FZ,T)
the group of cocharacters of G with the group action on Hom(7', F,) for &, & € Hom(T, F,)
and ¢ € T being defined by (&) + &)(¢) = &1(1)éx(t), while the group action on Hom(IFq, T) for
Y1,¥2 € Hom(F,, T) and c € F, being defined by (y; + v2)(¢c) = yi(c)ya(c).

For & € Hom(T',F)) and y € Hom(F , T') we have £ oy € Hom(F , F ) so there is z € Z with
goy(c)=ctforallc € F . So let

() : Hom(T,F,) x Hom(F,, T) — Z
be the non degenerated bilinear form with (£,y) = z for £ o y(c) = ¢*.

Definition 1.3.2. Let G be a connected linear algebraic group, B < G a Borel subgroup of G
and T < B a maximal torus of G contained in B. The set of roots ®(G, T) € Hom(7, FZ) of G

with respect to 7 is a subset of the characters of G defined as
oG, T) = {a € Hom(T  F,) HX € Lie(G) | Ad()X = a(t)X fort € T} + (0)} .

For @ € ®(G, T) the weight space g, < Lie(G) is the one dimensional subalgebra defined as
9, = {X € Lie(G) | Ad(H)X = a(t)X fort € T}. The set of positive roots ®.(G,T) C ®(G,T)
is the set of roots @ € ®(G, T) for which its root subspace g, < Lie(B) is contained in the Lie

algebra of the Borel group B.

The Lie algebra of G is then is the direct sum of the Lie algebra of the torus T and the root

spaces for every root in ®(G, T).>!

Lie(G) = LieM o P s,
ae®(G,T)
For the general linear group Gly together with the torus of diagonal matrices Ty < Gly the set
of roots is defined as follows.
2lef. [BB69, 13.18, p. 176]
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1.3. Root systems and pattern subgroups

Definition 1.3.3. For 1 <i < Nletg; € Hom(TO,F;) be defined as &;(t) = t; for t € T. Then

the sets of roots of @N with respect to Ty is
®(Gly, To) = {#(si—£) | 1 <i< j<N|.

For 1 <1i, j < N withi # j the root space for g; — ¢; € CD(@N,TO) 1S ﬁsi_gj ={cejj|ce R}.

The set of positive roots @, (Gly, T) with respect to the Borel subgroup of the upper triangular

matrices By < EN as well as the resulting set of simple roots A(@N, TO) are

©.Gly,To) = {si—g; | 1<i<j<N},  AG.To) = {&i~&m | 1 <i <N}.

£1-82 £2—83 £3—-&4 EN-2—EN-1 EN-1—EN
o o o o o

The Dynkin diagram of the simple roots A(Gl,, T)

The set of roots for the special orthogonal group SOy together with the torus of diagonal

matrices T = Ty N %N in SOy is defined as follows.

Definition 1.3.4. Let G = SOy and T = Ty N SOy. For 1 <i < nlet & € Hom(7, FZ) be

defined as g;(r) = t;; for r € T. Then the sets of roots of %N with respect to T is
SOy, T) = {#(ei £ &) | 1 <i< j<n}.

For1 <i, j <nwithi # jthe root space for g;—¢; € @(@N,T) 18 §gi_gj = {c(eij—eﬁ) | c e Fq}

and for the root space for g; + ¢; € (D(%N,T) is §€[+€j = {c(el-; — eﬁ) | c e E}.

The set of positive roots @, (@N, T) with respect to the Borel subgroupE =ByN EN as well

as the resulting set of simple roots A(SOy, T') are

©.(SON.T)={eite;|1<i<j<n}, ASONT)={si—&u | Y1 <i<n-1}U{g,+&,).

En—1"&n
(@]
€1—&2 &2—&3 En-3—Ep-2 En-2—En-1
O (e] (e] _— (e]
Epn—1t+&n
o

The Dynkin diagram of the simple roots A(SOy, T)
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1.3. Root systems and pattern subgroups

Definition 1.3.5. Let G again be a connected linear algebraic group and T < G be a a maximal
torus in G. For a € ®(G, T) let the root subgroup U, < G be the one dimensional unipotent

subgroup of G normalized by T such that Lie(U,) = g,.

As the root systems for @N and @N defined above are reduced root system, that is a root
system for which every root @ € ®(G, T) and any scalar multiple z € Z such that za € ®(G, T)
necessitates z € {—1, 1}, for o, € @(E, 7), the root subgroups as well as their commutators,

as given by the Chevalley commutator formula, are

Tocii+xiXen), [0uTd= {UW ifa+pedGT)
1 else.

The elements of a root subgroup U, < SOy of the special orthogonal group for @ € ®(SOy, T)
are of the form x;;(c) := I + c(e;; — e5;) for ¢ € E and1 <i,j < Nwithi+ j <N + 1, where
Lj<nifa=¢g-¢gandi<n<jorj<n<iifa=g+eora=—(g+e¢;)and we will
denominate these elements as both x,(c) = x;;(c) := I + c(e;; — eﬁ) interchangeably.
Although not using the term themselves, Borel and Bass [BB69] defined pattern subgroups as
subgroups of the unipotent radical Ry, (B) that are normalized by the maximal Torus 7', which

is equivalent to the following definition.

Definition 1.3.6. For a reduced root system ®(G,T), asubset C C ®,(G,T) is defined to be
closed if @, 8 € ®,(G, T) it follows that @ + 8 € ®.(G, T). For a closed subset C € ®,(G,T)
a pattern subgroup H < Ry(B) of the unipotent radical of B is defined to be the product of the

root subgroups for every root in C in any order

a=[]u.

aeC
A pattern subgroup H < Ry (B) is a closed connected group normalized by T and any closed
subgroup H < Ry(B) that is normalized by 7T is a pattern subgroup for the closed pattern
O(H,T) C ©.(G,T).%
With this we can describe the pattern subgroups of the group of unitriangular matrices in both

Gly and SOy concretely as well as their relationship with their respective support.

22¢f. [BB69, p. 182]
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1.3. Root systems and pattern subgroups

Definition 1.3.7. Forn €e Nand N = 2n let [[N]] = {(i, j) | | < i, j < N} be the set of matrix
entry coordinates of N X N matrices and for A € My (F,) we define its support supp(A) C [[N]]
to be

supp(A) = {(i, j) € [[N]] | A;; # Ofor 1 < i, j < N}.

For any subset S C [[N]] let suppg(A) = supp(A) NS the restriction of supp(A) to S. Further-
more, let G, V,V,,V, C [[N]] be the subsets of [[N]] defined by

G={GHelINI1<i<j< N}
V={Gj)e[[N]l|l <i<j<Nwithi+ j <N}
V,={G,j)eV|l<j<n)
V,={G,j)eVIn+1<j<N)

Lemma 1.3.8. A subset P C G is called closed if for any 1 < i < j < k < N with
(i, J), (J; k) € P it follows that (i, k) € P. Let pg, be the map defined as

por: G — D.(Gly, To) : (i, j) = & — &),
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1.3. Root systems and pattern subgroups

then for a closed subset P C G the group Hp < U defined as
Hp = {3 € Uo | suppg(s) € P}

is the pattern subgroup with pGL(P) = ®(Hp, T).

Proof. Let P C G be closed and Hyp C U, be the subset of U, such that for g€ Hp we have
suppg(g) € P. For g, h € Hpand 1 <i< j< N with (i, j) ¢ P for every i < k < j it follows
that (i, k) ¢ P or (k, j) ¢ P. We then have (gh);; = Zizi gikhkj = 0 and therefore (gh);; # 0. It
follows that gh € Hp and since Hyp is a closed with respect to the Zariski topology, Hp < U,
is a subgroup.

For every t € T, we have "'gr € Hyp, so Hp is normalized by T, and therefore a pattern
subgroup of Uy. For 1 <i < j < N we have I +¢; ;€ Hyp if and only if (i, j) € P, and therefore
peL(P) = O(Hp, To) O

Lemma 1.3.9. A subset Q C V is called closed if for any 1 < i < j < k < N with
(i, ), (j, k) € Q it follows that (i,k) € Q and forany 1 < i < j < Nand 1 < k < j such
that (k, j) € V, with (i, j), (k, j) € Q it follows that (i, k) € Q. Let pso be the map defined as

g—¢; if(i,)eV

pPso - (V - (D+(ENT) . (l’ .]) = ’
si+e ifj) eV,

then for a closed subset Q C V the group Hq < U defined as

Hq={g €U | suppy(g) € Q)

is the pattern subgroup with pso(Q) = O(Hg, T).

For a closed subset P C G the intersection Hp N SOy < U is a pattern subgroup Hq of U for
a closed subset Q C V such that for 1 <i < j< Nwithi+ j<N+1we have (i, j) € Q if and
only if (i, j), (j, i) € P.

Proof. Let P C G be closed and Hp C U,y. Then Hp N SOy is closed and normalized by
T = T,N SOy, and therefore a pattern subgroup of U. Forany 1 <i < j < N withi+j < N+1
we have x;;(1) € Hp, and therefore pso(i, j) € ®(Hp N SOy, T) if and only if (i, j), (j, i) € P.
Let Q C V be a closed subset. Let Qf, Q C G subsets of G defined by

Q={i,)eG|(.DeQ, Q={GieG|Ai<k<i: (ik),(ik Q).
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1.3. Root systems and pattern subgroups

Clearly all three subsets Q, Q,Q C G are closed. Let 1 < i < j <[ < N with (i, j) € Q and
() eQ UQ. If | = j, there is a j < k < J such that (j, k), (j, k) € Q and therefore (i,k) € Q
because (j, k) € V,. Since (j, k), (i, k) € Q with (i, k) € V,, it follows that (i, j) € Q. If [ # J,
we have (I, ) € Q and since (I, j) € V,, it follows that (i,/) € Q. By argument of symmetry,
the subset = QU Q" UQ C G is closed and for the pattern subgroup Hp C U, we have
supp(v(ﬁp) =P NV = Q, which gives us Hg=HpnN SOy. Since for every (i, j) € Q C P,
we have (J,i) € Q" C P it follows that pso(i, j) € ®(Hg, T), which proves the claim. O

Corollary 1.3.10. Let i < Soy be the Lie algebra of the unipotent radical U of the Borel
subgroup B for SOy with 1 = Lie(U) and Wy < gl, be the Lie algebra of upper unitriangular
matrices. Then
T=1N50y = @ B
aed, (SOy.T)
For a closed subset Q C V let by = Lie(Hg) < 1 be the Lie algebra of the pattern subgroup

Hg < SOy. Then Yy is the pattern Lie algebra with

bo= EP So={Xellsuppye) @

ae®(Hg,T)

Proof. Let Q C “V be closed and Hg < U be the corresponding pattern group for Q, with
BQ = Lie(ﬁQ). For any a € CD(EQ,T) we have g, < BQ and by argument of dimension
it follows that BQ = EBQ co(fiyT) g,. Let X € Uy N soy wi_th supp(X) € Q, then Xe ha\E
X = 3 e Xij(eij — e5) and therefore X € @C@SO@) Gy = bg. ForQ = V we have Hg = U

and ®(Ho, T) = ®,(SOy, T), which gives us 1 = 1y N Soy. O

Lemma 1.3.11. For a < soy let at be its orthogonal complement with respect to k. The
antiautomorphism consisting of matrix transposition - : soy — soy : X +— X' defines an

action on the rootspaces of soy with respect to T, such that for & € ®(SOy, T) we have

%, =0, ad § =Leo ) §
Be®(SON.T)
P#E—a
Proof. For 1 <i< j<nwehaved, ,, = {X;()|ce F,} and X;;(c)' = c(e};—e%) = X;i(c) for
c € F,. It follows that Eg,-—ej = 0s,-e; = O(-¢p)- Similar, we have X;;(c)" = Xj;(c) and therefore

_t —_
gg[+sj = g—(s[+s,~)'
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1.3. Root systems and pattern subgroups

Let @ € ®(SOy,T) with g, = {X;i(c) | c € F,}for | <i,j < Nwithi+ j < N,i# jand
Y € soy. Then we have k(X;j(c), Y) = c(Y;; — Y3;) and therefore Lie(T) < g, as well as gp < a,
for all B € ®(SOy, T) unless 8 = —a. i

We now define the Cayley transformation as a Springer morphism from the variety of unipo-

tent elements of SOy to the variety of nilpotent elements soy.?

Lemma 1.3.12. Ler V C SOy be the variety of unipotent elements of SOy and © C oy the

variety of nilpotent elements soy that is
V={xeSOy|ImeN: (x=1)"=0} and 5={X€5oy|ImeN: X" =0}.

Let f be the map from the variety of unipotent elements of SOy to variety of nilpotent elements
soy defined by
f:Von:xm (x=Dx+D7".

Then f is a bijection and both factors of f commute such that f(x) = (x+1)""(x=1I) forx € V.
Furthermore, for x,g € V we have f(g”'xg) = g7 f(x)g and f(x™") = —f(x) as well as

1
f) = ) = -

keN

The restriction of f to U the group of upper unitriangular matrices in SO, is a bijection to its

Lie algebra .

Proof. Letx e V and m € N be minimal, such that (x — I)” = 0. Then we have

1 m—1 1 Al 1 m—1 1 Al 1 m_
S+ D) [g—iu - D) ] =+ 5(=1D) (;ei(x - D) ) =1- (‘E(x - 1)) =1

and (x+I) is invertible with (x+1)! = % kaz_ol (—%(x —D)*, so by definition of f it follows that
f) = 5 (D e (x = DX We have (x — D(x + 1) = x> — I = (x + I)(x — ), and therefore
(x—D(x+ D' = (x+I)"'(x—I). This gives us f(x)" = (x — I)"(x + I)™ = 0, which shows
that f(x) is nilpotent. Since

FOF = Inax=D)'InIy(x+ D)7 Iy = (Uyx=D'Ty) Unx+D'Ty) ™" = T =D+ D7 = f(x7h)

Bef. [SS70, 3.12, p. 229]
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1.4. The special orthogonal group over a finite field

as well as f(x™") = (I — )x '+ x)™' = I -x)I +x)7' = —f(x), it follows that
f(x) + f(x) = 0 and therefore f(x) € Soy. So f is indeed a map from V to v and for any

g € SOy we have

fle'xg) =g x-Dglg x+ Dg) =g x - D+ Dg = g7 f)g.

Let X € vand m € N be minimal such that X”* = 0. Then we have (/-X) ( kmz_ol X) =I1-X"=1,
so (I — X) is invertible, and we define the map f” from the variety of nilpotent elements v to
Gly as /(X) = (I + X)(I - X)™! for X € 0. For x € V we then have

£y =(I+@=-Da+D") (- (x-Dlx+ 1)-1)_1
=(x+D+Gx-D)x+D'x+D((x+D—(x-D)"
=20 Q2D

=X

as well as f(f'(X)) = X for X € b by the same argument. Therefore, f is bijective with
fr=r"

We have x — I € 1, as well as %(x + 1) € Uy and therefore 2(x + I)™! € U,. This gives us
f(x) € 1y, which proves f(x) € iy NS0y = 1. For X € 1 we have both (I + X),(I — X) € U,
and therefore f~1(X) € U, so the restriction of fto Uy is a bijection to u O

Corollary 1.3.13. For a closed subset Q C V we have f(Hq) C Dq.

Proof. Let Q C °V be closed and Hg < SOy its pattern subgroup. Let x € Hq. For any k € N
we have supp.,(x*) € V and since (x — I)* = ('f)(—l)"‘ix", it follows that supp.,,((x — I)*) €V
as well. We then have suppq (X an(—1F' 5 (x — 1)¥) € <V, which by lemma 1.3.12 gives us
f(x) € . O

1.4 The special orthogonal group over a finite field

We now come back to the finite special orthogonal group SOy over the finite field F, as it
is the fixed points of the linear algebraic group SOy with respect to the standard Frobenius

endomorphism for g.

Definition 1.4.1. The standard Frobenius endomorphism F for ¢ is defined to be the F,-linear
map with

F:FZ%FZ:(xl,...,xn)H(x;],...,xZ).
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1.4. The special orthogonal group over a finite field

Then an algebraic variety V C FZ is called F-stable, if F(V) C V and the fixed points V¥ of V
are defined by
VE={veVI|F@) =}

For another algebraic variety W C FZ’ aregular map ¢ : V — W is called F-stable if we have

Fop=¢poF.

For an F-stable algebraic variety V C FZ the Frobenius endormorphism F' is an isomorphism
on V, which is equivalent to its vanishing ideal 7 (V) being generated by a set of polynomials
in F [Xi,...X,].** In this case the fixed points are the intersection V¥ = V N F,".* Equally,
a regular map ¢ : V — W to another algebraic variety W C FZ’
@1, 0m €EF (X, .. . X,].%6

For an algebraic group G < Mn(Fq) the matrix multiplication p and the inverse map ¢ are

is F-stable if and only if

F-stable and F is a group homomorphism, which is an isomorphism if G is F-stable.

Definition 1.4.2. For an algebraic group G < M,Z(Fq) a F-stable torus T < G is called maxi-
mally split if there is an F-stable Borel group B < G containing 7.

The homomorphism det : Gly — FZ is F-stable and therefore Gly is an F-stable group. The
fixed points GLy = az then is the finite general linear group over the field F,. The Borel
subgroup of upper triangular matrices By and its unipotent radical U, are F-stable as well,
while the group of diagonal matrices T is an F-stable maximally split torus. Their fixed
points are the finite groups of upper triangular matrices By = Eg , upper unitriangular matrices
Uy = Uff and diagonal matrices T = Tg over F, respectively.

Since the vanishing ideal of SOy is generated by a set of polynomials over IF,, it is F-stable
and its fixed points

SOy = %z ={g € My(F,) | b(gu, gv) = b(u,v) for all u,v € ]FqN and det(g) = 1}

are the finite special orthogonal group over IF,. Then the Borel group B = By N SOy and its
unipotent radical U =Uyn %N are F-stable and T = Ty N S_ON is an F-stable maximally

split torus. Their respective fixed points then are the finite groups over F,

B=B =B,nSOy, U=U =UynSOy and T=T =T,NnSOy.

2¢f [Geel3, 4.1.5, p. 172]
Bef. [Gecl3, p. 170]
26¢f, [Gecl3, 4.1.7, p. 173]
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1.4. The special orthogonal group over a finite field

For G = Gly or G = SOy and a root « € ®g 7 the root subgroup U, is clearly F-stable, and

. . —F .
we consider the fixed points U, = U, to be the finite root subgroups.

Lemma 1.4.3. For closed pattern P C G or Q C “V the pattern subgroups Hp < Gly and
Hg < SOy are F-stable and their fixed points are the finite pattern groups

Hp ={g € Uy | suppg() € P} and Hq ={g € U | supp,(3) € Q)

respectively. It follows that |Hp| = ¢*' and |Hg| = ¢'9.

Proof. Let® C G and Q C V be closed pattern and let ® = O(Hp, Ty) or ® = O(Hg, T). For
any @ € ®(Hyp, Ty) the root subgroup U, is F-stable and for its fixed points U, = ﬁg we have
|U,| = q. Since ﬁ;o < GN is a product of the root subgroups for q)(ﬁgo, 70), it is F'-stable as
well and g € ﬁg if and only if suppg(g) € # and g € GLy. Therefore, the fixed points of Hg
is
Hp = ﬁ; = {g € Uy | suppg(g) € 50} = l_[ U,.
a€®(Hp,To)

Since |D(Hyp, To)| = |P], it follows that |Hp| = ¢*.

For a closed pattern Q C V and Hq < SOy the same arguments apply, so we have Hg = ﬁg
with Hq = {g € U | supp,(g) € Q) and |Hql = ¢<.

As V itself is a closed pattern in V, we have U = ﬁi, and therefore |U| = gV = ¢g"*= D,

The vanishing ideal of soy is generated by a set of polynomials over FF,, so it is F-stable and

its fixed points are
soy = 5oy = {A € My(F,) | b(gu,v) = —b(u, Av) for all u,v € F,"}.

The Lie algebra of upper unitriangular matrices 1, < gly is F-stable with 1, = ﬁg and
therefore u < soy is F-stable as well with u = = Uy N soy. Furthermore, for a closed
pattern @ C V the pattern Lie algebra by < Soy is F-stable with its fixed points being
hq = {X € u|supp,(X) € Q}.

As a composition of matrix products and the trace form the bilinear form k and as a composi-
tion of matrix products and matrix inverse, the Cayley transformation f are F-stable. There-
fore, k defines a non degenerate bilinear form on soy and f indeed meets the requirement to
be a Springer morphism.?’

Ycf. [SS70, 3.12, p. 229]
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2 Decomposition of supercharacters
for SOy

Let Gy = Uy < GLy be the group of upper unitriangular matrices over the finite field F,

and let Uy = Uy N SOy < SOy be the group of upper unitriangular matrices in SOy over
IF,. The subject of this chapter will be the decomposition of André—Neto supercharacters by
Jedlitschky. [Jed13] While Jedlitschky primarily studied the corresponding Uy-modules, we
will give an explicit description of the characters he defined, such that it becomes immediately
apparent, that they are constituents of the André—Neto supercharacters. In order to prove the
mutual orthogonality of these characters, we will first turn to the simple case of verge patterns
and later extend this to the general case. For every such character we will then find a n X n-
matrix that is derived from a Gram matrix for the bilinear form b, and we can reduce the
question of the classification of these characters to finding congruent matrices with certain
conditions. Moreover, these matrices determine the inner product of the characters, so we can

use them to find irreducible characters as well.

2.1 1-cocycle

For the construction of his super-character theory for Gy Yan [YanlO0, 2.1, p. 4] utilized the
fact that the map p : Gy — g : g — g — I, where g < My(F,) is the vector space of upper
triangular matrices over F, with zero diagonal, is a left and right 1-cocycle, that is a map with
u(gh) = u(g) + gu(h) and u(gh) = u(g)h + u(h) for g,h € Gy. This 1-cocycle gives rise to a
monomial basis of the CGy-module g* for the group algebra CGy and the dual space g* of g.
While this situation cannot be fully recreated for the case of the orthogonal group, Jedlitschky
[Jed13, 2.1.11, p. 37] has shown that any right 1-cocycle of a group G and a vector space V
generates such a monomial basis of the CG-module V*. To apply this to the group of upper
unitriangular matrices in SOy he [Jed13, 2.2.13, p. 48] defined the linear map 7 : My(F,) — v

of the restriction of a matrix in My(F,) to the vector space v < My(IF,) of matrices with non-
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2.1. 1-cocycle

zero entries only above the diagonal and counter-diagonal, which is isomorphic to the algebra

of upper triangular matrices with zero on the diagonal in soy.

Definition 2.1.1. For G,V C [[N]] as defined in 1.3.7 let g, v < My(FF,) be the subsets defined
by

g = {X € My(F,) | supp(X) € G}

v ={X € My(F,) | supp(X) € V}

Let 7 be the linear map that restricts a matrix in My(F,) to v with
w: My(F,) - v: X X|.

We extend the 1-cocycle of Uy defined by Jedlitschly [Jed13, 3.1.9, p. 57] on v to a 1-cocycle
of the full group of upper unitriangular matrices Gy on v, where all the relevant properties

prevail.

Definition/Lemma 2.1.2. The right action o of Gy on v defined as
0:vXGy = v:(X,g)— Xog =n(Xg)

is a representation of Gy on the vector space v and together with the map n it defines a

1-cocycle such that for g, h € Gy we have
n(gh) = n(g)oh + n(h).

Proof. For g € Gy the action -og clearly defines an endomorphism on the vector space v. Let
now g,heGyand1 <i< j<Nwithi+ j< N+ 1and we have

N N N—-i N—-i N N-i
eugh F(Z Z gjkhkletl] = Z g]khklezl = Z Z T ez]g hyeq = ﬂ(ﬂ(ezjg)h)
Jj 1=k

k=j 1=k k=i =k

So for every X € v by distributivity it follows that Xogh = (Xog)oh and o respects composition.
O

Corollary 2.1.3. For g,h € Gy we have

n(g™") = -m(g)og™" and n(h™'gh) = n(h) — n(h)o(h~'gh) + m(g)oh
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2.1. 1-cocycle

Proof. Let g, h € Gy. Since n(I) = 0, we have 0 = n1(gg™") = n(g)og™" + n(g™") and therefore
(g = —n(g)og™!. It follows that

n((h~'gh) = n(h™")ogh + n(gh) = ~n(h)o(h™'gh) + n(g)oh + n(h).

O

The restriction of 7 to soy is a bijection with z|7} (X) = X — X for X € soy and with the

SOy

previous corollary we can show that the restriction of 7 to SOy is a bijection as well.!
Lemma 2.1.4. The restriction of n to Uy is a bijection with t : Uy—V.

Proof. Let g, h € Uy with n(g) = n(h), so we have
n(gh™Yoh = n(g)oh™ h + n(h™Yoh = n(g) — n(h) = 0

and therefore n(gh™') = 0. Let x € Uy with 7(x) = 0, so forevery 1 < i < j < N with
i+j<N+1wehavex;; =0.Forl <i<j<Nwithi+ j>N +1itfollows that

J J
0= (xxT)ij = XigXsp = Xij + X5 + Z XigX5p = Xij
k=i k=i
and therefore x = I. So the restriction of the map « to Uy is injective. Since the number of
positions in V are |'V| = Y%, 2(n — i) = n(n — 1), we have |v| = ¢"® = |Uy| by lemma 1.4.3.

Therefore, the restriction of 7 to Uy is a bijection. ]

Definition 2.1.5. Let « be the non-degenerate bilinear form on My(F,) defined as
k: My(F) X My(F,) - F, : (X,Y) — Tr(X'Y)

The restriction of « to soy is derived from the bilinear form & as defined in theorem 1.2.5 with
k(X,Y) = R(X",Y) for X,Y € soy and for g € SOy we have x(X,g"'Yg) = x(g7'Xg',Y). For
any X,Y € My(F,) we have k(X,Y) = >N X;;Y;jand for 1 < i, j < N we have (X, ¢;;) = X;;.

i,j=1
Lemma 2.1.6. For a subset P C [[N]] the restriction of the bilinear form k to the pattern
vector space Vp is non-degenerate and the orthogonal complement v of Vp with respect to k
s V;; = V[[N]]\;D.

'[GID19, 3.5, p. 8]
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2.1. 1-cocycle

Proof. For 1 <1i,j < N and X € My(F,) we have «(e;;, X) = Tr (ej,-X) = X;; and therefore
k(e;j, X) = 0 if and only if X;; = 0. Therefore the support of the complement of the one
dimensional pattern subspace v;; = vy j 18 supp(vfj) = [[N]I\{(, j)}. For # C [[N]] we then

have supp(vz) = N jep SUPP(Vy, ;) = INTIN Ui jer{(G, DD = [INTI\P. Therefore, we have
V5 = vy and the radical of vp is rad(vp) = (0). O

Lemma 2.1.7. Let 9 : (F,, +) — (C*,-) be a non-trivial group homomorphism of the additive
group F, to the multiplicative group C*. For a vector space w < My(F,) and X € My(F,) we

have

Z 9k (X, Y) =

0 otherwise

{w for X € wt

Proof. Let w < My(F,) be a vector space and X € My(F,). For X € w" and Y € w we have
Ik (X,Y) = H0) = 1 and therefore Yy, 9« (X,Y) = |w|. For X ¢ w* there is a Y; € w such
that (X, Y;) # 0 and since mapping ¥ € wto Y + Y] is a bijection of w, we have

Zﬁk(x, Y) = ZﬂK(X,Y-I- Y)) = 9k (X, Yl)ZﬁK(X, Y).

Yew Yew Yew

Since ¥« (X, Y;) # 1, we must have )y, 9« (X,Y) = 0. |

Lemma 2.1.8. For X,Y € My(F,) with supp(X) N supp(Y) € V we have
k(X,Y) = k(n(X),Y) = k(X,n(Y))

Proof. Let X,Y € My(F,) with supp(X) N supp(Y) € V. Then for 1 < i,j < N we have

X;;Yij = O unless (i, j) € V and therefore X;;Y;; = n(X);;Y;; = X;n(Y);;. It follows that

N
k(X Y) = > XYy = k(x(X), ¥) = k (X, 7(Y)).

ij=1

Lemma 2.1.9. Let . be the left group action of Gy on v defined by
7 Gy Xy o v (g, X) e g.X = n(Xgh).

For X,Y € vand g € Gy we then have k(g.X,Y) = k(X, Yog).
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2.1. 1-cocycle

Proof. Let X,Y € vand g € Gy. For 1 <i,j < N we have (Xg');; =0ifi+ j> N+ 1and
(Yg)ij =01if i > j, so by applying lemma 2.1.8 in the first and last step we have

k(g X,Y) =k(Xg",Y)=Tr(gX'Y)=Tr(X'Yg) = x(X,Yg) = k(X,Yog).

Since the o action respects multiplication for g,h € Gyand 1 <i< j< Nwithi+ j< N+ 1,

we have

(g-(h.X))ij = k(g.(h.X), e;)) = k(X, (e;;08)0h) = k(X, e;jogh) = k(gh.X, e;;) = (gh.X)j,

29 9 29 9

so ”.” respects multiplication as well. Since I.X = n(XI") = X, the map ”.” is a group action.

O

The group Gy acts through o on v by changing the values of entries only to the right of non-
zero entries of v, whereas it acts through ”.” on v by changing the values of entries only to the

left of non-zero entries of v.

| N [ [ [« ][ x]*]Y
|

X[ [ ][] #]#]*]x * [ %[ x]|Y
X | * | * [ [ [ ]Y
Possible non-zero positions (*) of Xog Possible non-zero positions (*) of g.Y
for X e vand g € Gy forY evand g € Gy

While Jedlitschky [Jed13, 2.2.13, p. 48] defined this action as a right group action of the
opposite group G{¥ on a subspace on g, we for convenience choose to define it as a left
action. With this following Jedlitschky [Jed13, 2.1.35, p. 41] for A € v we can define a map

Xa : Gy — Cthat restricted to the stabilizer of A with respect to the group action .” is a linear

character

Definition 2.1.10. Let ¢ : (F,,+) — (C*,-) be a non-trivial group homomorphism of the
additive group FF, to the multiplicative group C*. Then for A € v we define the map y,4 as

Xxa:Uy— C: g k(A n(g)).
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2.2. André—Neto characters

Lemma 2.1.11. For A,B € vand g, h € Gy we have

XaXB=Xasg and  xa(gh) = xna(@xa(h).

Let Stabg,(A) = {g € Gy | g.A = A} be the stabilizer of A with respect to the group action.”.
Then for g, h € Stabg, (A) we have x 4(gh) = xa(g)xa(h) and the restriction of x 4 to Stabg, (A)

is a linear character.

Proof. Let A, B € vand g € Gy. Then we have

(vaxs)(g) = 9x(A, () Uk(B, m(g)) = ¥ (k(A,71(g)) + (B, 71(g))) = Ix(A + B, m(g)) = xa+5(8)-

For h € Gy by lemma 2.1.9 we have

Xa(gh) = 9k (A, n(gh)) = 9k (A, n(g)oh + n(h)) = I« (h.A, 71(g)) Ik (A, n(h)) = xn.a(&xa(h)

For g, h € Stabg,(A) we have h.A = A and therefore y4(gh) = xa(g)xa(h). |

Corollary 2.1.12. For A € vand g € Gy the complex conjugate of x 4 is

Xa=X-a and Xa(8) = xea(g).
For h € Stabg, (A) this means ya(h) = ya(h™).

Proof. For any c € F, we have 9(c)d(c) = |[#(c)|* = 1 and therefore #(c) = #(~c). Sofor A € v
and g € Gy we have ya(g) = 9«(=A,n(g)) = x-a(g). Since —n(g) = n(g')og by corollary
2.1.3, we have yA(g) = 9k(A, —n(g)) = Ik(A,n(g" " )og) = ¥k(g.A,n(g™")) = )(g,A(g‘l). For
h € Stabg, (A) we have h.A = A and therefore y4(h) = xah™). |

2.2 André-Neto characters

In the development of their super-character theory André and Neto [ANO06, p. 399] defined
pattern subgroups C, < Uy as well as linear characters y, : C, — C for the positive roots
a € CIL,(@,I,T). For (i, j) € V with pso(i, j) = a as defined in lemma 1.3.9 this character is
equal to the map defined in 2.1.10 with x, = X,
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2.2. André—Neto characters

Definition/Lemma 2.2.1. For 1 <i < j< Nwithi+ j< N+ 1let Z;j CV be the subset
defined by

Zyy =Gk i <k < min(j - 1,n)).
Let C;j < Uy be the pattern subgroup for the closed subset V\Z;;. Then, for c € F, the map
Xce;; 18 a linear character of C;; N Cﬁ defined by

Xecej; - Cij N Cﬁ - Cixm 19K(Ceijvﬂ(-x))-

Proof. For1 <i<j<Nwithi+ j<N+1letg, heC;nCyandforc € F, we have

J J
Xee;;(8h) = ce;j, m(gh)) = Her(gh)i) = ﬁ[cz gikhkj) = ﬁ(cgiihij +c Z 8ikhkj |-
k=i k=min(j,n+1)
For j < n it follows that x.,(gh) = H(c(hij+8ij)) = Xce(8)Xce,; () While for j > nsince h € C3;
we have fy; = hy = 0forn+ 1 <k < j and therefore xc.,(8h) = Xce;;(8)Xce;(h) as well, which

shows that x.,,, is a linear character. O

Lemma 2.2.2. For 1 <i < j< Nwithi+ j<N+1 ¢ €F;and x € C;; N C; we have
Xeejy(X) = Ok (c(eij - eﬁ), f(x)) where f is the Cayley transformation as defined in lemma
1.3.12.

Proof. Letl1 <i< j<N,c€F,and x € C;; N C3. By definition of C;; and C5; we have
j-1 j-1

((X - I)Z)ij = Z XikXkj = Z xieXej = 0.

k=i+1 k=min(j—1,n)+1
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2.2. André—Neto characters

So we have 9« (c(eij —ez), (x = 1)2) = 0. Since we have K(cejj,f(x)) = k(ce;j, f(x)7) and
f(x)" = —f(x) by lemma 1.3.12, it follows that

VK (c(eij - e5), f(x)) = Uk (c(e,-j - ejj),f(x))
=9 (K (ceij, f(x)) —K (cejj, f(x)))
=9 (K (Ceij’ f(x)) —K (ce,-j, —f(x)))
=9 (2K (ce,-j, f(x)))

=0 ((—1)"—1 %K (cesjr (x = 1)"))

et
= O« (ceijo x — 1)
= Ok (ceyj, m(x))
= Xeey(X)
O

André and Neto defined elementary characters Beey = Indg_]jnc, Xcei; of Uy that are the induced
! Ji

characters of the linear characters y.,; of the pattern subgroups C;; N Cﬁ.z For a B € g with

at most one non-zero entry per row and column the André-Neto character ¢, of Uy are

the induced character of the linear character y, from Cg, and they are the product of the

corresponding elementary characters.?

