
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

in AI Planning Software

Robert Philippsohn

Course of Study: Software Engineering

Examiner: Dr. Ilche Georgievski

Supervisor: Dr. Ilche Georgievski

Commenced: October 16, 2023

Completed: April 16, 2024

Identification of Design Patterns

Abstract

The field of AI Planning has undergone significant growth since the advent of the STRIPS planner
in 1971, fueled by the need to tackle an expanding array of complex problem domains ranging from
robotics to quantum computing. However, the burgeoning landscape of planners and tools raises
concerns regarding software quality assurance amidst increasing complexity. Design patterns offer
a promising avenue for addressing this concern, providing structured solutions to recurring design
problems and enhancing software development processes. This thesis investigates the systematic
identification of design patterns in AI Planning software, guided by a multi-step methodology
inspired by Fehling et al. Through reverse engineering and pattern identification processes, this
study explores the prevalence and applicability of design patterns across various AI Planning
tools and categories. Our findings reveal the widespread utilization of certain patterns, such
as Proxy and Factory patterns, reflecting their compatibility with commonly used programming
languages. Surprisingly, no novel design patterns specific to AI Planning software were uncovered,
highlighting the need for further research in this area. Additionally, the lack of dedicated architectural
documentation in research papers emphasizes the importance of identifying effective design patterns
to enhance the overall quality of AI Planning software development and maintenance processes.

3

Contents

1 Introduction 13

2 Background Information 15
2.1 AI Planning . 15
2.2 Design Patterns . 17

3 Related Work 19
3.1 AI Planning . 19
3.2 Works in the broader AI domain . 20
3.3 Works outside the AI domain . 20

4 Methodology 21
4.1 Gathering Process . 21
4.2 Design Pattern Identification . 22

5 Results 25
5.1 General . 25
5.2 Patterns . 28

6 Discussion 33
6.1 General observations . 33
6.2 Patterns . 34
6.3 Validity threats . 35

7 Conclusion 37
7.1 Outlook . 37

Bibliography 39

A Appendix 55
A.1 Patterns . 55
A.2 Result Tables . 56

5

List of Figures

2.1 Design pattern space of Gamme et al. [Eri95] 18

4.1 Gathering progress . 21

5.1 Number of papers . 25
5.2 Release Year of all included AI Planning tools 26
5.3 What AI Planning tool types were included . 27
5.4 Distribution of included AI planners types . 28
5.5 The number of patterns found per planner type 29
5.6 Number of identified patterns or the lack thereof 30
5.7 Detected pattern combinations . 31

7

List of Tables

A.1 The tools according to the release year . 56
A.2 The tools according to their type . 58
A.3 Planners according to their type . 60
A.4 Patterns found per planner type . 61
A.5 Patterns found per planner type . 62
A.6 Patterns found per planner type . 64

9

Acronyms

AI Artificial intelligence. 13, 15

HTN Hierarchical Task Network. 16

ICAPS International Conference on Automated Planning and Scheduling. 13

IJCAI International Joint Conference on Artificial Intelligence. 13

IoT Internet of Things. 20

IPC International Planning Competition. 21

MOM Message-Oriented mMiddleware. 19

RQs research questions. 13

11

1 Introduction

Artificial intelligence (AI) Planning, a research field older than even the release of the STRIPS
planner in 1971 [RE 71], has witnessed a remarkable evolution marked by the increase of planners
and planning tools. This growth is fueled by the imperative to address an expanding array of complex
problem domains that require safety, quality, and efficiency. Interesting examples for such diverse
domains come from robotics [KM20], space missions [CCF+06][AGA22], logistics [Dra00], video
games [KBK08] and, recently, the fields of quantum computing [BDB+18], intelligent buildings
[GNN+17] and autonomous driving [AGPA22]. The culmination of these advancements is often
showcased at important events such as the International Conference on Automated Planning and
Scheduling (ICAPS) or International Joint Conference on Artificial Intelligence (IJCAI), where the
latest innovations in AI Planning software are unveiled and evaluated.

However, the burgeoning landscape of planners and tools presents a pressing concern
[Geo23d][GB21]: the assurance of software quality amidst increasing complexity. As the
intricacy of planners and tools escalates, so does the challenge of maintaining the quality and
comprehensibility of the underlying source code. This dilemma underscores the need for effective
strategies to ensure the robustness and reliability of AI Planning software.

One promising avenue to understand the current situation is the utilization of design patterns.
Design patterns encapsulate proven solutions to recurring design problems, offering a structured
and reliable framework for software development. In the context of AI Planning, the application of
design patterns holds the potential to improve architecture design of planning tools, streamline the
development processes, enhance code maintainability, and foster scalability.

Central to this thesis is one research questions (RQs) split into multiple smaller RQs, with
which we try to find out which design patterns are used in the AI Planning domain. Addressing
this question requires a proper methodology for the systematic identification and analysis of design
patterns within AI Planning tools and planners. Drawing inspiration from methodologies proposed
by Fehling et al. [FBUL15] and through the use of reverse engineering source code into UML
diagrams, this thesis sets out to explore the landscape of AI Planning software development.
Fehling et al.’s methodology involves a multi-step process, including tool identification, sample
selection, and pattern identification. Through this methodological framework, we aim to provide
a comprehensive overview of design patterns in usage within the AI Planning domain and offer
insights into their applicability across different planners and tools. The concrete RQs for this thesis
are the following:

1. To what extend do existing AI Planning tools employ design patterns?

a) How can the design patterns be systematically identified?

13

1 Introduction

b) Which design Patterns are present in most AI Planning tools and which ones are specific
to certain AI Planning categories?

c) Are there any observable patterns in existing AI Planning software that can not be
covered by existing design patterns?

In addition to elucidating the methodology, this introduction delineates the structure of the thesis.
Following this introductory chapter, Chapter 2 provides a comprehensive background on design
patterns and AI Planning, laying the foundation for subsequent discussions. Chapter 3 surveys
related work, drawing upon guidelines for pattern identification and insights from adjacent fields.
Subsequent chapters detail the methodology (chapter 4), present the results of pattern identification
(chapter 5), and discuss the implications thereof (chapter 6). Finally, the thesis concludes with a
summary of findings and an outlook on future research directions in chapter 7.

14

2 Background Information

Before we continue with the further thesis, we want to use this chapter to deliver all the necessary
information. The groundwork for this report consists of two parts. The first part is the domain
of the AI Planning research field. The second section consists of design patterns in software
engineering.

2.1 AI Planning

AI is one of the biggest research fields in computer science, and it is gaining even more traction
with the new-found hype through ChatGPT. From this singular research field, many more subfields
emerged, like machine learning, knowledge engineering, and AI Planning. Before we can continue,
we have to define what AI Planning is, what it is used for, and how other subfields might influence AI
Planning. In this section, we will define AI Planning, explain the key concepts, talk about planning
models, planning functionalities, and more. Planning in general can have different meanings and
goals depending on the person and domain in which it is, so let’s define this first.

Definition 1 (AI Planning)
Automated planning is an area of AI that studies the deliberation process that chooses and organizes
actions by anticipating their expected outcomes computationally. [GNT04].

The outcome of the task, mentioned in the definition, is a plan. The plan is a result of solving a
planning problem.

Definition 2 (Planning problem)
A planning problem consists of an initial starting state describing the world, which we wish to
transform into a desired goal state through describing the users objective and a set of possible
actions which can change the worlds state [GNT04].

This definition gives 3 important things that every planning problem should have: some initial
states, goal states and a set of actions. Those parts of a planning written into a formalized way,
would look like Definition 3.

Definition 3 (Restricted Model [GNT04])
Given a planning problem 𝑃 = (Σ, 𝑠𝑖 , 𝑆𝑔) where

• Σ = (𝑆, 𝐴, 𝛾) is a state transition system,
• 𝑠𝑖𝜖𝑆 is the initial state, and
• 𝑆𝑔 ⊂ 𝑆 is a set of goal states,

find a sequence of actions <𝑎1, 𝑎2, . . . , 𝑎𝑘
• corresponding to a sequence of state transitions <𝑠𝑖 , 𝑠1, . . . , 𝑠𝑘> such that
• 𝑠1 = 𝛾(𝑠𝑖 , 𝑎1), 𝑠2 = 𝛾(𝑠1, 𝑎2), . . . , 𝑠𝑘 = 𝛾(𝑠𝑘 − 1, 𝑎𝑘), 𝑎𝑛𝑑𝑠𝑘𝜖𝑆

15

2 Background Information

We also have to mention that there are multiple planning models. Some of the different planning
models are the following:

• Classical planning: In this kind of problem, we are given an initial situation, a set of action
definitions, and a proposition (goal) to be brought about. A solution is a sequence of actions
that, when executed, beginning in the initial situation, brings about a situation in which the
goal is true. It is assumed that the planner knows everything that is true in the initial situation
and knows the effect of every action [McD00].

• Temporal planning: In temporal planning, actions do not sequentially follow each other but
may temporally overlap and interfere. Whether other actions are being taken may determine
the possibility of taking action. The effects of an action may be a complex function of the
state and other simultaneous actions, whereas in classical planning they are independent of
other actions [Rin07].

• Hierarchical planning: Instead of the classical approach, Hierarchical Task Network (HTN)
planning involves breaking down tasks into smaller, simpler tasks. It starts with an initial
state description and a list of tasks to accomplish, along with rules about how tasks can be
broken down into smaller tasks. The planning process continues until all tasks are broken
down into their simplest forms, resulting in a plan of action for achieving the desired outcome.
This plan consists of a set of straightforward tasks that can be applied to the starting situation
[GA15].

• Non-deterministic planning: Deciding which actions to execute next in order to achieve a
goal is the problem of planning. These actions can have deterministic or non-deterministic
effects, with or without a model over their occurrence probability. Furthermore, the world can
be either fully, partially, or not observable at all. In a deterministic, fully observable case, the
outcome of an action is fully predictable and results in a single state. In a non-deterministic
setting, though, the next state depends on which effect of the action actually occurred [MR15].

• Probabilistic planning: The probabilistic planning problem is defined as a non-deterministic
problem, except that each action has probabilistic outcomes, the initial state is a probability
distribution over states, and it has a minimum probability that the plan must satisfy the goal
[BCK11].

• Nummeric Planning: This extends classical planning by incorporating numerical values into
the planning model. In numeric planning, we have an infinite space of numeric states, and the
transition function has a possible infinite number of state transitions. It is useful for modeling
problems involving the availability of resources, physical quantities like temperature, or
spatial information like GPS positions. [GS20].

Aside from these planning problems, we have also learned about planning, which is an extension
of the other problem types. Those planners utilize machine learning techniques such as neural
networks, decision tree learners, or various forms of regression to enhance efficiency [Kot16].
Considering we want to look at the development of AI Planning tools, we also should take a look
at how we develop AI Planning tools. One model shows the software development lifecycle for
AI Planning systems, which consists of 10 different phases: Requirements Analysis, Planning
Model Selection, Domain Model Design, Architecture and Design, Planning Technology Selection,
Implementation, Testing, Deployment, Monitoring and finally the Analysis phase [Geo23a][Geo23c].

16

2.2 Design Patterns

Looking at this general process, design patterns would definitely influence the Architecture and
Design phase and might be influenced by the Requirements Analysis phases, as the decisions of
certain demands like scalability or efficiency might influence the choice of design patterns.

2.2 Design Patterns

Design patterns provide blueprints that developers can follow to apply well-known solutions to
typical recurring problems. The concept of design patterns originated from architecture and was
adapted for use in software engineering. Design patterns serve as abstract templates for software
design and cannot simply be implemented directly into the source code. One of the first written
collections, that has been shared, was published by the ’Gang of Four’ in 1995 [Eri95]. This book by
Gamma et al. collects a plethora of different designs, describes how to use design patterns and which
pattern could be used for which problem. The underlying idea of design patterns is that they offer a
common vocabulary for design, reduce system complexity by naming and defining abstractions,
provide a foundation of experience for creating reusable software, and serve as fundamental building
blocks for constructing more complex designs [Eri95]. The form in which design patterns are
documented is also referenced by Gamma et al. and consists of 11 items. The form of description
of a design pattern, mentioned by Gamma et al. is the following: Design pattern name, Intent,
Motivation, Applicability, Participants, Collaborations, Diagram, Consequences, Implementation,
Examples, See Also. But the most essential are the pattern name, the problem, the solution and the
consequences. Apart from the form of description of a design pattern, we categorize them according
to their scope and purpose. The first criteria, ’Scope’, describes over which domain the patterns is
applied. There are two domains we mainly differentiate between: class and object. Class jurisdiction
concerns itself with the relationship between classes and subclasses, while object jurisdiction
handles relationships between peer objects; which can be more dynamic than classes [Eri95]. The
second criteria is called ’Purpose’ and it reflects what a pattern does. For this criteria we also have 3
types: creational, structural and behavioral. Creational patterns concern themselves with the process
of creating an object. The structural patterns deal with how classes and objects are composed,
either though inheritance or assembly. Lastly we have the behavioral patterns, which describe how
classes and objects interact or distribute responsibilities; either through inheritance or cooperation
[Eri95]. The original code patterns described in the book of Gamma et al. are depicted in Figure 2.1.

The purpose of design patterns is to deliver know-how and document proven solutions to certain
problems for future developers [Eri95]. The effects of design patterns on the software quality has
been proven to be mainly in the maintainability attribute [WA20], but the outcome is depending on
the prior expertise of the developer applying the pattern [AQ14]. We can also see effects on code
smells, where classes that use design patterns have less code smells than classes that do not use
them [AAA20].

17

2 Background Information

Figure 2.1: Design pattern space of Gamme et al. [Eri95]

18

3 Related Work

In this chapter, we want to give an overview of the related works on design pattern identification or
designing AI Planning tools. First, we talk about papers in the field of AI Planning, and after that,
we broaden the spectrum for all AI-based papers. Lastly, we also include works of research that
inspired the process of design pattern identification in other regions of computer science.

3.1 AI Planning

In the AI Planning research field, we could not find any papers talking about design pattern
identification in AI Planning. This is why we want to conduct this thesis—to break into this space
and inspire others to research this area. In the AI Planning field, there are papers discussing the
design process and architecture of AI Planning tools. The first one is talking about the general lack
of knowledge and mechanisms for designing AI plans and making deployment and interoperability
easier [Geo23d]. It highlights the challenges and proposes answers in the form of architectural
patterns and service orientation. The three main challenge areas are development and deployment,
process, and architecture. While our thesis does not concern itself with deployment, architecture
is a topic of ours, and development too, to a certain degree. While the paper talks more about a
service-oriented solution or Message-Oriented mMiddleware (MOM), it also talks about some
patterns, like the Strategy design pattern for language selection. Another paper talks about a toolbox
(PlanX) for building and integrating AI Planning systems with a full operational cycle [Geo23b]. In
that paper, we examine how the toolbox is constructed, the types of components it includes, and
the types of architectures utilized. It includes tools like PDDL4J, VAL, or the Planning.Domains
web service and utilizes main and dead letter queues in the MOM. It also discusses which user
groups are involved in designing and developing an AI Planning system and for whom this toolbox
is intended. While that paper demonstrates how to design and create an AI Planning system, it does
not address design patterns. A third paper in the AI Planning field tries to explain the usefulness of
design patterns in the AI Planning context [VM21]. It argues that reusable abstractions can help in
different aspects, but especially with the explainability of domain-independent planning systems. It
offers an incentive for why design patterns should be used in AI Planning and delivers through the
Mobile design pattern. Yet this is as far as it gets; it does not analyze tools to find already existing
patterns or give us an example of how to implement other patterns. Also, it limits itself to the usage
of design patterns at the domain model level, not in the software itself.

19

3 Related Work

3.2 Works in the broader AI domain

For the AI-based fields, we have one study with the goal of providing an overview of design patterns
in AI-based systems, categorizing them, and helping researchers and practitioners alike [HHB23b].
In that study, AI-based systems are described as systems that include AI components. At the end, it
resulted in an archive of different patterns that can be accessed on a web archive [HHB23a]. This
paper is similar in goal but different in scope. While Heiland et al. focus on all AI-related domains,
like machine learning and other fields, we focus solely on AI Planning systems. Another study
analyzed the design patterns in the machine learning research domain [WUKG19]. In that study,
they collected and analyzed different design patterns for machine learning systems. They conducted
the research by surveying the developers of those systems and conducting a systematic literature
review. The findings give more insight into the topic of design patterns in the development of
machine learning systems. In comparison to our study, it also analyzes the field in question for
design patterns and gives us an overview of the current state, but we focus our attention on the AI
Planning domain, while they are interested in the machine learning field.

3.3 Works outside the AI domain

In this section, we have a plethora of disciplines in the computer science field. For example,
one paper that talks about design patterns outside the AI sphere discusses patterns in the context
of Internet of Things (IoT). In the paper of Reinfurt et al., they analyze multiple numbers of
production-ready IoT offerings and extract reoccurring solutions into patterns [RBF+16]. In their
paper, they talk about five patterns in general and explain how they work. Reinfurt et al., along with
the same team, conducted a follow-up study documenting additional design patterns [RBF+19]. The
number of additional patterns documented is three. That paper goes even further than the simple
identification of design patterns and enters the realm of design pattern authoring. Highlighting new
paradigms is not the primary objective of our paper, but if we come across a certain paradigm used
in multiple tools, we might also attempt to emphasize those new paradigms. Another interesting
paper with design patterns is present in the realm of quantum computing. The paper by Weigold et
al. formulates common data encodings into a design pattern format[WBLS14]. Sketches describe
’how’ an encoding works, and the consequence section of each design pattern answers the question
’Why should you choose this encoding?’ Overall, this paper documents only three design patterns
for quantum computing, but more might follow in a future study. Here we have the same thing; our
thesis tries to analyze the tools to identify known design patterns, but here we have new paradigms
documented and no mention of well-established patterns. In the field of cloud computing, we also
have the papers of Fehling [Feh15]. This piece of literature does more than just design pattern
identification. It goes two steps beyond and does design pattern authoring and design pattern
application. We do not require those steps in our thesis, but they could be pursued if this thesis
yields promising results. Overall, we get a deep dive into all the main three phases, including all the
steps needed for each phase. We get a textual and graphical format for the design patterns identified
and authored, as well as instructions on how to use the patterns. That paper serves as inspiration for
how we will conduct our thesis, especially the design pattern identification phase.

