
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Heft 307 Kilian Mouris 

A holistic approach to assess the impact of 

global change on reservoir sedimentation 



 

 

 



 

 

 

 

A holistic approach to assess the impact of global change 

on reservoir sedimentation 

 
 

 

Von der Fakultät Bau- und Umweltingenieurwissenschaften  

der Universität Stuttgart zur Erlangung der Würde eines  

Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung 

 

 

 

 

 

 

vorgelegt von 

Kilian Mouris 

aus Lörrach 

 

 
 

 

 

Hauptberichterin:  Prof. Dr.-Ing. Silke Wieprecht 

Mitberichter:  Prof. Dr. phil. Nils Rüther 

 PD Dr. Stefan Haun 

 

 

Tag der mündlichen Prüfung: 21. Februar 2024 
 
 
 
 

Institut für Wasser- und Umweltsystemmodellierung  
der Universität Stuttgart 

2024  



 

 

  



 

 

 

 

 

 

 

Heft 307 A holistic approach to assess 
the impact of global change on 
reservoir sedimentation 

 
 
 
 
 

 
 

 von  
Dr.-Ing. 
Kilian Mouris 
 
 

 
 
 
 
 

Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung 
der Universität Stuttgart



 

 

D93 A holistic approach to assess the impact of global change on reservoir 

sedimentation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bibliografische Information der Deutschen Nationalbibliothek 

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen 

Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über 

http://www.d-nb.de abrufbar 

 

 

Mouris, Kilian: 
A holistic approach to assess the impact of global change on reservoir 
sedimentation, Universität Stuttgart. - Stuttgart: Institut für Wasser- und 
Umweltsystemmodellierung, 2024 
 
(Mitteilungen Institut für Wasser- und Umweltsystemmodellierung, Universität 
Stuttgart: H. 307) 
Zugl.: Stuttgart, Univ., Diss., 2024 
ISBN 978-3-910293-11-3 
 
NE: Institut für Wasser- und Umweltsystemmodellierung <Stuttgart>: Mitteilungen 

 
 

Gegen Vervielfältigung und Übersetzung bestehen keine Einwände, es wird lediglich 
um Quellenangabe gebeten. 
 
 
 
Herausgegeben 2024 vom Eigenverlag des Instituts für Wasser- und Umweltsystem-
modellierung 
 
Druck: P+K Solutions GmbH & Co. KG, Stuttgart 



Acknowledgements

I would like to express my sincere gratitude to Prof. Dr.-Ing. Silke Wieprecht. Her unwavering
guidance and support have been invaluable throughout my academic journey. I was greatly
inspired by Prof. Wieprecht’s lectures on hydraulic engineering, and her mentorship as my
Ph.D. supervisor was essential for my academic and professional development.

I would like to thank PD Dr. Stefan Haun for his constant support since my master studies. His
collaboration on numerous projects and his guidance during my dissertation were of great
importance. Dr. Haun’s confidence in my abilities enabled me to develop my own ideas,
and our joint endeavors were enriched by memorable excursions, business trips, and countless
refreshing lunch breaks.

I am also grateful to Prof. Dr. phil. Nils Rüther, who has also acted as examiner for this
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Abstract

Global change is altering land use and hydro-climatic conditions, leading to more frequent and
more severe droughts and floods in the future. Acknowledging the need for adaptive mea-
sures, large artificial reservoirs emerge as powerful tools to mitigate the effects of hydrological
extremes. However, reservoirs interrupt the longitudinal continuity of river systems, causing
sediment deposition due to an abrupt decrease in flow velocity. Consequently, reservoir sedi-
mentation reduces storage volume and compromises buffering capacity, increasing local water
scarcity and flood risk. Hence, reservoir sedimentation poses a substantial global challenge,
reducing net reservoir storage despite the construction of many new reservoirs. Compounding
this challenge, projected hydro-climatic and land use changes will likely increase soil erosion
and suspended sediment loads, further accelerating reservoir sedimentation. However, the
variation in sediment production and projected trends among regions highlights the complex-
ity of predicting reservoir sedimentation and subsequent storage loss for individual reservoirs,
requiring objective and holistic assessments of sediment production, delivery, and reservoir
processes.

Existing modeling tools for assessing the global impacts of climate change face limitations in
simulating the complex processes that drive reservoir sedimentation. While some models can
estimate the effects of climate change on sediment production, they neglect the influence of
land use changes. Moreover, only some models integrate hydro-climatic and land use changes,
often relying on oversimplified representations of reservoirs. Therefore, the overarching goal of
this thesis is to develop objective methods for predicting long-term sediment dynamics, reser-
voir sedimentation, and deposition patterns under various global change scenarios, including
future hydro-climatic and land use changes. By quantifying the impact of global change on
reservoir sedimentation, the developed holistic approach aims to facilitate sustainable reser-
voir operations.

Four research articles form the core of this cumulative thesis. The first three publications are
fundamental building blocks that contribute to the ultimate objective addressed in the fourth
publication. Publication I introduces a practical and objective approach for calculating sedi-
ment loads, utilizing satellite imagery and climate reanalysis data. The approach is designed
to be applicable in data-sparse regions where precise field measurements and high-resolution
precipitation data may be lacking. A novel feature of this developed method is the considera-
tion of non-erosive snowfall, which gradually accumulates over months, followed by erosive
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snowmelt. The integration of seasonal snow memory into the Revised Universal Soil Loss
Equation (RUSLE) significantly improves the accuracy of soil erosion and sediment transport
predictions in the studied mountainous Mediterranean catchment.

Publication II focuses on calibrating multidimensional reservoir models to simulate reservoir
sedimentation processes. A surrogate-based Bayesian calibration approach is used to circum-
vent the drawbacks of time-consuming trial-and-error calibration procedures. Modeling reser-
voir sedimentation is challenging due to the concurrent simulation of deep waters, shallow
shores, and tributary deltas prone to deltaic avulsion and erosion. Publication II examines
the calibration of a complex numerical model, considering competing model simplifications,
and additionally analyzes the importance of the four calibration parameters to prioritize them
accordingly in field surveys. Bayesian calibration only yields meaningful parameter combina-
tions within the valid geospatial range of the numerical model, with dry bulk density identi-
fied as the most important and influential parameter. Consequently, collecting dry bulk den-
sity data before setting up a numerical model for predicting reservoir sedimentation is recom-
mended.

Publication III introduces an interdisciplinary model chain to predict reservoir sedimenta-
tion and preceding catchment processes for various climate change scenarios. Emphasizing
the essential consideration of uncertainties and their propagation within the modeling chain,
the main objective of the article is to assess whether simulation results are more influenced
by model parameter uncertainties or climate model uncertainties. The First-Order Second-
Moment (FOSM) method is identified as a suitable approach for approximating model param-
eter uncertainties in this complex modeling chain. The results show that the uncertainties aris-
ing from different climate projections significantly exceed the approximate model parameter
uncertainties for the investigated low emissions scenario. Therefore, using an ensemble of cli-
mate models is recommended to reduce the bias of individual climate models. Ultimately, this
method enables modelers to communicate various sources of uncertainty in complex modeling
chains efficiently.

Publication IV builds on the previous publications by addressing the central issue of reservoir
sedimentation in the context of global change. The interdisciplinary model chain integrates
catchment characteristics, hydro-climatic conditions, and land use data to assess the impact of
different global change scenarios on river discharge, sediment production and delivery, and
reservoir sedimentation processes. The model chain predicts reduced river discharges and in-
creased sediment loads for high and medium emissions scenarios when applied to the moun-
tainous Mediterranean catchment of the Devoll River. Low emissions scenarios project elevated
river discharges. Shifts in precipitation patterns, such as the increase in winter rainfall, the de-
crease in snowfall, and the reduction in summer precipitation, contribute significantly to water
scarcity during Mediterranean summers. This finding highlights the importance of water stor-
age in artificial reservoirs. Furthermore, increased winter precipitation amplifies sediment pro-
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duction and reservoir sedimentation. Although hydro-climatic changes contribute to increased
reservoir sedimentation, the results show that the effects of land use change can outweigh these
effects, emphasizing the importance of localized interventions, such as afforestation, to miti-
gate sediment production. Finally, a 3D hydro-morphodynamic model illustrates the interplay
between global change and reservoir sedimentation, providing spatially explicit information
on future deposition patterns to facilitate the implementation of sustainable reservoir manage-
ment strategies.

This dissertation presents a comprehensive and interdisciplinary approach to predicting and
understanding reservoir sedimentation under the influence of global change. By addressing
key modeling and calibration challenges, the thesis provides valuable insights into sedimen-
tation processes and contributes to the sustainable management of reservoirs under changing
hydro-climatic and land use conditions.





Kurzfassung

Der globale Wandel umfasst eine Vielzahl von weltweiten Veränderungsprozessen, wie z. B.
die globale Erwärmung, die Umwandlung von Wäldern in landwirtschaftliche Nutzflächen,
aber auch die Zunahme der Weltbevölkerung und der damit einhergehende steigende Wasser-
und Energiebedarf. Diese zukünftigen Entwicklungen beeinflussen die hydroklimatischen Be-
dingungen und die Landnutzung, was zu häufigeren und intensiveren Dürreperioden und
Hochwasserereignissen führen wird. Eine bewährte Maßnahme zur Abschwächung dieser hy-
drologischen Extreme ist die Schaffung künstlicher Stauseen. Stauseen unterbrechen jedoch
die longitudinale Sedimentdurchgängigkeit von Flusssystemen und die im Fluss transportier-
ten Sedimente lagern sich aufgrund der verringerten Fließgeschwindigkeit im Stauraum ab.
Dadurch reduziert sich das Speichervolumen, und die Pufferkapazität der Stauseen wird ein-
geschränkt, was wiederum die Wahrscheinlichkeit von Hochwasserereignissen und Dürren
erhöht. Die Verlandung von Stauseen stellt weltweit eine große Herausforderung dar und führt
trotz des Baus zahlreicher neuer Stauseen zu einer Verringerung des Nettospeichervolumens.
Erschwerend kommt hinzu, dass die zu erwartenden hydroklimatischen und landschaftlichen
Veränderungen voraussichtlich die Bodenerosion und die Schwebstofffracht erhöhen und da-
mit die Stauraumverlandung weiter beschleunigen werden. Die Sedimentproduktion und die
zu erwartenden Trends sind jedoch regional sehr unterschiedlich, so dass eine Prognose der
Stauraumverlandung für einzelne Stauseen eine genaue und umfassende Bewertung der Se-
dimentproduktion, des Sedimenteintrags und der Verlandungsprozesse in den Stauseen erfor-
dert.

Bestehende Modellierungsansätze können die komplexen Prozesse, welche die Sedimentation
von Stauseen beeinflussen, nur bedingt simulieren. Einige Modelle können zwar die Auswir-
kungen des Klimawandels auf die Sedimentproduktion und -fracht für bestimmte Einzugs-
gebiete abschätzen, vernachlässigen aber den Einfluss von Landnutzungsänderungen. Umge-
kehrt können Modelle, die historische Veränderungen in der Landnutzung berücksichtigen,
die Auswirkungen zukünftiger und langfristiger Klima- und Landnutzungsänderungen nicht
einbeziehen. Die wenigen Modelle, welche sowohl hydroklimatische als auch Landnut-
zungsänderungen berücksichtigen, verwenden jedoch stark vereinfachte Stauraummodel-
le. Das übergeordnete Ziel dieser Arbeit ist daher die Entwicklung objektiver Methoden
zur Vorhersage der langfristigen Sedimentdynamik, Stauraumverlandung und deren Abla-
gerungsmuster unter Berücksichtigung von zukünftigen hydro-klimatischen und Landnut-
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zungsänderungen. Durch die Quantifizierung der Auswirkungen des globalen Wandels auf
die Verlandung von Stauseen soll der entwickelte umfassende Ansatz den nachhaltigen Be-
trieb von Stauseen zukünftig ermöglichen.

Die vorliegende Dissertation wurde in kumulativer Form erstellt und basiert auf vier wissen-
schaftlichen Veröffentlichungen. In Publikation I wird ein objektiver und praxisorientierter An-
satz zur Berechnung der Sedimentfracht vorgestellt. Dieser Ansatz verwendet Satellitenbilder
und Reanalysedaten, wodurch er auch in Regionen mit geringer Datengrundlage und ohne
hochauflösende Niederschlagsdaten anwendbar ist. Eine wichtige Neuerung der entwickelten
Methode ist die Berücksichtigung von nicht-erosivem Schneefall und der erosiven Wirkung
der nachfolgenden Schneeschmelze. Die Ergebnisse zeigen, dass die Einbindung des saisona-
len Schneespeichers in die Revised Universal Soil Loss Equation (RUSLE) die Vorhersage von
Bodenerosion und Sedimentfracht, im untersuchten gebirgigen mediterranen Einzugsgebiet,
erheblich verbessert.

Der Fokus der zweiten Publikation liegt auf der Kalibrierung von mehrdimensionalen nume-
rischen Modellen zur Simulation von Verlandungsprozessen in Stauseen. Zur Umgehung der
Nachteile zeitaufwendiger Trial-and-Error Kalibrierungsverfahren wird ein surrogatgestützter
Bayes‘scher Kalibrierungsansatz verwendet. Die Modellierung von Stauraumverlandung ist
besonders herausfordernd, da gleichzeitig die Sedimenttransportprozesse in den flachen Be-
reichen des Flussdeltas und entlang der Ufer sowie in den tiefen Bereichen des Stauraums
simuliert werden. Die Vorhersage der Wechselwirkung von Depositions- und Erosionspro-
zessen im Stauwurzelbereich sowie die Bestimmung des zukünftigen, oft verzweigten Fluss-
verlaufs im Delta sind herausfordernd und nur schwer mit numerischen Modellen zu erfas-
sen. Publikation II untersucht die Kalibrierung eines komplexen numerischen Modells un-
ter Berücksichtigung konkurrierender Modellvereinfachungen und analysiert zusätzlich den
Einfluss von vier Kalibrierungsparametern auf die simulierten Verlandungsprozesse. Die Er-
gebnisse zeigen, dass die Bayes‘sche Kalibrierung nur dann zu physikalisch sinnvollen Pa-
rameterkombinationen führt, wenn die zur Kalibrierung verwendeten Messpunkte innerhalb
des gültigen Bereichs des numerischen Modells liegen und der Bereich der Stauwurzel nicht
berücksichtigt wird. Zusätzlich wird die Schüttdichte der angelandeten Sedimente als wich-
tigster Parameter identifiziert und sollte daher vor der Erstellung des numerischen Modells
messtechnisch bestimmt werden.

