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Abstract

As eye-tracking technology gains prominent attention in Information Visualizations
(InfoVis) research, the need for high accuracy and precision in eye-tracking data becomes
increasingly critical. Gaze estimation error, in the context of eye-tracking, refers to
the natural discrepancy between the predicted gaze location and the actual position.
Unlike interactions involving physical contact, the visual focus can only be determined
through estimation, making gaze estimation errors inevitable. To minimize these errors,
calibration is typically performed, where users are asked to look at five or more points
on the screen to establish baseline data for ground truth. All following eye-tracking
experiments are then based on this calibration data. However, there are situations where
calibration is not practical, such as in some remote or online studies or during dynamic
activities, where the calibration process cannot be reliably controlled. To deal with
this challenge, this paper proposes VisCaiNet, a deep-learning model that predicts gaze
estimation error through Area of Interest (AOI) based patterns, using duration, scanpath,
scanpath length, and Hit Any AOI Rate (HAAR) as the input features, with calibration
error as the output. It can effectively discern between high and low-quality gaze data
based on the predefined calibration criteria, offering a solution to the challenges posed
by variable conditions and unfeasible calibration situations.
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1 Introduction

Eye-tracking involves using cameras or other sensing devices to detect eye move-
ments[HNA+11]. Initially, the technology was limited to approximately identifying
the direction and position of gaze[Bus35]. With the progress of sensor technology,
subtle differences in the pupil can now be observed, making it possible to develop high-
performance eye-tracking devices. As a result, the implementation of eye-tracking has
become prevalent in the field of human-computer interaction[JK03] [MB14], particularly
in the study of human interaction with information visualizations (InfoVis)[GH11].

Nevertheless, eye-tracking in information visualization studies requires precise and accu-
rate measurement[FWT+17] of eye movements. Gaze estimation error, in the context of
eye-tracking, indicates the natural discrepancy between the predicted gaze location and
its actual position [BDB16]. Constrained by the quality of the eye-tracker, the different
physical conditions of test subjects, and the varying experimental conditions[EGIK19],
the gaze estimation error can not be eliminated.

Currently, researchers are solving the inherent limitations of gaze estimation across two
dimensions: geometrical or cognitive, one-time or real-time[WZZ+21]. The geometri-
cal dimension focuses on predicting the errors during the process of gaze estimation,
considering factors that may cause the deviation, for instance, the offset accuracy or
the algorithms used for mapping positions to coordinates on the screen. On the cog-
nitive side, there is an emphasis on understanding how human perception influences
gaze estimation. One-time means that calibration is performed once before the ex-
periment starts. In contrast, real-time methods entail continuous measurement and
correction throughout the experiment, sometimes even calibration-free models[SB15]
are implemented.

However, most researches concentrate on dealing with the objective factors by simulating
environmental conditions, regardless of whether the calibration is employed one-time,
or continuously. Nevertheless, they neglect the influence of objective human cognition
on gaze estimation. Indeed, there is a limited amount of research in this domain,
particularly the studies that integrate AOIs.

In practice, InfoVis are designed for information retrieval. Human attention is generally
not attracted to blank areas of InfoVis unless influenced by daydreaming or calibration
failure. Therefore, analyzing the AOIs within InfoVis proves to be a valuable endeavor.
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1 Introduction

This paper is grounded on the foundational hypothesis that human attention is naturally
captured by the most informative segments of visualization, as proposed by Itti, Koch,
and Niebur [IKN98]. Conversely, areas with low saliency are often unnoticed [MHD+17].
This research aims to explore the phenomenon by asking whether gaze estimation errors
can be predicted using metrics that integrate AOI data through post-hoc analysis.

The metrics employed are commonly observed gaze patterns in eye tracking, including
duration, scanpath, and scanpath length. The HAAR, which measures the proportion of
fixations that are included by one or more AOI [WKB+22], is additionally incorporated
as the input data. This metric serves as an indicator of the relationship between gaze
data and AOIs, helping to identify acceptable and unacceptable calibration errors. The
threshold used to classify calibration errors is 0.5◦ to measure the performance of the
model with small calibration errors[FGK+22].

The methodology begins with processing the original data from the VisRecall++
Dataset[WJH+24], extracting the input features and output calibration errors. Then a
detailed data analysis is performed to measure the relationships between AOI related
metrics and calibration error, confirming that human gaze interests influence the final
gaze estimation. Subsequently, a neural network (VisCaliNet) that combines regression
and classification tasks to predict acceptable and unacceptable calibration errors is
introduced. In the evaluation phase, ablated versions of VisCaliNet are implemented.
The comparison among these models uses metrics such as accuracy, precision, recall,
and F1 score.

The significance of the study is highlighted in several aspects, including the identification
of data quality in open-source datasets, the exploration of the impact of human cognitive
factors on gaze estimation, and the development of an efficient model.

