Institute of Software Engineering

University of Stuttgart
Universitatsstra3e 38
D-70569 Stuttgart

Bachelorarbeit

Analyzing Software Architectures
of Open-Source Al-based Software

Max Kastner

Course of Study: Software Engineering
Examiner: Prof. Dr. Stefan Wagner
Supervisor: Markus Haug, M.Sc.
Commenced: October 2, 2023

Completed: April 2, 2024

Abstract

Recently, software systems that include artificial intelligence (AI) components (also called Al-based
software systems) have become increasingly popular. However, the integration of Al into software
systems brings new challenges compared to traditional software systems. In particular, the software
architecture of Al-based software systems needs more research. In this thesis, we investigate the
software architecture of open-source Al-based software applications, with an explicit focus on
the design patterns and architectural tactics used in the architectures. For this purpose, we have
mined open-source Al-based software systems from GitHub to analyze the software architecture of
the software systems. To identify the design patterns, we use a design pattern catalog specifically
created for Al-based software systems. We analyzed a total of 3 open-source Al-based software
systems and were able to identify a total of 19 unique design patterns, with a balanced number of
found traditional adapted design patterns and new Al-specific design patterns. We could see that
design patterns from the categories Architecture and Deployment were more frequently identified in
the systems than in the other categories Implementation, Process, Security & Safety and Testing &
Quality Assurance. It was noticeable that many design patterns in the Architecture category were
adapted from traditional design patterns, while several new Al-specific design patterns were found
for Deployment, solving the problem of how to deploy the machine learning (ML) models. While a
lot of new Al-specific design patterns for Security & Safety have been established, we could only
identify very few. In addition, testing AI components is very unpopular in the analyzed systems and
difficult as the correctness of an ML model is hard to test.

Contents

1 Introduction
2 Background
2.1 Software Architecture
2.2 DesignPatterns
2.3 Al-based Systems
3 Related Work
4 Methodology
4.1 Repository Collection e
4.2 Repository Analysis
5 Results
5.1 Repository Collection,
5.2 RQI: How are design patterns and architectural tactics applied in Al-based
software systems? e e e e e e e
5.3 RQ2: How do design patterns in Al-based software systems differ from those in
traditional software systems?
6 Discussion
6.1 Repository Collection
6.2 RQI1: How are design patterns and architectural tactics applied in Al-based
software systems? e e e e
6.3 RQ2: How do design patterns in Al-based software systems differ from those in
traditional software systems?
6.4 Threatsto Validity
7 Conclusion
Bibliography

15

17
17
17
18

19

21
21
24

27
27

28

31

35
35

36

38
40

1

43

List of Figures

4.1
4.2
43
4.4

5.1
52
53
54
5.5

5.6
5.7

6.1

6.2

6.3

Methodology Process 21
Repository Selection Lo 22
Repository Analysis Process 25
Comparison of the number of adapted traditional (36) and new Al-specific (34)

patterns [HHB23] 26
Comparison of the number of found design patterns per category 31
Comparison of the number of found adapted traditional and new Al-specific patterns 32

Open-Assistant: Comparison of the number of found adapted traditional and new

Al-specificpatterns L. 32
LibrePhotos: Comparison of the number of found adapted traditional and new

Al-specificpatterns L. 33
GPT-Engineer: Comparison of the number of found adapted traditional and new

Al-specificpatterns L. 33
Comparison of the number of found Al-specific patterns per category 34
Comparison of the number of found adapted traditional patterns per category . . 34

Unique Commit Authors of Applied, Tool and a set of comparison repositories

(outliers omitted) [GZN20] e 36
Number of patterns per received number of references by resources identified by
Heiland et al. [HHB23] 38
Number of patterns per received number of references by resources of found design
PAtterns e e e e e e e e e 39

List of Tables

5.1 Distribution of categories of filtered repositories after manual selection 27

5.2 Al-based System Repositories with good or basic architectural documentation;
sorted by architectural documentation level, then by z-score of sum of stars and forks 28

5.3 Found Design Patterns 30

List of Algorithms

4.1 Selecting repositories from GitHub Search API

11

Acronyms

Al artificial intelligence. 3, 15
GoF Gang of Four. 17

LLM Large Language Model. 28
ML machine learning. 3, 19

OSS open-source software. 17

13

1 Introduction

Software systems based on artificial intelligence (Al) have gained considerable interest in a wide
range of fields. More and more software systems contain Al components to enable various functions,
such as face recognition in photo management applications or conversations with chat bots. Such
systems are Al-based systems, which contain one or more Al software components [MBF+22].
One particularly underresearched aspect of Al-based software systems is their software architecture.
On the other hand, existing open-source applications are investigating how to integrate Al-based
functionality and new open-source applications are built on Al from the start. Without any guidance,
the developers working on these applications are forced to design the software architecture by trial
and error.

Much of the literature about the use of Al in software systems is primarily based on external research
through interviews or surveys with industrial partners [[Y19; LOX21; NZLK22; SV21; VB19]
or research within a company and gaining comprehensive access [BME19; HBB+18; HCHV21;
RRK+19]. There is far too little work that actually looks at open-source Al-based software systems
themselves. With this motivation, we analyzed open-source Al-based software systems on their
software architecture, focusing on the design patterns and architectural tactics used in the software
systems to find out what the software architecture looks like in the real world.

Our goal is to determine from open-source Al-based software systems what the software architecture
of Al-based software systems looks like, what design patterns and architectural tactics are used to
implement them, and how the design patterns in Al-based software systems differ from those in
traditional systems. Therefore, this study will try to answer the following research questions:

* RQ1: How are design patterns and architectural tactics applied in Al-based software systems?

* RQ2: How do design patterns in Al-based software systems differ from those in traditional
software systems?

To answer this research questions, we first collected a catalog of Al-based software systems from
GitHub to have a broad selection of Al-based software systems. Then, we analyzed the software
architecture of some software systems and specifically identified design patterns using a design
pattern catalog specifically for Al-based software systems.

This thesis is organized as follows. Chapter 2 explains the necessary background knowledge.
Chapter 3 provides related work that is similar to the work of this thesis. Next, Chapter 4 describes
the methods used in this thesis, divided into the repository collection in Section 4.1 and the
repository analysis in Section 4.2. Chapter 5 shows the results of the repository collection and
analysis according to our research questions. Chapter 6 discusses the results of the study and threats
to validity. Finally, Chapter 7 concludes with a summary of the thesis.

15

2 Background

This chapter introduces the basics of software architecture, design patterns, and Al-based software
systems.

2.1 Software Architecture

Software architecture refers to the fundamental structure of a system that encapsulates its overall
design choices [Gar00]. It outlines how the system is assembled from interacting components,
identifies primary interaction pathways, and defines essential properties of these components. An
architectural description provides sufficient detail for high-level analysis and evaluation, enabling a
comprehensive understanding and evaluation of the system design.

Software architecture documentation is a critical component of the architecture design process,
helping architects identify and document necessary design decisions [DLT+14]. It provides
stakeholders, such as architects, with accessible and unambiguous information essential to their
roles [CGL+03]. In the context of open-source software (OSS) adaption, comprehensive software
architecture documents positively impact the degree and cost of OSS adaption [AWO07]. They help
users understand the transition from design issues to architectural solutions, understand the system
model, its purpose, architectural requirements, and more [DLT+14]. However, many OSS do not
document their software architecture [DLT+14].

2.2 Design Patterns

Design patterns are recurring structures of design and architecture [Mar00]. They are proven and
established solutions to a common design problem. Like many practices in software engineering,
design patterns have been refined based on the collective experience of software developers.
Typically, a pattern contains at least four essential components: the pattern name, the problem
statement, the proposed solution, and the consequences [HHB23]. As such, it serves as a collection
of principles rather than a rigid set of step-by-step instructions. As a result, the specific execution
details may vary between different applications of the pattern.

The Gang of Four (GoF) book by Gamma et al. [GHJV95] marked the first effort to create a standard
catalog of 23 patterns. A design pattern catalog is a structured list of design patterns that address
specific problems and propose solutions. The goal is to make design patterns easily accessible.
Several domain-specific catalogs or catalogs for specific application areas have been established,
such as for Microservices [TLP18] or Internet of Things [WOH+20].