In Publikation III wird die entwickelte Modellkette zur Vorhersage von Stauraumverlandung
und der vorangehenden Prozesse im Einzugsgebiet für verschiedene Klimawandelszenarien
vorgestellt. Dabei ist es wichtig, die Fortpflanzung von Unsicherheiten innerhalb der Modellie-
rungskette zu berücksichtigen. Das Hauptziel der Veröffentlichung besteht darin, zu bewerten,
ob die Simulationsergebnisse mehr durch die Unsicherheiten der Modellparameter oder durch
die Unsicherheiten der Klimamodelle beeinflusst werden. Zur Abschätzung von Modellpa-
rameterunsicherheiten wird im Rahmen der Studie die First-Order-Second-Moment-Methode
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(FOSM) verwendet. Die Ergebnisse zeigen, dass die Unsicherheiten, die sich aus den verschie-
denen Klimaprojektionen ergeben, die approximierten Modellparameterunsicherheiten für das
untersuchte Niedrigemissionsszenario deutlich übersteigen. Daher wird die Verwendung von
mehreren Klimamodellen empfohlen, um Verzerrungen durch einzelne Klimamodelle zu re-
duzieren. Schlussendlich ermöglicht die vorgestellte Methode eine effektive Kommunikation
der verschiedenen Unsicherheitsquellen in komplexen Modellierungsketten.

Publikation IV knüpft an die vorangegangenen Publikationen an und befasst sich mit den
Auswirkungen des globalen Wandels auf die Verlandung von Stauseen. Die entwickelte in-
terdisziplinäre Modellkette untersucht die Auswirkungen verschiedener Zukunftsszenarien
auf den Abfluss, die Sedimentproduktion, den Sedimenteintrag und die Verlandungsprozesse
von Stauseen. Dazu werden die Charakteristika des Einzugsgebietes, hydroklimatische Bedin-
gungen und Landnutzungsdaten berücksichtigt. Für das untersuchte bergige mediterrane Ein-
zugsgebiet prognostiziert die Modellkette eine Abnahme des Abflusses und eine Zunahme der
Sedimentfracht bei hohen und mittleren Emissionsszenarien. Niedrige Emissionen hingegen
führen zu erhöhten Abflüssen. Veränderte Niederschlagsmuster, wie die Zunahme der Nieder-
schläge im Winter, der Rückgang der Schneefälle und die Verringerung der Niederschläge im
Sommer, führen zunehmend zu Wasserknappheit in den Sommermonaten. Dies verdeutlicht,
dass die Wasserspeicherung in künstlichen Stauseen auch in Zukunft von Bedeutung sein wird.
Insbesondere die Zunahme von Regenfällen in den Wintermonaten führt zu einer erhöhten Se-
dimentproduktion und damit zu einer Zunahme der Stauraumverlandung. Jedoch zeigen die
Ergebnisse der Studie, dass eine Zunahme der Stauraumverlandung aufgrund hydroklima-
tischer Veränderungen durch die Auswirkungen von Landnutzungsänderungen kompensiert
werden kann. Die Bedeutung von lokalen Maßnahmen zur Begrenzung der Sedimentprodukti-
on, wie beispielsweise Aufforstungen, wird dadurch unterstrichen. Abschließend veranschau-
licht ein 3D hydro-morphodynamisches Modell die Wechselwirkung zwischen globalem Wan-
del und Stauraumverlandung und liefert räumlich explizite Informationen über zukünftige
Verlandungsmuster, welche die Umsetzung nachhaltiger Strategien für das Stauraummanage-
ment erleichtern.

Die vorliegende Arbeit präsentiert einen umfassenden und interdisziplinären Ansatz zur
Vorhersage der Stauraumverlandung unter dem Einfluss des globalen Wandels. Durch die
Berücksichtigung der wichtigsten Herausforderungen bei der Modellierung und Kalibrierung,
liefert die Arbeit wertvolle Einblicke in Sedimentationsprozesse und trägt zu einem nachhal-
tigen Management von Stauseen unter sich ändernden hydroklimatischen Bedingungen und
Landnutzungsänderungen bei.
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1. Introduction

Global change encompasses a broad range of changes caused by the significant increase in
human activity since the mid-twentieth century (Steffen et al., 2005). Over the past 70 years,
the global population has grown from 2.5 billion to 8 billion, while economic activity has in-
creased nearly 12-fold (World Bank and Maddison Project, 2017). These remarkable changes
have reshaped socioeconomic dynamics and left an indelible mark on Earth system trends
(Steffen et al., 2005). Significant socioeconomic changes, such as urban population growth,
increased energy consumption, and increased water use, concur with Earth system trends re-
flecting rising greenhouse gas concentrations and surface temperatures, expanded cultivated
land, and tropical forest loss (Steffen et al., 2005). These global changes substantially impact
hydro-climatic patterns and land use, which in turn affect the availability and distribution of
water resources (Alcamo and Henrichs, 2002; Garcı́a-Ruiz et al., 2011; Nilawar and Waikar,
2019; Dallison et al., 2021). Additionally, global warming intensifies the impact on water re-
sources by increasing evapotranspiration and exacerbating extreme weather patterns, leading
to more frequent and intense droughts (Dai, 2013; Trenberth et al., 2014) and floods (Alfieri
et al., 2017). Recognizing the need for adaptive strategies, large artificial reservoirs emerge as
one of the most effective tools for buffering the effects of such hydrological extremes. However,
reservoirs interrupt the longitudinal continuity of fluvial systems, and the abrupt decrease in
flow velocities leads to sediment deposition in reservoirs (Morris and Fan, 1998; Hinderer et al.,
2013; Sun et al., 2021). Therefore, reservoir sedimentation threatens buffer capacity by reduc-
ing the storage volume, exacerbating local water availability problems and flood risks (Kondolf
et al., 2014; Yasarer and Sturm, 2016; Schleiss et al., 2016).

Reservoir sedimentation is a substantial global problem, resulting in annual losses of 0.5-1% of
existing storage (Mahmood, 1987; Yoon, 1992; Bruk, 1996; Basson, 2009). This trend has led to a
decline in net reservoir volume despite the construction of more than 3,500 large dams world-
wide since 2000 for hydropower generation alone (Annandale, 2013; Zarfl et al., 2015). Further-
more, the global per-capita storage capacity is declining even faster due to a lack of construc-
tion to keep up with population growth (UNESCO, 2021). To make matters worse, anticipated
hydro-climatic and land use changes are expected to increase soil erosion and suspended sed-
iment loads, thereby accelerating reservoir sedimentation (Shrestha et al., 2013; Panagos et al.,
2021; Shi et al., 2022; Patro et al., 2022). However, sediment production and expected trends
vary significantly across regions, depending on climate, lithology, topography, precipitation,
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temperature, and anthropogenic influences (Walling and Webb, 1996; Annandale, 2013; Pana-
gos et al., 2021). Consequently, predicting reservoir sedimentation and subsequent storage
loss for individual reservoirs requires accurate, holistic assessments of sediment production,
delivery, and reservoir sedimentation processes. Because every system is unique, simulating
relevant processes and considering global change impacts is challenging but necessary for de-
signing reservoirs and ensuring sustainable reservoir sediment management.

One of the key challenges in assessing the global impacts of climate change is the limited detail
and capacity of existing modeling tools to simulate the essential processes that govern sediment
production, delivery, and reservoir sedimentation. For example, the accurate prediction of
reservoir sedimentation through hydro-morphodynamic numerical models (Rüther and Olsen,
2005; Haun et al., 2013; Olsen and Hillebrand, 2018; Mouris, Acuna Espinoza, Schwindt, Mo-
hammadi, Haun, Wieprecht and Oladyshkin, 2023) demands an objective approach to calculate
sediment supply based on catchment characteristics and hydro-climatic parameters. While
some models can assess the impact of climate change on sediment production and loads for
specific catchments (Shrestha et al., 2013; Nerantzaki et al., 2015; Azari et al., 2016; Hirschberg
et al., 2021; Ahmad et al., 2021) or continents (Moragoda and Cohen, 2020; de Oliveira Fagun-
des et al., 2023), they often disregard the influence of land use changes, despite recognizing
their importance. Conversely, models that account for historical changes in land use may not
incorporate the effects of future long-term changes in climate and land use (Khoi and Suetsugi,
2014; Zhao et al., 2018; Shi et al., 2022). Only a few models can effectively consider the im-
pact of hydro-climatic change and land use on sediment dynamics (Mullan et al., 2012; Nunes
et al., 2013; Routschek et al., 2014; Sinha et al., 2020). However, these models usually over-
simplify reservoirs by representing them as lines in one-dimensional hydro-morphodynamic
models (Ehrbar et al., 2018; Khan et al., 2020) or relying on basic empirical estimates such as
the Brune (1953) or Churchill (1948) curve to assess the effect of climate change on reservoir
sedimentation (Bussi et al., 2021).

Such simplistic models approximate reservoir storage loss but cannot account for spatially ex-
plicit deposition patterns. However, information on the location of sediment depositions is
crucial for reservoir operation management decisions. For example, sedimentation at the head
of the reservoir can lead to increased upstream flood levels. At the same time, sediment ac-
cumulation near the dam outlets poses a substantial risk to the safe operation of the reservoir
(Morris and Fan, 1998). Local measures to remobilize sediment deposition, such as dredging
or flushing, provide strategies to reduce these risks. However, dredging and spatiotempo-
rally efficient flushing necessitate multidimensional comprehension of hydro-morphodynamic
processes. Currently, no modeling system or model chain offers such extensive information.
Consequently, state-of-the-art modeling tools fall short of the multidisciplinary simulations
needed to predict reservoir sedimentation processes and patterns, especially in global change
scenarios.
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To overcome these challenges, the overarching goal of this thesis is to develop objective meth-
ods for predicting long-term sediment dynamics and multidimensional reservoir sedimenta-
tion under different global change scenarios, including hydro-climatic and land use changes.
The proposed model chain considers changes in temperature, precipitation, river discharge,
sediment production and delivery, and reservoir sedimentation. This comprehensive approach
aims to facilitate sustainable reservoir operations by quantifying the impact of global change
on reservoir sedimentation.

1.1. Motivation and objectives

Reliable long-term predictions of reservoir sedimentation for climate or global change scenar-
ios require an objective method for calculating sediment loads. However, existing approaches
often lack objectivity in their calculation, and the uncertainties in their final results remain
unknown (Song et al., 2011). Therefore, the primary goal of Publication I is to establish a
practical and objective workflow for generating monthly sediment loads, considering catch-
ment characteristics and hydro-climatic parameters (see Figure 1.1). This method uses freely
available datasets, such as satellite imagery and reanalysis data, ensuring applicability even
in data-sparse regions where high-resolution precipitation data and detailed field surveys are
unavailable.

In addition, the widely employed Revised Universal Soil Loss Equation (RUSLE, Renard et al.,
1991) lacks differentiation between precipitation in the form of rain or snow (Alewell et al.,
2019), leading to a recognized research gap (Yin et al., 2017). To bridge this gap, a core ele-
ment of the developed method is an algorithm that considers both the non-erosivity of snow-
fall and the erosivity of snowmelt by introducing a seasonal memory into the RUSLE. Thus,
Publication I further evaluates whether incorporating snowfall and snowmelt into the RUSLE
improves the accuracy compared to existing approaches that neglect the influence of snow on
soil erosion.

Publication II focuses on calibrating hydro-morphodynamic numerical models to simulate
reservoir sedimentation (see Figure 1.1). During this process, the calibration parameters are
adjusted within a physically reasonable range to achieve satisfactory agreement between mod-
eled and measured data within appropriate tolerances (Simons et al., 2000; Oberkampf et al.,
2004; Paul and Negahban-Azar, 2018). The conventional trial-and-error approach is not only
time-consuming and labor-intensive but also subjectively biased, lacking consideration for un-
certainty in measured data, modeling errors, and equifinality. While Bayesian calibration can
overcome some of these limitations, its iterative nature makes it impractical for computation-
ally intensive models (Schmelter and Stevens, 2013; Muehleisen and Bergerson, 2016; Beckers
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Figure 1.1. Simplified schematic representation of a catchment and reservoir illustrating the
processes governing reservoir sedimentation. The figure delineates the focus and
chronological sequence of the publications.

et al., 2020). Therefore, meta- or surrogate models emerge as a viable solution to mitigate long
computing times and accurately replicate the input-output behavior of complex models.

Modeling reservoir sedimentation is particularly challenging due to the simultaneous simula-
tion of shallow shores, tributary deltas, and deep waters. Predicting the exact location of chan-
nel erosion and deltaic avulsion at the head of the reservoir is inherently difficult (Hajek and
Wolinsky, 2012; Chadwick et al., 2019), leading to inaccuracies in representing some regions of
a reservoir model due to global model assumptions. Therefore, Publication II examines the cali-
bration of a complex numerical model for predicting reservoir sedimentation in the presence of
competing model simplifications. It also explores whether Bayesian calibration converges to-
wards physically meaningful parameters only when the model is well-conditioned. Moreover,
important calibration parameters, such as grain size distribution, critical bed shear stress for
erosion of cohesive sediments, and dry-bulk density, often require labor-intensive and costly
field sampling. Hence, Publication II investigates whether at least one of the calibration param-
eters significantly dominates the deposition of suspended sediment in reservoirs, addressing
the importance of identifying and prioritizing influential parameters to reduce the workload
and costs associated with extensive field sampling.