The thesis is structured as follows:

Chapter 2 – Literature Review offers a summary of related works and establishes the
theoretical foundation for the research.

Chapter 3 – Data Processing and Analysis processes the raw data, extracts relevant
input features, and analyzes the relationships between gaze estimation and AOIs.

Chapter 4 – VisCaliNet describes the design intentions and the architecture of the
VisCaliNet model and explains the functionality and structure of each component
within the neural network in detail.

Chapter 5 – Experiment Results presents the outcomes of the study and evaluates
the performance of different ablated models, providing elaborate analysis and
interpretation of the results.
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Chapter 6 – Discussion and Future Work discusses the significance of the findings, ad-
dresses the limitations of the current study, and outlines potential future research.

Chapter 7 – Conclusion concludes the thesis, summarize the findings and contribu-
tions.
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2 Literature Review

This research is based on the following theoretical areas: 1)the formation and prediction
of gaze estimation error, 2) the evaluation of AOIs within InfoVis through gaze data, and
3) the application of AOIs in predicting gaze estimation error. This chapter presents a
review of the literature on these research domains.

2.1 Gaze Estimation Error

Gaze estimation refers to the scientific process of predicting the focal point of the human
gaze. This process requires two cameras: the scene camera and the eye camera. The
scene camera, usually located in the head-mount device, captures the Field of View
(FOV) of the viewer, while the eye camera tracks the viewer’s pupil movements [KPB14].
Gaze estimation aims to integrate the data from these two cameras to estimate an
approximate location of the gaze point.

Gaze estimation error, in this context, denotes the intrinsic difference between the
estimated gaze location and the actual gaze position [BDB16]. The gaze estimation
error is typically measured from the perspective of accuracy and precision [HNA+11] of
gaze direction and gaze point[PSMJ22]. Because of subjective and objective limitations,
it is impossible to eliminate gaze estimation errors[EGIK19]. Therefore, the optimal
strategy is to identify and understand the causes of these errors and apply compensatory
measures to reduce them to the lowest extent.

Researchers deal with this problem from two perspectives: whether the data originates
from geometrical or cognitive sources, and whether the calibration phase is active or
passive. Geometrical sources of eye-tracking data include isocentric patterns [VG11],
head pose[KKL+16] and 3D face structures [XHL16], while cognitive sources involve
the similarity of human gaze patterns[AGVG17]and saliency map[SMS10][SMS12].
The calibration phase is considered active when conducting methods like nine-point
calibration before the experiment[CS20][LSP19], whereas passive calibration uses
comprehensive techniques to estimate calibration errors[AO14].
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2 Literature Review

The most widely used and straightforward approach for simulating gaze estimation
error is physiological data resources with active calibration. Drewes, Masson, and
Montagnini [DMM12] studies how pupil size affects gaze estimation error and introduces
compensational methods for pupil’s dilation and constriction situations. Nyström et al.
[NAHV13] dedicate to the influence of eye physiology of the viewer on the accuracy of
eye-tracking data. Barz, Bulling, and Daiber [BBD15] concentrates on the gaze mapping
algorithm, presenting a model that simulates the process of correlating the position
of the pupil position with the coordinate system on the screen and predicts the gaze
estimation error.

Some approaches use physiological data resources with passive calibration to predict and
correct gaze estimation errors. These methods either calculate the disparity between the
optical and visual axes as measured from the different camera angles [ME10a][ME10b]
to infer gaze position and direction, or integrate human eye data with other sensory
information, such as speech [SVS03] or head poses [SYFN13], for an extensive estima-
tion.

Other approaches focus on the gaze patterns related to human attention. Nakano and
Ishii [NI10] integrate gaze direction with conversational agents to ascertain whether
the user is focused on the subject being discussed. Huang et al. [HKN+16] introduce
a technique that uses user interaction behaviors for automatic calibration. Bulling,
Weichel, and Gellersen [BWG13] passively monitor the user’s eye movements and
gathers environmental factors to determine the user’s status. Currently, such studies are
somewhat limited in number and mainly serve as supplementary methods for predicting
gaze estimation errors.

2.2 Gaze-based AOIs evaluation

AOI refers to Area of Interest. It is typically demonstrated as a rectangle or polygon
within a visualization[DD17], which often includes elements like titles, legends, or
any area containing semantic information. Traditionally, AOIs were predefined by
skilled data analysts. However, with the development of AI algorithms, this field has
seen progress in automatic AOI detection. For instance, Fuhl et al. [FKSK18] try to
automatically generate AOIs based on saliency and Fichtel et al. [FLP+19] attempt to
dynamically identify AOIs from videos.