17

2 Background

2.3 Al-based Systems

Al-based systems are systems which contains at least one Al component [MBF+22]. According to
the definition of Martinez-Ferndndez et al., these systems analyze their environment and perform
actions, aiming to acquire intelligent behavior through learning. Al-based systems can exist purely
as software that operates in the digital realm, such as voice assistants, image analysis software,
search engines, and speech and facial recognition systems [MBF+22]. Alternatively, Al can be
integrated into hardware devices such as advanced robots, autonomous cars, drones, and Internet of
Things applications.

18

3 Related Work

In this chapter, we provide an overview of related work that deals with Al-based systems, including
their software architecture. However, a large part of the related work deals with machine learning
(ML) systems.

In 2022, Martinez-Fernindez et al. [MBF+22] conducted a systematic mapping study to comprehend
the landscape of Software Engineering approaches for Al-based systems. They examined 248
studies published from January 2010 to March 2020, revealing Software Engineering for Al-based
systems as an emerging research field, with more than two-thirds of the studies published after
2018. Most studies focus on making Al-based systems reliable and secure. Their findings are
relevant to researchers attempting to understand the current state of the art and identify areas for
further research. They also provide practitioners insights into Software Engineering approaches
and challenges specific to Al-based systems, while helping educators bridge the gap between
Software Engineering and Al in their curricula. While they found that there are many contributions
to software testing and software quality for Al-based systems, software construction, software
requirements, and especially software maintenance seem to be less represented and offer a lot of
potential for researchers.

While numerous systematic reviews have explored general design patterns [BRG17], only a limited
number of studies have focused on collecting design patterns specifically targeted to Al-based
systems. In 2019, Washizaki et al. [WUKG19] conducted a systematic literature review to collect,
classify and discuss Software Engineering design patterns for ML techniques, which was the first
survey and comprehensive literature review on ML architecture and design patterns. Later in 2022,
Washizaki et al. [WKG+22] published 15 identified design patterns for ML applications from a
multivocal literature review. Heiland et al. [HHB23] presented an overview of design patterns
for Al-based systems. To do this, they conducted a multivocal literature review to collect design
patterns with Al-based systems, so that they could include gray literature, which benefits from being
close to a practical context [GFM16], since there are not many scientific publications on this topic.
From 51 resources, they extracted 70 unique patterns used for Al-based systems, of which 34 were
new Al-specific patterns and 36 were traditional patterns adapted to Al-based design patterns. They
made these design patterns available and categorized them in a web-based pattern repository' to
make the patterns searchable and easy to find for researchers and practitioners. For our study, we
want to use the design pattern catalog by Heiland et al. [HHB23] as a basis for our study to identify
design patterns in Al-based systems.

Nabhar et al. [NZL+23] identified in their study open-source ML products from GitHub repositories
to facilate further research and education with ML products. ML products are described as software
products for end-users that contain ML components, and are distinct from other ML-related software
projects and artifacts (e.g. exploratory notebooks or course homework). The research revealed a

1https://swe4ai.github.io/ai—patterns/

19

https://swe4ai.github.io/ai-patterns/

3 Related Work

diversity of development practices and architectural decisions in ML models, providing opportunities
for future innovation, but also revealed a concerning lack of industry best practices such as model
testing and pipeline automation in open-source ML products, prompting further investigation into
their impact on product development and end-user experience.

Gonzalez et al. [GZN20] conducted a comprehensive empirical analysis of Al and ML repositories
hosted on GitHub with the goal of characterizing this specific community of developers and
identifying unique characteristics, development patterns, and trends within the Al and ML domain.
They compared three types of repositories, which were Al and ML Tools (frameworks & libraries),
Applied Al and ML (repositories using Al and ML) and repositories which were unrelated to Al and
ML. It aimed to map the timeline of the Al & ML “boom”, examine ownership structures, understand
popularity metrics and dominant programming languages, and delve into the collaboration dynamics
and team autonomy within these repositories. These aspects were examined as critical factors
influencing productivity in AI & ML software development. Compared to their analysis, our study
focuses on the type of software which they call “Applied Al and ML” and only concerns the software
architecture of this software.

Serban and Visser [SV21] aimed to explore how software systems can be designed or redesigned
to effectively integrate ML components. They used a mixed-methods approach that included a
systematic literature review, semi-structured interviews with industry practitioners, and a survey.
This comprehensive method enabled them to identify and validate 20 specific challenges and
solutions related to architecting systems with ML components.

20

4 Methodology

This chapter focuses on the study process and the methodology used. Figure 4.1 provides an
overview of the major stages of our research process. To answer our research questions and gain
insight into the software architecture of OSS, the first step was to obtain a list of projects that are
Al-based software systems to analyze. We decided to search the GitHub platform for a possible list
of suitable projects, although it is not trivial how to search GitHub based on certain parameters.
More details are explained in Section 4.1.1. After understanding how to search GitHub, it was a
matter of determining the parameters to search and getting a list of candidates. In Section 4.1.2 we
address what parameters we chose to obtain a list of Al-based systems from GitHub. Since not all
of the criteria for the projects could be checked fully automatically, it is also a matter of narrowing
down the list of possible candidates to allow for a manual inspection of the repositories to determine
whether the project should be considered for analysis. Once we have a list of Al-based software
systems, the next step is to analyze these projects according to their architectural tactics and design
patterns in order to draw conclusions and answer our research questions. This process is described
in Section 4.2.

4.1 Repository Collection

This section describes the process of how we collect our repositories. There are different ways
to collect repositories with certain properties from GitHub, which we explain in Section 4.1.1.
The actual process, based on which properties we have collected the repositories, is explained in
Section 4.1.2.

4.1.1 Mining Platform

Since our main motivation for this study is to analyze the architecture of Al-based software systems,
OSS are particularly interesting for us to learn and gain insight into how developers design the
architecture of Al-based systems. In a software repository mining study [KGB+14], there are

1. Repository Collection

2. Repository Analysis

Figure 4.1: Methodology Process

21

4 Methodology

Language: Java,
JavaScript, Python
1. Query Github Search API Topics: ai, artificial-
intelligence, ml,
machine-learning

> 30 contributors

2. Filter repositories by criterias]
> 300 commits

- is Al-based system
- proper documentation
- active software
development project

3. Manual selection of repositories

Figure 4.2: Repository Selection

several ways to obtain the objects. With over 420 million git repositories', GitHub? becomes one of
the most important sources of software artifacts on the web. GitHub is a collaborative code hosting
site with social features such as project tracking and user following. To mine data from GitHub,
there are several ways to extract data from GitHub. Specifically, GitHub provides an official REST
API? that allows access to project information via HTTP requests. Given the considerable interest
in GitHub for research purposes [GTS+22; GZN20; NMY+20; NZL+23], additional platforms and
datasets, such as GitHub Archive* and GHTorrent [GS12], have been created to collect data from
this platform and make them available.

To access data using the REST API, requests must be sent to https://api.github.com/ with
specifications for the desired data. For example, querying https://api.github.com/search/
repositories?q=topic:ai, which can be specifically named the Search API, allows you to search
for repositories tagged with the topic ’ai’. However, the Search API is limited to 30 authenticated
and 10 unauthenticated requests per minute. The GitHub Search API only returns the first 1000
results per search, which is another limitation worth mentioning.

4.1.2 Repository Collection Process

The methodology used to collect Al-based repositories from GitHub involves a multi-step process
as shown in Figure 4.2. This structured approach aims to ensure the selection of relevant, actively
maintained, and well-documented repositories, while excluding non-Al systems, frameworks, tools,
or inactive projects.