20

4 Methodology

This chapter focuses on describing and depicting how this thesis is conducted. We examine how we
gather possible sources and explain how we identify design patterns and the basis for our research.
This part might also serve as a blueprint or example for similar studies with the same design or
objective.

4.1 Gathering Process

Sadly there is no complete registry for all planning tools available. One known registry is the
planning.wiki [GRM+], which has an incomplete collection of AI planners. Some of the planners
have a link to their scientific paper and even fewer have a link to their home page, but overall we
cannot get the source code and the research paper for all listed planners. Another point is that there
are only planners registered, no other tools like validators, parsers or other AI planning tools. The
second option to obtain AI planning tools, is tedious work and we have no certainty that we will
have a complete and diverse set, an online search. For that we can use well known resources, like
scientific libraries (Elsevier, IEEE Xplore, etc.) or google scholar. Lastly, we have the option to
look at dedicated conferences, like the ICAPS or IJCAI. This is also the option we took, as we
chose the International Planning Competition (IPC). The IPC is a competition hosted by the ICAPS,
where many AI planners compete in their respective category (classical, temporal, etc.) and a
research paper and the source code are made public for each participating planner. The competition
is normally held every two years. For the collected planners, we began with the first planning
competition in 1998 and included all the planners mentioned, up to the most recent competition in
2023. For the tools that are not planners, such as validators or parsers, we conducted an online search
and also included tools mentioned in the research papers of the collected planners. It’s possible that
some of the planners included in our final set might be duplicates. However, we consider them
unique enough for this initial identification attempt because our final set comprises tools diverse in
name, source code link (if present), and document link (competition paper or documentation link).
Figure 4.1 depicts how the gathering of our AI Planning tools set was conducted.

IPC competition Google Search Design Pattern Identification

Figure 4.1: Gathering progress

21

4 Methodology

4.2 Design Pattern Identification

As the title of this thesis suggests, we try to identify patterns for the software development of AI
Planning tools and planners. To identify design patterns in code, we have multiple methods to do
so. One possibility is using a two-phase approach, where we have a dataset preparation phase in
the first half and, for the second half, we utilize supervised learning algorithms to identify design
patterns in source code [DTR19]. Another approach, presented in 1998, tries to use a multi-stage
reduction strategy combined with object-oriented software metrics to extract patterns from the
design papers or code [AFC98]. A third method is part of a bigger process and also the option
we are using for this thesis. Fehling et al. not only display the pattern identification step but also
the pattern authoring step and the pattern application step [FBUL15]. The initial phase is the
pattern identification phase. The structuring and comprehensive collection of domain-specific
information characterize it, the very part within which patterns are to be discerned. The principal
aim of this phase resides in the systematic organization of the chosen domain, ensuring a conducive
environment for the subsequent identification of patterns. Additionally, it requires clearly defining
the language and visual elements essential to describing patterns. This ensures a consistent and
polished presentation in every documented solution. These actions have an even higher significance
in instances where the coordination of larger teams of pattern researchers is required. This also the
only phase we are focusing on, but we will give a short explanation for the two other phases. The
second phase is called the pattern authoring phase. In this phase we would write patterns based
on the similarities of existing solutions, which were collected in the previous phase. Lastly, we
have the pattern application phase. That phase can be performed independently of the previous two
phases once we have patterns that can be applied, as said by Fehling et al. [FBUL15]. All three
phases have sub-steps that can be iterated through, exactly like the three phases themselves that can
be done multiple times.

4.2.1 Domain Definition

The first step of the pattern identification phase is the domain definition. Generally, the goal of
this step is to clarify and create common knowledge in the domain, where we try to find patterns.
This is especially important for a group of researchers working together. To achieve this, we have
to "describe with written text and well-accepted definitions."[FBUL15]. If there is not enough
information, we would have to create definitions of the domain concept. For a definition of the AI
Planning domain, look at chapter 2 in the AI Planning section.

4.2.2 Coverage Consideration

The second step of this phase is coverage consideration. In this step, we try to limit the scope of
information we have to consider and look out for. In our case, we limit ourselves to AI planners,
domain editors, plan parsers, and validators. Apart from that, we restrain our focus on solutions
fulfilling principles such as scalability, efficiency, and explainability.

22

4.2 Design Pattern Identification

4.2.3 Information Format Design

With the third step, called information format design, we try to create a document where we can
note down our findings. In this case the template includes the following information:

• AI Planning tool type: is it a planner, a validator, editor or parser

• Information source: source code, research paper or a combination

• Track: if it is planner, which track did it enter

• Year: When was it presented?

• Design pattern: What patterns where identified?

• Reason: Why those patterns?

4.2.4 Information Collection

For the fourth step of the identification phase, we have the information collection. That phase is
defined by capturing the solutions and patterns found in the information format we defined in the
step before. To do that, we need to review the documents for descriptions of how certain properties
or principles are addressed. As a source for the patterns we identify, we mainly utilize the common
design patterns from the Gang of Four [Eri95], as well as an archive composed by Heiland et
al[HHB23a]. To be more concrete, we read through certain sections in the research papers of the
planners or the available documentation of the tools, took notes on how they work, and compared
the notes with the descriptions of all the different design patterns. Reverse engineering is another
way we utilized to identify design patterns in the AI Planning tools. We used the trial version of the
software Enterprise Architect [Sys] to reverse engineer the available source code of the included AI
Planning tools. Through this process, we got the UML class diagrams, where we looked for certain
structures or for class names indicating the usage of known patterns.

4.2.5 Information Review

The last step of this phase is the information review. Here we have to provide manageable sets
of the current solutions taken into consideration for pattern discovery; the domain organization
is improved. Queries may be done on the collection of documented existing solutions to locate
comparable ones, depending on the information type.

23

5 Results

This chapter concerns itself with the presentation of the outcomes of pattern identification. We will
talk about the results and describe them. The discussion of the findings and attempt to answer the
research questions are given in Chapter 6.

5.1 General

5.1.1 Progression

Figure 5.1 shows the progression of how we went from initially 430 AI Planning tools down to 216
different AI Planning tools. The initial 430 AI Planning tools included many planner duplicates,
because some planners competed in multiple competitions over the years. One example is the
Gamer planner [EK08], which competed in the competitions of 2008, 2011 and 2014. We purged
such obvious examples from the initial set to ensure that each planner is represented only once,
resulting in a decrease down to 344 AI Planning tools. Afterwards, we removed similar duplicates
that had the exact same link for the code base or their research paper, which led to the number of AI
Planning tools dropping down to 324. We should clarify that some planners that participated in the
IPC 2004, 2011 and 2014 have the same link, because some of those planners were present in a
booklet summary for the deterministic tracks. Next, we removed the updated versions of planners,
indicating planners that participated in later competitions not under the exact same name but with
a suffix indicating their relation to the original, for example, through something like ’2.0’. This
brought the number down to 261. The last pruning of planners came because some of the papers or
code bases for the planners were not accessible anymore; for example, the site for the temporal
track of the IPC 2018 was not available anymore. This led to the decrease down to 216 AI Planning
tools that were analyzable. Cases where one planner is similar to another planner, were not outright
removed. For example there are many planner that use Fast Downward [04] as their base and
combine it with another planner or change its purpose from a classical planner to a temporal one,
which were not purged from our set of AI Planning tools.

Initial: 430 344 324 261 216
Remove Name

Duplicates
Remove Source

Duplicates
Remove
Updates

Remove
Non-availables

Figure 5.1: Number of papers

25

5 Results

5.1.2 Release Year

In Figure 5.2 we see the depiction of the release year of every AI Planning tool we included in
our identification process. Overall, we can see that we have 216 unique tools that we analyze for
different design patterns. Those tools were either sorted into their respective year, because they
competed in that year for the first time at the IPC or because that tool has its first mention or commit
in that year. Most of the original planning tools used in this analysis come from 2023, and make up
37 tools (17,13%), while the second highest influx was in 2011 with 36 tools (16,67%). Following
these years, in order of most new tools, are the years 2014 with 31 tools (14,35%), 2008 with 28
instruments (12,96%), 2018 introducing 26 implementations (12,04%), 2004 showcasing 24 new
planners (11,11%) and the 2000 with ten new tools (4,63%). The competition of 2006 contributed
with 8 planners (3,7%) to our thesis, and the years 1998, 2002, and 2020 have only four tools
(1,85%) that were included in this thesis. The years 2012 and 2015 had no IPC, so those years
constitute a smaller portion of the analyzed set, with one entry (0,46%) for the year 2012 and three
entries (1,39%) in the year 2015.

0

10

20

30

40

199
8

200
0

200
2

200
4

200
6

200
8

201
1

201
2

201
4

201
5

201
8

202
0

202
3

Figure 5.2: Release Year of all included AI Planning tools

5.1.3 Tool types

The next graphic, Figure 5.3, shows the different tool types. The tools are distributed between
the following types: planners, validators, editors, and parser. Of those 216 AI Planning tools are
210 classified as planners. All the 210 planners (96,77%) come from the planning competitions,
which started in 1998 up to the latest was in 2023. The other seven tools where not presented at
the ICAPS planning competitions, but where either extracted from the papers that explained the

26

5.1 General

planners in the planning competitions or could be found by using a simple internet search. Four
(1,83%) of those seven tools are classified as editors, two (0,91%) are sorted into the category
parser and only one tool (0,46%) is labeled as a validator. The validator is VAL [FLHC14], the
parsers are Universal PDDL parser [Jon15] and PDDL4J [PF18] and lastly the four editors are
itSimple [VSTC13], Planning.Domains [Mui15], myPDDL [SK20] and PDDL Studio [PCBB12].
For a more detailed look what planners where included take a look at the appendix for Table A.2.

0

50

100

150

200

250

Planners Validator Editor Parser

Figure 5.3: What AI Planning tool types were included

5.1.4 Planner Types

Figure 5.4 shows us what kind of planners were included in this study. In figure 5.3, we concluded
that there are only 209 planners in this study, but some of the planners participated in multiple
competition tracks; for example DAE-YAHSP[11] competed in the temporal track and the classical
track. There are also cases, where planners competed in the classical track of the IPC, but are no
classical planner, for example TALplanner [KD00]. Knowing that, we can now describe the graph.
Most of the planners are classified as classical planners, with 125 planners (59,81%) existing in this
category. After that we have probabilistic planners in second place, with 27 entries (12,92%), and
the learning category in third place, with 26 entries (12,44%) in the set of planner. Afterwards, we
have the temporal planners, with 19 different (9,09%) AI planners. Next up we have 11 hierarchical
competitors (5,26%) that are included in the set used in this study. After that, there are five different
non-deterministic planners (2,39%) that we analyzed in this study. Lastly, we have two numeric
planners (0,96%) we had analyzed for this study; for both the correlating paper and code.

27

5 Results

0

25

50

75

100

125

Pr
ob
ab
ilis
tic

Cl
as
sic
al

Le
arn
ing HT

N

No
n-d
ete
rm
ini
sti
c

Te
mp
ora
l

Nu
me
ric

Figure 5.4: Distribution of included AI planners types

5.2 Patterns

5.2.1 Patterns per planner type

In Figure 5.5 we can see the number of patterns found depending on the AI planner type. We have
still the same types as in figure 5.4 and the other planning tools (validators, editors and parser) are
not included in this graphic. As we can see that 57 classical planners have at least one identified
pattern, which means 43,85% of all included classical planners have some sort of identified design
pattern. Second biggest groups overall, were probabilistic planners and learning planners but unlike
before they do not share the same place in the this comparison. From the 27 learning planners 18
have at least one pattern, which means 66,67% of all learning planners have one identified pattern.
On the other hand, from the 27 probabilistic planner only six (22,22%) have any number of identified
patterns. Next up, we have the HTN planners where we have two out of 11 planners (18,18%) that
have any design pattern. For the temporal planners we have ten out of 14 planners (71,43%) where
we could identify any number of design patterns. For the non-deterministic category we have only
one planner out of five that has a design pattern identified, which means 20% of those planners
contributed meaningfully to our thesis. Lastly, we have full two out of two numeric planners, where
we could find at least one design pattern.

28

5.2 Patterns

0

20

40

60

Cl
as
sic
al

Pr
ob
ab
ilis
tic

Le
arn
ing HT

N

Te
mp
ora
l

No
n-d
ete
rm
ini
sti
c

Nu
me
ric

Figure 5.5: The number of patterns found per planner type

5.2.2 Found patterns

Figure 5.6 shows us all the identified patterns for all the AI Planning tools. Before we talk about
the patterns we identified, we have to mention that for 123 tools (56,94%) we did not identify a
single design pattern; neither in documentation, research paper or in the source code. With that out
our way, we can describe the graph further. Two patterns that were sighted mostly together are the
Proxy pattern, with 62 appearances (28,70%), followed by the Factory pattern, with 61 occurrences
(28,24%), both as described by Gamma et al.[Eri95]. After that we have the Template Method
pattern as defined by Gamma et al.[Eri95], with a total of 16 identifications (7,41%). Closely
followed comes the Strategy pattern as described by Gamma et al.[Eri95], with 11 occurrences
(5,09%). Next up, we have the State pattern as defined by Gamma et al.[Eri95] with ten identified
appearances (4,63%) and after that the Registry pattern as described by Fowler et al.[FRF+02]
with eight times (3,70%) coming up. Afterwards we identified the Iterator pattern, as explained by
Gamma et al. [Eri95], two times (0,93%) in all analyzed AI Planning tools. Lastly, we have the
Command pattern and the Singleton pattern as defined by Gamma et al. [Eri95], both identified
only once (0,46%). Definitions of the mentioned patterns can be found in the Appendix A.1.

5.2.3 Pattern combinations

Next up we analyzed which pattern combinations were found, in Figure 5.7. This means we look
up which design patterns were most commonly seen together. But before we can continue, we
have to explain what the abbreviations mean. For simplicity sake, we took only the first letter of
the pattern name, for example abbreviating Factory to F. In some cases patterns have the same

29

5 Results

0

25

50

75

100

125

Non
e

Stra
teg

y
Pro

xy
Fac

tory Sta
te

Reg
istr
y

Iter
ato

r

Sin
gle
ton

Tem
pla
te

Com
ma

nd

Figure 5.6: Number of identified patterns or the lack thereof

first or even second letter, leading to abbreviations Pr being Proxy, Sta being the short version for
State and Str meaning Strategy. With the knowledge of all identified patterns from Figure 5.6 and
the abbreviations for the pattern names we can dive into the found data. The pattern combination
that occurred the most was the pairing of Proxy and Factory, appearing in 37 AI Planning tools
(17,13%). On second place we 10 appearances (4,63%) of the combination Proxy, Factory and
the Template Method pattern. Next on the list, we have the Proxy, Factory, State and Registry
amalgamation, with 4 occurrences (1,85%) in all 216 AI Planning tools. After that we have the
union of Proxy, Factory and Registry, with 3 sightings (1,39%).
Lastly we have a plethora of combinations that were only seen once (0,46%) and those pairings are
the following:

• Proxy, Factory and Strategy

• Proxy, Factory, Registry and Command

• Proxy, Factory, Strategy and Template Method

• Proxy and Template Method

• State and Template Method

• Proxy and State

• Proxy, Factory and State

• Factory and Iterator

30

5.2 Patterns

Pr,F

Pr,F,T

Pr,F,R,Sta

Pr,F,R

Pr,F,Str

Pr,F,R,C

Pr,F,T,Str

Pr,T

Sta,T

Pr,Sta

Pr,F,Sta

F,I

0 10 20 30 40

Figure 5.7: Detected pattern combinations

31

6 Discussion

This chapter discusses the results shown in chapter 5 and tries to answer the research questions
stated in chapter 1. We also discuss the validity threats that have to be considered for this study and
how we tried to minimize those.

6.1 General observations

First of, we should talk about the results of Figure 5.2. The AI Planning competition first started in
1998 at the AIPS conference and had five planners compete, according to McDermott [McD00].
Afterwards the planning competitions where held almost every two years, which explains the
steady influx of included AI Planning tools in this two year pattern. Outliers are the years 2011,
which marks the first irregular planning competition, the year 2012, which marks the release of
planning editor PDDL Studio [PCBB12] and the year 2015, which was the year when planning
parser PDDL4J [PF18], Universal PDDL parser [Jon15] and the online editor Planning.Domains
[Mui15] were released. Another irregular held planning competition is the one from 2023, which
had to be delayed because of the Covid pandemic. The mostly regular influx of tools through
planning competitions explains why we have so many AI planners in our set of AI Planning tools,
as seen in Figure 5.3. But it does not really explain the low number in other planning tools, for this
thesis mainly the validators, editors and parsers. Some of this tools were showcased at ICAPS, for
example itSimple [VSTC13], which shows we should not have search for those tools only through
online search, a Google scholar search and mentions in planner papers; but also through a search of
every available ICAPS paper. That would be more time consuming, but might yield a richer variety
in AI Planning tools. Through Figure 5.4 we get further insight into the AI Planning planners
distribution. As we can see most of the included planners are categorized to be classical planners,
fitted for an agile, optimal or satisfying track. That is hardly surprising as most planners from the
older generation are classical planners. Planners competing in the learning track, which sometimes
utilize machine learning, are a newer breed of planners, were one of the first submitted planners
for the learning track was Cabala [ROB08] in 2008. The planners in our set for the HTN category
come only from the year 2023 IPC, which might indicate an error in our assessment or an increase
in interest for those types of planners.

Something we observed, but did not track, were the planning tools that have a dedicated section for
the architecture or design of the tool. We encountered only a few number of tools that had such a
section were, for example, AltAlt from the year 2000 [SNK+01] or Crikey from the year 2004 [04].
For the planners, that might be excusable because the planner abstracts for the IPC are fairly short
with one to five pages. But for planning tools that have a documentation site or a website and the
architecture is not explained, that seems like a shortcoming.

