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Abstract: As the maturity and complexity of wind energy systems increase, the operation of wind
turbines in wind farms needs to be adjustable in order to provide flexibility to the grid operators
and optimize operations through wind farm control. An important aspect of this is monitoring and
managing the structural reliability of the wind turbines in terms of fatigue loading. Additionally,
in order to perform optimization, uncertainty analyses, condition monitoring, and other tasks, fast
and accurate models of the turbine response are required. To address these challenges, we present
the controller tuning and surrogate modeling for a wind turbine that is able to vary its power level
in both down-regulation and power-boosting modes, as well as reducing loads with an individual
blade control loop. Two methods to derive the setpoints for down-regulation are discussed and
implemented. The response of the turbine, in terms of loads, power, and other metrics, for relevant
operating conditions and for all control modes is captured by a data-driven surrogate model based
on aeroelastic simulations following two regression approaches: a spline-based interpolation and a
Gaussian process regression model. The uncertainty of the surrogate models is quantified, showing
a good agreement with the simulation with a mean absolute error lower than 4% for all quantities
considered. Based on the surrogate model, the aeroelastic response of the entire wind turbine for the
different control modes and their combination is analyzed to shed light on the implications of the
control strategies on the fatigue loading of the various components.

Keywords: wind turbine control; surrogate modeling; loads and control of wind turbines

1. Introduction

Wind energy has increased its share in the electricity generation mix and has become
a pivotal technology for the global energy transition goals. The technology has matured
and scaled up, leading to new research challenges beyond the optimization of the wind
turbine design. The system-level optimization is becoming relevant in terms of farm-
wide operation and better integration into the electrical grid. To address these challenges,
wind farm control has multiple objectives that have to be considered simultaneously [1,2].
Among others, these include being able to adjust the wind farm power output accurately
according to the grid demands providing flexibility, reducing the power production losses
due to wake interactions, reducing the operational costs, extending the lifetime of the
machines as much as possible [3–5], as well as maintaining profitability for the operators to
maintain the financial attractiveness of projects [5–7]. In order to leverage the potential of
digitalization and optimization towards these goals, an important aspect is to have models
that can predict quickly and accurately enough the response of the entire turbine including
power production and structural loads, for various operating modes and wind conditions
replacing the computationally expensive aeroelastic simulations.

In this context, the contribution of the present work is to develop and evaluate a
surrogate model of a wind turbine with a control system that enables the operation in
various modes including down-regulation, power boosting, and individual blade control
(IBC). The controller modifications required, compared to a standard baseline wind turbine
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controller, are discussed including two approaches for performing the down-regulation.
Two surrogate model approaches with increasing cost and complexity are developed and
evaluated in terms of prediction uncertainty based on a comprehensive validation set of
aeroelastic simulations. Finally, using the developed surrogate models, the aeroelastic
response of the wind turbine is evaluated focusing on the trade-offs between loads and
power for different conditions and modes providing insights that can be leveraged in future
optimization studies. The surrogate models and datasets developed are made publicly
available for further use by the wind energy community.

The baseline control system of a modern multi-MW, variable-speed pitch-regulated
(VSPR) is responsible for the safe and optimal operation of a wind turbine. It is responsible
for commanding the actions of the main wind turbine actuators adjusting the generator
torque, blade pitch angle, and nacelle yaw orientation so that the turbine can produce
power according to the design power curve while limiting the structural loads to the
design load envelope. Moreover, additional setpoints can be included in the software to
allow for the turbine to modify its output power level as well as additional control loops
aiming to reduce structural loads. In this work, a simple baseline wind turbine controller is
implemented for the DTU 10 MW reference wind turbine (rwt) [8] and is augmented with
additional modes for down-regulation, power boosting, and IBC to identify the aeroelastic
response in a wide range of possible operation conditions.

Congestion of the electrical grid, electrical grid load balancing, O&M decisions due to
degradation of specific parts, and wind farm sector management for wakes are the most
common cases where the wind turbine is required to reduce the power output from the
baseline design values [1,9]. The goal is to produce less power for the same wind speed
within its operational range. Additionally, wind farm flow control techniques employ
down-regulation for induction-based control to reduce wake effects in a wind farm [2].
Moreover, operational management approaches have been proposed in the literature
leveraging down-regulation to optimize revenue and loads by adapting the output power
level [5,6]. Different naming conventions used interchangeably for the same process can be
found in the literature including down-regulation, curtailment, derating, and throttling.
In this work, the term down-regulation is used throughout.

To reduce the power output of a wind turbine, the power coefficient (Cp) has to be
reduced. This can be performed by manipulating the operational characteristics of the
machine in terms of tip speed ratio (TSR or λ) and/or blade pitch angle θ. Depending on
the turbine’s design and the intended application, different approaches can be used which
will effectively change the operating point in the Cp-λ-θ and Ct-λ-θ spaces. The effect of
choosing the setpoint to achieve down-regulation on the structural loading of the wind
turbine has been investigated in ref. [9–12]. For example, for induction control applications
the aim would be to minimize the thrust to reduce the wake effects; for O&M, specific
reduction in the rotational speed of the rotor (ω) might be targeted, etc. No matter what the
setpoint choice is, the reduction in power production comes with a reduction in structural
loading as has been shown both from measurements and simulation studies [4,13,14].
In this work, we evaluate two methods for down-regulation allowing the power to be
decreased up to 50% for the entire operational wind speed spectrum.

The next topic related to the controller’s functionality is power boosting. This means
increasing the power output of the wind turbine above the baseline rated value at higher
wind speeds. Many aspects have to be considered when performing power boosting.
Usually, the upper rotational speed is limited so that a maximum blade tip speed is not
exceeded due to noise restrictions. Hence, this option is mostly applicable in cases of
offshore wind farms where less strict limitations apply. Furthermore, the design limits of
the generator and power electronics have to be considered. Electrical generators and power
electronics have an upper limit of torque and power due to limitations such as electrical
and thermal stresses while having some overload capacity depending on the generator
design [15]. Thus, the level and time duration of possible power boost depends heavily on
the design characteristics of the system. Turbine manufacturers already offer such options
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in new turbines or as part of retrofit packages [16–18] aiming to optimize revenue and
power production. The exact levels of power boosting are not clearly stated in all cases.
From the publicly available information, an increase of 5–10% in power level by power
boosting has been applied commercially. In this work, it is assumed that the electrical
system of the wind turbine can handle a power boosting level of up to 30% higher than the
baseline and the focus is on identifying the impact on fatigue loads. Additional methods to
increase power production, e.g., aerodynamic add-ons [19], are not considered as this work
focuses on software-only modifications without additional hardware modifications to a
standard turbine.

One advanced control method, beyond the baseline feedback control loop, aiming
for load reductions is individual pitch control (IPC). IPC leverages the fact that modern
utility-scale wind turbines have an individual pitch actuator for each blade. Command-
ing a differential pitch angle to each blade according to some logic based on blade loads
measurements can lead to structural load reductions. IPC methods have been extensively
researched and field tested [20–24], and to a smaller extent applied in the industry. The rea-
son for the scarce industrial application is on one hand the requirement of load sensors
on the blade root due to cost and reliability considerations and on the other hand the
longevity of the actuator and bearing due to the increased actuation which might lead to
increased maintenance costs. An overview of the different concepts for individual pitch
control for wind turbines along with their fundamental differences and similarities can be
found in [22]. In this work, we utilize an IBC approach. IBC is based on an independent
controller for each of the blades feedbacking directly the measured flapwise bending blade
root bending moments and the present implementation was initially introduced in [25]. As
explained in [22], the different IPC approaches are similar in load reduction effectiveness
and no major differences in terms of load trends across the various turbine components
are expected if an alternative approach is considered. Further advanced control methods
for fatigue load reduction such as lidar-assisted control [26] or trailing edge flaps [27]
are not considered as they require additional sensors and actuators to be installed on the
wind turbine.

With the increase in computational power in recent years, several applications of
surrogate modeling have been suggested in the context of wind energy research for uncer-
tainty quantification, optimization, and monitoring purposes. A surrogate model, in the
context of engineering modeling, is a simplified and computationally efficient representa-
tion of a complex system or process [28]. It serves as a substitute for the original model,
approximating its behavior while reducing computational costs. Surrogate models are
often constructed using statistical techniques or machine learning algorithms, leveraging
available data to emulate the responses of the original system.

Surrogate models have been used to capture the response of a single wind turbine
over a complete environmental contour, i.e., considering all wind characteristics and their
possible combinations, to derive lifetime load estimations [29] and estimate lifetime relia-
bility indices [30]. For the high dimensionality and sparse sampling considered, Kriging
showed to perform better among the considered methods, depending on the computational
resources availability. Polynomial response surfaces were used in [31] to analyze the sensi-
tivity of loads for an onshore wind turbine to various input conditions. Moreover, surrogate
models have been applied to perform uncertainty quantification studies considering the
uncertainty propagation from aeroelastic simulations to annual energy production and
lifetime loads using the polynomial chaos expansion method [32]. In [33], surrogate models
are employed to quantify the propagation of uncertainty from inflow conditions and blade
aerodynamic properties to loads and annual energy production where Kriging proved to
perform better. Furthermore, surrogates have been used for optimization to reduce the
otherwise infeasible simulation costs as shown, e.g., in [34] where they were used to opti-
mize the design of an aeroelastically tailored blade tip extension. Surrogate models have
also been proposed for capturing the load and power response of a wind turbine within a
wind farm considering the farm flow effects enabling further optimization of the complex
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farm system [35–37]. Polynomial chaos expansion and Gaussian Process Regression (GPR)
proved to be the best-performing surrogate modeling approaches in this context.