1. Query GitHub Search API: For the repository collection from GitHub, we created a Python
script which queries the GitHub Search API to search for repositories based on the following
criteria:

]https://github.com/about

2GitHub, https://github.com

3GitHub REST API, https://docs.github.com/en/rest?apiVersion=2022-11-28
4https://www.gharchive.or‘g/

22

https://api.github.com/
https://api.github.com/search/repositories?q=topic:ai
https://api.github.com/search/repositories?q=topic:ai
https://github.com/about
https://github.com
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://www.gharchive.org/

4.1 Repository Collection

Language: Java, JavaScript, Python

Topics: ai, artificial-intelligence, ml, machine-learning
Forks: > 20

Last update: > 2023-07-01

The languages were selected based on their prevalence and widespread use in Al and ML projects
[GZN20]. These topics were chosen to filter repositories specifically related to Al and ML to ensure
relevance to the research focus. In our selection process, repositories with at least 20 forks are
chosen for several reasons. First and foremost, this threshold serves as a measure of community
interest and engagement in the projects. It also takes into account the limitations of GitHub’s
Search API, which limits results to the first 1000 repositories for a given query; with a minimum
of 20 forks, we were below the 1000 repository limit per query, thus reducing the overall list of
repositories while filtering out repositories with less community interest. Furthermore, the 20 forks
criterion is consistent with GitHub’s dominant “fork & pull” model [JLH+17]. Repositories with a
higher number of forks generally indicate greater community interest and potential collaboration,
making them more likely to provide valuable insights and contributions to the Al landscape. Since
we require a minimum of 30 contributors per repository in step 2, 20 forks seems appropriate.
Finally, we limit the search to repositories that have been updated by 2023-07-01 to ensure actively
maintained repositories. A pseudocode of our Python script to query the GitHub Search API is
shown in algorithm 4.1.

Algorithm 4.1 Selecting repositories from GitHub Search API

topics = ["ai”, "artificial-intelligence”, "ml”, "machine-learning"]
languages = ["java"”, "js", "python"]
min_forks = 20

last_push = "2023-07-01"

per_page = 100 # 100 is maximal items per page

list = []

for topic in topics:
for language in languages:
last_page = 1
current_page = 1
iterate over all pages for the request
while current_page <= last_page:

result = request github search api with parameters topic, language, min_forks, last_push, current_page

for repo in result["items"]:
if repo not in list:
fetch commits and contributors amount from GitHub repository page
add repo to list
total_results = result["total_count”]
last_page = roundup(total_results / per_page)
current_page += 1

23

4 Methodology

2. Filter repositories by criteria: Repositories that do not have at least 30 contributors are
discarded in order to preserve repositories that have an active community for developing OSS. We
also filter out repositories that do not have at least 300 commits to filter out inactive repositories,
since the activity on GitHub is mostly reflected in commits [KGB+14].

3. Manual selection of repositories: As a final step, we performed a manual selection of existing
repositories. We started by identifying repositories similar to the work of Gonzalez et al. [GZN20].
They identified Al & ML Tools and Applied AI & ML Applications, while the latter are the Al-based
systems we are interested in. These Al & ML Tools repositories typically include frameworks,
libraries, and related components in the field of Al and ML. For all other repositories that we could
not assign to Al-based systems or tools for Al-based systems, we specified the category “Others”,
which are repositories that do not contain Al-based elements. This category included various
materials such as code snippets, examples, lectures, or repositories that lack documentation in either
English or German.

To categorize each repository, we began the process by accessing the GitHub repository page of
each individual repository in our scope. First, we examined the repository’s description on GitHub,
focusing on keywords such as “framework™ “library”, “tutorial”, or similar terms. This initial
scan helps us to pre-categorize repositories as either Al tools or non-Al-based systems based on
the information provided in their descriptions. In cases where the category remains ambiguous
or unclear from the repository description, we looked further into the README file or linked
documentation sites associated with the repository. These sources often provide more detailed
information that can help clarify the repository’s intended category. In case there was no such
documentation, the repository receives the category non-Al based system. If further clarification
was needed, we took a close look at the dependency files, such as requirements.txt, pom.xml,
or package.json. These files typically contain essential information about the dependencies and
functionality used within the repository. Analyzing these files provided additional context that
helped us make a more informed decision about the appropriate category for the repository.

As a final task in the manual selection process, we categorized the repositories that we classified as
Al-based systems into three levels based on the quality of architecture documentation in their project
documentation: contains detailed architecture documentation, basic architecture documentation,
and quasi-nonexistent architecture documentation. This will also allow us to create a priority list of
projects to be analyzed later.

4.2 Repository Analysis

For the analysis process, we used the repositories mined from the repository collection section,
which we had already categorized into three levels based on their architectural documentation
quality. Based on this categorization, we created a ranking list by selecting the repositories with the
best architecture documentation level. The repositories were then sorted by popularity, which we
determined based on the sum of the z-scores of GitHub stars and forks, as other studies [ABBS15;
APS16; KS20] have done.

The repository analysis is a comprehensive investigation of the selected repositories, with a particular
focus on software architecture, design patterns, and architectural tactics. To identify design patterns,
we used the design pattern catalog for Al-based systems by Heiland et al. [HHB23], which contains

24

4.2 Repository Analysis

.| Select next project for
| analysis in priority list

—

Inspect documentation
and pre-select used
design patterns

. J

Y

~

Check matches in
source code /
deployment files / ...

Identify more patterns by
structural inspecting the
projects source code

Figure 4.3: Repository Analysis Process

70 unique design patterns, both adapted traditional and new Al-specific design patterns. They
grouped these 70 design patterns into 7 categories: Architecture, Deployment, Implementation,
Security & Safety, Process, Testing & Quality Assurance and Topology. A distribution of these
design patterns by category is shown in Figure 4.4. Excluding the Topology category which is a
subset of the Architecture category, only two design patterns appear in two different categories.
This offers us a good opportunity to identify the design patterns in these groupings.

We performed a sequential analysis process, where one project from our sorted list was fully
analyzed before proceeding to the next project. Each individual project was analyzed according
to the following steps: First, we looked at the documentation of the project to pre-select existing
architectural tactics and design patterns that might be used. After finding possible design patterns,
the task was to find these described design patterns as evidence in the source code or deployment
files to prove their existence. Once we had found design patterns from the documentation as possible
design patterns, we were of course also on the lookout for design patterns that were not noted or
made visible in the documentation. To do this, we went through the source code, deployment files
(which for some projects could also have been external repositories in the same GitHub organization)
or other related sources in the repositories in a structured way. By the categorizing of the design
pattern catalog, we were always able to pay special attention to the specific characteristics of each
category to identify design patterns. Due to the externally imposed time limit of the study, we set a
strict deadline for the analysis phase. The described process is also shown in Figure 4.3.

25

4 Methodology

Al-specific 10 10 3 9 0 2 3
Traditional 15 6 6 0 8 3 0
A o) 2 S A, Py 7
/‘Cb/.({ %) /O /77,0 /@ GC(//‘ [o GS[V/? ’OO/
Scy, Mg ey, % R & 7%
7 @g}

Figure 4.4: Comparison of the number of adapted traditional (36) and new Al-specific (34) patterns
[HHB23]

Although there are a few tools [AZ11; GAOS] to identify design patterns in software projects, we
decided to carry out the identification manually. These tools are mostly based on the GoF [GHIV95]
catalog and also have problems finding all design patterns or give many false positives [AZ11].
Since the catalog from Heiland et al. [HHB23] provides us with many new design patterns that do
not appear in the GoF catalog, it would not be worthwhile to use or adapt such tools for this study.

26

5 Results

In this chapter, we present the results of the repository collection and the results of our research
questions, which include the architectural tactics and design patterns found in the analyzed
repositories, and we look at the design patterns used, distinguishing whether the design patterns are
traditionally adapted design patterns or newly developed Al-specific design patterns.

5.1 Repository Collection

We performed all three steps mentioned in Section 4.1 to collect Al-based repositories for further
analysis.

The request to the Github Search API with our specified parameters returned a total of 1466 unique
repositories. After filtering out repositories that do not have at least 30 contributors and 300
commits, the number of repositories drops from 1466 to 311 remaining repositories. In the third
step, we manually inspected the remaining repositories and categorized them as shown in Table 5.1.
Of the 311 repositories, we identified only 37 as Al-based systems.

After closer inspection of the projects documentation, we classified the projects architecture
documentation into 3 levels: contains detailed architecture documentation (+), contains basic
architecture documentation (/), and contains quasi-nonexistent architecture documentation (-).
Out of our 37 repositories, we identify only 2 projects documentation as detailed architecture
documentation, 6 projects with basic architecture documentation, and the remaining 29 projects with
quasi-nonexistent architecture documentation. We have listed the repositories with at least basic
architectural documentation in Table 5.2, sorted first by the level of architectural documentation,
then by the z-score of the sum of forks and stars.