Gaze-based AOI evaluation combines gaze patterns with AOIs to understand users’
gaze behavior. Blascheck et al. [BKR+14] provide a comprehensive summary of AOI-
based visualization studies, classifying the methods of integrating gaze patterns with
AOI. Additionally, Blascheck, Raschke, and Ertl [BRE13] use heatmaps to illustrate
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2.3 AOIs in Gaze Estimation Error Prediction

the transitions of gaze data between AOIs, intending to understand the shifts of user
attention. Drusch, Bastien, and Paris [DBP14] have introduced an innovative approach
for analyzing the dynamics of AOIs on web pages.

A growing number of researchers are focusing on the AOI in terms of their memorability.
Borkin et al. [BVB+13] conduct an experiment containing 2070 visualizations, compar-
ing their memorability to identify features of InfoVis that are easy to remember. Borkin
et al. [BBK+15] analyze the eye movements of 33 participants and perform follow-up
interviews, identifying the AOIs that attract the most attention and are most memorable.
Similarly, Wang et al. [WJBB22]introduce VisRecall and VisRecall++[WJH+24], a
model and advanced model designed to predict the recallability of various types of
visualizations, such as bar charts, scatter plots, pie charts, and line graphs. These models
use AOIs and correspondent transferred scanpaths to enhance understanding of how the
type and layout of visualizations influence participants’ memories.

AOIs also provide instructions for visualization design. Blascheck et al. [BKR+17]
summarize the development of AOI-based visualizations, discussing their implications
and applications. Orquin, Ashby, and Clarke [OAC16] investigate the problem of
overlapping AOIs, and propose an optimal size for AOIs in visualization design to
enhance clarity and usability. Additionally, Byelas and Telea [BT06] concentrate on
the distribution of AOIs within the field of software architecture representation. Wang
et al. [WHZ+18] introduce an algorithm capable of automatically selecting between
line graphs and scatter plots for data visualization. Hu et al. [HBL+19] study further,
they propose a model that can directly recommend visualizations with well-organized
layouts of AOI according to the characteristics of the data.

2.3 AOIs in Gaze Estimation Error Prediction

As mentioned in the previous section, gaze estimation is primarily based on eye phys-
iology, and some approaches integrate human cognitive factors such as attention
[Bis+21][HZZ+22]. Few methods incorporate AOI into predicting gaze estimation
errors.

However, some studies have paved the way for subsequent research in this area. For
instance, Wang et al. [WKB+22] introduce the Hit Any AOI Rate(HAAR) and Flipping
Candidate Rate (FCR) to examine gaze uncertainty from the perspective of AOIs. HAAR
indicates the proportion of fixations that are included by at least one AOIs, while FCR
refers to the likelihood of fixations landing on overlapping AOIs. Both metrics have
proven effective in quantifying gaze uncertainty. In this research, HAAR will be used as
an input feature in the neural network.
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2 Literature Review

Other researchers do not specifically study the use of AOIs in predicting gaze estimation
errors in InfoVis, but they employ similar concepts of human gaze attention, such as the
saliency of images, to estimate gaze direction and points. Sugano, Matsushita, and Sato
[SMS12] extract saliencies from various users and transform them into a saliency map.
They allocate probabilities to the original visualization based on saliency distributions
to estimate the gaze point. Valenti, Sebe, and Gevers [VSG12] develop a system that
can adjust calibration errors by analyzing AOIs. It can improve the performance of both
head pose and eye gaze trackers. Chang et al. [CMQ+19]introduce SalGaze, which
focuses on personalized gaze estimation using saliency. These studies provide valuable
experiences of using AOIs to estimate gaze points effectively.
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3 Data Processing and Analysis

In this chapter, a detailed overview of the dataset will be provided, along with an
explanation of the data collection methods used in the original dataset. Subsequently,
data processing techniques such as ID map construction, fixation mapping, HAAR
calculation, calibration error extraction, and data preparation for the neural network
will be introduced to ensure the data is optimally prepared for modeling. Following these
preparations, a comprehensive statistical analysis of essential metrics will be performed
and the validation of the distribution across both the training and testing datasets will
be examined.

Figure 3.1: Numbers of Different Visualization Types
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3 Data Processing and Analysis

3.1 Dataset Overview

In this research, the VisRecall++ dataset [WJH+24] serves as the foundational dataset
due to its inclusion of gaze patterns associated with AOI, which are crucial for the
subsequent analysis and modeling. This dataset was collected from forty participants
(15 females and 25 males) from a local university. Each participant was equipped with
an Eyelink-1000 Plus eye tracker and tasked with viewing 200 visualizations.

Visualizations as Stimuli. To emphasize the task-oriented attributes of gaze patterns
and enhance the impact of human attention on gaze estimation, the VisRecall++
dataset adopts various visualizations as stimuli. The dataset contains 200 information
visualizations in total, including 56 bar charts, 45 line graphs, 27 scatter plots, 22 pie
charts, 25 tables, and 25 other complex visualizations.