Publication III delves into the developed model chain, which includes several state-of-the-art
models designed to predict sedimentation processes for different hydro-climatic and land use
conditions (see Figure 1.1). However, when multiple models contribute to predicting a vari-
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able, superposition effects of uncertainties from different sources may arise, leading to an in-
crease in the uncertainty of the final target variable. Determining model parameters and their
corresponding values can be challenging, especially when limited measurements are available.
Therefore, it is crucial to understand the impact of the model parameters on the final simulation
results and the confidence in these results (Moges et al., 2021). Moreover, considerable uncer-
tainties are associated with the results of climate models (Prudhomme and Davies, 2009). In
Publication III, we quantify the approximate uncertainties in the model parameters and com-
pare them to the spread of climate projections. Ultimately, Publication III examines whether
simulation results are impacted more by perturbations in the model parameters (approximate
parameter uncertainties) than by the spread of climate projections (climate model uncertain-
ties).

The results from the initial three publications pave the way for the fourth and concluding Pub-
lication IV, which explores the influence of various global change scenarios on future river
discharge, sediment production, and reservoir sedimentation, thereby addressing the overar-
ching research question of this thesis (see Figure 1.1). An additional objective is to compare
the predicted impacts of hydro-climatic changes on reservoir sedimentation with the predicted
impacts of land use changes.

1.2. Structure of this thesis

This doctoral thesis is a cumulative dissertation based on four peer-reviewed journal articles.
Following the introduction in Chapter 1, Chapter 2 covers the fundamentals of reservoir sed-
imentation, starting from sediment production in the catchment to delivery and deposition
in the reservoir. Furthermore, the consequences of reservoir sedimentation downstream and
upstream of the dam are discussed. Chapter 3 details the materials and methods used and
developed in this thesis. In Chapter 4, concise summaries of the published journal articles are
presented, while the full articles are included in individual chapters: Publication I, II, III, and
IV. Finally, Chapter 5 presents the conclusions and recommendations.



2. Fundamentals on reservoir sedimentation

Artificial reservoirs constitute indispensable elements of modern infrastructure, providing
drinking water, irrigation water, flood protection, recreation, and hydropower (e.g., Kim et al.,
2020; Schleiss et al., 2016). However, reservoirs interrupt the longitudinal continuity of flu-
vial systems (Kondolf, 1997; Hinderer et al., 2013; Sun et al., 2021). The diminished flow forces
and turbulence levels result in sediment accumulation within the reservoir, creating a sediment
deficit downstream of the dam (Morris and Fan, 1998; Morris et al., 2008). This chapter focuses
on the origin of sediments, sediment delivery, sedimentation processes, and the consequences
of reservoir sedimentation.

2.1. Origin of sediments

The primary source of sediment deposition in reservoirs is soil erosion triggered by rainfall
and subsequent transport by streams (Morris and Fan, 1998). Water is the predominant natural
erosive agent responsible for the majority of global soil erosion (Bridges and Oldeman, 1999;
Quinton et al., 2010), as reflected by a literature review that found that 95% of modeling ap-
plications between 1994 and 2017 considered only water as erosive agent (Borrelli et al., 2021).
Therefore, this chapter focuses on water-induced erosion processes and does not consider wind
and glacial erosion.

The contribution of individual erosion processes to total sediment production is complex and
depends on catchment characteristics, including vegetation, soil type, topography, and hydro-
climatic conditions. Rill and inter-rill erosion are emerging as crucial processes worldwide,
particularly on agricultural land. Soil erosion from agricultural land can account for 40 to
70% of the total sediment load in streams and is a primary contributor to reservoir sedimen-
tation (Fox et al., 2016). However, in some catchments, gully erosion is the dominant source
of sediment (e.g., Caitcheon et al., 2012; Zhang et al., 2018). Figure 2.1 shows the main erosion
processes and sediment sources that will be introduced in the following chapter.

Splash erosion Splash erosion or raindrop impact constitutes the first stage of the rainfall-
induced erosion process (see Figure 2.1). It breaks up the granular structure of the soil due to
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Figure 2.1. Schematic representation of typical erosion processes and sediment sources (modi-
fied after Vanoni, 1975; Klaghofer et al., 1992).

the kinetic energy of the raindrops (Fernández-Raga et al., 2010). This fragmentation produces
particles small enough to be carried by shallow flows, while raindrop impact also transports
particles up to 1.5 m horizontally through rain splash (Ryżak et al., 2015). Additionally, splash
erosion creates surface crusts, which reduce infiltration and increase surface runoff (Poesen,
1984; Fernández-Raga et al., 2010). Unlike rainfall, snowfall does not cause splash erosion due
to the low kinetic energy of the snowflakes.

Rill and inter-rill or sheet erosion Sheet and inter-rill erosion are often used interchangeably
to describe the uniform topsoil erosion caused by water flowing in a sheet rather than in specific
rills or channels (Morgan, 2009). Inter-rill transport distances are typically limited to a few
meters before flow concentrates in rills (Morris and Fan, 1998). The microtopography of the
terrain governs the formation and location of these rills on hillslopes (Carollo et al., 2015). As
water flow concentrates in rills, the bed shear stress increases, facilitating the detachment of
soil particles. Consequently, sediment transport efficiency is enhanced because concentrated
flow is characterized by greater depth and velocity compared to uniform overland flow (Bruno
et al., 2008). Rill and inter-rill erosion are mainly caused by rainfall but may also occur due to
snowmelt.
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Gully erosion Gully erosion occurs when water runoff accumulates in narrow channels,
causing rapid soil erosion of significant depths (Poesen et al., 2003). In contrast to rill ero-
sion, gully erosion entails larger and deeper channels ranging from 0.5 m to as much as 30 m
(see Figure 2.1). Conventional cultivation techniques can no longer remove or mitigate these
channels. Gully erosion often initiates through the enlargement of a rill or intensified flow
caused by structures like roads, trails, ditches, or drains (Morris and Fan, 1998; Poesen et al.,
2003). The upper limit of gullies remains indistinct, as there is no precise boundary between
large gullies and (ephemeral) river channels. Although gullies share similarities with river
channels in shape, they exhibit distinct features such as retreating headcuts and knickpoints
along their course (Vanmaercke et al., 2016; Sun et al., 2016).

Bank and channel erosion Depending on the catchment, channel and bank erosion may
also be significant sources of sediment (Wilson et al., 2008; Fox et al., 2016). Bank erosion is the
gradual erosion of the soil on the banks of a river (see Figure 2.1). Eroding banks often have
almost vertical profiles with newly exposed roots. The vegetation on these banks usually does
not adequately protect them when undercutting occurs beneath the root zone (Morris and Fan,
1998). In addition to the banks, the bed can also erode if the bed shear stress exerted on the
bed by the flow exceeds the critical shear stress of the bed material. Therefore, bed erosion is
governed by particle diameters, the density of the bed material, and the shear velocity that can
be approximated by the slope of the river and its water depth (e.g., Zanke, 1982).

Mass wasting Mass wasting involves various processes in which material is moved downs-
lope by gravity, ranging from rapid events such as landslides and rockfalls, to debris and mud-
flows, to slow deformational creep (Coleman and Prior, 1988). Recently, the term mass wasting
has been frequently used interchangeably with landslide (Pradhan and Siddique, 2019), which
encompasses the downward movement of all slope-forming material without the involvement
of surface runoff as a transport medium (Crozier, 1986). Mass wasting occurs episodically,
usually in response to extreme events when the driving forces exceed the resisting forces to
pull the slope-forming material down the slope. These events can produce large volumes of
sediment but are challenging to predict in space and time. Important factors that can trigger
mass wasting include heavy rainfall, thawing and snowmelt, removal of vegetation, seismic
or volcanic activity, changes in water levels, and anthropogenic influences such as excavation
at the toe or loading at the crest of a slope (Pradhan and Siddique, 2019). Besides the initial
sediment load contributed during mass wasting, additional sediment is contributed by rainfall
on landslide scars and the mass of destabilized material (Morris and Fan, 1998). Another po-
tential sediment source is subaqueous landslides from reservoir banks and subaqueous slopes
(Mulder and Alexander, 2001).
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Drivers of sediment production Garcı́a-Ruiz et al. (2015) conducted a comprehensive meta-
analysis of data encompassing over 4,000 global sites, highlighting the substantial variability
in erosion rates. This spatial variation in erosion rates also results in significant variability in
rivers’ global suspended sediment load (Walling and Webb, 1996). Precipitation is a crucial
driver of sediment production, affecting all the erosion types described. High erosion rates
are primarily related to precipitation totals and the duration and intensity of individual events
(Renard, 1997; Garcı́a-Ruiz et al., 2015; Battista et al., 2020). Another important erosion driver
is the catchment’s topography and the steepness and length of the slopes. Steeper slopes result
in greater overland flow velocities, heightened shear stresses, and increased erosion rates (Liu
et al., 1994; Nearing, 1997). In addition, land use and land cover significantly impact erosion
and sediment production processes. Vegetated soil is less prone to erosion due to the canopy’s
ability to absorb the kinetic energy of raindrops, and vegetation increases bottom roughness,
diminishing the energy of overland flow (Morgan, 2009). It is also crucial to consider artificial
soil stabilization practices such as contouring, strip cropping, or terracing that reduce the ero-
sion potential of surface runoff (Wischmeier and Smith, 1965; Panagos, Borrelli, Meusburger,
van der Zanden, Poesen and Alewell, 2015). Another factor that significantly impacts local
erosion rates is the soil type. The susceptibility to erosion depends on the soil structure, per-
meability, texture, and organic matter content (Wischmeier and Smith, 1978).

2.2. Sediment delivery, transport, and yield quantification

Sediment yield and sediment delivery ratio Only a part of the eroded sediments reaches
the river network, reservoir, or catchment outlet. Most eroded sediments deposit in areas with
limited transport capacity, like the base of slopes or floodplains (see Figure 2.1), either tem-
porarily or permanently (Walling, 1983; de Vente et al., 2007). The sediment that ultimately
reaches a specific boundary, such as a catchment outlet, is called sediment yield (SY) and is
relevant for predicting reservoir sedimentation (ASCE, 1982; White, 2006).

The sediment delivery ratio (SDR) is the ratio of the SY to the gross erosion and indicates the
sediment transport efficiency of hillslopes and river networks within a catchment (de Vente
et al., 2007; Zhang et al., 2015). SDR values can range from a few percent to nearly 100%, with
higher delivery ratios typically observed in smaller catchments with steep slopes (Boyce, 1975).
While basic methods for quantifying the SDR rely mainly on the catchment area and specific
empirical parameters (e.g., Boyce, 1975; Milliman and Meade, 1983; Renwick et al., 2005), recent
research underscores the importance of considering geomorphological characteristics such as
topography, soil type and land use, and the hydrological regime of the catchment (Lu et al.,
2005; de Vente et al., 2013; Battista et al., 2020). The presence of gullies and channels not only
affects sediment production and erosion but also increases SDR because effective connectiv-
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ity between hillslopes and the channel network results in more efficient sediment transport
processes (Walling, 1983; Cavalli et al., 2013; Zhang et al., 2015).

Furthermore, the SDR is impacted by spatial variations in erosion and transportation processes
and temporal scales. SDR values offer a snapshot of erosion and deposition processes within
the catchment and apply only to the period from which they were obtained, ensuring con-
sistent temporal averaging (e.g., monthly or yearly). For example, the long-term SDR should
approach 100% when a basin is in approximate equilibrium between erosion and SY over long
time scales, differing significantly from the SDR of shorter periods at the event or annual scale
(Lu et al., 2005).

Sediment transport processes in the catchment and rivers Sediment transport typically
initiates when the bed shear stress exerted by water on the sediment particles surpasses the
critical shear stress for erosion (Shields, 1936). Sediment particles are transported primarily by
two distinct processes: bedload and suspended sediment transport (see Figure 2.2). Bedload
transport involves particles rolling, sliding, and saltating while maintaining continuous contact
with the river bed (Einstein, 1950; Van Rijn, 1984a). When hydraulic turbulence’s upward force
surpasses the settling velocity of particles, sediments are suspended and carried as suspended
sediment loads (Rouse, 1937; Van Rijn, 1984b). Although bedload and suspended sediment
transport are commonly associated with rivers, they can also occur in gullies, erosion channels,
or overland flow, particularly during and after heavy rainfall or snowmelt.

The proportion of bedload to suspended sediment transport is highly site-dependent and gov-
erned by sediment particle characteristics and flow conditions. Existing literature indicates that
river bedload typically comprises 5 to 20% of the total load (Turowski et al., 2010). Lower bed-
load fractions may occur in gravel-bed or bedrock rivers with high suspended sediment con-
centrations. In contrast, sand-bed rivers with low suspended load concentrations may exhibit
bedload fractions exceeding 20% (Lane and Borland, 1951). A particular aspect of suspended
sediment transport is hyperconcentrated flow, characterized by sediment concentrations high
enough to affect flow behavior (Wan and Wang, 1994; Pierson, 2005). In this case, suspended
particles in the sediment-water mixture form a weak structural lattice, resulting in a pseudo-
one-phase flow that behaves more like a pseudoplastic or Bingham fluid than a Newtonian
fluid (Morris and Fan, 1998). Typical examples are turbidity currents (see Chapter 2.3) and
mudflows.

Sediment yield quantification Several techniques can be applied to estimate and quantify
the SY of a catchment. Monitoring soil erosion processes at a small scale, such as a plot or slope,
by using erosion pins, fabric dams, or silt fences provides insight into the temporal dynamics of
soil erosion (Morris and Fan, 1998; Bugg et al., 2017; Kearney et al., 2018). Furthermore, fallout
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Figure 2.2. Schematic representation of a) bedload and b) suspended sediment transport pro-
cesses (modified after Marshak, 2018).

radionuclides can offer quantitative information on soil erosion (Mabit et al., 2008). While
these methods capture the temporal dynamics of erosion processes, their local results must be
extrapolated to a catchment scale for SY quantification. Since obtaining representative coverage
of large catchments with erosion plots is not feasible, the methods are deemed unsuitable for
large catchments.