Category Number of Repositories | Percentage (%)
Al-based System 37 11.9
Library 154 49.5
Framework 53 17.0
Tool 21 6.8
Others 46 14.8
Total 311 100

Table 5.1: Distribution of categories of filtered repositories after manual selection

27

5 Results

Architectural Programming

GitHub Repository Documentation Level Language
https://github.com/LAION-AI/Open-Assistant + Python
https://github.com/LibrePhotos/librephotos + Python
https://github.com/AntonOsika/gpt-engineer / Python
https://github.com/Pythagora-io/gpt-pilot / Python
https://github.com/Cloud-CV/EvalAl / Python

https://github.com/aws-solutions/gnabot-on-aws / JavaScript

https://github.com/casibase/casibase / JavaScript
https://github.com/Josh-XT/AGiXT / Python

Table 5.2: Al-based System Repositories with good or basic architectural documentation; sorted by
architectural documentation level, then by z-score of sum of stars and forks

5.2 RQ1: How are design patterns and architectural tactics applied
in Al-based software systems?

This research question addresses design patterns and architectural tactics used in open-source
Al-based systems. We have taken the repositories already mined in Section 5.1 as a basis for our
analysis. We analyzed these repositories one by one, but due to time and scope constraints, we
could only analyze three projects. Accordingly, we analyzed the first three projects from our sorted
Table 5.2, which are Open-Assistant, LibrePhotos and GPT-Engineer:

Open-Assistant: Open-Assistant is a chat-based assistant with the main goal to make a Large
Language Model (LLM) that can run on a single high-end consumer GPU. The application
consists of several microservices that perform different tasks, a frontend, a backend, and
additional inference services such as several inference workers, an additional security service
for the inference tasks, and an inference server itself that distributes the inference tasks to the
workers.

LibrePhotos: LibrePhotos is a self-hosted alternative for hosting all kinds of photos. It offers ML
features such as face recognition in images, caption generation or the semantic search for
objects in images. Most of the ML tasks are separated into their own small backends for
processing the tasks.

GPT-Engineer: GPT-Engineer is a project that uses a LLM (such as GPT-4) to automate software
engineering processes by asking for further specification of the software to be built in a
conversation. The application is controlled via a command line interface.

With these three applications we have a diverse set of applications using Al. With Open-Assistant
and LibrePhotos we have two web-based applications and with GPT-Engineer we have a command
line based application. Open-Assistant has deployed all its services in extra containerized services,
while LibrePhotos has the frontend and the backend as containerized services, where the backend

28

https://github.com/LAION-AI/Open-Assistant
https://github.com/LibrePhotos/librephotos
https://github.com/AntonOsika/gpt-engineer
https://github.com/Pythagora-io/gpt-pilot
https://github.com/Cloud-CV/EvalAI
https://github.com/aws-solutions/qnabot-on-aws
https://github.com/casibase/casibase
https://github.com/Josh-XT/AGiXT

5.2 RQ1: How are design patterns and architectural tactics applied in Al-based software
systems?

has started several small backends for smaller services as subprocesses. GPT-Engineer is just an
application that is started via the terminal and uses for example the GPT-4 model' via the OpenAl
APL.

We analyzed the architecture of the three projects, in particular identifying the design patterns and
architectural tactics used.

5.2.1 Design Patterns

The design patterns we were able to identify from these three projects are shown in Table 5.3.
As mentioned in Section 4.2, before analyzing the project itself, we examined the documentation
for possible design patterns used, where we could only pre-select some design patterns used in
Open-Assistant, while we could not make any assumptions about the pre-selection of design patterns
used in the documentation of LibrePhotos and GPT-Eningeer based on the documentation. We
found a total of 19 unique design patterns in the three projects. It can be seen that we found relatively
the same number of design patterns in Open-Assistant and LibrePhotos with 13 and 12 identified
design patterns, whereby the intersection of equally found design patterns is also quite high, while
we only found 3 unique design patterns in the GPT-Engineer project, which is probably also related
to the way Al was used in the projects. This is an average of ~ 9 design patterns per project.

Figure 5.1 shows the number of design patterns found per category in comparison with the number
of design patterns per category of the design pattern catalog by Heiland et al., with the difference
that we have omitted the Topology category due to duplicates and only include the duplicates of
Architecture and Deployment in Architecture in our statistics. We can see that the number of found
design patterns from the Architecture and Deployment categories is significantly higher in absolute
terms and also relative to the amount of design patterns in the category of the catalog than the other
categories, with at least more than 30% occurrence. If we look again at the design patterns found in
Table 5.3, we can see that in the categories Implementation, Security & Safety, Process and Testing
& Quality Assurance, the design patterns only occur in one of the three projects, with the exception
of one design pattern.

5.2.2 Architectural characteristics

During the systematic analysis of the software projects, in addition to the identification of design
patterns, we also noticed special architectural tactics and other characteristics, both positive and
negative.

In general, we saw that the Al components were largely encapsulated from the actual logic of the
application, mostly by their own backends, which were requested via HTTP and then returned the
result. With Open-Assistant in particular, we saw that they used extra worker nodes to process their
Al tasks, which, as soon as they had nothing more to do, repeatedly processed new tasks from a
queue (if tasks were available). These workers were deployed using Docker containers and could
have been scaled quickly as required. In general, we also saw that for the two web-based projects,
Docker images were built for each service. While LibrePhotos had done it rather strangely, because

1 https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo

29

https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo

5 Results

Pattern Open-Assistant | LibrePhotos | GPT-Engineer
Architecture

Client-Server X

Model-View-Controller (MVC) X

Multi-Layer Pattern X

Al Pipelines

Distinguish Business Logic from ML Model

Synchronous pattern X X
Asynchronous pattern X X
Parameter-Server Abstraction

Deployment

Model Embedded in Application X X

Dedicated Model API X X

Web single pattern
Model-in-image pattern
Model-load pattern X

Implementation
Strategy Pattern X

Security & Safety
Secure Virtual Premise (SVP) X
Delegation of Safety Responsibility X

Process
Infrastructure as Code X X
Internal Feedback

Testing & Quality Assurance
End-To-End Tests ‘ ‘ ‘

Total found Design Patterns ‘ 13 ‘ 12 ‘

Table 5.3: Found Design Patterns

they had two Docker images for their project, one for the frontend and one image for the backend,
which had started multiple backends for extra Al components as a sub-process in the Docker
container, which would not make it possible to scale individually required Al component backends.
On the other hand, Open-Assistant had the advantage that they had deployed their extra services and
worker nodes as individual Docker containers, which makes scaling possible here. Both projects
have provided code to run the projects in both a development and production environment, mostly
using Docker Compose files.

In the Security & Safety area, we have only seen something about this in Open-Assistant. Open-
Assistant has an additional security service for checking user prompts, which is called before a
prediction for this prompt is created. This safety service checks whether the input violates any rules
and evaluates this input. The input is only processed further if the evaluation does not violate the
rules.

30

5.3 RQ2: How do design patterns in Al-based software systems differ from those in traditional
software systems?

25
20

15 Type

25
14
. Found Design Patterns
. Total Design Patterns of catalog
9 9
8 8
5 5
2 2
1 1

Architecture Deployment Implementation Process Security & Safety Testing & QA
Category

Count

5

0

Figure 5.1: Comparison of the number of found design patterns per category

As mentioned earlier, we could only find limited occurrences in the Process area because they need
to be documented, otherwise we would not know what the development team’s process was because
we were not part of it. As mentioned above, we could see that deployment was often available via
code, often via Docker Compose files. For Open-Assistant and LibrePhotos, there were actions
available for automated build and partial deployment via GitHub Actions, but in our opinion they
did not meet the requirements for the Continuous Integration and Deployment design pattern, as
they lacked either automated testing or manual deployment to production.

It was very noticeable that while we saw tests for the logic of the applications, specific tests for the
Al components were missing. As in the Process area, we would only have been able to find out
whether the applications were tested manually if this had been properly documented, which we
could not find in any of the project documentation. The testing area in the analyzed systems for Al
components was therefore very poor.

We also noticed that although we have sorted our projects to be analyzed by architectural documen-
tation, the documentation did not give any reasons why the architecture of this software looks the
way it does.

5.3 RQ2: How do design patterns in Al-based software systems
differ from those in traditional software systems?

This research question addresses the differences between design patterns of Al-based software
systems and those of traditional software systems. To address this research question, we distinguish
the identified design patterns from our three projects into traditional adapted design patterns and
new Al-specific design patterns as categorized by the catalog by Heiland et al. [HHB23].