33

6 Discussion

6.2 Patterns

In Figure 5.5 we can see the number of planners per planner type, with at least one design pattern.
Although we can see that the classic planner category contains the most planners where design
patterns have been found, in percentage it is not on top of the field. In percentage terms, temporal
planners and learning planners have a higher rate of hits when it comes to finding design patterns, but
it is unclear if it stays the same if we would look at a comparable number of temporal and learning
planners as we did with classical planners. Interestingly enough we have a 100% identification
rate for the two numeric planners, for which we found the documented patterns solely through the
reverse engineered UML diagrams. One of the patterns that we found solely through the reverse
engineering process, is the Proxy pattern and another is the Factory pattern, which are also notably
the patterns we found most of the time. If we look at the tools we analyzed and the Proxy or Factory
pattern we documented for them, some might notice that not all tools have source code we might
reverse engineer, but we will notice that those planners use Fast Downward [04] as a base or as a
part of their new planner, which in turn means that the new tool uses those patterns as well. Other
examples for the patterns that where found through reverse engineering are the State, Registry and
Template Method pattern. But we have to mention that the application used for reverse engineering
was not able to reverse engineer programming languages like Rust, Lisp or Prolog. Supported
languages were only the most common object-oriented programming languages, like C++, Java or
Python. Patterns we identified through the design pattern identification process, as described by
Fehling et al. [FBUL15], are the Strategy, Iterator, Command, and Singleton pattern. Considering
all the identified patterns, we can note that we mainly analyzed traditional, architectural design
patterns, as defined by Gamma et al. [Eri95] or Fowler et al. [FRF+02].

Now that we know which patterns we have identified, we can look at the combinations that
we most commonly observed. As Figure 5.7 displays it, the most common pattern pairing is the
Proxy and Factory combination, which is not to surprising as we know that those two patterns are
the most common one. We speculate that Proxy and Factory is that high, because those patterns
are common practices in object-oriented languages like C++, Java, or Python; which are also the
most common programming languages for AI Planning tools. Both patterns have the drawback
of making the code more complex and introducing overhead, but the Factory pattern gives us
more flexibility, abstraction and organization and the Proxy pattern benefits of optimization and
transparency. Another pattern that influences the flexibility of some tools is the Strategy pattern,
but the downside is, again, an increase in development complexity [HHB23a].

Initially, we documented another pattern based on the workflow commonly observed in AI
planners. The patterns we initially considered were the Pipes-and-Filters pattern or the Pipeline
pattern because most planners involved some form of preprocessing before the search and planning
phase or a post-processing phase after the plan was found. Typical preprocessing steps included
translation, pruning, grounding, parsing, or abstraction.
For example, Fast Downward describes its workflow in three phases: translation, preprocessor, and
search engine. The translation phase prunes redundant ADL features, grounds the operators and
axioms, and simplifies the problem presentation. Preprocessing for Fast Downward includes causal
graph computation, domain transition graphs, and handling complicated actions. It determines how
things are connected in a planning task, simplifies those connections, and creates graphs showing
how actions affect those things. All these steps occur before the actual search process. Other

34

6.3 Validity threats

planners have different steps performed before searching for a plan. For instance, the Scorpion
planner computes an abstraction, and then the search heuristic runs. For planners that describe
using an improvement process after a plan is found, examples include Arvand Herd [11], LPG-TD
[04], and Spock [SFS23]. All three mention some form of pruning, where redundant actions can
be removed from the plan without invalidating it. Initially, these workflows led us to believe that
we have Pipes-and-Filters or Pipeline patterns present. However, these workflows are not flexible
and cannot be changed without major alterations in the source code. Nonetheless, we observe this
workflow in over 100 planners out of 209. The inflexibility inherent in these workflows is the reason
for this omission. Unlike traditional design patterns, like Pipeline, Pipes-and-Filters, or Chain of
Responsibility, which offer modularity and flexibility, the observed workflow in AI planning tools
often requires significant alterations in the source code to accommodate any changes. This lack
of flexibility makes it challenging to encapsulate the workflow within a single, adaptable pattern.
Moreover, while the observed workflow is widespread, its implementation varies significantly across
different planning tools. Each tool may prioritize different preprocessing steps, post-processing
strategies or may not have either of those two, based on their specific requirements and optimizations.
This heterogeneity further complicates the proposition of a unified design pattern. However, it is
evident that recognizing and formalizing this observed workflow could constitute an important
contribution to the field of AI planning. By demonstrating the mutuality and variations within this
workflow, it may be possible to propose a new design pattern tailored specifically for AI planning.
Such a pattern could provide guidance for developers in structuring their planning algorithms more
effectively, ultimately enhancing the efficiency and robustness of AI planning systems. Therefore,
while acknowledging the omission of proposing a new design pattern in the thesis, the potential for
this observation to inspire a valuable contribution to the field remains a promising avenue for future
research and development in AI planning methodologies.

6.3 Validity threats

Every scientific paper has to ensure the robustness and reliability of its findings. However, it is
essential to acknowledge and address potential validity threats that may compromise the integrity of
the study. Validity threats are factors that can undermine the validity of research results, leading to er-
roneous conclusions or interpretations. In this section, we examine potential validity threats inherent
in our study methodology and data analysis. By identifying and understanding these threats, we try
to reduce their impact on the credibility of our findings. To show that the research is valid, we have
to address different categories: Construct validity, Internal validity, External validity and Reliability.

To ensure construct validity, we adhere to the identification process described by Fehling et
al. [Feh15] [FBUL15], and we use the examples provided by Fehling et al. as references. As this
specific research has not been conducted in the field of AI Planning, as outlined in Chapter 3, we
had no real expectations for what we would find. To ensure the robustness of this study and its
external validity, we analyzed the tools at least three times for design patterns: first while reading
the research paper or documentation and taking notes; second, when we reverse engineer the source
code and analyze the UML class diagrams; and the third, while reviewing the notes more thoroughly
and comparing the description to all pattern sources. This way, we hoped to reduce any observer
bias of the researcher and incorporate new knowledge into the final review of all tools. We also
tried to mitigate any availability bias that way, which seems to have worked to a degree because this

35

6 Discussion

way we discovered the usage of the State, Registry and Template Method pattern. If we redo the
analysis again for all tools, we might get a higher occurrence count for those patterns.
We were also able to eliminate duplicates that slipped through our initial duplicate detection process,
by going over our set of AI Planning tools multiple times. This way we were also able to correct
errors we overlooked initially.

36

7 Conclusion

This study investigated the systematic identification of design patterns in AI Planning software.
Through methods such as reverse engineering and following established processes, such as those
outlined by Fehling et al.[FBUL15][Feh15] in Chapter 4, design patterns can be effectively
recognized. The analysis revealed that certain patterns, notably the Proxy pattern and the Factory
pattern, are present in many AI Planning tools, probably because they are commonly used in most
object-oriented programming languages. Other patterns that we identified a few times are the
following: State pattern, Registry pattern, Template Method pattern, the Strategy pattern, and the
Iterator pattern. Single instances of the Singleton pattern and the Command pattern were also
identified. After thorough investigation, no novel design patterns exclusive to AI Planning software
emerged from this study. However, what became apparent was a certain workflow structure present
in the majority of AI planners. We can simplify this workflow into three main phases: pre-search,
search, and post-search. A significant portion of our tool set had no design pattern identified,
which can be attributed to the fact that a lot of research papers for AI Planning tools rarely have a
dedicated section for the architecture or design of the tool or have an accessible code base for reverse
engineering. Considering all this, the investigation underscores the significance of identifying
effective design patterns for enhancing the development, maintenance, and overall quality of AI
Planning software.

7.1 Outlook

Through this thesis, we contribute by showing certain shortcomings in the AI Planning domain and
displaying some of the most commonly used design patterns. Moving forward, further research
into the efficacy and applicability of different design patterns is essential for advancing the field
of AI Planning software development. A more thorough analysis with a larger sample size or a
more concentrated focus on only planners or other tool types might yield better and more insightful
results. The focus of this thesis was the identification of known design patterns, but an approach to
finding and authoring novel design patterns specific to the AI Planning domain might also hold
interesting findings. An example of a possible novel pattern has been outlined in Chapter 6.2. Such
endeavors hold promise for optimizing software architecture, fostering innovation, and ultimately
improving the capabilities of AI Planning systems. After conducting more research into this topic
and finding more patterns, a guideline for utilizing design patterns in the AI Planning space might
be possible, or an analysis of the effectiveness of design patterns might be possible.

37

Bibliography

[04] “14 th International Conference on Automated Planning and Scheduling”. In: 2004.
url: https://ipc04.icaps-conference.org/deterministic/DOCS/IPC-4.pdf (cit. on
pp. 25, 33–35, 56, 59–64).

[11] The 2011 International Planning Competition - Deterministic Track. June 2011.
url: http : / / www . plg . inf . uc3m . es / ipc2011 - deterministic / attachments /

ParticipatingPlanners/ipc2011-booklet.pdf (cit. on pp. 27, 35, 57, 59–64).

[14] “The 2014 International Planning Competition - Deterministic Track”. In: (2014).
url: https://helios.hud.ac.uk/scommv/IPC-14/repository/booklet2014.pdf
(cit. on pp. 57, 59–64).

[AAA20] M. Alfadel, K. Aljasser, M. Alshayeb. “Empirical study of the relationship between
design patterns and code smells”. In: PLoS ONE 15.4 (Apr. 2020), e0231731. issn:
1932-6203. doi: 10.1371/journal.pone.0231731. url: https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC7162509/ (visited on 02/09/2024) (cit. on p. 17).

[AFC98] G. Antoniol, R. Fiutem, L. Cristoforetti. “Using metrics to identify design patterns
in object-oriented software”. In: Proceedings Fifth International Software Metrics
Symposium. Metrics (Cat. No.98TB100262). 1998. doi: 10.1109/METRIC.1998.731224
(cit. on p. 22).

[AGA22] E. Alnazer, I. Georgievski, M. Aiello. “On Bringing HTN Domains Closer to
Reality - The Case of Satellite and Rover Domains”. In: International Conference
on Automated Planning Systems (ICAPS) Workshop on Scheduling and Planning
Applications (SPARK). 2022. url: https://icaps22.icaps- conference.org/

workshops/SPARK/papers/spark2022_paper_9.pdf (cit. on p. 13).

[AGPA22] E. Alnazer, I. Georgievski, N. Prakash, M. Aiello. “A Role for HTN Planning in
Increasing Trust in Autonomous Driving”. In: IEEE International Smart Cities
Conference. 2022, pp. 1–7. url: https://doi.org/10.1109/ISC255366.2022.9922427
(cit. on p. 13).

[AK01] J. L. Ambite, C. A. Knoblock. “Planning by rewriting”. In: Journal of Artificial
Intelligence Research 15 (2001), pp. 207–261 (cit. on pp. 56, 59, 60).

[AQ14] F. M. Alghamdi, M. R. J. Qureshi. “Impact of Design Patterns on Software Maintain-
ability”. In: (2014). url: https://www.mecs-press.org/ijisa/ijisa-v6-n10/IJISA-
V6-N10-6.pdf (cit. on p. 17).

[Asa18] M. Asai. “Alien: Return of Alien Technology to Classical Planning”. en. In: (2018).
url: https://ipc2018-classical.bitbucket.io/planner-abstracts/team33.pdf
(cit. on pp. 57, 58, 60).

39

https://ipc04.icaps-conference.org/deterministic/DOCS/IPC-4.pdf
http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/ParticipatingPlanners/ipc2011-booklet.pdf
http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/ParticipatingPlanners/ipc2011-booklet.pdf
https://helios.hud.ac.uk/scommv/IPC-14/repository/booklet2014.pdf
https://doi.org/10.1371/journal.pone.0231731
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162509/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162509/
https://doi.org/10.1109/METRIC.1998.731224
https://icaps22.icaps-conference.org/workshops/SPARK/papers/spark2022_paper_9.pdf
https://icaps22.icaps-conference.org/workshops/SPARK/papers/spark2022_paper_9.pdf
https://doi.org/10.1109/ISC255366.2022.9922427
https://www.mecs-press.org/ijisa/ijisa-v6-n10/IJISA-V6-N10-6.pdf
https://www.mecs-press.org/ijisa/ijisa-v6-n10/IJISA-V6-N10-6.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/team33.pdf

Bibliography

[BCEK23] C. Büchner, R. Christen, S. Eriksson, T. Keller. “DALAI – Disjunctive Action
Landmarks All In”. In: (2023). url: https://ipc2023-classical.github.io/
abstracts/planner4_dalai.pdf (cit. on pp. 58, 60, 62–64).

[BCK11] D. Bryce, W. Cushing, S. Kambhampati. “State agnostic planning graphs: deter-
ministic, non-deterministic, and probabilistic planning”. In: Artificial Intelligence
175.3-4 (2011), pp. 848–889 (cit. on p. 16).

[BDB+18] K. E. C. Booth, M. Do, J. C. Beck, E. Rieffel, D. Venturelli, J. Frank. Comparing and
Integrating Constraint Programming and Temporal Planning for Quantum Circuit
Compilation. 2018. doi: 10.48550/arXiv.1803.06775 (cit. on p. 13).

[BF08] D. Borrajo, S. Fernandez. “SAYPHI-RULES. On learning control knowledge for
forward chaining planners and use them stochastically”. en. In: (2008). url: https:
//ipc08.icaps- conference.org/learning/documents/abstracts/abstract_

sayphirules.pdf (cit. on pp. 57, 59, 61).

[BG05] B. Bonet, H. Geffner. “mGPT: A Probabilistic Planner Based on Heuristic Search”.
en. In: Journal of Artificial Intelligence Research 24 (Dec. 2005), pp. 933–944. issn:
1076-9757. doi: 10.1613/jair.1688. url: https://jair.org/index.php/jair/
article/view/10435 (visited on 02/03/2024) (cit. on pp. 56, 59, 61).

[BG18] T. Balyo, S. Gocht. “The Freelunch Planning System Entering IPC 2018”. en. In:
(2018). url: https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_
4_34.pdf (cit. on pp. 57, 58, 60).

[BHBM06] J. Baier, J. Hussell, F. Bacchus, S. McIlraith. “Planning with Temporally Extended
Preferences by Heuristic Search”. en. In: (2006) (cit. on pp. 57, 59, 60).

[Bit23] A. Bit-Monnot. “Experimenting with Lifted Plan-Space Planning as Scheduling:
Aries in the 2023 IPC”. en. In: (2023) (cit. on pp. 58, 60).

[BKD06] J. Benton, S. Kambhampati, M. B. Do. “YochanPS: PDDL3 Simple Preferences as
Partial Satisfaction Planning”. en. In: (2006) (cit. on pp. 57, 59, 60).

[BKS06] D. Bryce, S. Kambhampati, D. E. Smith. “Planning Graph Heuristics for Belief
Space Search”. en. In: Journal of Artificial Intelligence Research 26 (May 2006),
pp. 35–99. issn: 1076-9757. doi: 10.1613/jair.1869. url: https://jair.org/
index.php/jair/article/view/10453 (visited on 02/03/2024) (cit. on pp. 57, 59, 60).

[BKV06] M. van den Briel, S. Kambhampati, T. Vossen. “IPPLAN: Planning as Integer
Programming”. In: (2006). url: https://ipc06.icaps-conference.org/determinis
tic/booklet/deterministic04.pdf (cit. on pp. 57, 59, 60).

[Bla98] B. Blai. “HSP: Heuristic Search Planner”. In: (1998). url: https://bonetblai.
github.io/reports/aips98-competition.pdf (cit. on pp. 56, 59, 60).

[BSSV08] J. Bibaı, P. Saveant, M. Schoenauer, V. Vidal. “DAE: Planning as Artificial Evolution
(Deterministic part)”. en. In: (2008). url: https://ipc08.icaps-conference.org/
deterministic/data/planners/DAE.pdf (cit. on pp. 57, 59–63).

[CC18] A. Coles, A. Coles. OPTIC. visited on 21.03.2024. 2018. url: https://bitbucket.
org/ipc2018-temporal/team5/src/master/ (cit. on pp. 57, 61, 63).

40

https://ipc2023-classical.github.io/abstracts/planner4_dalai.pdf
https://ipc2023-classical.github.io/abstracts/planner4_dalai.pdf
https://doi.org/10.48550/arXiv.1803.06775
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_sayphirules.pdf
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_sayphirules.pdf
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_sayphirules.pdf
https://doi.org/10.1613/jair.1688
https://jair.org/index.php/jair/article/view/10435
https://jair.org/index.php/jair/article/view/10435
https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_4_34.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_4_34.pdf
https://doi.org/10.1613/jair.1869
https://jair.org/index.php/jair/article/view/10453
https://jair.org/index.php/jair/article/view/10453
https://ipc06.icaps-conference.org/deterministic/booklet/deterministic04.pdf
https://ipc06.icaps-conference.org/deterministic/booklet/deterministic04.pdf
https://bonetblai.github.io/reports/aips98-competition.pdf
https://bonetblai.github.io/reports/aips98-competition.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/DAE.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/DAE.pdf
https://bitbucket.org/ipc2018-temporal/team5/src/master/
https://bitbucket.org/ipc2018-temporal/team5/src/master/

Bibliography

[CCF+06] A. Cesta, G. Cortellessa, S. Fratini, A. Oddi, N. Policella. “From demo to practice
the MEXAR path to space operations”. English. In: Advances in Applied Articial
Intelligence, Proceedings. Ed. by M. Ali, R. Dapoigny. Vol. 4031. Berlin: Springer-
Verlag Berlin, 2006. isbn: 978-3-540-35453-6 (cit. on p. 13).

[CCK23] P. Chatterjee, A. Chapagain, R. Khardon. “Planning with DiSProD for the IPC 2023”.
en. In: (2023) (cit. on pp. 58, 61).

[Cen14] I. Cenamor. “LIBACOP and LIBACOP2 Planner”. en. In: (2014). url: https:

//www.cs.colostate.edu/~ipc2014/ipcl2014description-libacop.pdf (cit. on
pp. 57, 58, 61, 63).

[CFH+23a] A. B. Correa, G. Frances, M. Hecher, D. M. Longo, J. Seipp. “Levitron: Combining
Ground and Lifted Planning”. en. In: (2023) (cit. on pp. 58, 60, 62–64).