Lemma 2.2.3. For 1 <i < j< Nwithi+ j <N+ 1andc € F, let ¢, be the induced
character of ¢, = Indg_’jmc _Xce,;» For an element B € g with at most one non-zero entry per
i i

row and column let Cp = (\ jesupps) Cij and

Xrp(0) = OBz = [ xijs, (0
(i, ))esupp,(B)

for x € Uy. Then the induced character ¢, is the product
7(B) CcpXn(B) ijBij*
(i, ))esuppy(B)

Proof. Let B € g such that it has at most one non-zero entry per row and column. We have

Xﬂ'(B) = H(i,j)esupp,V(B)Xceij by lemma 2. 1 . 1 1 .

2¢f. [ANOG, p. 399]
3cf. [ANO06, 2.2, p. 401]
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2.2. André—Neto characters

If [supp/(B)| = 1, we clearly have ¢x5 = [l jjesupp, 8 Xce;;(X). For m € N we assume that
for any B € g with at most one non-zero entry per row and column [supp.,(B)| < m we have
G = [, j)esuppy (8 X ce;;(x) and let B be such that [suppq,(B) = m+ 1. Let 1 <i < j < N with
i+ j < N+ 1suchthat B;; # 0 and let B" € g with at most one non-zero entry per row and
column as well as ¢ € F, be such that B = B’ + c(e;; - eﬁ). Then we have x ) Xce;; = Xn(p) and
Ci;n Cﬁ N Cp = Cpg. Since B’ has no non-zero element in the i-th or j-th row, we furthermore
have (C;; N Cﬁ)CBf = Uy and it follows that

U, U U U U
022 ) INE) - e, = Tnd2 (X,T(B,) Res’ Ind% . x)

U Cprpp 2 C1iNCT

= Ind’ (Xﬂ(3/> IndC” Resg X%)
U Cy LT

= Ind?" IndZ" Res,) ” (az) Xeey

U
= Ind:Nx ) = dup)-

The claim then follows by induction. O
0j]0[0]O0O|0O|0O0]O B
0/0|0|B .
0100 .| B
00 -
b 0 - - -

Zero positions of Cp for Be g

In his work about super-character theories for groups defined by anti-involutions, that is an
involution on a group that is also an anti-automorphism, Andrews [And15, 4,1, p. 9] develops
an alternate expression of the André—Neto characters by defining a group action of Gy on soy,
utilizing the fact that g"Xg € soy for X € soy and g € Gy.

Lemma 2.2.4. Let g € Gy and X € uy, then g'Xg € uy and * defines a group action of Gy on

uy by
#: Gy Xuy o v:(g,X) - gxX = ((g*)tht) lg-
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2.2. André—Neto characters

Proof. For g € Gy and X € uy we have (g'Xg)" + g'Xg = ¢"(X" + X)g = 0 and therefore
g'Xg € soy. Since g' € Gy, we also have g'Xg € g and therefore g'Xg € g N soy = uy.
Let g € Gy and X € uy. We have ((g")'Xg)" + (g")'Xg = (¢ (X" + X)g' = 0 and therefore
(g")YAg" € soy. Sincefor 1 <i < j<Nand1 < k,I < N withi < k and j < [ we have
k < i< j<Iand therefore (X*g)y = ((g")'Ag")u. For h € Gy, it follows that

N i-1 N
(hx(@+ X))y = > hg(Xeghhy = D > hg(Xg)h

k=1 k=1 I=j+1
i-1 N

= D D ha(E Xl = (W) (6" Xg'h), = ((hg"Y X(hg)),
k=1 I=j+1

= (hg*X)ij

so the operation * respects composition. Since we have /+X = X as well, * is a group action.

O

This operation is equivalent to the operation of Gy on the dual space u}, of uy given by
ga(X) = a(g'Xg) for @ € 1y, g € Gy and X € uy. For the natural isomorphism 8 : uy — uj,
and Y € uy we then have
_ Vo) — (ot _ T vo) = (o X o) ) = ((ox X

gBOO(Y) = BX) (¢Yg) IZN Xii(g'vg), = Tr (X's'vg) = #((¢'Xe) . ¥) = k(g0 V)
Jedlitschky defined a verge pattern [Jed13, 3.2.8, p. 62] as a pattern A € v such that A has at
most one non-zero entry in every row and column. He furthermore defined a verge pattern to
be hook separated if A — A" has at most one non-zero entry in every row and column.* As we
only consider hook separated verge patterns, we will call these verge patterns and omit that
they are hook separated if it is not explicitly mentioned.

Analogous to these verge patterns, we define verge matrices to be the matrices in soy that
contain at most one non-zero entry in every row and column. Every such verge matrices can

be identified with a verge pattern by the bijection 7 : soy — V.

Definition 2.2.5. A element B € g is called a verge matrix if B has at most one non-zero entry
in every row and column. Let 8 C soy be the subset of all verge matrices and we call A € va

verge pattern if there is a B € B such that A = n(B).

4cf. [Jed13,3.3.17, p. 85/3.3.24, p. 88]
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2.2. André—Neto characters

We can now show that 8 is a set of unique representatives of the Gy-orbits in uy with respect

to *.
Lemma 2.2.6. For every A € uy there is exactly one B € B such that A € Gy*B.

Proof. We will first show that every element in uy is contained in the orbit of some B € 8.
For 1 < m < nlet 8,, C uy be the subset such that A € uy if forevery 1 <i < j < N with
i<morm < jand A;; # 0 this is the only nonzero element in the i-th row and j-th column.
For m = 1 we have B, = uy

Letnow 1 <m < nandA € B,. If all entries in the m-th row of A are zero, then by symmetry
all entries in the m-th column are zero as well as forevery 1 <i < j< Nwithi <m+ 1 or
m+ 1 < jand A; ; # 0 this is the only nonzero element in the i-th row and j-th column, so we
have A € B,,,;. Conversely, let m < k < N be such thatA,; #0and A,; =0forallk <[ <N,

which is the rightmost non-zero entry in the m-th row of A. Now let g € Gy be defined as

k-1
1
g= I - A_mk [ Z Aen + Ak,lel,m] .

I=m+1
Since by assumption the k-th and m-th column has no non-zero entry above the m-th row and
the m-th and k-th row has no non-zero entry right of the m-th column, for 1 < i < j < N with
i <morm < jwehave (gxA);; = A;;. For 1 < j < m we have (gxA),,; = Amj—Amgji = 0. For
m < i< kwithi # k we have (g*A)ir = Aix — gmAmr = 0, so A, is the only non-zero entry of
A both in the m-th row and k-th column. Due to symmetry Az is also the only non-zero entry
of A both in the k-th row and 7-th column, so gxA € B

Since B, = B, we can conclude by induction that for every A € uy there is a g € Gy such that
g*A € B.

We will now show that the elements of B are unique representatives of the orbits in uy. For
0 <m < nletV, <Gy be the normal subgroup with g € V,, if g;; = O forevery 1 <i< j< N
withi > mand m > j,suchthat Gy = L,, < V,,. Let S = {g € Gy | g=A = A} be the stabilizer
of A in Gy with respect to the operation *. Let now A, B € B and g € Gy such that gxA = B.

withi <morm < jand L,, < Gy the subgroup with g € V,, if g;; = O forevery 1 <i< j< N

Forany 1 <m <nletg =Ilvwithle€ L,,; andv € V,,,;. We assume that v € S and that there
isal <k <msuchthat A,; # 0. Then B, = (g%A)x = ([¥A),x = Ak as A,x. Then for any
m < i < kwehave 0 = By = (IxA)y = Al and therefore [,; = 0. The same way we have
0 = B = (IxA); = Ag;ly; and therefore [ = 0. Letnow [ = hw with h € L,, and w € V,,,

then for 1 Si<jSNwehavew,-j:Ounlessi:mandjzkorj:ﬁandis%. Since A,
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2.2. André—Neto characters

is the only non-zero entry in the m-th row and k-th column as well as Az is the only non-zero
entry k-th row and m-th column, we have w € S and therefore wv € §. Since V, = I and
L, = I, we can conclude by induction over m that g € S and therefore A = B, which grants the

uniqueness of the representatives B for the G y-orbits. O

The Gy-orbit of B € B contains matrices which have non-zero entries in positions (j, k) € V if
there are 1 <i < jand k <[ < N such that B; # 0. As we can later show, we have |Gy*B| = ¢°

for a € Ny being the number of entries in “V that are to the left or below a non-zero entry of B.

\[********B j
o[k |k k| k| k| k| 3k ,’
sk |k |k [k | k| % e

k[ k[ % |B|*|* ’
*****B/’
¥ |%|x|x|,7|B
k[ k|, 7|k |x|*k|[x|*x|B
L k[ k| k| k| x|k
k(% | % |B|*x|*|=*
k[ k| k| k| x|k
%[k [ x| k[ *
% [ % | k| *
* |k |k
* | %
%
N

Possible non-zero positions (*) of g« B for B€ Band g € Gy

Analogous to Andrews [And15, p. 6] we define a normal subgroup H < Gy that has, excluding
entries on the diagonal, non-zero entries only in the upper half of the matrix.> With this we

can describe the character ¢, for B € B as a sum over the elements of the orbit Gy B.°
Lemma 2.2.7. Let H < Gy be the normal subgroup with
H={heGy|hj=0forn<i<j<N}.

Then Gy is the product Gy = UyH.

Proof. For g € Gy letr € H suchthatr;; = g;jforall 1 <i< j<Nandi<n. Letse€ H be

suchthats,-j:gﬁforl <i<j<naswellas sy =0for1 <k <n<[< N. We then have

Scf. [Andl15, p. 13]
6¢f. [And15, 6.1, p. 17]
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2.2. André—Neto characters

g = s'ras well as ss" = s's and therefore (s"s™!)"sTs™! = s7TssTs7 s TsTss7! = I. It follows

that s~7s € Uy, which gives us g = s"s7'sr = (s7"s)7! (s7) € UyH.

Subgroup H < Gy

Proposition 2.2.8. Let B € B be a verge matrix. For the orbit BxH the set HxB — B is a linear

subspace of v with

H+B—-B = GB <eij|i<jSmin(k—l,n)>F

(i,Jyesupp(B) !

and f(Cp) is the orthogonal complement of H«B — B in v.

Proof. Let B € B be a verge matrix and 2 € H. Thenfor 1 <i< j<Nand1 <[ < i

we have h; = Ounlessn < iorl =i Fori+ j < N+ 1, which implies i < n, it follows
that (h*B);; = Z};l ZkN:j hsBych e = Zfij Bjxhjr and therfore (h* B);; = 0 unless there is a
J < k < N such that (i, k) € supp(B) and j < min(k,n). For j = k we have (h*B);; = B;;
and therefore (h+B — B);; = 0. So we have supp,(H*B — B) = U xesuppny Lik as well as
supp,(f(Cr)) = MNiipesuppry V\Lir- It follows that H+B — B is the orthogonal complement of

f(Cp) with respect to «. O

Theorem 2.2.9. For a verge matrix B € B and x € Uy we have

|H * B|
|Gy B

Gri(¥) = PIRZAEN]

VeG+B
Proof. Let B € 8 and x € Uy. By proposition 2.2.8 H = B is the orthogonal complement of

f(Cp) with respect to k, so by lemma 2.1.7 we have

D" Ok((h+B = 7(B)), f(x)) =

heH

|[Hl forxeCp
0 for x ¢ Cp.
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2.2. André—Neto characters
For x € Uy by lemma 2.1.11 and 2.2.2 we have

e@= [ xgsm= [] 9B, —ep). @) = 9B, fx).

(i, j)€supp,(B) (i.))€suppy(B)

so by lemma 2.2.7 we can conclude for the induced character that

1

G (X) = @ Z s (B, f(u‘lxu))

uely

u=lxueC B

> 0k (B, f xu)) Y Ox((h+B ~ B, f(u™ xu))

ueUy heH

Z Z k(B + h+B — B, f(u""xu))

ueUy heH

1
= Ik(h=B, u~" f(x)u
ICBlIH| MEZU;V; ( JOu)

1
= G > Ix(uhB, f(x)

ueUy heH

1
~ ICslIH]
1
~ IC5lIH]

__luy
CollGal 45

__luw
CollGy+B

k(g B, f(x))

D KV, f)).

VeGy*B

Since |Uy| = |H*B — B||f(Cp)| = |H*B||Cpl, the claim follows. O

Corollary 2.2.10. For B € B the orbits H+B and G y.n(B) have the same number of elements,

which is equal to the degree of their respective André—Neto character.

o
deg ¢rp) = |[H*B| = H g
(i, j)esupp(r(B))

Proof. Let B € B. Then by theorem 2.2.9 we have ¢x)(I) = &=3|Gy*B| = |H B|, which

proves the first equatios. By lemma 2.2.3 we have

|Un|
deg drs) = 1—[ deg ¢p,e; = 1—[ CinC
(i, j)esupp(n(B)) (i, j)esupp(n(B)) Y Ji
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2.2. André—Neto characters

For (i, j) € supp(x(B)) with j < n we have -4 = ¢/~!, while for (i, j) € supp(x(B)) with
ijCS
j > n we have |c|({ch| s =q"q" 7= gN==W+1=) = gi=i=1 5o the last equation follows. |

Corollary 2.2.11. For verge matrices B, C € B the inner product of their Andre-Neto charac-

ters is

|H=BJ? . _
B B = C
(Ba)s Py {OGN B

otherwise.
Proof. Let B,C € B be verge matrices. Since f(x™') = —f(x) for x € Uy, for V, W € uy we
have ¢y dw(x!) = Ic(V, £(x)) (W, — f(x)) = Ix(V — W, f(x)) and therefore

|H=B||H=*C)|
|Gn*BlIGn*Cl|Uy|

D, (U = W, f(x).

xeUy VeGyB
WeGpC

(Bus) Pr0))y,, =

When x runs through all elements of Uy then f(x) runs through all elements of uy, so by
lemma 2.1.7 we have ..y k(V = W, f(x)) # Oif and only if V — W = 0 for V € Gy*B
and W € Gy +C. Since by lemma 2.2.6 the verge matrices are unique representatives of the
Gy-orbits in 1y, we must have B = C in order for there to be some U € Gy«B and W € Gy+C
with V — W = 0. If this is the case, there is exactly one W € Gy *C for every V € Gy*B such
that V — W = 0. We then have

|H *B|? |H = B|?

——|GyxB||Uy| = )
GBI OV BIOM =16

(Bu(B) Pr0))y,, =

Corollary 2.2.12. Let py, : Uy — C be the regular representation of Uy. Then

|Gy B| | deg ¢ns)
7r(B) Z

T %)
|H B £ A¢xB) $x)),

Puy =

Proof. By lemma 2.2.6 every X € uy is contained in the G y-orbit of exactly one B € 8, so for
u € Uy we have

Gy*B
Soctran=3 3 o s =3 By .

Xeuy BeB VeGy*B lH Bl

From lemma 2.1.7 it follows that } y., (X, f(u)) = |uy| = |Uyl| if f(u) = 0 and therefore
u = 1Iand Yy, 93X, f(u) = 0if u # I. From corollary 2.2.11 then follows the second
equation. O
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2.2. André—Neto characters

AS pyy = Dipes %qﬁ”( p) and all André-Neto character are mutually orthogonal, every irre-
ducible character of Uy is constituent of exactly one André—Neto character. By André and
Neto [AN09, 3.6, p. 1281] there is a set of unions of conjugacy classes of SOy, such that
they form the set of superclasses for the set of supercharacters {¢,;) | B € 8}. Using the con-
struction of Andrews [ANO06, 6.1, p.6] we can define the set of superclasses as {Kp | B € B}
by

Kp = {f_l (gTBg) lg € GN} )

for which it is obvious that every supercharacter is constant on every superclass and that the

number of supercharacters and superclasses are equal.

Similar to Andrews expression of André—Neto characters we can utilize the normal subgroup

H < Gy to describe these characters as sums over the orbit Gy.7(B) for B € 8.

Proposition 2.2.13. Let A € B, such that supp,(A) = 0. For AH' = {Ah' | h € H} the set

n(AH") is a linear subspace of v with

nAHY = P (eyli<j<mintk-1,n)
(i k)esupp(A) !

and |m(AH")| = TTamesppa) 47" Furthermore n(Cy) is the orthogonal complement of
2(AH') in v.

Proof. Let A € m with at most one non-zero entry in every row and column and supp.,(A) = 0
aswellashe H. For1 <i < j< N withi+ j <N + 1 we have (Ah');; = ZkN:J.A,-khjk, which
gives us (Ah');; = O unless there is a j < k < N such that (i, k) € supp(A) and j < min(k, n). For
J = k we have (AR');; = A;; and therefore (Ah');; = 0. So supp,(AH" — A) = U pesuppr) Lik
while supp.,(f(Cx)) = N wesuppa) V\Lix» and it follows that AH' — A is the orthogonal com-
plement of f(C,) with respect to k. As A has no more than one non-zero entry in every row,
we finally have [m(AH")| = [Tgxesuppay ™47 o

Theorem 2.2.14. For a verge matrix B € B and x € Uy we have

1

TN Z Jx (C, a(u™! xu)) .

CeGy.n(B) ueUy

¢7T(B) (.X) =
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2.2. André—Neto characters

Proof. Let B € B. Since the non-zero entries of m(B) and A := B — n(B) are contained
in different rows and columns, we have n(BH") — n(B) = (H.n(B) — n(B)) & (7(AH")) and
therefore H.n(B) — n(B) < w(C,). Furthermore, since Cp = Cyp N Cy it follows that

m(Ca) = (Hr(B) = n(B)) & (7 (Cr)) N 7 (Ca)) = (HA(B) — n(B)) ® 7 (Cp)

and 7 (Cp) is the orthogonal complement of H.w(B) — n(B) in 7(C4). By lemma 2.1.8 for

x € C, we then have

|H| forxeCpg
Z Ix((h.n(B) — m(B)), n(x)) =
= 0 for x ¢ Cp.

Inducing the linear character y ) of Cp to Cy, for x € C4 we then have

1
IndS Y r(y (1) = T > ok (w(B), mu xu))

uECA
u” quCB

Z ﬁk 7T(B) a(u xu) Zﬂk h.n(B) — n(B), m(u~ xu))

heH

|CB||H|

Z Z 9 (n(B) + h.x(B) — n(B), m(u”" xu))

ueCy heH

Z Z Tk h a(B), m(u” xu))

ueCys heH

|CB||H|

|CB|| |

For the Gy-set of H-orbits {Hg.n(B) | g € Gy} let S, (H.n(B)) be the stabilizer of H.x(B). For
ge€Gyand 1 <i<k< N wehave (g.7(B))i = Bjjgrjifthereisai < j<kwithi+j<N+1
such that B;; # 0 and (g.n(B))ix = 0 otherwise. Then for g € S, (H.x(B)) we have g;; = 0
if thereisai < j < kwithi+ j< N+ 1and(i,j) € supp(B) as wellasi < n < j. So
since B € soy for every (i, j) € supp(B) withi+ j > N + 1, we have g; = Oforn < k < i
For g € Sy, (H.n(B)) = S¢,(H.n(B)) N Uy we then have gz = 0 for i < k < n and every
(i, j) € supp(B) with i + j > N + 1, which gives us Sy, (H.n(B)) = Cp_n). For x € Uy and
h € H we then have xh.n(B) € H.n(B) = (B) if and only if x € C4 and therefore

Z Ix((xh.(B) — h.(B)), n(w)) =

WEC,,(B)

|Cre)|  for x € Cp_np)
for x ¢ CB—ﬂ(B)-
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2.2. André—Neto characters

For x € Uy the character s induced to Uy then is

(s (X) = Ind””lndcgm)(x)

ICB||H||CA| DIDIPITL (R Cart)

ueUy  veCy heH

u=lxueC ‘A

= |C31||H| Z Zﬁk(h.ﬂ(B),ﬂ(u_lxu))

ueUy  heH

u=l xueCy

Z Z Zﬂk(h.ﬂ(B),n(u_lxu))ﬁk(u_lxuh.ﬂ(B)—h.ﬂ(B),n(w))

ueUy WEC”(B) heH

Z Z Zﬂk h.(B), n(u”" xu) + w(w)o(u™" xu) — n(w))

ucUy weCyr(py heH

ICB||H|||C | Z Z Zﬂk(h.n(B),n(wu—lxu)_,T(w))

ueUy weCrpy heH

|CB||H|||CH(B>| 2, 20 2 9k (haB). mtwu anwow)

uelUy WEC,,(B) heH

ICB||H|||C,T(B)| Z Z Zﬂk wh.n(B), m(u xu)).

ueUy WEC,r(B) heH

|CB||H|||C7r(B)|

|CB||H|||Cn(B)|

Since Cg = Crpy N C4 and |v| = |Uy]|, it follows by proposition 2.2.13 that
min(k—1,n)—i

|Cra)lICal
= vl
|Cl H(i,k)esupp(n(B))Usupp(A) q

H(i k)esupp(B) q
= |Unl

|Cr5)Cal =

min(k—1,n)—i

and therefore C5Cs = Uy. Forv € C4 we have vH.n(B) = H.n(B) and since UyH = Gy, it
follows that

Gr)(x) =

ICB||H|||C,T(B)||CA| DIDIDIPN A CECRCED)

uceUy veCy weCr(p) heH

|CB||H||UN| Z Z Zﬂ" Vha(B), n(u” xu))

ueUn v'eUny heH

Z Z ﬂK gﬂ(B) m(u xu))

gEG ueUy

1 _
= m Z Z ﬂK(C,ﬂ(u 1xu)).

CeGy.n(B) ueUy

|CB||GN|
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2.3. Jedlitschky characters for verge patterns

Finally, the number of elements in the orbit Gy.7(B) is |Gy.7(B)| = [ xesuppiray g¢~~'. For
every (i,k) € supp(m(B)) with k > n we have (%, i) e supp(A) withk —n+1 = n — k and

therefore [T pesuppt) @ = [inresuppiacsy 4™ D7, so the claim holds since

k—i—1
H(i,k)esupp(ﬂ(B)) q

ICllGy.7(B)| = |Unl = [Unl.

min(k—1,n)—i

H(i,k)esupp(B) q

2.3 Jedlitschky characters for verge patterns

For the group algebra CUy Jedlitschky [Jed13, 3.1.14, p. 58] defined a monomial basis
{[C] | C € v} for the CUy-module v with

1

Cl=—
[C] T

Z)(C(x)x e CU

xeU
for C € v on which Uy acts by right multiplication. For g € Uy we then have

1

Clg = —
[Clg Ul

D xc@xg = xec(@lg ™ .Cl,

xeU

because for x € Uy we have

Xc(x) = 9k(C, m(xgg™")) = Ix(C, m(xg)og ™" — n(g)og™") = Xg1.c(X8)X ¢1.0(8)-

The module generated by [C] is the orbit module C(Uy.C) with its C-basis being {g.C | g € Uy}.
Let now ¢ : Uy — C be the character of this orbit module C(Uy.C), so by lemma 2.1.3 for

x € Uy we have
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2.3. Jedlitschky characters for verge patterns

1
We(x) = W;_mex) = Sabe ) Z Xec(®)

xW=Ww xg.C=g.C

1 1
- |Staby, (C)| Z Xec(x) = m Z Ik (C,m(x)og)

gely geUn
g’lxgESIabUN © g’lxgEStabUN(C)
1
- = Pk (C,m(xg) — n(g))
[Staby, (C)] gezu;,
g ! xgeStabyy (C)
1
- Ik (C, (g~ xg) — n(g™)oxg — m(g)
Staby,, (O)] ZU; ( )
g’lngSlabUN(C)
1 -1 -1
- - xc(g  xg) 9k (C,m(g)og™ xg) xc(g)
Staby, (O)] Z; ¢ ( Jxe
! xgeStaby, (€)
1 -1 -1
- xc(g  xg) k(g x8.C,n(g)) xc(g)
Staby, (C)] ZV ¢ ( e
g ! xgeStabyy (C)
1 -
S (g xg) xc(8) xc(g)
Staby () Z e e
g~ LxgeStaby, v ©
- D xe(g'xg)
Staby, (C)] 44 €

g LxgeStaby N ©

= Ind%" ()

Staby (C
So Y 1s the induced character of the linear character y¢ of the stabilizer Staby, (C), and we
can calculate the value of this character /¢(x) for x € Uy to be the sum of all yy for W € Uy.C

evaluated at the average value of the elements of the Uy-conjugacy class of x.

Theorem 2.3.1. For C € v let Y- = Indgtg’b oXc be the induced character from Staby, (C) to
Un
Uy of the linear character ¢ of Staby, (C). We then have

1
U v
lr//C = IndSthUN(C)XC = m Z (/\/W)

Wely.C
veUpn
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2.3. Jedlitschky characters for verge patterns

Proof. Let C € vand x € Uy. By lemma 2.1.3 we have

lﬁc(x) - IndStabU (C)XC(X)

1
= Ix(C, m(vxv™))
Staby, (C)| Z
vxv_IESlabUN(C)
1
= Ik(vxv.C = C, n(u)) Ix(C, m(vxv™"))
|Un|IStaby, (O)] 2‘,
! Zﬁ(cu Y 9k(C, m (v — 7(w))
K m(u)ovxy K m(vxv — T\u
IUNIIStabUN(C)I
1

= nilStaby. () v’;] I(C, r(wvxv™") — a(vxv™) + n(vxv!) = m(u))

) |UN||St:bUN(C)| ; Ik(C, w(uvxv™'u"you)

) |UN||St:bUN(C)| t;/ Ik(u.C, w(uvxv~u))

) |UN||St:bUN(C)| v;} I(u.C, a(vxv™h))
|UN| Z xwao™h.

WeUpy.C
veUy

O

The character ¢, 4 for A € v and g € Gy is similar to the Andre-Neto character ¢, as defined
in theorem 2.2.14, since it is based on the same construction only restricting the sum over
elements of of the Gy-orbit Gy.A to the Uy-orbit Uyg.A.

While the stabilizer Staby,, (C) for any C € v is in general not a pattern subgroup of Uy, this
is the case for Staby,(A) if A € v is a verge pattern as Jedlitschky [Jed13, 3.2.30, p. 76]
has shown. We consider the lower hook of a main condition, which is a non-zero position
of a verge pattern, to be the positions directly below this main condition in V as well as
their reflection at the counter-diagonal, that is the positions (i, j) € V such that (}', i) e @Gis
directly below this main condition. As the stabilizer Staby, (A) of a verge pattern comprises
all elements of Uy for which their support does not intersect the lower hook of any main

condition of A, we can count the elements of the stabilizer by taking the length of every lower
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2.3. Jedlitschky characters for verge patterns

hook and counting their intersections. Therefore, we define a set of positions D4 C G of the

intersections of the lower hooks as well as their boundary points with the counter-diagonal.

M

Lower hooks for a verge pattern (M)

Lemma 2.3.2. For a verge pattern A € v let P C G and Q C V be subsets defined by

P= | WGhli<j<k

(i,k)esupp(A)
Q= |J (Ubli<j<mnkdiv ] (Gpli<i<il.

(i,k)esupp(A) (i,k)esupp(A)NV,

where P is the set of positions below non-zero positions of A in G, and Q is the set of positions
of the lower hooks of A in V. Then the stabilizers of A in Gy and Uy respectively are pattern
subgroups Stabg,(A) = Hg\p and Staby,,(A) = Hqnq such that

Stabg, (A) = {g € Gy | suppg(g) NP = 0} and  Staby,(A) ={u € Uy | supp,,(u) N Q = 0}.

Let D C G be the subset of intersections of lower hooks of A as well as their boundary points
with the counter-diagonal defined by

D={G,)eGli+j<N+1,A1<kli<i: (ki) j) € supp(A)}.

Then the number of elements in the stabilizers of A in Gy and Uy respectively are

G Unl g2
|Stabg, (A)| = (G —— and |Staby,(A)| = Unlg

[Tiwesuppiay @

H (i,k)esupp(A) qk_i_l
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2.3. Jedlitschky characters for verge patterns

Proof. Let A € v be a verge pattern and g € G. We have

n(Ag') = Z Apr(exg’) = Z A n(gjkeij) = Z A Z gjk€ij-
(i.k)esupp(A) (ik)esupp(d)  1<j<k (ik)esupp(d)  i<j<k
As no row of A contains two non-zero entries, we have g € Stabg, (A) if and only if g = 0 for
every (i, k) € supp(A) and i < j < k. So for P = | xesuppa) {(Js k) | i < j < k} by lemma 1.3.8
and 1.4.3 the stabilizer is a pattern group Stabg, (A) = Hg\p for the closed subset G\P C G.
We then have

_ —(k—i—1 Gl
[Stabg, (4) = 9" =g [] g%V = ra
(i,k)esupp(A) H(i,k)Esupp(A) q

Let Dy, D, € P be the set of intersections of lower hooks of A as well as the set of boundary
points of lower hooks of A with the counter-diagonal and let Q C V be the sets of lower hooks
of A defined by

Dy ={i,)eGli+j<N+1,3A1 <kl<i: (ki) j) e supp(A))
D, ={(i,i)e G|A1 <k<i: (ki) € supp(A)}
Q= |J (Gbli<i<bu | (Goli<i<ul@pri<j<i)).
(i,k)esupp(A)NYV; (i,k)esupp(A)NV,

Let o : P — V be the map defined by 6(i, j) = (i, j) for (i,j) € Pand i+ j < N + 1 and
6(i, j) = (j,i) for (i, j) e Pand i + j > N + 1. For (i, j) € PNV we have 6(i, j) = (i, j) € Q
while for (i, j) € P withi + j > N + 1 we have (i, j) = (j,i) € Q. For (i,i) € P we have
8(i,i) = (i, i) € D, so the image of § is im(6) = Q U D,. For any (i, j) € P NV with (j,i) € P
thereare 1 <k < jand 1 <1< isuch that (k, i), (1, J) € supp(A). Since k +i< N+ 1, we have
k < i and therefore (i, j) € D;. It follows that the restriction of ¢ to P\D; is a bijection onto
QU D,. For D = D; U D, we then have

Pl = 1P\Di| +1D1] = 1QU Ds| + Dy = 1Q| + 1D,

because of QND, € VND, = 0. For (i, j) € V we have (i, j) ¢ Qif and only if (i, j), (j, i) ¢ P,
so by lemma 1.3.9 as well as 1.4.3 the stabilizer of A in Uy is a pattern group in Uy with
Staby, (A) = Hgp N Uy = Hq\q, and we have

2]
|Staby, (A)| = qIVI—IQI — ql(V|—|P|+|z)| = Uyl q _ a

[T oyesuppeay @
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2.3. Jedlitschky characters for verge patterns

CM \ M M

- 10] M|, 0 M

+ 10 0] l0joJojo]o[o[o]0]0]O |

0 10 M [0 :

0| [0M].- 0] 0 |[OM }

0| [0]0 0] 0/0/0|0 1

0] [0/0 0] 0[0 1

.710]0 0] ! !

olo] [0] |

o] [o] :

0] |

0 |

"\ ‘
Zero positions of the stabilizer Zero positions of the stabilizer
of a verge pattern (M) in Gy of a verge pattern (M) in Uy

Following Jedlitschky [Jed13, 3.3.21, p. 87], we calculate the inner product of two Jedlitschky
characters. Using the Mackey decomposition, this inner product can be reduced to a sum of

inner products of the linear characters on the intersection of their corresponding stabilizers.

Proposition 2.3.3. For a verge pattern A € v and g € Gy as well as u € Uy we have
Xea(X) = xuga(uxu™) for x € Staby,(g.A).

Proof. Let A € v be a verge pattern and g € Gy. For u € Uy and x € Staby, (g.A) we have

XugaCuxu™") = 9 (ug.A, 7 (uxu™"))
= Ok (ug.A, n(woxu™ + n(x)ou™" = n(uyou™")
= 9k (xg.A — g.A, (1)) O (g.A, 7(x))
= Xg.A(X).

Theorem 2.3.4. For verge pattern A, B € vand g,h € Gy let

|Staby, (g.A) N Staby, (h.B)|

A, hB) =
L8 ) = Staby, (3. A)[Staby, (h.B)

<X8-A ’Xh'B>SmbUN (g-A)nStaby (h.B)

be the inner product of x4 and x g on Staby, (g.A) N Staby, (h.B). Then the inner product of
Wea and Y g on Uy is

<¢’g.A,l/’h.B>UN = Z t(g.A,uh.B).

ueUy
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2.3. Jedlitschky characters for verge patterns

Proof. Let A, B € v verge pattern and g,h € Gy. Furthermore, let V = g.A and W = h.B as
well as § = Staby, (V) and T = Staby, (W). Let D C Uy be the set of representatives of the

(S, T)-double coset in Uy. Using both Frobenius reciprocity and Mackey decomposition, we
have

<lﬁg.A, lﬁh.B>UN = <Ind§]NReS§]N)(V, Ind?”Res?N)(W>UN

= <ResSUN Xv> ResgNInd?NReslT]NXW>S

_ Uy S Uy d-!

= Z <ResS Xv, Indg i Rescl X >s
deD

-1

_ Uy Uy d
- Z <ResS nara-XVs RESgLm Xy
deD

1 -1 -1,.,-1
_ Un w Un d='w >
- IS Z Z <ReSSnwde-'w-1X v ReSSﬂwde"w-lX w SnwdTd"w!

weS deD

>S NdTd~!