31

5 Results

30

Type

Found Design Patterns
Total Design Patterns of catalog

N
=)

Count

10

Al-specific Patterns Traditional Patterns
Pattern Type

Figure 5.2: Comparison of the number of found adapted traditional and new Al-specific patterns

36
34

30
= 20 Type
3 Found Design Patterns
© Total Design Patterns of catalog

10

8
5
0

Al-specific Patterns Traditional Patterns
Pattern Type

Figure 5.3: Open-Assistant: Comparison of the number of found adapted traditional and new
Al-specific patterns

Of the 19 design patterns found in the three projects which were analyzed, 10 are new Al-specific
design patterns and 9 are traditional adapted design patterns, as shown in Figure 5.2.

Looking at each project individually, only the Open-Assistant project used more Al-specific
design patterns than traditonal adapted design patterns, as shown in Figure 5.3. LibrePhotos used
slightly more traditional design patterns than Al-specific design patterns, as shown in Figure 5.4.
GPT-Engineer also used one more traditionally adapted design pattern than Al-specific patterns,
but GPT-Engineer already found very few design patterns, as shown in Figure 5.5.

We also have the results for the design patterns per category separately for Al-specific and adapted
traditional patterns. Figure 5.6 shows the comparison of the number of new Al-specific design
patterns found compared to the new Al-specific design patterns per category in the pattern catalog,
and Figure 5.7 shows the comparison of the number of adapted traditional design patterns found
compared to the total number of adapted traditional design patterns per category in the catalog.

32

5.3 RQ2

: How do design patterns in Al-based software systems differ from those in traditional

software systems?

36

30

Count

Type

Found Design Patterns
Total Design Patterns of catalog
10

Al-specific Patterns

Traditional Patterns
Pattern Type

Figure 5.4: LibrePhotos: Comparison of the number of found adapted traditional and new Al-
specific patterns

34

36
30
220 Type
2 . Found Design Patterns
© . Total Design Patterns of catalog
10
1
0
Al-specific Patterns Traditional Patterns
Pattern Type

Figure 5.5: GPT-Engineer: Comparison of the number of found adapted traditional and new
Al-specific patterns

33

5 Results

100 10 10
9
75
- Type
% 5.0 Found Al-specific Design Patterns
© Total Al-specific Design Patterns of catalog
3
25 2 2
0.0 0 0 0 0
Architecture Deployment Implementation Process Security & Safety Testing & QA
Category
Figure 5.6: Comparison of the number of found Al-specific patterns per category
15 15
10
= 8 Type
g . Found Traditional Design Patterns
© 6 . Total Traditional Design Patterns of catalog
5 5
4
3
2
1 1
0 0 0 0
Architecture Deployment Implementation Process Security & Safety Testing & QA

Category

Figure 5.7: Comparison of the number of found adapted traditional patterns per category

34

6 Discussion

This chapter discusses the collected results of this work, including the repository collection and the
identified design patterns and architectural tactics, and also addresses our research questions. We
try to draw conclusions about what design patterns and architectural characteristics we found in the
projects we analyzed.

6.1 Repository Collection

After querying the GitHub Search API with our given parameters and filtering out repositories
based on other parameters that we could not already filter through the GitHub Search API query, we
get 37 repositories which we classify as Al-based systems after manual selection, which is only
11.9% of our total repositories before our manual selection.

Similar to our study, Gonzalez et al. [GZN20] also collected Al & ML repositories. They used the
GitHub Search API to access such repositories as we do, with the difference, that we used only four
topics (ai, artificial-intelligence, ml, machine-learning) and Gonzalez et al. queried the GitHub API
for additional topics related to artificial intelligence, deep learning and machine learning, which
provided them with 439 topic labels. Only then they queried the GitHub Search API for repositories
containing at least one of these 439 topics.

Like us, they categorized each resulting Al & ML repository as Applied or Tool, where Applied in
our case would reflect the Al-based System category, and Tool would reflect the categories Library,
Framework and Tool. Also like us, the authors also set exclusion criteria for the repositories, similar
to us, such as a minimum of 5 stars and 5 forks, the last commit could not be too far back, and it had
to be a software project.

Comparing the results, Gonzalez et al. identified 4524 Applied Al & ML and 700 Tool Al & ML
repositories, which makes 86% Applied and 14% Tool Repositories. If we add up the repositories
of our three categories Library, Framework and Tool, we get 228 Al & ML Tool repositories and 37
Aplied repositories, which is 86% Tool and 14% Aplied repositories, which is quite the opposite of
the distribution of Gonzalez et al.

However, we used different parameters to search the GitHub Search API. Gonzalez et al. had a
broader selection of topic tags, while we only queried with our four topic tags. We also requested
20 forks instead of 5 and another big difference is that we filtered out all repositories that did not
have at least 30 contributors. Gonzalez et al. [GZN20] compared the number of committers in
Applied and Tool repositories and found a difference in the number of committers in Applied and
Tool repositories, as shown in Figure 6.1, with a mean of 1 committer in Applied repositories and a

35

6 Discussion

15

10

Unigque Commit Authors

| | |
Applied Tool Comparison

Figure 6.1: Unique Commit Authors of Applied, Tool and a set of comparison repositories (outliers
omitted) [GZN20]

mean of 5 committers in Tool repositories. Of course, outliers with particularly large numbers of
committers are not shown in this figure. This difference may explain why the distribution of our
Applied and Tool repositories is so large compared to Gonzalez et al. [GZN20].

For all of our Al-based systems, we have analyzed their documentation according to architectural
documentation. Of our 37 Al-based system repositories, 29 repositories had basically no architectural
documentation in their project documentation, which is 78% of Al-based repositories. Ding et al.
[DLT+14] analyzed OSS projects from OSS sources such as GitHub, but also Sourceforge, Google
Code and Tigris, with the finding, that only 5.4% of the projects have documentation about their
software architecture. Out of our 8 repositories where we found architectural documentation in
their project documentation, we ranked only 2 projects with good architectural documentation and
the other 6 with just basic architectural documentation, as shown in Table 5.2.

6.2 RQ1: How are design patterns and architectural tactics applied
in Al-based software systems?

With the identification of 19 design patterns from the catalog of Heiland et al. [HHB23] in our three
Al-based software systems we analyzed, we can draw conclusions according to the distribution of
the categories of the design patterns found. The design patterns of the Architecture and Deployment
categories already make up over half of the design pattern catalog with 39 out of 70 patterns, and
they also outweigh the total number of design patterns found with 13 design patterns from these
categories of the total 19 design patterns found in the three projects, which accounts for over 68%.
In contrast, the remaining design patterns found in the Implementation, Process, Security & Safety
and Testing & Quality Assurance categories are very low in relative comparison to the total design
patterns in the catalog.

36

6.2 RQ1: How are design patterns and architectural tactics applied in Al-based software
systems?

Two of our three systems were web applications, both of which followed the typical Client-Server
design pattern. You can also see that both web applications had the actual logic of the application
and the ML models separated in their backends, in their own small services. Open-Assistant has
extended this with the Parameter-Server Abstraction design pattern by distributing and outsourcing
the workload to worker nodes. This shows that the AI components are not only moved to the
backend, but are also often separated from the business logic itself into their own services.

The large number of Deployment design patterns is due to the fact that 4 out of 5 of the design
patterns found are 4 different ways of deploying the models. This shows that already many methods
of model deployment are used in our few three projects.

We did not find many design patterns from the Implementation category, which could be due to
the fact that these are harder to find, as they are more hidden in the source code than other design
patterns and therefore harder to identify.

In the area of Security & Safety, we have only seen something in Open-Assistant, in which a separate
service for safety matters has been deployed, which promptly checks user entries to see whether
they violate its own safety guidelines. This seems to us to be an indication that Security & Safety are
being neglected in the development of Al-based software systems. Serban and Visser [SV21] made
similar findings, conducting interviews with practitioners and surveys with software architects and
found that architectural decision drivers for trustworthy ML, such as Security, were not considered
important by respondents. However, Security & Safety are more of a system property, which is why
this is probably more difficult to capture in the form of a design pattern. Developers may try to
solve Security & Safety at system level and not at design pattern level.