[CFH+23b] A. B. Correa, G. Frances, M. Hecher, D. M. Longo, J. Seipp. “Scorpion Maidu:
Width Search in the Scorpion Planning System”. en. In: (2023) (cit. on pp. 58, 60,
62–64).

[CFH+23c] A. B. Correa, G. Frances, M. Hecher, D. M. Longo, J. Seipp. “The Powerlifted
Planning System in the IPC 2023”. en. In: (2023) (cit. on pp. 58, 60, 62–64).

[CK18] H. Cui, R. Khardon. “The SOGBOFA system in IPC 2018: Lifted BP for Conformant
Approximation of Stochastic Planning”. en. In: (2018). url: https://ipc2018-
probabilistic.bitbucket.io/planner-abstracts/conformant-sogbofa-ipc18.pdf

(cit. on pp. 57, 58, 61).

[CLH08] Y. Chen, Q. Lv, R. Huang. “Plan-A: A Cost Optimal Planner Based on SAT-
Constrained Optimization”. en. In: (2008). url: https://ipc08.icaps-conference.
org/deterministic/data/planners/Plan-A.pdf (cit. on pp. 57, 59, 60).

[CS08] A. Coles, A. Smith. “Upwards: The Role of Analysis in Cost-Optimal SAS+ Planning”.
en. In: (2008). url: https://ipc08.icaps-conference.org/deterministic/data/
planners/upwards.pdf (cit. on pp. 57, 59, 60).

[CV14] L. Chrpa, M. Vallati. “AGAP: As Good As Possible”. en. In: (2014) (cit. on pp. 57,
58, 60, 61).

[CVC18] I. Cenamor, M. Vallati, L. Chrpa. “TemPoRal: Temporal Portfolio Algorithm”. en.
In: (2018). url: https://icenamor.github.io/files/TemPoRal.pdf (cit. on pp. 57,
58, 61–65).

[DGH+23] D. Drexler, D. Gnad, P. Höft, J. Seipp, D. Speck, S. Stahlberg. “Ragnarok”. In: (2023).
url: https://ipc2023-classical.github.io/abstracts/planner17_ragnarok.pdf
(cit. on pp. 58, 60, 62, 64).

[DPC23] D. Doebber, A. G. Pereira, A. B. Correa. “OpCount4Sat: Operator Counting Heuris-
tics for Satisficing Planning”. en. In: (2023) (cit. on pp. 58, 60, 62–64).

[Dra00] B. Drabble. “Task decomposition support to reactive scheduling”. English. In:
Recent Advances in Ai Planning. Ed. by S. Biundo, M. Fox. Vol. 1809. Berlin:
Springer-Verlag Berlin, 2000. isbn: 978-3-540-67866-3 (cit. on p. 13).

[Dre23] D. Drexler. “Vanir: Learning and Executing Width-based Hierarchical Policies”. en.
In: (2023) (cit. on pp. 58, 61–64).

41

https://www.cs.colostate.edu/~ipc2014/ipcl2014description-libacop.pdf
https://www.cs.colostate.edu/~ipc2014/ipcl2014description-libacop.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/conformant-sogbofa-ipc18.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/conformant-sogbofa-ipc18.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/Plan-A.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/Plan-A.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/upwards.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/upwards.pdf
https://icenamor.github.io/files/TemPoRal.pdf
https://ipc2023-classical.github.io/abstracts/planner17_ragnarok.pdf

Bibliography

[DSS23] D. Drexler, J. Seipp, D. Speck. “Odin: A Planner Based on Saturated Transition Cost
Partitioning”. en. In: (2023) (cit. on pp. 58, 60, 62–64).

[DTR19] A. K. Dwivedi, A. Tirkey, S. K. Rath. “Applying learning-based methods for recogniz-
ing design patterns”. In: (2019). doi: https://doi.org/10.1007/s11334-019-00329-3
(cit. on p. 22).

[EH01] S. Edelkamp, M. Helmert. “MIPS: The model-checking integrated planning system”.
In: AI magazine 22.3 (2001), pp. 67–67 (cit. on pp. 56, 59, 60).

[EK08] S. Edelkamp, P. Kissmann. “GAMER: Bridging Planning and General Game Playing
with Symbolic Search”. en. In: (2008) (cit. on p. 25).

[Eri95] J. M. V. Erich Gamma Richard Helm. Ralph E. Johnson. Design Patterns: Abstraction
and Reuse of Object-Oriented Design. Publication Title: ECOOP’93 - Object-
Oriented Programming, 7th European Conference, Kaiserslautern, Germany, July
26-30, 1993, Proceedings. 1995. doi: 10.1007/3-540-47910-4_21. url: https:
//doi.org/10.1007/3-540-47910-4%5C_21 (cit. on pp. 17, 18, 23, 29, 34, 55, 56).

[FBB+18] R. Fuentetaja, M. Barley, D. Borrajo, J. Douglas, S. Franco, P. Riddle. “The Meta-
Search Planner (MSP) at IPC 2018”. en. In: (2018). url: https://ipc2018-

classical.bitbucket.io/planner-abstracts/team5.pdf (cit. on pp. 57, 58, 60,
62–64).

[FBUL15] C. Fehling, J. Barzen, Uwe Breitenbücher, F. Leymann. “A Process for Pattern
Identification, Authoring, and Application”. In: Proceedings of the 19th European
Conference on Pattern Languages of Programs (EuroPLoP). ACM, 2015. url:
http://www2.informatik.uni-stuttgart.de/cgi-%20%09bin/NCSTRL/NCSTRL_view.

pl?id=INPROC-2015-50&engl=0 (cit. on pp. 13, 22, 34, 35, 37).

[FC14] R. Fuentetaja, L. Chrpa. “The Rollent planning and learning system at the IPC-8
learning track”. en. In: (2014). url: https://www.cs.colostate.edu/~ipc2014/
ipcl2014description-rollent.pdf (cit. on pp. 57, 58, 61).

[Feh15] C. Fehling. Cloud computing patterns : identification, design, and application. 2015.
doi: 10.18419/OPUS-3596. url: http://elib.uni-stuttgart.de/handle/11682/3613
(cit. on pp. 20, 35, 37).

[FEM23] S. Franco, S. Edelkamp, I. Moraru. “ComplementaryPDB Planner”. In: (2023). url:
https://ipc2023-classical.github.io/abstracts/planner7_ComplementaryPDB.

pdf (cit. on pp. 58, 60, 62).

[FFP23] O. Firsov, H. Fiorino, D. Pellier. “OptiPlan-a CSP-based partial order HTN planner”.
In: International Planning Competition in the context of The International Conference
on Automated Planning and Scheduling (ICAPS 2023). 2023. url: https://ipc2023-
htn.github.io/proceedings/Firsov-2023-IPC-OptiPlan.pdf (cit. on pp. 58, 60).

[FG23] M. Fickert, D. Gnad. “DiSCO - Decoupled Search + COnjunctions”. en. In: (2023)
(cit. on pp. 58, 60, 62–64).

[FGLR18] G. Frances, H. Geffner, N. Lipovetzky, M. Ramirez. “Best-First Width Search in
the IPC 2018: Complete, Simulated, and Polynomial Variants”. en. In: (2018). url:
https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_1_20_30_

31_36_47.pdf (cit. on pp. 57, 58, 60, 62, 63).

42

https://doi.org/https://doi.org/10.1007/s11334-019-00329-3
https://doi.org/10.1007/3-540-47910-4_21
https://doi.org/10.1007/3-540-47910-4%5C_21
https://doi.org/10.1007/3-540-47910-4%5C_21
https://ipc2018-classical.bitbucket.io/planner-abstracts/team5.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/team5.pdf
http://www2.informatik.uni-stuttgart.de/cgi-%20%09bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-50&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-%20%09bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-50&engl=0
https://www.cs.colostate.edu/~ipc2014/ipcl2014description-rollent.pdf
https://www.cs.colostate.edu/~ipc2014/ipcl2014description-rollent.pdf
https://doi.org/10.18419/OPUS-3596
http://elib.uni-stuttgart.de/handle/11682/3613
https://ipc2023-classical.github.io/abstracts/planner7_ComplementaryPDB.pdf
https://ipc2023-classical.github.io/abstracts/planner7_ComplementaryPDB.pdf
https://ipc2023-htn.github.io/proceedings/Firsov-2023-IPC-OptiPlan.pdf
https://ipc2023-htn.github.io/proceedings/Firsov-2023-IPC-OptiPlan.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_1_20_30_31_36_47.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_1_20_30_31_36_47.pdf

Bibliography

[FGSH18] M. Fickert, D. Gnad, P. Speicher, J. Hoffmann. “SaarPlan: Combining Saarland’s
Greatest Planning Techniques”. en. In: (2018). url: https://ipc2018-classical.
bitbucket.io/planner-abstracts/team7.pdf (cit. on pp. 57, 58, 60, 62–64).

[FH04] Z. Feng, E. A. Hansen. “Symbolic Heuristic Search for Probabilistic Planning”. en.
In: (2004) (cit. on pp. 56, 59, 61).

[FH18] M. Fickert, J. Hoffmann. “OLCFF: Online-Learning hCFF”. en. In: (2018). url:
https://ipc2018-classical.bitbucket.io/planner-abstracts/team8.pdf (cit. on
pp. 57, 58, 60, 62–64).

[FIT18a] A. Fern, M. Issakkimuthu, P. Tadepalli. “Imitation-Net: A Supervised Learning
Planner”. en. In: (2018). url: https://ipc2018-probabilistic.bitbucket.io/
planner-abstracts/imitation-net.pdf (cit. on pp. 57, 58, 61, 64).

[FIT18b] A. Fern, M. Issakkimuthu, P. Tadepalli. “Random-Bandit: An Online Planner”.
en. In: (2018). url: https://ipc2018-probabilistic.bitbucket.io/planner-
abstracts/random-bandit.pdf (cit. on pp. 57, 58, 61, 64).

[FJ18] D. Furelos-Blanco, A. Jonsson. “CP4TP: A Classical Planning for Temporal Planning
Portfolio”. en. In: (2018). url: https://planning.wiki/_citedpapers/planners/
cp4tp.pdf (cit. on pp. 57, 58, 61–64).

[FK18] D. Fiser, A. Komenda. “MAPlan: Reductions with Fact-Alternating Mutex Groups
and h^m Heuristics”. en. In: (2018). url: https://ipc2018-classical.bitbucket.
io/planner-abstracts/teams_13_17.pdf (cit. on pp. 57, 58, 60).

[FKIT18] A. Fern, A. Koul, M. Issakkimuthu, P. Tadepalli. “A2C-Plan: A Reinforcement
Learning Planner”. en. In: (2018). url: https://ipc2018-probabilistic.bitbucket.
io/planner-abstracts/a2c-plan.pdf (cit. on pp. 57, 58, 61).

[FKS+23] P. Ferber, M. Katz, J. Seipp, S. Sievers, D. Borrajo, I. Cenamor. “Hapori Explainable
Decision Tree”. en. In: (2023). url: https://ipc2023-classical.github.io/
abstracts/planner19_hapori_delfi.pdf (cit. on pp. 58, 60, 62, 63).

[FLB+18] S. Franco, L. H. S. Lelis, M. Barley, S. Edelkamp, M. Martinez, I. Moraru. “The
Complementary1 Planner in the IPC 2018”. en. In: (2018). url: https://ipc2018-
classical.bitbucket.io/planner-abstracts/team9.pdf (cit. on pp. 57, 58, 60,
62–64).

[FLHC14] M. Fox, D. Long, R. Howey, S. Cresswell. VAL. 2014. url: https://github.com/KCL-
Planning/VAL/ (cit. on pp. 27, 57, 59, 63, 64).

[Fou00] M. Fourman. “Propositional Planning”. In: 2000. url: https://www.inf.ed.ac.uk/
publications/report/0034.html (cit. on pp. 56, 59, 60).

[FRF+02] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, R. Stafford. Patterns of
Enterprise Application Architecture. Addison-Wesley Professional, 2002 (cit. on
pp. 29, 34, 55).

[FVC20] J. Fernandez-Olivares, I. Vellido, L. Castillo. “Addressing HTN Planning with Blind
Depth First Search”. en. In: (2020) (cit. on pp. 57, 58, 60).

[GA15] I. Georgievski, M. Aiello. “HTN planning: Overview, comparison, and beyond”.
en. In: Artificial Intelligence 222 (May 2015), pp. 124–156. issn: 0004-3702. doi:
10.1016/j.artint.2015.02.002. url: http://www.sciencedirect.com/science/
article/pii/S0004370215000247 (visited on 11/03/2020) (cit. on p. 16).

43

https://ipc2018-classical.bitbucket.io/planner-abstracts/team7.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/team7.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/team8.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/imitation-net.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/imitation-net.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/random-bandit.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/random-bandit.pdf
https://planning.wiki/_citedpapers/planners/cp4tp.pdf
https://planning.wiki/_citedpapers/planners/cp4tp.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_13_17.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_13_17.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/a2c-plan.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/a2c-plan.pdf
https://ipc2023-classical.github.io/abstracts/planner19_hapori_delfi.pdf
https://ipc2023-classical.github.io/abstracts/planner19_hapori_delfi.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/team9.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/team9.pdf
https://github.com/KCL-Planning/VAL/
https://github.com/KCL-Planning/VAL/
https://www.inf.ed.ac.uk/publications/report/0034.html
https://www.inf.ed.ac.uk/publications/report/0034.html
https://doi.org/10.1016/j.artint.2015.02.002
http://www.sciencedirect.com/science/article/pii/S0004370215000247
http://www.sciencedirect.com/science/article/pii/S0004370215000247

Bibliography

[GB21] I. Georgievski, U. Breitenbücher. “A Vision for Composing, Integrating, and De-
ploying AI Planning Functionalities”. In: 2021 IEEE International Conference on
Service-Oriented System Engineering (SOSE). 2021, pp. 166–171. doi: 10.1109/
SOSE52839.2021.00025 (cit. on p. 13).

[Geo23a] I. Georgievski. “Conceptualising Software Development Lifecycle for Engineering
AI Planning Systems”. In: (2023). doi: 10.1109/CAIN58948.2023.00019 (cit. on
p. 16).

[Geo23b] I. Georgievski. “PlanX: A Toolbox for Building and Integrating AI Planning Systems”.
In: 2023 IEEE International Conference on Service-Oriented System Engineering
(SOSE) (2023), pp. 130–134. doi: 10.1109/SOSE58276.2023.00022 (cit. on p. 19).

[Geo23c] I. Georgievski. “Software Development Lifecycle for Engineering AI Planning
Systems”. In: International Conference on Software Technologies. 2023, pp. 751–
760. doi: 10.5220/0012149100003538 (cit. on p. 16).

[Geo23d] I. Georgievski. “Towards Engineering AI Planning Functionalities as Services”. In:
Service-Oriented Computing – ICSOC 2022 Workshops (2023). ISBN: 978-3-031-
26507-5. doi: 10.1007/978-3-031-26507-5_18 (cit. on pp. 13, 19).

[GFB08] R. Garcıa-Duran, F. Fernandez, D. Borrajo. “REPLICA: Relational Policies Learning
in Planning”. en. In: (2008). url: https://ipc08.icaps-conference.org/learning/
documents/abstracts/abstract_replica.pdf (cit. on pp. 57, 59, 61).

[GGSV08] B. Galvani, A. E. Gerevini, A. Saetti, M. Vallati. “A Planner Based on an Automati-
cally Configurable Portfolio of Domain-independent Planners with Macro-actions:
PbP”. In: (2008). url: https://ipc08.icaps-conference.org/learning/documents/
abstracts/abstract_pbp.pdf (cit. on pp. 57, 59, 61, 63).

[GL08] M. Galea, J. Levine. “L2Plan2: Learning Generalised Policies via Evolutionary
Computation”. en. In: (2008). url: https://ipc08.icaps-conference.org/learning/
documents/abstracts/abstract_l2plan2.pdf (cit. on pp. 57, 59, 61, 63).

[GL23] P. R. Gzubicki, B. P. Lachowicz. “HUZAR: Predicting Useful Actions with Graph
Neural Networks”. en. In: (2023) (cit. on pp. 58, 61–64).

[GNN+17] I. Georgievski, T. A. Nguyen, F. Nizamic, B. Setz, A. Lazovik, M. Aiello. “Plan-
ning meets activity recognition: Service coordination for intelligent buildings”. In:
Pervasive and Mobile Computing 38.1 (2017), pp. 110–139 (cit. on p. 13).

[GNT04] M. Ghallab, D. Nau, P. Traverso. Automated Planning: Theory and Practice. en.
Elsevier, May 2004. isbn: 978-0-08-049051-9 (cit. on p. 15).

[GP06] S. Grandcolas, C. Pain-Barre. “FDP: Filtering and Decomposition for Planning”.
In: (2006). url: https://ipc06.icaps-conference.org/deterministic/booklet/
deterministic07.pdf (cit. on pp. 57, 59, 60).

[GP08] S. Grandcolas, C. Pain-Barre. “CFDP: an approach to Cost-Optimal Planning based
on FDP”. In: (2008). url: https://ipc08.icaps-conference.org/deterministic/
data/planners/C-fdp.pdf (cit. on pp. 57, 59, 60).

[GPT04] C. Gretton, D. Price, S. Thiebaux. “NMRDPP: Decision-Theoretic Planning with
Control Knowledge.” en. In: (2004) (cit. on pp. 56, 59, 61).

44

https://doi.org/10.1109/SOSE52839.2021.00025
https://doi.org/10.1109/SOSE52839.2021.00025
https://doi.org/10.1109/CAIN58948.2023.00019
https://doi.org/10.1109/SOSE58276.2023.00022
https://doi.org/10.5220/0012149100003538
https://doi.org/10.1007/978-3-031-26507-5_18
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_replica.pdf
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_replica.pdf
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_pbp.pdf
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_pbp.pdf
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_l2plan2.pdf
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_l2plan2.pdf
https://ipc06.icaps-conference.org/deterministic/booklet/deterministic07.pdf
https://ipc06.icaps-conference.org/deterministic/booklet/deterministic07.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/C-fdp.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/C-fdp.pdf

Bibliography

[GRM+] A. Green, B. J. Reji, C. Muise, E. Scala, F. Meneguzzi, F. M. Rico, H. Stairs, J. Dolejsi,
M. Magnaguagno, J. Mounty. url: https://planning.wiki/ref/planners/atoz
(cit. on p. 21).