Long-term monitoring of river sediment transport is frequently used to determine the SY at the
catchment scale and to capture the temporal dynamics. However, monitoring periods are of-
ten constrained, emphasizing the importance of measuring floods or extreme events to prevent
underestimation of SY. Most existing studies rely on suspended sediment measurements be-
cause of the higher proportion of the total load and because it is easier to obtain representative
measurements. Typical techniques used to quantify suspended sediment loads include direct
physical sampling followed by laboratory analysis or indirect methods using optical or acous-
tic methods, typically used to develop sediment rating curves (Annandale et al., 2016; Aberle
et al., 2017). Bedload is typically estimated as a percentage of the suspended load (Galy and
France-Lanord, 2001; Grams et al., 2013). However, state-of-the-art techniques for quantifying
bedload include passive (e.g., geophones) and active acoustic measurements (e.g., ADCPs),
monitoring of bed form movement, tracer methods (e.g., tracking individual pebbles), and di-
rect sampling methods (e.g., physical traps and samplers). More details on the introduced
measurement techniques for bedload and suspended load, their calibration, and error sources
are provided by Aberle et al. (2017).



12 Fundamentals on reservoir sedimentation

Bed level measurements in reservoirs are also used for quantifying SY (e.g., Verstraeten and
Poesen, 2002; de Vente et al., 2004; Millares and Moñino, 2018; Banasik et al., 2021). Since
reservoir deposition encompasses all sediment erosion and transportation processes, including
extreme events, it is considered the most reliable approximation (Morris and Fan, 1998). The
final SY can be calculated by dividing the deposited sediment mass by the trapping efficiency
of the reservoir (< 1). However, this method applies only to reservoirs without active sed-
iment management, such as dredging and flushing, and has lower temporal resolution than
sediment transport measurements. Additionally, measuring the dry bulk density of the de-
posited sediment is crucial since it greatly influences the calculation of the final SY based on
volume changes (Mouris, Acuna Espinoza, Schwindt, Mohammadi, Haun, Wieprecht and Ola-
dyshkin, 2023). Typical bathymetric survey methods are single and multibeam echosounders
or side-scan sonars (Morris and Fan, 1998; Sotiri et al., 2021). Additional sediment coring or
grab sampling provides valuable information regarding sediment properties, including grain
size distributions or bulk densities (Beckers et al., 2018; Mouris, Schwindt, Pesci, Wieprecht
and Haun, 2023).

A cost-effective and common technique for estimating catchment SY is soil erosion modeling.
Modeling approaches include physically deterministic, stochastic, empirical, and conceptual
models (Benavidez et al., 2018). The choice of an appropriate modeling approach hinges upon
the spatio-temporal scales of input data and data quality (Nearing, 2013; Alewell et al., 2019).
Therefore, areas with limited data availability often favor using empirical soil erosion models
(Efthimiou et al., 2017; Benavidez et al., 2018). However, the results are often unreliable due to
a lack of calibration and validation data.

2.3. Sediment transport and deposition in reservoirs

Sediment transport and consolidation processes in reservoirs Sediments are trans-
ported within a reservoir in different ways. Coarse material is transported as bedload and
deposits at the head of the reservoir due to a sudden reduction in the river’s transport capac-
ity (see Figure 2.3). Furthermore, the coarse fractions of suspended particles deposit imme-
diately and contribute to the delta growth, while the finer fractions are transported further
into the reservoir as non-stratified flow or turbidity current (Morris and Fan, 1998; Annandale
et al., 2016). Turbidity currents develop when the sediment-water mixture, entering a reservoir,
significantly exceeds the density of the stored water. This dense sediment-laden water flows
downward at the plunging point to the bottom of the reservoir, where it moves as a discernible
current, often along the thalweg (see Figure 2.3). Turbidity currents can extend for considerable
distances and eventually reach the dam, forming a muddy lake deposit (Fan and Morris, 1992;
Alavian et al., 1992; Morris and Fan, 1998; Schleiss et al., 2016). Non-stratified flow transports
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Figure 2.3. Schematic representation of delta deposition and turbidity current along with gen-
eralized deposition zones in a reservoir (modified after Fan and Morris, 1992; Morris
and Fan, 1998; Annandale et al., 2016).

sediment particles throughout the entire water column and not only along the bed as with tur-
bidity currents. Hence, the bathymetry of the reservoir does not primarily determine particle
transport, and the particles may settle throughout the reservoir. Assuming either a characteris-
tic logarithmic vertical sediment concentration profile (Rouse, 1937) or a uniform distribution
within the water column, the deepest part of each cross section will have the highest deposition.

After deposition, sediments undergo compaction through consolidation and dewatering pro-
cesses. These processes predominantly affect cohesive sediment depositions, characterized by
a flocculent mass with low bulk density and high water content. During compaction, the water
is squeezed out of the structural lattice by its weight and the overburden of the sediment de-
posits, increasing its bulk density (Mehta et al., 1989; Winterwerp and Kesteren, 2004; Lo et al.,
2014). The consolidation process can extend over decades, resulting in temporal and spatial
heterogeneity in bulk density within a reservoir (Morris and Fan, 1998). This variability is criti-
cal because the ultimate volume loss of a reservoir is highly dependent on the dry bulk density
of the deposited sediment mass.

Deposition patterns In addition to the storage volume loss, the distribution of sediment
deposition in the reservoir is crucial for planning long-term reservoir operations or sustain-
able sediment management strategies. The longitudinal deposition patterns in reservoirs vary
greatly depending on reservoir geometry, operation, inflowing discharge, and sediment char-
acteristics (Morris and Fan, 1998). Most reservoirs can be characterized by one or more of the
four basic deposition patterns shown in Figure 2.4. Nevertheless, these representations are
simplified as the characteristic deposition patterns often occur concurrently.
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Figure 2.4. Characteristic longitudinal deposition patterns in reservoirs (modified after Morris
and Fan, 1998).

Delta depositions primarily consist of the coarsest sediment fraction, settling rapidly near the
inflow zone (see Figure 2.4a). While these depositions often comprise coarse particles, a signif-
icant amount of silt and fine sediment may also be present (Fan and Morris, 1992). These delta
depositions start at the highest operating water level, and the topset slope ranges from equal to
about 20% of the original riverbed slope (see Figure 2.3 and Figure 2.4a) (Strand and Pember-
ton, 1987; Annandale et al., 2016). The wedge-shaped sediment accumulations are thickest near
the dam and gradually decrease upstream (see Figure 2.4b). This pattern typically occurs when
turbidity currents transport fine sediment towards the dam. Alternatively, this pattern may
occur in small reservoirs with significant fine sediment inflows and in large reservoirs when
water levels are lowered during flood events (Morris and Fan, 1998). Consequently, engineers
typically assume a wedge-shaped deposition pattern when designing dead storage. Neverthe-
less, the wedge shape is uncommon and rarely occurs in isolation, which explains why most
sediment is deposited in the active rather than the dead storage (Annandale et al., 2016). The
dead storage is the volume beneath the lowest outlet and cannot be drained (see Figure 2.3). In
contrast, active storage can be used for flood management and holds water that can be released
for power generation and water supply (Morris and Fan, 1998). Tapering sediment deposits ex-
hibit a gradual decrease in thickness towards the dam (see Figure 2.4c). This trend is commonly
observed in long reservoirs maintained at high water levels, indicating the gradual settlement
of fine particles. Uniform sediment depositions are rare but can occur in narrow reservoirs
with frequent water level fluctuations and limited fine sediment supply (see Figure 2.4d) (Mor-
ris and Fan, 1998).

Three distinct phases of reservoir sedimentation can be distinguished, from the dam’s con-
struction to its eventual abandonment due to the complete filling of the reservoir’s storage
volume (Rulot et al., 2012). After impoundment, the reservoir continuously traps sediments
due to reduced flow velocities and turbulences (Figure 2.5a). The second stage is a partial
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Figure 2.5. Schematic representation of the characteristic stages of long-term reservoir sedi-
mentation showing a) continuous sediment trapping, b) partial sediment balance,
and c) full sediment balance between long-term sediment in- and outflow (modified
after Morris and Fan, 1998; Rulot et al., 2012).

sediment balance, whereas the former reservoir resembles a channel-floodplain configuration
(Figure 2.5b). Here, a primary channel typically forms following the thalweg of the impounded
river, with fine sediment deposition on both sides. While the inflow and outflow of fine sed-
iments may approximate equilibrium, coarser sediments continue accumulating. In the final
stage, the reservoir theoretically reaches a full sediment balance, and long-term sediment in-
flow equals long-term sediment outflow (Figure 2.5c) (Rulot et al., 2012).

Trapping efficiency The sedimentation rate and the subsequent reduction in reservoir stor-
age volume are influenced by sediment inflow and reservoir characteristics and, hence, the
reservoir-specific trapping efficiency (TE). TE is the ratio of deposited sediment mass to time-
integrated sediment inflow over a specified period. In practice, the empirical approaches devel-
oped by Brune (1953) and Churchill (1948) are commonly used to estimate TE. Both approaches
consider the ratio of reservoir volume to inflow, while the Churchill approach also accounts for
reservoir length. It is worth noting that TE typically diminishes with increasing water inflow
and decreasing reservoir volume. Many large reservoirs have a TE of approximately 100%,
meaning they capture all incoming sediments, making them valuable for assessing catchment
SY (e.g., Kokpinar et al., 2015; Millares and Moñino, 2018). However, these straightforward
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methods overlook sediment grain size distributions, outlet configuration, location, and flow
patterns, including recirculation zones induced by lateral inflows. Reservoir operation is min-
imally considered when selecting the representative reservoir volume when utilizing simpli-
fied approaches. Therefore, multidimensional hydro-morphodynamic numerical models are
essential to calculate more reliable TE, considering single extreme events, complex flow pat-
terns, reservoir operation, and sediment characteristics (Mouris, Schwindt, Pesci, Wieprecht
and Haun, 2023).

2.4. Consequences of reservoir sedimentation

Impacts upstream of the dam Direct consequences of reservoir sedimentation generally im-
pact the functions of the dam, which are often no longer or only partially maintained due to
sedimentation (Schleiss et al., 2016; George et al., 2017). Sedimentation processes affecting the
storage volume of the reservoir govern typical upstream dam impacts. A common misconcep-
tion is that most sediment particles deposit in the dead storage (see Chapter 2.3). However,
sediment deposition occurs in active and inactive storage, particularly in large reservoirs (An-
nandale et al., 2016). Reservoir sedimentation often affects active storage in the early stages of
the reservoir’s lifetime as sediments gradually move downstream in the form of a delta. The
decreased active storage reduces water availability for designated uses, such as hydropower
generation, flood protection, or irrigation. Even small sediment accumulations can be harmful,
depending on their location. For instance, deposits in front of bottom outlets cause operational
restrictions and safety problems (Morris and Fan, 1998).

Furthermore, reservoir sedimentation can affect hydraulic structures as sediment particles are
more likely to reach the dam, resulting in abrasive wear on concrete (Horszczaruk, 2004) or
turbine parts (Sangal et al., 2018). For example, turbine abrasion occurs when water flowing
through turbines carries sediment particles, such as Quartz minerals, and results in signifi-
cantly higher maintenance costs (Sangal et al., 2018). The degree of abrasion is primarily influ-
enced by factors such as particle shape, particle size distribution, sediment concentration, and
particle hardness and density (Duan and Karelin, 2003).

Another significant impact of reservoir sedimentation is the rise in flood levels upstream of
the reservoir, for example, due to delta deposition and resulting higher water levels, as shown
in Figure 2.4a (Fan and Morris, 1992; Annandale et al., 2016). Not only sediment accumulates in
reservoirs, but also nutrients (Kunz et al., 2011; Wang, 2020), pollutants (Zhao et al., 2017), and
microplastic particles (Di and Wang, 2018; Lin et al., 2021). Reservoirs also emit greenhouse
gases (GHGs) because they retain large stocks of organic matter that fuel microbial decompo-
sition, which converts organic matter into GHGs such as carbon dioxide, methane, and nitrous
oxide (Deemer et al., 2016).
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Impacts downstream of the dam Reservoir sedimentation impacts the fluvial morphology
downstream of the dam. By trapping sediment, reservoirs reduce the amount of sediment
released into downstream waters, which are often referred to as sediment-hungry or hungry
water (Kondolf, 1997). Due to the substantially reduced sediment supply, rivers experience
increased erosion and degradation of the aquatic ecosystem downstream of the dam. Since
fluvial sediments are essential building blocks of deltas and coastal zones, reduced sediment
loads contribute to increased susceptibility of coastlines to erosion and degradation (Kondolf,
1997; Syvitski et al., 2005; Warrick et al., 2019). Furthermore, the fine sediments that carry
nutrients are also trapped in the reservoir, resulting in a decrease in nutrients downstream of
the dam, affecting the fishery and aquatic ecosystem (Kunz et al., 2011; Shi and Qin, 2023).

Economic consequences The impacts of reservoir sedimentation outlined above extend to
economic consequences. For example, diminished reservoir storage leads to increased costs
related to reduced hydropower generation, higher maintenance costs due to abrasion, and di-
minished (irrigation) water supply (Gunatilake and Gopalakrishnan, 1999; Schleiss et al., 2016).
Additional economic impacts may arise from reduced fishery yields due to nutrient trapping
and artificial migration barriers such as dams. Recovering annual storage losses is expensive,
estimated at $10 to $20 billion annually in 2006 (Annandale, 2006). Historically, cost-benefit
analyses of dam projects overlooked factors such as dam decommissioning, retrofitting with
sediment management facilities, or environmental impacts. Incorporating these costs into the
analysis is essential, as they can exceed construction costs when all infrastructure and environ-
mental damage is considered (George et al., 2017). Furthermore, cost-benefit analyses should
consider the increasing scarcity of suitable sites for constructing new reservoirs. This inclusion
would improve the economic feasibility of extending reservoir life through sediment manage-
ment strategies (Schleiss et al., 2016).