We may have missed design patterns due to our study design as discussed in Section 6.4. This may
lead to underreporting for some categories. This seems especially likely for the Process category,
since many of the patterns would require insight into the development process itself, and could
only be identified if we were part of the development process (which we were not), or if it was
documented somewhere. For example, the Internal Feedback design pattern can only be identified
if the documentation or public project management tools indicate that the product was tested by
internal users.

We see many similar findings to the study by Nahar et al. [NZL+23] and our findings for the projects
we analyzed. Below is a list of some of the findings from Nahar et al. that we also find in our three
projects.

Many products rely on third-party ML models (#6): In the three projects we analyzed,
we saw several third-party ML models, such as including models via libraries (such as
face_recognition), external APIs (such as OpenAl API), or by loading pre-trained model files,
mostly from GitHub releases. But we have also seen self-trained models, for example in the
Open-Assistant project, but also in a small service in LibrePhotos.

Most products use raw model predictions without any post-processing (#9): In the projects
we analyzed, we did not see any post-processing of model predictions that further validated
the predictions.

It is common to use multiple models in a product, though mostly the models work
indepedently of each other (#11): In Librephotos, different backends were created for
different ML tasks. Different models are used, which fulfill their tasks independently of each
other.

37

6 Discussion

42

40

30

20

Number of Patterns

10

0

12
9
--_ I
1 2 3 4 5 6

7 8 9 10 11 12
Number of References

Figure 6.2: Number of patterns per received number of references by resources identified by
Heiland et al. [HHB23]

Pipeline automation is not common in open-source ML products (#12): Open-Assistant and
a small service in LibrePhotos were the only services that trained their models themselves,
neither of which was automated.

Testing regular software functionality is common. Model testing is notable scarce. Data
validation is rare. (#17): We also found that while the common, non-Al parts of the project
were thoroughly tested, for example with unit tests, the Al components and models were not
tested at all.

We also compared the number of references per design pattern from [HHB23] (Figure 6.2) with the
number of references from the design patterns we found (Figure 6.3). One might assume that the
more references a design pattern has, the more often it might be used in projects. However, if we
compare Figure 6.2 and Figure 6.3, we can see that the distribution looks relatively the same and
therefore no significant difference can be found.

6.3 RQ2: How do design patterns in Al-based software systems
differ from those in traditional software systems?

We have seen that the design patterns found are relatively balanced between traditionally adapted
design patterns (9) and new Al-specific design patterns (10). This also shows that traditional design
patterns, such as the Client-Server design pattern, are nothing new and continue to be used here,
while also, for example, the Infrastructure as Code design pattern is used in Al-based systems,
which need to be extended from traditional systems in terms of how to build and run the model in
production.

38

6.3 RQ2: How do design patterns in Al-based software systems differ from those in traditional
software systems?

13

10

Number of Patterns

1

1 2 3 4 5 6 7 8 9 10 11 12
Number of References

Figure 6.3: Number of patterns per received number of references by resources of found design
patterns

If we look at the distribution of design patterns by category per traditional adapted and new
Al-specific design patterns, we can see that a large proportion of Architecture patterns are adapted
from traditional systems, suggesting that the rough architecture of traditional and Al-based systems
is similar.

One major point of difference between Al-based systems and traditional systems is how ML models
are deployed and used.

All design patterns in the Process category are traditional adapted design patterns. Despite the
already mentioned limitation that many design patterns of the category are difficult to detect in a
system because they are used during the development phase itself and some may not be recognizable
from the source code or are not mentioned in the documentation, we found two design patterns in
the category, so we see that traditional adapted design patterns are also used in Al-based systems.

On the other hand, Security & Safety is a category consisting only of new Al-specific design patterns,
for which we found only 2 design patterns in one project.

We only saw test cases in one project where the model is tested to see if it returns an expected result,
and these tests were kept very simple. We could not see more than this only traditional adapted
design pattern in the Testing & Quality Assurance category for the analyzed projects. It is already
known that ML systems are difficult to test because the answers to specific questions do not yet
exist to test the correctness of a ML model [MKAOQ7]. Much of the literature on testing ML systems
attempts to find techniques to solve this problem, often relying on traditional software techniques
[ZHML22]. In interviews with practitioners, Nahar et al. [NZLK?22] found that most organizations
do not perform monitoring or online testing because they find it difficult.

39

6 Discussion

6.4 Threats to Validity

To curate a diverse and representative collection of Al-based software systems, we have chosen to
use GitHub, a platform that hosts over 420 million git repositories. This may mean that we cover
just a limited number of repositories, as GitHub is not the only platform hosting code repositories.
But GitHub’s prominence and extensive repository coverage made it our primary source, given
its popularity for hosting public projects. By using GitHub, we ensured access to a wide range of
Al-based systems, taking advantage of its large user base and variety of available projects.

Identifying appropriate repositories has been accomplished through the use of topic tags that
developers assign to their projects. However, this strategy introduces potential biases, in particular
excluding relevant projects that do not use the specific tags we are searching for. Nevertheless, this
approach allowed us to compile a broad list of Al-based software systems.

To further filter our selection, we established criteria that focused on community engagement and
project activity. A minimum of 20 forks was required to filter out less significant projects, with the
assumption that GitHub’s “fork and pull” model represents community interest. We also required a
minimum of 30 contributors and 300 commits to ensure that projects were both properly sized and
active. We are aware that we could miss out on relevant projects, but we specifically wanted projects
that have a certain size and community interest. These criteria served to increase the quality of our
repository collection by targeting software systems with a demonstrated level of community interest
and ongoing development.

The categorization and final selection of projects required relying on the project descriptions,
READMEs, and documentation. This reliance was crucial for accurately determining whether the
project used Al and in what way, and for categorizing a large number of repositories without spending
too much effort, since the number of repositories for manual selection was quite high. Sorting
repositories based on architectural documentation and popularity allowed us to prioritize systems
with significant community value and well-documented architectures, ensuring the relevance and
quality of our repository collection.

Since the thesis is an individual performance, the analysis of the projects was carried out by one
person and could contain bias. Other people analyzing the projects may identify other design
patterns that we may have missed because of this bias. However, the results were discussed with my
supervisor, but this may not eliminate the bias.

The identification of design patterns in the selected projects was performed using a design pattern
catalog for Al-based systems by Heiland et al. [HHB23]. While we carefully analyzed the projects,
we may have missed some design patterns that were used in the projects, but we were unable to
identify them. In order to identify some design patterns, they would also have to be mentioned in
documentation or public project management tools to determine whether a particular design pattern
was used. However, if we had conducted interviews with the developers of the projects, we might
have gained more insight into certain categories.

For reasons of time and scope, we were only able to analyze three projects, which may limit the
generalization of the results. Although there are tools for automatically identifying design patterns,
we intentionally chose not to use them, first because they can be error-prone, and second because
most of the new Al-specific design patterns may not be identified by the tools. However, given the
timeframe of the project, this risk is unavoidable.

40

7 Conclusion

This thesis presented the results of analyzing the software architecture of three open-source Al-based
software systems to provide insights into what the software architecture of Al-based systems looks
like, with a particular focus on the design patterns and architectural tactics used.

Initially, Al-based systems from GitHub were mined for this analysis. In particular, the analysis used
a catalog of design patterns for Al-based software systems to identify the design patterns within the
analyzed systems. From the three Al-based systems analyzed, we were able to identify a total of
19 unique design patterns out of 70 total design patterns provided by the design pattern catalog.
A significant number of the design patterns found belonged to the Architecture and Deployment
categories. In distinguishing between traditional adapted design patterns and new Al-specific
design patterns, it was observed that many found Architecture design patterns are traditional adapted
design patterns, while many Deployment design patterns are new Al-specific, which is because
most deployment patterns care about how the ML models are deployed.

The use of Al in these systems has led to the emergence of many new Al-specific design patterns
for Security & Safety, although only a few of these design patterns were identified in our analysis.
This seems to indicate a lack of awareness of these issues among practitioners. Therefore, as there
is already research in this area, but it seems to have limited applicability [SV21], we recommend
further research attention for bringing Security & Safety techniques into practice.

Another finding is that while the traditional parts of the systems were well tested, the Al components
were very poorly tested. While software testing for Al-based software systems is quite prevalent
in research [MBF+22], the problem seems to be how to put the research into practice. For this
reason, we also recommend further research on how to put the knowledge gained from research into
practice for Testing & Quality Assurance.