1 U
_ N Un
=S| Z Z <Ress Awdrwdy XV RESSA aruay X Wd-W>s wdT (wd)!

weS deD
where the last step follows from proposition 2.3.3. Since D is the set of (S, T)-double coset
in Uy, we have SD.W = Uy.W, so every for u € Uy there are w € § and d € D such that

wd.W = u.W. For w € S we have wd.W = wd.W if and only if ww™ € S N uTu™". It follows
that

IS NuTu'| 1 U U
<'//g.A,lﬁh.B>UN = S| T <ResS2uTu_1Xv, Ressg’u“_l)(u.w>
ueUy

- IS N Staby, (u1.W)| <
£ IS IStaby, (u. W)

= Z t(V,u.W)

ueUy

SNuTu1

U U
Res ? v, Res? " W>
SNStaby,, (u. WYX S NStaby (. WYX $Stabuy )

O

For a verge pattern A € v we now define a subgroup R4 < Uy that acts on A by row trans-
formation into the orbit Gy.A such that for every v € R, we have v'A € Gy.A. For another
verge pattern B € v and g € Gy such that i,  is not orthogonal to 4, we can then show that
there is a v € Ry with V'A = g.B and i, 5 = 4. Therefore, any Jedlitschky characters is either
orthogonal or equal to 4. This has also been shown by Jedlitschky [Jed13, 3.3.32, p. 91] for
the general case of two Jedlitschky characters, which we will do in the next section.
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2.3. Jedlitschky characters for verge patterns

Lemma 2.3.5. For a verge pattern A € v let Ry € V; be the closed set of positions defined
by (i,j) € Ry for 1 <i < j<nifthereare j < k <1 < jsuch that (i,k), (j,1) € supp(A).
Let Ry < Uy be the pattern subgroup for Ry, then for v € Ry there is a g € Gy such that

VA = g.A. Furthermore, for v € Ry, g € Gy and u € Uy we have
g.(V'A) = n(v'(g.A)) and «k(g.(V'A),n(u)) = K(vg.A,n(vuv_l))

Proof. Let A € v be a verge pattern and let 1 < i < j < r < n be such that (i, j), (j,r) € Ra.
Then there are j < k < [ < s < 7 such that (i, k), (j, 1), (r, s) € supp(A), and since k < s, we
have (i, r) € R,. For all (i, j) € R4y we have j < n, so it follows that R, is a closed subset of V.
Letv € Ry and 1 < j k < N be such that (VA)x # 0. Then there mustbe a 1 < i < N with
(i, j) € R4 and (i, k) € supp(A). By definition we have j < kand j+ k < N + 1, so it follows
that vV'/A € v.

Forg € Gyand 1 < i < j < Nlet (i,j) € Ry, so there are j < k < [ < j such that
(i, k), (j,I) € supp(A). For ¢ € F, we have

xXij(e)'A = A+ cAyej = A + cAyAj €)' = (I + cAyAj en). A,

so since R, is a pattern group for any v € Ry, there is a g € Gy with VA = g.A.

We have g.(v'A) = n(v'Ag") and n(v'(g.A)) = n(v'n(Ag")), so for 1 < i < j < N it fol-
lows that (Ag' — n(Ag");; = 0 and therefore (V' (Ag' — n(Ag"));; = 0. This concludes that
g.(vV'A) = n(V'(g.A)).

For x € Uy, (i, j) € R4 and ¢ € F, we have

i-1 j-1 i-1

7(xi () = X () = w(U) + ¢ Y inein = 7W) =€ D Upnein = TXHE)) + € Y Uineim,

m=j m=j+1 m=j
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2.3. Jedlitschky characters for verge patterns

and for g € Gy it follows that

k(g.(xi(0) A), w(w)) = Tr ((g.4) xi(c)m(w))
=K (g.A, X; j(c)ﬂ(u))

i-1
= k(g4 mxif(ew) — m(xi(€) = € D ik (8., i)
j
-1
= K (8A, 7Cxij(Om) = wxi(€)) = ¢ Y u(8-A)im

m=j

3

Since there are j < k < [ < } such that (i, k), (j,[) € supp(A), we have (g.A);, = 0 if
m > j > k, which forces the last term in the equation above to be zero. For any v € R, we have

r(vu) = n(vuv~v) = r(vuv=")ov + m(v) and therefore

k(g.(VA), n(w)) = k (g.A, n(vue) — m(v)) = K(g.A,?T(VLtV_])OV) = K(vg.A,ﬂ(vuv_])).

Non zero positions of quA )
for a verge pattern A € v (M)

Positions of R4 (R) in relation to the
positions of a verge pattern (M)

Theorem 2.3.6. For verge pattern A, B € v and g € Gy we have (A, g.B) # 0 if and only if

there is a v € Ry such that vV'A = g.B. If this condition holds, the following statements are true

as well:
(i) A=B
(ii) Staby,(A) = Staby,(g.B)

(iii) Ya =Yg
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2.3. Jedlitschky characters for verge patterns

Proof. Let A, B € v be verge pattern and g € Gy such that (A, g.B) # 0. By theorem 2.2.14 the
characters ¢4 and , 5 are constituents of the André—Neto characters ¢, and ¢ respectively
for which we have (¢4, ¢5)y, = 0 unless A = B by corollary 2.2.11. So since «(A, g.B) # 0,
both characters ¢4 and ¢, g must be constituents of the same Andre-Neto character, and we
have A = B.

Let § = Staby, (A) N Staby, (g.A). For any u € S we have

(XasXea), |S|ZﬂK(A g.A, w(w)

weS

| Z Ik (A — g.A, m(wu))

weS
=5 ; % (A — g.A, a(w)ou + n(u))
|;|19K (A —g.A,(w) wzesl Ik (u.A — ug.A, m(w))
|§|19K (A - g.A, ﬂ(u));ﬁk (A — g.A, m(w))

= DK (A = 2.A, (1) (YarXea), -

Since «(A, g.A) # 0, we have <)(A,Xg.A>
therefore x (A — g.A, m(u)) =

s # 0, so we must have ¥« (A — g.A,m(u)) = 1 and

Forl <k <IlI<Nwithk+[I<N+1and(gA)y #0letl < j < kbe such that (g.A); # 0
and (g.A); = O forall 1 < i < j. Then (j,/) is the highest non-zero entry in the /-th col-
umn of g.A and for we have x;(1) € Staby, (g.A). Since (g.A); # 0, thereisno1 <m < j
with (m, j) € supp(A). If there were no 1 < i < j with (i,/) € supp(A), we would have
x;(1) € Staby, (A) and therefore (A - g.A); = k(A — g.A, n(x;(1))) = 0, which is a contradic-
tion because (g.A);; # O and A;; = 0. So thereis a 1 < i < j such that (i, /) € supp(A), and we
must have i = j. Therefore, for every 1 <k <1 < N with (g.A); # Othereisal < j < k such
that (j, ) € supp(A).

Let A € v be the verge pattern such that supp(A) = supp(A) and A;; = A;' for every
(i, j) € supp(A). Then, for every (i, j) € supp,(A(g.A)) there is a (i,k) € supp(A) and
(g.A)jx # 0. Therefore, thereisa k < [ < j with (j,1) € supp(A) and gi; # 0, so we have
supp,(A(g.A)") C Ry. Let v € Uy be such that 7(v) = n(A(g.A)), which implies v € R4. For
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2.4. Classification of Jedlitschky characters

any 1 < j <k <N with j+k <N+ 1 we have (VA —A)x = O unless thereis a 1 <i < j with
(i, k) € supp(A) in which case we also have (g.A — A) . = 0, so it follows that

(VA — A)ji = vijAu = Aie (A(8~A)t) = AuAi(gA)j = (8A = A,

ij
and we have VA = g.A.
To prove the reverse let now again A, B € v be verge pattern and g € Gy as well as v € R4 such
that v'A = g.B. Let u € Staby,(A). Then we have ug.B = u.(vVA) = n(v'(u.A)) = v'A = g.B
by lemma 2.3.5. Conversely, let u € Staby,(g.B). By the same lemma it follows that
uA =a(v'(u.(v'A))) = n(v'(ug.B)) = n(v'(v'A)) = A, so we have Staby, (A) = Staby, (g.B).
Again by lemma 2.3.5 for x € Staby, (A) = Staby, (g.B) we have

Xe8(X) = Ok(V'A, (%)) = Fk(v.A, r(vxvh)
= 9k(A, m(vx) — n(v)) = 9k(A, 1(v)ox + m(x) — n(v))
= k(A, m(x))Ik(x.A - A, n(v)) = Ik(A, m(x))
= xa(x)

U U ..
and therefore ¥, = IndSthUN(A)XA = IndStlszUN(g.B)Xg-B = Yop. From this it follows that

U(A, g.B) # 0 immediately.

2.4 Classification of Jedlitschky characters

We will now expand the discussion of Jedlitschky characters for verge patters to Jedlitschky
characters of all Uy-orbits in the orbit Gy.A for a verge pattern A € v. Jedlitschky [Jed13,
3.2.14, p. 65] has classified those orbits in Gy.A by so called core patterns for every verge
pattern A € v, and for an equivalent classification we will use a subset D4 based on the subset
D, € G defined in theorem 2.3.2, such that for every d € D, the element d.A is such a core

pattern and the representative of a Uy-orbit in Gy.A.

Definition 2.4.1. Let A € v be a verge pattern and C € v such that there is a g € Gy with
C = g.A. A position (i, j) € V is called a main condition of C if all entries of C right of
the j-th column in the i-th row are zero, that is if (i, j) € supp(A). The main conditions of
the verge pattern A is therefore simply its support. A main condition is called a left or right

main condition if it is contained in V; or V, respectively. A position (i, j) € V), is called
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2.4. Classification of Jedlitschky characters

a minor condition of C if (i, j) is a main condition of C. A position (i, j) € V, is called a
supplementary condition of C if it is left of a left main or minor condition and if the j-th row
of A contains a minor condition. The core conditions then are the union of all main, minor and
supplementary conditions. We therefore define the subsets of minor, supplementary conditions

and core conditions of V accordingly:

minor(C) = {(i, j) € Vi | (i, j) € supp(A)}
supl(C) = {(i, ) €V, | A1 <k <n: (k, j) €supp(A),j<l<j: (il € supp(A)}
core(C) = supp(A) U minor(C) U supl(C)

Any such C € v with supp(C) C core(C) = core(A) is called a core pattern for the verge
pattern A.

Lemma 2.4.2. For a verge pattern A € v let Dy C Gy be the subset defined by the set of

positions

Da={i.)e@Gli+jsN+1,A1<ki<i: (ki) j) € supp(A)},

with Dy = {g € Gy | suppg(g) € Da}. Then {d.A | d € D,} is the set of core patterns C for
which there is a g € Gy with C = g.A.

Proof. Let A € v be a verge pattern. For d € D, we have

supp(d.A) € supp(A) U{(L,i) € V | (I, j) € supp(A), (i, j) € Da}
= supp(A) U {(L,i) € V | (L,i) € supp(A), (i, i) € Dy}
U{(l,i) € V| (L)) € supp(A), (i, j) € DaNV}
= supp(A) U minor(d.A) U supl(d.A)
= core(d.A),

since for (1, i) € V with (, i) € supp(A) we have (i, i) € Dy by definition and for (/, i) € V with
l<j< [ such that (I, J) € supp(A) we have (/,i) € supl(A) if and only if thereisal <k <n
with (k, ) € supp(A) aswell asi < j < i, which requires (i, j) € Dy,.
Since for d;,d, € D4 with d;.A = d,.A, we have d; = d, as well as |[core(A)| = |D,| it follows
that

{d.A|de Dy} ={g.A| g e Gy such that supp(g.A) C core(A)} .
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' ' M
- D|- [D|D
D
Core pattern with main conditions (M),
minor conditions (m) Positions of D4 (D) in relation to the
and supplementary conditions (s) positions of a verge pattern (M)

Guo, Jedlitschky and Dipper [GID18, 4.21, p. 20] describe a way to directly calculate the
stabilizer of any core pattern. As the stabilizer is in general not a pattern subgroup of Uy,
this is not straight forward as it is the case for a verge pattern. Therefore, using the Cayley
transformation as defined in lemma 1.3.12, for any g € Gy we instead define a bijective map
B, on Uy such that its restriction to the stabilizer of some B € v is a bijection onto the stabilizer
of g.B. With this we will be able to reduce this problem to the case of verge patterns, where

the stabilizer is a pattern subgroup of Uy.

Lemma 2.4.3. Let f be the Cayley transformation as defined in lemma 1.3.12. For C € v and
g € Gy let B, be the map defined by

Be: Uy — Uy ium £ (g7 fag™).

This map restricted to Staby, (C) is a bijection onto Staby, (g.C). This bijection respects com-

position such that for h € Gy we have B,08, = Bgp.

Proof. Let C € vand g € Gy. By Lemma 2.2.4 for every g € Gy and X € soy we
have g7"Xg™! € soy. Therefore, we have g’ f(x)g € soy for x € Uy, which shows that
Bo(u) € Uy for u € Uy. For every x € Uy we have f(x™') = —f(x) and f(x') = f(x)". For
u € Staby, (C) we have 2(u + D' € Gy as well as %(Bg(u) + 1) € Gy. So for x € Gy defined as
x = (Be(u) + Dg"(u + I)~" it follows that
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Pelu)g.C — 8.C = x(Cg' (B(w) - 1))

7 (Cg'f (BLw) (BL(w) + 1))

n (Cg’ (g7 rang™Y (8L + 1))
v (Craey (B + 1))

= 1 (CW)'(u+ I)'x")

=n(C (' - I)x)

=a(Cu' -C).x
=wC-C)x=0

and therefore B, (u) € Staby, (C.g). For h € Gy and u € Uy we have

Beopu(w) = £ (gThTfah™'g7) £ ((@h) T Fa)(gh) ™) = Benw),

which especially means that 8,108, = idy,, s0 B, is a bijection, with §,-1 being its inverse

map. O

For u € Uy the map f3,, is the conjugate map Inn, of Staby;, (C), since u’ = u™', and for x € Uy
we have B,(x) = f'(uf(x)u™") = F1(Fuxu™)) = uxu™".

Dipper and Guo [DG15, 3.8, p. 10] have shown that the stabilizer of every core pattern has the
same size as the stabilizer of the corresponding verge pattern. By our line of argumentation,

this follows immediately from the previous lemma.

Corollary 2.4.4. For a verge pattern A € v and g € Gy we have

q|DA|

|Staby,(g.A)| = |Staby, (A)| = |Uy]| —
! ! [T mesuppay 7!

Proof. Let A € v be a verge pattern and g € Gy. Then the map g, : Staby, (A) — Staby, (g.A)
is a bijection, so by theorem 2.3.2 we have |Staby, (g.4)| = [Unlg"™*' /(T T pesuppy @) O

Using the bilinear form b of FqN as defined in 1.2.1, for any verge pattern A € v we can now
decompose the group Gy into a disjoint union of (Uy, Stabg, (A))-double cosets, for which D4

is a set of representatives.
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Proposition 2.4.5. Let A € v be a verge pattern and g € Gy. For the bilinear form b as
defined in 1.2.1 and 1 < k,1 < n we have b((g.A) e, (g.A)e;) = b(gA'er, gA'e;) unless there
are 1 < i, j < N with (k,i),(l, j) € supp(A) such thati > Lor j > k.

Proof. Let A € v be a verge pattern, g € Gy and 1 < k,/ < n. If thereisno 1 < i, j < N such
that (k, i) € supp(A) or (1, j) € supp(A), then (g.A)'e; = gA'e; = 0 or (g.A)'e; = gA’e; = 0, and
the claim holds. We assume now that there are 1 <7, j < N such that Aj;, A;; # 0, so we have

N i
b(gA'er, gA'e)) = AAyb (gei, gej) = ApiAyj Z 8rigrj = AkiAij Z 8rigFj
r=1 r=j
while also
i J min (I-1,)
b((g.A) e (gA)e) =b|Ay Z grier, Ajj Z guils | = AkiAyj Z 8rigrj-
r=k+1 s=l+1 r=max (k+1,;)

These two expressions are equal if i < [ and k > j, that is k < j, which proves the claim. O

Theorem 2.4.6. Let A € v be a verge pattern. The group Gy decomposes into a disjoint union

of double cosets
Gy = ) UndStabg, (4),

deDy
where D, defined in lemma 2.4.2 is the set of representatives of the (Uy, Stabg, (A))-double
coset. The Gy-orbit Gy.A of A decomposes into |D,| many disjoint Uy-orbits Uyd.A for
d € D, with

Gy.A = U Uyd.A

dGDA
Letge Gyaswellasu € Uy, d € Dy and s € Stabg, (A) such that g = uds. For1 <i < j< N
with (i, j) € Dy there are 1 < k,l < nwithk # | and (k, i), (1, J) € supp(A) such that

b((g.A) e, (g.A) e) = 2A%d.

b ((g.A)’ek, (g.A)te,) = AkiAljdij-
Proof. Let A € v be a verge pattern and g € Gy. Let § = Stabg, (A) be the stabilizer of A in
Gyandletd € Dy, s € S andu € U suchthat g = uds. Let 1 <i < j < N suchthat (i, j) € Da,

so we have j < i and there are 1 < k,I < n with (k, f), (I, j) € supp(A) as well as [ < i. Since
I <iand k < i < j by definition of D,, it follows by proposition 2.4.5 that
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b((g-A) e, (g.A) e) = b((ud.A) e, (ud.A)'e)
= b ((udA'ey, udA'e;)
=b((dA'er,dA'e))
= b(Ade;, Ade;)

= Akal.l' Z dmtdml
e

Let} < m < i be such that (m,i) € D,. Then thereisa 1 < r < n with (r,m) € supp(A)

and we have i < m. But we also have j < i as (i, j) € D4 and therefore j < m < i < |,
which forces i = ] It then follows that b ((g.A) e, (g.A) 1) = AyAi(dzdij + dyd;)) = 2A2 d,,

Conversely, if i # ] we have b ((g.A) e, (8.A) e;) = AA;d;;. So for any element g € UNdS of
the double coset UydS every b ((g.A)' e, (g.A) e)) for (i, j) € Dy is constant and only depends
on the choice of d € Dy.

Let now d,,d, € Dy with g € Uyd,|S N Uyd,S. Let 51,5, € S and uy,u; € Uy such that
g = sidiuy = sadruy. For every (i, j) € Dy let 4;; = 21if j = iand Aij = 1 otherwise, so we

have

A;jA1(d)ij = b((8.A) er, (8.A) e)) = 2;;A1(dn);;

and therefore d; = d,. This concludes that the double cosets UydS are pairwise disjoint for
all d € Dy,.

By lemma 2.3.2 we have [S|/|Staby, (A)| = |Gn|/(IDallUyl), and by lemma 2.4.3 it follows that

\UNIST— — 1UNIST — |UNIST 1G]

UydS| = - - _ lon
UNdS | = 5 dn Oyl ~ iStabuy @A)~ [Stabuy ()] 1D

Since the union | Jcp, UndS is disjoint, we have Gy = (J ep, UndS by argument of cardinal-
ity.

For every element g.A of the Gy-orbit of A with g € Gy thereisad € D, with g € UydS such
that g.A is contained in the Uy-orbit Uyd.A. Since

|Gyl [DAllUn| |Unl
Gy.Al = =20 = Und Al
N IS|  [Staby, (A)] Z |StabUN(A d)l dEZD“A N
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by argument of cardinality, the orbit Gy.A decomposes into the disjoint union of Uy-orbits
GN.A = UdEDA UNdA
O

Corollary 2.4.7. For a verge pattern A € v the André—Neto character ¢, decomposes into
|Da| many Jedlitschky characters with

ba = Z Yaa-

deDy

Proof. Let A € v be a verge pattern. Then for x € Uy we have

Pa(x) = ﬁ DD vl = ﬁ DU D ey = ) s,

VeGy.AveUy deDy WeUnd.AveUy deDy

O

In proposition 2.3.3 we have already shown that for a verge pattern A € v, C € Gy.A and
u € Uy the map f,, that is the inner automorphism for u, applied to y¢ is y,-1.c. To get this
result for B, for any g € Gy we just have to consider the the maps g, for d € D, and since D,

is not necessarily a group, ford € D' ={d™' | d € D,} as well.

Lemma 2.4.8. Let A € v be a verge pattern. For C € Gy.A and d € D, or d € D},' we have
Xc = Xd.coBa-

Proof. Let A € v be a verge pattern, C € Gy.Aandd € Dy. For1 <i < j < N with
i+ j>N+1wehave d;; = 0. So for the adjugate matrix we have adj(d);; = 0 and therefore
d;;! = 0 as well.

For x € Staby, (C) we have %(x +1).C = %(x.C + C) = C and %(ﬂd(x) + Nd.C = d.C since
Ba(x) € Staby, (d.C). It follows that 2(x + I)~! € Stabg, (C) and %(ﬁd(x) + I) € Stabg, (d.C).
For any u € Uy we have n(u) = n(u — I) and n(u — I) = n(f(u)(x + 1)) = 7r(2f(u))0%(x +1). It
follows that
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Xa.c(Ba(x)) = 9k (d.C,m (By(x) — 1))

= 9« (d.C, n(d2 f(x)d“)o% (Ba(x) + 1))

= 9k (% Ba(x) + Dd.C,m (d-T (x = D2(x + I)“d“))

9(d.Com(d (x = D)o2(x + "'d™)
9 (20c+ D7.Cor(d 7 (x - D))
9k (C.rr(d'(x = D)).

For1 <i < k £ N with (d‘l)E # 0 we have k + i < N + 1 and therefore i < k. So for

1 <i< j<N wehave (d‘%(x — I)) =+ Y (A e = i+ it (d Ygx. If

ij k=i+1 k=max (i+1,i+1)

i+j < N+1, we have j < i and therefore (d‘*(x - I))l_j = x;;. It follows that (d‘*(x - I)) = m(x),
which gives us

Xa.c(Ba(x)) = 9k (C,7(x)) = xc(x)

ford € D,. Ford € Uy with d™' € D, the same argument applies since (d"');; = 0 for any
I1<i<j<Nwithi+j>N+1. O

With this we can now shift the inner product «(B, C) as defined in theorem 2.3.4 of the linear
characters for two patterns B, C € v with the same verge pattern to the previously solved case,
where one of the patterns is a verge pattern. So we can generalize theorem 2.3.6 to calculate

the inner product of two arbitrary Jedlitschky characters.

Proposition 2.4.9. Let A € v be a verge pattern. Let B € v be such that there are d € D, and
u € Uy with B = ud.A. Then for C € v we have (B, C) = (A, (ud)™".C).

Proof. Let A € v be a verge pattern and B € v such that there are d € Dy and u € Uy
with B = ud.A. By proposition 2.3.3 we have yp(x) = yqa(u'xu) for x € Staby,(B).
For C € v and x € Staby,(C) we also have yc(x) = y,1.c(u'xu). Moreover, we have
u~! (Staby, (B) N Staby, (C)) u = Staby, (d.A) N Staby, (u™".C).

By lemma 2.4.3 the map ;-1 is a bijection from Staby, (d.A) to Staby, (A) as well as a bi-
jection from Staby, (u™'.C) to Staby, ((du)™'.C). As the same argument holds true for the
inverse map B, of B4, the restriction of 8,1 to Staby,(d.A) N Staby, (u™'.C) is a bijection
onto Staby,(A) N StabUN((du)‘l.C). By lemma 2.4.8 we have yy4 = xa © B4 as well as
Xu'.c = XB © Bu.c. 1t follows that
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B> X C>StabUN(B)ﬂStabUN ©) = Xd.as X0y (Staby, (ud.A)NStaby,, (C))u
= (Xd.As Xu! .C>StabUN (d.A)NStaby,, (u~1.C)

- <XA B> Xtaw-1.c OB >StabUN(d.A)ﬂStabUN(u*1 0)

= <X A X (duy™! ‘C>ﬁ 1 (Staby, (d.A)NStaby,, (4! .C))

= <X A X (duy™! ‘C>StabUN (A)nStaby,, (du).C) *

Since we have [Staby,(d.A)| = |Staby,(A)| and [Staby, (C)| = IStabUN((du)‘l.C)l as well as
|Staby,, (d.A) N Staby, (u™'.C)| = |Staby, (A) N Staby, ((du)~'.C)|, it follows from the definition
in theorem 2.3.4 that «(B, C) = «(A, (ud)™'.C). o

Theorem 2.4.10. For a verge pattern A € v let ®4 : Dy X Ry — D, be the right action
of Ry on D, such that for d € Dy there is a u € Uy such that d.(vVA) = u(d e, v).A. Let
Rg(d) ={ve R, |de,sv =d} be the stabilizer of d € D, with respect to e,. For another verge
pattern B € vand f € D, we then have

IRO(d)| ifA=B,AveER,:desv=f

0 otherwise.

<l//d.A, Wf.B>UN = {

If<lﬂd.A, wf_B>UN # 0, it follows that Yy4 = Y y.p.

Proof. Let A € v be a verge pattern, d € Dy and v € R4. By lemma 2.3.5 there is a
¢ € Gy such that d.(V'A) = g.A and by theorem 2.4.6 there are unique f € Dy and u € Uy
such that g.A = uf.A. Therefore the operation e, is well defined, by mapping (d,v) to
deyv=f. Letnow v,v, € Ry and u;,up,u3s € Uy such that d.(vV]A) = u;(d e, v;).A as
well as (d o4 v1).(V{A) = ur((d @4 vi) 84 v2).A and d.((viv2)'A) = u3(d 4 viv,).A. We have

us(d o4 viny)d.A = d.(viv2,d)'A) = n (V) (d.(v{A)))
= 7T(Vt2 (u1(d o4 v1).A))
= uy. ((d o4 v1).(V4A))
= uuy((d @4 vy) @4 12).A

and therefore d ®4 viv, = (d ®4 v{) ®4 V2. So e, satisfies multiplication and since d o4 [ = d,

the map e, is a right group action of R, on Dj,.
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Let now A, B € v be verge pattern and d € D4 as well as f € Dg. By theorem 2.3.4 we have
<lﬁd.A, 'J’f‘B>UN # 0 if and only if there is a u € Uy such that «(d.A, uf.B) # 0. If this condition
holds, by proposition 2.4.9 we have (A, d"'uf.B) # 0. By theorem 2.3.6, it follows that A = B.
Then there is a v € R4 such that VA = d~'uf.B and therefore d.(v'A) = uf.B. So we have
d e, v = f. Conversely, for every v € Ry there is a u € Uy such that vVA = d~'u(d e, v).A and
by theorem 2.3.6 and proposition 2.4.9 we have ¢ (d.A, u(d e4 v).A) =t (A, d'u(d e4 v).A) # 0.
By lemma 2.3.5 for x € Uy it follows that

[Staby, ((d 4 v).A)|

idoina(®) = U D Ok (w(d o4 v).A, (v xy))
N w,yeUy
[Staby, (d.A)| _ _
= NZ—P Z 0K(wu ld.(V'A), n(y 1xy))
N w,yeUn
Staby, (d.A
= lag# Z 19/<(ku‘ld.A,ﬂ(vy_lxyv_l))
|UNI vt
[Staby, (d.A)| _
= |5—|2 Z ﬁk(wd.A,n(y 1xy))
N w,yeUy
= Yaa(x).

For f = (deyv)and u € Uy such that ¢ (d.A, uf.A) # 0 we have Staby,(A) = StabUN(d‘luf.A)
by theorem 2.3.6. So by lemma 2.4.3 it follows that Staby, (d.A) = Staby, (uf.A) and therefore

IStaby, (d.A) N Staby, (uf.A)|

dA,uf.A) = JXuf.
L( Mf ) |StabUN(dA)”StabUN(qu)l <Xd'A Xuf A>StabUN(d.A)ﬂStabUN(uf.A)
- )
~ Staby, (d.A)] XA sty (@)
1
= Ik (d.A —uf.A, n(w))
[Staby, (d- AU weStaby, (d.A)
1
= Ik (A —d 'uf.A, n(w)
|Staby,, (d.A)||Uy| weSib (4) ( / )
_ 1
~ |Staby, (d.A)|’

Here the last step follows from lemma 2.1.7 because Stab;,(A) is a pattern subgroup and
therefore m(Staby, (A)) < v is a vector space with A — d'ufAe n(Staby, (A))*.
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2.4. Classification of Jedlitschky characters

For every w € Uy by theorem 2.3.6 we have ¢ (d.A,wf.A) # 0 if and only if there isa v € R4
such that VA = d"'wf.A and therefore d.(v'A) = wf.A. So we must have f = (d e, v). Let
vi € Ry and u; € Uy be fixed such that f = (de,v,) with d.(v{A) = u;(de4v).A. Then we have
desviv! = fe,v! =d,soviv! € R{(d). Let now uy € Uy be such thatd.((viv™')'A) = uyd A.
Then we have

d.(VA) = d.(V(viv ) A) = upd.(V'A) = ugwf.A = upwu;'d.(vV' A)

and therefore uowu;' € Staby, (d.A). Conversely, for every v € R(d) with uy € Uy such that
d.(V'A) = upd. A and w € u(‘)IStabUN(d.A)ul we have

LdAWFA) = (dA wuy'd.(VA)) = L(dA, upd (V) A)) = L(d.A, d.(vv1)'A)) # 0.

Finally, by theorem 2.3.4 it follows that

Z L(d.A,wf.B)

weUy

> > dAd(m)A))

veRY (d) weuy ' Staby,, (d.A)uy

1
2 2 |Staby, (d.A)|

veRS (d) weuy ' Staby,, (d.A)u
|uy ' Staby, (d.A)u|
[Staby, (d.A)|

<'J/d.A, l//f.A>UN

= IR (@)|

= |R\(d)|.

O

This shows that the set of Jedlitschky characters are mutually orthogonal and for a verge
pattern A € v and d € D, the character ;4 occurs in the decomposition of the Andre-Neto
character ¢4 with multiplicity |R4|. With this we can now calculate the inner product for the

Andre-Neto character as well.

Corollary 2.4.11. For a verge pattern A € v and d € D, the inner product of the André—Neto

character is
WansPady, = IRal and  {$a, pa)y, = |DallRal.
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2.4. Classification of Jedlitschky characters

Proof. Let A € v be a verge pattern and d € D,. For f € D4 by theorem 2.4.10 we have
<lﬁd.A, Ql/f.B>U # 0 if and only if f € d o4 Ry, where d ®4 R, is the R4-orbit of d. So we have

Wans v, = ), (Wanstira), = D, IRY@DI=IR4l,

fe€Dy fedesRy

where the last step follows from the orbit stabilizer theorem. We then have

(GasBduy = Y Wans$aduy = . IRal = IDAIRA.

dEDA dGDA

O

With this we can come back to the second section of this chapter, and calculate |Gy * B| for
any verge matrix B € 8. By corollary 2.2.10 we have [H = Bl = []; jesuppor(8)) g7, so by
corollary 2.2.11 it follows that

|H * BJ? 1

_ 2j-i-1)
(x> brmy)yy  1DallRal

|Gy * Bl = q

(i.j)esupp(n(B))

The positions in V' as well as on the counter-diagonal that are both below and left of a non-
zero entry of B are Dy U {(j,k) € V | A1 <i < j: (i,)) € Rusy, (i, k) € main(r(B))}, so
their number is equal to [ Dy )| + [R5 . Therefore, the number of position in V that are below
or left of a non-zero entry of B are a = Y jesupprzy 47 = |Drewy| — [Rn)| and we have
|Gy = Bl = ¢“.

The question remains for which d € D, the characters ¢, 4 are equal and when these characters
are irreducible. For this we define a symmetric matrix S(d) € M,(F,) for every d € D, that
is derived from the Gram matrix of the bilinear form b. This matrix only depends on d and
for any d, f € D, their characters ;4 and ¢4 coincide if their matrices S(d) and S (f)
are congruent under the operation of R4 modulo some subspace of M,(FF,). Furthermore,

the number of v € R, that preserve S (d) under this operation determine the inner product

WanasYan)y,-

Lemma 2.4.12. Let A € v be a verge pattern and Sy, Za C [[n]] subsets with (k,l) € Z,4

if there are (k,1),(l, j) € supp(A) such that i > ZOI’j > k, whereas Sy = [[n]1\Z4. Let
S : Dy — M,(F,) be the map defined by

S(d) = Ay ..+ d" = DINAGaxir. v
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2.4. Classification of Jedlitschky characters

Then S (d) for d € D4 is a symmetric matrix. For g € Gy withu € Uy and s € Stabg,(A) such
that g = uds and (k,1) € Sy we have S ;,(d) = b((g.A) ex, (8.A)'e;). Let 24 < M, (F,) be the pat-
tern linear subspace with respect to Zs. Let X € M,(F,) such that Xy = b((8.A)' ek, (g8.A) e;)
for1 < k,l <n, then we have X — S(d) € z,.

Proof. Let A € v be a verge pattern and d € D,. Let g € Gy be such that there are u € Uy and
s € Stabg, (A) with g = uds. We have

((d +df - I)JN)I = Ju(d + (@) = 1) = In(Und Ty + IndIy = 1) = (d +d" — DJy,

so S(d) is a symmetric matrix. Let 1 < k,I < n be such that there is no k < i < k with
(k,i) € supp(A)orl < j < 1 with (/, J) € supp(A) then we clearly have both S,(d) = 0 and
b((g.A) e, (g.A)e) = 0. We now assume that there are such k < i < kand [ < j < [ with
(k, 1), (I, j) € supp(A). Then we have

0 fori+ j<N+1

1 fori+ j=N+1

2d; fori+j>N+landi=j

Su(d) = Ay (d +d' = 1) = AgAy; _
/ d- fori+ j>N+1landi< jandj<k

d: fori+j>N+1landi> jandi<I

0 fori > lorj > k.

Fori+ j< N+ 1wehavei<land j <k, so by proposition 2.4.5 we have

b((g-A) e, (g.A) er) = b(gA'er, gA'e;) = Ay Z dridy = AwiA 105

r=j

Therefore, S (d) and b ((g.A)' e, (g.A)'¢;) coincide for the first two cases of the equation above
and by theorem 2.4.6 it does so as well for the third to fifth case, which covers all possibilities
for (k,1) € S,. O
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2.4. Classification of Jedlitschky characters

S S S S § §S§S
S $§ 8 ZZSSS
S S§ S S §S§S§S
S Z S8 S$ § §S§S
S Z S8 S$§ § §S§S
S S S§ S S§S§S§S
S S S S § §S§S
S S S S S SS S|
Main conditions (M) Positions of Z4 (Z) and Sy (S)
of a verge pattern A € v corresponding to the verge pattern A

Lemma 2.4.13. For a verge pattern A € V let ©4 be the right action of Ry on M,(F,)/zs
defined by

(OFE Mn(Pq)/ZA X Ry — Mn(Pq)/ZA X474 (V|[[n]])tXV|[[n]] + Zy.