AOIs Identification. The Visrecall++ dataset includes AOIs that have been pre-identified
by experienced data analysts for each visualization. These AOIs are divided into eleven
categories: annotation, axis, graphical elements, legend, object, title, paragraph, source,
other texts, data, and additional unspecified categories. This detailed categorization
helps to analyze gaze patterns across different visual elements more effectively.

Eye Tracking Data Collection. The visualizations are randomly divided into 10 groups,
each containing 20 visualizations. Participants are shown 2 to 6 groups of visualizations
in total. The eye-tracking data collection begins with a calibration phase to ensure
precise tracking of eye movements. Once calibrated, participants are assigned to view
the visualizations while engaging in tasks specifically designed to provoke cognitive
and visual responses. Throughout these sessions, fixation points and viewing dura-
tions are recorded, enabling the caption of detailed gaze patterns across all tasks and
visualizations.

3.2 Data Processing

ID map construction. The raw fixation data includes the x and y coordinates and the
duration of each fixation. Experienced data analysts have identified visualizations with
AOIs, recording the coordinates of the AOI corners. Initially, a matrix termed "ID map" is
constructed for each visualization. The size of the matrix is equal to the pixel dimensions
of the image. The value within the matrix indicates the AOI to which that pixel belongs.
For instance, a value of "idmap[6][6] = 2" indicates that the pixel at position (6,6) of
the matrix is part of an AOI that is a graphical element.

18



3.2 Data Processing

Figure 3.2: Example of a visualization annotated with AOIs which includes legend, title,
source, data, and descriptive paragraph. Each AOI is marked with different
colors.

Fixation Mapping. Using the coordinates of each fixation in the raw data, the fixations
are mapped to the ID map, generating a sequence of numbers corresponding to the AOIs.
These numbers are then converted to a sequential string that represents the participant’s
scanpath across the AOIs. For instance, the number 1 is converted to "X", symbolizing
"axis", the number 2 to "G", representing "graphical elements", and the number 6 to "P"
for "paragraph". Each token within the string indicates an AOI, with the total length of
the string equal to the scanpath length.

Calculating HAAR. HIT1 and OFF2 are initially extracted from the scanpaths string.
Since "Z" represented the blank areas within the visualization, counting the occurrence
of "Z" in the scanpath string is necessary to calculate the final OFF. The HIT value
corresponds to the total length of the string minus the OFF value. Following the formula
provided by Wang et al. [WKB+22], the HAAR equals HIT divided by OFF plus HIT,
therefore the final HAAR value is calculated.

1the count of fixations detected within at least one AOI[WKB+22]
2the count of fixations located in the white spaces [WKB+22]
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3 Data Processing and Analysis

Figure 3.3: An example of information visualization marked with scanpath and dura-
tion. The purple lines represent the scanpaths: the fixation begins at the
legend, moves up to the title, then returns to the legend, and finally shifts
to the paragraph and source. The data in this situation is unnoticed. The
corresponding transformed scanpath string was "LLTTTTTTTTZTTTTTTTLL-
LLLZZSSZZSSZZSZ". In this visualization, the duration of each fixation was
represented with red circles, with larger circles indicating a longer duration.

HAAR = HIT

OFF + HIT

Equation 3.2:Equation of Calculating HAAR [WKB+22]

Extracting Calibration Error. Calibration error data is stored within the ".asc" files,
which contain all eye-tracking data for each participant. Typically, each participant
took calibration once, viewing multiple calibration points. From this data, the average
calibration error for each eye is extracted, and the lower value from the left and right
eyes is selected to represent the participant’s ultimate calibration error. This method
ensures that the data for the later analysis is accurate.

Preparing Data for Neuron Network. Additional features for the neural network are
then extracted, including the scanpath length and duration. These features, along with
the scanpath string, HAAR, and calibration error, are mapped to a ".csv" file according
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3.3 Data Analysis

to the participant ID and the name of the visualization. Given the different ranges of
calibration error, HAAR, and scanpath length, the scanpath lengths are normalized to a
range from 0 to 1. Calibration error and HAAR are not normalized because their values
are within the range of 0 to 1. Additionally, the duration for each participant on each
visualization is stored as a list of numbers. To perform matrix operations in subsequent
networks, the longest list of durations is identified and the length of all other lists is
resized to the length 57 through zero padding method[ASR+22].

3.3 Data Analysis

(a) HAAR (b) Normalized Scanpath Length

(C) Calibration Error

Figure 3.4: Distribution of HAAR, normalized scanpath length, and calibration error

HAAR and calibration error. In the VisRecall++ dataset, calibration errors range from
0.200 to 0.980, with an average of 0.468 and a variance of 0.025. This distribution
shows a left-skewed tendency, indicating that most data points are concentrated at the
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3 Data Processing and Analysis

Ground Truth Train Dataset Test Dataset

Mean 0.468 0.468 0.468
Median 0.43 0.43 0.43
Variance 0.0255 0.0257 0.0249

Table 3.1: Mean, Median, Variance of the train and test dataset

lower end of the range. Conversely, the HAAR exhibit a right-skewed distribution with a
mean of 0.823, suggesting that most fixations occur within the AOIs. This observation
aligns with the initial hypothesis that human attention is drawn to the most informative
parts of a visualization Itti, Koch, and Niebur [IKN98]. The minimum HAAR value is
0.000, potentially indicating the instances of gaze estimation failure. The variance of
HAAR is 0.021, showing consistency in distribution comparable to that of calibration
errors.