As seen from the previous discussion, various applications of surrogate models have
been successfully demonstrated in the context of wind energy research. In this work,
the scope of the surrogate model is to replace the expensive aeroelastic simulations with
a quick and accurate data-driven model that can be used for various purposes such as
optimization or condition monitoring. The goal is to have a model that can reproduce the
statistical values derived from post-processing the output time series of the simulations
in terms of quantities of interest (e.g., damage equivalent loads (DELs), mean values,
etc.). Therefore, the output space can be mapped thoroughly in a continuous manner to
the input space, which includes the wind conditions and the controller mode. In this
process, the balance between the computational cost of creating the training dataset and
the prediction uncertainty has to be considered. In this work, two methods are considered
and compared. A spline-based regression and the more complex and computationally
expensive GPR approach.

In summary, the scope of this work is to:

• Discuss the controller design for a wind turbine able to perform down-regulation,
and power boosting as well as the optional application of an IBC loop.

• Create surrogate models for the entire wind turbine system able to capture the re-
sponse of the turbine according to wind conditions and control mode. Compare
two approaches for this task and quantify the uncertainty.

• Analyze the aeroelastic response of the entire system of the wind turbine for different
control modes across the whole operational condition envelope, focusing on trade-offs
in loads and power between the various control modes that could be potentially
leveraged for optimization.

The rest of the manuscript is organized as follows: In Section 2 the controller design for
the different modes is discussed. Section 3 explains the process of creating a surrogate model
of the turbine response with two methods. The uncertainty quantification of the surrogate’s
response for all quantities of interest and input conditions is performed in Section 4. The im-
pacts of the different control modes on power, loads, and blade pitch actuation are examined
in Section 5. In Section 6, the main findings are discussed qualitatively, focusing on the
trade-offs between power and loads for the different controller modes and the potential for
optimization. The conclusions and outlook of the work are discussed in Section 7.

2. Controller Design
2.1. Baseline Controller Design

The baseline controller described here serves as a simple control algorithm for the DTU
10 MW rwt [8]. The considered inputs of the controller are the low-pass filtered generator
rotational speed and the blade pitch angle. The outputs include the commanded generator
torque and the commanded collective blade pitch angle. A linear ramp is used for the
transition region 1.5. In control region 2, the commanded generator torque (Mg) is based
on the common kω2

g law tracking the optimal TSR for maximum Cp using the measured
generator speed (ωg). The collective blade pitch angle is kept constant to the θ f ine value
in regions 1.5 and 2. The rated generator speed and rated generator torque are reached
simultaneously for this turbine design, requiring no control region 2.5. In control region 3,
the generator speed is controlled with a standard proportional-integral (PI) scheme with
anti-windup for the pitch controller, including gain scheduling over wind speeds. The PI
gains for each wind speed are tuned with the closed-loop shaping method along with
manual fine-tuning considering both power and load performance. For the closed-loop
shaping, a value of 0.7 was considered for the damping ratio and 0.75 rad/s for the natural
frequency of the second-order linear system. This simple tuning approach ensures the
stability of the closed-loop system while it also provides a consistent method to tune the
gains for other power levels. Constant power is used in this region, with the applied torque
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being proportional to the rotational speed. The controller’s block diagram is presented in
Figure 1 and the main design characteristics are provided in Table 1.

Figure 1. The two trajectories considered for the derivation of down-regulation setpoints along with
the minimum Ct trajectory.

Table 1. Design characteristics of the baseline controller.

Design Characteristics Value

Tip speed ratio 7.8
Cp 0.4669
Region 1.5 min rotational speed 5.5 rpm
Region 1.5 max rotational speed 6.0 rpm
Rated rotational speed 9.6 rpm
Rated wind speed 11.5 m/s
Torque constant for region 2 92.9748 Nm/(rad/s)2

Cut in wind speed 4 m/s
Cut off wind speed 24 m/s
Pitch limit for switching between region 2.5–3 1 deg
Maximum generator torque overshoot allowed above rated 110 %
Generator speed first-order LP filter corner frequency 0.25 Hz

The controller and actuators are designed in Matlab/Simulink using the Sfunction
version of FAST v8.16.00 [38] to perform the closed-loop aeroelastic simulations. The me-
chanical pitch actuator is modeled as a second-order low-pass filter with a filter frequency
of 1.6 Hz and a damping ratio of 0.8. It also includes a pitch rate saturation limit of 8 deg/s.
The measured generator speed is filtered using a first-order low-pass filter. There is no gen-
erator torque actuator used, assuming instantaneous response to the commanded torque.
Moreover, no damping loops for drivetrain torsion and tower fore-aft vibrations are used.
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2.2. Down-Regulation Mode

In this section, the trajectories followed to select the setpoints for the down-regulation,
along with the changes in the baseline controller (power level = 100%, IBC not active)
for achieving the desired output power level, are discussed. For this, two approaches
were considered. The first keeps the TSR constant and performs the down-regulation
with pitching, which will be referred to as “constTSR”. The second is a linear trajectory
in the Cp-λ-θ space combining both pitch and TSR modifications to achieve the reduced
Cp and will be referred to as “lin70”. The minimum target TSR for the lowest down
regulation level of 50%, defining the second point of the linear trajectory, is 7. This limit was
selected to avoid reducing further the rotational speeds. Further reduction showed to limit
region 2 substantially for power levels below 65%, which has detrimental effects on power
and loads as the turbine operates in off-design points for a large range of wind speeds.
Additionally, further reducing the rotational speed was avoided to allow for sufficient
frequency margins with the tower’s first natural frequency (0.26 Hz) in region 2. The down-
regulation approach of increasing the TSR was not considered to avoid increasing further
the rated rotational speed and possibly introducing a control region 2.5. These choices are
also aligned with the results reported in [39] where different down-regulation strategies
were compared in the entire operational range accounting for cumulative DELs for a specific
wind distribution. It was found that the constant TSR approach and the combination with
rotor speed reduction cases are more effective in load reductions compared to the other
strategies. The two selected trajectories are presented in Figure 2. The contour lines in the
figure show the targeted reduction in Cp in increments of 5%.
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Figure 2. The two trajectories considered for the derivation of down-regulation setpoints.

Having defined the fine pitch angle and the target TSR and Cp for each level of
down-regulation, the controller parameters need to be adjusted accordingly. For region
2, the adjusted torque constant k was recalculated according to the power level based on
target Cp and TSR values. The adjusted value of the new rated rotational speed, required
for the new setpoint definition, was identified analytically by deriving the rated wind speed
based on the target Cp and TSR values.

In the full-load region, as constant power is used for every mode of the controller,
the torque is again derived by the targeted rated power and instantaneous filtered generator
speed. For the PI pitch controller, the new ωg,rated setpoint was used, and the gains, along
with the gain scheduling for different mean pitch angles, were tuned with the same process
as the baseline. This allowed for a consistent dynamic behavior of the controller for all
power levels while the rotor speed regulation performance was not affected.
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For region 1.5, the rotational speed points defining the torque-speed ramp were kept
the same as the improvements, in terms of loads and power, found by fine-tuning were
minor and no consistent pattern could be identified to generalize for every power level.
This approach slightly changes the effective cut-in wind speed for different power levels de-
pending on the aerodynamic torque achieved. In practice, this means that down-regulation
can be applied down to a minimum level depending on the wind speed. Moreover, exact
power tracking cannot be followed in region 1.5 since the combination of the fine pitch
angle and the off-design TSR can vary the Cp.

All the aforementioned parameters were derived for power levels from 50% to 100%
with a step of 5% and provided as a look-up table. The values in between are calculated
by linear interpolation according to the requested power level. The resulting steady-state
response derived from aeroelastic simulations of the turbine for the different power levels
is shown in Figure 3.
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Figure 3. Steady-state operational characteristics for the two down-regulation trajectories: Left
columns 1 and 2: constTSR trajectory. Right columns 3 and 4: lin70 trajectory.

Power reference tracking with both trajectories is accurate for wind speeds higher
than 6 m/s. In lower wind speeds and for both trajectories, down-regulation levels higher
than 75% produce power higher than targeted, even increasing above the baseline level.
This can be explained by the TSR being closer to the design value, leading to increased Cp
in this region. For down-regulation levels below 75%, the opposite behavior is observed.
In power levels below 60% the produced aerodynamic power is not enough for electricity
production, slightly shifting the cut-in wind speed.

2.3. Power Boosting Mode

The design goal of a power boosting mode is to increase the power output of the
turbine in the widest possible range of wind speeds with the least possible increase in
loads. Additionally, the technical limits of power boosting stemming from the generator
and power electronics as well as aerodynamic considerations related to the maximum tip
speed have to be considered.