Then ford € Dy and v € Ry the matrices S (d) and S (d e, v) as defined in 2.4.12 are congruent

modulo z, such that
S(desv)+z4=S(d)O4v.

oAV

DA DA
S S
M, (F,)/24s —— M,(F,)/z4

Proof. Let A € v be a verge pattern, Z € z4 as defined in 2.4.12 and v € R4. Then for
1 < k1 < nwehave (W) ZVlin)y = Sho S ViwvaZns. Let now 1 < m < k and
1 < s < Isuch that v,;, vy # 0 and (m, s) € Z4. Then by lemma 2.4.12 there are m < r < m
and s <t <'s with (m,r), (s, 1) € supp(A) and r > s or t > m. Furthermore, since v, # 0 there
isak <i<kwith (k, i) € supp(A) such that r < i if (m, k) € Ry or r = i if m = k. In the same
way, since vy, # 0 there is a [ < j < [ with (I, j) € supp(A) and ¢ < j.

Without loss of generality, we assume that r > s and since r < i as well as s < [, it follows
thati > r > 5 > 7, which gives us (k,l) € Z4. In case of t+ > m it follows that j > k and
therefore (k,[) € Z, in the same way. So for any 1 < k, I < n with (Vi)' ZVlipp),; # 0 we
have (k,I) € Z4 and therefore (Vljpu))' 2Vl € Za. For any X € M,(F,) and Z € z, we then
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2.4. Classification of Jedlitschky characters

have (Vi)' (X + 2Vl — (i)' XVliay € 24, so the action ©4 on M,(F,)/z4 is well defined.
For any v,w € R4y we have (W)l = Vi Wliiap» S0 the action ©,4 respects multiplication. As

Oy respects the identity as well, it is indeed a group action of R4 on M,(F,)/z,4.

Letd e Dyand 1 <k,l <nwith (k,]) € S4. If thereisnok <i < k with (k,7) € supp(A), then
there isno 1 < j < k with (j, k) € R, and for v € R4 we have (S(d) 04 V)i = Zﬁzl Si(d)vy. But
by lemma 2.4.12 for any 1 < i </ we have S;; = 0 and therefore (S (d) ©4 V) = S(d e, v) = 0.
If thereisnol < j < [ with (1,1) € supp(A), we have (S (d) ©4 V)i = S(d ®4 v) = 0 as well by
the same argument.

Let now 1 < k,I < n with (k,I) € S, be such that there are k < i < k and [ < j < i
with (k, i), (l, j) € supp(A). If there are 1| < m < kor 1 < s < [ such that (m,k) € R4 or
(s,0) € Ry, thenthereisam < r < i < N with (m,r) € supp(A) orthereisas <t < j< N
with (s,7) € supp(A). Let now (m,k) € Ry or m = k and (s,l) € R4 or s = . We have
n((d.A)emder = Y. duAmes and n((d.A)eg)e; = Yo dpAgey, and since [ < i < T as

wellast<j§i<%,wehave

r—1 t—1
bl Y. duAmes ) duAges| = b(dA'e,,dA'e,,) = b((d.A) ey, (d.A)ey),

a=k+1 b=I+1

where the last step follows from proposition 1.2.1 because t < j<i<7<mandr <i<I[<s5.
Forany 1 < a < b < n with (a,b) € Ry ora = bsuchthat b # k or b # [ we have
n((d.A) eu)er = 0or n((d.A)ey)e; = 0 respectively, so for v € R, by lemma 2.3.5 we have

b((d(VA) er (d.(A)) er) = b (x ((d.AYV) ex. 7 ((d.A)V) )
= D, D, vwvab (A en) e n((dA) e e)

1<ms<n I<s<n
(mk)eRAV m=k (s,)ERLV s=I

— Z Z VoieVsib ((d.A)' e, (d.A)) ;)

1<m<n 1<s<n
(mk)ERAV m=k (s,)ER,V s=I

=b((d.A)ve, (d.A))ve)).

Since 1 < k,[ < n, we have ve, = v|ppex as well as ve; = v|i,y5e; and therefore
Su(d o4 v) = b((d.(V'A)) e, (d.(vV'A)))'er) = b ((d-A) vey, (d.A))'ve;) = (Wlipn)'S (VI

by theorem 2.4.10, which gives us S(d ®4 v) — S(d) ©4 v € Z4.
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2.4. Classification of Jedlitschky characters

In general, a symmetric matrix over a field K with char(K) # 2 is congruent to a diagonal
matrix, that is for a symmetric matrix S € M,(K) there is an orthogonal matrix P € O,(K)
such that P'S P is a diagonal matrix. Unfortunately this is not necessarily the case for the
matrix S (d) for d € D, under the operation of ©®4R4. But under certain conditions we can still
find a partial diagonalization of S (d).

Lemma 2.4.14. For a verge pattern A € vand 1 < m < nlet F,, C [n] be the subset of [n] such
thati € F,, if (i,m) € Ry. If det(S (d)|F,xF,) # O, there is av € Ry such that S ;,,(d e, v) = 0 for
alli € F,,

For anyv € Ry we have det(S (deav)|r,xr,) = det(S (d)|r, xF, ). Furthermore, if det(S (d)|r,xr,) #

Oforall 1 <m < nthen x4, is irreducible.

Proof. Let A € v be a verge pattern and d € D4. For 1 < m < n let det(S (d)|r,«xr,) # 0, and

m m

letb € quF’"' be defined by b; = S ¢, iyn(d) for 1 <i < |F,,|, where F,,(i) refers to the i-th entry
of the ordered set F,,. Then the restriction of S (d) to F,, U {m} X F,, U {m} is a block matrix of
the form

Slryxr, b
S ()l Um0t = et

b’ S mm(d)

Let v € Ry be such that that supp,,(v) € Fyy and vr,om = = (S @5, b) for 1 < i < |F,|
Then we have

I, S g b

m m

vaU{m}XFmU{m} =

and therefore

S(DlF,xF, 0

S(dey V)lFmU{m}XFmU{m} =

0 Smm(d) - th (d)ll_:,l,lemb

Forany 1 <i < j<nwith j € F,, and (i, j) € R4 we have (i,m) € R4 since (j,m) € Ry and
therefore i € F,. It follows that for any v € R, the restriction of S(d 4 v) to F,, X F, is

S(d oA Vr,xr, = Vg xr S(DExEnVIFxE,
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and therefore det (S (d ®4 V)|r,xr,) = det(S(d)|r,xr,). Let now d € D4 be such that we have
det(S (d)|F,xr,) # Oforalll <m <nandletv € Rg(d). Forany ] <m<mnand1<i<|F,|
we have 0 = S g, iym(d 94 v) =S £, iym(d) = (S (d)lpmxpvamX{m})im. Since S (d)|r,xF, 1S invertible,
it follows that vy, ;, = 0 and therefore supp4,(v) N F,, X {m} = (0. Since this holds for any
1 <m < nand Ry = U, Fin X {m}, we have supp.,(v) = 0 and therefore v = /. By theorem

2.4.10 it then follows that (xs.4, Xa4) = IRg(d)I = 1. O

Example 2.4.15. Following our running example we define the verge pattern A € v C M 4(F,)
and the core patter C € v for which A is its verge pattern as A = e; 19 + €214 + €43 + €511 and

C=A+s1e13+ 5201 6+mie7+maers+ 5346+ Sse47+mszesg for my, my, ms, s1, 52, 53, $4 € F,.

T
S1 Sy | my | M
|
|
& | : M
L :
............ P === =====-
L}
S3 S4M 1
1
ms [ : M
: v
L}
1

We then have have R4 = {(1,2),(1,5),(4,5)} and for d € D4 such that C = d.A we have the

symmetric matrix

2m; 51 0 s4 s, 0 0 O
s1 2my 0 z z 0 0 O
0 0O 00 O 0O0O
S4 z 0 0 s3 00O
Sd) = ;
S z 0 s3 2m3 0 O O
0 0O 00 O 0O0O
0 0O 00 O O0O0O
0 0O 00 O 0O0O

where z refers to irrelevant entries in positions of Z, and grey positions are those, which
entries can be changed by the action of R,. The restrictions of S(d) as defined in lemma
2.4.14 are
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2m1 S4 A\
] and  S(Dl|rusixrsusy = sa 0 53 |,
Sy Sz 2mg3

2m Ky
S (d)|ruixFu) = ( b

S1 2m2

where S (d)|r,xr, and S (d)|r,«xr; are in grey. These are then partially diagonalizable if m; # 0
and s4 # O respectively. We can now distinguish nine different cases for the choice of entries
in minor and supplementary conditions and calculate their matrices S (d) and d.A for their
respective d € D,. We can see that there are ¢* + 4¢° — 5¢* + ¢ unique characters of which

q* — 3¢* + 2q are irreducible and 44> — 2¢* — g are not.

(i) For the (q — 1)*q? different characters with my, s, € F,* and my, ms € F, there are q*

copies of the same character with [RS(d)| = 1:

2m; 0 0 s, O 0 O O
0 2m 0 z z 0 0O
0 0O 00 O O0O0O
84 z 00 O O0O00O
0 z 0 0 2m3 0 0 O
0 0O 00 O O0O0O
0 0O 00 O O0O0O
0 0 00 O O0O00O

(ii) For the (q — 1)*q different characters with m; = 0, 51, s4 € F,* and m; € F, there are ¢

copies of the same character with IRg(d)I =1:

0O s 042 0 O0O0O
s 0 0Oz z 000
0O 000 O O0O0OO
s4 z 00 0O O0O0O
0 z 0 0 2m3 0 0 O
0O 000 0 O0O0O
0O 000 O O0O0OO
0O 000 0 O0O0OO
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(iii) For the (q — 1)q? different characters with m;, s; = 0, 5,4 € F," and m,, m3 € F, there are

q” copies of the same character with |[RS(d)| = q:

0 0 0s O OOO
0 2mpy 00z z 0 0O
0O 0 00 O 0O00O
ss z 0 0 O O0O0O
0 z 0 0 2m3 0 0 O
0O 0 00 0 000
0O 0 00 O 0O0O
0O 0 00 O 00O

(iv) For the (q — 1)*q different characters with s, = 0, m, s3 € F," and m, € F, there are ¢

copies of the same character with IRg(d)I =1:

2m; 0 0 0 0 0 0 O S

0 2m 0 z z 0 0 O i . o

0 0 00 0000]| """ o7°- oo
s3] M| s

0O =z 00 55000 DM

0 z 0 s 0 0O0O i

0 0O 00 0 0O0OO "T:"

0 0 000000

0 0 000000

(v) For the (q — 1)q? different characters with s3, s, = 0, m; € F," and my, m3 € F, there are

q? copies of the same character with [RS(d)| = q:

2mp 0 0 0 0 0 0 O BT
0 2m 0z z 00O i : i
0 0O 00 0 O0O0O0O] N — |1\-/[i- ------
0 z 00 O O0O0O . M

0 z 00 2m 00O - - ne e

0 0 00 0 00O -.:r-

0 0 00 0 00O

0 0 00 0 00O
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(vi) For the (q — 1)q? different characters with m;, s; = 0 and sy, 5», 53 € F, with s, # 0 or

s3 # 0 there are 2 copies of the same character with |R9‘(d)| =q:

0 5100 55000 S T T ™

s1 00z z 000 i- M
0000 00GO0O S3|M! """
0z 00 s3000 DM

5 2 0 53 0 000
0000 0O0O0O
0000 O0O0O0DO

0000 O0O0O00O

(vii) For the (q — 1)q? different characters with m;, s, s; = 0 and m,, s», 53 with s, # 0 or

s3 # 0 there are q copies of the same character with |R}(d)| = q*:

0O 0 00 s, 000
0 2m 0 z z 0 0 O
0O 0 00 O O0O0OO
0O z 00 s3 000
s z 0 s3 0 0 00O
O 0 00 O O0O0OO
O 0 00 0 O0O0O
0O 0 00 0 O0O0O

(viii) For the (q — 1)q different characters with m;, s, 53,54 = 0, 51 € F," and m3 € F, there

are q copies of the same character with [RS(d)| = g*:

0O s 00 0 0O00O0 5 {
s1 00z z 000 : . i
o ooo o ooo0y} N~ ‘
0Oz 00 O O0O0O
0 z 00 2my 0 0 O
0O 000 0O O0O0OO
0O 0 00 O 0O00O0
0O 0 00 O 0O00O0
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(ix) For the q? different characters with my, sy, 55, 53,54 = 0 and my, m3 € IF, there is one

copy of the same character with |[R}(d)| = q*:

0O 0 00 O O0O0O
0 2my 0z z 00O
0O 0 00 O O0O0O
0 z 00 O O0OO
0 z 0O02m 00O
0O 0 00 O O0O0O
0O 0 00 O O0O0O
0O 0 00 O O0O0O

Remark 2.4.16. Jedlitschky [Jed13, 3.3.56, p. 102] conjectured that for a verge pattern A € v
and d € D, there is an a € Ny such that (Yy4,%aa)y, = q°. We can provide a further
clue towards proving this conjecture, as it will hold true if the group contained in the linear
algebraic group SOy, which fixed points are Rg (d), 1s connected.

Let A € v be a verge pattern and d € D,. Let I_{(i(d) < Uy be the unipotent group defined
by polynomials f;;(X) € F,[X] with indeterminate X = (Xi)i< <y for (i, j)) € S4 such that
£X) = X0, Su(d)X,iXi;. Then we have RQ(d) = R,(d)" Ro(d). If R,(d) is connected, the
RY(d) is F,-split’, that is it admits a subnormal series such that their quotients are isomorphic
to the additive group of F,. It follows that Vg4, Y44}y, = IRB\(d)I = q“ where a € Ny is the

length of this series.

Every Jedlitschky character for a verge pattern A € v is especially irreducible if R4 = I, which
has already been shown by Jedlitschky [Jed13, 3.3.50, p. 100]. This is the case for the irre-
ducible characters of Uy of maximum degree, which are, as shown by André and Neto [ANO6,

6.7, p. 425], the characters for the verge pattern A = 252/121—1

Mieri\N2i + Crep_10 + C2€p-1 041
for My,... My, € F;" as wellas ¢; = ¢, = 0if nis odd and cy,c, € F, with ¢cic; = 0
if n is even, where [n] is n/2 rounded up. There are (g — 1)*~Y/2 such verge patterns if 7 is
odd and (g — 1)/?>71(2g — 1) verge patterns if n is even. We then have |Dy| = [n/2] - 1if n

is odd or ¢; = 0 as well as |D4| = n/2 if nis even and ¢, # 0. Therefore, there is a total of

Tef. [Mill7, 15.57, p. 266]
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((g — 1)g)"~V"? irreducible characters of maximum degree if n is odd and (g — 1)"/?~1g"/?*!

many if » is even. In any case for d € D, the character ¥, 4 has degree

[n/21-1 fn/2]-1 Lol o
= > o q2 2 ifnisodd
deg wd.A — | | th 2i—1 — | | qN 4i — qZ(I'n/Z'I 1)(n—-[n/27) —

i=1 i=1

1,2
n —n

if n is even.

Core pattern with main conditions (M),
minor conditions (m) and optional Core pattern with main conditions (M)
main and minor conditions (c) for even n and minor conditions (m) for odd n
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3 Classification of the nilpotent orbits

The nilpotent Gl,-orbits in gl, over Fq can be classified by the set of partitions {d + n} of n
such that for A € gl,, we count the rank of every power of A with r,, = rank(A™) for m € N, and
define the corresponding partition A + n to be A = (17077,271772 32773 ) As conjugation
with elements of Gl, preserves the rank of every power of A, we can see that the partition
A is the same for every element in the an—orbit of A. The nilpotent %N—orbits in spy can
mostly be classified the same way by the partitions {4 F N}, but not every partition gives
rise to a nilpotent SOy-orbit in soy. Only partitions A + N for which their even elements
occur with even multiplicity in A represent a nilpotent SOy-orbit, and furthermore, if A has
only even elements there are two orbits for the same partition. To show this, we will examine
the centralizer Cs,(A) of a nilpotent element A € soy in the orthogonal group Oy, which
has a decomposition into a semidirect product of its unipotent radical and the centralizer of
a 1-dimensional torus. This second centralizer is the key to not only to show whether there
are two or only one SOy-orbit for a given partition, but also to classify the finite SOy-orbits
in the fixed points of the %N-orbit. This centralizer is in general not connected, but has 2!
connected components, where / € N is the number of unique odd elements in A, which gives
rise to 2/7! different SOy-orbits in the fixed points of the %N—orbit. In the final section we
will construct core patterns representing finite SOy-orbits for every case unless [F,| = 3. Here
we can use the matrix S (d) as defined in the previous chapter, where the determinate of certain
restrictions of S (d) determine in which orbit the nilpotent matrix associated to the core pattern

1s contained.

3.1 Nilpotent orbits over a closed field

Let K be a field with good characteristic char(K) = p # 2 that is not necessarily algebraically
closed. Every nilpotent matrix in gI(K) is conjugate to a Jordan matrix with eigenvalues 0, but

this conjugation does not necessarily preserve the bilinear form b. Yet following Springer and
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3.1. Nilpotent orbits over a closed field

Steinberg, [SS70, 2.18, p. 259] for every nilpotent element of so,(K) we can find a basis of
K" for which it is a Jordan matrix with specific changes to the bilinear form b.

Jordan blocks of even size will occure in pairs in the Jordan decomposition. We will find a
basis transformation matrix C € @n for the Jordan decomposition such, that the Gram matrix
C'J,,C is a block matrix, where for every Jordan block of odd size and every pair of Jordan

blocks of even size the corresponding block in the Gram matrix C’J,,C is of the form

0 O 0 a 0 O 0 1
0 O -a 0 0 O -1 0
‘le M(K)forae K and |: : ..© i ile MyK)
0 —a 0 O 0 -1 0 O
a 0 0 O 1 0 0 O
respectively.

For a Jordan block of size i € N let I(i) € N, the multiplicity with which they occur if

i is odd and half of that number if i is even. For 1 < j < I(i) we then find elements
ei.i) € K?" respectively pairs of elements f;i), gi.i)
that {Ai‘leg.i), .. .Aey), eE.")} respectively {A""! f;i), LA fj@, f;”} and {A"! gi.i), .. .Agi.i), gE.i)} form a
basis for their respective Jordan block in the Jordan decomposition, for which the aforemen-

€ K?' for odd respectively even i such,

tioned properties of the Gram matrix hold.

Theorem 3.1.1. Let A € s0,(K) be nilpotent with m € N such that A™ = 0 and A™" # 0. For
1 <i<mandl < j < I(i) with I(i) € N there are ei.i) € K" for odd i and ﬁi),gi.” € K" for

even i with the following properties:
(i) Aiei.i) =0or Aif;i) = Aig(/.i) = 0 respectively forall 1 <i<mand1 < j<I(i)

(ii) Ake;i) and Ak]”;i),AkgE.i)for 1<i<m 1< j<Ili)andl <k <i-1forma K-Basis of
KN

(iii) b(A™' e, AkeD) = (=1)'a) forall1 <i<modd 1< j<I(i), 1 <k <i-1andsome
ai.i) e K*

(iv) b(Ai‘l‘k]‘;i),Ang/i)) =(Drforalll <i<meven, 1 < j<I(i)and1 <k<i-1

(v) b(-,-) = 0 for all other pairs of elements of the aforementioned basis
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3.1. Nilpotent orbits over a closed field

Proof. The bilinear form b satisfies b(Av, w) + b(v, Aw) = 0 for all v, w € KV, so we have
b(ATv,w) = (=1)/b(v, A'w)
for all j € N. Let V < K" be an non-degenerate A-invariant subspace and let i € N be the

number such that V < ker A’ but V £ ker A™™!

Let i be odd. For every v € V with A™"'v # 0 there is a w € V with b(A™'v, w) # 0. Assume
that (A= 'y, v) = 0 for every v € V. Then we have

bAT (v +w), (v + w)) = (AT v, w) + (=1 b(w, A7) = 2b(A" v, w) # 0

for v,w € W, with b(A™'v,w) # 0, which is a contradiction. So there is a ¢;.; € V with

a:=b(Ae;,_1,e;_1) # 0. For 0 < k < i — 2 we recursively define
er = ey +rAT ey
for some r € K. For all k < j <i— 1 we then have

b(Aley,e) = b(Alers1, exs1) + rb(AT ™ ey eri) + rb(Al e, A7 ep)
+ DA e, AT R e
= b(Aei1, ep41) + rD(A7 ey, en) + 1(=1) T FBATTT e egar)
+ (=) AT e ernn)

= b(Ale1, €xs1),

because of j +i— 1 —k > i. This especially means b(A'e;,e;) = aforall 0 < k <i-2.

Therefore, we have

b(Afer, er) = b(Afery1, erir) + (A ersy, ersr) + rb(Afer, A7 Feyy)
+?b(A e, AT ey y)
= b(Afey1, 1) + (1 + (=1)DA  epy1, e141) + PD(=1)"HAF e, e401)

= b(Ares1, er41) + ra(l + (=1)%).

Since b(Ak€k+1, €k+1) = (—1)kb(€k+1,Ak€k+1) = (—1)kb(Ak€k+1,€k+1), for odd k it follows that

b(A*ei, 1, ers1) = 0. So we choose r = —(2a)~'b(A¥ ey, 1, ex+1) and we have b(Akey, e;) = 0.
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This way we get ey € V such that b(A™ ey, eg) = a and b(A’ey, ep) = 0 forall 0 < j <i— 1.
Let
U = (ep, Aey,... A7 eo) <V

be the A-invariant subspace generated by ey with dim U = i, which we call the odd i-cyclic
subspace. We have b(A/ey, A='7ey) = (=1)/a for all 0 < j < i — 1 and these are the only
combinations of basis elements of U such that the bilinear form b is non-zero. Therefore, U
is not degenerate. Let U+ < V be the orthogonal complement of U in V. This is again a

non-degenerate A-invariant subspace with V. =U & U*.

Let i now be even. For every v € V we have b(A™'v,v) = (=1)"'b(v, A" V) = =b(A""v,v) = 0.
So for fi,; € V with A='f,,; # O there is a g € V linear independent of f such that
b(A™'fi_1,g) # 0, and we can choose g;_; = b(A™' fi_1, 2)"'g, so we have b(A™' f,_1, ;1) = 1.
For 0 < k < i — 2 we again recursively define

i—1—k i—1—k i—1—k
Jo = fir1 +TAT " fin + AT gk and g = g1 H AT S

for some r, 5,1 € K. We have b(A’ fi, fi) = DA fesr, finr)s DAY fi, 86) = DA fisr, 8iet) as was
the case for i being odd and b(A’gy, gi) = b(A/gi41, ges1) forall k < j < i — 1, so especially
b(A™! £, gr) = 1. Therefore, we have

DA fis fi) = DA fiars fiert) + 7 (DA™ foor, fiert) + DA i, AT fi)
5 (DA™ grars i) + DA firr, AT g
= b(A" firr, fiwr) + s(1+ (=1,

b(A'gr, 81) = DA gicr, 8irt) + 1 (DA™ fiert, en) + DA oo, A7 i )
= b(A gis1, i) — (1 + (1)),

b(A* fi, g1) = B(A fir1, gr1) + DA™ firt, ghst) + SDAS fiwr, A7 fiir)
= b(Akka, gk+]) +r

For odd k we have b(AX fi.1, fir1) = b(A*gis1, gke1) = 0. So we can choose r = —b(A* fiy1, gke1)s
s = =27'"b(A* fist, firr) and t = 27'D(A*gi.1, gra1) such that b(A* fi, fi) = b(A* fi, &) = 0 as
well as b(A* g, g) = b(A* fi, gx) = 0.
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3.1. Nilpotent orbits over a closed field

This way we get fy, g0 € V such that b(A™! fy, g0) = 1, b(A"' £y, fo) = b(A™'go, g9) = 0 and
b(Ajf(),fQ) = b(Ajf(),go) = b(Ajg(),g()) =Q0forall 0 < ] <i—1.Let

U = (fo. 80, Afor Agos ... A fo, A go) < V

be the A-invariant subspace generated by fy, go with dim U = 2i, which we call the even
i-cyclic subspace. We have b(A’f,, A=1/gs) = (=1)/ forall 0 < j < i — 1 and these are the
only combinations of basis elements of U such that the bilinear form b is non-zero. Therefore,
U is not degenerate. Let U+ < V be the orthogonal complement of U in V. This is again a

non-degenerate A-invariant subspace with V = U & U*.

Let now V, = K". Since A is nilpotent, there is an m € N such that V, = ker A™ but
Vo £ kerA™!. For k € N we assume that 0 # V, < K" is a non-degenerate A-invariant
subspace, so thereis a 1 <i < m with V; < ker A’ and V; £ ker A"!. Let U < V; be an i-cyclic
subgroup. We define V., = U* NV, which again is a non-degenerate A-invariant subspace.
Therefore, V;, = U & V;,; is a direct sum of orthogonal non-degenerate subspaces. So we have
a strictly descending chain of subspaces KV = V, > V| > V, > ..., and since K" is finite
dimensional, there is a k € N with V; = (0). So K" is a a direct sum of k mutually orthogonal
cyclic subspaces. For 1 < i < m let I(i) € N be the number of i-cyclic subspaces U Y), e Ul((i;)
in this sum, so we finally have

m
K=Puv'e --euy.
i=1
O

For every A € soy we can construct as follows a one-dimensional torus of soy that comprises

. . . . . =N
diagonal matrices with respect to the basis defined above. If F(A) = A, the basis of F,
corresponding to A is defined over F, and the torus is F-stable.'

Lemma 3.1.2. For A € soy let T4 =7 : FZ — SOy be the homomorphism defined by
T()ARD = 12k Ak

for €V = ei.i),]‘;i) orgi.i), 1 <i<ml1<j<Ii),0<k<i-landx € F;. Then

T, = T(FZ) < SOy is a one-dimensional torus that is F-stable if F(A) = A.

Ief. [SS70, 2.22, p. 260]
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Proof. T actually maps into SOy since

b(T(x)Ai—l—kE(i)’ T(x)AkE(i)) — b(xi_l_ZkAi_l_kE(i), xl—i+2kAkE(i)) — b(Ai_l_kf(i), Ake(i))

for all € = eg.i),f;i) or g?), l<i<mandl < j<I3).

1-i+2k

Since Y gc<i—1 1 — i+ 2k = 0, we also have [[o<io1 X =1 forall x € Fq and therefore

det7t(x) = 1.
If F(A) = A, the basis of F;V corresponding to A is defined over F,, and we have F(e”) = €?,

where F is the standard Frobenius endomorphism on F;v. It follows that
F(r(x)A*€? = F(r(x)A*e?) = F(x'"** Ak ey = x17204AR D = 7(x9) A% e

and 7 is F'-stable. O

Let F(A) = A. Then the one-dimensional torus 7', is contained in a maximally split, F-stable
torus. Following Carter [Car85, 5.7, p. 163], we will show that this defines an F-stable
parabolic subgroup of SOy and a Z-grading of soy.

Theorem 3.1.3. There is a maximally split, F-stable torus T of SOy with T, < T. For the set
of roots (I)(@N, T) with respect to T let A(@N, T) C @(@N,T) be its set of simple roots for
which T is dominant. For & € ®(SOy, T) let U,, the corresponding root subgroup, then P is an
F-stable parabolic subgroup of SOy defined by

P=(T.U,|a € ®S0y.T).(r.) 2 0)
with F-stable unipotent radical U and Levi-subgroup L defined by
L=(T.U, | @€ ®SO0y.T).(v.a) = 0) = Cg, (T)

U = (ﬁa |a € ®SOy, T), (1,a) > o).

Proof. Let L = C@N(TA) be the centralizer of T4. As T, is F-stable, so is L. All Borel
subgroups of L are conjugate, so for any Borel subgroup B there is a g € L with F(B) = g~'Bg.
Since the centralizer of any torus is connected, by Langs theorem there is an x € L with
g = x'F(x) and

F(xBx™") = Fx)F(B)F(x™") = F(x)g 'BgF(x)™' = xBx™".
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Therefore, L has an F-stable Borel subgroup B;. Since B; is connected and all maximal tori
of B, are conjugate, there is a maximal F-stable torus T < B; by the same argument. Because
T is maximal in L, we have TA < T, and T is maximal torus of EN.

Let CD(%N, T) be the set of roots with respect to T and let A(%N, T)C CD(%N, T) be a set of
simple roots such that (r,@) > O forall @ € A(%N,T). Therefore, {a € CD(%N,T) | (r,@) > 0}
is a closed subset of ® and U is a subgroup of SOy. For any a € CI)(%N,T) with (t,a) > 0

and u € U, we have
() ' Fwyr(c?) = F(r(c) ur(c)) = F(I + (@ o )(c)u — 1)) = I + (@ o T)(c))(F(u) - I),

so F(U,) is a root subgroup for some 8 € ®(SOy, T) with (1, B) = (r,a) > 0. It follows that
F(U,) < U, and U is F-stable.

For x € L and u € U, with (1, @) > 0 we have 7(¢) "' x 'uxt(c) = I + (@ o 7)(¢)(x'ux — I) for
all c € E and x 'ux € U. Therefore, L normalizes U.

For u € U, we have ut(c)u™" = (@ o 7)(c)7(c) for all ¢ € Fq, so U, < C%N(TA) if and only
if (r,@) = 0. Since T < Cgg, (T ), it follows that L = (T, U, | @ € ®(SOy, T), (r,@) = 0) and
P = L= U is F-stable as it is the product of two F-stable groups.

The Borel subgroup B, < L contains either the root subgroup of a root @ € CD(%N,T) with
(t, @) = 0 or the root subgroup of its negative root and U contains the root subgroup of every
root a € CI)(%N, T) with (t,@) > 0. Therefore, the semi direct product B = B, = U contains
either the root subgroup of a root @ € ®(SOy, T) or the root subgroup of its negative root
and is Borel group with T < B. Moreover, B is F-stable and T is maximally split. P is a
parabolic group, since B < P and U is the maximal subgroup in P such that U_, £ U for
every a € @(@N, T) with U, < U, which concludes U = R,(P). O

For every rootspace g, < soy with @ € ®(SOy, T) we have 7(c)X7(c)™! = ¢®?X for all X € 1,
and c € FZ, so we can define the following Z-grading on soy:

Lemma 3.1.4. The one-dimensional torus T 4 defines a Z-grading on soy by
a(k) = {X € 5oy | T(c)X1(c)™" = "X forall c € FZ}.

Fori € N let U; < P be the normal subgroups defined by U; = [Teco raysi U,. Then the

following statements hold:
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3.1. Nilpotent orbits over a closed field

(i) soy = Syez 8(k)
(ii) A €3(2)
(iti) [8(0), 8()] S i + ) fori,j€Z
(iv) Lie(P) = @0 3(k)
(v) Lie(U) = @0 3(k)
(vi) Lie(L) = 3(0)
(vii) Lie(U;) = @ 8(k) fori € N

The orthogonal complement of the subalgebra §(z) for z € Z with respect to the bilinear form
K is §(2)* = ®_.41ez8(k) and we have soy = §(z)' ® g(2)*.

Proof. Let T < @N be the maximal torus with T4, < T as defined in theorem 3.1.3. For
i € Nand a,8 € ®(SOy,T) with (r,a) > i and (,) = 0 we have [UQ,UIB] =1 un-
less @ + B € @(%N,T) in which case it follows that [UQ,UB] = EMB. Since we have
(a+p)=(r,a)+ (1,B) > i as well as Uit = U,, the group U, is normal in P. Let o
be the root space for a root a € (I)(%N, T). For X € 3, we have 7(¢)"'X1(c) = (@ o 7)(c)X for
all c € R and X € §((r, @)). For X € Lie(T) we have 7(c)"'X7(c) = X and X € g(0).

If € = &, fO or g” with 1 < i <m 1 <j<Ii)0<k<i-2andxeF, wehave
T(X)AT(X) A e® = T(x)Ax" 12k AkeD = x1+2kr () AR e = (x2A)A%e®. As this holds for
every element of the basis of F;v, it follows that A € g(2).

For X € g(i) and Y € g(j) with i, j € Z we have

T)[X, Y ]T(x)_] = [T(x)XT(x)_l, (%)Y T(x)_l] = x"[X, Y],

and therefore [X, Y] € §(i + j). Since Lie(U,) = 3, < 3((t, @)) for every @ € ®(SOy, T), the
last four statements follow by an argument of dimension.

By lemma 1.3.11 for every a € ®(SOy, T) we have @f = Lie(T) & Z_aiﬁem(@%ﬂ gg. Forze Z
it then follows that

1@ = ), %= ()] G=LiDe [) [ > gﬁ].

aed(SOp.T) ae®(SOp.T) a€®SON.T) \ —a#Bed(SOy,T)
(r)=z (r)=z (ra)=z
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For o, € ®(SOy, T) with (1, @) = zand (1, B) # —z we have 8 # —a and therefore g(k) < g(2)*
for —z # k € Z with respect to the non-degenerate k bilinear form on soy. Conversely, for
B € ®(SOy, T) with (1, 8) = —z we have (1, -8) = z and therefore 93N a(z)* = 0. This gives us
3(2)* = ®_eza(k) as well as 5oy = §(2)* ® §(—z). Again by lemma 1.3.11 for & € ®(SOy, T)
we have g, = §_,. This gives us §(z)' = 8(—z) and the last claim follows.

O

Example 3.1.5. Let 7, < SOg be defined by the coroot 7(x) = diag(x?, x, x, 1,1, x™!, x7!, x72)

for x € FZ and let A € sog be

]
S O O =
S O O O =
S O o O = O

The following graphic shows the g(i) a root space is contained in, corresponding to the i € Z

of its position in the matrix:

0 1 1 2 2 3 3 4|
-1 0 0 1 1 2 2 3
-1 0 0 1 1 2 2 3
-2 -1 -1 0 0 1 1 2
-2 -1 -1 0 0 1 1 2
-3 2 2 -1 -1 0 0 1
3 2 -2 -1 -1 0 0 1

O_

=4 3 -3 2 2 -1 -1

Springer and Steinberg [SS70, 2.23-2.27, p.260] showed that the centralizer Cg (A) of a nilpo-
tent element A is isomorphic to a semidirect product of its unipotent radical and a direct prod-
uct of symplectic and orthogonal groups. Therefore, the component group of the centralizer

is a direct product of cyclic groups of order two.
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Theorem 3.1.6. Let C = C (A) be the centralizer of A in Oy and Cs, (Tp,A)=CnN C5N(7A).
Then we have C = C5N(TA,A) < R,(C) and C5N(TA,A) is isomorphic to the direct product

Co, (T, A) = l_l Oy X l_l Spaiy

1<i<m-1 1<i<m-1

1(i)>0,i odd 1(i)>0,i even
where 51(,-) is a orthogonal and 521(1-) is a symplectic group in dimension (i) and 2l(i) respec-
tively. Furthermore, the component group C/C° of the centralizer of A in Oy is isomorphic to
(Z]2Z)! where d is the number of odd i with I(i) > 0.