[GS02] A. Gerevini, I. Serina. “LPG: a planner based on local search for planning graphs
with action costs”. In: Proceedings of the Sixth International Conference on Artificial
Intelligence Planning Systems. AIPS’02. Place: Toulouse, France. AAAI Press, 2002,
pp. 13–22. isbn: 1-57735-142-8 (cit. on pp. 56, 59).

[GS18] F. Geißer, D. Speck. “PROST-DD - Utilizing Symbolic Classical Planning in THTS”.
en. In: (2018). url: https://ipc2018-probabilistic.bitbucket.io/planner-
abstracts/prost-dd.pdf (cit. on pp. 57, 58, 61, 64).

[GS20] A. E. Gerevini, E. Scala. An Introduction to Numeric Planning. en. 2020. url:
https://icaps20subpages.icaps-conference.org/wp-content/uploads/2020/11/

icaps_2020_lecture_8.pdf (cit. on p. 16).

[GSH18] D. Gnad, A. Shleyfman, J. Hoffmann. “DecStar - STAR-topology DECoupled Search
at its best”. en. In: (2018). url: https://ipc2018-classical.bitbucket.io/planner-
abstracts/team2.pdf (cit. on pp. 57, 58, 60).

[Has08] P. Haslum. “Additive and Reversed Relaxed Reachability Heuristics Revisited”. In:
(2008). url: https://ipc08.icaps-conference.org/deterministic/data/planners/
hsps.pdf (cit. on pp. 57, 59, 60).

[HB06] J. Hoffmann, R. I. Brafman. “Conformant planning via heuristic forward search: A
new approach”. In: 2006. doi: 10.1016/j.artint.2006.01.003 (cit. on pp. 57, 59,
60).

[HCZ08] R. Huang, Y. Chen, W. Zhang. “DTG-Plan:Fast Planning by Search in Domain
Transition Graphs”. en. In: (2008). url: https://ipc08.icaps-conference.org/
deterministic/data/planners/DTG-Plan.pdf (cit. on pp. 57, 59, 60, 62).

[Hel06] M. Helmert. “Fast (Diagonally) Downward”. In: (2006). url: https://ipc06.icaps-
conference.org/deterministic/booklet/deterministic08.pdf (cit. on pp. 57, 59,
60).

[HHB23a] L. Heiland, M. Hauser, J. Bogner. Design Patterns for AI-Based Systems. 2023. url:
https://swe4ai.github.io/ai-patterns/ (cit. on pp. 20, 23, 34).

[HHB23b] L. Heiland, M. Hauser, J. Bogner. “Design Patterns for AI-based Systems: A Multivo-
cal Literature Review and Pattern Repository”. In: arXiv preprint arXiv:2303.13173
(2023) (cit. on p. 20).

[Hof01] J. Hoffmann. “FF: The fast-forward planning system”. In: AI magazine 22.3 (2001),
pp. 57–57 (cit. on pp. 56, 59, 60).

[Hol23a] D. Holler. “The PANDA Progression System for HTN Planning in the 2023 IPC”.
en. In: (2023) (cit. on pp. 58, 60).

[Hol23b] D. Holler. “The TOAD System for Totally Ordered HTN Planning in the 2023 IPC”.
en. In: (2023) (cit. on pp. 58, 60–64).

[HS] S. Hölldobler, H.-P. Störr. “Solving the Entailment Problem in the Fluent Calculus
using Binary Decision Diagrams”. In: (). url: https://www.stoerr.net/pub/
hoelldobler.stoerr.00a.pdf (cit. on pp. 56, 59, 60).

45

https://planning.wiki/ref/planners/atoz
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/prost-dd.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/prost-dd.pdf
https://icaps20subpages.icaps-conference.org/wp-content/uploads/2020/11/icaps_2020_lecture_8.pdf
https://icaps20subpages.icaps-conference.org/wp-content/uploads/2020/11/icaps_2020_lecture_8.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/team2.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/team2.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/hsps.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/hsps.pdf
https://doi.org/10.1016/j.artint.2006.01.003
https://ipc08.icaps-conference.org/deterministic/data/planners/DTG-Plan.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/DTG-Plan.pdf
https://ipc06.icaps-conference.org/deterministic/booklet/deterministic08.pdf
https://ipc06.icaps-conference.org/deterministic/booklet/deterministic08.pdf
https://swe4ai.github.io/ai-patterns/
https://www.stoerr.net/pub/hoelldobler.stoerr.00a.pdf
https://www.stoerr.net/pub/hoelldobler.stoerr.00a.pdf

Bibliography

[HSHB11] J. Hoey, R. St-Aubin, A. Hu, C. Boutilier. “SPUDD: Stochastic Planning using
Decision Diagrams”. en. In: (2011) (cit. on pp. 57, 59, 61).

[HSS23] P. Hoeft, D. Speck, J. Seipp. “Dofri: Planner Abstract”. en. In: (2023) (cit. on pp. 58,
60, 62–64).

[HTWT23] M. Hao, S. Toyer, R. Wang, F. Trevizan. “Action Schema Networks – IPC Version”.
en. In: (2023) (cit. on pp. 58, 61).

[Jon15] A. Jonsson. Universal PDDL Parser. 2015. url: https : / / github . com / aig -

upf/universal-pddl-parser (cit. on pp. 27, 33, 57, 59, 63).

[Kat18] M. Katz. “Cerberus: Red-Black Heuristic for Planning Tasks with Conditional Effects
Meets Novelty Heuristic and Enchanced Mutex Detection”. en. In: (2018). url:
https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_15_16.pdf

(cit. on pp. 57, 58, 60, 62–64).

[KBK08] J.-P. Kelly, A. Botea, S. Koenig. “Offline planning with hierarchical task networks in
video games”. In: 2008 (cit. on p. 13).

[KD00] J. Kvarnström, P. Doherty. “TALplanner: A temporal logic based forward chaining
planner”. en. In: Annals of Mathematics and Artificial Intelligence 30.1 (June
2000), pp. 119–169. issn: 1573-7470. doi: 10.1023/A:1016619613658. url: https:
//doi.org/10.1023/A:1016619613658 (visited on 11/03/2020) (cit. on pp. 27, 56, 59,
61).

[KDMW12] A. Kolobov, P. Dai, M. Mausam, D. Weld. “Reverse Iterative Deepening for
Finite-Horizon MDPs with Large Branching Factors”. en. In: Proceedings of the
International Conference on Automated Planning and Scheduling 22 (May 2012),
pp. 146–154. issn: 2334-0843, 2334-0835. doi: 10.1609/icaps.v22i1.13523.
url: https://ojs.aaai.org/index.php/ICAPS/article/view/13523 (visited on
02/03/2024) (cit. on pp. 57, 59, 61).

[KE08] P. Kissmann, S. Edelkamp. “GAMER: Fully-Observable Non-Deterministic Planning
via PDDL-Translation into a Game”. en. In: (2008). url: https://ipc08.icaps-
conference.org/deterministic/data/planners/gamer.pdf (cit. on pp. 57, 59, 60).

[KE12] T. Keller, P. Eyerich. “PROST: Probabilistic Planning Based on UCT”. en. In:
Proceedings of the International Conference on Automated Planning and Scheduling
22 (May 2012), pp. 119–127. issn: 2334-0843, 2334-0835. doi: 10.1609/icaps.
v22i1.13518. url: https://ojs.aaai.org/index.php/ICAPS/article/view/13518
(visited on 02/03/2024) (cit. on pp. 57, 59, 61, 64).

[KG08a] R. Kalyanam, R. Givan. “LDFS with Deterministic Plan Based Subgoals”. en. In:
(2008). url: https://ipc08.icaps-conference.org/probabilistic/wiki/images/3/
37/Team4-LPPFF.pdf (cit. on pp. 57, 59, 61).

[KG08b] E. Keyder, H. Geffner. “The FF(ha) Planner for Planning with Action Costs”. en. In:
(2008). url: https://ipc08.icaps-conference.org/deterministic/data/planners/
ffha.pdf (cit. on pp. 57, 59, 60).

[KG08c] E. Keyder, H. Geffner. “The HMDP Planner for Planning with Probabilities”. en. In:
(2008). url: https://ipc08.icaps-conference.org/probabilistic/wiki/images/a/
ad/Team9-HMDPP.pdf (cit. on pp. 57, 59, 61).

46

https://github.com/aig-upf/universal-pddl-parser
https://github.com/aig-upf/universal-pddl-parser
https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_15_16.pdf
https://doi.org/10.1023/A:1016619613658
https://doi.org/10.1023/A:1016619613658
https://doi.org/10.1023/A:1016619613658
https://doi.org/10.1609/icaps.v22i1.13523
https://ojs.aaai.org/index.php/ICAPS/article/view/13523
https://ipc08.icaps-conference.org/deterministic/data/planners/gamer.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/gamer.pdf
https://doi.org/10.1609/icaps.v22i1.13518
https://doi.org/10.1609/icaps.v22i1.13518
https://ojs.aaai.org/index.php/ICAPS/article/view/13518
https://ipc08.icaps-conference.org/probabilistic/wiki/images/3/37/Team4-LPPFF.pdf
https://ipc08.icaps-conference.org/probabilistic/wiki/images/3/37/Team4-LPPFF.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/ffha.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/ffha.pdf
https://ipc08.icaps-conference.org/probabilistic/wiki/images/a/ad/Team9-HMDPP.pdf
https://ipc08.icaps-conference.org/probabilistic/wiki/images/a/ad/Team9-HMDPP.pdf

Bibliography

[KLMT18] M. Katz, N. Lipovetzky, D. Moshkovich, A. Tuisov. “MERWIN Planner: Mercury
Enchanced With Novelty Heuristic”. en. In: (2018). url: https : / / ipc2018 -

classical.bitbucket.io/planner-abstracts/team14.pdf (cit. on pp. 57, 58, 60,
62–64).

[KM20] E. Karpas, D. Magazzeni. “Automated planning for robotics”. In: Annual Review of
Control, Robotics, and Autonomous Systems (2020) (cit. on p. 13).

[Koe99] J. Koehler. Handling of Conditional Effects and Negative Goals in IPP. Tech. rep.
1999 (cit. on pp. 56, 59, 60).

[Kot16] L. Kotthoff. Algorithm Selection for Combinatorial Search Problems: A Survey.
2016. doi: 10.1007/978-3-319-50137-6_7. url: https://doi.org/10.1007/978-3-
319-50137-6_7 (cit. on p. 16).

[Kre23] R. Kreft. “Saturated Cost Partitioning for Diverse Sets of Abstractions”. en. In:
(2023) (cit. on pp. 58, 60, 62–64).

[KS00] H. Kautz, B. Selman. “BLACKBOX: A New ApproachPtroobtlheemASpopllvici-
nagtion of Theorem Proving to”. en. In: (2000) (cit. on pp. 56, 59, 60).

[KS04] E. Karabaev, O. Skvortsova. “FCPlanner: A Planning Strategy for First-Order
MDPs”. en. In: (2004). url: https://ipc04.icaps-conference.org/probabilistic/
proceedings/skvortsova.pdf (cit. on pp. 56, 59, 61).

[KSB23] R. Kuroiwa, A. Shleyfman, J. C. Beck. “NLM-CutPlan”. In: (2023). url: https:
//ipc2023-numeric.github.io/abstracts/NLM_CutPlan_Abstract.pdf (cit. on
pp. 58, 60–64).

[KSSS18] M. Katz, S. Sohrabi, H. Samulowitz, S. Sievers. “Delfi: Online Planner Selection
for Cost-Optimal Planning”. en. In: (2018). url: https://ipc2018-classical.
bitbucket.io/planner-abstracts/teams_23_24.pdf (cit. on pp. 57, 58, 60, 62–64).

[KT23] M. Katz, A. Tuisov. “TFTM-ArgMax Planner: Pruning Preferred Operators with
Novelty”. en. In: (2023) (cit. on pp. 58, 60, 62, 64).

[LA20] C. Lesire, A. Albore. “PYHIPOP– Hierarchical Partial-Order Planner”. en. In: (2020)
(cit. on pp. 57, 58, 60, 61, 64).

[LBP23] G. P. Lacroix, R. V. Bettker, A. G. Pereira. “FSM — A Short-Time Learning Planner”.
en. In: (2023) (cit. on pp. 58, 60, 62–64).

[Leo23] F. Leofante. “OMTPlan: A Tool for Optimal Planning Modulo Theories”. en. In:
Journal on Satisfiability, Boolean Modeling and Computation 14.1 (June 2023),
pp. 17–23. issn: 15740617. doi: 10.3233/SAT-220001. url: https://www.medra.
org/servlet/aliasResolver?alias=iospress&doi=10.3233/SAT-220001 (visited on
02/03/2024) (cit. on pp. 58, 60–62, 64).

[LF99] D. Long, M. Fox. “Efficient Implementation of the Plan Graph in STAN”. en.
In: Journal of Artificial Intelligence Research 10 (Feb. 1999), pp. 87–115. issn:
1076-9757. doi: 10.1613/jair.570. url: https://www.jair.org/index.php/jair/
article/view/10221 (visited on 02/03/2024) (cit. on pp. 56, 59, 60).

[LLE23] C. Lei, N. Lipovetzky, K. A. Ehinger. “IPC Learning Track: Novelty-Based General-
ized Planning”. en. In: (2023) (cit. on pp. 58, 61).

47

https://ipc2018-classical.bitbucket.io/planner-abstracts/team14.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/team14.pdf
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1007/978-3-319-50137-6_7
https://ipc04.icaps-conference.org/probabilistic/proceedings/skvortsova.pdf
https://ipc04.icaps-conference.org/probabilistic/proceedings/skvortsova.pdf
https://ipc2023-numeric.github.io/abstracts/NLM_CutPlan_Abstract.pdf
https://ipc2023-numeric.github.io/abstracts/NLM_CutPlan_Abstract.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_23_24.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_23_24.pdf
https://doi.org/10.3233/SAT-220001
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SAT-220001
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SAT-220001
https://doi.org/10.1613/jair.570
https://www.jair.org/index.php/jair/article/view/10221
https://www.jair.org/index.php/jair/article/view/10221

Bibliography

[LRG08] N. Lipovetzky, M. Ramırez, H. Geffner. “C3: Planning with Consistent Causal
Chains”. en. In: (2008) (cit. on pp. 57, 58, 60).

[Mar08] F. Maris. “TLP-GP: a Planner to Solve Temporally-Expressive Problems”. en. In:
(2008). url: https://ipc08.icaps-conference.org/deterministic/data/planners/
TLP-GP.pdf (cit. on pp. 57, 59, 61).

[McD00] D. M. McDermott. “The 1998 AI planning systems competition”. In: AI magazine
21.2 (2000), pp. 35–35 (cit. on pp. 16, 33).

[MEMF18] I. Moraru, S. Edelkamp, M. Martinez, S. Franco. “Planning-PDBs Planner”. In: 2018.
url: https://ipc2018-classical.bitbucket.io/planner-abstracts/team40.pdf
(cit. on pp. 57, 58, 60).

[MF01] Y. Meiller, P. Fabiani. “TOKENPLAN: A Planner for Both Satisfaction and Opti-
mization Problems”. In: (2001). url: https://ojs.aaai.org/aimagazine/index.
php/aimagazine/article/view/1578/1477 (cit. on pp. 56, 59, 60).

[MMS22] M. C. Magnaguagno, F. Meneguzzi, L. de Silva. HyperTensioN and Total-order
Forward Decomposition optimizations. en. July 2022. url: http://arxiv.org/abs/
2207.00345 (visited on 02/03/2024) (cit. on pp. 57, 58, 60).

[MN08] Murugeswari, Narayanaswamy. “Macro-AltAlt: Improving heuristic guided search
using frequency based Action Macros”. In: (2008). url: https://ipc08.icaps-
conference.org/learning/documents/abstracts/abstract_macroaltalt.pdf (cit. on
pp. 57, 59, 61).

[MR15] G. Markou, I. Refanidis. “Non-deterministic planning methods for automated web
service composition”. en. In: Artificial Intelligence Research 5.1 (Sept. 2015),
p14. issn: 1927-6982, 1927-6974. doi: 10.5430/air.v5n1p14. url: http://

www.sciedupress.com/journal/index.php/air/article/view/7152 (visited on
02/07/2024) (cit. on p. 16).

[Mui15] C. Muise. Planning.Domains. 2015. url: http://planning.domains/ (cit. on pp. 27,
33, 57, 59).

[NCLM01] D. Nau, Y. Cao, A. Lotem, H. Munoz-Avila. “The SHOP planning system”. In: AI
Magazine 22.3 (2001), pp. 91–91 (cit. on pp. 56, 59, 60).

[NLFL08] M. A. H. Newton, J. Levine, M. Fox, D. Long. “Wizard: Compiled Macro-Actions
for Planner-Domain Pairs”. en. In: (2008). url: https://ipc08.icaps-conference.
org/learning/documents/abstracts/abstract_wizard.pdf (cit. on pp. 57, 59, 61).

[OHB23] C. Olz, D. Holler, P. Bercher. “The PANDADealer System for Totally Ordered HTN
Planning in the 2023 IPC”. en. In: (2023) (cit. on pp. 58, 60).

[Ols11] A. Olsen. “Pond-Hindsight: Applying Hindsight Optimization to Partially-Observable
Markov Decision Processes”. en. In: (2011) (cit. on pp. 57, 59, 61).

[OSSM01] E. Onaindia, O. Sapena, L. Sebastia, E. Marzal. “SimPlanner: An Execution-
Monitoring System for Replanning in Dynamic Worlds”. In: Progress in Artificial
Intelligence. Ed. by P. Brazdil, A. Jorge. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2001, pp. 393–400. isbn: 978-3-540-45329-1 (cit. on pp. 56, 59).