The control strategy for power-boosting depends on the specific aerodynamic design
characteristics of the turbine. Figure 4 presents the possible controller trajectories in the
generator speed–generator torque plane based on the presented baseline controller for the
DTU 10 MW rwt. Trajectory A-B represents the torque-based approach where the rated
rotational speed remains the same and the torque is increased. This approach would create a
vertical region 2.5 where the turbine will operate with sub-optimal Cp. The increased torque
demand would be directly proportional to the power increase. Trajectory A-C follows the



Energies 2024, 17, 1284 8 of 32

optimal Cp, extending region 2 until the new power level is reached. Power boosting based
on increasing only the rotational wind speed is described by trajectory A-D where after
rated torque is reached, the rotor would keep speeding up as wind speed increases until
the desired power level is achieved. This leads to an extended region 2.5, and the required
increase in speed is directly proportional to the requested power increase. Trajectories
A-E-F1 and A-E-F2 are examples of an approach increasing both speed and torque and can
be adjusted to any proportion between them.

𝑷 = 𝑷𝒓𝒂𝒕

𝑷 = 𝒂𝑷𝒓𝒂𝒕 𝝎𝒈.𝒓𝒂𝒕

𝑴𝒈,𝒓𝒂𝒕

𝑨

𝑩

𝑫

𝑪
𝑬

𝑭𝟏

𝑭𝟐

𝒌𝝎𝟐 → 𝑪𝑷,𝒐𝒑𝒕

Figure 4. Power boosting controller trajectories for generator torque and speed.

The decision was to extend region 2, continuing to track optimal Cp until the new rated
value is reached following the kω2

g method for the torque. This implementation avoids
creating transition regions that would vary in range depending on the power boosting level
and ensures a similar controller behavior for all power levels. Moreover, this approach was
selected to avoid the maximum increase in rated torque and rotational speed values, which
can potentially draw the limits of the maximum feasible power level in a real system.

The relevant changes in the controller parameters include assigning a new rated speed
and rated torque and adapting the gains of the PI pitch controller. The rated values are
derived analytically and used as the new setpoint for the pitch controller. The PI gains and
the gain scheduling were derived for each power boosting level with the same procedure as
for the baseline since the targeted Cp in higher wind speeds is higher than the baseline. With
this approach, the resulting dynamic response of the controller is similar for all power levels
while the performance of the controller in terms of regulating rotor speed is also consistent.
All the quantities required for the power boosting were calculated for power levels between
100 and 130% with increments of 5% and provided as a look-up table. The rest of the values
are derived by linear interpolation based on the requested power level.

The resulting steady-state operational characteristics for the power boosting mode are
shown in Figure 5. For the maximum power level considered (130%), the increase in rota-
tional speed and tip speed is 8.3% compared to the baseline design, with the rotor reaching
a maximum rotational speed of 10.5 rpm and the blade tip a maximum translational speed
of 97.6 m/s. The maximum torque is increased by 18.8%, reaching 257 kNm. The rated
wind speed is increased up to 12.6 m/s.



Energies 2024, 17, 1284 9 of 32

0 5 10 15 20 25

Wind speed m/s

0

5000

10000

15000

P
 k

W
0 5 10 15 20 25

Wind speed m/s

0

0.1

0.2

0.3

0.4

C
p

0 5 10 15 20 25

Wind speed m/s

1

1.1

1.2

1.3

P
/P

n
o

m

0 5 10 15 20 25

Wind speed m/s

0

0.5

1

1.5

2

C
t

P=100%

P=105%

P=110%

P=115%

P=120%

P=125%

P=130%

300 350 400 450 500

g
 rpm

0

100

200

300

M
g
 k

N
m

0 5 10 15 20 25

Wind speed m/s

0

5

10

15

20

 d
e

g

0 5 10 15 20 25

Wind speed m/s

5

10

15

T
S

R
 N

D

P=100%

P=105%

P=110%

P=115%

P=120%

P=125%

P=130%

0 5 10 15 20 25

Wind speed m/s

6

7

8

9

10

ro
t r

p
m

Figure 5. Steady-state operational characteristics for the power boosting mode.

2.4. Individual Blade Pitch Control

In the scope of this work, an IPC loop is added to the controller as a structural load
alleviation method. The goal of the controller design is to have a simple and robust IPC
loop completely decoupled from the main pitch control loop, which is responsible for
the speed regulation in the full load region. The only requirement for its implementation
compared to the baseline operation, except for the software change, is the addition of load
sensors to the blade roots. For this, an individual blade control (IBC) approach was chosen.
IBC is based on three independent controllers feedbacking directly the measured flapwise
bending moments at the root of each blade. The method is based on [40,41] and was initially
presented and evaluated in [25].

The IBC controller is used as an add-on to the existing baseline PI collective pitch
controller (CPC) controller which is not re-tuned or otherwise changed. Therefore, the dif-
ferential ∆θIBC contribution in pitch demand of each single-input-single-output SISO
controller is summed with the commanded pitch of the baseline CPC controller. IBC is
active only in above-rated conditions and the switching between regions is performed
based on the power signal where the IBC outputs are scaled with a factor varying linearly
between 0 and 1 for power levels between 90% and 100% of the rated power. This strategy
ensures smooth transitioning while minimizing power losses and enhancing load allevia-
tion. The parameters of the scaling were assessed by manual testing in terms of power and
loads through simulations around rated wind speed.

Moreover, the gains of the controller, similar to the traditional CPC controllers, are
scheduled based on the collective pitch values to compensate for the non-linear dynamics
and different sensitivity of pitching at different wind speeds. This was performed for
three wind speeds 16, 20 and 24 m/s (and the corresponding mean pitch angle) and
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linearly interpolated for the rest of the operational points. The control scheme itself is
a traditional linear feedback PI structure due to its simplicity and robustness. Another
important part of the IBC loop design is the combination of the filters applied on the input
blade root bending moment and on the output pitch command regulating the effective
bandwidth of the controller. Hence, the parameters defining the controller’s behavior are
the frequencies of the high pass (HP) and band stop (BS) filters, as well as the tuning of the
gains. The schematic diagram of the control system is presented in Figure 6. For the present
application, the actuation bandwidth of the IBC loop is restricted to the 1P as previous
studies [25] showed a large trade-off between the increase in pitch actuator usage and
further load reductions. More detailed information on the IBC implementation can be
found in [25].

Wind
Turbine
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BS

BS

IBC1

IBC2

IBC3
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HP

Baseline PI
CPC

d

θ1
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ωg

θc

+

+

+

Figure 6. Block diagram of the IBC controller.

To adapt the IBC loop to the different power levels, some parameter changes are
required. The HP filter was kept the same for every power level, while the frequency of the
in-series BS filters was adapted according to the adjusted rated rotational speed. As the
manual fine-tuning of the gain is a time-intensive procedure, it was decided to simplify
the process by only tuning the gains for the other power levels in one wind speed and
performing a linear regression to derive a linear function of the gain over power levels.
The gain scheduling over wind speeds per power level was simply performed by offsetting
the schedule derived for 100% power level and adjusting according to the mean speed
corresponding to the mean CPC blade angle. This process was conducted for power levels
in the range of 50–130% with a step of 5% and formulated as a look-up table. This approach
can lead to slightly lower performance by the IBC loop but it is not expected to significantly
influence the overall trends in load reductions and actuator usage while it simplifies the
implementation. The gains and corresponding scheduling were calculated with linear
interpolation for any power level between the tabulated values.

3. Surrogate Modelling

The overview of the surrogate modeling process used in this work is shown in Figure 7.
The yellow blocks denote the creation of the training set based on some design of experiment
(DOE) approach. The range of the input variable space has to be defined first according to
the scope of application. Then, the appropriate sampling method and size for the training
set have to be determined based on the computational cost constraints. Having the training
set, a regression method has to be applied, allowing requests for any arbitrary value within
the range of the input space to obtain the output prediction. This is the core of the surrogate
model, shown in the dashed lines in the figure. Additionally, the regression model can be
compared to a validation set to obtain uncertainty estimates, as shown by the blue blocks
in the figure.
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Figure 7. Overview of the procedure to create, apply and validate a surrogate model. The dashed
rectangle indicates the actual surrogate model. The yellow blocks show the steps to create the training
set, and the blue blocks show the uncertainty quantification.

The first step in creating the training set is to define the input variables and their
range, which is application-specific and constrained by the available computational power.
In most of the applications discussed in the literature, the goal is to obtain the response of
the turbine for a full environmental contour (including, e.g., wind speed, TI, shear, veer, air
density, etc.). This approach leads to a high dimensional input space, with more than n = 7
input variables in most cases, which makes a dense factorial sampling infeasible due to the
computational cost as the sample size scales with the power of n.

In the present application, the goal is to capture the response of a single onshore turbine
operating with different control modes. Hence, no wind farm flow effects are considered.
Furthermore, it is assumed that the turbine operates with no yaw misalignment (intentional
or not). According to the IEC standard 61400-1 for wind turbine design [42], the main inflow
conditions that need to be considered for load assessment are the mean hub height wind
speed, turbulence intensity (TI), wind shear, air density, and vertical flow angle. The vertical
flow angle is site-specific, which means it can be accounted for as a fixed independent
input variable. In this work, it is considered to be 0 degrees. As previous studies have
shown (see, e.g., [31,43,44]), the most influential characteristics for fatigue loads are the
mean wind speed and the turbulence intensity, with the wind shear following. To reduce
dimensionality but also due to the fact that wind shear measurements are commonly not
available in the operational stage, it was decided to keep it constant to the conservative
value of 0.2 as suggested by the IEC standard.