—N . . . . . .
Proof. Letv € F, and let eﬁ.’) = ei.’) or e;’) = f]@ and E;'l:l(i) = f;’) forl <i<mandl < j<IG).

_ N0
V= Z A jkA"€;

1<i<m,j
0<k<i-1

Then v is the sum

for coefficients A; j; € Fq, where j runs from 1 to /(i) or 2I(i) respectively. Let r € N, s € Z with
s+r < 1such, that A”v = O and 7(c)v = ¢’ forallc € R. We then have 4; j = Ounless r > i—k.
Since T(c)Ake;i) = c“”z"Ake;D , we must have 4; j; = O unless s = 1 — i + 2k. By assumption,
we have s + r < 0 and therefore 4; ;x = Ounlessk = (1 -i+2k)+(i-k)-1<s+r-1<0.

So since k > 0, we have v =0for s+ r <0Oandv = Zj/lr,j,oAkey) ifs+r=1.

The identity component C° of the centralizer C = Cg (A) is contained in SOy and is there-
fore the identity component of Cgg, (A). By theorem 1.2.7 its Lie algebra is the centralizer
sy (A) = Lie(C®) of A in soy. For [ € Clet X € ¢, (A) N g(/), and we have

7(0)XeW = CIXT(C)E(i) =YD and  AIXED = XAle® = 0

for € = e;i), f;i) or gﬁ.i) with 1 < j < (i) and ¢ € F,. If I < 0, we have Xe®” = 0 as shown

above and therefore XA e® = A*Xe® = 0 for 0 < k <i— 1. It follows that ¢z, (A) Ng(l) = (0)
for [ < 0 and ¢z, (A) C @5 8(I) = Lie(P), which gives us C° < P.

For g € C6N(TA,A) we have #(c)ge?) = gt(c)e? = c'7ge for all ¢ € F,. Since A’ge?) = 0,
it follows from our previous proof that ge®” = 3,1 jej.i) for A; € F, and gA*e? = 3,2 jAkeﬁ.i)
for all 0 < k < i — 1. Therefore, F;V decomposes into invariant subspaces under the action of

elements of Cg, (T4, A) in the form of

k(@) Ak @) k (0 k £(0) k() Ak D k()
(Akel ARe), .. Akel)) and  (ACFD,.ARFD ARG A%
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for odd i and even i respectively, where the action of g is the same for any 0 < k < i.

We define the (5, (T 4, A)-invariant subspace
_ [, O @) _ (i) (I ()] @
Vi—<e1,e2,...,el(l.)> or V,~—<1 e l(l.),gl,...,gl(l.)>

forall odd oreven 1 < i < m—1respectively. For every i let b; be a non-degenerated symmetric

or skew-symmetric bilinear form for odd or even i respectively defined by
bi: Vix Vi = F,: (v,w) > b(A™ v, w).

Their Gram matrices for odd or even i are

a’ 0 ... 0
a(zl) o e O Il(l)
Mb)=| . | and M@=
: : : O]
0 0 ... aq

For g € C6N(7A,A) let g; be the restriction of g to V;, so for the bilinear form b; we have
bi(giv, giw) = b(A gv, giw) = b(g, A1y, giw) = bi(v,w) for all v,w € V,. This gives us a

group isomorphism

m—1

¢: Co,TaA) = | |OVib) i g+ (21, gno).
i=1
The bilinear form b; is symmetric or skew-symmetric for odd or even i, so O(V;, b;) is an
orthogonal or a symplectic group respectively whenever /(i) > 0. Symplectic groups are
connected and the identity component of orthogonal groups are their special orthogonal group.
Therefore, the identity component CGN(TA,A)" is isomorphic to a product of symplectic and
special orthogonal groups. Furthermore, as a direct product of reductive groups Cg (T'4,A)°

is reductive.

C5N(TA) N C° is the centralizer of the torus T4 in the connected group C° and is therefore
connected, so we have Cg (T4) N C° = Cg, (T4,A)°. Since C° < P, it is the semidirect
product C° = C6N(TA,A)° < (C°NU). As C6N(TA,A)° is reductive and U < P is unipotent,
we have R,(C°) = C° N U. Since R,(C) is connected and therefore a unipotent normal sub-

group of C°, we have R,(C) < R,(C°). As every conjugate of R,(C°) in C is also a maxi-
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mal connected unipotent normal subgroup of C°, so by the maximality condition it must be
R,(C°) itself, and we have R,(C°) < C, which gives us R,(C) = R,(C°). Therefore, we have
C° = Cq,(T4,A)° =< R,(C), with R,(C) = C° N U.

Forge Candre T, let[t,g] = g 'tg be their commutator. The set of commutators [T 4, g]
is connected for all g € C with I € [TA,g], SO [TA,g] C C°. Since C° = C6N(7A,A)° x R,(C)
for h € C° and t € T4, we have [h,t] € R,(C). For g € C and t,,t, € T4 we therefore have
[11. gll12. g1[g. 1112] = [11, gl[g. 111" = [[g. 111, 2] € R,(C), and it follows that [T 4, g]R,(C) < C°

is a subgroup for any g € C. Furthermore, for i € C° and ¢ € T4 we have

[h,[t, 811 = [, 11h " "[g. 11h = g 't 'g[t™" hlgh™' g 'tgh
= ¢ 'l g e, gh T g g = [ hIE e Le, ghT g7 I € Ry (C),

s0 [T 4, glR,(C)/R,(C) < Z(C°/R,(C)), where Z(C°/R,(C)) 1s the center of the quotient group
C°/R,(C). As (T4, g] is connected, so is [T, g]R,(C)/R,(C), and it is contained in the con-
nected center of C°/R,(C). Since C°/R,(C) is isomorphic to a direct product of orthogonal
and symplectic groups, which all have the trivial group as their connected center Z(C°/R,(C))°
must be the trivial group as well, and it follows that [T 4, gl C R, (C).

Following an argument of Liebeck, [LS12, 2.25, p. 28] for g € C and r € T, we have
g 'tg=1t,g] € TARM(C), so every conjugate of T, in C is contained in TARL,(C). As R,(C)is
unipotent, T 4 is a maximal torus in 7 4R,(C), so every conjugate of T, in C is also conjugate
in R,(C). By the generalized Frattini argument we therefore have C = NC(TA)RM(C). For
all ¢ € R we have 7(c)At(c)™' = ¢?A, so T4 N C contains at most two elements. Since
[Ta,Ne(T4)] € T4 N C is connected, it follows that [T4, No(T 4)] = 1. Therefore, we have
Ne(T») = Cg, (T4, A) which gives us C = Cg (T, A) = R,(C).

Symplectic groups are connected, and the component group of an orthogonal group is isomor-
phic to Z/2Z. Tt follows that Cg (Ta,A)/ Cs, (T A, A’ = (Z/2Z)" where d is the number of odd
i with /(i) > 0 and since C = C6N(7A,A) =< R,(C), we have

C/C° = C/RM(C)/CO JR,(C) = Cg, (T4, A)/Cq (T, A

O

Corollary 3.1.7. For the centralizer of A in SOy we have Cyp,(A) < P and the component
group C@N(A)/C@N(A)" is isomorphic to (Z/27)*" where d is the number of odd i with
I(i) > 0, unless I(i) = 0 for all odd i, where Cg5 (A) = C is connected.
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3.1. Nilpotent orbits over a closed field

Proof. Since R,(C) < P, we have Cg5,(A) = C%N(TA,A) < R,(C) < P. Let ¢ be the isomor-
phism defined in theorem 3.1.6 with

¢:Co,Tnt)> [] Owx || Spip
1<ism—1 1<i<sm—1
1(i)>0,i odd 1(i)>0,i even

Let g € CaN(TA,A)- Since g; € 6,@ org; € S_pl(i) for odd or even i, we have det(g;) € {1}
or det(g;) = 1 respectively. As g is invariant on the subspaces A*V; for all i with I(i) > 0 and

0 <k <i-1onall of which it acts as g;, it follows that

dets) = [ setar= [ aec
1 s](:ls)r)no— 1 1(1i)s>;§,’:l;;d

So we have C%N(TA,A) = ker(det¢~!) and C@N(TA,A) must be a normal subgroup of index

two in C which contains half of its components. |

We can now classify the nilpotent SOy-orbits of 5oy by constructing a map from the nilpotent

SOy-orbits to a subset of partitions of N, which is almost a bijection.

Theorem 3.1.8. For A € soy let 4 + N be the partition A, = (1'DV,222 ) where the
entries i € N occur with multiplicity (i) for odd i and 21(i) for even i as defined in theorem
3.1.1. Then the map

SOy-orbits of Shiew ‘where every even element
nilpotent elements has even multiplicity

OA) - Ay = (ll(l), M) 3I3) 42 )

is surjective. Every partition corresponds to exactly one orbit unless it comprises only even
elements, in which case it corresponds to two orbits. For such a partition the two distinct
orbits of an A € soy are O(A) and O(g~' Ag) for any g € Oy with det(g) = —1. The conjugate
partition of A4 is Xy = (rank(A°) — rank(A), rank(A) — rank(A?), rank(A*) — rank(A%),...).

Proof. Let A € soy. Clearly by definition every even element of 14 occurs with even multi-
plicity. Following from the definition in theorem 3.1.1, for k € N the rank of A* is

rank(A¥) = Z(i — k)G + Z(i — k)213).
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3.1. Nilpotent orbits over a closed field

Since the rank of every power of an element of soy is retained under the conjugation with
SOy, the units (i) for i € N are constant on the nilpotent orbits of soy. Therefore, the map
above is well defined. For odd i € N we have (i) — 2/(i + 1) = rank(A’) — rank(A"~"), whereas
for even i € N we have 21(i) — I(i) = rank(A’) — rank(A""!). The conjugate partition of 1, then
is
s = 2U2) - 1(1),13) - 21(2),21(4) - I(3),...)
= (rank(AO) — rank(A), rank(A) — rank(A?), rank(4?) — rank(A%), .. )

Let now A, A € soy with their respective basis of F;v as defined in theorem 3.1.1. Let g € EN
defined by
gAk e(/i) _ C;i) Aké;i)’ gAk fjgi) — ik f;i)’ gAk g§i> _ Akg(/i)

for 1 <i<m 1<j<I(i),0<k<i-1,withc? eF such that (c{"a} = a. Since
b(gAi‘l‘ke(j.i), gAkei.i)) = (ci.i))zb(ﬁi‘l‘kéi.i),Akéy)) = (c;i))zc”zy) = ai.i), it follows that g € Oy with
gAg™' = A. Assume that det(g) = —1. Is there a z € C with det(z) = —1 we have gz € @N
since det(gz) = 1 and gzA(gz)™' = gAg™' = A. Conversely, if there is a & € SOy with
hgAg™'h™' = A, then hg € C and hg ¢ SOy since det(hg) = —1, which gives us C ¢ SOy.
Therefore, the Oy-orbit of A splits into two %N orbits if and only if C < @N, which is the

case if C is isomorphic to a direct product of only symplectic groups.

For i € N let J;(0) € gl; be the Jordan block to the eigenvalue zero of dimension i. For odd i

we define
0 1

J:(0) = 0 -1 € 50,

to be the Jordan block of dimension i where the latter half of the entries 1 are replaced by —1.
Let A + N be a partition where every even element has even multiplicity. Let u be the partition

consisting of the odd elements of A and let v be the partition consisting of the even elements of
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3.1. Nilpotent orbits over a closed field

A with half the multiplcity. Consider ¢ : %m X %ﬂz X — %M to be the natural embeding,
so we can define the nilpotent block matrix A € SOy with 14 = A by

J,,(0)
J,,(0)

A= (44 (0), T, (0), - -+ )

—J,,(0)

—J,,(0)
O

Example 3.1.9. For A = (4%) + 8 let J4(0) x —J4(0). Let wy € W be the generator of the Weyl
group of SOy in the normal subgroup of W as defined in section 2 of chapter 1. Then A’ and
A" = woA’'wy are two representatives of the two distinct SOy-orbits for A:

0 0 0 0 1 0 0 O 0 0 0 1 0 0 0 O
0O 0 0 0 1 0 0 0 0 0 0 1 0 O
0 0 0 0 -1 0 0 0 0 0 -1 0
0 0 0 0 -I 0/0 0 0 O

0 0 0 0| 0 0 0 -1

0 0 0 0 0 0

0 0 0 0

0 0

The matrices A” and A” with the subalgebras g(-2) (grey), g(0) (white), g(2) (light-grey)

Due to the work of Gerstenhaber [Ger58] and Hesselink [Hes76] the nilpotent orbits of soy are
partially ordered by the dominance order of the corresponding partition of N. The nilpotent
orbits of soy are open and the order of inclusion of their algebraic closures is equivalent to
the dominance order on the partitions of N. As such, for nilpotent elements A, B € soy we
have 1, < Ap if and only if the orbit O(A) is contained in the algebraic closure of O(B), that is
O(A) C O(B).

Lemma 3.1.10. For a nilpotent element B € soy the orbit O(B) is open in soy and its closure
is
0B) = || ¢

8€SON
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3.2. Finite nilpotent orbits

O(B) is a union of nilpotent orbits and for a nilpotent element A € soy we have O(A) C O(B)
if and only if O(A) N1, # 0.

Proof. The adjoint map ad(-)B : p — 1, is surjective. Therefore, Ad(P)B is a dense open

subset of 11,. Let ¢ be the continuous map
Y : SOy x 50y — SOy X 50y : (g, X) = (8,8 ' Xg).

Then the set C = {(g, X) € SOy x50y | X € g”',g} is closed because ¢! (C) = SOy X1i,. Since
Pis closed, so is the quotient map r : @N Xs0y — @N /Px350y. Furthermore, P is a parabolic
subgroup of SOy, so SOy /P is a complete variety and the projection p : SOy /P X S0y — 0y
is also closed. 11, is fixed by Ad(x) for x € P, so

pon(C) = U g ' hg = U g g

g€SOy /P g€SOy

is closed and O(B) = U35, Ad(g)B is its dense open subset. O

3.2 Finite nilpotent orbits

It is possible that the fixed points with respect to the Frobenius automorphism F of a nilpotent
SOy-orbit splits into different SOy-orbits. As Springer and Steinberg [SS70, 2.5 - 2.7, p. 172]
have proven, one can determine these based of the information of the component group of the

centralizer of an element from this orbit.

Lemma 3.2.1. All nilpotent orbits of soy are F-stable and therefore contain a fixed point.
Let A € soy with F(A) = A be a fixed point. Then the fixed points of the orbit O(A)F split
into SOy-orbits, and their number is equal to that of the elements of the component group

Cs56,(A)/Cs,(A)°.

Proof. Let A € soy. Since rank(F(A)*) = rank(A*) for all k € N, we have Az, = A4. So F(A)
and A are conjugate in Oy. Assume that not all elements of 1, are even, then F(A) and A are
also conjugate in SOy. If all elements of 14 are even, let B € soy be the product of Jordan
blocks corresponding to 1,4 as described in the proof of theorem 3.1.8. Then B is fixed by F
and contained in the Oy-orbit of A. For x,y € Oy we have F(x"'Bx) = y~'By if and only if
F(x)y™' € Cg, (B). Since Cg (B) < SOy, we have det(x) = det(y), so x"'Bx and F(x'Bx) are
contained in the same SOy-orbit. Therefore, the SOy-orbit of A is F-stable.
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3.2. Finite nilpotent orbits

Let A € 5oy and F(A) = xAx~" for some x € SOy. Then by Langs theorem there is a y € SOy
with x = y"'F(y) and F(y~'Ay) = (x"'F(y))'"Ax"'F(y) = y"'Ay and y~!Ay is fixed by F, so

every orbit contains a fixed point.

Let now A be a fixed point and x € SOy. Then we have
F(xAx™") = F)AF(x)™" = x(x "F(x))A(x T F(x)'x7,

and xAx~! is also a fixed point if and only if x'F(x) € Csp,(A).  Conversely, for any
¢ € Cgg, (A) there is a x € SOy with ¢ = x™'F(x) and xAx™" is a fixed point. Therefore,
the Lang map defines a bijection between the fixed points O(A)" and the centralizer (5o, (A).
For x,y € SOy with x™'F(x),y 'F(y) € C5o, (A) the two fixed points xAx~" and yAy™' are
conjugate in SOy if there is a z € Cgg, (A) with F(xzy™") = xzy™', which is the case if
7' ' F(x))F(z) = y'F(y). So the F-conjugacy classes of (55, (A) correspond to the SOy
orbits O(A)F.

Let now c,d € Cgg (A) with cd™" € Cgg (A)°. There is a x € SOy with d = x"'F(x), and we
have F()C)C@N(A)"F(x)‘1 = de@N(A)"d‘lx‘1 = xC@N(A)"x‘1 because Cgg, (A)° < Cgg, (A).
Since Cso, (A)° is connected and F'-stable, the same is the case for xCsp, (A)°x~'. Now we have
xaF(x)™" = xab™'x™' € xCgg (A)°x™',sothereisay € xCgg, (A)°x™" with xaF(x)™' = y'F(y).
It follows that

a=x"y'FOF(x) = (x'yx) ' x ' F(x)F(x'yx) = (x'yx) " bF (x'yx)

with x7lyx € (5, (A). Therefore, there is a bijection between the F-conjugacy classes of
C55,(A) and Cgg, (A)/Csp,, (A)r.2

Due to corollary 3.1.7 we have Cgg, (A)/Csp, (A)° = Cgg (T4,A)/Cgg, (T4, A)°. This com-
ponent group is a direct product of cyclic groups of order two and therefore abelian, so the

F-conjugacy classes of Cgg, (A)/Cgg, (A)° are precisely its elements. O

Lemma 3.2.2. Let A € soy be conjugate in SOy with its respective basis of ]FqN as defined in
theorem 3.1.1. Let d be the number of odd 1 <i < m with I(i) > 0 and let A be the map defined
by:

A:OA) — B F )

An| [ @ mod @5 [] & mod E, V...

1<j<(1) 1<j<I(3)

2cf. [SS70, 2.6, p. 173]
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3.3. Construction of core patterns for nilpotent orbits

If two elements A, B € soy are conjugate in SOy, they are also conjugate in SOy if and only if
A(A) = A(B).

Proof. Let A,A € soy be conjugate in SOy with their respective basis of FqN as defined in
theorem 3.1.1 and let g € GLy as in the proof of theorem 3.1.8 defined by

gAk ef,i) _ c;i) Akéi_i)’ gAk fjgi) _ A f;i)’ gAk g§i> _ Akg(/i)

forl1 <i<m, 1<j<I(i),0<k<i-1,withc €F, such that (c)?a} = a?.
Forl <i<modd,1 < j<I(i)and0 <k <i—1 we have

g—lF(g)Akeg.i) — g_l(CS-i))quéE-i) — (c;i))q_lAkey)

with (cj"))Za;” = ai.i). By construction, we have g7 'F(g) € C%N(TA,A) and for any odd

1 <i < m it follows that

1) . ' (O g-1 Hl‘(i)l a?
det((¢' F(@)) = [ |y = (l—[ c§~’>] = (Hi} b]
j=1

j=1 =14

g1
2

Since x> € {-1,1} for x € F,, it follows that det((g"'F(g));) = 1 if and only if

1(7) (1)

[ ]a?=]]a" mod &,

J=1 J=1

By corollary 3.1.7 we have g"'F(g) € C@N(TA,A)O if and only if det((g~' F(g));) = 1 for all
odd 1 <i < m, so the claim follows by theorem 3.2.1. O

3.3 Construction of core patterns for nilpotent orbits

Now we will define verge patterns for certain Young tableaux called verge tableaux. These
together with a matrix derived from the matrix S (d) as defined in lemma 2.4.12, determining
minor and supplementary conditions, give rise to a core pattern, and will be called core tableau.
These core pattern represent the different nilpotent orbits of soy, and unless the base field has

three elements we will be able to construct a core tableau for every nilpotent orbit.

Definition 3.3.1. Let A - N be a partition of N. Let D, be the standard Young diagram and let
Z, be the Young diagram D, with centered rows. We consider the middle column of Z, the zero
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3.3. Construction of core patterns for nilpotent orbits

column, and we label all colums of the left or the right of the zero column in increments of half
columns with consecutive negative or positive integers respectively. Furthermore, n, € N, will
denote the length of the z column for z € Z, where due to the symmetry of the Young diagram

we have n, = n_;, and i, = )};_. n, is the sum of all n, left of the z column.

For the partition A = (3, 2,2, 1) + 8 we have the following Young diagrams D, and the centered

Young diagram Z, with rows ranging from -2 to 2.

2-101 2

|

D/l: Z/l:

Lemma 3.3.2. Let A+ N be a partition with A = (1",2",.. ) for |; € Ny and j € N, where [;
is the number of elements of length jin A. Let n; for z € Z be the length of the z column of the

Young diagram Z, as defined in 3.3.1. Then we have l; = n;_| — nj,, and it follows that
A = (n0+n1,n] +n2,n2+n3...),

where A’ is the conjugate partition of A.

Proof. For j € N every row of length j of Z, has elements in the columns ranging from —j + 1
to j — 1 incrementing by 2. So every row of odd length has all elements in only even columns
and every row of even length has all elements in only odd columns. So for i € N even #; is
the number of odd elements of A greater or equal to 7 + 1, and for i € N odd #; is the number
of even elements of A greater or equal to i + 1. So for j € N the number of elements of A of
length jis l; = nj; — nj,; and for k € N we have ) ., [; = m—1 + m, which proves the last
point. O

Definition 3.3.3. We call a Young tableau T of the Young diagram Z, a verge tableau of A if
the following conditions are met.

(i) Fori < j all entries in the i column are less then the entries in the j column, unless all
elements of A are even, in which case n + 1 can be contained in the —1 column and 7 in

the 1 column.

(i1) Fori € N and even 0 # j € Z if a is the entry contained in i-th row and column j with

J # 0 then a is the entry contained in i-th row and column — .
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3.3. Construction of core patterns for nilpotent orbits

(iii) Fori € N and odd j € Z, where the i-th row has odd length, if a is the entry contained

in i-th row and column k then @ is the entry contained in j-th row and column —«k.
(iv) The entry a > n in the O column is positioned above a in the 0 column.

If all entries of A are even and n + 1 is contained in the —1 column, while 7 is contained in the
1 column, we call T a secondary even verge tableau, corresponding to the distinction of the
two different orbits for the partition A as defined in theorem 3.1.8.

We define the the verge pattern Ay € v with respect to the verge tableau T to be the pattern
with (Ay);; = 1 forl <i< j<Nandi+ j<N+1ifiand jare contained in the same row

and consecutive columns in the tableau T and (At);; = 0 otherwise.

| 1[4 [14]21]24]
2[717]22
3[8]18[23
5[13]20
6[12[19
915
10[16
11

M4 =n3 —H——ns—| ni { } no { } ny {
T
|
|
|
|
|
1
|
|

Verge tableau T Verge pattern At for the verge tableau T together with the postions 7, € [N]
forA = (5, 42 32 22 1) for z € Z and spans n, € N for z € Ny of blocks as defined in 3.3.1

Lemma 3.3.4. For a tableau T let S € M,,(F,) be a symmetric matrix fulfilling the following

conditions:

(i) For 1 < a < ny we have S,, = 0 if the entry in in the a-th row and 0 column is less than

or equal to n.

(ii) For 1 < a,b < n, leti be the entry in in the a-th row and 0 column and j be the entry in

in the b-th row and 0 column. Then we have S, = Sy, = 1 ifi = j

(iii) For 1 < a,b < n, let i be the entry in in the a-th row and 0 column and j be the entry in
in the a-th row and 0 column. Then we have S, = Sp, =0ifi+ j< N + 1.

Let At € v be the verge pattern for T and let d € D, be given by the matrix S (d) € M,(F,) as
defined in lemma 2.4.12 with
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3.3. Construction of core patterns for nilpotent orbits

Sw ifi, jare contained in the — 2 column of T, where i, j are contained in the
a-th and b-th row respectively,
Siid) =11 ifk +1=N + 1, where k and | are the entries in the same row and in the

next column to the right of i and j respectively,

0 otherwise.

The core pattern Ct € v with Cy = d.Ay is then defined by its core conditions with possible

non-zero entries:

(i) (Cr)jx = 1 ifthe entries 1 < j,k < N with j+ k < N are contained in the same row and

consecutive columns of T. These are the major positions of Cr.

(ii) (Cr)j = %SW if for 1 < j k < n the entries j,k are contained in the a-th row and j is
contained in the —2 column while k is contained in the O column of T. These are the

minor positions of Cr.

(iii) (Cr)jx = Sap if for 1 < j k < n the entry j is contained in the a-th row and =2 column
while k is contained in the b-th row and 0 column, while the entry in the k-th row and 0
column is less than the entry in the b-th row and 0 column. These are the supplementary

positions of Cr.

All other entries of Cr, including the entries corresponding to the remaining minor and sup-

plementary conditions, are set to be zero.

Proof. Let T be a verge tableau and Ay € v the corresponding verge pattern as defined in
3.3.3. Let d € Dy such that for (k,l) € D4 with 1 < i, j < k such that (i, %), (j,1) € supp(Ar)

we have

Sw ifiiz <i,j<7i, i+ jandi, jare the entries in the
a-th and b-th row of T respectively,

%Saa if i_3 <i=j<in_,andiis the entry in the a-th row of T,

0 otherwise.

Let now Ctr = d.Ar. Thenfor1 < j <k < N with j+k < N + 1 we have (Cr)x = (Ar)jx
if (AT)jk # 0 and (CT)jk = (AT)jldkl = dy if (], l) S supp(A)T and (k,l) € Dy. Then there
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3.3. Construction of core patterns for nilpotent orbits

isal <i < kwith (i, %) € supp(Ar) and we have (Ct)j = %Saa if i = j as well as j,% are
contained in the a-th row and j is contained in the —2 and O column of T respectively, whereas
(Ct)jx = Sy if i # jif 7, j are contained in the —2 column and a-th, b-th row, while k,1 are
contained in the O column and a-th, b-th row, respectively.

Now the matrix S(d) € M,(F,) by lemma 2.4.12 is determined by the subsequent condi-
tions. For 1 < i,j < n we have §,j(d) = O unless there are i < k < jand j <[ < j
with (i, k), (j,1) € supp(A) as well as k + 1 > N + 1 and k < j, [ < i. If this is the case and
k+1=N+1,wehave §;j(d) = 1. If k > n, thatis 2k > N + 1, we have S;;(d) = 2d,;; = Su,
if i is the entry in the —2 column and a-th row of T, while S ;(d) = 2d,; = 0 otherwise. If
k+1> N+ 1andi# j, we also have k # [. We assume due to the symmetry of both S (d) and
S without loss of generality that k < I. Then we have S;;(d) = 2d,; = S, if i, j are entries in
the —2 column and a-th, b-th row of T and S ;;(d) = 2d,; = 0 otherwise.

This shows that this construction of both the core pattern Cy = d.Ay as well as its matrix

S(d) € M,(F,) arises consistently out of the given matrix S € M, ,.

O
000 O 0O 0 00O0O0OO0OO0OO0OO0
000 O 0O 0 00O0OO0OO0OOTO0ODPO
000 O 0O 010O0O0O0O0O0DO
00 O02m s s 00O0O0O0O0O0O
000 s 2m 1 00O0O0O0O0OOO
21711 S1 52

000 s 1 0 00O0OO0OO0OOO0ODO

S1 2m2
. 0 001 O 0O 0 00z O0OOOO0OO
2 000 O 0O 0 00O0O0OO0OO0OO0OO0
000 O 0O 0z O0O0O0O0OOO0ODO
000 O 0O 0 00O0O0OO0OO0OO0OO0
000 O 0O 0 00O0O0OO0OO0OO0OO0
000 O 0O 0 0O0O0OO0OO0OOTO0ODPO

The matrix S € M3(F,)
for the verge tableau T The matrix S(d) € M1»(Fy) for d € D4 with Ct = d. Ay

If A + N is a partition comprising only even elements, then S is a 0 X O-matrix and the core
pattern Cr € v is solely determined by the tableau T with Cy = Ar.

A verge tableau T together with a matrix S € M, ,(F,) as defined in lemma 3.3.4 will be
called a core tableau (T, S) if S affords the conditions in the following theorem. Every core

tableau then corresponds to a core pattern in v and for every nilpotent orbit of soy we have a
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3.3. Construction of core patterns for nilpotent orbits

core tableau such that the corresponding core pattern is a representative of the nilpotent orbit
unless SOy is defined over the field F, with g = 3.

Theorem 3.3.5. Let A + N be a partition of N where ever even element has even multiplicity
and let (T, S) be a core tableau. Let Ct € v be the core pattern defined by T and S and let
X =Cr—- C; € soy be the corresponding matrix in the orthogonal algebra. For i € N with
ny; > 0 we define d; by

det( S, nx1,..n1)
det(Sl{ 1,~--n2i+2}><{1,~--n2i+2})

di — (_1)(n2i—n2i+2)

where Sl nixil..ny;) 18 the restriction of S to {1,...ny} X {1,...ny} and where we consider
det(Sli1...myn)xil.m) = 1 if N2iva = 0. Additionally, we define dy = (—1)™72) det(Jy)/ det(S).
Ifd; # 0 for all i € N with ny; # 0, then X is a representative of the nilpotent SOy-orbit
corresponding to A as defined in theorem 3.1.8. Furthermore, X is a representative of the

nilpotent SOy-orbit corresponding to
(do mod (F,"Y.di mod (F,),....) € B/(F,) X B /(B ) % ...

as defined in lemma 3.2.2. Furthermore, we have [] ey, di = (=1 mod (F,*)
The coroot of the one-dimensional torus Tx : FZ — T for X as defined in lemma 3.1.2 for
1 <i < N is determined by (tx(c));; = ¢ where z € Z is the column in which i is contained in

the tableau T.

Proof. Let (T,S) be a core tableau for a partition 4 + N that contains odd elements. Let
A, C € v be the corresponding verge and core tableaux for (T, S). By definition 3.3.4 we have
(i, j) € supp(A) if and only if i and j are contained in consecutive columns of T. Furthermore,
(i, j) can only be a minor or supplementary position if j is contained in the O column of T. So
if j is not contained in the O row, we have (i, j) € supp(A) if and only if i and j are contained
in the same row and consecutive columns. Then (i, j) is a main position and therefore X;; = 1.
Are i and j contained in the same row and consecutive columns of T withi+ j > N + 1 and
i is not contained in the O column of T, then by definition } and i are contained in the same
row and consecutive columns of T as well and (j, i) is a main position of A. Then we have
X;; = —A5 = —1. Soif i and j are not contained in the 0 column, we have X;; # 0 if and only

Ji
if i and j are contained in the same row and consecutive columns of T. It then follows

Xej=¢ifi+j<N+1 and Xe;=—¢ifi+j>N+1
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3.3. Construction of core patterns for nilpotent orbits

For r,s € N let i be the entry in the —2 column and r row of T and j be the entry in the —2

column and s row of T. By definition j is the entry in the 2 column and s row and have

N n+ngy/2
(X’e5) = ~(XInX'Jyes) = ~(XInX'ep) = = > XaXz=- > AuAg.
k=1 k=n—ng/2

The last step follows since Xy, Xz # 0 requires & to be contained in the 0 column of T, which
shows that i + k < nand j + k < n. Let [ be the entry in the 0 column and r row of T and m be
the entry in the O column and s row of T. Since (Xzej)i = (Xze;) j» the rows can be interchanged

and we assume / > m without loss of generality. We consider the following cases:

(i) [ > m > n: The only non zero position in the i-th row of X right of (i, Z) is (i, 1) and the
only non zero position in the j-th row of X right of (j, m) is (i, m). Since m > 1, we have

(Xzej)i = AimAjm = Ain = S, because (i, m) is a supplementary position of A.

(i1) [ = m > n: We have i = j and the only non zero position in the i-th row of X right of
(i,1) is (i, ) and therefore (Xzey)i = A A+ AiAj; = 24;; = S, since (I, 1) is a minor
position of A.

(ii) [ > n > m, [ > m: The only non zero position in the i-th row of X right of (i, D) is
(i,1) and the j-th row has no non zero position right of (j,m). Since [ > m, we have

(X2e7),- =A;A = A = S, because (J, Z) is a supplementary position of A.

(iv) I > n > m, I = m: The only non zero position in the i-th row of X right of (i,])
is (i,1) and the j-th row has no non zero position right of (J, 7). Therefore, we have

(Xzej)i = Ai/Aj,, = 1 =S, since (j, m) is a left major position of A.

VM) I>n>m> I: The only non zero position in the i-th row of X right of (i, Z) is (i, /) and the

Jj-th row has no non zero position right of (j, m). Since m > Z, we have (Xzey)i =0=8,,.

(vi) n > [ > m: The i-th row has no non zero position right of (i, /) and the j-th row has no

non zero position right of (j, m). Therefore, we have (Xzey)i =0=S,,.

So is i the entry in the 7-th row and —2 column and j the entry in the s-th row and 2 column of
T we have (Xzej)i =-S,,.

For z € Z we define V, = {e,,,e.,, ...}, where z; is the entry in the i-th row and z column for
i € N, to be the subspace of F," representing the z column of T with F,¥ = EBZE% V. and
V., = V_,. Then X acts on these subspaces in the following ways:
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3.3. Construction of core patterns for nilpotent orbits

(1) Forz>2ande; € V, with 1 <i < n, we have Xe; = —e¢; € V,_,.

(ii) Forz=2and ¢; € V, with 1 <i < n, we have Xe; € V; and X%e; = —Se; € V_,.

(ii1) For z = 1 and ¢; € V; with 1 < i < n, we have Xe; = ¢; € V_; if the sum of the
entries in the i-th row and —1 and 1 column is less than or equal to n, whereas we have

Xe; = —e; € V_; otherwise.

(iv) Forz>?2ande; € V, with 1 <i < n, , we have Xe; = ¢; € V,, and forn, , <i < n, we
have Xe; = 0.