Scanpath Length. Additionally, the normalized scanpath length has a right-skewed
distribution, with a mean of 0.556 and a variance of 0.025, identical to that of the
calibration error. Notably, there are two instances where the minimum normalized
scanpath length is 0. The zero instances correspond to a value of 1 when transforming
back to unnormalized scanpath length. These instances have a duration of 190 and
136 seconds respectively. The scanpath string related to these two instances is labeled
"Z", referring to non-informative areas. The observation suggests potential calibration
failures, as extended durations in such areas are unusual for actively engaged users.

Duration. As shown in Figure 3.3, the size of each red circle visually represents the
fixation duration, with larger circles indicating longer fixation durations. Empirical
observations reveal that the total duration of fixations within AOIs significantly exceeds
that in non-informative blank spaces. This phenomenon illustrates that the engagement
of participants is led to areas with information, highlighting the effectiveness of visual
stimuli in guiding the attention of viewers.

Training and Testing Dataset Statistics. The entire dataset is split into training and
testing subsets at proportions of 80% and 20%. To ensure the reproducibility of the
results, a manual seed of 1 is set in this research. The mean and variance of the training
data are 0.468 and 0.0257, while for the test data, these figures are 0.468 and 0.0249,
both closely identical to the statistics of the overall dataset. Notably, the median for
the training data, testing data, and the entire dataset is consistently 0.43, indicating a
left-skewed distribution across all subsets.
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3.3 Data Analysis

(a) Training Dataset (b) Testing Dataset

Figure 3.5: Distribution of Calibration Errors for the Training and Testing Datasets

23





4 VisCaliNet

Based on the data analysis from the earlier chapter, it can be concluded that both HAAR
and scanpath length have a measurable relationship with calibration error according to
their statistical metrics and distributions. Although the effects of duration and scanpath
are not observable because of their complex format representations, their impacts are
nonetheless apparent. This chapter aims to explore these relationships further using
deep learning methods. A model named VisCaliNet will be introduced for predicting
gaze estimation error. The model takes inspiration from the RecallNet [WJBB22] and
incorporates several important features associated with human visual attention and
cognitive responses.

4.1 Input Features

Four key inputs are used in the training process: scanpath, HAAR, duration, and
scanpath length. The scanpath records the path of fixation moving across various AOIs,
illustrating the shifts in the participant’s focus. HAAR measures the interaction between
the participants and the AOIs, providing deep understanding of attention distribution.
Duration evaluates how long a viewer looks at different areas, with the longer value
indicating greater interest. In addition, scanpath length countes the total fixations of a
participant on one visualization, revealing the participant’s engagement on the task. To
ensure the normalized scanpath lengths accord with the left-skewed distribution of the
calibration errors, the transformation formula sqlnorm = 1 - sqlnorm is applied to the
scanpath length.

As shown in the earlier chapter, the scanpath in this study is transformed into a se-
quence of string tokens. To efficiently process the strings, the Bidirectional Encoder
Representations from Transformers (BERT) model[LT18] is adopted due to its excellent
performance in understanding context and distinguishing ambiguous expressions. And
the BERT model had the functionality of generating embeddings from text, allowing for
detailed and sophisticated interpretations of the scanpaths. To enhance efficiency and
clarity during processing, separating tokens [SEP] is inserted between each token within
the scanpath strings. This method guarantees that each character is recognized as an
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4 VisCaliNet

individual AOI, and the entire string is treated as a cohesive scanpath sequence, rather
than as a single word. The tokenized scanpaths are then fed into the pre-trained BERT
model, which converts the tokens into a 768-dimensional vector.

4.2 Model Design

VisCaliNet innovatively combines regression and classification techniques to address
the complex task of predicting calibration errors from eye-tracking data. Initially, the
model employs a regression approach to accurately predict these errors, providing a
preliminary overview of the model’s performance in estimating calibration errors. By
analyzing the outcomes of the regression model, the tendencies and accuracy of the
model are evaluated, giving instructions for subsequent studies.

Following the regression phase, the model classifies the outputs as "acceptable" and
"unacceptable" based on predefined criteria. The threshold of 0.5◦ is adopted, indicating a
good performance even with small calibration errors[FGK+22]. If a significant deviation
in the estimated calibration error is observed during the experiment, recalibration is
needed. In addition, this step assures the reliability of the data, especially when the
proportion of unacceptable calibration errors is high, which might suggest that the
dataset could be untrustworthy.