With these considerations, the input variable space is three-dimensional, including
mean wind speed, TI, and controller mode. Additionally, to account for the seed-to-seed
variability, three stochastic wind field realizations are used for each combination of wind
conditions. The duration of the simulations is set to 3600 s while including an additional 100 s
interval at the beginning of each simulation to remove transient numerical effects. The longer
time duration, compared to the commonly used 600 s, reduces the seed-to-seed variability
and includes more low-frequency components that can potentially influence loads.

The limited input variable space allows for a full factorial sampling DOE approach.
For the available computational setup, the aeroelastic simulation time is approximately
three times the real-time, making a dense sampling feasible. The wind speeds are dis-
cretized with a step of 1 m/s from cut-in to cut-out. TI ranges from 2 to 24% with a 2% step.
The power level is discretized from 50 to 130% with a step of 5% with both down-regulation
strategies (constTSR and lin70) considered. Power boosting and IBC modes are simulated
for wind speeds >10 m/s. The resulting amount of unique wind fields generated is 756,
and the total number of simulations performed is 24,912. An overview of the variable space
and simulation parameters is given in Table 2.
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Table 2. Variables and parameters for the simulations used to create the training set.

Variable/Parameter Values

Wind speed 4:1:24 m/s
TI 2:2:24%
Shear PL exponent 0.2
Air density 1.225 kg/m3

Inflow angle 0 deg
Yaw misalignment 0 deg
Power level 50:5:130%
IBC On/Off (for wsp > 10 m/s)
Turbulence seeds 3
Turbulence model IEC Kaimal
Surface roughness 0.03 m
Simulation duration 3600 s
Simulation time step 0.025 s

The aeroelastic simulations were performed with the mid-fidelity, open-source tool
FAST v8.16.00 [38,45] provided by the National Renewable Energy Laboratory (NREL). All
degrees of freedom available in the structural module ElastoDyn were enabled besides
the YawDOF option, as the nacelle yaw is maintained constant throughout the simula-
tions. In the aerodynamics module AeroDyn v14.04, the Beddoes dynamic stall model was
activated. Additionally, the equilibrium induction-factor model, along with the Prandtl
corrections for tip-loss and hub-loss calculations, were used. Moreover, the tower shadow
model was deactivated. The settings regarding the turbine configuration and the various
modules used in FAST were kept consistent for all simulations. The FAST software was
compiled as an S-function and integrated within a Matlab/Simulink framework. The con-
troller and actuators were designed in Matlab and connected to the S-function within the
aforementioned simulation framework. More information on the turbine model and its
implementation in FAST can be found in [8,46].

The open-source software Turbsim v2.0.0 [47], provided by NREL, was used for gen-
erating the numerical wind fields. The grid dimensions were set to 180 by 180 m with
31 grid points along each dimension. The time step of the wind fields was set to 0.125 s.
The turbulence model used was the International Electrotechnical Commission (IEC) Kaimal
model by enabling the IECKAI option along with the IEC normal turbulence model and the
default surface roughness length options in Turbsim. The power law model was used for
the wind shear. All settings were kept constant for all wind fields generated.

The time series outputs for the quantities of interest are post-processed to derive the
target metrics. The three seeds are used to derive the mean value and standard deviation
for each operational point. The processed metrics are then tabulated in 3D matrices having
dimensions: wind speed, TI, and power level. In total, four independent matrices, per
metric considered, are created for the different control modes and their combinations:
constTSR, constTSR_IPC, lin70, and lin70_IPC. These four matrices are the training datasets
on which the regression methods are applied.

The DELs are calculated based on Miner’s rule [48] for linear damage accumulation
using the rainflow-counting algorithm [49]. The DELs are calculated using Equation (1)
where j is the total amount of binned load ranges, Si is the mean value of the ith load
range bin, Ni is the number of cycles counted for this load range, Neq is the equivalent
number of cycles, and m denotes the Wöhler exponent. A value of m = 4 is used for all steel
components, while for the blades, a Wöhler exponent of 10 is considered. The 1 Hz DEL is
calculated for all cases using an Neq of 3600 since the simulations have an hourly duration.

DEL =

(
i=j

∑
i=1

Ni
Neq

Sm
i

)1/m

(1)
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In addition to DELs, the metrics considered include the mean, standard deviation,
minimum and maximum values for each quantity. Furthermore, the energy production is
calculated by integrating the electrical power signal over the duration of the simulation
and the blade pitch travel is calculated using Equation (2) to obtain a metric of the impact
of the different control modes on the blade pitch actuator.

PitchTr =
t=tend−1

∑
t=to

|θt+1 − θt| (2)

Additionally to the training dataset, a validation dataset was created. The scope of the
validation set is to assess the performance of the surrogate model in terms of predictive ac-
curacy by comparing the surrogate response to unseen data. For the validation set, only one
control mode was considered, using the constTSR trajectory for down-regulation without
IBC. This was performed to reduce the required sampling size to effectively cover the input
space, as the general trends are similar for the different controller modes. The validation
set consists of 200 unique points derived using the Latin hypercube method [50] and is
shown in Figure 8. The entire variable space was sampled for the wind speed and power
level input variables, while for TI, the interval considered was 2–18%.

Figure 8. Sampling of validation set based on the latin hypercube method.

After obtaining the training and validation datasets, the next step is to perform the
regression. Before applying the regression methods, an additional step of smoothing the
training dataset is performed. The filtering for each of the four matrices was performed
using a 3D Gaussian filter with a convolution kernel size of 3 × 3 × 3 points and a standard
deviation of 0.6. These values were derived iteratively, aiming for a filter that smoothes local
peaks but does not change the general trends or increase the uncertainty metrics considered.

Two regression methods are considered: a spline-based interpolation and a GPR model.
The spline-based interpolation is a straightforward and efficient regression technique
selected for its simplicity, ease of implementation, and fast prediction capabilities. It
serves as a baseline method to compare against the more computationally demanding GPR
model, identified in the literature as one of the best-performing methods for the application.
The objective is to assess whether the increased computational cost associated with GPR
yields any advantages for the specific task under consideration.

Spline-based interpolation involves fitting a smooth curve or surface, called a spline,
through the given data points. The spline is composed of piecewise-defined polynomial
functions that ensure continuity and smoothness across the entire interpolation region.
This technique is used to generate continuous and differentiable approximations of the
underlying data, enabling accurate representations. It is often preferred to pure polynomial
interpolation using a single polynomial to fit the whole dataset. Spline interpolation pro-
duces similar results, even when using lower-degree piecewise polynomials, while avoiding
the issues with using single higher-degree polynomials that can lead to rippling near the
edges of the interpolation interval. In this work, cubic splines are used with not-a-knot end
conditions. Thus, at the first and last interior break, even the third derivative is continuous.
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GPR (also referred to as Kriging) is a statistical modeling technique used to estimate
and predict values in a continuous domain. It is based on the concept of Gaussian processes,
which are collections of random variables that jointly follow a multivariate Gaussian distri-
bution. In GPR, a Gaussian process is used to model the underlying relationship between
input variables and corresponding output values [28,51]. By leveraging the assumption of
smoothness and incorporating prior knowledge, GPR provides a flexible framework for
interpolation and extrapolation. It estimates not only the mean prediction but also provides
uncertainty estimates associated with each prediction.

GPR aims to model the relationship between input variables (X) and output variables
(y) using a Gaussian process. A Gaussian process is characterized by its mean function
µ(x) and a covariance function k(x, x′). The mean function represents the expected value
of the output variable at any given input point, while the covariance function quantifies
the similarity between output variables at different input points.

It is assumed that the output variable follows a Gaussian distribution: y = f (x) + ε, where
ε is Gaussian noise with mean zero and variance σ2. The goal is to predict the output variable
y∗ for a new input x∗ given a training dataset with input-output pairs (X, y). The predictive
distribution of y∗ given the training data is also Gaussian: p(y∗|x∗, X, y) N(µ∗, σ2). The mean
µ∗ and variance σ∗2 of the predictive distribution can be computed using the training data and
covariance function. Specifically, the mean and variance are given by:

µ∗ = k(x∗, X)(K + σ2 I)−1y (3)

σ∗2 = k(x, x∗)− k(x∗, X)(K + σ2 I)−1k(X, x∗) (4)

where k is the covariance function (kernel function), K = k(X, X′) is the covariance kernel
matrix where its entries correspond to the covariance function evaluated at the observations.

The choice of covariance function, such as the squared exponential, Matérn, or rational
quadratic, along with its hyperparameters, determines the smoothness and complexity of
the resulting regression model. These hyperparameters can be optimized based on the data
using maximum likelihood estimation or other methods. Model selection and evaluation
in Gaussian process regression can be performed using techniques like cross-validation or
Bayesian model comparison. More details on the mathematical implementation of GPR
can be found in [51].

In this work, GPR is implemented using the native Matlab implementation framework
provided by the machine learning toolbox. For each quantity of interest, a separate GPR
model is trained using the response data from the training set for the three input variables.
This approach allows for fine-tuning the parameters individually for each response and
ensures accuracy by accommodating different scales and smoothness characteristics of the
response signals. For each quantity of interest, hyperparameter optimization was performed
using the Matlab framework provided with the fitrgp library using the random search opti-
mization method. The chosen kernel and radial basis functions for the GPR models are pre-
sented in Table A1. The noise standard deviation input was set close to zero since, in this work,
the regression results are treated in a deterministic manner. However, for probabilistic assess-
ment, the noise can be adjusted point-wise based on the standard deviation of the three seeds.
The training set, along with the trained GPR models and relevant reading functions, are pub-
licly available at https://doi.org/10.5281/zenodo.10092271 (accessed on 15 December 2023).