From an economic perspective, maintaining sediment continuity has advantages over extract-
ing and disposing of reservoir sediments (Detering et al., 2019). The sediment deficit down-
stream of the dam often requires costly government intervention, such as bed and bank sta-
bilization or sediment replenishment. Without implementing these measures, there could be
negative consequences for water availability and ecology that are difficult or impossible to
quantify in monetary terms.



3. Materials and Methods

As stated in the introduction, the primary objective of this thesis is to develop objective meth-
ods for predicting long-term sediment production, delivery, and multidimensional reservoir
sedimentation, accounting for changes in land use and hydro-climatic conditions. This chap-
ter describes the research methods used to achieve the research objectives (see Chapter 1.1),
focusing on scientific contributions and advancements in particular.

Since all the developed methods are applied to the Banja reservoir and its catchment area, an
overview of the study area and the available data is given first. Subsequently, the focus is on
the developed approach for modeling erosion and sediment delivery processes in the Devoll
catchment and the multidimensional modeling of sedimentation processes in the Banja reser-
voir. Emphasis is also given to the fundamentals of surrogate-assisted Bayesian calibration of
the hydro-morphodynamic numerical model. The final subchapter presents the model chain
used to investigate the effects of land use and hydro-climatic changes on reservoir sedimen-
tation. Further details on the developed and applied methods used to address the research
questions are provided in the respective research articles I to IV.

3.1. Study area

The methods developed in this doctoral thesis are applied to the Banja reservoir and its as-
sociated catchment located in Southeast Albania on the Balkan Peninsula (see Figure 3.1).
The mountainous catchment covers approximately 2,900 km2, encompasses elevations ranging
from 118 to 2,388 ma.s.l., and is geographically divided into two climatic zones, as classified by
the Köppen climate classification (Kottek et al., 2006; Beck et al., 2018). The eastern part of the
catchment, which includes the sub-catchment of the gauging station near the village of Kokel,
is characterized by a warm-summer Mediterranean climate. In contrast, the western portion of
the catchment exhibits a hot-summer Mediterranean climate.

The land use in the catchment comprises 30% forest, 25% scrub and herbaceous vegetation,
and 25% agriculture. Other minor but not negligible land cover types include pasture, natural
grassland, and sparse vegetation (Copernicus Land Monitoring Service, 2018). Historically, de-
forestation has had a substantial impact on land use. However, in recent decades, particularly
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Figure 3.1. a) Location of the study area in Albania, b) bed elevations of the Banja reservoir,
including tributaries and outflows, and c) catchment topography with gauging sta-
tions and the location of the Banja reservoir.

after the fall of communism in Albania, significant transformations have occurred, increas-
ingly influenced by global market principles (Müller and Sikor, 2006). The soils prevalent in
the catchment area are primarily comprised of Eutric Regosol (37%), Calcic Cambisol (30%),
Calcaric Lithosol (12%), and Orthic Luvisol (11%) (Fischer et al., 2008; Hiederer, 2013). Ad-
ditionally, the presence of weak sedimentary rocks, such as flysch, combined with high rain-
fall erosivity, contributes to notably high erosion rates and SYs, characteristic of mountainous
Mediterranean catchments (Walling and Webb, 1996; Borrelli et al., 2020). Consequently, this
region exhibits considerable potential for soil erosion and subsequent reservoir sedimentation
in existing and planned reservoirs.

The Devoll River stretches 196 kilometers and has its source in the Gramos Mountains near the
Greek border. In winter, the high elevations of the catchment are frequently covered by snow.
Hence, the flow regime of the Devoll River and its tributaries are driven not only by precipita-
tion but also by snowfall and subsequent snowmelt. The river flows northwest and is dammed
after 160 km, forming the Banja reservoir (see Figure 3.1). Commissioned in 2016, the reservoir
has a length of 14 km, a maximum water depth of 60 m near the dam, and a surface area of
14 km2 at the highest storage level, leading to a maximum storage capacity of approximately
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400 million m3. The Devoll River is the most significant contributor to the annual inflow at
approximately 89%, with the Holta River representing a significant tributary at 9%. Close to
the dam, two minor tributaries collectively account for a small share of approximately 2% of
the annual inflow. The upstream part of the reservoir is very shallow, whereas the central part
of the reservoir is up to 55 m deep (see Figure 3.1). The Moglica reservoir, situated further
upstream and commissioned in 2020, is not included in this thesis due to the unavailability of
ground truth data during the calibration period.

The study area was selected due to its high erosion rates (Walling and Webb, 1996; Borrelli
et al., 2020), the high vulnerability of the Mediterranean region to climate change (Bangash
et al., 2013), and the substantial investments in hydropower in this region (Carolli et al., 2023).

3.2. Available data

Data obtained by the gauging station The gauging station located near the village of Kokel
(see Figure 3.1) continuously recorded discharge and suspended sediment concentrations be-
tween May 2016 and April 2018, when the water depth exceeded 1 m (387 of 730 days). The
determination of suspended sediment concentrations and discharge is derived from analyzing
acoustic backscatter signals acquired by two stationary-mounted horizontal acoustic Doppler
current profilers (H-ADCPs). The method for calculating suspended sediment concentrations
from acoustic backscatter data is detailed in Aleixo et al. (2020). Subsequently, the suspended
sediment load is computed by multiplying the measured suspended sediment concentration
with corresponding discharge values.

The gauging station measures suspended sediment load exclusively at high and medium dis-
charges. Additionally, intermittent data gaps exist due to a low signal-to-noise ratio (Aleixo
et al., 2020). A continuous sediment load dataset is essential to calibrate the soil erosion and
sediment transport model. Consequently, interpolation techniques are employed to fill tem-
poral measurement gaps, and missing individual values are linearly interpolated. However,
concentrations for water levels below 1 m cannot be reliably estimated and used for calibra-
tion. This restriction results from the possible occurrence of high sediment concentrations even
during low-flow periods following isolated rain events.

Reservoir-specific data A digital elevation model (DEM) of the bathymetry was generated
from a drone survey before filling the Banja reservoir in 2016. In 2019, the bathymetry of the
reservoir was re-surveyed using moving ADCP measurements. These topographic surveys
from 2016 and 2019 are projected onto a numerical mesh, enabling the calculation of sediment
deposition heights within the reservoir. In 2021, a field survey was conducted to collect sedi-
ment samples from the reservoir bed using an Ekman grab sampler. The particle size distribu-
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tion of the samples is assessed using a portable analyzer that uses laser diffraction. The results
show that the sediment deposits primarily consist of cohesive particles (<63 µm). Furthermore,
laboratory analysis of these deposited sediments reveals dry bulk densities ranging from 726
to 950 kg m-3. The median diameters of the deposited sediment vary from 5.7 to 37.4 µm, with
a mean of 10.5 µm.

Climate reanalysis datasets Climate reanalysis datasets provide a feasible substitute for in-
situ precipitation and temperature measurements, among other parameters. These datasets
merge observations with predictive weather models to create a comprehensive and consistent
historical global weather and climate record. This integration combines information from dif-
ferent sources such as satellites, ground-based radar systems, and in-situ measurements from
weather stations, aircraft, ships, and buoys (Hersbach et al., 2020). In this thesis, the ERA5
reanalysis dataset is used to obtain temperature and precipitation data for the historical period
and as reference data for the bias adjustment of the climate models. It has a spatial resolution
of 30-31 km and an hourly temporal resolution since 1950 (Hersbach et al., 2020).

Satellite imagery Various land use features exhibit different ways of reflecting and emitting
light in different spectral bands. Multispectral satellite imagery, which captures data across
multiple spectral bands, facilitates the differentiation of land cover types based on their spec-
tral signatures. Consequently, satellite imagery serves as a widely adopted remote sensing
technique for land use classification (e.g., Teng et al., 2016), monitoring vegetation changes
(e.g., Borrelli et al., 2017; Gianinetto et al., 2019), and detecting snow-covered areas (e.g., Hall
et al., 2002). This thesis employs Sentinel-2 satellite imagery to observe changes in vegetation
and snow cover dynamics across seasons through a comprehensive analysis of spectral signa-
tures. Table 3.1 summarizes the input data used in this thesis, including its source and purpose.

3.3. Modeling of soil erosion and sediment delivery

Revised Universal Soil Loss Equation The Revised Universal Soil Loss Equation (RUSLE)
predicts the gross soil erosion at the catchment scale (Renard et al., 1991; Renard, 1997). The
RUSLE directly accounts for splash, rill, and sheet erosion (see Chapter 2.1) and calculates soil
loss A (t ha-1 yr-1) by considering six major erosion risk factors:

A = R ·K · C · LS · P (3.1)

where R is a rainfall-runoff erosivity factor (MJ mm ha-1 h-1 yr-1), K is a soil erodibility factor
(t h MJ-1 mm-1), LS is a combined dimensionless topographic factor of slope length L(−) and
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Table 3.1. Input data used in this thesis.

Input data Source
Purpose of the data in

this thesis

Topography (DEM) EU-DEM v1.1

Erosion and sediment delivery
– required for calculation
Hydrological processes
– required for calculation

Precipitation and
temperature (past)

Post-processed ERA5
Reanalysis dataset

Erosion and sediment delivery
– required for calculation
Hydrological processes
– required for calculation

Precipitation and
temperature (future)

Climate model results for
different scenarios

Erosion and sediment delivery
– required for calculation
Hydrological processes
– required for calculation

Soil data ESDB v2.0 and HWSD v1.21

Erosion and sediment delivery
– required for calculation
Hydrological processes
– required for calculation

Land cover (past) CORINE Land Cover 2018

Erosion and sediment delivery
– required for calculation
Hydrological processes
– required for calculation

Land cover (future)
Future land use projections
for different scenarios (Chen
et al. 2020)

Erosion and sediment delivery
– required for calculation
Hydrological processes
– required for calculation

Satellite imagery
Sentinel 2 – Copernicus Open
Access Hub

Erosion and sediment delivery
– detection of snow cover and
seasonal vegetation change

Suspended sediment
concentrations and
sediment load

ADCP measurements
(Aleixo et al., 2020)

Erosion and sediment delivery
– model calibration

Data on agricultural
practice

Albanian Institute of Statistics
Erosion and sediment delivery
– required for calculation

Bathymetry/bed levels
in the reservoir

Drone-based
photogrammetric survey (2016)
and acoustic survey
using ADCP measurements
(2019)

Reservoir processes – model
generation and calibration

Bulk density and grain
size distribution of
deposited sediments

Sediment samples from the
reservoir bed using a grab
sampler and laboratory
analysis

Reservoir processes –
sediment characteristics

Reservoir water levels
and outflow discharges

Direct measurement from the
operator

Reservoir processes
– implementation of
reservoir operation
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slope steepness S(−), C is a cover and management factor (−), and P is a support practice
factor (−).

The soil erodibility factor K is calculated from soil structure, organic matter content, soil tex-
ture, and soil permeability according to Wischmeier and Smith (1978), while the LS factors,
which account for the influence of topography on soil erosion, are determined according to the
approach of Zhang et al. (2017). The effect of contouring on soil erosion is considered in cal-
culating the P factor as a function of slope and land cover class. The C factor, which assesses
the influence of land cover and management practices on soil erosion, is determined based
on land cover characteristics. This thesis uses 20 distinct land cover categories obtained from
the satellite-based CORINE Land Cover database for the Devoll catchment (Copernicus Land
Monitoring Service, 2018). The range for the C factor values is derived from a synthesis of
notable European studies (Panagos, Borrelli, Meusburger, Alewell, Lugato and Montanarella,
2015). In addition, satellite imagery is used to calculate seasonal C factors that account for
the seasonality of vegetated land cover classes (e.g., forests, grasslands, or croplands) using
the Normalized Difference Vegetation Index (NDVI), as proposed by Gianinetto et al. (2019).
C factors for land cover classes unaffected by seasonality (e.g., urban fabric) remain constant.

The R factor quantifies the erosive potential of precipitation and resultant surface runoff, con-
sidering effects like duration, intensity, and strength of each precipitation event (Brown and
Foster, 1987; Renard, 1997). Traditionally, annual R factors were computed by summing up
the erosivities over a specified period and dividing them by the number of years. However,
the scarcity of high-resolution (< 0.5 hours) precipitation data in many regions, including the
Devoll catchment, led to the development of empirical regression equations. These equations
relate the R factor to available precipitation data in daily, monthly, or annual resolution with
satisfactory accuracy (Arnoldus, 1980; de Santos Loureiro and de Azevedo Coutinho, 2001;
Diodato et al., 2013). In this thesis, the Rainfall Erosivity Model for Complex Terrains is chosen
due to the compatibility with available data (temporal and spatial resolution) and its develop-
ment for estimating the monthly erosivity factor (Rm) in Italy, which shares geographical and
hydro-climatic characteristics with Albania (Beck et al., 2018). Rm is calculated as a function of
monthly precipitation, elevation, latitude, and seasonal characteristics (Diodato and Bellocchi,
2007).

Conventionally, the R factor does not consider the erosive forces of snowmelt runoff (Renard,
1997), although previous attempts have been made to estimate snowmelt erosivity from win-
ter precipitation totals. Therefore, this thesis presents a novel method to account for snowfall
and subsequent snowmelt in the R factor. It distinguishes between non-erosive snowfall and
delayed erosion associated with snowmelt weeks to months after the snowfall event. The total
monthly Rm factor is obtained by adding the monthly Rm,rain factor (resulting from rainfall),
and the monthly Rm,snowmelt factor (resulting from snowmelt). The quantity of melted snow is



24 Materials and Methods

determined through satellite-based snow cover detection as well as temperature and precipita-
tion data analysis.

SEdiment Delivery Distributed Model While the RUSLE evaluates the spatial pattern of
gross soil loss, the Sediment Delivery Distributed (SEDD) Model (Ferro and Porto, 2000) is
a sediment routing method to estimate SY at the catchment scale. The pixel-specific SDRi is
calculated based on the travel time along the flow path to the nearest river channel (Ferro and
Minacapilli, 1995). Therefore, the SDRi depends on the overland flow velocity calculated as a
function of the pixel-specific slope and surface roughness, which is a function of land use (Jain
and Kothyari, 2000).