4.3 Model Architecture

The VisCaliNet model is based on MLP framework because of its efficiency and ad-
vancement in dealing with regression tasks[JHBB23]. For the input features HAAR
and scanpath length, represented as single numerical values, the model configuration
includes an input channel of size 1, a hidden channel of 5, and an output channel of 1.
Furthermore, Rectified Linear Unit (ReLU) layers are intersected to add non-linearity
and enhance model performance.

Duration data, represented as uniform vectors with size 57, is initially processed through
a linear layer that reduces its dimension to 32. It is followed by a ReLU activation layer
to include non-linear dynamics, then another linear layer is implemented to decrease
the output to 10 channels. A subsequent ReLU layer is applied, followed by a final linear
layer, ultimately reducing the output to a single channel.

The scanpath data in this study is transformed into BERT embeddings, requiring a more
complex architecture. To process these embeddings, MLP is applied. The neuron network
begins with a linear layer that takes an input size of 768 and decreases the output to the
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4.3 Model Architecture

Figure 4.1: Architecture of the VisCaliNet: duration, scanpath length, and haar are
fed into separate mlp. String-encoded scanpath is transformed into 768-
dimensional embeddings using a pre-trained BERT model, then the results
are passed into an Multilayer Perceptron (MLP). The outputs of each MLP
are concatenated into a tensor of size 4 and are processed through a sigmoid
function to generate the final binary output of 1 and 0.
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4 VisCaliNet

size of 64. A subsequent linear layer further compresses the BERT embeddings down
to a size of 16, and the final layer outputs a single value. ReLU activation layers are
inserted between each linear layer to introduce non-linearity and enhance the learning
capabilities of the model.

After training each feature independently, the four input features are concatenated into
a single vector. The unified vector is then processed through a linear layer to predict
the exact calibration error. The final adjustment in this model is the classification of the
output from the previous networks, enabling effective handling of binary classifications.
The VisCaliNet model has been transformed to handle a classification task using a
sigmoid layer. Initially, calibration errors are categorized into binary classes(1 for
acceptable and 0 for unacceptable) based on the threshold of 0.5◦. Subsequently, a
sigmoid function is applied to the categorized outputs to facilitate the classification
process.
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5 Experiment Results

In this chapter, numerous experiments will be conducted to evaluate the performance
of VisCaliNet on the VisRecall++ dataset. Additionally, different ablated versions of
VisCaliNet are implemented and evaluated to understand the impact of different model
components on overall performance.

5.1 Ablated Models

Three ablated versions based on VisCaliNet are applied: MLPBERT, CNNBERT, and
RNNBERT. Each was initially designed for regression tasks and later adapted to classify
the output into corresponding classes based on predefined criteria.

MLPBERT. The MLPBERT model shares the same architecture as VisCaliNet, with one
significant alteration: instead of employing a sigmoid function for classification, direct
classification method is used, where outputs less than or equal to 0.5◦ are directly
classified as 1. Outputs that exceed the threshold are classified as 0. This approach
simplifies the classification process.

CNNBERT. Since Convolutional Neural Network (CNN)[LLY+21] are known for their
effectiveness at processing context-aware features, one-dimensional convolutional layers
are included in the training approach. The architecture of CNNBERT is identical to that
of the MLPBERT model for training the duration, HAAR, and scanpath length. But for
scanpath strings, which are transformed into BERT embeddings, three convolutional
layers are introduced. The whole structure is designed with an input channel of 768, a
hidden channel of 64, and an output channel of 1. Each convolutional layer is followed
by a Batch Normalization layer, and a ReLU is included for adding non-linearity.

RNNBERT. The basic architecture of RNNBERT is adapted from CNNBERT, but with
a key modification: instead of using MLP layers to process BERT embeddings, three
Recurrent Neural Networks (RNN) layers are used due to their proficiency in handling
natural language inputs[SM19]. The first RNN layer receives an input of size 768
and produces an output of size 64, followed by a ReLU activation layer to introduce
non-linearity. The second RNN layer takes 64-sized input and reduces it to a 16-sized
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output, again followed by a ReLU activation layer to maintain non-linear processing
capabilities. The final RNN layer decreases the final output to one single channel.

5.2 Training Details

In the testing experiments, a dataset comprising 3,169 data points is employed, each
characterized by four input features and one output. The models implemented in-
clude MLPBERT, CNNBERT, and RNNBERT for regression tasks, and VisCaliNet for
classification. Each model is executed with specific configurations:

• Regression Models: The MLPBERT adopts Mean Squared Error (MSE) as the loss
function and Stochastic Gradient Descent (SGD) for optimization, and is trained
for 300 epochs. In contrast, the CNNBERT and RNNBERT models use MSE as the
loss function and are optimized using the Adaptive Moment Estimation (Adam)
algorithm. Additionally, CNNBERT is trained for 1000 epochs, and RNNBERT is
trained for 600 epochs.