4. Uncertainty Quantification of the Surrogate Response

The surrogate models are evaluated by comparing them to the validation set to assess
the performance of the two regression methods. Additionally, the uncertainty associated
with each quantity of interest is quantified. The objective is to determine the overall level
of uncertainty for each quantity and identify the specific conditions where the highest
uncertainty is observed.

https://doi.org/10.5281/zenodo.10092271
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The box plots of the relative error and relative absolute error in percentage are shown
in Figure 9 for both methods. An overview of all the mean errors (ME), mean absolute
errors (MAE), median absolute errors (MedAE), and coefficients of determination (R2) for
all quantities of interest for both regression methods are shown in Table 3.
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Figure 9. Box plots of the relative error and relative absolute error for the spline interpolation (a) and
the GPR model (b) to the validation set per sensor. The central mark indicates the median, and the
bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers
extend to the maximum and minimum values not considered outliers. Outliers are defined as values
greater or smaller than the quartile value plus/minus 1.5 times the interquartile range.
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Table 3. Evaluation metrics of the GPR and spline-based surrogate models compared to the validation
set. ME: mean error%, MAE: mean absolute error%, MedAE: median absolute error%, R2: coefficient
of determination. s denotes the spline-based interpolation and g the GPR model

Quantity ME s ME g MAE s MAE g MedAE s MedAE g R2 s R2 g

BRMx 0.0 0.0 0.1 0.1 0.1 0.1 0.9981 09981
BRMy 0.6 0.6 2.4 2.5 1.6 1.6 0.9966 0.9966
BRMz 0.6 0.6 2.1 2.1 1.4 1.4 0.9936 0.9937
BROop 0.8 0.8 3.0 3.0 2.3 2.4 0.9950 0.9951
BRIp 0.0 0.0 0.1 0.1 0.1 0.1 0.9987 0.9987
TBMx 0.6 0.6 4.9 4.9 3.5 3.6 0.9915 0.9916
TBMy 0.5 0.6 3.2 3.2 2.1 2.2 0.9914 0.9913
TBMz −0.6 −0.5 2.6 2.7 1.3 1.4 0.9987 0.9987
TTMx 1.3 1.3 4.0 4.1 2.6 2.5 0.9933 0.9934
TTMy 0.7 0.7 1.8 1.9 1.3 1.4 0.9990 0.9990
TTMz 0.6 0.6 1.7 1.8 1.2 1.3 0.9990 0.9990
LSSMy 0.6 0.7 1.8 1.9 1.4 1.5 0.9990 0.9990
LSSMz 0.6 0.8 1.8 2.0 1.3 1.3 0.9990 0.9990
LSSTq 1.8 1.9 6.7 6.8 4.2 4.2 0.9584 0.9580
Power 1.8 2.0 3.3 3.6 0.2 0.1 0.9998 0.9998
Energy 2.0 1.9 2.8 4.4 0.2 0.4 0.9998 0.9997
PitchTr 1.9 2.1 11.6 11.2 3.2 3.1 0.9927 0.9928

Comparing the two methods and their uncertainty metrics, it is shown that they have
practically the same level of accuracy with small discrepancies in the level of decimals in
percentage. This indicates that, for the present application and the dense factorial sampling
considered, there is no significant benefit in accuracy by using the GPR model. The main
benefit of employing the GPR model would be its ability to provide uncertainty estimates
for each prediction that can be used for uncertainty propagation studies. The disadvantages
of the GPR model compared to the spline-based interpolation are the computational time for
training, the size of the model, and the longer time to produce the predictions. The higher
computational cost can be a disadvantage if the model is used in the context of optimization
where multiple calls might be required.

To understand the uncertainties of the surrogate model better, the different quantities
of interest are analyzed individually. As both surrogate approaches behave similarly, only
the GPR model will be used for this analysis. In Figure 10, the comparison of the surrogate
response to the validation set is shown for all quantities.

The blade root edgewise and in-plane loads, BRMx and BRIp, are captured with very
high accuracy with a MAE of less than 0.2%. This is expected as these loads are mainly
driven by rotational speed and gravity. The blade root flapwise and torsional loads, BRMy
and BRMz, have an MAE smaller than 2.5%. Figure 11 shows the error sorted per input
variable for these loads. The uncertainty in both cases is influenced the most by TI as
the error scatter increases with increasing TI. Moreover, BRMz uncertainty is higher for
above-rated wind speeds, which can be attributed to pitch control activation as torsional
blade loads are increased with pitching, and the exact pitching behavior depends on the
stochastic behavior of the wind. At low wind speeds < 5 m/s, higher error values can be
seen in both cases. Here, the controller is in region 1.5, and depending on the turbulence,
the wind speed can go below cut-in or operate in region 2 for different periods, making the
results sensitive to these changes. Additionally, the absolute values are very small in this
region, which has a magnifying effect on the errors. Small changes in the absolute value
lead to high changes in the relative error. This observation can be generalized for most of
the output quantities considered.
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Figure 10. Comparison per sensor between the surrogate response and the validation set using the
GPR regression and the constTSR trajectory for down-regulation. Legends include the coefficient of
determination R2. The identity line is plotted in red.

50 60 70 80 90 100 110 120 130

Power level %

-10

0

10

20

4 6 8 10 12 14 16 18 20 22 24

Windspeed m/s

-10

0

10

20

R
e
la

ti
v
e
 e

rr
o

r 
B

R
M

y
 %

2 4 6 8 10 12 14 16 18

TI %

-10

0

10

20

50 60 70 80 90 100 110 120 130

Power level %

-10

0

10

4 6 8 10 12 14 16 18 20 22 24

Windspeed m/s

-10

0

10

R
e

la
ti

v
e

 e
rr

o
r 

B
R

M
z
 %

2 4 6 8 10 12 14 16 18

TI %

-10

0

10

Figure 11. Relative error between the surrogate predictions and the validation dataset sorted per
input variable. (Left): blade root flapwise moment DEL. (Right): blade root torsion DEL.

The tower bottom load with the least uncertainty is the torsional load TBMz. The MAE
is 2.7% with the highest errors in the very low wind speeds <5 m/s. The MAE for the
tower bottom side-side and fore-aft loads, TBMx and TBMy, is 4.9% and 3.2%, respectively.
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The relative error sorted by the input variables for these loads is shown in Figure 12.
TBMx has the second-highest error values from all the loads considered. As the side-side
component is less damped by the aerodynamic forces, it presents a more stochastic loading
behavior over wind speeds. It has a higher dependency on the turbulence seed realization,
which leads to higher uncertainty for the surrogate model. For the TBMy load, higher
uncertainty is observed for low TI (<4%), with the surrogate consistently overestimating the
output. Moreover, a weaker correlation between increased uncertainty with increased load
magnitudes (seen in Figure 10) is observed. The highest fore-aft loads are observed around
the rated wind speed, due to the controller transition between the partial and full load as
well as the high aerodynamic thrust, which is a region of higher uncertainty for TBMy.
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Figure 12. Relative error between the surrogate predictions and the validation dataset sorted per input
variable. (Left): tower bottom side-side moment DEL. (Right): tower bottom fore-aft moment DEL.

The tower top pitch and yaw moment loads, TTMy and TTMz, exhibit very similar
patterns in terms of error magnitudes and uncertainty distribution. The relative error sorted
by the input variables for the tower top roll and yaw moment, TTMx and TTMz, is shown
in Figure 13. For these loads, the MAE is 4.1% and 1.9%, respectively. In the case of TTMx,
the uncertainty is primarily driven by wind speeds, with the highest values observed in
below-rated wind speeds and the uncertainty increasing as wind speeds decrease. As the
roll moments are correlated with the variation in rotor speed and generator torque, the DELs
in below-rated regions, and especially in region 1.5, have the highest variation leading
to high sensitivity of loads to conditions. This translates to higher prediction uncertainty
for the surrogate model. For TTMy and TTMz there is no clear trend of correlation of
uncertainty to input variables. In most cases, increased uncertainty is observed for very
low wind speeds (<5 m/s).
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Figure 13. Relative error between the surrogate predictions and the validation dataset sorted per input
variable. (Left): tower top roll moment TTMx DEL. (Right): tower top pitch moment TTMy DEL.

Low-speed shaft bending moment loads, LSSMy and LSSMz, present very similar
patterns in terms of error magnitudes and uncertainty distribution. The relative error
sorted by the input variables for LSSMy and low-speed shaft torque, LSSTq, is shown in
Figure 14. For LSSMy and LSSMz, the MAE is 2%. There is no clear pattern of dependency
of uncertainty to input variables. The LSSTq load has the highest uncertainty from all loads
considered, with an MAE of 6.8% and the lowest coefficient of determination. As seen
from the direct comparison in Figure 10, the highest uncertainty is correlated with the
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highest magnitudes, which in turn occur in the transition region around rated. This is also
confirmed in Figure 13, where higher errors are observed in this region.
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Figure 14. Relative error between the surrogate predictions and the validation dataset sorted per
input variable. (Left): low-speed shaft moment around y-axis LSSMy DEL. (Right): low-speed shaft
torque LSSTq DEL.