Finally, we also recommend conducting a study like this again, with a larger team and more
repositories to reduce potential bias. With a larger number of repositories, we can more clearly
and generally interpret the results for Al-based software systems. In addition, a larger team can
cross-check the results, which unfortunately was not possible here on a large scale, which also
minimizes bias.

41

Bibliography

[ABBS15]

[APS16]

[AWO07]

[AZ11]

[BME19]

[BRG17]

[CGL+03]

[DLT+14]

M. Allamanis, E. T. Barr, C. Bird, C. Sutton. “Suggesting accurate method and
class names”. In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ESEC/FSE 2015. Bergamo, Italy: Association for Computing
Machinery, 2015, pp. 38—49. 1sBN: 9781450336758. po1: 10.1145/2786805.2786849
(cit. on p. 24).

M. Allamanis, H. Peng, C. Sutton. “A Convolutional Attention Network for Ex-
treme Summarization of Source Code”. In: Proceedings of The 33rd International
Conference on Machine Learning. Ed. by M. F. Balcan, K. Q. Weinberger. Vol. 48.
Proceedings of Machine Learning Research. New York, New York, USA: PMLR, June
2016, pp. 2091-2100. URL: https://proceedings.mlr.press/v48/allamanis16.html
(cit. on p. 24).

S. A. Ajila, D. Wu. “Empirical study of the effects of open source adoption on
software development economics”. In: Journal of Systems and Software 80.9 (2007).
Evaluation and Assessment in Software Engineering, pp. 1517-1529. 1ssn: 0164-1212.
DOI: 10.1016/j.jss.2007.01.011 (cit. on p. 17).

F. Arcelli Fontana, M. Zanoni. “A tool for design pattern detection and software
architecture reconstruction”. In: Information Sciences 181.7 (2011), pp. 1306-1324.
1ssN: 0020-0255. por: 10.1016/j.1ins.2010.12.002 (cit. on p. 26).

L. Bernardi, T. Mavridis, P. Estevez. “150 Successful Machine Learning Models:
6 Lessons Learned at Booking.com”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. KDD ’19.
Anchorage, AK, USA: Association for Computing Machinery, 2019, pp. 1743-1751.
1SBN: 9781450362016. por: 10.1145/3292500.3330744 (cit. on p. 15).

B. Bafandeh Mayvan, A. Rasoolzadegan, Z. Ghavidel Yazdi. “The state of the art on
design patterns: A systematic mapping of the literature”. In: Journal of Systems and
Software 125 (2017), pp. 93—118. 1ssn: 0164-1212. por: 10.1016/j.jss.2016.11.030
(cit. on p. 19).

P. Clements, D. Garlan, R. Little, R. Nord, J. Stafford. “Documenting software
architectures: views and beyond”. In: 25th International Conference on Software
Engineering, 2003. Proceedings. 2003, pp. 740-741. po1: 10.1109/ICSE. 2003.1201264
(cit. on p. 17).

W. Ding, P. Liang, A. Tang, H. Van Vliet, M. Shahin. “How Do Open Source
Communities Document Software Architecture: An Exploratory Survey”. In: 2014
19th International Conference on Engineering of Complex Computer Systems. 2014,
pp. 136-145. por: 10.1109/ICECCS.2014.26 (cit. on pp. 17, 36).

43

https://doi.org/10.1145/2786805.2786849
https://proceedings.mlr.press/v48/allamanis16.html
https://doi.org/10.1016/j.jss.2007.01.011
https://doi.org/10.1016/j.ins.2010.12.002
https://doi.org/10.1145/3292500.3330744
https://doi.org/10.1016/j.jss.2016.11.030
https://doi.org/10.1109/ICSE.2003.1201264
https://doi.org/10.1109/ICECCS.2014.26

Bibliography

[GAO8]

[Gar00]

[GEM16]

[GHIV9S]

[GS12]

[GTS+22]

[GZN20]

[HBB+18]

[HCHV21]

[HHB23]

44

Y.-G. Guéhéneuc, G. Antoniol. “DeMIMA: A Multilayered Approach for Design
Pattern Identification”. In: IEEE Transactions on Software Engineering 34.5 (2008),
pp. 667-684. por: 10.1109/TSE. 2008.48 (cit. on p. 26).

D. Garlan. “Software architecture: a roadmap”. In: Proceedings of the Conference on
The Future of Software Engineering. ICSE ’00. Limerick, Ireland: Association for
Computing Machinery, 2000, pp. 91-101. 1sBn: 1581132530. por: 10.1145/336512.
336537 (cit. on p. 17).

V. Garousi, M. Felderer, M. V. Mintyl4. “The Need for Multivocal Literature Reviews
in Software Engineering: Complementing Systematic Literature Reviews with Grey
Literature”. In: Proceedings of the 20th International Conference on Evaluation and
Assessment in Software Engineering. EASE ’16. Limerick, Ireland: Association for
Computing Machinery, 2016. 1sBN: 9781450336918. por: 10.1145/2915970.2916008
(cit. on p. 19).

E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design patterns: elements of reusable
object-oriented software. USA: Addison-Wesley Longman Publishing Co., Inc., 1995.
1sBN: 0201633612 (cit. on pp. 17, 26).

G. Gousios, D. Spinellis. “GHTorrent: Github’s data from a firehose”. In: 2012 9th
IEEE Working Conference on Mining Software Repositories (MSR). 2012, pp. 12-21.
DOI: 10.1109/MSR.2012.6224294 (cit. on p. 22).

K. Grotov, S. Titov, V. Sotnikov, Y. Golubev, T. Bryksin. “A large-scale comparison
of Python code in Jupyter notebooks and scripts”. In: Proceedings of the 19th
International Conference on Mining Software Repositories. MSR ’22. Pittsburgh,
Pennsylvania: Association for Computing Machinery, 2022, pp. 353-364. 1sBN:
9781450393034. por: 10.1145/3524842.3528447 (cit. on p. 22).

D. Gonzalez, T. Zimmermann, N. Nagappan. “The State of the ML-Universe: 10 Years
of Artificial Intelligence & Machine Learning Software Development on GitHub”. In:
Proceedings of the 17th International Conference on Mining Software Repositories.
MSR ’20. Seoul, Republic of Korea: Association for Computing Machinery, 2020,
pp- 431-442. 1sBN: 9781450375177. por: 10.1145/3379597.3387473 (cit. on pp. 20,
22-24, 35, 36).

K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy,
B.Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis, M. Smelyanskiy, L. Xiong,
X. Wang. “Applied Machine Learning at Facebook: A Datacenter Infrastructure
Perspective”. In: 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 2018, pp. 620-629. por: 10.1109/HPCA. 2018 . 00059 (cit. on

p. 15).
M. Haakman, L. Cruz, H. Huijgens, A. Van Deursen. “Al lifecycle models need to

be revised: An exploratory study in Fintech”. In: Empirical Software Engineering
26.5 (2021), p. 95. por1: 10.1007/s10664-021-09993-1 (cit. on p. 15).

L. Heiland, M. Hauser, J. Bogner. Design Patterns for Al-based Systems: A Multivocal
Literature Review and Pattern Repository. 2023. por: 10.48550/arXiv.2303.13173.
arXiv: 2303.13173 [cs.SE] (cit. on pp. 17, 19, 24, 26, 29, 31, 36, 38, 40).

https://doi.org/10.1109/TSE.2008.48
https://doi.org/10.1145/336512.336537
https://doi.org/10.1145/336512.336537
https://doi.org/10.1145/2915970.2916008
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1145/3524842.3528447
https://doi.org/10.1145/3379597.3387473
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1007/s10664-021-09993-1
https://doi.org/10.48550/arXiv.2303.13173
https://arxiv.org/abs/2303.13173

Bibliography

[IY19]

[JLH+17]

[KGB+14]

[KS20]

[LOX21]

[Mar00]

[MBF+22]

[MKAO7]

[NMY +20]

[NZL+23]

[NZLK?22]

F. Ishikawa, N. Yoshioka. “How Do Engineers Perceive Difficulties in Engineering of
Machine-Learning Systems? - Questionnaire Survey”. In: 2019 IEEE/ACM Joint 7th
International Workshop on Conducting Empirical Studies in Industry (CESI) and 6th
International Workshop on Software Engineering Research and Industrial Practice
(SER&IP). 2019, pp. 2-9. por: 10.1109/CESSER-IP.2019.00009 (cit. on p. 15).