• Classification Model: For binary classification, the VisCaliNet uses Binary Cross-
Entropy (BCE) as the loss function, with Adam remaining as the optimizer. The
classification model is trained for 100 epochs to balance an optimized performance
and prevent overfitting.

The dataset is trained with batches with a batch size of 32. All models are trained with
a consistent learning rate of 5E-6 and a weight decay of 1E-6. The experiments are
conducted on a single NVIDIA GeForce RTX 3070 Ti GPU.

5.3 Evaluation

The evaluation is executed by comparing various metrics. During the model training
phase, the training loss and testing loss are observed to confirm stable and effective
performance. For the evaluation of classification results, the precision-recall curve
is used to identify the most effective threshold for classification. Then, metrics like
accuracy, precision, recall, and F1 score are used to assess the models’ classification
performance.
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5.3 Evaluation

Figure 5.1: Precision-Recall Curve for all ablated models

Precision-Recall Curve

The precision-recall curve is utilized to present the relation between recall and precision
under different thresholds. The most significant threshold is then chosen based on the
curve’s results. Figure 5.1 shows that the overall precision and recall range from 0.6
to 1.0. As recall increases, precision correspondingly decreases. Notably, VisCaliNet
demonstrated the highest precision compared to other models. MLPBERT performs
second best, while RNNBERT and CNNBERT show the lowest precision overall.

A relatively higher precision [FWT+17] is then chosen for the VisCaliNet model to
ensure that when calibration error is predicted as acceptable, it is indeed correct. The
specific values are shown in Table 5.2. This method is important for maintaining the
overall precision of the eye-tracking data. Whenever unacceptable calibration data is
identified, recalibration should be conducted.

Metrics

Test Loss. As illustrated in Figure 5.2, the training loss for all regression models remains
consistently low, with a significant reduction in test loss observed within the first 100
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epochs. Beyond this point, the test loss stabilizes, consistently remaining at a relatively
low level. The final recorded losses for MLPBERT, CNNBERT, and RNNBERT models
are 0.029, 0.037, and 0.029. The loss of VisCaliNet is higher compared to other models
because it is specifically designed for a classification task. However, it stabilizes after 50
epochs. The final loss is 0.695.

(a) MLPBERT (b) CNNBERT

(C) RNNBERT (d) VisCaliNet

Figure 5.2: Changes in training and testing loss with the increase of epochs

Accuracy. Accuracy represents the proportion of correct predictions the models make.
VisCaliNet achieves the highest accuracy, recording a score of 0.618. Close behind,
MLPBERT scores 0.607, while RNNBERT and CNNBERT have values of 0.582 and
0.571, respectively, indicating a noticeable spread in performance with a difference of
approximately 0.057 between the highest and the lowest scores.

Precision. Precision is an indicator showing the correctness of positive predictions.
VisCaliNet and MLPBERT gain the best performance, scoring a precision of 0.663 and
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Accuracy Precision Recall F1 Score

MLPBERT 0.607 0.660 0.789 0.719
CNNBERT 0.571 0.655 0.691 0.672
RNNBERT 0.582 0.644 0.770 0.701
VisCaliNet 0.628 0.663 0.847 0.744

Table 5.1: Accuracy, Precision, Recall, and F1 Score of Different Models

0.660, closely followed by CNNBERT at 0.655. RNNBERT showes a slightly lower
precision of 0.644.

Recall. The difference in recall among the models is significant, with values ranging
from 0.691 to 0.847. VisCaliNet has the highest recall at 0.847, showing its superior
performance, while CNNBERT records the lowest at 0.691. MLPBERT and RNNBERT
have scores of recall of 0.789 and 0.770 respectively.

F1 Score. VisCaliNet significantly surpasses other models with an F1 score of 0.744,
exhibiting a good performance when combining precision and recall. In contrast, due
to its weaker recall performance, CNNBERT has the lowest F1 score at only 0.672.
Meanwhile, MLPBERT and RNNBERT obtain 0.719 and 0.701 respectively.
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6 Discussion and Future Work

Among all the ablated versions, VisCaliNet demonstrates the best performance and
successfully meets the initial goals of this research. This chapter explores the insights
gained from the evaluation phase, highlights the significance of the VisCaliNet, and
discusses its limitations. At the end of the chapter, the potential future work built on the
foundation laid by the current research will be outlined.

Discussion

Adding more input features has proven to be beneficial. Initially, only the linear relation-
ship between HAAR and calibration error was considered, which was directly related to
the AOIs. However, this approach resulted in less ideal performance. Subsequently, the
model was enhanced by incorporating the scanpath, transformed into BERT embeddings,
and durations, listed as an array, which led to acceptable outcomes. The further incorpo-
ration of scanpath length resulted in a modest performance improvement, highlighting
the benefits of expanding the feature set.