Power, energy, and blade pitch are also captured by the surrogate. The relative error
sorted by the input variables for these is shown in Figure 15. Power and energy are highly
correlated in terms of error magnitudes and uncertainty distribution. The reported MAE
values close to 4% can be misleading as the high error values are primarily observed at
very low wind speeds below 5 m/s. In this region, even small changes in wind speed can
lead to larger errors, although the absolute difference in power is only a few kW. If only
speeds above 5 m/s are considered for the calculation of MAE, the value becomes 0.4%
and the highest uncertainty is observed in the transition region around rated wind speed.
The blade pitch travel output has an MAE of 11.2%. As seen in the figure, larger errors are
observed in the rated and slightly below-rated wind speeds. Since the transition to region
3 depends on the variation of wind speeds, the pitch travel magnitude depends highly on
the specific turbulent realization leading to higher uncertainty for the surrogate model in
this region. This is confirmed if only samples with wind speed >12 m/s are considered;
then the MAE becomes 4% (not shown in the figure).
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Figure 15. Relative error between the surrogate predictions and the validation dataset sorted per
input variable. (Left): mean electrical power. (Right): blade pitch travel.

5. Aero-Servo-Elastic Analysis

The response of the wind turbine is analyzed using the surrogate response for the dif-
ferent control models and input conditions. Only the GPR surrogate is used, as the response
between the two surrogate methods was found to be similar. The goal is to identify the trends
of loads for the entire system, power, and pitch travel for the considered range of input
variables, as well as the effect of the IBC loop and the two down-regulation trajectories. This
analysis provides a better insight into the dependency of the loads on different conditions
and controller modes. The sensitivity of the quantities of interest to the input variables is
discussed in groups per component (blade loads, tower bottom loads, etc.). The visualization
is based on parametric swipes of the surrogate response for the entire range of each input
variable. Load trends are discussed comparatively to the baseline power level.
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Figure 16 shows the tower bottom load response under varying input conditions
for all controller modes. The side-side load (TBMx) magnitude is highest in higher wind
speeds showing an almost linear increase with increasing wind speeds in the above-rated
region. Varying the power level in above-rated conditions has a minor effect on loads (<7%
total variation) and the highest loads are observed for the 100% power level. The TBMx
load is less damped aerodynamically and depends mainly on rotational speed, gravity,
and aerodynamic torque. In the case of down-regulation using the constTSR trajectory,
the lower torque leads to lower loads. In power boosting mode, the higher rotational speed
leads to higher xP harmonics, which move further away from possible tower crossing
frequencies reducing the loads. Using the lin70 trajectory for down-regulation has the
opposite effect, increasing the TBMx load up to 7%. This increase is attributed to the
decreased rotational speed in control regions 1.5 and 2, which brings the 3P harmonics of
the rotor speed closer to the tower’s natural frequencies leading to higher dynamic loading.
The sensitivity of the DTU 10 MW rwt concerning resonances leading to increased TBMx
loads has also been documented in refs. [8,19].
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Figure 16. GPR surrogate response for the tower bottom DELs. For the power level and wind speed
sensitivity plots, values are normalized with the power level of 100% at 12 m/s without IBC. For the
sensitivity to TI values are normalized with the output for 12% TI at 100% power level without IBC.

Activating the IBC loop leads to TBMx load reduction to the order of 10% for all power
levels. In rated and below-rated conditions, down-regulation using the constTSR trajectory
leads to load reduction up to 25% for the minimum power level. The rate of reduction is
higher until about 90% power level, where a 15% reduction is already reached. Conversely,
the lin70 trajectory exhibits the opposite behavior, with the loads increasing with decreasing
power levels due to the decrease in rotational speed. The impact of increasing TI is similar
to all tower bottom loads with a linear increase in loads with increasing TI. Additionally,
the effectiveness of the IBC loop is dependent on TI for all tower bottom loads. Increasing
TI increases IBC load reductions proportionally to the power level.
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The fore-aft tower bottom DEL, TBMy, is higher at wind speeds in the transition
region as well as in the higher wind speeds, where it increases proportionally to the wind
speed. In the full load region, for wind speeds above the transitions region, TBMy varies
almost linearly with the power level. The maximum decrease observed is to the order
of 15% for the minimum power level, while the maximum load increase is around 10%
for the maximum power level. The loads in the transition region are the most sensitive
to changes in power level due to the maximum thrust in this region and the transition
between control regions. For maximum power boosting, TBMy load increase in this region
reaches 25% and is proportional to the power level. Down-regulation with both trajectories
in the transition region effectively reduces the loads by up to 50%. In the partial load
region, down-regulation with constTSR reduces the loads by up to 35% while the lin70
trajectory reduces them by up to 25%. For both transition and below-rated regions and
both down-regulation trajectories, more than 50% of the TBMy load reduction occurs until
90% power level. The IBC loop has a small effect on TBMy loads with a maximum load
reduction of 4% for all power levels and wind speeds.

The magnitude of the torsional load at the tower bottom, TBMz, is proportional to the
wind speed with a small local peak in the transition region. Power boosting increases the
loads in the transition region up to a level of 20% for the maximum power level. In the
full load region, the effect is smaller, with less than 5% increase for any wind speed and
power level. Down-regulation in the full load region using the constTSR trajectory has
practically no effect on loads, while the lin70 trajectory reduces the TBMz load up to 7%.
In the partial load and transition regions, down-regulation can lead to load reductions up
to 30% for the minimum power level. More than 50% of these reductions are achieved at
90% down-regulation. The application of IBC leads to TBMz load reductions to a level of
10% with the effectiveness increasing with increasing TI levels.

The tower top load response is shown in Figure 17. The roll moment load TTMx is
higher for the higher wind speeds and has a significant peak in the transition region. This
peak is proportional to the power level, increasing with power boosting and reducing with
down-regulation. Power boosting increases the peak loads in the transition region up to
20%, proportionally to the power level. For higher wind speeds it has no impact on the
TTMz loads. Down-regulation, with both trajectories, is able to reduce loads in all operating
regions. In the full-load region, the load reduction is proportional to the wind speeds
reaching a maximum reduction of 10–15% for the minimum power level for both trajectories.
The largest load reductions by down-regulation, up to 60%, are observed in the transition
region. The load reduction is proportional to the power level with a higher reduction rate
until 90% power level. In the partial load region, TTMx load reduction is linearly correlated
to power level. The constTSR trajectory is more effective showing a maximum load reduction
of 45% for the minimum power level while for the lin70 trajectory, the reduction is up to 30%.
The application of IBC does not influence TTMx loads significantly. When applied with
power-boosting, IBC slightly increases the loads proportionally to the boosting level while
in power levels below 80% it slightly decreases the loads. In all cases, the maximum load
difference is less than 5%. All tower top loads exhibit similar trends regarding sensitivity to
TI, increasing linearly with TI.

The tower top roll and pitch moment loads, TTMy and TTMz, have similar responses
to the input variables and are discussed together. The load distribution over wind speeds
follows the same trends with the tower bottom torsion TBMz. The load magnitude is
proportional to the wind speed for the whole wind speed range with a small peak in the
transition region. Power boosting increases these loads the most in the transition region up
to 20% for the maximum power level. In higher wind speeds the maximum increase for any
power level is lower than 8%. These increases are linearly correlated with the power level.
Down-regulation in the full-load region using the constTSR trajectory does not affect loads
while following the lin70 trajectory shows a reduction of up to 10% depending on the power
level. In the transition and partial load regions, down-regulation can reduce the loads up to
30% and 35% considering the constTSR and lin70 trajectories, respectively. Most of the load
reduction is achieved until a power level of 90% and for lower levels the load reduction rate
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is significantly smaller. The IBC controller is able to reduce TTMy and TTMz loads up to
10–15% for all power levels with the effectiveness increasing proportionally to TI levels.
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Figure 17. GPR surrogate response for the tower top/nacelle loads. For the power level and wind speed
sensitivity plots, values are normalized with the power level of 100% at 12 m/s without IBC. For the
sensitivity to TI, values are normalized with the output for 12% TI at 100% power level without IBC.

The sensitivity of the blade root loads to the input variables is presented in Figure 18.
The edgewise bending moment load BRMx shows the least sensitivity (<10% variation
in total) to all input variables. The magnitude is higher in the transition region and it is
reducing in the partial and full load regions. Power boosting has a small effect increasing
the BRMx loads up to 2% for the maximum power level. Similarly, down-regulation with
the constTSR trajectory shows a small load reduction (<2%) for all regions and power levels.
Applying the lin70 trajectory reduces BRMx loads more, in all operating regions, up to 4%
due to the reduced rotational speed. The IBC controller does not affect the BRMx loads
showing a reduction of up to 1% for all cases. TI does not significantly influence the BRMx
DEL, with differences of less than 8% within the range considered.

The magnitude of the blade root flapwise bending moment load, BRMy, is correlated
to the wind speed showing the highest values in the highest wind speeds and a significant
peak in the transition region around the rated wind speed. Power boosting has the greatest
impact on increasing BRMy in the transition region, with the increase reaching 20% for
the maximum power level. At higher wind speeds, the maximum load increase with
power boosting is 8%. In both regions, the increase is linearly correlated with the power
level increase. In the full-load region, down-regulation using the constTSR trajectory
does not significantly reduce the loads (<3%). In contrast, the lin70 trajectory achieves a
load reduction of up to 10%, with the reduction being directly proportional to the down-
regulation level. The highest load reductions with down-regulation are observed in the
transition region with the lin70 trajectory showing a maximum reduction of 30% and the
constTSR 25%. In the partial load region, both trajectories show similar load reductions up
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to 20% for the minimum power level. In rated and below-rated regions, for both trajectories,
most of the load reduction is already achieved at the 90% power level.
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Figure 18. GPR surrogate response for the blade root loads. For the power level and wind speed
sensitivity plots, values are normalized with the power level of 100% at 12 m/s without IBC. For the
sensitivity to TI values are normalized with the output for 12% TI at 100% power level without IBC.