J. Jiang, D. Lo, J. He, X. Xia, P.S. Kochhar, L. Zhang. “Why and how developers
fork what from whom in GitHub”. In: Empirical Software Engineering 22 (2017),
pp- 547-578. por1: 10.1007/510664-016-9436-6 (cit. on p. 23).

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, D. Damian.
“The promises and perils of mining GitHub”. In: Proceedings of the 11th Working
Conference on Mining Software Repositories. MSR 2014. Hyderabad, India: Asso-
ciation for Computing Machinery, 2014, pp. 92-101. 1sBN: 9781450328630. por:
10.1145/2597073.2597074 (cit. on pp. 21, 24).

R.-M. Karampatsis, C. Sutton. “How Often Do Single-Statement Bugs Occur? The
ManySStuBs4J Dataset”. In: Proceedings of the 17th International Conference on
Mining Software Repositories. MSR 20. Seoul, Republic of Korea: Association for
Computing Machinery, 2020, pp. 573-577. 1sBN: 9781450375177. por: 10.1145/
3379597.3387491 (cit. on p. 24).

G. A. Lewis, L. Ozkaya, X. Xu. “Software Architecture Challenges for ML Systems”.
In: 2021 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 2021, pp. 634—638. por: 10.1109/ICSME52107.2021.00071 (cit. on p. 15).

R. C. Martin. “Design principles and design patterns”. In: Object Mentor 1.34 (2000),
p- 597. URL: https://labs.cs.upt.ro/labs/ip2/html/lectures/2/res/Martin-
PrinciplesAndPatterns.PDF (cit. on p. 17).

S. Martinez-Fernandez, J. Bogner, X. Franch, M. Oriol, J. Siebert, A. Trendowicz,
A.M. Vollmer, S. Wagner. “Software Engineering for Al-Based Systems: A Survey”.
In: ACM Trans. Softw. Eng. Methodol. 31.2 (Apr. 2022). 1ssn: 1049-331X. por:
10.1145/3487043 (cit. on pp. 15, 18, 19, 41).

C. Murphy, G.E. Kaiser, M. Arias. “An approach to software testing of machine
learning applications”. In: (2007). por: 10.7916/D8R49ZNR (cit. on p. 39).

T. Nakamaru, T. Matsunaga, T. Yamazaki, S. Akiyama, S. Chiba. “An Empirical
Study of Method Chaining in Java”. In: Proceedings of the 17th International
Conference on Mining Software Repositories. MSR °20. Seoul, Republic of Korea:
Association for Computing Machinery, 2020, pp. 93—-102. 1sBN: 9781450375177.
DOI: 10.1145/3379597.3387441 (cit. on p. 22).

N. Nahar, H. Zhang, G. Lewis, S. Zhou, C. Késtner. “A dataset and analysis of
open-source machine learning products”. In: arXiv preprint arXiv:2308.04328 (2023).
DOI: 10.48550/arXiv.2308.04328 (cit. on pp. 19, 22, 37).

N. Nahar, S. Zhou, G. Lewis, C. Kistner. “Collaboration challenges in building
ML.-enabled systems: communication, documentation, engineering, and process”. In:
Proceedings of the 44th International Conference on Software Engineering. ICSE *22.
Pittsburgh, Pennsylvania: Association for Computing Machinery, 2022, pp. 413-425.
1SBN: 9781450392211. por: 10.1145/3510003.3510209 (cit. on pp. 15, 39).

45

https://doi.org/10.1109/CESSER-IP.2019.00009
https://doi.org/10.1007/s10664-016-9436-6
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/3379597.3387491
https://doi.org/10.1145/3379597.3387491
https://doi.org/10.1109/ICSME52107.2021.00071
https://labs.cs.upt.ro/labs/ip2/html/lectures/2/res/Martin-PrinciplesAndPatterns.PDF
https://labs.cs.upt.ro/labs/ip2/html/lectures/2/res/Martin-PrinciplesAndPatterns.PDF
https://doi.org/10.1145/3487043
https://doi.org/10.7916/D8R49ZNR
https://doi.org/10.1145/3379597.3387441
https://doi.org/10.48550/arXiv.2308.04328
https://doi.org/10.1145/3510003.3510209

[RRK+19]

[SV21]

[TLP18]

[VB19]

[WKG+22]

[WOH+20]

[WUKG19]

[ZHML?22]

M. S. Rahman, E. Rivera, F. Khomh, Y.-G. Guéhéneuc, B. Lehnert. “Machine
learning software engineering in practice: An industrial case study”. In: arXiv
preprint arXiv:1906.07154 (2019). por: 10.48550/arXiv.1906.07154 (cit. on p. 15).

A. Serban, J. Visser. “An empirical study of software architecture for machine
learning”. In: arXiv preprint arXiv:2105.12422 39 (2021) (cit. on pp. 15, 20, 37, 41).

D. Taibi, V. Lenarduzzi, C. Pahl. “Architectural patterns for microservices: a sys-
tematic mapping study”. In: CLOSER 2018: Proceedings of the 8th International
Conference on Cloud Computing and Services Science; Funchal, Madeira, Portugal,
19-21 March 2018. SciTePress. 2018 (cit. on p. 17).

A. Vogelsang, M. Borg. “Requirements Engineering for Machine Learning: Perspec-
tives from Data Scientists”. In: 2019 IEEFE 27th International Requirements Engineer-
ing Conference Workshops (REW). 2019, pp. 245-251. por: 10.1109/REW. 2019. 00050
(cit. on p. 15).

H. Washizaki, F. Khomh, Y.-G. Guéhéneuc, H. Takeuchi, N. Natori, T. Doi, S. Okuda.
“Software-Engineering Design Patterns for Machine Learning Applications”. In:
Computer 55.3 (2022), pp. 30-39. por: 10.1109/MC.2021.3137227 (cit. on p. 19).

H. Washizaki, S. Ogata, A. Hazeyama, T. Okubo, E. B. Fernandez, N. Yoshioka.
“Landscape of Architecture and Design Patterns for IoT Systems”. In: IEEE Internet
of Things Journal 7.10 (2020), pp. 10091-10101. por: 10.1109/JI0T. 2020.3003528
(cit. on p. 17).

H. Washizaki, H. Uchida, F. Khomh, Y.-G. Guéhéneuc. “Studying Software Engineer-
ing Patterns for Designing Machine Learning Systems”. In: 2019 10th International
Workshop on Empirical Software Engineering in Practice (IWESEP). 2019, pp. 49—
495. por: 10.1109/IWESEP49350.2019.00017 (cit. on p. 19).

J.M. Zhang, M. Harman, L. Ma, Y. Liu. “Machine Learning Testing: Survey,
Landscapes and Horizons”. In: IEEE Transactions on Software Engineering 48.1
(2022), pp. 1-36. po1: 10.1109/TSE. 2019.2962027 (cit. on p. 39).

https://doi.org/10.48550/arXiv.1906.07154
https://doi.org/10.1109/REW.2019.00050
https://doi.org/10.1109/MC.2021.3137227
https://doi.org/10.1109/JIOT.2020.3003528
https://doi.org/10.1109/IWESEP49350.2019.00017
https://doi.org/10.1109/TSE.2019.2962027

Declaration

I hereby declare that the work presented in this thesis is entirely my
own. I did not use any other sources and references than the listed
ones. I have marked all direct or indirect statements from other
sources contained therein as quotations. Neither this work nor
significant parts of it were part of another examination procedure.
I have not published this work in whole or in part before. The
electronic copy is consistent with all submitted hard copies.

place, date, signature

	1 Introduction
	2 Background
	2.1 Software Architecture
	2.2 Design Patterns
	2.3 AI-based Systems

	3 Related Work
	4 Methodology
	4.1 Repository Collection
	4.2 Repository Analysis

	5 Results
	5.1 Repository Collection
	5.2 RQ1: How are design patterns and architectural tactics applied in AI-based software systems?
	5.3 RQ2: How do design patterns in AI-based software systems differ from those in traditional software systems?

	6 Discussion
	6.1 Repository Collection
	6.2 RQ1: How are design patterns and architectural tactics applied in AI-based software systems?
	6.3 RQ2: How do design patterns in AI-based software systems differ from those in traditional software systems?
	6.4 Threats to Validity

	7 Conclusion
	Bibliography