[OWL04] N. Onder, G. C. Whelan, L. Li. “Probapop: Probabilistic Partial-Order Planning”. en.
In: (2004) (cit. on pp. 56, 59, 61).

48

https://ipc08.icaps-conference.org/deterministic/data/planners/TLP-GP.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/TLP-GP.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/team40.pdf
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1578/1477
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1578/1477
http://arxiv.org/abs/2207.00345
http://arxiv.org/abs/2207.00345
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_macroaltalt.pdf
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_macroaltalt.pdf
https://doi.org/10.5430/air.v5n1p14
http://www.sciedupress.com/journal/index.php/air/article/view/7152
http://www.sciedupress.com/journal/index.php/air/article/view/7152
http://planning.domains/
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_wizard.pdf
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_wizard.pdf

Bibliography

[PCBB12] T. Plch, M. Chomut, C. Brom, R. Bart. “Inspect, Edit and Debug PDDL Documents:
Simply and Efficiently with PDDL Studio”. en. In: (2012). url: https://icaps12.
icaps-conference.org/demo/Plch_et_al.pdf (cit. on pp. 27, 33, 57, 59).

[PF18] D. Pellier, H. Fiorino. “PDDL4J: a planning domain description library for java”. In:
Journal of Experimental & Theoretical Artificial Intelligence 30.1 (2018). Publisher:
Taylor & Francis, pp. 143–176. doi: 10 . 1080 / 0952813X . 2017 . 1409278. url:
https://doi.org/10.1080/0952813X.2017.1409278 (cit. on pp. 27, 33, 57, 59).

[PG08] H. Palacios, H. Geffner. “Conformant Planning through Classical Planning”. en. In:
(2008). url: https://ipc08.icaps-conference.org/probabilistic/wiki/images/7/
7a/Team10-T0.pdf (cit. on pp. 57, 59, 60).

[Pou11] P. Poupart. Symbolic Perseus. visited on 21.03.2024. 2011. url: https://cs.

uwaterloo.ca/~ppoupart/software.html#symbolic-perseus (cit. on pp. 57, 59, 61,
63).

[QPF23] G. Quenard, D. Pellier, H. Fiorino. “LTP: Lifted Tree Path”. In: (2023). url: https:
//ipc2023-htn.github.io/proceedings/Quenard-2023-IPC-LiftedTreePath.pdf

(cit. on pp. 58, 60).

[RBF+16] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, A. Riegg. “Internet of
Things Patterns”. In: Proceedings of the 21st European Conference on Pattern
Languages of Programs (EuroPLoP). ACM, 2016. doi: 10.1145/3011784.3011789
(cit. on p. 20).

[RBF+19] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, A. Riegg. “Internet of
things patterns for communication and management”. In: (2019). doi: 10.1007/978-
3-030-14291-9_5 (cit. on p. 20).

[RE 71] N. N. R.E. Fikes. “Strips: A new approach to the application of theorem proving to
problem solving”. In: (1971). doi: https://doi.org/10.1016/0004-3702(71)90010-5.
url: https://www.sciencedirect.com/science/article/pii/0004370271900105
(cit. on p. 13).

[RE08] G. Roger, P. Eyerich. “TFD: A Numeric Temporal Extension to Fast Downward”.
en. In: (2008). url: https://ipc08.icaps-conference.org/deterministic/data/
planners/TFD.pdf (cit. on pp. 57, 59, 61–64).

[RF14] T. de la Rosa, R. Fuentetaja. “Ensemble-Roller: Planning with Ensemble of Relational
Decision Trees”. In: (2014). url: https://www.cs.colostate.edu/~ipc2014/

ipcl2014description-ensemble-roller.pdf (cit. on pp. 57, 58, 61).

[RGP08] N. Robinson, C. Gretton, D.-N. Pham. “CO-PLAN: Combining SAT-Based Planning
with Forward-Search”. en. In: (2008). url: https://ipc08.icaps-conference.org/
deterministic/data/planners/co-plan.pdf (cit. on pp. 57, 59, 60).

[Rin07] J. Rintanen. “Complexity of Concurrent Temporal Planning”. en. In: ICAPS (2007)
(cit. on p. 16).

[RJ08] T. de la Rosa, S. Jimenez. “ROLLER: A Lookahead Planner Guided by Relational
Decision Trees”. In: (2008). url: https://ipc08.icaps-conference.org/learning/
documents/abstracts/abstract_roller.pdf (cit. on pp. 57, 59, 61).

[RJFT11] A. N. Raghavan, S. Joshi, A. Fern, P. Tadepalli. “Bidirectional Online Probabilistic
Planning”. en. In: (2011) (cit. on pp. 57, 59, 61).

49

https://icaps12.icaps-conference.org/demo/Plch_et_al.pdf
https://icaps12.icaps-conference.org/demo/Plch_et_al.pdf
https://doi.org/10.1080/0952813X.2017.1409278
https://doi.org/10.1080/0952813X.2017.1409278
https://ipc08.icaps-conference.org/probabilistic/wiki/images/7/7a/Team10-T0.pdf
https://ipc08.icaps-conference.org/probabilistic/wiki/images/7/7a/Team10-T0.pdf
https://cs.uwaterloo.ca/~ppoupart/software.html#symbolic-perseus
https://cs.uwaterloo.ca/~ppoupart/software.html#symbolic-perseus
https://ipc2023-htn.github.io/proceedings/Quenard-2023-IPC-LiftedTreePath.pdf
https://ipc2023-htn.github.io/proceedings/Quenard-2023-IPC-LiftedTreePath.pdf
https://doi.org/10.1145/3011784.3011789
https://doi.org/10.1007/978-3-030-14291-9_5
https://doi.org/10.1007/978-3-030-14291-9_5
https://doi.org/https://doi.org/10.1016/0004-3702(71)90010-5
https://www.sciencedirect.com/science/article/pii/0004370271900105
https://ipc08.icaps-conference.org/deterministic/data/planners/TFD.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/TFD.pdf
https://www.cs.colostate.edu/~ipc2014/ipcl2014description-ensemble-roller.pdf
https://www.cs.colostate.edu/~ipc2014/ipcl2014description-ensemble-roller.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/co-plan.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/co-plan.pdf
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_roller.pdf
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_roller.pdf

Bibliography

[ROB08] T. de la Rosa, A. G. Olaya, D. Borrajo. “CABALA: Case-based State Lookaheads”.
In: (2008). url: https://ipc08.icaps-conference.org/learning/documents/
abstracts/abstract_cabala.pdf (cit. on pp. 33, 57, 59, 61).

[RV00] I. Refanidis, I. Vlahavas. “GRT: A Domain Independent Heuristic for STRIPS
Worlds Based on Greedy Regression Tables”. In: Recent Advances in AI Planning.
Ed. by S. Biundo, M. Fox. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp. 347–359. isbn: 978-3-540-44657-6 (cit. on pp. 56, 59, 60).

[RW08] S. Richter, M. Westphal. “The LAMA Planner Using Landmark Counting in Heuristic
Search”. en. In: (2008). url: https://ipc08.icaps-conference.org/deterministic/
data/planners/LAMA.pdf (cit. on pp. 57, 59, 60, 62–64).

[SBG23] S. Stahlberg, B. Bonet, H. Geffner. “Muninn”. In: (2023). url: https://ipc2023-
learning.github.io/abstracts/muninn.pdf (cit. on pp. 58, 61, 64).

[Sch20] D. Schreiber. “Lifted Logic for Task Networks: TOHTN Planner Lilotane in the IPC
2020”. en. In: (2020) (cit. on pp. 57, 58, 60).

[Sei18a] J. Seipp. “Fast Downward Remix”. en. In: (2018). url: https://ipc2018-classical.
bitbucket.io/planner-abstracts/team43.pdf (cit. on pp. 57, 58, 60, 62).

[Sei18b] J. Seipp. “Scorpion”. In: (2018). url: https://ipc2018-classical.bitbucket.io/
planner-abstracts/team44.pdf (cit. on pp. 57, 58, 60, 62–64).

[SFS23] M. Salerno, R. Fuentetaja, J. Seipp. “Spock: Fast Downward Stone Soup with
Redundant Action Elimination”. en. In: (2023) (cit. on pp. 35, 58, 60, 62–64).

[SGM18] D. Speck, F. Geisser, R. Mattmueller. “SYMPLE: Symbolic Planning based on
EVMDDs{}”. en. In: (2018). url: https://ipc2018-classical.bitbucket.io/
planner-abstracts/teams_3_10.pdf (cit. on pp. 57, 58, 60, 62–64).

[Sie18] S. Sievers. “Fast Downward Merge-and-Shrink”. en. In: (2018). url: https://
ipc2018-classical.bitbucket.io/planner-abstracts/teams_26_27.pdf (cit. on
pp. 57, 58, 60, 62–64).

[SK20] V. Strobel, A. Kirsch. “MyPDDL: Tools for Efficiently Creating PDDL Domains
and Problems”. In: Knowledge Engineering Tools and Techniques for AI Planning.
Springer International Publishing, 2020, pp. 67–90. isbn: 978-3-030-38561-3. doi:
10.1007/978-3-030-38561-3_4. url: http://dx.doi.org/10.1007/978-3-030-
38561-3_4 (cit. on pp. 27, 57, 59).

[SKK+08] H. S. Sim, K.-E. Kim, J. H. Kim, D.-S. Chang, M.-W. Koo. “Symbolic Heuristic
Search Value Iteration for Factored POMDPs”. In: 2008. url: https://ailab.kaist.
ac.kr/papers/pdfs/SKKCK2008.pdf (cit. on pp. 57, 59, 61).

[SLL+23] A. Singh, C. Lei, N. Lipovetzky, M. Ramirez, J. Segovia-Aguas. “Forward Backward
Novelty Search”. en. In: (2023) (cit. on pp. 58, 60).

[SLR+23] A. Singh, N. Lipovetzky, M. Ramirez, J. Segovia-Aguas, G. Frances. “Grounding
Schematic Representation with GRINGO for Width-based Search”. en. In: (2023)
(cit. on pp. 58, 60).

50

https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_cabala.pdf
https://ipc08.icaps-conference.org/learning/documents/abstracts/abstract_cabala.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/LAMA.pdf
https://ipc08.icaps-conference.org/deterministic/data/planners/LAMA.pdf
https://ipc2023-learning.github.io/abstracts/muninn.pdf
https://ipc2023-learning.github.io/abstracts/muninn.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/team43.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/team43.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/team44.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/team44.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_3_10.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_3_10.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_26_27.pdf
https://ipc2018-classical.bitbucket.io/planner-abstracts/teams_26_27.pdf
https://doi.org/10.1007/978-3-030-38561-3_4
http://dx.doi.org/10.1007/978-3-030-38561-3_4
http://dx.doi.org/10.1007/978-3-030-38561-3_4
https://ailab.kaist.ac.kr/papers/pdfs/SKKCK2008.pdf
https://ailab.kaist.ac.kr/papers/pdfs/SKKCK2008.pdf

Bibliography

[SLRS21] A. Singh, N. Lipovetzky, M. Ramirez, J. Segovia-Aguas. “Approximate Novelty
Search”. en. In: Proceedings of the International Conference on Automated Planning
and Scheduling 31 (May 2021), pp. 349–357. issn: 2334-0843, 2334-0835. doi:
10.1609/icaps.v31i1.15980. url: https://ojs.aaai.org/index.php/ICAPS/
article/view/15980 (visited on 02/02/2024) (cit. on pp. 58, 60, 62, 63).

[SNK+01] B. Srivastava, X. Nguyen, S. Kambhampati, M. B. Do, U. Nambiar, Z. Nie, R. Nigenda,
T. Zimmerman. “AltAlt: Combining Graphplan and Heuristic State Search”. In:
AI Magazine 22.3 (Sept. 2001), p. 88. doi: 10.1609/aimag.v22i3.1579. url:
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1579

(visited on 02/02/2024) (cit. on pp. 33, 56, 59, 60).

[SOM01] L. Sebastia, E. Onaindia, E. Marzal. “STeLLa: An Optimal Sequential and Parallel
Planner”. In: Progress in Artificial Intelligence. Ed. by P. Brazdil, A. Jorge. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 409–416. isbn: 978-3-540-45329-1
(cit. on pp. 56, 59, 60).

[Spe23] D. Speck. “SymK - A Versatile Symbolic Search Planner”. en. In: (2023) (cit. on
pp. 58, 60, 62–64).

[SSH14a] J. Seipp, S. Sievers, F. Hutter. “Fast Downward Cedalion”. en. In: (2014) (cit. on
pp. 57, 58, 60).

[SSH14b] J. Seipp, S. Sievers, F. Hutter. “Fast Downward SMAC”. en. In: (2014) (cit. on pp. 57,
58, 61–64).

[Sys] S. Systems. Enterprise Architect. url: https://sparxsystems.com/enterprise_
architect_user_guide/14.0/model_domains/reverseengineersourcecode.html

(cit. on p. 23).

[TAB+21] M. Take, S. Alpers, C. Becker, C. Schreiber, A. Oberweis. “Software Design Patterns
for AI-Systems”. In: (2021). url: https://ceur-ws.org/Vol-2867/paper5.pdf
(cit. on p. 55).

[TF04] F. Teichteil-Konigsbuch, P. Fabiani. “Probabilistic Reachability Analysis for Struc-
tured Markov Decision Processes”. en. In: (2004) (cit. on pp. 56, 59, 61).

[TG23] A. Torralba, D. Gnad. “Gofai”. In: (2023). url: https://ipc2023-learning.github.
io/abstracts/gofai.pdf (cit. on pp. 58, 61–64).

[TIK08a] F. Teichteil-Konigsbuch, G. Infantes, U. Kuter. “FSP: Optimal Forward Stochastic
Planning using relaxed PPDDL operators”. en. In: (2008). url: https://ipc08.icaps-
conference.org/probabilistic/wiki/images/c/c2/Team1-FSP.pdf (cit. on pp. 57,
59, 61).

[TIK08b] F. Teichteil-Konigsbuch, G. Infantes, U. Kuter. “RFF: A Robust, FF-Based MDP
Planning Algorithm for Generating Policies with Low Probability of Failure”. en. In:
(2008). url: https://ipc08.icaps-conference.org/probabilistic/wiki/images/f/
f6/Team1-RFF.pdf (cit. on pp. 57, 59, 61).

[TNPS08] D.-V. Tran, H.-K. Nguyen, E. Pontelli, T. C. Son. “CPA(C)/(H): Two Approximation-
Based Conformant Planners”. en. In: (2008). url: https://ipc08.icaps-conference.
org/probabilistic/wiki/images/5/57/Team2-CPA.pdf (cit. on pp. 57, 59–61, 63).

51

https://doi.org/10.1609/icaps.v31i1.15980
https://ojs.aaai.org/index.php/ICAPS/article/view/15980
https://ojs.aaai.org/index.php/ICAPS/article/view/15980
https://doi.org/10.1609/aimag.v22i3.1579
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1579
https://sparxsystems.com/enterprise_architect_user_guide/14.0/model_domains/reverseengineersourcecode.html
https://sparxsystems.com/enterprise_architect_user_guide/14.0/model_domains/reverseengineersourcecode.html
https://ceur-ws.org/Vol-2867/paper5.pdf
https://ipc2023-learning.github.io/abstracts/gofai.pdf
https://ipc2023-learning.github.io/abstracts/gofai.pdf
https://ipc08.icaps-conference.org/probabilistic/wiki/images/c/c2/Team1-FSP.pdf
https://ipc08.icaps-conference.org/probabilistic/wiki/images/c/c2/Team1-FSP.pdf
https://ipc08.icaps-conference.org/probabilistic/wiki/images/f/f6/Team1-RFF.pdf
https://ipc08.icaps-conference.org/probabilistic/wiki/images/f/f6/Team1-RFF.pdf
https://ipc08.icaps-conference.org/probabilistic/wiki/images/5/57/Team2-CPA.pdf
https://ipc08.icaps-conference.org/probabilistic/wiki/images/5/57/Team2-CPA.pdf

Bibliography

[Tor23a] Á. Torralba. “QDom-LMCut: Enhancing Search with Quantitative Dominance
Pruning”. In: (2023). url: https://ipc2023-classical.github.io/abstracts/
planner32_dom.pdf (cit. on pp. 58, 60, 62–64).

[Tor23b] Á. Torralba. “SymBD: A Symbolic Bidirectional Search Baseline”. In: (2023). url:
https://ipc2023-classical.github.io/abstracts/planner14_SymBD_2023.pdf

(cit. on pp. 58, 60, 62–64).

[TSTN23] Á. Torralba, S. Sievers, R. G. Tollund, K. Nielsen. “FTSPlan: Task Reformulation
via Merge-and-Shrink”. In: (2023). url: https://ipc2023-classical.github.io/
abstracts/planner13_fts.pdf (cit. on pp. 58, 60, 62–64).

[VBA14] J. Virseda, D. Borrajo, V. Alcázar. “LLAMA: Learning LAMA”. In: (2014). url:
https://www.cs.colostate.edu/~ipc2014/ipcl2014description-llama.pdf (cit. on
pp. 57, 58, 61–64).

[VM21] M. Vallati, T. L. McCluskey. “In Defence of Design Patterns for AI Planning
Knowledge Models”. In: AIxIA 2020 – Advances in Artificial Intelligence. Springer
International Publishing, 2021, pp. 191–203. isbn: 978-3-030-77091-4. doi: 10.
1007/978-3-030-77091-4_12 (cit. on p. 19).

[VR18] O. S. Vercher, E. O. de la Rivaherrera. TFLAP. visited on 21.03.2024. 2018. url:
https://bitbucket.org/ipc2018-temporal/team2/src/master/ (cit. on pp. 57, 61).

[VSTC13] T. S. Vaquero, J. R. Silva, F. Tonidandel, J. Christopher Beck. “itSIMPLE: towards
an integrated design system for real planning applications”. In: The Knowledge
Engineering Review 28.2 (2013), pp. 215–230. doi: 10.1017/S0269888912000434
(cit. on pp. 27, 33, 56, 59).

[WA20] F. Wedyan, S. Abufakher. “Impact of design patterns on software quality: a systematic
literature review”. In: (2020). doi: https://doi.org/10.1049/iet-sen.2018.5446
(cit. on p. 17).