Algorithmic methods to calculate sediment loads The modified RUSLE-SEDD combina-
tion has been implemented as a semi-automated algorithmic model chain to calculate monthly
suspended sediment loads considering snowfall and snowmelt. The developed Python al-
gorithms require precipitation and temperature data, satellite imagery, soil data, topographic
data, and land cover information as input. Additionally, observations of suspended sediment
loads are required for model calibration and validation.

The model chain is executed with three different R factors to assess the significance of snow-
related processes for predicting soil erosion and suspended sediment loads in mountain-
ous Mediterranean regions. The conventional approach considers all precipitation as erosive
rain, the snow-only approach considers snowfall as non-erosive, and the combined snowfall-
snowmelt approach categorizes snowfall as non-erosive while treating snowmelt as erosive.
The algorithm computes the spatial distribution of monthly rainfall intensity and snow water
equivalent using precipitation and temperature rasters. For this purpose, a temperature thresh-
old of 0 ◦C is applied to distinguish whether precipitation falls as snow or rain. To identify the
extent of snow coverage at the end of each month, the snow detection algorithm utilizes three
spectral bands present in Sentinel-2 imagery. The green and the short-wave infrared bands are
used to calculate the Normalized Difference Snow Index (NDSI) for every raster pixel to detect
snow, and a threshold value for the blue band is implemented to avoid false snow detection
of pixels in turbid lakes and rivers. Snow-covered pixels exposed at the end of the considered
month create erosive snowmelt, showcasing the algorithm’s seasonal memory. Finally, the al-
gorithms generate soil loss and SY rasters with monthly resolution and a table of monthly
averages for soil loss, SY, and suspended sediment load at the outlet of the previously defined
catchments.

Expert judgment of true-color satellite imagery and overlays of snow cover delineation from
code and elevation contours is required to calibrate the satellite image band (NDSI and blue)
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thresholds for snow detection. Furthermore, the developed model chain is coupled with the Pa-
rameter ESTimation software PEST (Doherty, 2001) to calibrate a catchment-specific parameter
using measured suspended sediment loads obtained from the Kokel gauging station, consid-
ering a calibration period of 10 months. For comparison, the 10 months are divided into two
separate 5-month periods for calibration and validation. Furthermore, leave-one-out cross-
validation (LOO-CV, Sammut and Webb 2010) is used to evaluate the model performance of
the three different approaches and to assess the effect of limited data from just two wet sea-
sons.

3.4. Hydro-morphodynamic modeling of reservoir sedimentation

In this thesis, two hydro-morphodynamic numerical models are used to simulate the processes
in the reservoir: SSIIM2 (Sediment Simulation In Intakes with Multiblock Option; Olsen, 2018)
and Telemac-2D (Hervouet, 2007) with its sediment transport and bed evolution module GAIA
(Audouin et al., 2020). The 3d numerical model SSIIM2 is used in Publications III and IV to
carry out long-term simulations, while the 2d numerical model Telemac-2D is used in Publica-
tion II for a Bayesian calibration of the reservoir model.

SSIIM2 To accurately represent changes in the vertical distribution of suspended sediment
concentrations, flow velocities, and complex three-dimensional flow patterns, including heli-
cal flows, three-dimensional modeling is essential. The three-dimensional numerical model
SSIIM2 solves the Reynolds-averaged Navier-Stokes equations in three dimensions using a fi-
nite volume method for spatial discretization. The Reynolds stress term is calculated through
the concept of eddy viscosity utilizing the standard k-ε turbulence model. SSIIM2 uses the tran-
sient convection-diffusion equation to calculate suspended sediment transport, along with van
Rijn’s empirical formula for bedload transport calculations (Van Rijn, 1984a). To address the
significant computational requirements of a 3d hydro-morphodynamic model, which can of-
ten span several weeks to months, various simplifications are incorporated to ensure acceptable
runtimes for projecting global change impacts by 2100 while maintaining high-quality results.
For example, the adaptive mesh features mainly coarse cells with a spatial resolution of 50 m
x 50 m in x- and y-direction and up to 10 vertical cells in the deepest areas of the reservoir
(z-direction). SSIIM2 uses an implicit time discretization to solve the Navier-Stokes equations,
enabling the use of large time steps (5,400 seconds) and reasonable computing times (3.5 weeks
per run until 2100, using 8 cores, 3.7 - 4.8 GHz). Further algorithms, such as flow limiters,
are implemented for computational stability in flat and triangular cells close to the reservoir
banks that result from the wetting and drying algorithm. A notable advantage of SSIIM2 is
that it only considers wetted cells, thereby decreasing the computational demands of the cal-
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culations, particularly as water levels fluctuate and reservoir sedimentation causes bed level
changes.

The model incorporates four inflow and two outflow boundaries, encompassing the spillway
and turbine inlet (see Figure 3.1), and is used for long-term simulations until the year 2100.
The inflow discharges and corresponding sediment concentrations are determined using data
from the hydrological model and the soil erosion and sediment transport model. The reservoir
outflow is calculated based on the water level in the reservoir, inflow rates, storage curve, and
site-specific operating regulations designed to maintain a seasonal water level target. Model
calibration is performed by comparing the observed bed level changes between the bathymetric
surveys conducted in 2016 and 2019.

Telemac-2D Telemac-2D uses a combined explicit-implicit solver to approximate the shallow
water equations and compute the flow field. The hydrodynamic module transmits the com-
puted hydrodynamic variables, including water depth, depth-averaged flow velocities, and
bed shear stresses, to the sediment transport and bed evolution module GAIA.

The unstructured mesh used in this thesis comprises triangles with edge lengths of approxi-
mately 40 m. Two roughness coefficients are specified to distinguish between the original river
course (before impoundment) and the newly flooded areas. The parameters of the numerical
model are configured with a focus on numerical and computational stability while ensuring
efficient computations. Therefore, a finite element numerical scheme is employed, following
the recommended practice for tidal flats (or dry-wet elements) to consider only positive water
depths (Hervouet et al., 2011). Furthermore, the method of characteristics is applied to address
the advective component of the hydrodynamic equations, significantly enhancing model stabil-
ity. In addition, the mixing length turbulence model is used to calculate the turbulent viscosity
coefficient.

The depth-averaged sediment concentrations are calculated by solving the advection-diffusion-
equation. The erosion fluxes of mainly cohesive sediment deposits are calculated from the
Krone-Partheniades erosion constant, the bed shear stress, and the critical shear stress for ero-
sion. The settling velocity, bed shear stress, and critical shear stress for deposition govern the
deposition fluxes. After calculating the erosion and deposition fluxes and the net transport flux
per element, GAIA applies the Exner equation (Paola and Voller, 2005) to update the bed levels.
The sediment concentrations are obtained from the soil erosion and sediment transport model
(Mouris et al., 2022). Telemac-2D is only used to simulate the period between the two surveys
in August 2016 and August 2019. Therefore, the water inflows are calculated as a function of
the measured water levels and outflows, considering the storage curves of 2016 and 2019.

The Telemac-2D model aims to efficiently simulate suspended sediment transport in a large
reservoir for repetitive calibration runs (13.5 hours per run, using 12 cores, 3.4 GHz). However,
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it omits bedload and uses a coarse mesh, limiting its ability to predict deltaic avulsion, chan-
nel, or bank erosion at the head of the reservoir. Consequently, the bed level changes in this
domain cannot be predicted in a physically correct and stable manner, and the model setup is
only valid in deep areas outside the shallow delta at the head of the reservoir. Therefore, two
distinct data scenarios are used in this thesis for calibration (see Chapter 4.2). One scenario
includes measurements from the entire upstream section of the reservoir. The other scenario
considers only measurements within the geospatial domain of the numerical model, excluding
measurements affected by deltaic avulsion and channel erosion.

3.5. Bayesian calibration

Bayesian inference In the context of calibrating a numerical model, Bayesian inference is a
powerful approach that helps to estimate and refine the calibration parameters of the model.
This procedure entails analyzing measured data (here observed bed levels zmeas) to update
the initial parameter beliefs p(ω), resulting in the posterior distribution p(ω|zmeas) through the
application of Bayes’ theorem:

p(ω|zmeas) =
p(zmeas|ω) · p(ω)

p(zmeas)
(3.2)

The first step is to create a prior probability distribution p(ω), reflecting the prior beliefs about
parameter values before new or additional evidence zmeas is incorporated. The likelihood func-
tion p(zmeas|ω) quantifies the model’s ability to replicate the observed data for various parame-
ter combinations ω. This Bayesian inference process aids in narrowing down the range of likely
parameter values, resulting in a posterior probability p(ω|zmeas), that is typically narrower than
p(ω) (Box and Tiao, 1992; Oladyshkin and Nowak, 2019). Additionally, the process involves a
normalization factor p(zmeas), known as Bayesian model evidence (BME), which becomes cru-
cial when comparing different posterior distributions or evaluating multiple competing models
(Mohammadi et al., 2018).

Assuming that the differences between observed and modeled bed levels follow a normal dis-
tribution and are independent, the likelihood function p(zmeas|ω) is calculated proportionally
to the sum of the squared errors between measured and simulated bed levels, weighted by the
total error. In this novel error calculation method, the total error of each calibration node is
determined from its measurement error and metamodel error. Finally, the influence of the dif-
ference between the measured and modeled bed levels on the likelihood score decreases when
the total errors are large.

The measurement errors originate from interpolating bed level measurements at numerical
mesh calibration nodes and uncertainties from field measurements. A 3 m interpolation radius
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around calibration nodes was applied, resulting in a variable number of measurements per
node (ranging from 1 to 35). The number of measurements affects the confidence level. There-
fore, 15 available measurements close to the node are assumed to be more reliable than two. As
the number of measurements increases, the node-specific measurement error decreases. The
average measurement error across all calibration nodes is 0.4 m, which equals the measure-
ment precision according to the operator, accounting for the high concentration of suspended
sediment near the bottom, uncertainties in the reservoir’s water level, and the movement of
the ADCP boat due to waves. Since the metamodel (see following paragraph) is just an ap-
proximation of the full complexity numerical model, metamodel errors are also considered.
These errors are determined via LOO-CV, where the model is repeatedly fitted on n-1 calibra-
tion nodes. LOO-CV errors are then calculated for each calibration node and training point,
with the resulting per-node error variance implemented as metamodel error.

Metamodel Bayes’ theorem can be approximated using Monte Carlo sampling, which
typically requires thousands of numerical model runs. However, simulating hydro-
morphodynamic processes with time-consuming models makes conducting thousands of
model runs computationally unfeasible. A surrogate-assisted Bayesian inversion method (Ola-
dyshkin et al., 2020) addresses this challenge, wherein a metamodel replaces the computation-
ally intensive full-complexity model. The metamodel mimics the output of the complex hydro-
morphodynamic model while significantly reducing computing time (Beckers et al., 2020; An
et al., 2022). This thesis utilizes a Gaussian process emulator (GPE) as a metamodel. The GPE
metamodel is trained using numerical model responses generated by exploring different po-
tential calibration parameter value combinations. However, a metamodel cannot replace the
numerical model and is only used to speed up model calibration.

Bayesian active learning The accuracy of surrogate-assisted Bayesian calibration depends
on the ability of the metamodel to emulate the behavior of the complex numerical model ac-
curately. Increasing the number of training points enhances predictive accuracy by reducing
gaps in the parameter space. However, exhaustive parameter space coverage with a computa-
tionally expensive full-complexity model is impractical, taking hours to compute each training
point. Therefore, Bayesian active learning (BAL) avoids long computing times and identifies
the most optimal regions in the parameter space based on metamodel responses. For this pur-
pose, the so-called relative entropy or Kullback-Leibler divergence (Kullback and Leibler, 1951;
Oladyshkin et al., 2020) between the prior and posterior distributions is calculated. Here, rela-
tive entropy describes the information gained from the prior to the posterior distribution. The
set of calibration parameters with the highest relative entropy is employed to rerun the full-
complexity model, initiating the next BAL iteration. The results of the new full-complexity
model serve as new training points for the GPE in the subsequent BAL step. Iterations are
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carried out until meeting a specified stop criterion, which usually involves the convergence of
relative entropy and BME (Beckers et al., 2020). However, this thesis also considers the evo-
lution of the root-mean-square error. Consequently, the metamodel is refined in those regions
of parameter space that are most important (highest information gain) for Bayesian inference.
The complete BAL process is implemented in a Python-based workflow. More detailed infor-
mation on the workflow can be found in Mouris, Acuna Espinoza, Schwindt, Mohammadi,
Haun, Wieprecht and Oladyshkin (2023) and Oladyshkin et al. (2020).

3.6. Model chain to predict long-term reservoir sedimentation

Model chain The model chain (see Figure 3.2) investigates how climate, land use, and the
resulting hydrological changes affect soil production and subsequent reservoir sedimenta-
tion. This thesis uses three different climate models to assess the primary impacts of climate
change, such as precipitation and temperature, for three Representative Concentration Path-
ways (RCPs). To comprehensively predict secondary climate change impacts driven by changes
in temperature, precipitation, and land use change, an advanced hydrological model, a soil ero-
sion and sediment transport model (see Chapter 3.3), and a 3d hydro-morphodynamic model
of the reservoir (see Chapter 3.4) are employed. The combination of these models takes advan-
tage of their specific capabilities and accurately represents the physical processes at different
scales.

The Water Flow and Balance Simulation Model (WaSiM) utilizes the process-oriented Richards
approach to integrate the hydrological processes of the catchment into the model chain
(Schulla, 1997, 2021). WaSiM generates inflow hydrographs for the reservoir model as up-
stream boundary conditions. The projected snow cover serves as input to the soil erosion and
sediment transport model, enabling long-term predictions when satellite imagery is unavail-
able. To achieve higher spatial resolution, climate model precipitation and temperature data
are post-processed using a combination of elevation-dependent regression and inverse distance
weighting.