Regarding network architectures, MLPs is excellent in processing numerical values,
making them highly suitable for predicting gaze estimation error. Conversely, while
CNNs are typically advantageous for computer vision tasks, they does not show the same
level of performance in the ablated application. In some instances, a RNN architecture
may serve as a feasible alternative, offering flexibility and efficiency where needed.

In terms of classification techniques, incorporating a sigmoid classification layer in the
VisCaliNet lead to a slight improvement compared to the direct classification approach
used in the standard MLPBERT, which suggests that sigmoid functions may be more
effective at handling binary classification tasks in specific scenarios.
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Significance

Exploring Human Cognitive Factors on Gaze Estimation. As mentioned above, the
potential of human gaze information in predicting gaze estimation errors is notably
insufficiently investigated. This research endeavors to enrich the academic conversation
about how cognitive factors impact gaze estimation, filling the gap in this field.

Model Efficiency and Simplicity. VisCaliNet requires a minimal set of input features
and maintains a low level of overall complexity. This simplicity minimizes the con-
sumption of computing resources, and enhances reproducibility and user experience,
enabling its application across various scenarios. Moreover, the model relies on es-
tablished parameters without monitoring environmental factors, thereby improving its
simplicity.

Identifying Calibration Process in Open-Source Datasets. In the current era of big
data, a vast collection of open-source eye-tracking datasets is available for in-depth
analysis. These datasets provide essential information on gaze behaviors to the public.
However, they often lack details on the calibration error, an important metric for
measuring the accuracy of gaze estimation. This absence leaves the validity of the
calibration process suspicious, casting doubt on the quality of the gaze data collection.
This research offers a solution that utilizes existing gaze data to evaluate the reliability
of the calibration process, hence improving the credibility of further studies using
open-source eye-tracking datasets.

Limitations

Range of Calibration Error. This study utilizes preprocessed and cleaned calibration
errors within the range from 0 to 1. However, in real-world scenarios, particularly during
online data collections where rigorous calibration processes are lacking, the calibration
errors can exceed this range. This limitation may restrict the applicability of VisCaliNet
to settings where calibration is more controlled.

Dataset Composition and Size. The dataset currently includes approximately 3,000
data points, all from university students. While this sample size is adequate for this
research, it does not fully represent the variety of the demographic groups. It is both
important and feasible to consider expanding the dataset to other groups, improving the
generalizability of the results.

Input Features. This model primarily relies on scanpath-related data to represent
human attention and cognition. Althought the approach appears effective, incorporating
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additional metrics may enhance its capabilities. For instance, the FCR, as introduced
by Wang et al. [WKB+22], effectively evaluates gaze uncertainty by indicating the
likelihood of fixations landing on overlapping AOIs. Furthermore, integrating saliency as
another metric may significantly improve the model’s ability to predict gaze estimation
error.

Future Work

The primary focus of future work will be to handle the limitations identified in the
current research. This includes adjusting the model to accommodate calibration errors
beyond the current range of 0 to 1, enabling it to deal with a wider scope of real-life
scenarios. Moreover, incorporating more complex metrics such as the FCR and saliency
will perhaps provide a more accurate result in gaze estimation using human attention
and cognition.

Based on the enhanced model, the next phase will involve developing an auto-correction
model. This model will not only predict calibration errors but also actively correct
them in real-time. It will involve developing algorithms capable of detecting the root
causes of calibration errors and creating a standard correction formula that adjusts gaze
estimation closer to the actual gaze position. Implementing a system that automatically
applies these corrections will enhance the overall accuracy and utility of the device.

Once the improvements are implemented, the final step will be to develop an interface
that integrates the auto-correction model. This interface will utilize the initially trained
data as the foundational model. During user interactions, with the user’s consent,
new data will also be collected. The data will then be fed into the model, allowing it
to integrate the new information and make adaptations accordingly. Over time, this
iterative process will refine the model’s accuracy and efficiency, continuously improving
its performance by involving the latest data inputs.
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7 Conclusion

In this research, VisCaliNet is developed. It is a model based on deep learning algorithms
using MLP as the primary network component, designed to predict gaze estimation
errors. Through detailed data analysis, this study discovers the relationship between
AOI related gaze patterns and gaze estimation errors. Innovatively, AOI-based gaze
metrics and the (HAAR) are concatenated as input features, with calibration error as
the output. Multifaceted evaluations are conducted to measure the performance of
the model, confirming its efficiency from different perspectives. Additionally, ablation
studies are performed to compare the impact of minor modifications on the overall
performance of the VisCaliNet model. The result showed that this study demonstrates
strong performance in identifying acceptable and unacceptable calibration errors using
the criteria of 0.5◦, offering a practical solution for situations where calibration is
difficult.
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