Soforoddz > 1ande; € V, with 1 <i < n, we have
Xe;=(-1)T6e; €V, and X*'e;=0

with 6 = 1 if the sum of the entries in the i-th row and —1 and 1 column is less than or equal

ton and 6 = —1 otherwise. Foreven z > 2 and ¢; € V, with 1 < i < n, we have

yeee

Since det(Sli1, nix(1..n1) # 0 was a precondition for S, we have XV, = V_,, which gives
us dim(X*V,) = dim(V,) for k < z. For k > z we have X?*®9V,,_. < V., and therefore

Voor = X*2Vy_, < X*V, as well as dim(X*V,) = dim(Vy_,). So for k € N we have

rank(X¥) = Z dim(X*V,) = Z dim(V,) + Z dim(Va_,) = Z n, + Z Mopr = 1y +2 Z n.,

Z€Z >k z<k 7>k z<k >k

which shows that rank(X*) — rank(X**!') = n; + ny,;. By theorem 3.1.8 and lemma 3.3.2 it
follows that the orbit O(X) corresponds to the partition A.

For z € Z, 1 < i < n, let a be the entry in the i-th row and z column of Z, and a the entry
in the j-th row and —z column. For e; € V, we then have Jye; = e; € V_; and by dimension
JyV, = V_,. Moreover, if z is even we have Jye; = e¢; € V_, since a and a are both contained in
the same row of Z,. Soforv e V,and w € FqN if b(w,v) = w'Jyv # 0 we must have w € V_,
and therefore rad(V.) = B, ., Vi-

By theorem 3.1.8 and lemma 3.3.2, for even z > 0 there are basis elements e&“l) € quv

with 1 < j < n, — n,y, as defined in theorem 3.1.1 with b(ei.”l),XZe;Z“)) = aE.Z“) for some
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3.3. Construction of core patterns for nilpotent orbits

(z+1) . z+1 (z+1) (z+1) ~(z+1)
ai"’ € F,. Since X*'e = 0, we have ¢ € (P, Vi Let &’ € V. such that

éj = ei.“” — é§;+1) € D, Vi- We then have X*¢; € D,___ Vi and it follows that

(z+1) yz (DY) _ ~(z+1) yzx(t+]) ~(z+1) yz4 5. Yi5.) — ~(z+1) yzx(t+])
b(ej X e; ) = b(ej , X é; )+2b(ej , X ej)+b(eJ,X e}) b(ej , X é; ),
which concludes b(éj.“l),Xzé;“l)) = ag.”l). Therefore the éi.“l) € V, are basis elements as
defined in theorem 3.1.1.

Forevenz > 2, k> 0and 1 < j < n,op — N.4ox42 We have X"é&”y‘“) € V,, and these elements

— Xké(z+2k+ 1)

I=Nz42k+2 for

are a basis of V,. Let P € GL(V,) be the transformation matrix with Pe;
I <i < n, with k > 0 such that n,,p0 < i < ngo. Fore;,ej € Vo with 1 <i,j < n, we have

Jye; = e; € V_, and therefore

blei, X'e)) = (Jye) Xe; = (—=1)2€lSl1 miitny€s = (1) (Slit,mpcttny) -

1

By theorem 3.1.1, we have b(P.e;, X°P,e;) = 0forall 1 <i, j <n,withi # jand

b(PZe,-,XZPZei) =) (Xké(.z+2k+1) Xszé(z+2k+l)) — (—l)kb (é(z+2k+1) XZ+2ké(Z+2k+l)) — (_1)ka(z+2k+l)’

i=Ngok+2” i=Nz12k42 i=Ngok+2” =Nz 1242 I=Nz12k42

while £ > 0 such that n,,544» < i < 1,2 and therefore

(=17 (PLSI1, it P:) = 03~k a D

ij i=Nz42k+2

where 9;; is the Kronecker delta for i and j. Let D, € GL(F,™) now be the diagonal matrix
with (D,);: = (=DFa¥**) for 1 < i < n, with k > 0 such that n 4012 < i < Nz, SO We have

=Nz 1242

D. = (=13 (PS|1,.n it P).
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3.3. Construction of core patterns for nilpotent orbits

The same statement also holds for z + 2 and we have D .o = (=1)*2D_|(1__n...}x(1,..n.,2}> SO it
follows that

nzﬁ+2 a(z+1) — (_ 1)nz+2 det(Dz)
! det(D..»)

=1
det (P;S|{l,...nz}x{l,...nZ}Pz)
det ((Pz+2)[ Sl{1,...nz+z}><{1,...nz+2}Pz+2)

det(Sl{l,n IX{1,...n; }) ( det(PZ) )2
det (S| 1,eng X1, ..n40 ) det (Pz+2)

B ] det (P,)
- 9 (det (Pz+2)) '

If n,., = 0, we have ]_[] | ;”1) = (=1)2" det(Sli1,..nx(1...ny) det(P.)* = ds det(P.)?, so for any
z > 2 it follows that

— (_ 1 )%"z‘%nzﬂ‘*nzﬂ

= (-1 )%(”Z‘nz+2)

Ny —Nz42

d; = 1_[ ai?”) mod (]Fq*)Z.

j=1
By construction of the basis in theorem 3.1.1 its Gram matrix comprises diagonal entries that
are the same as the diagonal entries of D, and blocks of 2x2-matrices with determinante 1. We
therefore have det(Dy) = det(Jy) mod (F,")*. Let ¢ € F,* be such that det(Dy) = ¢* det(Jy)

and since ng, that is the number of all odd elements in A, is even we have

fe det(Dy) . det(Iy)e c Y

Flapecor i

=1 et(Dy) det (S) det (P_,») et(P2)
_ noi—nygi+1y _(2i+1) * 2 . .

Therefore, d; = []. a; mod (Fq ) holds for all i € Ny and claim holds by lemma

J=1 J
3.2.2.

Again by theorem 3.1.8 and lemma 3.3.2 for odd z > 0 there are basis elements f;“l), gf“) € F;v
with 1 < j < (n, — n.42)/2 as defined in theorem 3.1.1 with b(f(”l) X? (”U) = —1. Since
Xz“f;“l) = Xz“gi.”l) = 0, we have f(”l),g(“l) € @k<z V. Let f(“l) ”(Z”) € V, such
that f; = f;“]) —ff”) €D, Vi as well as §; = gi“l) ~(Z+1) €D, Vi It follows that
X“f;, X?g; € @,__. Vi and therefore

(f(z+1) ng(z+1)) <f(z+1) ng(z+1)) b (f;“l),ng’j) +b (ﬁzﬂ)’ngj) +b (fj’ng/)
b(Fe, x2E)
o078 ’
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3.3. Construction of core patterns for nilpotent orbits

which concludes b( ﬁ”l),ngi.Z“)) = —1, and the f;”l),gi.z“) € V, are basis elements as

defined in theorem 3.1.1. These basis elements then give rise to the linear subspaces V, with

V. = @ <ng§?+1+2") [1<j<lz+1+ 2k)> for even z and
keNg

V. = @ <ka;1+l+2k),ng5.Z+l+2k) 11<j<lz+1+ 2k)> for odd z.
kENQ
Let 7y : FZ - %N be the coroot that gives rise to the one-dimensional torus 7Ty < EN as de-
fined in lemma 3.1.2 with Tx(c)XkE5.2+1) = cz‘szké§.2+l) as well as 7x(c)X* f;“l) = 2k xk f;“l)
and Ty(c)X* f;z”) = ¢k Xk f;“l). Let 1 <i < N be an entry in the z column of T. Then ¢; € V.

and we have tx(c)e; = c%e;. Therefore, Tx(c) is the diagonal matrix with (7x(c)); = c*. O

Corollary 3.3.6. Let A + N be a partition where every even element has even multiplicity and
let (T,S) be a core tableau for A. Let tp : @Z — T be the coroot of the one-dimensional
torus as defined in lemma 3.1.2. For the Z-grading of soy as defined in theorem 3.1.3 we have
9(2) <uyforz>0 and U,, < ﬁNform eN.

Proof. Let A + N be a partition where every even element has even multiplicity and let (T, S)
be a core tableau for 4. Let 1 < i,j < N with i + j < N + 1 such that for a,b € Z being the
columns of T in which i and j are contained respectively we have a < b. Then for ¢ € Fq
we have 77'(c)(e;j — e)tr(c) = "(ei; — e3) and e;; — e5; € g(b — a). Since a < b, we have
i < j by definition of T unless A is the secondary partition with only even elements as well as
a=-1,b=1and(i,j) = (n,n+ 1). But then we would have i + j = N + 1, which contradicts
the assumption So the root a € (D(EN,T) with g, = {c(e;j — eﬁ) | c € Fq} 1S a positive root.
Therefore, g(z) < soy for z > 0 is a sum of root spaces for positive roots and U,, < SOy for

m € N is a product of root subgroups for positive roots. O

Example 3.3.7. For 1 = (5,4%,3%,2%,1) + 24 and m; € F,*, my, 51,50 € F, such that
":l—zl(sl —my) # 1 we define the core tableau (T, S) as

| 1]4[14]21]24]
271722
3|81(18|23 2my K S
T= 213320 and  S=|s 2m 1],
6[12]19
915
10]16
11
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3.3. Construction of core patterns for nilpotent orbits

so we have det(Sq1)xq1;) = 2m; and det(S) = 2s,(s; — my) — 2m;. Since det(Jy) = (—1)", this
resultsindy = —1/(2s,(s1 —my)—2my),d; = 1— r‘;—zl(sl —my) and d, = —2m; with the following

core pattern Cr:

kN4 N3 — ——np— | ny | no | np {

We finally can show that for every there is a core tableau (T, S) for which its core pattern gives

rise to a representative of this orbit unless SOy is based on the field F, with g = 3.

Theorem 3.3.8. Let [F,| > 3. For every nilpotent SOy orbit O of soy there is a core pattern
CeVwithC-C'eO.

Proof. Let O be a nilpotent SOy orbit of soy and let O be the SOy orbit of soy with O C 5F.
Let A + N be the partition corresponding to O as defined in theorem 3.1.8. We then define the
Young tableau T acording to definition 3.3.3 with the following entries for j € Z:

N—-ng

(1) For 1 <i < n; the entry in the i-th row and j column is == — Zizl n+iif j <O,

(i1) For 1 <i < ny the entry in the i-th row and O column is % +1—1.

N+
2

(iii) For 1 <i < n; the entry in the i-th row and j column is =5 + 21{:1 n+1—-iif j>0is

cven.

(iv) Forodd 1 <i < n; the entry in the i-th row and j column is % + Zi:l ne—iif j > 0is
odd.

N-+ng

S+ D e+ 2 —iif

(v) Foreven 1 < i < n; the entry in the i-th row and j column is
j > 01s odd.
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3.3. Construction of core patterns for nilpotent orbits

Clearly the entries in consecutive rows are increasing and since the entries in the O column are
decreasing, every entry a > n in the 0 column is placed above a. Is the length of the i-th row
odd, then all entries in the i-th row are contained in even columns and the sum of its entries in

the j and —j column is

N —ny / . N + ny / ]
{ 3 —an+z]+[ 5 +an+1—z_N+1.

k=1 k=1

Let i be odd. Is the length of the i-th row even, then the length of the i + 1-th row is also even
since even elements of A occure with even multiplicity and all entries in the i-th and i + 1-th
row are contained in odd columns.Therefore, the sum of the entry in the i-th row and j column

and the entry in the i + 1-th row and —j column is

N —ny / . N + nyg / . _
[ 5 —an+1)+[ 3 +an+2—(z+1)_N+1,

k=1 k=1

while the sum of the entry in the i + 1-th row and j column as well as the entry in the i-th row

and —j column is

N —ny / . N + ng / -
[ > —an+z+1]+[ > +an—z_N+1.

k=1 k=1

So T fulfills all conditions of definition 3.3.3 and for ay, ...a, € F," and by, ...b,_; € F, with
m= ”—20 we define A, B € M,,,(F,) where A is the diagonal matrix with diagonal {a;, . ..a,,} and
B is given by
1 ifi+j=m+1
Bij=13b; ifwithi+j=m

0 otherwise
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3.3. Construction of core patterns for nilpotent orbits

for 1 < i, j < m. We then define the matrix § € M,,,(F,)

a 0 e b1 1
0 a <10
b
S _ a, 1 ,
by 1
0
b1 1
1 0 0

ap 0 0 0 bm_1 1

0 ay ~ A B
A= and B = such that § = .

0O -+ 0 a, 1 0

The restriction S i1 nox(tmy = S of S then fulfils the conditions defined in lemma 3.3.4,
where have § = S if nop = n,, which is the case if the tableau T has no row with only one

entry. For 1 < i < ny the entry in the i-th row and O column of T is % + 1 —1i. So we have

N+ng
2

of the entries in the i-th and j-th row and O column of T is N + ny + 2 — (i + j). We then have

+1-i> %ifandonlyifiSmforwhichS’,-,- = a; # 0 holds. For 1 < i, j < ny the sum

N+ng+2—(i+j)>N+1ifandonly if (i + j) > np + 1 for which §;; = 0 holds as well as
N+ny+2—-(i+j)=N+1ifand only if (i + j) = ny + 1 for which S,-j = 1 holds. Therefore,
S fulfills all conditions of Lemma 3.3.4.

For 1 < k < mlet §; = det (§ |{1,__.k}x{1,_"k,) be the determinant of the restriction of S to the
square {1,...k} X {1,...k}. For k < m the restriction S |(;,_ xx(1..x 15 a restriction of A, so we
have ¢ = Hf;l a;. Since A is invertible for k£ > m, the determinant 8, can be reduced to the

product of the determinant of the blocks. So for k' = k — m we have
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3.3. Construction of core patterns for nilpotent orbits

~ A Bli1,..mx(1,..x)
O = det (S|{1,...m+k’}><{1,...m+k'}) = det[ )

(Bli1, . mxi1,. 1)’ 0

0
:det[ _ )
0 = (Blit,..omxi1,.y) A7 Blit _mix(1...x)
= (=1)" det(A) det ((Bli1...mp1..0)' A Bl -

For 1 <i,j < mwehave B;; = Ounlessi+ j € {m,m+1}. Sofor1 < i, j <k’ it follows that

2
1 b[

Am+1-i Am-i lfl = '] ¢ m
m 1 Qo .
B;B;; - lfl:]:m
toA-1 1=l
((Bl{1,...m}><{1,...k’}) A Bl{l,...m}x{l,...k’})i. = vl o o i
oA A o ifi+l=j
b; e
s ifi=j+1
. b?
For k =m+ 1, thatis k¥’ = 1, we have 6,41 = —(ai + - '_l)ém, andform+2 <k <nyg—1we

can calculate 6; by cofactor expansion as

1 bil bl%/_l
0y = — + Op_1 + 2 Ok_2.
A1k At m+1—k'

These recursively defined equations are fulfilled form + 1 < k <ny— 1 by

2
b;,
Or_1 + I—[ a;.
a

—J .
m—k i<m-k’

S = -

Forl <k<ny—1letc, € F,". Form+ 1<k <ny—1wedefinethesets X CF,"and Y CF,

with
y € Fq} .

Assume that a(;::kl' [licnwai ¢ (Fq*)z. We then have 0 ¢ Y and since |X| = |(Fq*)2| = ‘12;1 and

Y] = &1 + 1, we have [X| + Y| = ¢ > [F,"|, which gives us X N Y # 0.

Let now 2 [1ic,p a; € (F,")* and we define y, € F," such that yj = P Ticm-r ai- We

2 2
then have - € (F,")> N Y if 4y € (F,")* and ;= € Y\(F,") if @t ¢ (F,)". Let now

Ak

1 Am—k’
X={cPlxeR" and Y= a -y
k q Or_1 1—[

Am-k i<m—k'

xo € F,” with xo # —1 and x ¢ (IFq*)z. Since the characteristic of the field F, is required to

be good, we cannot have either ¢ = 2 or ¢ = 4, whereas we excluded g = 3 for this theorem.
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3.3. Construction of core patterns for nilpotent orbits

xp—1
xo+1

Therefore, such x, exists since for [F,| > 5 we have |Pq*\(Fq*)2| > 2. Fory = yo we then

have

I (5 (x-1 2_ Y 1_(?Co—l)2 B Yo o 4xo _x0 [ 2y ?
Ak Y Xo + 17 Ak (xo+1?) o o+ 1% app \xo+1)
If a1 € (F,")?, we have € Y\(F,")? while if a, ¢ (F,")?, we have € F,H)*NY.
It follows that ¥ N (F,")* # 0, yet we have Y ¢ (F,")* U {0}, which givesus X N Y # 0. So
there are x; € F,” and y; € F, such that

2 2
1 1
ckxi:— Yk + aiz—(— Y Or_1 + | | ai].

Ut Ok-1 _ 2, Ok-1 \ am-wk o

Let now by = yy, so we have % = ckx,f. Let 6o = 1 and for 1 < k < m let a; = ¢, so we have

5
(sf_: = ¢;. For the matrix S defined in this way it follows that

— =c¢; mod (Fq*)z

So for i € N the d; as defined in theorem 3.3.5 are
nyi

di= -1y [ e mod (F,) .

k=naj2+1

Since [];qq, di = (=1)" mod (IFq*)2 by theorem 3.3.5, we have ¢,, = (—1)" we find suitable

cx € F,” for every possible combination of d;, which proves the claim. O

121



4 Core patterns for generalized
Gelfand—Graev characters

Andrews and Thiem [AT17] used the supercharacter theory of Gy, that is obtained by the
left and right operation of Gy on m, introduced by André [And02] to construct general-
ized Gelfand—Graev characters. These were originally developed by Kawanaka [Kaw85] and
are characters induced from a unipoent group U, s that is situated in the middle between the
unipoent groups U, and U, arising from the Z-grading of soy for a nilpotent element defined in
lemma 3.1.4. Using the supercharacter theory of André and Neto discussed in the second sec-
tion of the third chapter, the same can be done for the special orthogonal group SOy, but only
for a small selection of generalized Gelfand—Graev characters. Here the decomposition of the
André-Neto characters into Jedlitschky characters makes such a construction for all general-
ized Gelfand—Graev characters of SOy possible. We can use the characters for the patterns,
which we introduced in the previous section for the nilpotent orbits, reduced to the unipo-
tent radical U, of the parabolic subgroup associated to their respective nilpotent orbits. These
characters of U, induced to the whole group SOy then are the generalized Gelfand—Graev
characters up to some scalar. We can then illustrate this result by calculating the Jedlitschky

characters that give rise to the generalized Gelfand—Graev characters of SOsg.

4.1 Generalized Gelfand—Graev characters

Following Kawanaka’s [Kaw85] construction of generalized Gelfand—Graev characters we
will calculate the induced character of Uy of the linear character £, of the intermediary group
U, s for A € u, that gives rise to the generalized Gelfand—Graev character y, = Indf’]cl)_gv &

For this we will first discuss the interaction of the Cayley transformation defined in lemma

1.3.12 with the Z-grading of soy for a nilpotent element A € soy as defined in lemma 3.1.4.

Definition 4.1.1. Let T < SO, be the maximal torus of diagonal matrices in SO, as defined in

section 1.2. For a nilpotent element A € soy let 7 = 7, : E — T be the cocharacter defined
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4.1. Generalized Gelfand—Graev characters

in lemma 3.1.2. Let P < SO, be the parabolic subgroups that arise from the F-stable one
dimensional torus T(R) <T according to theorem 3.1.3. For z € Z let g(z) < soy be the fixed

points of the subalgebras of SOy defined in 3.1.4 that form a Z-grading with

SOy = @ a(2).

Z€Z

For m € N let U,, < SOy be the fixed points of the descending series of unipotent subgroups
of P defined in 3.1.4, where U, is the fixed points of unipotent radicals of P. Let L' <Phbe
the Levi complement of U, in P such that P = L U, with Lie(Z,) =g(0).

The bilinear form « relates to the bilinear form k on soy by x(X,Y) = k(X",Y) for X, Y € soy.
Therefore, by lemma 3.1.4 the subalgebras g(z) for z € Z are non degenerate with respect to
and their orthogonal complements are g(z)* = EBZ keZ a(k).

We first discuss the interactions of the Cayley transformation defined in lemma 1.3.12 with

the Z-grading on soy.!

Proposition 4.1.2. Fori,j>1letuc U, v e Uj and X € §(j). Then the following statements
hold:

(i) fU) =1
(it) fQuv) = f(u) = f(v) € U
(iii) fluvu='v™") = 2[f (), f(V)] € Wi
(iv) uXu' = X = 2[f(u), X] € iy
Proof. For k € N let §' (k) be the extension of g(k) to gl

3 (k) = {X € gly 'T(C)XT(C)‘1 =cX forall c e FZ}

and let it, = (., §'()) be the extension of 1(k) to aly. Let x € U, for @ € ®(SOy, T) be an
element of a root subgroup. Then we have f(x) = %(x — 1) and f(x) € g((r,@)). Letu € U;
fori > 1, then there isam € N and x;, € U,, for 1 < k < m with ¢ € CD(%N,T) such that

(T, ) > i, for which we have x = [];_, xx. Let I = {1,...,m}, then it follows that
u_lz[nxk)_lzzzn<xk_1>zzzﬂzﬂxk>.
k=1 =1 79 kel =1 < kel

1=t 1=l

lef. [Kaw85, 1.2.1, p. 179]
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4.1. Generalized Gelfand—Graev characters

For J € I we have 7(c)([Ties 2/ (x)T(0)™" = [Tkes T(@2f(x)7(0)™" = TTiey ™™ 2f (1) for
all c € R and [Ty 2 (x0) € 34es 8 ((1, ay)). Since (1, ;) > i for all 1 < k < m, it follows that
u—1 € .. Furthermore, we have (u — 1) € 1), for all [ € N and therefore f(u) € 1, N30y = W;.
By argument of dimension we then must have f(U;) = 1.

Letnow u € U; and v € ﬁj for i, j > 1. Then any product of factors (u — 1) and (v — 1) is

contained in 1}, ;- For k € N we have

d ith at 1
-1 = (u=DE-D+@u—-)+(@-1)" = (u—l)k+(v—1)k+zpr0 wets withat feastone

(u—1) and (v — 1) as factors

and therefore (uv — 1)* — (u — 1)¥ = (v — 1) € ;. This concludes that

1 —
F) = ) = f0) = Y =D S (v = DF = = 1f = v = 1) € T

keN

Since u™' € U; and v™!' € U; with i, j > 1, we at least have (vu)™' — 1 € 11 and

wu v —l=w-—vu v '=(u-Drv-1)-w-Du-1)uv!
=(w-D-D)-@-Du-))(Ow' -D+u-Dr-1)-@-Du-1).

-/
St

S ST

For k > 2 it follows that (uvu~'v™" — D* € 11, ;, | and therefore

Fvu™ vy - %((u -D-D-@-Du-1) e,

Furthermore, we have (u — 1)*(v = 1), (v = D'(u - 1)* € 1, ;,, if k > 2 or [ > 2 and therefore
[f(), f(v)] - %((u -Dv-D-@w-Du-1)en, which proves the third claim.

i+j+1°

Let now X € g(j). Then we have
uXu ' - X=w-DXw'-D+u-DX+Xw' -1
=wu-DXw'-D+u-DX-Xu-D-Xu-Dw'-1

— — —
Sl j Sl j Sl j

and therefore uXu™' — X — (u — 1)X — X(u — 1)) € ), ;. The last claim is then concluded by

1 —r
[f(w), X] - E((M - DX - X(u—1) €1y, ;. 0
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4.1. Generalized Gelfand—Graev characters

With this proposition, for A € 1, we can define a linear character &4 on U, comparable to the

linear character giving rise to the basic characters as defined in lemma 2.2.2.2

Definition/Lemma 4.1.3. For A € u, let &4 be the linear character of U, defined by
4 Uy > C x> k(A f(x)).

Proof. Let A € u, and x,y € U,. Then by proposition 4.1.2 there is a B € u4 such that
f(xy) = f(x)+ f(y) + B and we have

Ea(xy) = Uk(A, f(xy)) = 9x(A, f(x) Fk(A, () Ik(A, B) = £4(0)Ea(Y),

since 1y = (P, _, (k). It follows that «(A, B) = 0. |

Now we can define the unipotent subgroup U, s < SOy that is situated in the middle between

U, and U, such that &, extends to a linear character of U, 5.

Lemma 4.1.4. There exists a linear subspace s < g(1) with |s| = v|g(1)| and x(A,[X,Y]) =0
forall X, Y € s. Then the subgroup U,s < SOy of SOy is defined by

Uis =" +59)

with U, < Uys < Uy and |Uy : Uys| =|U, 5 : U,|. Furthermore, £ can be extended to a linear

character & of U, s.

Proof. Let s be a skew symmetric bilinear form of g(1) defined by
s(X,Y) = k(A, [X,Y])

for X,Y € g(1). Let X € g(1) with s(X,Y) = 0 for all Y € g(1). Due to the cyclic property
of the trace form, we have k([A", X]',Y) = «(A,[X,Y]) = 0. Since [A",X] € g(—1) and « is
non degenerated, we must have [A’, X] = 0 and therefore [A, X'] = —[A’, X]' = 0. It follows
that X’ € ¢,,(A) N g(—1), but by theorem 3.1.6 we have ¢, (A) N g(7) = (0) and therefore
oy (A) N g(i) = (0) for i < 0, which gives us X = 0. So s is non degenerated and since it is
also skew symmetric the linear subspace g(1) must have even dimension and there is a linear
subspace s with |s| = v]g(1)[ and s = s*.

2cf. [Kaw85, p. 179]
3¢f. [Kaw85s, 1.2.4, p- 179] and [Kaw85, 1.3.2, p. 180]
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4.1. Generalized Gelfand—Graev characters

We clearly have U, C U;s C U; with |U; : U;s| = Vig(1)| = |U;s : Us|. Foru,v € U5 it
follows by proposition 4.1.2 (ii) that f(uv) — f(u) — f(v) € 1, and therefore uv € U, 5. By the
same point of this lemma we have uvu~'v™! € U, and &, (uvu='v1) = 9k(A, 2[f(u), f(W)]) = 1
by point (iii). Therefore, we can extend &, to a linear character of U s. O

This allows for the definition of the generalized Gelfand—Graev characters y, of SOy for
nilpotent A € soy as induced characters from the unipotent subgroups U, 5, which are equal to

the character induced from U, up to a scalar.*

Definition 4.1.5. The generalized Gelfand Graev character y4 for A € soy is the induced

character of the linear character &, of U, s
ya = Ind; V€5 (w).

Lemma 4.1.6. For A € u, the generalized Gelfand Graev character vy, is constituent of the
induced character of SOy of the linear character &4 of U, with

SONé:

Y= s

Proof. Foru € U, let f(u) = X + Y with X = f(u)l,q) and Y = f(u)l,2). By proposition 4.1.2
(iv) we have gYg ' =Y —2[f(g), Y] € uy for g € U, and therefore g¥g~! —Y € uz. Furthermore,
we have gXg™' — X —2[f(g), X] € uz and gXg™' — X € uy, s0 gug™' € U, 5if and only if X € s.

Is X such an element it follows that

Indy;) & (u) =

Z IK(A, gXg ' +7)

|U1 |geU
Z IK(A, X + Y)Ik(A, gXg™" - X)
|U1 sl &
|Ul |§A<u>g;]lﬁK<A 2[f(2), X1)
= lfA(”)gEZU. Ik([A, X', 2£(2)).

Here g runs through all elements of U, so by proposition 4.1.2 (1) f(g) runs through all ele-
ments of ;. Since [A, X']" € g(=1), we have } .y, 9k([A, X']",2f(g)) = O unless [A, X'] = 0.
But since X’ € g(—1) this requires X = 0. As |U,|/|U;s| = Vlg(1)| we finally have

4cf. [Kaw85, 1.3.4, p.- 181] and [Kaw85, 1.3.6, p. 181]
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4.2. Induced Jedlitschky characters

Vig(Dlga(u)  foru € U,

Indy' &;(u) =
. for u € Uj\U,.

4.2 Induced Jedlitschky characters

Reducing a Jedlidtschky character for certain tableaux to the unipotent radical U; and induc-
ing it to SOy produces a scalar multiple of the generalized Gelfand—Graev character for the
nilpotent matrix corresponding to core pattern of the respective Jedlidtschky character. So we
will first describe the conditions a tableau has to meet in order for the core pattern that arises
from it to fulfil such a role.

For a verge tableau T let again n, € Ny be the length of the z column forz € Z, and 71, = }};_. n,

is the sum of all n, left of the z column as defined in 3.3.1.

Definition 4.2.1. For a partition A + N, for which every even entry has even multiplicity and a

verge tableau T for A we call the verge tableau T standard if the following conditions are met:

(1) For every row r < O the entries are in increasing order such that for 1 <a < b < n, if i

is the entry in the a-th row and j the entry in the a-th row in the r column we have i < ;.

(i1) For the center row the entries are in decreasing order such that for 1 <a < b <npifiis

the entry in the a-th row and j the entry in the a-th row in the O column we have i > j.

(iii)) For odd 1 < a < ny, where i is the entry in the —1 column and j the entry in the 1
column in the a-th row, we have i + j = N, unless A is the secondary partition with only
even elements, in which case this statement must hold for the tableau T exchanging the

entries n and n + 1 instead.

(iv) For even 1 < b < ny, where i is the entry in the —1 column and j the entry in the 1
column in the b-th row, we have i + j = N + 2, unless A is the secondary partition with
only even elements, in which case this statement must hold for the tableau T exchanging

the entries n and n + 1 instead.

A core tableau (T, S) for a standard tableau T will be called standard as well and for the rest
of this chapter we will consider the verge tableau T to be standard.
For a core tableau (T,S) let 7 = 71 : FZ — T be the cocharacter with 7p(x); = x*for 1 <i < N

and z € Z, where i is contained in the z column of T as defined theorem 3.3.5. Let A = A7 € v
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4.2. Induced Jedlitschky characters

be the verge pattern and C = Cy € v be the core pattern for (T,S). Then C — CT € soy
is nilpotent, and we can define a corresponding Z-grading of so, according to lemme 3.1.4.
The Z-grading of so, and the ensuing subgroups of SOy as defined in lemma 4.1.1 for a core
tableau aligns with the group of upper unitriangular matrices Uy in a way such that U, < Uy
for all k € N. Furthermore, the ”.”-operation preserves the vector spaces m(g(m)) < v for

m € Ny to some extent.

Lemma 4.2.2. For a core pattern (T,S) let C € v be the corresponding core pattern. For
m € Ny and k € N let g(m) < soy and Uy < SOy be the fixed points of the Z-grading of soy for
the nilpotent element C — C" € soy as defined in 4.1.1. For k € N we then have U, < Uy and
for L =L N Uy, where L' < SOy fixed points of this Levi complement, we have Uy = L= U,.

For m € Ny the vector space n(g(m)) < v is

n(g(m)) = <€ij

1<i<j<N,i+j<N+1,jis contained in the z + m column of T,
where 7 € 7 is the column in which i is contained.

Thenv = @meNo n(g(m)) defines a Ny grading onv. Fork € N, g € U, and X € n(g(m)) we
have g.X — X € EBZ)k n(g(m)) and for h € L we have h.X € n(g(m)).

Proof. Let (T, S) be a verge pattern and C € v the corresponding core pattern. By theorem
3.3.5 the coroot of the one-dimensional torus 7 = 7¢_¢+ : ]1_3; — T for C — C" is the subgroup
of diagonal matrices with (7¢_ci(c)); = ¢ where z € Z is the column in which i is contained
in the tableau T. Let 1 < i,j < Nwithi+ j < N+ 1 and let a,b € Z such that i and j are
contained in the a and b column of T respectively. Then if a < b we have i < j since all
elements in the a column are smaller than the elements in the » column unless T is the tableau
for the secondary partition with only even elements, where n+ 1 is contained in the —1 column
while n is contained in the 1 column, in which case we haven+n+1 £ N + 1. So forc € F,
we have x;;j(c) € Uy and therefore U, < Uy for k € N.

Letnow 1 < i, j < Nwithi+j < N+1. For c € F, we have 77 (c)(e;; — e)(c) = ey — €3)
and ¢;; — e5 € a(b — a), which gives us e;; € n(g(b — a)).

Letk € N, m € Ny and X € n(g(m)). Let 1 <i < j < N and ¢ € F, such that I + ce;; € Uy.
Then there is a [ > k with 7' (f)(ce;;)7(f) = f'(ce;j) for f € F, and we have

TN (XU + ce) = X)1(f) = 7(f) (Xeel;) T(f)
= (X))t ()
= f’”_lXceEj.
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4.2. Induced Jedlitschky characters

Therefore, we have (I +ce;;). X —X € n(g(m—1))if m—1> 0or (I +ce;}) X-X =0ifm—1<O0.
Furthermore, for any Y € @;’:01{ m(g(j)) thereisa 0 < j < m — k with ¥; € m(g(j)) such that

Y = Z;-”:_Ok Y; and we have
m—k m—k
(I +ce)- (X +Y) = X = (I + ce) X = X + Y (I +cey).Y; € (P n(a(i)).
=0 i=0

As g € Uy is a product of such elementary factors I + ce;; we get g. X — X € EB:':‘ n(g(m))
by induction. Conversely, any element i € L is a product of root elements I + ce;; such
that (I + ce;;).X — X € n(g(m)), so by induction we have h.X — X € m(g(m)) and therefore
h.X € n(g(m)). O

| 1]4]18]2528]
2]7121]26
3]81[22[27
4
3

Ny 13—y —| N —| no 11—

7
6116
1

2
2
9
10/20
15|
114/
13|
112]
111]
Standard tableau T for Verge pattern At € v for T together with the subspaces
A=(5,42,3%2,22,19) + 28 n(g(1)) < v (lightgray) and 7(g(0)) < v (darkgray)

my S 8

S mp 83

S2  §3 M3

Matrix S € M3(F,) Core pattern Ct € v for (T, S)
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4.2. Induced Jedlitschky characters

In order to calculate the value of the Jedlitschky characters for standard core tableaux we first
must decompose the subspaces n(g(m)) for m € {0, 1}. For this we define the pattern group
H, < Uy arising from the positions of the horizontal part of the lower hooks for a verge

pattern A € v.

Lemma 4.2.3. For averge pattern A € v let Hy < Uy be the pattern subgroup of the horizontal
part of the lower hooks, such that

Hy = {u € Uy | suppq(u) C U {(;,j) li< Jj< z}}

(i,k)esupp(A)NV,

Let C € v be a core pattern and d € D, such that C = d.A. Then for every u € Uy we have
u'Hyu N Staby, (C) = 1. Moreover, for x € Hy and g € Gy we have n(x) o g € n(Hy). The
Gy-orbit of A intersects the space of the horizontal part of the lower hooks in v trivially with
(Gy.A—-A)Nn(Hy) =0.