In the soil erosion and sediment transport model, the R and C factors are considered to be af-
fected by global change, while the K, LS, and P factors do not change over time in future sce-
narios. As there are no discernible trends in the erosivity and intensity (e.g., annual maximum
five-day precipitation or extreme precipitation totals) of precipitation events for the study area,
the equations used to determine the R factor remain unchanged for predicting global change
scenarios. In addition to the C factor’s seasonal variation, projected land use changes under
different global change scenarios are considered. Hence, the C factor is calculated for each
pixel according to the pixel-specific land use percentages. For instance, a greater share of nat-
ural grassland and forest leads to lower C factors, while increasing arable land leads to higher
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Figure 3.2. Model chain analyzing the impact of global change on reservoir sedimentation con-
sidering land use change and using Shared Socioeconomic Pathways (SSPs) and
climate change based on Representative Concentration Pathways (RCPs) (modified
after Mouris, Schwindt, Pesci, Wieprecht and Haun, 2023).

C factors. A downscaled global change analysis model (Chen et al., 2020) produces these fu-
ture land use changes for four Shared Socioeconomic Pathways (SSP-RCPs). The results of the
preceding models are used as inputs to the subsequent models, and the soil erosion and sedi-
ment transport model predicts the monthly suspended sediment loads of the reservoir inflows
(see Figure 3.2). In total, three scenarios that include only hydro-climatic changes and four
scenarios that include both climate and land use changes are considered in this thesis.

Climate and global change scenarios Three Global Climate Models (GCMs), dynamically
downscaled by two different Regional Climate Models (RCMs), are used to generate mete-
orological information on total precipitation, near-surface temperature, near-surface relative
humidity, surface downwelling, shortwave radiation, and near-surface wind speed to assess
the impact of climate change on reservoir sedimentation and its preceding processes (see Fig-
ure 3.2). To reduce potential bias caused by the selection of climate models, model combi-
nations with similar climate trends for precipitation and temperature are grouped. Conse-
quently, one model from each group is selected to represent the wide variety of GCMs, with
only 3 GCM-RCM combinations. In addition, a bias adjustment is carried out to reduce the
systematic deviation between the climate model results and the ERA5 reference data using the
Multi-scale bias AdjuStment (MidAS) tool (Berg et al., 2022), with a reference period spanning
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from 01/1981 to 12/2010. The climate projections ultimately possess a spatial resolution of
0.11 degrees and a temporal resolution of 3 hours, ranging from 01/1981 to 12/2100. Represen-
tative Concentration Pathways (RCPs) are a set of standardized greenhouse gas concentration
trajectories, denoted by their radiative forcing targets for the year 2100 (van Vuuren et al., 2011).
The thesis examines three RCPs, including a low greenhouse gas emissions pathway (RCP2.6),
a medium greenhouse gas emissions pathway (RCP4.5), and a high greenhouse gas emissions
pathway (RCP8.5).

Besides these hydro-climatic change-only scenarios, land use projections (Chen et al., 2020)
through four SSPs are incorporated into the model chain. The SSPs offer comprehensive
global change scenarios considering climate change resulting from greenhouse gas emissions,
population growth, economic development, and technological progress (Riahi et al., 2017).
Catchment responses and reservoir sedimentation are analyzed for sustainable development
(SSP1-RCP2.6), middle-of-the-road development (SSP2-RCP4.5), unequal development (SSP4-
RCP4.5), and fossil-fueled development (SSP5-RCP8.5) using the different GCM-RCM combi-
nations. The model chain is executed for 21 scenarios, comprising 3 RCP scenarios (only climate
change) and 4 SSP-RCP scenarios (land use and climate change), each utilizing 3 GCM-RCM
combinations.

Uncertainty quantification Although the capabilities of the individual models facilitate the
achievement of satisfactory results, it is essential to consider the propagation of uncertainties
in such a model chain. If multiple models are used to predict a target variable, uncertainties
from various sources may superimpose and propagate, increasing the uncertainty in the final
target variable. The difficulty of selecting model parameters, often compounded by limited
measurements, underscores the need to assess their influence on simulation results and the
confidence associated with those results (Moges et al., 2021).

The First-Order Second-Moment (FOSM) method (Gelleszun et al., 2017) approximates param-
eter uncertainties based on variance-covariance propagation. FOSM demonstrates how vari-
ations or uncertainties in model parameters lead to uncertainty in the model results. This
method is more economical regarding computing time than other stochastic methods (e.g.,
Monte Carlo simulations), while the results are comparable (Kunstmann et al., 2002). Each
model has a specific target variable or result, such as discharge for the hydrological model or
SY for the soil erosion and sediment transport model. The most influential parameters with the
greatest impact on the target variable are selected for each model and changed by 1% of the
calibrated optimal value. Ultimately, the standard deviation of the target variable quantifies
the approximate parameter uncertainties.

Additional significant sources of uncertainty encompass the spread in climate projections, the
downscaling techniques employed to bridge large-scale Global Climate Models (GCMs) to Re-
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gional Climate Models (RCMs), and the process of scaling down to the appropriate scale for
process models (Prudhomme and Davies, 2009). The analysis considers mean values derived
from the climate model ensemble and their corresponding standard deviations to address cli-
mate model uncertainty.



4. Summary of Scientific Papers

The findings of this dissertation have been published in four articles in peer-reviewed scien-
tific journals. This chapter serves as a concise yet comprehensive overview of the conducted
research. It provides each research article’s objectives, key findings, and specific contributions.
For more detailed insights, please refer to the appended published research articles.

The publications encompassed within this thesis address the modeling of soil erosion, sedi-
ment delivery, and reservoir sedimentation. The focal point lies in scrutinizing the impacts
of land use and hydro-climatic changes on these phenomena. The sequence of these publica-
tions follows a chronological order and shows a clear progression from catchment processes to
reservoir sedimentation modeling and finally to the comprehensive model chain. It mirrors the
sequential steps to achieve the objectives outlined in Chapter 1.1 and Figure 1.1.

4.1. Publication I: Introducing seasonal snow memory into the
RUSLE

This paper addresses two main objectives related to estimating sediment load in general and the influ-
ence of snow on soil erosion and suspended sediment loads in particular (Mouris et al., 2022). The first
objective is to develop an objective calculation method for predicting suspended sediment loads incorpo-
rating catchment characteristics and hydro-climatic parameters. This approach should remain applicable
even in data-sparse regions and climate impact studies where high-resolution precipitation and detailed
measurement data are unavailable. Additionally, the paper investigates the effects of snow on suspended
sediment load by comparing existing approaches that neglect snow with newly developed techniques that
account for the effects of snowfall and snowmelt on soil erosion.

The strong agreement between predicted and observed suspended sediment loads provides
compelling evidence for the efficacy of the developed algorithmic method for predicting sedi-
ment loads in data-sparse regions. This approach strikes a reasonable balance between appli-
cability and reliability by leveraging monthly sediment load predictions based on Sentinel-2
satellite imagery and climate reanalysis precipitation data. A core element of this innovative
method is the integration of non-erosive snowfall, which accumulates over months, followed
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by erosive snowmelt. The incorporation of a seasonal snow memory into the RUSLE signifi-
cantly enhances the accuracy of soil erosion and sediment transport predictions in mountain-
ous Mediterranean catchments, particularly when measured data are limited. Consequently,
the approach provides valuable insights into suspended sediment loads with a spatio-temporal
resolution that facilitates the subsequent prediction of hydro-morphological processes in rivers,
lakes, and reservoirs. Furthermore, this methodology holds promise for future climate change
scenario studies. To this end, the historical climate reanalysis data is replaced by projected data
from climate projections.

The primary scientific contribution of this research lies in the development of innovative
Python algorithms, the adept utilization of freely available datasets, and the novel integration
of seasonal snow memory into the RUSLE.

4.2. Publication II: Stability criteria for Bayesian calibration of
reservoir sedimentation models

This paper focuses on the challenges of modeling reservoir sedimentation by employing a surrogate-
assisted Bayesian calibration approach (Mouris, Acuna Espinoza, Schwindt, Mohammadi, Haun,
Wieprecht and Oladyshkin, 2023). The main objective is to achieve accurate predictions of reservoir
sedimentation by effectively calibrating complex numerical models, even in the presence of competing
model simplifications. These simplifications are often not valid throughout the entire model domain due
to the varying dominance of distinct physical processes in different areas of the reservoir. Furthermore,
key calibration parameters, namely the grain size distribution, the critical bed shear stresses for the ero-
sion and deposition of cohesive sediments, and the dry bulk density, require extensive field sampling for
determination. Hence, this paper examines whether our modified approach can identify the importance
of calibration parameters, facilitating their prioritization in field surveys.

Four calibration parameters are adjusted to achieve the most accurate simulation of bed level
changes between 2016 and 2019. The calibration process involves two distinct data scenar-
ios. One scenario integrates measurements from the entire upstream half of the reservoir,
where small channels with low water depths lead to high topographic gradients and substan-
tial model uncertainty. The other scenario utilizes measurements within the geospatially valid
range of the numerical model (see Chapter 3.4). The results indicate that Bayesian calibration
only produces physically meaningful parameter combinations when the calibration nodes are
within the valid range of the numerical model. Notably, Bayesian calibration identifies the dry
bulk density as the dominant and most influential parameter for accurately simulating reser-
voir sedimentation. As a result, it is recommended to prioritize collecting dry bulk density data
before setting up a reservoir sedimentation model. Moreover, the innovative and adapted BAL
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approach addresses measurement and metamodel errors. This framework facilitates a compre-
hensive parameter comparison and helps to determine the critical calibration parameters, even
within the intricate four-dimensional parameter space.

The primary scientific contributions of this paper encompass the development of a Python-
based BAL workflow, the adaptive integration of measurement and metamodel errors, its ap-
plication to four calibration parameters, and its extension to the simulation of reservoir sedi-
mentation processes.

4.3. Publication III: Assessment of uncertainties in a complex
modeling chain for predicting reservoir sedimentation under
changing climate

This paper presents a complex model chain to forecast reservoir sedimentation and its preceding processes
for various climate change scenarios (Pesci et al., 2023). An ensemble of climate models is employed to
analyze future climate change scenarios. However, it is essential to consider the propagation of un-
certainties within the modeling chain. The main objective is to investigate whether model parameter
uncertainties affect the simulation results more than climate model uncertainties. A simplified method is
used to answer this question by calculating approximate model parameter uncertainties and comparing
them to the spread of climate projections.

The FOSM method proves to be a suitable approach for approximating model parameter un-
certainties in a complex modeling chain. The study reveals that the uncertainties from different
climate projections significantly surpass the model parameter uncertainties for the investigated
low emissions scenario RCP2.6. The selection of RCP2.6 stems from a methodological perspec-
tive, aiming to discern whether the range of outcomes from a climate projection ensemble, even
in scenarios like RCP2.6 with minimal change signals, exceeds typical variations attributed to
model parameter uncertainty. Hence, the spread of climate projection is expected to be more
prominent in higher emissions scenarios. To mitigate biases originating from individual cli-
mate models, the use of multiple climate model ensembles is recommended. The proposed
method facilitates the communication of diverse sources of uncertainty within complex mod-
eling chains, including climate models. Furthermore, it highlights how model parameters and
climate model uncertainties compare to climate change signals.

The main scientific contribution of this paper lies in the developed method that enables the
modeler to communicate different sources of uncertainty. This approach enhances the assess-
ment of predicted outcomes and facilitates the estimation of their associated uncertainty.
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4.4. Publication IV: An interdisciplinary model chain quantifies the
footprint of global change on reservoir sedimentation

This paper builds upon the previous publications and addresses the urgent issue of reservoir sedimenta-
tion in the context of global change (Mouris, Schwindt, Pesci, Wieprecht and Haun, 2023). The primary
aim is to assess the impacts of hydro-climatic and land use changes for various global change scenarios
on river discharge, sediment production and delivery, and reservoir sedimentation. Recognizing the lim-
itations of existing modeling approaches, the paper introduces a novel, interdisciplinary model chain that
integrates catchment characteristics, hydro-climatic conditions, and land use data to predict long-term
soil erosion, sediment delivery, and multidimensional reservoir sedimentation processes. This holistic
approach aims to facilitate sustainable reservoir operations by quantifying the impact of global change
on reservoir sedimentation.

Applied to a typical mountainous Mediterranean catchment, the model chain predicts reduced
river discharge and increased SYs for high and medium emissions scenarios. Low emissions
scenarios project higher discharges by 2100, while high emissions scenarios exacerbate water
scarcity. In particular, increased winter precipitation and a shift from snowfall to rain are pro-
jected to aggravate reduced summer precipitation, underscoring the need for artificial water
storage in reservoirs during hot and dry Mediterranean summers. Additionally, higher winter
rainfall amplifies sediment production and reservoir sedimentation.

Land use composition plays a crucial role, with higher proportions of forest and grassland
reducing sediment concentrations, while higher proportions of agricultural land intensify sed-
iment concentrations and yields. Scenarios with increased SYs experience a significant loss of
storage volume and the delta moves further downstream into the reservoir, resulting in a lower
TE. The hydro-morphodynamic numerical model provides crucial insights into sedimentation
patterns. For instance, the spatially explicit 3d model identifies sedimentation hotspots and
provides information on the suitability of possible sediment management measures. Another
key finding emphasizes that land use change can outweigh increased reservoir sedimentation
due to hydro-climatic change, underscoring the importance of localized actions (e.g., afforesta-
tion) to reduce sediment production.

The main scientific contribution is the development of an interdisciplinary model chain to as-
sess the substantial impacts of hydro-climatic and land use changes on river discharge, sedi-
ment production and delivery, and reservoir sedimentation. The spatial and temporal explicit
insights provided by the model chain provide valuable information on future sediment depo-
sition patterns to facilitate sustainable management strategies.