[WBLS14] M. Weigold, J. Barzen, F. Leymann, M. Salm. “Data Encoding Patterns for Quantum
Computing”. In: 2014 (cit. on p. 20).

[WKG08] J.-H. Wu, R. Kalyanam, R. Givan. “Planning using Stochastic Enforced Hill-
Climbing”. en. In: (2008). url: https://ipc08.icaps-conference.org/probabilist
ic/wiki/images/9/94/Team6-SEH.pdf (cit. on pp. 57, 59, 61).

[WUKG19] H. Washizaki, H. Uchida, F. Khomh, Y.-G. Guéhéneuc. “Studying software engi-
neering patterns for designing machine learning systems”. In: 2019 (cit. on p. 20).

[XCZ06] Z. Xing, Y. Chen, W. Zhang. “MaxPlan: Optimal Planning by Decomposed Satisfia-
bility and Backward Reduction”. en. In: (2006) (cit. on pp. 57, 59, 60).

[YFG04] S. Yoon, A. Fern, R. Givan. “Learning Reactive Policies for Probabilistic Planning
Domains”. en. In: (2004) (cit. on pp. 56, 59, 61).

[YFG07] S. Yoon, A. Fern, R. Givan. “FF-Replan: a baseline for probabilistic planning”. In:
Proceedings of the Seventeenth International Conference on International Conference
on Automated Planning and Scheduling. ICAPS’07. Place: Providence, Rhode Island,
USA. AAAI Press, 2007, pp. 352–359. isbn: 978-1-57735-344-7 (cit. on pp. 56, 59,
61).

52

https://ipc2023-classical.github.io/abstracts/planner32_dom.pdf
https://ipc2023-classical.github.io/abstracts/planner32_dom.pdf
https://ipc2023-classical.github.io/abstracts/planner14_SymBD_2023.pdf
https://ipc2023-classical.github.io/abstracts/planner13_fts.pdf
https://ipc2023-classical.github.io/abstracts/planner13_fts.pdf
https://www.cs.colostate.edu/~ipc2014/ipcl2014description-llama.pdf
https://doi.org/10.1007/978-3-030-77091-4_12
https://doi.org/10.1007/978-3-030-77091-4_12
https://bitbucket.org/ipc2018-temporal/team2/src/master/
https://doi.org/10.1017/S0269888912000434
https://doi.org/https://doi.org/10.1049/iet-sen.2018.5446
https://ipc08.icaps-conference.org/probabilistic/wiki/images/9/94/Team6-SEH.pdf
https://ipc08.icaps-conference.org/probabilistic/wiki/images/9/94/Team6-SEH.pdf

Bibliography

[YS03] H. L. S. Younes, R. G. Simmons. “VHPOP: Versatile Heuristic Partial Order Planner”.
en. In: Journal of Artificial Intelligence Research 20 (Dec. 2003), pp. 405–430. issn:
1076-9757. doi: 10.1613/jair.1136. url: https://jair.org/index.php/jair/
article/view/10363 (visited on 02/03/2024) (cit. on pp. 56, 59, 60).

All links were last followed on March 05, 2024.

53

https://doi.org/10.1613/jair.1136
https://jair.org/index.php/jair/article/view/10363
https://jair.org/index.php/jair/article/view/10363

A Appendix

In this chapter we document all the data we found presented in this thesis. We will also document
the design patterns with their description and effects.

A.1 Patterns

In this section we will give descriptions and definitions of the found patterns.

Definition 4 (Strategy [Eri95] [TAB+21])
Intent: Define a family of algorithms, encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from clients that use it.
Consequences: Switching models/heuristics or achieving flexibility in model behavior is easier, but
code complexity is increased and overhead possible.

Definition 5 (Proxy [Eri95])
Intent: Provide a surrogate or placeholder for another object to control access to it.
Consequences: Adds indirection which can hide the fact that an object resides in a different address
space or can perform optimizations. It also can reduce the cost of modifying an object and the cost
of copying.

Definition 6 (Factory [Eri95] [TAB+21])
Intent: Define an interface for creating an object, but let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation to subclasses.
Consequences: Simplifies the creation of new objects. By ensuring equal representation of classes
and features in the training data, it aims to achieve equal prediction accuracy across different
categories, which helps with the fairness and equity of AI applications. Drawback is that clients
may need to subclass the creator class to create specific objects, adding complexity to the code.

Definition 7 (State [Eri95])
Intent: Allow an object to alter its behavior when its internal state changes. The object will appear
to change its class.
Consequences: Overall, the State pattern enhances code structure, clarity, and maintainability by
encapsulating state-specific behavior and making state transitions explicit.

Definition 8 (Registry [FRF+02])
Intent: A creational design pattern that provides a centralized point of access to a set of objects.
It essentially acts as a global repository or registry for objects of a particular type within an
application.
Consequences: It serves as a centralized mechanism for accessing and managing objects, allowing
you to locate objects based on certain criteria. But it can lead to tight coupling between components
and make the code less modular if overused.

55

A Appendix

Definition 9 (Iterator [Eri95])
Intent: Provide a way to access the elements of an aggregate object sequentially without exposing
its underlying representation.
Consequences: An iterator keeps track of its own traversal state. Therefore you can have more than
one traversal in progress at once.

Definition 10 (Singleton [Eri95])
Intent: Ensure a class only has one instance, and provide a global point of access to it.
Consequences: The access is controlled to sole instance, we have a reduced name space and it
provides more flexibility than class operations.

Definition 11 (Template Method [Eri95])
Intent: Define the skeleton of an algorithm in an operation, deferring some steps to sub-classes.
Template Method lets subclasses redefine certain steps of an algorithm without changing the
algorithm’s structure.
Consequences: Crucial for reusing code, as they help extract common behavior from classes.

Definition 12 (Command [Eri95])
Intent: Encapsulate a request as an object, thereby letting you parameterize clients with different
requests, queue or log requests, and support undoable operations.
Consequences: The Command pattern simplifies code in several ways: it is reducing dependency,
allows easy manipulation and extension and enhances flexibility,

A.2 Result Tables

The following subsections will depict which AI Planning tool are responsible for the results we can
see in chapter 5.

A.2.1 Release Years

Table A.1: The tools according to the release year
Begin of Table

Year Planning tools
1998 Blackbox [KS00], HSP[Bla98], STAN [LF99]
2000 AltAlt [SNK+01], BDDPlan [HS], FF [Hof01], GRT [RV00], IPP [Koe99], Mips

[EH01], PbR [AK01], PropPlan [Fou00], SHOP [NCLM01], TALplanner [KD00],
TokenPlan [MF01]

2002 LPG [GS02], Simplanner [OSSM01], Stella [SOM01], VHPOP [YS03]
2004 (BFHSP, Crikey, CPT, Fast Diagonally Downward, Fast Downward, HSP*a, LPG-TD,

Macro-FF, Optiplan, SATPLAN, Semsyn, SGPlan, TP-4, YAHSP) [04], UMass
[FH04], Purdue-Humans [YFG04], Probapop [OWL04], NMRDPP [GPT04], mGPT
[BG05], FF-rePlan [YFG07], FCPlanner [KS04], Classy [YFG04], CERT [TF04],
itSimple [VSTC13]

56

A.2 Result Tables

Continuation of Table A.1
Year Planning tools
2006 Conformant-FF [HB06], Fast Downward-sa [Hel06], FDP [GP06], HPlan-P

[BHBM06], IPPLAN-1SC [BKV06], Maxplan [XCZ06], POND [BKS06], YochanPS
[BKD06]

2008 Cabala [ROB08], C3 [LRG08], CFDP [GP08], co-plan [RGP08], CPAh
[TNPS08], DAE-1 [BSSV08], DTG-Plan [HCZ08], 𝐹𝐹 (ℎ𝑎) [KG08b], FSP*-
(RBH/RDH)[TIK08a], Gamer [KE08], HMDPP [KG08c], ℎ𝑠𝑝∗0 [Has08], L2Plan2
[GL08], LAMA [RW08], LPPFF [KG08a], Macro-AltAlt [MN08], PbP [GGSV08],
Plan-A [CLH08], Replica [GFB08], RFF-(BG/PG) [TIK08b], Roller [RJ08], Sayphi-
Rules [BF08], SEH [WKG08], T0 [PG08], Temporal FD [RE08], TLP-GP [Mar08],
Upwards [CS08], Wizard [NLFL08]

2011 (ACOPlan, Arvand, Arvand Herd, ayAlsoPlan, BJOLP, Bootstrap-Planner, BRT,
CBL, CBP, DAE-YAHSP, Fast Downward Stone Soup, Fast-Downward-Autotune-
quality, FD Autotune, Fork Init, Lamar, LM-Cut, LMTD, LPRPG-P, Madagascar,
Merge and Shrink, OALDAEYASHP, Par-LPG, PHSFF, POPF-2, Probe, Randward,
Roamer, SelMax, Sharaabi) [11], Symbolic Perseus [Pou11], Beaver [RJFT11], Glutton
[KDMW12], KAIST AILAB [SKK+08], POND-Hindsight [Ols11], PROST [KE12],
SPUDD [HSHB11]

2012 PDDL Studio [PCBB12]
2014 (AIIPACA, BFS(f), BiFD, DPMPlan, Fast Downward Uniform, Freelunch, hflow,

IBaCoP, ITSAT, Jasper, Mercury, Metis, MIPlan, NuCeLaR, Planets, Rational Lazy
A*, RIDA, RPT, SIW, SPM&S, SymBA*, tBURTON, USE) [14], myPDDL [SK20],
VAL [FLHC14], AGAP [CV14], Ensemble-Roller [RF14], FD Cedalion [SSH14a],
FD SMAC [SSH14b], LIBaCOP [Cen14], LLAMA [VBA14], RollEnt [FC14]

2015 PDDL4J [PF18], Planning.Domains [Mui15], Universal PDDL parser [Jon15]
2018 A2C-Plan [FKIT18], alien [Asa18], Cerberus [Kat18], Complementary-1 [FLB+18],

Conformant-SOGBOFA-B-IPC18 [CK18], CP4TP [FJ18], DecStar [GSH18], Delfi-
1 [KSSS18], FD Remix [Sei18a], FDMS [Sie18], freelunch(-double-relaed)/(-
madagascar) [BG18], fs-blind [FGLR18], Imitation-Net [FIT18a], maplan-1|2 [FK18],
MERWIN [KLMT18], MSP [FBB+18], OLCFF [FH18], OPTIC [CC18], Planning-
PDBs [MEMF18], Prost-DD [GS18], Random-Bandit [FIT18b], saarplan [FGSH18],
Scorpion [Sei18b], Symple [SGM18], TemPorAl [CVC18], TFLAP [VR18]

2020 HyperTensionN [MMS22], LiloTane [Sch20], pyHiPOP [LA20], SIADEX [FVC20]

57

A Appendix

2023 Approimate Novelty Anytime [SLRS21], Aries [Bit23], ASNets 2023 [HTWT23],
CEGAR++ [Kre23], ComplementaryPDB [FEM23], DALAI 2023 [BCEK23], DiSCO
[FG23], DiSProD [CCK23], Dofri [HSS23], Forward Backward Anytime Novelty
Search [SLL+23], FSM [LBP23], FTSPlan [TSTN23], GOFAI [TG23], Grounding
Schematic Representation with GRINGO for Width-based Search [SLR+23], Hapori
[FKS+23], HUZAR [GL23], Levitron [CFH+23a], LNM-Plan [KSB23], LTP [QPF23],
Muninn [SBG23], Novelty-based Progressive Generalized Planner [LLE23], Odin
[DSS23], OMTPlan [Leo23], OpCount4Sat [DPC23], OptiPlan [FFP23], PandaDealer
[OHB23], PANDApro [Hol23a], Powerlifted [CFH+23c], QDom-Lmcut [Tor23a],
Ragnarok [DGH+23], Scorpion Maidu [CFH+23b], Spock [SFS23], SymBD [Tor23b],
Symk [Spe23], TFTM1 [KT23], TOAD [Hol23b], Vanir [Dre23]

End of Table

A.2.2 Tool types

Table A.2: The tools according to their type
Begin of Table

Tool types Planning tools
Planners Approimate Novelty Anytime [SLRS21], Aries [Bit23], ASNets 2023

[HTWT23], C3 [LRG08], CEGAR++ [Kre23], ComplementaryPDB [FEM23],
DALAI 2023 [BCEK23], DiSCO [FG23], DiSProD [CCK23], Dofri [HSS23],
Forward Backward Anytime Novelty Search [SLL+23], FSM [LBP23], FTS-
Plan [TSTN23], GOFAI [TG23], Grounding Schematic Representation with
GRINGO for Width-based Search [SLR+23], Hapori [FKS+23], HUZAR
[GL23], Levitron [CFH+23a], LNM-Plan [KSB23], LTP [QPF23], Muninn
[SBG23], Novelty-based Progressive Generalized Planner [LLE23], Odin
[DSS23], OMTPlan [Leo23], OpCount4Sat [DPC23], OptiPlan [FFP23], Pan-
daDealer [OHB23], PANDApro [Hol23a], Powerlifted [CFH+23c], QDom-
Lmcut [Tor23a], Ragnarok [DGH+23], Scorpion Maidu [CFH+23b], Spock
[SFS23], SymBD [Tor23b], Symk [Spe23], TFTM1 [KT23], TOAD [Hol23b],
Vanir [Dre23], HyperTensionN [MMS22], LiloTane [Sch20], pyHiPOP
[LA20], SIADEX [FVC20], A2C-Plan [FKIT18], alien [Asa18], Cerberus
[Kat18], Complementary-1 [FLB+18], Conformant-SOGBOFA-B-IPC18
[CK18], CP4TP [FJ18], DecStar [GSH18], Delfi-1 [KSSS18], FD Remix
[Sei18a], FDMS [Sie18], freelunch(-double-relaed)/(-madagascar) [BG18],
fs-blind [FGLR18], Imitation-Net [FIT18a], maplan-1|2 [FK18], MER-
WIN [KLMT18], MSP [FBB+18], OLCFF [FH18], OPTIC, Planning-PDBs
[MEMF18], Prost-DD [GS18], Random-Bandit [FIT18b], saarplan [FGSH18],
Scorpion [Sei18b], Symple [SGM18], TemPorAl [CVC18], TFLAP, AGAP
[CV14], Ensemble-Roller [RF14], FD Cedalion [SSH14a], FD SMAC [SSH14b],
LIBaCOP [Cen14], LLAMA [VBA14], RollEnt [FC14]

58

A.2 Result Tables

Continuation of Table A.2
Tool types Planning tools
Planners (AIIPACA, BFS(f), BiFD, DPMPlan, Fast Downward Uniform, Freelunch,

hflow, IBaCoP, ITSAT, Jasper, Mercury, Metis, MIPlan, NuCeLaR, Planets,
Rational Lazy A*, RIDA, RPT, SIW, SPM&S, SymBA*, tBURTON, USE)
[14], (ACOPlan, Arvand, Arvand Herd, ayAlsoPlan, BJOLP, Bootstrap-Planner,
BRT, CBL, CBP, DAE-YAHSP, Fast Downward Stone Soup, Fast-Downward-
Autotune-quality, FD Autotune, Fork Init, Lamar, LM-Cut, LMTD, LPRPG-P,
Madagascar, Merge and Shrink, OALDAEYASHP, Par-LPG, PHSFF, POPF-2,
Probe, Randward, Roamer, SelMax, Sharaabi) [11], Symbolic Perseus [Pou11],
Beaver [RJFT11], Glutton [KDMW12], KAIST AILAB [SKK+08], POND-
Hindsight [Ols11], PROST [KE12], SPUDD [HSHB11], Cabala [ROB08],
CFDP [GP08], co-plan [RGP08], CPAh [TNPS08], DAE-1 [BSSV08], DTG-
Plan [HCZ08], 𝐹𝐹 (ℎ𝑎) [KG08b], FSP*-(RBH/RDH)[TIK08a], Gamer [KE08],
HMDPP [KG08c], ℎ𝑠𝑝∗0 [Has08], L2Plan2 [GL08], LAMA [RW08], LPPFF
[KG08a], Macro-AltAlt [MN08], PbP [GGSV08], Plan-A [CLH08], Replica
[GFB08], RFF-(BG/PG) [TIK08b], Roller [RJ08], Sayphi-Rules [BF08], SEH
[WKG08], T0 [PG08], Temporal FD [RE08], TLP-GP [Mar08], Upwards [CS08],
Wizard [NLFL08], Conformant-FF [HB06], Fast Downward-sa [Hel06], FDP
[GP06], HPlan-P [BHBM06], IPPLAN-1SC [BKV06], Maxplan [XCZ06],
POND [BKS06], YochanPS [BKD06], (BFHSP, Crikey, Fast Diagonally Down-
ward, Fast Downward, HSP*a, LPG-TD, Macro-FF, Optiplan, SATPLAN,
Semsyn, SGPlan, TP-4, YAHSP, CPT) [04], UMass [FH04], Purdue-Humans
[YFG04], Probapop [OWL04], NMRDPP [GPT04], mGPT [BG05], FF-rePlan
[YFG07], FCPlanner [KS04], Classy [YFG04], CERT [TF04], LPG [GS02],
Simplanner [OSSM01], Stella [SOM01], VHPOP [YS03], AltAlt [SNK+01],
BDDPlan [HS], FF [Hof01], GRT [RV00], IPP [Koe99], Mips [EH01], PbR
[AK01], PropPlan [Fou00], SHOP [NCLM01], TALplanner [KD00], TokenPlan
[MF01], Blackbox [KS00], HSP[Bla98], STAN [LF99]

Validator VAL [FLHC14]
Editor itSimple [VSTC13], Planning.Domains [Mui15], myPDDL [SK20], PDDL

Studio [PCBB12]
Parser PDDL4J [PF18], Universal PDDL parser [Jon15]

End of Table

59

A Appendix

A.2.3 Planner types

Table A.3: Planners according to their type
Begin of Table

Planning types Planner
Classical (ACOPlan, Arvand, Arvand Herd, ayAlsoPlan, BJOLP, BRT, CBP, DAE-