Proof. Let A € v be a verge pattern and H, C V be the set of positions of lower hooks of
A, such that H,y = U(,-’k)ewppmwvr{(f, ) 1i < j < i}. Then as H, is the pattern subgroup
for the closed subset H,y C V and by theorem 2.3.2 we have supp.,(Staby,(A)) N Hy = 0.
By corollary 1.3.13 the subspaces f(H,), f(Staby,(A)) < uy for the Cayley transformation
£ are such that supp.,(f(Ha)) € Hy and suppa,(f(Staby,(4))) NH, = 0. Let g € Gy and
X € g'f(Hy)g N f(Staby,(A)). Then there is a Y € f(H,) such that X = g'Yg and for
1 <i<[l< N wehave X;; = ?’:i - 878uY je- If suppy,(Y) # 0, then there is a position
(i, 1) € supp(Y), such that there is no position in supp(Y) that is left or below of (i, ), that is
forall i < j < k <[ with (j,k) # (i,]) we have (j, k) ¢ supp(Y). Then X;; = ¥;; # 0, which is
a contradiction to X € f(Staby,(A)). So we have supp,,(Y) = 0 and therefore X = ¥ = 0 as
well as g' f(H4)g N f(Staby, (A)) = 0. As f is a bijection, it follows that

B (Hy) 0 Staby, (A) = 7' (" f(Ha)g N f(Staby, (A)) = £7(0) =1,

where S,-1 is the map on Uy defined in lemma 2.4.3 with B,-1(H,) = f~'(g" f(Ha)g). Let now
d € Dy and u € Uy. Then B,-141 = B4 o B,, where B, is the inner automorphism of u on Uy
and B, : Staby, (A) — Staby, (d.A) is a bijection. So we have

w™' Hau 0 Staby, (d.A) = B4 (Bu-a- (Ha) 0 Staby, (A)) = Ba(D) = I.
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4.2. Induced Jedlitschky characters

Letx € Hyand g € Gy. For1l <i < j < Nwithi+j < N+1 we have (n(x) o g);; = Z,{:M Xik&kj
and therefore (i, j) € supp((n(x) o g) if thereis ai < k < i with (i, k) € supp.,(x). It follows
that (i, j) € supp4,(H,) and therefore m(x) o g € m(Hy).

Let now X € (Gy.A —A) Nn(Hy). If thereare 1 <i < j < N withi+ j < N + 1 such that
X;; # 0, then thereisa j < [ < i such that (i,]) € supp(A). But since (i, j) € H, there is
al < k < iwith (i,k) € supp(A), which contradicts A being a verge pattern as defined in
2.2.5 since we would have had (i, 1), (i, k) € supp(A — A"). It follows that X = 0 and therefore
(Gy.A—-A)Nn(Hy) =0. O

T
Il

Hy

(g

Hy

Subgroup H4 < Uy for the lower hooks of the verge pattern A

Now we can calculate value of the Jedlitschky characters for standard core tableaux for ele-
ments of the normal subgroup U; < Uy, where the value is zero unless the element is con-

tained in U,.

Proposition 4.2.4. For a standard verge tableau T let A € v be the verge pattern for T. Then

n(g(1)) decomposes into the direct sum of mutually orthogonal linear subspaces with

n(g(D) = (Gy.A = AN n(g(1))) & (7(Hy) N 7(a(1))) .

Proof. Let T be a standard verge tableau and A € v the verge pattern for T. We assume that
g(1) # 0, and therefore the partition A + N for the tableau T contains both odd and even
elements. For 1 <i < j < N withi+ j < N + 1 such that ¢;; € n(g(1)) there is an a < 0
such that i is contained in the a column and j is contained in the a + 1 column of T. There is
ai < k < N that is contained in the a + 2 column of T in the samerow asi. If i+ k < N + 1,

we have (i, k) € supp(A) and since A does not only contain even elements and j is contained
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in the a + 1 column while k is contained in the a + 2 column, we also have j < k. Then we
have A +¢;; = (I +ejp)Aande;j € Gy A—-A. Ifi+k > N+ 1, we have (%,f) € supp(A) and
therefore e;; € n(Hy). It follows that 7(g(1)) < (G.A—A)+n(H,), and by lemma 4.2.3 we have
n(g(1)) = (G.A — A) + n(H,). Since (G.A — A) and n(H,) are distinct pattern linear subspaces
of v, they are mutually orthogonal by lemma 2.1.6. O

Theorem 4.2.5. For a standard core tableau (T, S) let C € v be the corresponding core pat-

tern. Then for x € U; we have yc(x) = 0 unless x € U,.

Proof. Let (T, S) be a standard core tableau and let A, C € v be the corresponding verge and
core pattern respectively, for which d € D, is such that C = d.A. For W € n(g(1)) NGy A - A
we have C + W € Gy.A, and there are dy € D4 and u € Uy such that udy.A = C + W. We can
then calculate the matrix S (dw) € M, (FF,), which was defined in lemma 2.4.12:

(i) Forl <i<fisand1 < j <N wehave (C+W)y =0forallk >7_;and (C+W); = 0 for
all [ > ;. Since iy + i = N, it follows that S ;;(dw) = b ((C + WYe;,(C + W)'e;) = 0,
which especially means S ;;(dw) = §S;;(d).

(i1) Forii_3 < i, j < 7i_, we have Wy, = Wy = O forall k > 7i_; and C;; = C;; = 0 for all

[ > 71y. Again since 7i_y + i1y = N it follows that
Sif(dw) = b((C + W)'e;, (C + We,) = b(Clei + W'ei, Ce; + W'ej) = b(Cler, C'e;) = S i(d).

(1) Fori; < i <fi,and i, < j < 7i_; we have Wy = O unless 1., < k < 7i_; and
Ci = Wj =0unless ii_; <[ < iigas well as Cj,, = 0 unless iip < m < 1;. This gives us
b (C’e,-, C’ej) =0,b (Wtel-, Ctej) =0and b (W’e,-, W’ej) = 0, and it follows that

Sij(dw) = b((C + W)'e;, (C+ W)'e;) = b(Cler, We)).

(iv) Forni_, < i, j < #i-; we assume without loss of generality that i < j. Since for k being in
the same row as i of and the 1 column of T, we have i+k = Nand k = i + 1. Ifj= k, we
have X; = Oforall 1 <1< N since j+i = N +2, and therefore A has no non-zero entry
in the j-th row. For j > i + 1 we have j > k and therefore (i, j) € Z4. So (i, j) € Sy if

and only if i = j since the same argument holds for the case of i > j. We have W; =0
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unless 7i_; < k < 7ip and Cy = 0 unless 7y < [ < 71y, and therefore b (C'e;, C'e;) = 0 as
well as b (C'e;, W'e;) = b(W'e;, C'e;) = 0. This gives us

Sii(dW) =b ((C + W)tei, (C + W)te,-) =b (W’ei, Wtei)

and Sij(dW) = S,j(d) =0 for every i # ]Wlth (@, ]) S SA.

(v) Forfi_; <i <nand 1 < j < n for k being in the same row as i of and the 2 column
of T we have i + k > N + 1, so A has no non-zero entry in the i-th row and we have
Sij(dw) = Si(d) = 0.

Let C e M, ,xn,(F,) and Z € M, ,(F,) be the restrictions of the core pattern C and the matrix
S(d) € M,(F,) respectively with

C = Cl{fl_3,...l7l_2><l7£_1,...7lo} and Z = S(d)l{fl_j;,...fl_z}'

Then we have CJ,,C' = Z by theorem 3.3.5 and det(Z) # 0 as a prerequisite of theorem 3.3.5.
For 1 < k < n_; let w € F,"? be the vector with (wy); = Wi,k 4+ for 1 < i < ng. For

iy <i<n_andii_, < j <7 wethenhave b(Cfe,-, Wtej) = C‘wj_;l_2, while for7i_, <i <n_;

we have b (W'e;, W'e;) = wﬁ_ﬁ_z JnoWizii_y-

41 4=n3 — ——ns; —i} ny { } 0] { | ni {

T

N * M| |

n_s /

- « M |

Yl |

i3 * ¢

0

The pattern C + W for W € n(g(1))
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0 00O 0 0 0 0 0 000O00O0
0 00O 0 0 0 0 0 000O00O
0 00O 0 0 1 0 0 000O00©O
000 0 000O00O0
000 Z Cwy, 0 Cws; 00O0O00O
000 0 000O00O0
0 01 (Cwy) wiJowi 0 z 000O00O
0 00O 0 0 0 0 0 000O00©O
000 (Cws) z 0 wiyws 0 0 0 O O
0 00O 0 0 0 0 0 000O00O0
0 00O 0 0 0 0 0 000O00O
0 00O 0 0 0 0 0 000O00O0
0 00O 0 0 0 0 0 000O00O
0 00O 0 0 0 0 0 000O00O

The matrix S (dy) for W € n(g(1))

Let vy € R4 be defined by (vy);; = Ofor 1 < i < j < nunless fori, < i < 7i_; and
iy < j<ngifthereisa j<[< }'With (J,I) € supp(A), in which case let (vw);; = (=Zw;_i_, )ij-
As described in lemma 2.4.14 the element vy, partially diagonalizes the matrix S (dy). That is,
forevery 1 < k < n_; for which thereisak+7_, << k + iy with (k + iy, ) € supp(A) the
restrictions of S'(dyw) and S (dwesvw) to My = {Air+1,... 7 1, k+A_r}x{Ai_r+1,...7_1, k+7_,}

are

Z Wk Z 0
S (dW)le = and S (dw e, VW)IMk =

Wi Wi Ty Wri 0 Wi Wi — (Cw)'Z7 ' Cwy

Moreover, for every 1 < i < nand 7i.; < j < n_y for which there is a j < [ < j with

(j, 1) € supp(A) we have for the following cases:

(1) Sialdw) =0foriiy <k < n_yifi <7, and therefore S;;(dw e4 viy) = S;i(d) =0

(i) Su(dw) = 0 for i, < k < n_y if iy < i < fiy such that there is no i < [ < i with

(i, 1) € supp(A) and therefore S;;(dw e4 vw) = S;i(d) =0
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4.2. Induced Jedlitschky characters

(i) (i, j) € Zaif iy <i < fig withi # k such that thereisai </ < i with (i, 1) € supp(A)
(lV) Sik(dW) = 0 for fl_z <k< n_y ifi > flo and therefore S,‘j(dW L\ Vw) = S,J(d) =0
(V) S;i(dw s vy) = W;_;,fl-]nowj—ﬁ_] - (éwj—ﬁ_l)tz_léwj—ﬁ_|

For k = j—ii_; letnow X = C'Z"'C € M,_,(F,). We then have CJ, X = (CJ,,ChZ7'C = C
and therefore C (JnyX — 1) = 0. But since C has maximal rank, it follows that JwX —1=0and
therefore X = J,,,. We then have

Sjj(dW o, Vw) = W;—fl_l‘]n()wj_ﬁ—l - wz-_ﬁ_l(C"Z_IC')wj_;,_l =0= Sjj(d),
which concludes that S (dy @4 vy) = S (d) and by theorem 2.4.10 we have ¢,y = ¥ for every
W e n(g(1)) NGy.A - A.

Letnow w = 1(g(1)) NGy.A — A, x € Uy and g € Uy. Let X; € n(g(1)) and X, € m(11,) such
that m(x) o g = X; + X5. Since n(g(1)) = w® (m(H4) N m(g(1))) is a direct sum of orthogonal
complements in m(g(1)) by proposition 4.2.4 with k (W, X,) = 0 for all W € w, by lemma 2.1.7
we have

D Ox(Wor(mog) = 3" de(W, Xi) =

Wew Wew

{Iw for X, € n(H,)

0 otherwise.

We have X, o g! € m(u,) and for X, € n(H,) we have X; o g”! € n(H,) by lemma 4.2.3.
So if Y yew Ik (Y, m(x) 0 g) # 0 for some g € Uy, there is a decomposition for m(x) with
n(x) = X| + X} such that X| = X, o ¢! € n(H,) and X}, = X, 0 7' € n(uy).

By theorem 2.4.10 we now have ¥,y = ¢ for every W € w and for x € Uj it follows that

1
Ve =10 ) o)

1 —
~ [UxIStaby, (O)lIw] Z Z ﬁK(g-(W+C),7r(u 1xu))

Wew u,geUy

1 - —
" (OS] 2 (e Gt 1’“‘))[2 9k (3. W, ”‘“’))

u,geUn Wew

1 - —
~ [UnlStaby, (O)w 2, (gCnt 1“‘))[2 Ik (W, lxu)og)}

u,geUn Wew

So if Yc(x) # 0, there is a u € Uy such that for y = u~'xu there are ¥, € n(H,) and
Y, € n(uy) with n(y) = Y, + Y. Let y, € U, be such that n(y,) = Y,. Then we have
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4.2. Induced Jedlitschky characters

n(yy,") o y2 = n(y) — m(y2) = Yy € n(H,) and therefore n(yy;') € n(H,) by lemma 4.2.3. For

Uy

yi = yy,' we then have y; € Hy and y = yiy2. If ye(x) = Indgg,

Je(x) # 0, there is a
v € Uy such that vy € Staby, (C) and we have

0= (v_lyv).C -C= (v_]ylv)(v_lyzv).C -C= (v_lylv). ((v_lyzv).C - C) + (v_lylv).C -C.

Furthermore, we have v-'y,v € U, since U, < U, which gives us (v"'y,v).C — C € n(g(0))
as well as (v 1y v). ((v‘lyzv).C — C) € n(g(0)) since C € m(g(2)). But by lemma 4.2.3 we
also have vlyv ¢ Staby, (C). It then follows that (v"'yiv).C — C # 0, which necessitates
(v ly1v).C = C € n(g(0)). As C € n(g(2)), it follows that v='y,v € U,, which gives us y; € U,
as well as y = y;y, € U, and finally x = uyu™" € U,.

Core pattern C € v with minor conditions in 7(g(0)) and supplementary conditions in 7(g(1))
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4.2. Induced Jedlitschky characters

000O0OOUOOOOOO0OO0ODO0ODO
000O0OOUOUOOOOOO0ODO0ODO
000O0OO0OOT1TO0OOOOOOO
0O 00m s s s 0 s 00O0O0O
000 s m s s O0s 0O0O0O0O
000 s s m s 0 s O0O0O0O0O
001 s s s m 0z 0O0O0O0O
000O0OOUOOOOOOO0ODLODO
000 s s s z 0mOOOO0O
000O0OO0OUOUOOOO0OOO0OO0ODO
000O0OOUOOOOODO0OO0ODO0ODO
000O0OOUOOOOO0OO0OO0ODO0ODO
000O0OO0OOOOOO0OO0OO0OO0OO
000O0OOUOUOOOO0OO0OO0OO0OO

Matrix S (d) € M, (F,) for the core pattern with positions
relating to 7(g(0)) (dark grey) and m(g(1)) (light grey)

With this result we can relate the Jedlitschky character for a standard core tableau to the
generalized Gelfand—Graev character by reducing it to the normal subgroup U, and inducing
it back to Uy. Inducing this character further to the whole group SOy then results in the

generalized Gelfand—Graev character up to a scalar.

Theorem 4.2.6. For a standard core tableau (T, S) let C € v be the corresponding core pat-
tern. For n(g(2)) let Ey_wi : Uy — C be the linear character of U, as defined in 4.1.3 with
Ew_wi(x) = k(W — W', f(x)) for x € U,. We then have

Uy.C
Indg?’ResUthC :l vCl

Ind"vé,._
u e = Ty M ée-c

Proof. Let (T, S) be a standard core tableau and let C € v be the corresponding core pattern.
Since U, < U; < Uy for x € Uy, we have v''xv € U, for any v € Uy if and only if x € U,

and by theorem 4.2.5 it follows that

Ye(g) ifgel;

[Un|

1
Un Uy _ b -1 — )1l
Indy;Res ) Yic(g) = 17 > Ye(vigy) = {0 if g € Uy\U,

veUn
v_]gveUz
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4.2. Induced Jedlitschky characters

Since C € n(g(2)), we have h.C € n(g(2)) for h € L and wh.C — h.C € @Z<2 m(g(z)) forw € U,
by lemma 4.2.2. Furthermore, for x € U, and v € U, we have x(Wh.C — h.C)',n(v"'xv)) = 0
since 7(v"'xv) € P _, m(a(z)) and it follows that

722

1
Uy Un -1
IndU1 ResU1 Ye(x) = |Sta (O] E Ixk(u.C,n(vxv "))

u,velU

B IStabUN(C)||U1| D, D, IKwh.CY w(vv™)

velU hel
wely

1
- IStabUN(C)IIU1I

m Z Z ﬂK(l’l C JT(VXV ))

veU heK

Z Z Ix(h.C, m(vxv™1)) Z Ik(wh.C — h.C, n(vxv™1))

veU helL wel,

For x € U, let m € N be the lowest integer such that (x — )" = 0. By lemma 1.3.12 we have
fx) =205 ( [t (x—l)k and therefore n1(x) — 27(f(x)) = ;- ( 1)"2,} ((x — DX € m(wy).
So for W € n(g(2)) we have

K (W', 7(x)) = K (W', 27(£(0)) = K (W', 2£(0)) = (W', f(x) = f(0)7) = & (W = W, £(x)).

Let &y_y+ : Uy — C be now the linear character with &y_y+(x) = 9x(W — W', f(x)). Since
U, < U for x € Uy, we have Indgg’fw_w(x) = 0 unless x € U, in which case it follows that
Indy"&y_wi(x) = 1/|Us| Zyepy Ew—wi(vxv™"). Equally, we have Ind"Res;"¢/c(x) = O unless

x € U,. So for x € U, we have

Ind"Res! e (x) = m Z Ix(u.C — w.C), foxv™))

ueL
velUy

1 U
= In d N
~ |Staby, (O)] Z  Euc—woy (¥)-

Unless 4 is the secondary partition with only even elements, for m € Ny let L,, < L be the

pattern subgroup of L defined by

Ly ={g €L|g;=0for(i,j) € Vwithi < ii_gur orii_y < j}.
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4.2. Induced Jedlitschky characters

These subgroups contain the individual blocks giving rise to the block matrices that are the
elements of L where L = [],,ey, Ln 1s a direct product, and we have Ly = U,, as well as
L, = G, form > 0. Furthermore, for m € N and W € n(g(2)) let W™ € v be the matrix
suchthatfor 1 <i < j<mwithi+ j <N + 1 we have Wl.(?) = W if fi_gpery < i < 7y and
A_m-1y < J < fi_u-2), Whereas we have Wl.(]’.") = 0 otherwise. Conversely, if A is the secondary
partition with only even elements, we define L,, < L for 1 # m € N, the same way, while we
have

Ll:{geL|g,-‘,-:Ofor(i,j)E(Vwithisﬁ_zorﬁ_l+1<jorj:n}.

Again, these subgroups give rise to the direct product L = [],,eq, Ln With L; = G,,. Analo-
gously, for W € n(g(2)) we define W™ € v the same way for m > 2, while for 1 <i < j<m
with i + j < N+ 1 we have W) = W;;if i, <i<nandn—1< j <7y withj#n+1,
whereas we have Wl.(jl) = 0 otherwise. In any of these cases we have W = 3, . W™ as well
as L < Staby, (W™) for all k € Ny with m # |k — 2|. Furthermore, for u € L and W € n(g(2))
we have supp(Wu') C V and therefore u.W = Wu'. So for u € L and u,, € L,, for m € N such

that u = [],,en, 4m We have

u.C = u.CY + Z Up.C™ = CVul + Z c™ul .

m>2 m>2

For the left multiplication of transposed elements of L for m € N we have v'C™ = C™ if
ve L form # k € Ny.

For m = 1 the pattern C" € v is a verge pattern with CV = ZZ':/IZ Cii 4 2k—1i1r—2(k—1)s SO

Staby,(CV) is a pattern subgroup with u € Staby, (C) if for (i, j) € V we have u;; = 0
withi -7, € {2,4,...n} and 1 < j < N. Then for the pattern subgroup L, < L, defined by

Ly ={ueL|u;=0for(,j)eVwithi-ii,€(l,3,...n—1},1 < j< N}

we have L, = L;Stab;, (CV) and therefore L,.C" = L,;.CV. Furthermore, for it € L; we have
#CH =W, So foru € L, there is a it € L, such that CVu' = CVi* = (a~"y'CVi.

For m > 3 the pattern C™ € v is again a verge pattern with C™ = »" e; . s, With
diagonal entries shifted n,,_; + n, — 1 entries above the main diagonal. So for u € L, ,
there is a v(u) € L, with v(W)i_ .\ +isi_merytj = Wiy +isiomry+j 10F 1 < i < j < ny, such that
C™y' = v(u)'C™.
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4.2. Induced Jedlitschky characters

Ly

Decomposition of C € m(g(2)) and direct product of L

Let now u € L and u,, € L, for m € Ny such that u = [],ay, 4n. Let vy = up, vo = I and
vi € L; be such that CVu! = (v;'Y'C™VV! as described above. For m > 3 we define v,, € L,

recursively by v, = v(v:! u,,_,) and we have
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4.2. Induced Jedlitschky characters

=Wyt (m)_ 1
uC==C ul+ZC’”um_2

m>2

= (' cOy, +Zc<m)u£n_2

m>2

= ()| Y+ (Z C(”uin_z) (vﬁ)f) "

m>2

= )| €D+ CPuy+ COOT ) + Cuy + Y ™l 2] v

m>4

=) CV + 05 CPv + (5 CP + (i e® )y C™uy, |V

1 4 m=2|"1
m>4

t

) 4
_ (]_[ v,:l) [C(” FCD 44 4 (Z C(’")uin-z) (3 (g l)t] (l_[ Vk]

t

k=0 m>4 k=0
t t
- [l_[ v,Zl] [Z C(’”)) [n Vk] .
keNy meN keNy

For v = []ay, vk € L we then have u.C = (v")'CV'. So for x € U, this gives us

Evc—uoy (%) = 9k (u.C = w.C)', f(x))
_ O« ((v yov - (o yev)', f(x))
= ok () (C = CT)V, f(x))
= 9x((C - ") v f )
= ﬂk((C — CT),f(v lxv))
= écoer (v aw).

For x € Uy we then have Indgffuhc_(uhc)-r(x) = Indgi’fc_ﬁ(v‘lxv) = Indg;vfc_cr(x), which

gives us

1l _LIGS|
Ind;"Res," d" &, .o = Ind;"éc_ct.
e = Staby (O] aby, (C)] 2 Z U $u.C—w.C)’ Staby (O] Z Yc-ct
Since Uy = L < U, as well as |U,| = |g(1)||U,|, we have |Stz|1[{>|l|/l1f,2(|C)| = |9(])||S|'fi]1g11,\,(c)| = 'g’(vl’il, and
the claim follows.
O
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4.2. Induced Jedlitschky characters

Since the generalized Gelfand—Graev character for C — CT is yo_¢t = mlndffz’v

also be expressed as the Jedlitschky character reduced to U; and induced back to whole group
SOy with

é:c_c’r , it can

|Uy.C]
la(DI
These Jedlitschky characters reduced to U, and induced back to Uy are again sums Jedlitschky

— SOn Uy
Yc-ct = Il’ldU] RGSU1 Ye.

characters over all core pattern, which are restricted to m(g(0)) + m(a(1)) equal to C. This
entails not only a sum over the different minor conditions for the same verge pattern, but it
can necessitate new main conditions if the O column of T is too big. If T is the tableau for
the secondary partition with only even elements, it can even result in main conditions being

shifted and replaced by a minor condition.

Proposition 4.2.7. For a standard verge tableau T let A € v be the verge pattern for T. If

ny > 2n, + 1, let K < Uy be the pattern subgroup defined by

no—ny —
: 1 ) 1
K%no_nzz geUNIg,-j:OfortSn—5n0+n20r]2n+§n0—n2 .

Then K gy = Ung2my and n(g(0)) decomposes into the direct sum of mutually orthogonal

linear subspaces with

n(G.A - ANnn(g(0)) & (n(H,) N 7(3(0))) if ng < 2ny,
n(G.A —ANn(a(0))) & (m(Ha) N 7(a(0))) & n(K

3N10—n2

m(G.A - ANn(g(0)) & (m(H,) N 1(a(0))) ifng=0

) ifng > 2ny,

n(8(0)) =
andn+ 1is a entry in the 1 column of T,

m(G.A-ANmn(a(0) & (w(Ha) N 7(3(0)) & (€n-1,0+1)  if 10 =0

andn + 1 is a entry in the — 1 column of T.

Proof. Let T be a standard verge tableau and A € v the verge pattern for T. Unless n + 1 is
a entry in the —1 column, for every a € Z and 1 < i, j < N, such that i is contained in the a
column and j is contained in the a + 1 column, we have i < j. Conversely, if n + 1 is a entry
in the —1 column, the same holds for every case buti = n + 1 and j = n, where n is contained

in the 1 column of T.
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4.2. Induced Jedlitschky characters

Let the partition A + N for the tableau T be such that it contains at least one odd element. For
I <i<j<Nwithi+ j<N + 1such thate;; € n(g(0)) there is an a < 0 such that i and j are
contained in the a column of T. If a < 0, there is ai < k < N that is contained in the a + 2
column of T in the same row as i. If i + kK < N + 1, we have (i, k) € supp(A), and since j is
contained in the a + 1 column while k is contained in the a + 2 column, we also have j < k.
Then A +e¢;;=(U +ej)Aande; € Gy A—-A. Ifi+k >N+ 1, we have (%, i) e supp(A) and
therefore e;; € m(Hy).

Let ny < 2n,. For i and j being contained in the O column of T we have i > n > iy — n, since
i<nand iy =n+ %no. As i is contained in the O column and above the n, + 1-th row of T,
there is a 1 < k < i in the —2 column and the same row as i, and we have (k, i) € supp(A),
which gives us e;; € m(Hy). It follows that 71(g(0)) < (G.A — A) + n(Hy), and the first claim
follows by lemma 4.2.3.

Letnow ny > 2n, and let V < Uy such that Uy = K%
V= 7T(K%

in the O column of T with i < n — 1ng +n, wehave i > n+ 1 + 1ng — ny = fig — np + 1 since

no—n, < V. Then we have the decomposition

no-ny) ®7(V) and ¢;; € m(V) if and only if i < n— %no +n,. For i and j being contained
g = n+ %no. As i is contained in the 0 column and above the n, + 1-th row of T, there is a
1 <k < iinthe —2 column and the same row as i, and we have (k, i) € supp(A), which gives us
eij € m(H,). Soforevery 1 <i< j<Nwithi+ j<N+1andi<n-1iny+n, wehave either
eij € Gy.A — A or e;; € n(H,) and therefore 7(g(0)) N 7(V) < (G.A — A) + n(H,). Conversely,
ifi>n- %no +n, we have ¢;; ¢ Gy.A — A since i < n, and therefore i is contained below the
n,-th row in T. Moreover, we have i < n+ 1 + %no — 1y, = fig — ny + 1, 50 i is contained below
the n,-th row in T as well, and we have e;; € 7(H,). It follows that 7(H,) N (K 1 0 and
(Gy.A—-A)N n(K%

no—nz) =

no—ny) = 0, which gives us

m(g(0)) = n(k) & (Gy.A — AN 7(3(0))) & (w(Hy) N 7(3(0)))

by lemma 4.2.3 since (K 1 no—n,) < 7(3(0)), which proves the second claim.

Let now the partition A + N for the tableau T be such that it contains only even elements and
n + 1 is contained in the 1 column of T. For 1 <i < j < N withi + j < N + 1 such that
e;j € m(g(0)) there is a a < —1 such that i and j are contained in the a column of T. There is a
i < k < N that is contained in the a + 2 column of T in the samerow asi. If i + k< N + 1, we
have (i, k) € supp(A) and since j is contained in the a + 1 column while & is contained in the
a+2 column, we also have j < k. ThenA+e¢;; = A.(I+ej) ande;j € Gy.A-A. Ifi+k > N+1,
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4.2. Induced Jedlitschky characters

we have (%, i) e supp(A), and therefore ¢;; € m(H,). It follows that 7(g(0)) < (G.A—A)+nm(H,)
and the third claim follows by lemma 4.2.3.

Is n + 1 is contained in the —1 column of T then n — 1 and n are contained in the —1 and 1
column and »n; — 1-th row, while n + 1 and n + 2 are contained in the —1 and 1 column and
n;-th row respectively. For 1 < i < j < Nwithi+ j < N+ 1andi # n - 1 such that
e;j € m(g(0)) there is an a < —1 such that i and j are contained in the a column of T. There is
ai < k < N that is contained in the a + 2 column of T in the samerow asi. If i+ kK < N + 1,
we have (i, k) € supp(A) and since j is contained in the @ + 1 column while k is contained in
the a + 2 column we have j < k if and only if k # n, which is the case if i # n — 1. Then
A+ejj=A(I+ejp)ande;; € Gy.A-A. If i+k > N+1, we have (k,1) € supp(A), and therefore
ejj € m(Hy). Letnowi=n—-1landn-1< j < Nwithn—1+j < N+1, which forces j =n+1
since n is contained in the 1 column of T. We have e,_; .1 ¢ Gy.A — A since n is contained
in the 1 column in same row as n — 1 and therefore (n — 1,n) € supp(A). Moreover, n + 1 is
contained in the —1 column in the same row as i = n + 2, which is contained in the 1 column,
and we have (n+1)+(n+2) = N+3,sothereisno 1 < k < n+1 such that (k,n+1) € supp(A).

We therefore have e,_; .1 ¢ n(H,), which gives us

7(3(0)) = {ep_1.411) D (Gy.A — AN 7(3(0))) & (n(Hy) N 7(g(0)))

by lemma 4.2.3 and concludes the last claim. Since all summands in these direct sums are

distinct pattern linear subspaces of v, they are mutually orthogonal by lemma 2.1.6. O

Theorem 4.2.8. For a partition A + N and i € N let m; € Ny be the multiplicity with which
i occurs in A such that A = (1™,2™,...). Fori € N let my; be even and let (T, S) be the
standard core tableau for A. Let A € v and C € v be the corresponding verge and core
patterns for (T, S) respectively. Let my = <el-j e n(g(0)) | (i, )) € minor(A)> the space of minor
conditions in 1(g(0)). If my > 2 + D ;a0 Mair1, let K = K%(ml_zieNmzm) < Uy be defined as
in proposition 4.2.7, and let By be the set of verge matrices of K as defined in 2.2.5. Let
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Y the induced character of y¢ reduced to U, multiplied with a scalar fr € N such that
= fTIndg’lvResg’lv We. Then we have

2memy Yerm if i e N:myiy #0andm; <2+ a0 Moy

orYi e N :my;_; =0and Ais primary

7= deg ya. 0 .
Ve = Lnmemy L rexsno o Wesmss €N myy # 0andmy > 2 + e main
€Dp
q 2 memy Ycm ifVie N :my_ =0,Ais secondary and m, = 0
DiMemy 2aceF, YC+Mrcer 1 ifVie N :my_ =0, is secondary and m;, # 0.

The scalar fr € N then is defined as follows and ¢ has corresponding degree:

fr=" deg e = |mo| deg ¢ ifAieN:my_ #0and my <2+ Y qq My

orYi e N : my_ =0 and A is primary partition
fr="05" degc = ImlIK|deg yrc ifAeN:myy #0and my > 2+ Y Maisy
fr= % deg e = glmo| deg ¢ ifVi € N :my_y # 0, Ais secondary

Proof. Let A + N be a partition, where every even element has even multiplicity. Let (T, S)
be the standard core tableau for 4. Let A € v the verge pattern and C € v the core pattern for
(T,S)aswellasd € Dy suchthat C = d.A. Let K < Uy and V € Uy with Uy = K=V defined

by
K%(ml—zieNm%H) ifdie N: my_1 # 0 and m; > ZieN Mo
K = {xn—l,n+l(c) | ce Pq} if Vi e N : my;_1 = 0, A secondary and m, # 0
1 otherwise,
V%(ml—zieNmzwl) if i e N:my_1 #0and m; > ZieN Mo
V= J{lge€Uyx|guin1 =0} ifVieN:my | =0,Asecondary and m;, # 0
Uy otherwise.

Here for the even number m; — )}, m2i+1 the group K Lmy= Sy maier) S Uy isomorphic to
Ul )~ maer) 18 @s defined in proposition 4.2.7, whereas Vi, s,y < Uy 1s its comple-
mentary normal subgroup defined by

ieN ieN

) 1 . 1
V%(mn—z,-eNmz,-+1) = {g €Uy |gij=0fori>n-— 3 (ml — Zm2i+1)’1 <n+ 3 (ml — mzm)}.
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For the tableau T we then have ny = m; + ), Maip1 and ny = ;e Maiv1, Which gives us

1
210 ~

I
ny = 5(my — Yiew Maiv1)-

We will first show that the characters described above for the different choices of K are zero

for any x € Uy unless we have x € V

@

(ii)

Let A be the partition such that there is an i € N with my;_; # 0 and my < 2 + ;5 M2iv1
or that for all i € N we have m,;_; = 0, where A is a primary partition. We then have
K=K, =1itfm =2+ )M and K = I otherwise by definition as well as V = Uy

and the claim follows immediately.