It is worth noting that for low wind speeds < 6.5 m/s and low power levels (<65%)
the BRMy loads are increased compared to the baseline level, for both down-regulation
trajectories. This effect was also observed for the TBMx load for wind speeds below 5 m/s.
This shows the limits of down-regulation in terms of power levels for very low wind speeds
in control region 1.5, as explained in Section 2.2. As expected, the IBC controller is highly
effective in reducing BRMy loads since it is the controller’s target load. In the higher wind
speed regime IBC can reduce the loads to a level of 20–30% for all power levels while in
the transition region, the load reduction is to the order of 10–15%. BRMy load magnitude
presents a linear correlation to TI. In contrast to other loads discussed, the results show that
the effectiveness of IBC in BRMy load reductions does not increase with TI.

The blade torsion load, BRMz, is higher in the transition region and decreases in the
partial and full load. This trend changes with decreasing power levels, where for lower
power levels the highest region is shifted towards the highest wind speeds. The BRMz
load is sensitive to power boosting, showing an almost linear dependency on power level.
For the highest power level considered, the load increase in the transition region is found
to the order of 25%, and for higher wind speeds to the order of 20%. Down-regulation
effectively reduces loads in all operating regions, with the two trajectories showing no
significant differences. In the full-load region, the load reduction with down-regulation
reaches 30% for the lowest power level, with the reduction being proportional to the down-
regulation level. In the partial load and transition regions, the maximum load reduction
reaches 60%, with half of it reached at the 90% power level, after which the load reduction
to power level ratio reduces. The IBC controller has a negligible effect on BRMz loads. TI
has a greater impact on BRMz load levels in the full load region.
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The low-speed shaft loads response is presented in Figure 19. The low-speed shaft
torque load LSSTq shows similar trends with the TTMx load in terms of distribution over
wind speeds. The highest loads are found in the transition region and the highest wind
speed region. The significant peak in the transition region increases further with power
boosting and decreases substantially with down-regulation. Power boosting increases the
LSSTq load only in the transition region with the magnitude of increase showing a linear
correlation to the power level. The maximum increase in the peak load in the transition
region is 20% with higher deltas up to 40% observed for different wind speeds in the region.
This increase is the highest observed among all loads considered.
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Figure 19. GPR surrogate response for the low-speed shaft loads. For the power level and wind speed
sensitivity plots, values are normalized with the power level of 100% at 12 m/s without IBC. For the
sensitivity to TI values are normalized with the output for 12% TI at 100% power level without IBC.

Down-regulation can reduce the LSSTq load in all operational regions. In the partial
load, the reduction is linearly correlated to the power level, with a maximum reduction
of 45% observed for the constTSR trajectory and 30% for the lin70 trajectory at the lowest
power level. The highest load reduction is observed in the transition region with both trajec-
tories behaving similarly, with a maximum load reduction of 55%. The rate of reduction is
higher for higher power levels with 25% load reduction observed at 90% power level. In the
above-rated conditions, the load reduction is linearly proportional to power level with a
maximum reduction up to 25% for the constTSR trajectory and 20% for the lin70. Applying
IBC has adverse effects on the LSSTq load, leading to increased magnitude. The maximum
increase is found in the transition region, with a proportional relationship to the power
level and a maximum value of around 20%. At higher wind speeds the increase in loads
due to the IBC controller is smaller, up to 15%, and is proportional to the power level.

The low-speed shaft moment loads around the y and z axes (LSSMy and LSSMz)
show very similar trends and magnitudes, and therefore, are discussed together. These
loads show a similar distribution pattern to the TTMy and TTMz loads, both in terms
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of wind speed and TI ranges, as well as different controller modes. The simplified drive
train modeling in FAST assumes a rigid shaft, while the bearings are not modeled hence
the loads are transferred directly from the shaft to the tower top node with the difference
being the offset between the tower top and the shaft without any damping component in
between. Power boosting increases the LSSMy and LSSMz loads primarily in the transition
region. Down-regulation is effective in reducing loads, particularly in the transition and
below-rated regions. The lin70 trajectory is more effective compared to the constTSR in load
reduction. The IBC controller demonstrates effectiveness in load reduction at higher wind
speeds, with a consistent percentage of load reduction observed across different power
levels and wind speeds.

Figure 20 presents the surrogate response for mean power, energy production, and blade
pitch travel. The response of power and energy over wind speeds and power levels verifies
that the controller modes behave as intended in dynamic simulations. Both down-regulation
and power boost modes track the power reference as intended. Furthermore, it is verified
that IBC is not affecting power production. It can also be observed, using dynamic simula-
tions instead of the steady states shown in Figure 3, how the minimum mean wind speed
at which the turbine is able to produce energy, shifts. For the minimum down-regulation
level, this value is approximately 5 m/s. Power is sensitive to TI with a linear correlation.
In the partial load, increasing TI decreases the mean power produced with a 10% difference
calculated between the lowest and highest TI values considered. In the transition region
increasing TI has the opposite effect reducing the power production. The reduction is
linearly correlated to TI, with a maximum reduction of 10% for the highest TI level.
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Figure 20. GPR surrogate response for electric power, energy, and blade pitch travel. For the power
level and wind speed sensitivity plots, values are normalized with the power level of 100% at 12 m/s
without IBC. For the sensitivity to TI values are normalized with the output for 12% TI at 100% power
level without IBC.
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The blade pitch travel is a simplified metric to account for pitch actuator usage.
The metric aims to quantify the effect of the IBC loop and different power levels on the
actuator usage over different wind conditions. Pitch travel is correlated to the power level
linearly. For the maximum power level, the increase is to the order of 15–20% for all wind
speeds. For the minimum power level and both down-regulation trajectories, the decrease
in the full load reaches 25%. In the transition region, the difference is higher, in the order of
50%, as reducing the power levels smoothes out the turbine response in control region 2.5.
The application of IBC leads to a substantial increase in blade pitch travel. The magnitude
of this increase is directly proportional to wind speed for each power level. For the 100%
power level, the increase varies linearly with wind speeds between 500% and 700%. The
power level has a small effect on the pitch travel increase due to IBC activation. For the
minimum power level, the maximum increase in pitch travel was found to the order of
660%, while for the maximum 740%. The increase in pitch travel due to the IBC application
is less affected by TI with an increase of 120% within the TI range considered.

6. Discussion

The individual sensitivities of all quantities to input conditions and control modes
have been discussed in the previous section. This section offers a qualitative summary of
these findings, accompanied by a discussion of their implications. This discussion explores
the potential trade-offs between power and loads that could be leveraged in optimization.

Table 4 provides a qualitative summary of the effects discussed. Down-regulation
demonstrates greater effectiveness in load reduction within the partial load and transition
regions. Conversely, its impact is less pronounced in the full load region, particularly when
following the constTSR down-regulation trajectory. IBC and down-regulation serve as
complementary methods for load reduction, each exhibiting efficacy in specific wind speed
ranges and addressing distinct load components.

Table 4. Qualitative summary of the sensitivity of the DELs considered to the controller modes
and wind conditions. PB: power boosting, DRb: down-regulation in the partial load, DRt: down-
regulation in the transition region, DRa: down-regulation in the full load region, IBC: individual
blade control loop activated. o: no significant change, + and ++: moderate and higher increase, – and
– – moderate and higher reduction. TSR: constTSR down-regulation trajectory, lin: lin70 trajectory.

Load DRb TSR DRb lin DRt TSR DRt lin DRa TSR DRa lin PB IBC

TBMx – + – + o + o –
TBMy – – – – – – – – + o
TBMz – – – – – – – – o – + –
TTMx – – – – – – – o ++ +
TTMy – – – – – – – – o – + –
TTMz – – – – – – – – o – + –
BRMx o – o – o o o o
BRMy – – – – – – – – o o + – –
BRMz – – – – – – – – – – ++ o
BROop – – – – – – – – o – + – –
BRIp o – o – o o o o
LSSTq – – o – – – – – – ++ ++
LSSMy – – – – – – – – o – + –
LSSMz – – – – – – – – o – + –

The TBMx, BRMx, and BRIp loads exhibit the least sensitivity across all control modes.
Moreover, TBMy, TTMx, BRMz, and LSSTq loads are found to increase the most when
power boosting is applied. The activation of IBC results in substantial reduction in blade
BRMy and BROOp loads, with moderate reductions in TBMx, TBMZ, TTMy, TTMz, LSSMy,
and LSSMz. For the rest of the loads, it is observed that activating IBC has either no effect
(TBMy and BRMz) or increases the load in the same region where power boosting has the
greatest impact (TTMx, LSSTq). The findings suggest that selectively implementing IBC
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at higher wind speeds than the transition region could be advantageous, as it lowers the
impact on adversely affected loads. For loads positively influenced by IBC, its effectiveness
is consistent across the entire applicable wind speed range.