YAHSP, Fast Downward Stone Soup, FD Autotune, Fork Init, Lamar,
LM-Cut, LPRPG-P, Madagascar, Merge and Shrink, PHSFF, POPF-2,
Randward, Roamer, Sharaabi, SelMax)[11], AGAP [CV14], (AIIPACA,
BFS(f), BiFD, DPMPlan, Fast Downward Uniform, Freelunch, hflow,
IBaCoP, Jasper, Mercury, Metis, NuCeLaR, Planets, Rational Lazy A*,
RIDA, RPT, SIW, SPM&S, SymBA*, USE) [14], alien [Asa18], AltAlt
[SNK+01], Approimate Novelty Anytime [SLRS21], BDDPlan [HS],
(BFHSP, Fast Diagonally Downward, Fast Downward, LPG-TD, Macro-
FF, SATPLAN, Semsyn, SGPlan, YAHSP) [04], Blackbox [KS00], C3
[LRG08], CEGAR++ [Kre23], Cerberus [Kat18], CFDP [GP08], co-plan
[RGP08], Complementary-1 [FLB+18], ComplementaryPDB [FEM23],
DAE-1 [BSSV08], DALAI 2023 [BCEK23], DecStar [GSH18], Delfi-1
[KSSS18], DiSCO [FG23], Dofri [HSS23], DTG-Plan [HCZ08], Fast
Downward-sa [Hel06], FD Cedalion [SSH14a], FD Remix [Sei18a],
FDMS [Sie18], FDP [GP06], FF [Hof01], 𝐹𝐹 (ℎ𝑎) [KG08b], For-
ward Backward Anytime Novelty Search [SLL+23], freelunch(-double-
relaed)/(-madagascar) [BG18], fs-blind [FGLR18], FSM [LBP23], FTS-
Plan [TSTN23], Gamer [KE08], Grounding Schematic Representation
with GRINGO for Width-based Search [SLR+23], GRT [RV00], Ha-
pori [FKS+23], HPlan-P [BHBM06], HSP [Bla98], ℎ𝑠𝑝∗0 [Has08], IPP
[Koe99], IPPLAN-1SC [BKV06], LAMA [RW08], Levitron [CFH+23a],
maplan-1|2 [FK18], Maxplan [XCZ06], MERWIN [KLMT18], MIPlan
[14], Mips [EH01], MSP [FBB+18], Odin [DSS23], OLCFF [FH18], Op-
Count4Sat [DPC23], Optiplan [FFP23], PbR [AK01], Plan-A [CLH08],
Planning-PDBs [MEMF18], Powerlifted [CFH+23c], Probe [11], Prop-
Plan [Fou00], QDom-Lmcut [Tor23a], Ragnarok [DGH+23], saarplan
[FGSH18], Scorpion [Sei18b], Scorpion Maidu [CFH+23b], SHOP
[NCLM01], Spock [SFS23], STAN [LF99], Stella [SOM01], SymBD
[Tor23b], Symk [Spe23], Symple [SGM18], TFTM1 [KT23], TokenPlan
[MF01], Upwards [CS08], YochanPS [BKD06]

HTN Aries [Bit23], HyperTensionN [MMS22], LiloTane [Sch20], LTP
[QPF23], OptiPlan [FFP23], PandaDealer [OHB23], PANDApro
[Hol23a], pyHiPOP [LA20], SIADEX [FVC20], TOAD [Hol23b], VH-
POP [YS03]

Numeric LNM-Plan [KSB23], OMTPlan [Leo23]
Non-deterministic Conformant-FF [HB06], CPAh [TNPS08], Gamer [KE08], POND

[BKS06], T0 [PG08]

60

A.2 Result Tables

Continuation of Table A.3
Planning types Planner

Temporal CP4TP [FJ18], DAE-1 [BSSV08], OPTIC [CC18], (CPT, SGPlan, Crikey,
HSP*a, TP-4) [04], (DAE-YAHSP, LMTD, POPF-2, Sharaabi) [11], TLP-
GP [Mar08], (ITSAT, tBURTON) [14], TemPorAl [CVC18], Temporal
FD [RE08], TFLAP [VR18], TALplanner [KD00]

Learning AGAP [CV14], ASNets 2023 [HTWT23], Cabala [ROB08], DAE-1
[BSSV08], Ensemble-Roller [RF14], FD SMAC [SSH14b], GOFAI
[TG23], HUZAR [GL23], L2Plan2 [GL08], LIBaCOP [Cen14], LLAMA
[VBA14], Macro-AltAlt [MN08], MIPlan [14], Muninn [SBG23],
Novelty-based Progressive Generalized Planner [LLE23], (Bootstrap-
Planner, CBL, Fast-Downward-Autotune-quality, OALDAEYASHP, Par-
LPG) [11], PbP [GGSV08], Replica [GFB08], RollEnt [FC14], Roller
[RJ08], Sayphi-Rules [BF08], Vanir [Dre23], Wizard [NLFL08]

Probabilistic A2C-Plan [FKIT18], Beaver [RJFT11], CERT [TF04], Classy [YFG04],
Conformant-SOGBOFA-B-IPC18 [CK18], DiSProD [CCK23], FCPlan-
ner [KS04], FF-rePlan [YFG07], FSP*-(RBH/RDH) [TIK08a], Glutton
[KDMW12], HMDPP [KG08c], Imitation-Net [FIT18a], KAIST AILAB
[SKK+08], LPPFF [KG08a], mGPT [BG05], NMRDPP [GPT04], POND-
Hindsight [Ols11], Probapop [OWL04], PROST [KE12], Prost-DD
[GS18], Purdue-Humans [YFG04], Random-Bandit [FIT18b], RFF-
(BG/PG) [TIK08b], SEH [WKG08], SPUDD [HSHB11], Symbolic
Perseus [Pou11], UMass [FH04]

End of Table

A.2.4 Numbers of found patterns per planner type

Table A.4: Patterns found per planner type
Begin of Table

Planning types Planner
HTN pyHiPOP [LA20], TOAD [Hol23b]

Numeric LNM-Plan [KSB23], OMTPlan [Leo23]
Non-deterministic CPAh [TNPS08]

Temporal CP4TP [FJ18], DAE-1 [BSSV08], OPTIC [CC18], TemPorAl [CVC18],
Temporal FD [RE08]

Learning AGAP [CV14], (Bootstrap-Planner, Fast-Downward-Autotune-quality,
Par-LPG) [11], DAE-1 [BSSV08], FD SMAC [SSH14b], GOFAI
[TG23], HUZAR [GL23], L2Plan2 [GL08], LIBaCOP [Cen14], LLAMA
[VBA14], Muninn [SBG23], PbP [GGSV08], Vanir [Dre23]

Probabilistic Imitation-Net [FIT18a], PROST [KE12], Prost-DD [GS18], Random-
Bandit [FIT18b], Symbolic Perseus [Pou11]

61

A Appendix

Continuation of Table A.4
Planning types Planner

Classical (AIIPACA, BiFD, Fast Downward Uniform, IBaCoP, Jasper, Mercury,
Metis, Rational Lazy A*) [14], Approimate Novelty Anytime [SLRS21],
(Arvand, Arvand Herd, BJOLP, BRT, Fast Downward Stone Soup,
FD Autotune, Lamar, Merge and Shrink, Randward, Roamer, Sel-
Max) [11], CEGAR++ [Kre23], Cerberus [Kat18], Complementary-1
[FLB+18], ComplementaryPDB [FEM23], DAE-1 [BSSV08], DALAI
2023 [BCEK23], Delfi-1 [KSSS18], DiSCO [FG23], Dofri [HSS23],
DTG-Plan [HCZ08], (Fast Diagonally Downward, Fast Downward)
[04], FD Remix [Sei18a], FDMS [Sie18], fs-blind [FGLR18], FSM
[LBP23], FTSPlan [TSTN23], Hapori [FKS+23], LAMA [RW08], Levit-
ron [CFH+23a], MERWIN [KLMT18], MSP [FBB+18], Odin [DSS23],
OLCFF [FH18], OpCount4Sat [DPC23], Powerlifted [CFH+23c], QDom-
Lmcut [Tor23a], Ragnarok [DGH+23], saarplan [FGSH18], Scorpion
[Sei18b], Scorpion Maidu [CFH+23b], Spock [SFS23], SymBD [Tor23b],
Symk [Spe23], Symple [SGM18], TFTM1 [KT23]

End of Table

A.2.5 Patterns

Table A.5: Patterns found per planner type
Begin of Table

Patterns Planner
Proxy (Arvand, Arvand Herd, BJOLP, Bootstrap-Planner, BRT, Lamar, Roamer,

Fast Downward Stone Soup, Fast-Downward-Autotune-quality, Merge and
Shrink, Randward, SelMax, FD Autotune) [11], (BiFD, Fast Downward
Uniform, Mercury, Metis, Rational Lazy A*, Jasper) [14], CEGAR++
[Kre23], Cerberus [Kat18], Complementary-1 [FLB+18], Complemen-
taryPDB [FEM23], CP4TP [FJ18], DALAI 2023 [BCEK23], Delfi-1
[KSSS18], DiSCO [FG23], Dofri [HSS23], (Fast Diagonally Downward,
Fast Downward) [04], FD Remix [Sei18a], FD SMAC [SSH14b], FDMS
[Sie18], FSM [LBP23], FTSPlan [TSTN23], GOFAI [TG23], HUZAR
[GL23], LAMA [RW08], Levitron [CFH+23a], LLAMA [VBA14], LNM-
Plan [KSB23], MERWIN [KLMT18], MSP [FBB+18], Odin [DSS23],
OLCFF [FH18], OMTPlan [Leo23], OpCount4Sat [DPC23], Powerlifted
[CFH+23c], QDom-Lmcut [Tor23a], Ragnarok [DGH+23], saarplan
[FGSH18], Scorpion [Sei18b], Scorpion Maidu [CFH+23b], Spock
[SFS23], SymBD [Tor23b], Symk [Spe23], Symple [SGM18], TemPorAl
[CVC18], Temporal FD [RE08], TFTM1 [KT23], TOAD [Hol23b], Vanir
[Dre23]

Registry DiSCO [FG23], Dofri [HSS23], FSM [LBP23], LNM-Plan [KSB23],
SymBD [Tor23b], Symk [Spe23], Symple [SGM18], TFTM1 [KT23]

62

A.2 Result Tables

Continuation of Table A.5
Patterns Planner
Iterator Symbolic Perseus [Pou11], VAL [FLHC14]

Singleton CPAh [TNPS08]
Command DiSCO [FG23]

Factory Universal PDDL parser [Jon15], VAL [FLHC14], Vanir [Dre23],
TOAD [Hol23b], Temporal FD [RE08], TemPorAl [CVC18], Symple
[SGM18], Symk [Spe23], SymBD [Tor23b], Spock [SFS23], Scorpion
Maidu [CFH+23b], Scorpion [Sei18b], saarplan [FGSH18], QDom-
Lmcut [Tor23a], Powerlifted [CFH+23c], OPTIC [CC18], OpCount4Sat
[DPC23], OLCFF [FH18], Odin [DSS23], MSP [FBB+18], MER-
WIN [KLMT18], LNM-Plan [KSB23], LLAMA [VBA14], Levitron
[CFH+23a], LAMA [RW08], HUZAR [GL23], GOFAI [TG23], FTSPlan
[TSTN23], FSM [LBP23], fs-blind [FGLR18], FDMS [Sie18], FD SMAC
[SSH14b], (Fast Downward, Fast Diagonally Downward) [04], Dofri
[HSS23], DiSCO [FG23], Delfi-1 [KSSS18], DALAI 2023 [BCEK23],
DAE-1 [BSSV08], CP4TP [FJ18], Complementary-1 [FLB+18], Cer-
berus [Kat18], CEGAR++ [Kre23], (BiFD, Fast Downward Uniform,
Mercury, Metis, Rational Lazy A*, Jasper) [14], (Arvand Herd, Arvand,
BJOLP, BRT, Bootstrap-Planner, Lamar, Roamer, Fast Downward Stone
Soup, Fast-Downward-Autotune-quality, Merge and Shrink, Randward,
SelMax, FD Autotune) [11]

None A2C-Plan, ACOPlan, alien, AltAlt, Aries, ASNets 2023, ayAlsoPlan,
BDDPlan, Beaver, BFHSP, BFS(f), Blackbox, C3, Cabala, CBL, CBP,
CERT, CFDP, Classy, co-plan, Conformant-FF, Conformant-SOGBOFA-
B-IPC18, CPT, Crikey, DAE-YAHSP, DecStar, DiSProD, DPMPlan, Fast
Downward-sa, FCPlanner, FD Cedalion, FDP, FF, FF-rePlan, 𝐹𝐹 (ℎ𝑎),
Fork Init, Forward Backward Anytime Novelty Search, Freelunch,
freelunch-madagascar, FSP*-(RBH/RDH), Gamer, Glutton, Ground-
ing Schematic Representation with GRINGO for Width-based Search,
GRT, hflow, HMDPP, HPlan-P, HSP, HSP*a, ℎ𝑠𝑝∗0, HyperTensionN, IPP,
IPPLAN-1SC, ITSAT, KAIST AILAB, LiloTane, LM-Cut, LMTD, LPG,
LPG-TD, LPPFF, LPRPG-P, LTP, Macro-AltAlt, Macro-FF, Madagascar,
maplan-1|2, Maxplan, mGPT, MIPlan, Mips, NMRDPP, Novelty-based
Progressive Generalized Planner, NuCeLaR, OALDAEYASHP, Opti-
plan, OptiPlan, PandaDealer, PANDApro, PbR, PHSFF, Plan-A, Planets,
Planning-PDBs, POND, POND-Hindsight, POPF-2, Probapop, Probe,
PropPlan, Purdue-Humans, Replica, RFF-(BG/PG), RIDA, RollEnt,
Roller, RPT, SATPLAN, Sayphi-Rules, SEH, Semsyn, SGPlan, Sharaabi,
SHOP, SIADEX, Simplanner, SIW, SPM&S, SPUDD, STAN, Stella,
SymBA*, T0, TALplanner, tBURTON, TFLAP, TLP-GP, TokenPlan,
TP-4, UMass, Upwards, USE, VHPOP, Wizard, YAHSP, YochanPS,
Planning.Domains, itSimple, myPDDL, PDDL Studio, PDDL4J

Strategy (AIIPACA, IBaCoP) [14], Approimate Novelty Anytime [SLRS21], Delfi-
1 [KSSS18], Hapori [FKS+23], L2Plan2 [GL08], LIBaCOP [Cen14],
MSP [FBB+18], (AGAP, Par-LPG) [11], PbP [GGSV08]

63

A Appendix

Continuation of Table A.5
Patterns Planner

Template Method DALAI 2023 [BCEK23], HUZAR [GL23], Imitation-Net [FIT18a],
Jasper [14], LAMA [RW08], (Arvand Herd, Lamar, Roamer) [11],
Levitron [CFH+23a], LLAMA [VBA14], MERWIN [KLMT18], MSP
[FBB+18], Muninn [SBG23], OMTPlan [Leo23], PROST [KE12], py-
HiPOP [LA20]

State DTG-Plan, PROST [KE12], Prost-DD [GS18], Ragnarok [DGH+23],
Random-Bandit [FIT18b], SymBD [Tor23b], Symk [Spe23], Symple
[SGM18], TemPorAl [CVC18], TFTM1 [KT23]

End of Table

A.2.6 Pattern combinations

Table A.6: Patterns found per planner type
Begin of Table

Pattern Combinations Planner
Proxy, Factory (Arvand, BJOLP, Bootstrap-Planner, BRT, Fast Downward Stone

Soup, Fast-Downward-Autotune-quality, Merge and Shrink, Rand-
ward, SelMax, FD Autotune) [11], (BiFD, Fast Downward Uniform,
Mercury, Metis, Rational Lazy A*) [14], CEGAR++ [Kre23],
Cerberus [Kat18], Complementary-1 [FLB+18], CP4TP [FJ18],
(Fast Diagonally Downward, Fast Downward) [04], FD SMAC
[SSH14b], FDMS [Sie18], FTSPlan [TSTN23], GOFAI [TG23],
Odin [DSS23], OLCFF [FH18], OpCount4Sat [DPC23], Power-
lifted [CFH+23c], QDom-Lmcut [Tor23a], saarplan [FGSH18],
Scorpion [Sei18b], Scorpion Maidu [CFH+23b], Spock [SFS23],
Temporal FD [RE08], TOAD [Hol23b], Vanir [Dre23]

Proxy, Factory, Template (Arvand Herd, Lamar, Roamer) [11], DALAI 2023 [BCEK23],
HUZAR [GL23], Jasper [14], LAMA [RW08], Levitron
[CFH+23a], LLAMA [VBA14], MERWIN [KLMT18]

Proxy, Factory, State, Reg-
istry

SymBD [Tor23b], Symk [Spe23], Symple [SGM18], TFTM1
[KT23]

Proxy, Factory, Registry Dofri [HSS23], FSM [LBP23], LNM-Plan [KSB23]
Proxy, Factory, Strategy Delfi-1 [KSSS18]
Proxy, Factory, Registry,
Command

DiSCO [FG23]

Proxy, Strategy, Factory,
Template

MSP [FBB+18]

Proxy, Template OMTPlan [Leo23]
State, Template PROST [KE12]
Proxy, State Ragnarok [DGH+23]
Factory, Iterator VAL [FLHC14]

64

Continuation of Table A.6
Pattern Combinations Planner
Proxy, Factory, State TemPorAl [CVC18]

End of Table

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Background Information
	2.1 AI Planning
	2.2 Design Patterns

	3 Related Work
	3.1 AI Planning
	3.2 Works in the broader AI domain
	3.3 Works outside the AI domain

	4 Methodology
	4.1 Gathering Process
	4.2 Design Pattern Identification

	5 Results
	5.1 General
	5.2 Patterns

	6 Discussion
	6.1 General observations
	6.2 Patterns
	6.3 Validity threats

	7 Conclusion
	7.1 Outlook

	Bibliography
	A Appendix
	A.1 Patterns
	A.2 Result Tables