Let A be the partition such that there is an i € N with my;_; # 0 and m; > 2 + 3 ;e Mot -
Then for ng = %(ml — Dien Maiv1) we have K = K. Let C € v be a core pattern for
the verge pattern A and B € n(K) a core pattern in n(K). Since forevery 1 < i < n
and n — ng < j < n+ ng we have C;; = 0, for k € K it follows that k£.C = C and
therefore K < StabUN(C‘). Conversely, for | < i <n—-ngand1 < j < N we have
B,»j = 0, which for v € V gives us v.B = B and therefore V < StabUN(B). Since
Uy = K=V, itfollows that Uy = Staby, (B)Staby, (C). For the intersection of stabilizers
we have Staby, (B) N Staby, (C) € Staby, (B + C). Furthermore, we have Uy.C € n(V)
and Uy.B C n(K), which since n(V) N n(K) = 0 gives us Uy.C N Uy.B = 0, and

Staby, (B+C) = StabUN(B) N StabUN(C' ) follows. Now we can calculate the product of
characters as

o TadUn TaqUn i
Ve = IndStabUN(BY\/ B IndStabUN(B)/\/ ¢

Un - Un Un -
= M taby, (B) (X B ReSStabUN(B)IndStabUN(é)X ¢ )

Uy 1. Staby, (B) Stabyy (C)
- IndStabUN(B) (X B IndStabUN(mc”)RCSStabUN(E+C")X ¢

Staby,, (B) Staby, (C)

— U <A
=Ind " Ind €S Staby (B+O) (xaxe)

Stabyy, (B)  Staby, (B+C)

_ Un e — e~
- IndStabUN(1§+C))(B+C - ¢B+C-

For the regular character of the complement K of the normal subgroup V < Uy, ex-

tended to the whole group Uy we have IanNpK = D Ben(By) @‘f%qﬁg by corollary
’ N
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4.2. Induced Jedlitschky characters

2.2.12 . For f € Dp we have deg¢pp = degy,p|Dp| by theorem 2.3.2 as well as
(¢8,PB)y, = |DslIRp| by corollary 2.4.11, so by corollary 2.4.7 it follows that

deg¥an

IRl

Vap.

Inf[('([Np K =
Ben(By) feDp

Let now x € Uy. We have Inf%NpK(x) = 0 unless x € V in which case we have
Infy"px = |K|. It follows that

d K| 2 mem, Yo+ forxeV
Z Z —tlap wd'B'J’d.BJrC(X) = Infi" px Z Yerm(x) = Lemy Yeul) - for x

Memy Bex(B)

(iii)

(iv)

IR Memy 0 otherwise.

feDp
Let A be the partition such that for all i € N we have m,;_; = 0, where A is the secondary
partition and m, = 0. We then have K = {x,_; ,+1(¢c) | ¢ € F,}. For any x € Uy we have

1 .
Xpn+l = % hIval X1 Xintl = %(x*x)n,nﬂ = 0, so for x,y € Uy it follows that

n+l
(V) tng1 = Z Xn-1,iYin+1 = Xp—1n+1 T Yn-1n+1-
i=n—1
For x, u € Uy we then have (™' xt),_1 ps1 = Xp_1251 50V = {g € Un | gno1ne1 =0} 2 Uy
is indeed a normal subgroup. Since n is contained in the —1 column and last row of the
tableau for the primary counterpart of A, the same is true for n+ 1 in the tableau T for the
secondary partition A. As m, = 0, there is no row of T with less than four elements, so
there is a 1 < k < n that is contained in the —3 column of T in the same row as n+ 1, and
we have (k,n + 1) € supp(A). Since Cy,, = 0 and Cy ;41 = Ax 1 = 1 for g € Staby, (C),
we have g,-1 41 = (8.C)kn-1 — Crn—1 = 0 and therefore Staby, (C) < V. For x € Uy we

then have ¥¢(x) = Ind;ZbUN cXC = Ounless x € V.

Let A be the partition such that for all i € N we have m,;_; = 0, where A is the secondary
partition and m, # 0. As for the previous case we have K = {x,_1,+1(c) | ¢ € F,;} and
again n + 1 is contained in the —1 column and last row of T. But since m, # 0, the last
row contains only elements of which n + 1 is the first one. So there isno 1 < k < n with
(k,n + 1) € supp(A). For ¢ € F, let C = C + ce,_1 441 € V be the core pattern for the

verge pattern A—e,,_j ,+cey_1 41 turning (n—1, n) into a minor condition and (n—1,n+1)
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4.2. Induced Jedlitschky characters

into a major condition. For any g € Uy we have g.e,_14+1 — €u-14+1 = Gnn+1€n-1n = 0
and therefore g.C© — C© = g.C — C as well as Staby, (C©) = Staby, (C). So for x € Uy

we have

_ 1 . _
q lzl//(:(v>(x) = JIUNTStaby (O Z Z ﬂk(g.C( ), m(u 1xu))

ceF, ceF, g,ueUy
1 —
= PTRISTNa] CGZF;{ g’;ﬁv Dk (g.C + cep1nt1, (1 1xu))
1 - _
= ZUNIS@by (C) g,uzd:]N Ik (g.C, m(u 1xu)) CGZF[I ) (c (u 1xu)n_LnH)

= q7'We() ) 9 (eXp1n1) = 0

cel,

unless x,_1 ,+1 = 0 and therefore x € V, in which case we have ¢! Zcqu Yeo(x) = Ye(x).

For W € n(g(0)) N Gy.A — A we have C + W € Gy.A. and there are dy € D4 and u € Uy such
that uf.A = C + W. We can then calculate the matrix S (dw) € M, (F,), where we assume that

1 <i < j < n without loss of generality due to the symmetry of S(d,,):

o)

(ii)

Forl <i<fi,and1 < j< N we have Wy = 0 for all k > 7i_, as well as Wj; = 0 for all
I >7_yand Cy = O forall k > iy, Cj; = O forall [ > 71,. Since 7i_, + i1, = N, we have
b(W’e,-, (C+ W)fej) = 0, and since 71; + _; = N we have b(C’e,-, W’ej) = 0 as well. It
follows that

Sij(dw) = b((C + W)'e;, (C+ W)'e;) = b(C'er, C'e;) = S4(d).

Forii, <i< j<iileti <k<iand j << jbe the entries in the same row as i
and j of and the 1 column of T. For all 1 < m < N we have C;, = W;,, = 0 as well
as Cj, = Wj,, = 0 and therefore §;j(dw) = S;j(d) = O unless we have i + k < N + 1
and j + [ < N + 1 respectively. In this case we have i + k = N and j + [ = N, which
givesus% =i+land! = j+ 1. Since forall 1 < m < N we have C;,, = 0 and
Cjm = O unless m = k and m = [ respectively, it follows that b(C’ei, Wie j) = W1 and
b(W’e,-, Ctej) =W, . Ifi # j,wehavei+ 1 = k < j and therefore (i, j) € Z4. So
for any (i, j) € S, with §;;(dw) # 0 we have i = j. Furthermore, since W;, = 0 for all

fi_y <m < N with fi_; < n or, in case when A is the secondary partition with only even
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4.2. Induced Jedlitschky characters

entries, since W;,, = 0 form € {n,n+2,... N}, we have b (W'e;, W'e;) = 0. Finally, since
b(C'e;, C'e;) = 0 as well, it follows that

Sij(dw) = b((C + W)'e;, (C+ W)'e;) = 2Wy1.

(1) For7i.; <i <mand 1 < j < n for k being in the same row as i of and the 2 column
of T we have i + k > N + 1, so A has no non-zero entry in the i-th row, and we have
Siji(dw) = Sij(d) = 0.

Let now w = 7m(g(0)) N Gy.A — A. For every 1 < i < [ < n such that (i,/) € minor(C) and
e € m(g(0)) we have i, <i <#_yand! =i+ 1. So for every W € w there is a M € m, with
M;;y = Wiy forall 1 <i < nfor whichthereisai < k < i with (i,k) € supp(A), and we
have Yc,w = ¥crm by theorem 2.4.10. If now W runs through all elements of w, then M runs

through all elements of my with multiplicity |w|/|my|, and we have

Z Yeww = % Z Ycrm-

Wew Mem
Let x € Vand g € Uy. Let X; € n(g(0)) and X, € m(u;) such that n(x) o g = X; + X,. Since
n(g(0) N (V) = wa (m(Hy) N m(a(0)) N (V) is a direct sum of orthogonal complements in
n(g(1)) by proposition 4.2.7 with « (W, X,) = 0 for all W € w, by lemma 2.1.7 we have

Z Ik (W, m(x) o g) = Z dk (W, X)) =

Wew Wew

{Iw for X, € ni(H,)

0 otherwise.

We have X, o g7! € n(w;), and for X; € n(H,) we have X; o g7! € n(H,) by lemma 4.2.3.
So if Yyew Ik (Y, m(x) 0 g) # O for some g € Uy, there is a decomposition for m(x) with
n(x) = X| + X} such that X| = X, o ¢! € n(H,) and X}, = X, 0 g™' € n(u).
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4.2. Induced Jedlitschky characters

By theorem 2.4.10 we now have ¥c.w = ¢ for every W € w, and for x € U; we have

- IUNIIStabUN(C)||w| Z Z ﬂK g(W+C) m(u” xu))

Wew u,geUy

_ Imy|
- |UnlIStaby, (C)llw] | Z ﬁK gC e xu) [Z R gW”(” x”))]

Wew
_ my| ) )
~ |Uy|IStaby, (C)|lw]| u,g;/N Uk (g.C, m(u lxu)) [V;V Ik (W, G xu) o g)] .

So if Ye(x) # 0, there is a u € Uy such that for y = u'xu, there are Y, € n(H,) and
Y, € n(w) with n(y) = Y; + Y,. Let y, € U, be such that n(y,) = Y,. Then we have
n(yy,") o y2 = n(y) — m(y2) = Y; € n(H,) and therefore n(yy;') € n(H,) by lemma 4.2.3. For

v = yyg1 we then have y; € Hy and y = yy,. If Ye(x) = Ind?¥ Xe(x) # 0, there is a

Staby,, (C+M
v € Uy such that vilyv e Staby, (C), and we have
y N

= (7').C=C = 7y )€ = € = (7). (yan.C = C) + (7 ym.C - C.

Furthermore, we have v-'y,y € U, since U; < V and because of C € m(g(2)), we have

(v ly1).C — C(v71y,v).C — C € n(g(1)) and therefore

7 yw). (7 yaw).C = €) € 2(a(0) + a(1).

But we also have v='y,v ¢ Staby, (C + M) by lemma 4.2.3 and therefore (v"'y;v).C — C # 0,
which forces (v 'yv).C — C € n(g(0) + g(1)). As C € n(a(2)), it follows that v-'y,v € Uj,
which gives us y; € U; as well as y = y,y, € U; and finally x = uyu™! € Uj.

Let now ¢ = f "lrzT'IndUNResUN Y be the induced character of ¢ reduced to U; multiplied
with some scalar f = fimol

I forf € N and since U; < Uy for x € Uy, we have

Yo(x) = Z We(u™ xu) = {fTOUZIJN'ﬁc(X) ifxe U,
0

ILIIUI if x € Uy\U;.

uely
u” xueU]
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Since Uy = L= U, for x € U;, we have Jc(x) = flmolwc(x). For K < Uyand V < Uy

as defined above for the different cases, we have 3 yem, Ycrm(x) = Imglc(x) for x € U and

2memo Werm(x) = 0 for x € V\U,. So we can determine ¢ for these different cases:

(@)

(i)

(111)

(iv)

Let A be the partition such that there is an i € N with my;_; # 0 and m; < ;0 Moir
or that for all i € N we have my;_; = 0, where A is the primary partition. We then have
K =Taswell as V = Uy, and for f = 1 it follows that

Ue = Z Ycim

Memg
with deg ¢ = |mg| deg Y.

Let A be the partition such that there is an i € N with my;_; # 0 and m; > ;0 Maiv1-
Then we have K = K,,, and for f = |K] it follows that

U = Inf"pg Z Yeim = Z Z %'J’d.mé(x)

Memg Mem B;fr(é?K) |RB |
€Dp

with deg ¢ = [my||K|deg Y.
Let A be the partition such that for all i € N we have m,;_; = 0, where A is the secondary

partition and m, = 0. We then have K = {x,_1 ,+1(c) | ¢ € F,}, and for f = q it follows
that

&C:q Z Yerm

M€l‘l‘l0
with deg ¢ = glmyg| deg Y.

Let A be the partition such that for all i € N we have m,;_; = 0, where A is the secondary
partition and m, # 0. We then have K = {x,_ ,41(c) | ¢ € F,}, and for f = 1 it follows
that

wC = Z ZwC+M+C€n_1’n+1

Memy ceF,

with deg ¢ = glmo| deg yc.
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The character ¢ for the four different variations of A:

mo 1 mo l 1
mg | | K| K
A=02% +8: A1=2%1H+8:
U = 2Memy YC+M Ue = 2 Memg ZB;”(;;K) deﬁgﬁfﬁ YcrM+B
€Dp
1 | m I 1
 F -
1 : 1 c
A=4Y"r8: A=Y k8
'ﬁC = qu l//C = ZMemo Zcqu '70C+M+cen_1,n+1

What remains is to calculate the scalar that differentiates the induced character of SOy of the
character {¢ of Uy from the generalized Gelfand—Graev character for C. In order to do so, we

have to calculate the size of the orbit Uy.C.
Lemma 4.2.9. For a standard core tableau (T, S) let f(T) € N be defined as
) = 2 +a £ (g + 1 = 1)
= ) ns\|np 21’13 £ Ny (-1 ny, .

Let C € v be the core pattern for (T, S). Then we have

Indi,?/” J’ c= quVC—C*-

Proof. Let (T, S) be a standard core tableau and C € v the corresponding core pattern. By
theorem 2.3.2 we have

__lowl _UN [T jesuppiy 4
|Staby, (C)|  [Staby, (A)| g4l

|Un.C]

Forl1 <i< j<Nwithi+ j< N+ 1 we have (i, j) € supp(A) if and only if there isam € N
such that 7 and j be the entries in the same row and the —m or —m + 2 column respectively of
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the tableau T. If m > 2, for every i in the —m column, we have i + j < N + 1, where j is the
entry in the same row and —m + 2 column, while if m = 1 there are n;/2 entries i in the —1
row such thati+ j < N + 1.

For m > 3, as T is the standard tableau, we have j = i + n,, + n,,_;, while for m = 2, as the
entries in the —2 column are ascending and the entries in the O column are descending, we have
Jj=i+nog+n;+n,—2k+1 where 1 <k < n, is the row of T in which i and j are contained. For
m =1 wehave i+ j = N if i and j are contained in a odd row 2k—1 for 1 < k < n,/2. Then, we
havei=n_,+2k—1aswellas j=N—-71_,—-2k+1 =i+2(n—n_)—4k+2 =2ny +ny—4k+2

sincen = fi_; + %no =f_,+n;+ %no. It follows that

[n1/2 no im
(j-i-1) = Zzn1+no—4k+1 + Zn0+n1+n2—2k + Zan_1+nm—1]
(i,j)esupp(A) | k=1 k=1 m>3 k=1

1
= _Enl(nl - 1) + znol’ll

+ [na(ng + ny — D] + [Z Rt + Ty — 1)} .

m>3

M|

M |
M I
! M
l M
M
1
1 7
1
‘ 7
Positions of the lower hooks of A, whose number is equal to 3. jesuppa) (J —1— 1)

Letnow 1 <k <l < N withk+[ < N + 1 such that (k,l) € D4. Then by definition there are
1 <i,j< kwith (i, %), (j, 1) € supp(A). So k must be either contained in the 0 or 1 column of
T. If k is contained in the 1 column, then k is contained in the —1 column. Since j < k < [ we
must have either that j and / are contained in the —3 and —1 column in the same row below
the entry k in the —3 column, j and / are contained in the —2 and O column in any row or j
and [ are contained in the —1 and 1 column, in which case we must have i = j and k = I. For

1 < r < ny/2letk be the entry in the 2r — 1-th row. Then since the entries in the —1 column
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are ascending, we have k = 7i_, + 2r — 1, so there are min(n; — 2r,0) +n, + Il many 1 </ < N
such that (k, ) € Djy.

If k is contained in the 0 column, then k is contained in the —2 column. Since j < k < [,
we must have that j and [ are contained in the —2 and 0 column with k < [ < k. Since j is
in the same row as [/ in the —2 column and the entries in the O column are descending, we
also must have [ > 7i_; + ng — n, = fig — np and therefore [ € {min(7ig — ny, k) + 1,.. .%}. For
1 < r < min(n,, ng/2) let k be the entry in the r-th row. Then we have k =ip—r+1and
k = fiy — ng + r. Therefore, for r > ng—ny we have k > fig — n,, and there are k—k = ng+ 1 = 2r
many 1 <[ < N such that (k,]) € D4. Conversely, for r < ny — n, we have k < 7ip — np, and
there are k — (fig —mp) =mpy + 1 — 1 many 1 </ < N such that (k,[) € D,.

There are n;/2 many 1 < i < k < n such that (i, %) € supp(A) and k is contained in the 1
column of T, while there are min(n,, ny/2) many 1 < i < k < n such that (i, %) € supp(A) and

k is contained in the 0 column of T. For n, < ny/2 we have n, < ny — n,, and it follows that

ny/2 n
1 1 11
1D,| = ;(min(m —2r,0) 41y + 1)+ ;(nz +1=r) = Zns(ns =2+ gmnat sm+ Zma(n+ 1),

Conversely, for n, > 1ny we have 1ng > n, — no, and it follows that

n1/2 no—nz n0/2

D4 = Y (min(ny = 2r,0)+my + 1)+ > (m+ 1=+ > (ng+1-2r)

=1 r=1 r=no—nz+1

+ +

1 1
(ng —mo)(ny + 1) — E(no —m)(ng—ny + 1) (5”0 - ’12)2]

+

: ( +1)+(1 ) 2(1 )2+(1 )?
ny(np 27’10 ny 27’10 ny 2]’10 ny

2

1 1 1
= |:Zl’l3(l/l3 - 2) + El’lll’lz + Enl

1 1 1 1 1 1
ZI’Z3(I’L3 - 2) + 51’117’12 + El’l] + Enz(l/lz + 1)) - ((Eno - nz)(il’lo —ny — 1)) .
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Positions of D4 for the 0 column (0) and 1 column (1) of T

Letk = (%no - nz)(%no - —1)ifn, < %no and k£ = 0 otherwise. We define f(T) € N to be
FD) = S pespn( = i = 1) = 1Dl + k + Lny = [suppo(D)] — Llsuppy(a(1))]. By lemma 4.2.2
we have [supp,(8(1)| = ¥,ex i1 and |suppa, (L) = 310(20 — 2) + X pers 37m( — 1). Then
it follows that

1 1 1 1 1 1
f(T) = Enl(nl - 1) + Enofll + I’lz(l’lo +n — 1) - (Zl’l3(l’l3 - 2) + El’llflz + Enl + El’lz(l’lz + 1)

1 1
* ((Eno ~n)(zm0 = ny - 1)) * (Z (1 + My = 1))

m>3

1 1
+ o= [suppq, (L) — Elsuppv(g(l))l

1
=5 (mi(ny = 1) + nony +ny(ny — 1) + nyny) — an(ng —2) +ngny —np(np + 1)

1 1 1
+ (510 —m)(5no —mp — 1) + Z (=1 + M = 1) = |suppqy(L)] = Zlsuppq (a(1))]

m>3

= %no(ﬂo -2+ ). % (Rt = 1) + it 1) = %n3(n3 -2+ %(nm(nml + 7y = 1))

m>1 m>3

1
— [supp,(L)| — Elsupprv(g(l))l

1 1
= 5 [[Z nm(nm—l +ny, — 1)] - 51’13(1’13 - 2))

m>3

1 1
= 5 [n3 (nz + 51’13) + Z (M + 1y — 1)).

m>4
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We consider now the character /¢ as defined in theorem 4.2.7 and the factor f € N for
which we have J¢ = fr Indg?’ Resg’lV Ye. Let therefore again m; € Ny for i € N be such
that 4 = (1"™,2™,...).

(i) Let A not be the secondary partition with only even elements, and let m; < 2+ ;o M1 1-
Since ny = Yo myi and ng = Ys) Moiy, we have 1ng —ny = 2(my — Yo moiy) < 1

and therefore k = 0 both if %no -n=1or %no < n, by definition. The space of minor

ny/2

conditions in m(g(0)), denominated as my in theorem 4.2.7 has |my| = ¢"/~ elements

because it arises from the positions (i, j) € V where i and j are positions in the same

Loy +k
row in the —1 and 1 column of T. So we have fr = % = qzlLll

(i1) Let A be such that it contain odd elements, that is there is an i € N with my,_; # 0,
and let m; > 2 + 3q moiyr. Since ny = 5, mpiy and ng = ;51 my;—;, we then have

1 _ 1 : . _ _ L2 —2my-2) _ .k
sMo—ny = 5(my— Y5 M) > 1, which gives us [K| = Uy 2, = gi(m-2m)n=2m=2) — gk

|m | q%ﬂl"’k
and therefore fr = ﬁ =45

ny/2

Again we have |[my| = ¢

(iii) Let A be the secondary partition with only even elements. We have (n — 1,n) € supp(A),
where n — 1 and n are contained in the —1 and 1 column of T, replacing the minor

condition that has this position in the pattern for the primary counterpart of 4. So

ny/2—1

we have [my| = ¢ . Since both ny = n, = 0 we also have £k = 0 and therefore

1 c
fp = dml _ g2"*
| |

For f(T) € N as defined above it then follows that

1 i1
UN.Cl 2" Tlipesimpin 477 ¢’

sl |L ID4lla(D)] ViaMI’

and for the character i we have

Jr

|Uy.C|
la(DI

o 1
Ind;Yéc_cr = ¢/ P —=Ind)"éc_c:.

Jc = frIndy Res; vc = fr
la(1)|

The claim then follows from lemma 4.1.6. O

While the value of f(T) can get big quickly, for smaller dimensions it stays rather small. Is
the partition A = (1™,2",...) of which T is based on such that m; = 0 for all even i > 0 and

there is at most one m; # 0 for all odd i > 5 with m; = 1, thatis }};5, my;; < 1, we even have

(T) = 0.

156



4.3. Generalized Gelfand—Graev characters of SOg

4.3 Generalized Gelfand—Graev characters of SOgq

We can now construct the eleven characters /¢ for Ug for the different partitions A + 8 such
that yo_¢ct = g/ (T)Indz?thﬁc is the corresponding generalized Gelfand—Graev character of
SOs.

(i) Partition: A = (22,1%), Core pattern: C = e}

p—
|

\9}
[0 ]

ENCIES
&
&

Tableau T Core pattern C € v for T

"/’;C = Z Z wc+m€]2+k1e34+k2e35, f(T) = 0

mEFq kl ,kz EFq

(ii) Partition: A = (2%, Core pattern: C = e}7 + e3s

nm 1
1|7
2080 N
315 my 1
416
Tableau T Core pattern C € v for T

'72;C = Z ¢C+m1812+m2634’ f(T) = O

mp ,mzé]Fq
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4.3. Generalized Gelfand—Graev characters of SOg

(iii) Partition: A = (2*)”, Core pattern: C = 7 + e34

m : 1
1|7 :
218 N I
314 1 | M
5|6 !
Tableau T Core pattern C € v for T
&C = Z wC+m(312+M8357 f(T) = 0
m,MeF,
(iv) Partition: A = (3, 1°), Core pattern: C = e;; + ae;3 fora € F*
1[7]8] |
a |
2] | 1
T peoces
4
9]
16
Tableau T Core pattern C € v for T

&C = Z wC+k1e34+k2e35, f(T) =0

ki k2€F,

(v) Partition: A = (3,22, 1), Core pattern: C = e;5 + exs + ae4 fora € F,

a1
1/5]8 .,
216 .| ]
3|7
4 e
Tableau T Core pattern C € v for T

Je= ) Ve (D=0

meFy,
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4.3. Generalized Gelfand—Graev characters of SOg

(vi) Partition: A = (32, 1%), Core pattern: C = e + €25 + aej3 + beyy + cens for a € F,',
b,c € F, with ab # c?

a ! 1
1168 :
21517 c|b|1]:
4|
3] i
Tableau T Core pattern C € v for T

Ye =Y, f(M=0

(vii) Partition: A = (4%), Core pattern: C = e}3 + €4 + €35

1 !
1[3]5]7 1
2141618 m | ]
Tableau T Core pattern C € v for T

&C = Z wC+me34a f(T) =1

melF,

(viii) Partition: A = (4%)”, Core pattern: C = e3 + €55 + €34

1 l
1[3]4]7 : !
2]5[6]8 1]
Tableau T Core pattern C € v for T

e = qyc, fM=1
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4.3. Generalized Gelfand—Graev characters of SOg

(ix) Partition: A = (5, 1%), Core pattern: C = e, + ey + ae»;3 for a € F*

1]2]6]7]8] :

PEEE

T
!
|
|
|
|
|
1
I
I
I
I
I

Tableau T Core pattern C € v for T
U =Y, f(M=0

(x) Partition: A = (5, 3), Core pattern: C = e, + €55 + €34 + aeyy fora € F,*

1 !
[1]2]5]7]8] al
346 1.
Tableau T Core pattern C € v for T

Ye = Yo, f(M=0

(xi) Partition: A = (7, 1), Core pattern: C = e, + ex3 + e35 + aes, fora € F,”

1 |
[1]2]3]5]6]7]8] L]
4] a |l
Tableau T Core pattern C € v for T

Ye =Ye, f(M)=0
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Nomenclature

29 9

Left group action of Gy on v, page 42

(T,S) Core tableau, page 110

* Left group action of Gy on uy, page 47

B Bijection between stabilizer, page 69

a Involution on My(F,), page 24

Xxa  Map with ya(g) = 9«(A, n(g)), page 43

o Right action of Gy on v, page 40

A(E, 7) Set of simple roots of G for a torus 7, page 29

YA Generalized Gelfand—Graev character, page 126

K Trace form with a transposed argument, page 41

(-,  Inner product of characters, page 53

g(z)  Direct summand for Z-grading of soy, page 95

B Set of verge matrices, page 48

G Set of positions above the diagonal, page 31

O(A) Orbit of nilpotent element of soy, page 101

vV Set of positions above both the diagonal and counter-diagonal, page 31
V, Set of positions above the diagonal and left of the middle, page 31

YV,  Set of positions above the counter-diagonal and right of the middle, page 31
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Nomenclature

¢;(A) Stabilizer of A in g, page 27

U,  Root subgroup, page 31

U, Normal unipotent subgroup for Z-grading of soy, page 95
Jo Root space, page 29

CD(E, 7) Set of roots of G for a torus 7, page 29

®.(G,T) Set of positive roots of G for a torus T, page 29

¢ André-Neto character, page 46

b Restriction of a matrix to its entries above both the diagonal and counter-diagonal,

page 40
e Jedlitschky character, page 58
Stabs(A) Stabilizer of A in G with respect to ”.”, page 60
g Linear space with non-zero entries only above both the diagonal, page 40

T Verge tableau, page 107

\4 Linear space with non-zero entries only above both the diagonal and counter-diagonal,
page 40

K Trace form, page 27

i, Length of the columns of a centered tableau to the left of a column, page 106

J Non-trivial group homomorphism from F, to C, page 43
b Orthogonal group defining bilinear form on F;V, page 23
Cs(A) Stabilizer of A in G, page 27

D,  Subset determining core patterns, page 68

F Standard Frobenius endomorphism for g, page 36

f Cayley transformation, page 35
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Nomenclature

Gy  Group of of unitriangular matrices, page 39

H,  Subgroup of the horizontal part of lower hooks, page 130
H;  Pattern group for a closed set of positions, page 31

JN Counter-diagonal identity matrix, page 23

n, Length of the column of a centered tableau, page 106

Ra Group acting by row transformations on verge pattern, page 63
R(d) Stabilizer of d € D, in R4 with respect to 4, page 75
S(d) Gram matrix determining equal characters, page 78

Uy  Group of of unitriangular matrices in SOy, page 39

U,s Unipotent subgroups between U, and U,, page 125

core Core positions of a pattern, page 67

deg  Degree of a character, page 52

minor Minor positions of a pattern, page 67

rank Rank of matrix, page 101

supl  Supplementary positions of a pattern, page 67

supp Support of a matrix, page 31

Tr Trace of a matrix, page 27

163



Bibliography

[ANO6]

[ANOS]

[ANO9]

[And95a]

[And95b]

[AndO1]

[And02]

[And03]

[And15]

[AT17]

Carlos A. M. André and Ana M. Neto. Super-characters of finite unipotent groups
of types Bn, Cn and Dn. Journal of Algebra, 305(1):394-429, 2006.

Carlos A. M. André and Ana M. Neto. Supercharacters of the Sylow p-subgroups
of the finite symplectic and orthogonal groups, 2008.

Carlos A. M. André and Ana M. Neto. A supercharacter theory for the Sylow
p-subgroups of the finite symplectic and orthogonal groups. Journal of Algebra,
322(4):1273-1294, 2009.

C A M Andre. Basic characters of the unitriangular group. J. Algebra, 175(1):287-
319, 1995.

Carlos André. Basic sums of coadjoint orbits of the unitriangular group. Journal
of Algebra - J Algebra, 176:959-1000, 1995.

Carlos André. The basic character table of the unitriangular group. Journal of
Algebra - J Algebra, 241:437-471, 2001.

Carlos A. M. André. Basic characters of the unitriangular group (for arbitrary
primes). Proceedings of the American Mathematical Society, 130(7):1943—-1954,
2002.

Carlos André. Hecke algebras for the basic characters of the unitriangular group.
Proceedings of the American Mathematical Society, 132:987-996, 2003.

Scott Andrews. Supercharacters of unipotent groups defined by involutions. Jour-
nal of Algebra, 425:1-30, 2015.

Scott Andrews and Nathaniel Thiem. The combinatorics of GLn general-

ized Gelfand-Graev characters. Journal of the London Mathematical Society,
95(2):475-499, 2017.

164



[BB69]

[BC74]

[BRO1]

[BrulO]

[Car85]

[Cur80]

[DG15]

[DIO8]

[Enn63]

[Gecl3]

[Ger58]

[GG62]

[GHO7]

Bibliography

Armand Borel and Hyman Bass. Linear algebraic groups. Mathematics lecture
note series. W. A. Benjamin, New York, 1969.

Pawan Bala and Roger W. Carter. The classification of unipotent and nilpotent
elements. Indagationes Mathematicae (Proceedings), 77(1):94-97, 1974.

Richard A. Brualdi and Herbert J. Ryser. Combinatorial matrix theory, volume vol.

39 of Encyclopedia of mathematics and its applications. CUP, Cambridge, 1991.

Richard A. Brualdi. Minimum rank of skew-symmetric matrices described by a
graph. Linear Algebra and its Applications, 432(10):2457-2472, 2010.

Roger W. Carter. Finite groups of Lie type: Conjugacy classes and complex char-
acters. Pure and applied mathematics. Wiley, Chichester, 1985.

Charles W Curtis. Truncation and duality in the character ring of a finite group of
lie type. J. Algebra, 62(2):320-332, 1980.

Richard Dipper and Qiong Guo. Irreducible constituents of minimal degree in
supercharacters of the finite unitriangular groups. Journal of Pure and Applied
Algebra, 219(7):2559-2580, 2015.

Persi Diaconis and I. Martin Isaacs. Supercharacters and superclasses for algebra
groups. Transactions of the American Mathematical Society, 360, 2008.

Veikko Ennola. On the characters of the finite unitary groups. Ann. Acad. Sci.
Fenn., 1963:1-35, 1963.

Meinolf Geck. An introduction to algebraic geometry and algebraic groups, vol-
ume no. 10 of Oxford graduate texts in mathematics. Oxford University Press,
Oxford, 2013.

Murray Gerstenhaber. On nilalgebras and linear varieties of nilpotent matrices, 1.
Amer. J. Math., 80(3):614, 1958.

Israil M. Gel’fand and Mark I. Graev. Construction of irreducible representations

of simple algebraic groups over a finite field, 1962.

Meinolf Geck and David Hézard. On the unipotent support of character sheaves.
2007.

165



[GID18§]

[GJD19]

[GWO09]

[Hes76]

[Jac79]

[Jed13]

[Kaw81]

[Kaw85]

[Kir62]

[LS12]

[Lus92]

Bibliography

Qiong Guo, Markus Jedlitschky, and Richard Dipper. On coadjoint orbits for p-
Sylow subgroups of finite classical groups, 2018.

Qiong Guo, Markus Jedlitschky, and Richard Dipper. Orbit method for p-Sylow
subgroups of finite classical groups. Journal of Pure and Applied Algebra,
223(11):4801-4826, 2019.

Roe Goodman and Nolan R. Wallach. Symmetry, representations, and invariants,
volume 255 of Graduate texts in mathematics. Springer, New York and London,
20009.

Wim Hesselink. Singularities in the nilpotent scheme of a classical group. Trans-
actions of the American Mathematical Society, 222:1, 1976.

Nathan Jacobson. Lie algebres. Dover books on advanced mathematics. Dover
Publications, Estados Unidos, 1979.

Markus Jedlitschky.  Decomposing André-Neto supercharacters of Sylow p-
subgroups of Lie type D. PhD thesis, Universitit Stuttgart, 2013.

Noriaki Kawanaka. Fourier transforms of nilpotently supported invariant functions
on a finite simple lie algebra. Proc. Japan Acad. Ser. A Math. Sci., 57(9):461-464,
1981.

Noriaki Kawanaka. Generalized Gelfand-Graev representations and Ennola duality.
In R. Hotta, editor, Algebraic Groups and Related Topics, Advanced studies in pure
mathematics, pages 175-206. Mathematical Society of JapanTokyo, Japan, 1985.

Alexandre A. Kirillov. Unitary representations of nilpotent Lie groups. Russian
Mathematical Surveys, 17(4):53—104, 1962.

Martin W. Liebeck and Gary M. Seitz. Unipotent and nilpotent classes in sim-
ple algebraic groups and Lie algebras, volume 180 of Mathematical surveys and

monographs. American Mathematical Society, Providence, 2012.

George Lusztic. A unipotent support for irreducible representations. Advances in
Mathematics, 94(2):139-179, 1992.

166



[Mill7]

[Pom77]

[Pom80]

[SS70]

[YanO1]

[Yan10]

Bibliography

James S. Milne. Algebraic groups: The theory of group schemes of finite type over
a field, volume 170 of Cambridge Studies in Advanced Mathematics. Cambridge
University Press, Cambridge [etc.], 2017.

Klaus Pommerening. Uber die unipotenten Klassen reduktiver Gruppen. J. Alge-
bra, 49(2):525-536, 1977.

Klaus Pommerening. Uber die unipotenten Klassen reduktiver Gruppen II. J. Al-
gebra, 65(2):373-398, 1980.

Tony A. Springer and Robert Steinberg. Conjugacy classes. In Armand Borel,
Roger Carter, Charls W. Curtis, Nagayoshi Iwahori, Tony A. Springer, and Robert
Steinberg, editors, Seminar on Algebraic Groups and Related Finite Groups, vol-
ume 131 of Lecture Notes in Mathematics, pages 167-266. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1970.

Ning Yan. Representation theory of the finite unipotent linear group. 2001.

Ning Yan. Representations of finite unipotent linear groups by the method of clus-
ters, 2010.

167