A significant portion of the expected load reduction achieved through down-regulation
is associated with a small decrease in power level. This can be attributed to the steep Cp
peak in the λ− θ space (see Figure 2). The analysis conducted previously revealed that,
for the DTU 10 MW rwt aerodynamic design, over 50% of the maximum load reduction can
be accomplished with a down-regulation level of 90% for the majority of loads. Conversely,
at lower down-regulation levels, the rate of load reduction per power level diminishes
significantly. This indicates that the trade-off between power and loads is more favorable
in this particular region. Further reductions in power yield diminishing effects, as a small
load reduction is accompanied by greater losses in power production. This effect was
primarily observed when applying down-regulation in wind speeds within the transition
and below-rated regions for the TBMx, TBMy, TBMz, TTMy, TTMz, BRMy, BRMz, LSSMy,
and LSSMz loads.

The transition region, between partial and full load, is highly sensitive in terms of
loads, regardless of the controller design and the switching logic. Implementing down-
regulation within this region has a smoothing effect on the transition, resulting in significant
load reduction in most cases. This observation is further supported by measurement data,
as shown in [13]. Leveraging this insight in a potential optimization suggests that a small
decrease in power level within the transition region can yield an overall significant reduction
in loads, with a relatively smaller energy production loss.

An additional factor that can be utilized in optimization is grouping loads that exhibit
similar responses to the control modes. Defining a load ensemble for the load evaluation
function is essential for optimization. Loads that demonstrate similar behavior can be
grouped and one load from the group can be selected as representative. This approach
can reduce the number of optimization variables and enhance the efficiency of the process.
The analysis conducted in the previous section revealed that the TBMz, TTMy, TTMz,
LSSMy, and LSSMz loads exhibit very similar responses and can be effectively used for this
purpose. LSSTq and TTMx also display similar responses, particularly in the transition and
partial load regions, although the correlation is weaker compared to the previous group.

Comparing the two trajectories considered for down-regulation setpoint derivation,
it was observed that the choice of trajectory has an impact on the loads. By maintaining
constant rotational speed and performing down-regulation employing only the blade
pitch, the constTSR trajectory exhibited higher load reduction per power level for the
TBMX, TBMy, TTMx, and LSSTq loads. On the other hand, combining both torque and
rotational speed in the lin70 trajectory resulted in higher load reduction for TBMz, BRMy,
TTMy, TTMz, LSSMY, and LSSMz loads. This effect was particularly prominent in the full
load region, suggesting that further rotational speed reduction may be beneficial for load
reduction in this wind speed region.

Especially for trajectories involving rotational speed reduction, it was found that
there is a limit to the minimum assignable power level due to the impact of reduced
rotational speed on region 1.5, cut-in wind speed, and loads. In this region, the turbine
operates off-design and can exhibit unpredictable behavior, particularly at lower power
levels (<70%) where accurate power tracking becomes challenging and load dependence
on power level diminishes. Moreover, reducing rotational speed alters the effective cut-in
wind speed, and this effect becomes more prominent for lower power levels in trajectories
relying on rotational speed reduction. This information holds greater significance when
considering down-regulation for optimal power tracking, such as in scenarios where
significant curtailment is required by the grid operator. However, in cases where load
reduction is the objective or in wind farm control scenarios targeting thrust reduction,
such low levels of down-regulation may not yield meaningful outcomes. Furthermore,
considering the stiff-stiff tower design combined with low structural damping, it is crucial
to prevent the excitation of tower frequencies. Resonances, particularly in the low-damped
tower side-side loads, can occur when turbulence is combined with a lower TSR.
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The trends identified here are focused on the specific aerodynamic and structural
design of the DTU 10 MW reference wind turbine as well as the proposed controller design.
Nevertheless, they are expected to carry over to other machines of similar size and structural
design, although possibly with different magnitudes. For machines with significantly larger
(and possibly more flexible rotors) or different aerodynamic or structural designs of the
components (e.g., a not stiff-stiff tower design as in the case of the DTU 10 MW) the impact
of the control modes on the structural loads has to be evaluated on the specific design.
Moreover, the turbine is considered in an onshore configuration. The derived trends are
expected to be valid also in an offshore fixed-bottom setup. A limited simulation performed
by the authors showed very similar trends to most loads considered with the addition of
hydrodynamics affecting mainly the monopile substructure loads.

7. Conclusions

The goal of this study was to develop and evaluate surrogate models for a multi-MW
VSPR modern wind turbine with down-regulation, power boosting, and IBC control modes.
The controller tuning was discussed for all modes. Two down-regulation trajectories,
based on pitching only and a combination of pitching and rotational speed reduction were
explored for power level reduction up to 50%. Power boosting was performed by following
the maximum Cp curve for power levels up to 130%. The IBC loop includes an independent
SISO controller for each blade feedbacking the blade root flapwise bending moment.

The response of the entire turbine system including power, loads, and pitch actuation
metrics was captured by aeroelastic simulations employing a dense full factorial sampling
approach for wind speed, TI, and controller mode. Based on this simulation database
two methods were compared for creating a data-driven surrogate model. Although com-
putationally cheaper the spline-based interpolation showed to perform very similar to
the more expensive GPR model considered, possibly due to the dense sampling. As the
spline-based approach is faster to implement and generate predictions with, it would be
preferred for cases where multiple evaluations are required while the GPR model could be
beneficial in cases where probabilistic assessment is considered since it can directly provide
uncertainty estimates. The comparison to a validation set showed low uncertainty across
all quantities considered with a mean absolute error lower than 4% with the very low wind
speed and transition regions showing the highest uncertainty in most cases.

Using the surrogate model, a thorough aeroelastic analysis of the entire system was
performed discussing the trends across wind conditions and controller modes. The loads
and wind speed regions influenced the most by each control mode were identified. The anal-
ysis showed that the difference between the two down-regulation trajectories is relatively
small affecting the distribution of load reductions across the different components. Down
regulation showed to be more effective in load reduction in the transition region for most
loads while the majority of load reductions were observed until 90% power levels. These
insights can be leveraged for optimization purposes focusing on fatigue and possibly rev-
enue management. Moreover, the combination of down-regulation and IBC showed to
be synergistic in terms of potential load reductions as they are more effective in different
wind speed regions and loads, showing that they can be combined to effectively reduce
the majority of loads in the system. The loads affected the most by power boosting were
identified, with the trends showing that load increase is proportional to the power level.

Overall, the models and results presented in this work can enable tasks such as
condition monitoring and operational optimization at a system level by offering quick
and accurate surrogate models that capture multiple controller modes relevant to wind
turbine operation.
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Abbreviations
The following abbreviations are used in this manuscript:

BRMx Edgewise blade root moment
BRMy Flapwise blade root moment
BRMz Blade root torsion
BROop Out of plane blade root moment
BRIp In plane blade root moment
TBMx Fore-aft tower bottom moment
TBMy Side-side tower bottom moment
TBMz Tower bottom torsion
TTMx Tower top roll moment
TTMy Tower top pitch moment
TTMz Tower top yaw moment
LSSMy Low-speed shaft moment around y-axis
LSSMz Low-speed shaft moment around z-axis
LSSTq Low-speed shaft torque
DEL Damage equivalent load
ND Non-dimensional
TI Turbulence intensity
PitchTr Blade pitch travel
IPC Individual Pitch Control
IBC Individual Blade Control
CPC Collective pitch controller
PI Proportional Integral
Kp Proportional gain
Ti Inverse of integral gain
DOE Design of Experiment
TSR Tip speed ratio
MAE Mean absolute error
ME Mean error
MedAE Median absolute error
R2 Coefficient of determination
P Electrical power
Pnom Nominal electrical power
Prated Rated electrical power
Cp Power coefficient
Ct Thrust coefficient
Act Blade pitch actuator
θ Pitch angle
θCPC Pitch angle commanded by the collective pitch controller
θmax Maximum pitch angle
ωrot Rotor rotational speed
ωg,rated Rated generator rotational speed
ωg, f ilt Filtered generator rotational speed
ωg,min Minimum generator rotational speed
ωg,max Maximum generator rotational speed
ωg,max15 Maximum generator rotational speed in control region 1.5
ωg Generator rotational speed
Mg Generator torque
Mg,min Minimum generator torque
Mg,max Maximum generator torque
Mg,com Commanded generator torque
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Mg,rat Rated generator torque
k Constant for the torque controller
HP High-pass filter
BS Band-stop filter
LP Low-pass filter
τ Time constant of the first-order low-pass filter
ξ f damping ratio of second-order low-pass filter
ωN, f natural frequency of second-order low-pass filter
a15 Offset of linear ramp for control region 1.5
b15 Slope of linear ramp for control region 1.5
e Error from setpoint

Appendix A. Kernel and Basis Radial Function for the GPR Model

Table A1. Kernel function and basis function for GPR for the different quantities of interest found by
hyperparameter optimization.

Quantity Kernel Function Basis Function

BRMx Matern32 Linear
BRMy Matern32 Constant
BRMz Matern52 Linear
BROop Matern32 Quadratic
BRIp Matern32 Linear
TBMx Matern32 None
TBMy Matern32 Linear
TBMz Matern32 Linear
TTMx Matern32 Linear
TTMy Matern52 None
TTMz Matern32 Linear
LSSMy Matern32 Linear
LSSMz Matern32 Linear
LSSTq RationalQuadratic None
Power Matern32 Constant
Energy Exponential Quadratic
PitchTr Matern32 None
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