5. Conclusions and Recommendations

Reservoirs are crucial structures that serve multiple purposes and are essential for sustainable
development in the face of global change. However, their functions are threatened by reservoir
sedimentation, which reduces their storage volume. Therefore, the main goal of this thesis is to
establish objective methods for predicting long-term sediment dynamics and multidimensional
reservoir sedimentation under different global change scenarios, including hydro-climatic and
land use changes.

Innovative sediment load predictions with seasonal snow memory An objective method
for calculating sediment loads entering the reservoir is essential to predict reservoir sedimen-
tation in the face of climate and global change. The developed algorithmic approach, using
freely available datasets like satellite imagery and climate reanalysis data, proves effective even
in regions lacking detailed precipitation data and field surveys (e.g., regarding soil character-
istics and land use), such as for the Devoll catchment in Albania. The agreement between
predicted and observed suspended sediment loads underscores the method’s viability. A key
innovation is the integration of non-erosive snowfall that accumulates over months as a func-
tion of temperature, followed by erosive snowmelt. By integrating a seasonal snow memory
into the RUSLE, the accuracy of the prediction of soil erosion and sediment delivery in the stud-
ied mountainous Mediterranean catchment substantially improves. This improvement, result-
ing from a more realistic representation of physical processes, enables monthly predictions of
hydro-morphological changes in reservoirs. Therefore, the developed approach bridges gaps
in existing methodologies and advances long-term predictions on sediment production and
subsequent reservoir sedimentation under changing environmental conditions.

Bayesian calibration of reservoir sedimentation models and parameter prioritization
The calibration of multidimensional hydro-morphodynamic models is crucial for predicting
reservoir sedimentation. The findings emphasize that Bayesian calibration generates meaning-
ful parameter combinations only when calibration nodes are within the valid model range of
the numerical model. In particular, locating calibration nodes in the shallow areas at the head of
the reservoir increases model uncertainty. The modified BAL method, which handles measure-
ment and metamodel errors, proves robust in the complex four-dimensional parameter space
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resulting from the four calibration parameters considered. Hence, the Bayesian calibration
approach facilitates comprehensive parameter comparison and identifies key calibration pa-
rameters, providing practical guidance for researchers and practitioners. Bayesian calibration
determines dry bulk density as the most important and influential parameter for simulating
reservoir sedimentation. Therefore, it is recommended to prioritize collecting dry bulk density
data as input data for setting up a reservoir sedimentation model.

Uncertainty of an interdisciplinary model chain in predicting reservoir sedimentation
The developed model chain integrates three state-of-the-art models to predict sedimentation
processes in the Banja reservoir under diverse future hydro-climatic and land use conditions.
Despite the inherent challenges of using multiple models in a chain, the approach leverages
the strengths of each to predict bed level changes in the reservoir accurately. The assessment of
model parameter uncertainties in predicting final bed changes using the FOSM method shows
that they are relatively small compared to the measured bed elevations, confirming the robust-
ness of the modeling chain. However, the uncertainties arising from different climate projec-
tions significantly surpass the model parameter uncertainties. Thus, there may be significant
uncertainty in absolute sediment quantities, primarily due to variations in climate projections
that propagate through the model chain. Nevertheless, this research provides modelers and
practitioners valuable insights for effectively communicating uncertainty in complex modeling
chains. Furthermore, it is recommended to use multiple climate projections to obtain robust
trends and derive a range of possible outcomes.

Impacts of global change on reservoir sedimentation The interdisciplinary model chain
predicts that mean annual river discharge will decrease, and SYs will increase in high and
medium emissions scenarios for the investigated Mediterranean catchment. Higher winter
rainfall and peak flows in winter enhance sediment production and reservoir sedimentation.
However, lower summer rainfall and decreased winter snow storage result in less available
water in spring and summer, even though winter precipitation increases. Low emissions sce-
narios exhibit increased discharges, leading to higher SYs but lower sediment concentrations
compared to higher emissions scenarios. Forest and grassland dominance reduces sediment
concentrations, while higher agricultural proportions significantly amplify sediment concen-
trations and SYs. Therefore, land use change outweighs the impact of hydro-climatic changes
on reservoir sedimentation in the investigated Devoll catchment. As a direct consequence, tar-
geted interventions such as policy-driven crop adaptations and afforestation can mitigate soil
loss and reservoir sedimentation in the future. The reservoir model demonstrates that scenarios
with elevated SYs experience more significant storage volume loss and a decreasing TE. Fur-
thermore, the delta migrates further downstream into the reservoir. However, the 3d numerical
model goes beyond bulk parameters such as total storage loss or TE, revealing sedimentation
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hotspots crucial for future sustainable sediment management practices like informed dredging
or flushing operations.

Recommendations for future work The methods developed in this thesis offer an objective
prediction of reservoir sedimentation processes, yet there are opportunities for methodolog-
ical improvements and future research. Specifically, the current SY prediction using RUSLE
and SEDD does not consider mass wasting and fluvial erosion, even though these factors can
be significant sediment sources dependent on the catchment characteristics (see Chapter 2.1
and Publication I). Especially when sub-monthly temporal resolution is required, it is neces-
sary to simulate erosion and deposition processes within the river network. Furthermore, the
model’s seasonal snow memory is tailored to Mediterranean mountainous regions with local
snow cover of 2-4 months. For regions with prolonged snow cover, it is recommended to use
temperature-dependent snowmelt models that account for partial snowmelt (e.g., Hock, 2003).

The two numerical reservoir sedimentation models have certain limitations that warrant atten-
tion in future studies. For example, the assumption of a constant dry bulk density over space
and time neglects the variability caused by grain size distribution, consolidation, and dewater-
ing processes (see Chapter 2.3). Therefore, future research should incorporate semi-empirical
formulas and a multi-layer discretization to account for consolidation processes at the reservoir
bed (e.g., Audouin et al., 2020). Another limitation is neglecting temperature-related density
differences and stratification in the reservoir, which can affect suspended sediment transport.
Since sediment management has not been conducted in the study area, the numerical models
did not incorporate any strategies for sediment management. If sediment management actions
like flushing or dredging are foreseen, they should also be implemented in the numerical model
for reliable prediction of deposition patterns and storage loss estimates.

Additionally, it is essential to note that the models may underestimate sediment production
during extreme events due to the highly non-linear nature of sediment dynamics (e.g., Roering
et al., 1999). These high-magnitude, low-frequency extreme events are often unmonitored and
can result in sediment inputs equivalent to the ones from several years during a single event
(Coppus and Imeson, 2002; Baynes et al., 2023). Regardless of the modeling approach used, the
model’s response to extreme precipitation events is uncertain, especially if such events have not
occurred during the calibration period. Additionally, dominant processes in a specific catch-
ment may change due to climate change, with previously negligible processes like landslides
or mudflows potentially becoming significant sediment sources (see Chapter 2.1). Thus, mod-
els may perform well for decades but fail during extreme events. Using long time series for
calibration is recommended, acknowledging the inherent uncertainty in long-term sediment
production.
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Detering, M., Bolsenkötter, L. and Küppers, J. (2019). Kosteneffizienter Umgang mit Sediment
unter neuen Regelwerken, Wasserwirtschaft 109: 158–161.

Di, M. and Wang, J. (2018). Microplastics in surface waters and sediments of the Three Gorges
Reservoir, China, Science of The Total Environment 616-617: 1620–1627.

Diodato, N. and Bellocchi, G. (2007). Estimating monthly (R)USLE climate input in a Mediter-
ranean region using limited data, Journal of Hydrology 345(3-4): 224–236.

Diodato, N., Knight, J. and Bellocchi, G. (2013). Reduced complexity model for assessing pat-
terns of rainfall erosivity in Africa, Global and Planetary Change 100: 183–193.



46 References

Doherty, J. (2001). PEST-ASP user’s manual, Watermark Numerical Computing, Brisbane, Australia
.

Duan, C. G. and Karelin, V. I. (2003). Abrasive Erosion And Corrosion Of Hydraulic Machinery,
illustrated edition edn, Imperial College Press, London.

Efthimiou, N., Lykoudi, E. and Karavitis, C. (2017). Comparative analysis of sediment
yield estimations using different empirical soil erosion models, Hydrological Sciences Journal
62(16): 2674–2694.

Ehrbar, D., Schmocker, L., Doering, M., Cortesi, M., Bourban, G., Boes, R. M. and Vetsch, D. F.
(2018). Continuous Seasonal and Large-Scale Periglacial Reservoir Sedimentation, Sustain-
ability 10(9): 3265.

Einstein, H. A. (1950). The Bed-Load Function for Sediment Transport in Open Channel Flows,
Technical Bulletin of the USDA Soil Conservation Service 1026: 71.

Fan, J. and Morris, G. L. (1992). Reservoir sedimentation. i: Delta and density current deposits,
Journal of Hydraulic Engineering 118(3): 354–369.

Fernández-Raga, M., Fraile, R., Keizer, J. J., Varela Teijeiro, M. E., Castro, A., Palencia, C., Calvo,
A. I., Koenders, J. and Da Costa Marques, R. L. (2010). The kinetic energy of rain mea-
sured with an optical disdrometer: An application to splash erosion, Atmospheric Research
96(2): 225–240.

Ferro, V. and Minacapilli, M. (1995). Sediment delivery processes at basin scale, Hydrological
Sciences Journal 40(6): 703–717.

Ferro, V. and Porto, P. (2000). Sediment delivery distributed (sedd) model, Journal of Hydrologic
Engineering 5(4): 411–422.

Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H. T., van, V., Verelst, L. and Wiberg, D.
(2008). The harmonized world soil database v 1.2, IIASA, Laxenburg, Austria and FAO, Rome,
Italy .

Fox, G. A., Sheshukov, A., Cruse, R., Kolar, R. L., Guertault, L., Gesch, K. R. and Dutnell, R. C.
(2016). Reservoir Sedimentation and Upstream Sediment Sources: Perspectives and Future
Research Needs on Streambank and Gully Erosion, Environmental Management 57(5): 945–955.

Galy, A. and France-Lanord, C. (2001). Higher erosion rates in the Himalaya: Geochemical
constraints on riverine fluxes, Geology 29(1): 23–26.

Garcı́a-Ruiz, J. M., Beguerı́a, S., Nadal-Romero, E., González-Hidalgo, J. C., Lana-Renault, N.
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Millares, A. and Moñino, A. (2018). Sediment yield and transport process assessment from
reservoir monitoring in a semi-arid mountainous river, Hydrological Processes 32(19): 2990–
3005.

Milliman, J. D. and Meade, R. H. (1983). World-Wide Delivery of River Sediment to the Oceans,
The Journal of Geology 91(1): 1–21.

Müller, D. and Sikor, T. (2006). Effects of postsocialist reforms on land cover and land use in
South-Eastern Albania, Applied Geography 26(3): 175–191.

Moges, E., Demissie, Y., Larsen, L. and Yassin, F. (2021). Review: Sources of Hydrological
Model Uncertainties and Advances in Their Analysis, Water 13(1): 28.

Mohammadi, F., Kopmann, R., Guthke, A., Oladyshkin, S. and Nowak, W. (2018). Bayesian
selection of hydro-morphodynamic models under computational time constraints, Advances
in Water Resources 117: 53–64.

Moragoda, N. and Cohen, S. (2020). Climate-induced trends in global riverine water dis-
charge and suspended sediment dynamics in the 21st century, Global and Planetary Change
191: 103199.

Morgan, R. P. C. (2009). Soil Erosion and Conservation, John Wiley & Sons, Hoboken, NJ, USA.

Morris, G. L., Annandale, G. and Hotchkiss, R. (2008). Reservoir Sedimentation, in M. H. Garcı́a
(ed.), Sedimentation Engineering, number 110 in ASCE Manuals and Reports on Engineering Prac-
tice, American Society of Civil Engineers, Reston, VA, USA, pp. 579–612.

Morris, G. L. and Fan, J. (1998). Reservoir sedimentation handbook: design and management of dams,
reservoirs, and watersheds for sustainable use, McGraw-Hill, New York, NY, USA.



References 51

Mouris, K., Acuna Espinoza, E., Schwindt, S., Mohammadi, F., Haun, S., Wieprecht, S. and
Oladyshkin, S. (2023). Stability criteria for Bayesian calibration of reservoir sedimentation
models, Modeling Earth Systems and Environment .

Mouris, K., Schwindt, S., Haun, S., Morales Oreamuno, M. F. and Wieprecht, S. (2022). Intro-
ducing seasonal snow memory into the RUSLE, Journal of Soils and Sediments .

Mouris, K., Schwindt, S., Pesci, M. H., Wieprecht, S. and Haun, S. (2023). An interdisciplinary
model chain quantifies the footprint of global change on reservoir sedimentation, Scientific
Reports 13: 20160.

Muehleisen, R. T. and Bergerson, J. (2016). Bayesian Calibration - What, Why And How, In-
ternational High Performance Buildings Conference, Vol. Paper 167, Purdue University, West
Lafayette, IN, USA.

Mulder, T. and Alexander, J. (2001). The physical character of subaqueous sedimentary density
flows and their deposits, Sedimentology 48(2): 269–299.

Mullan, D., Favis-Mortlock, D. and Fealy, R. (2012). Addressing key limitations associated with
modelling soil erosion under the impacts of future climate change, Agricultural and Forest
Meteorology 156: 18–30.

Nearing, M. A. (1997). A Single, Continuous Function for Slope Steepness Influence on Soil
Loss, Soil Science Society of America Journal 61(3): 917.

Nearing, M. A. (2013). Soil Erosion and Conservation, Environmental Modelling: Finding Sim-
plicity in Complexity, Wiley-Blackwell, Chichester, West Sussex ; Hoboken, NJ, pp. 365–378.

Nerantzaki, S. D., Giannakis, G. V., Efstathiou, D., Nikolaidis, N. P., Sibetheros, I. ., Karatzas,
G. P. and Zacharias, I. (2015). Modeling suspended sediment transport and assessing the im-
pacts of climate change in a karstic Mediterranean watershed, Science of The Total Environment
538: 288–297.

Nilawar, A. P. and Waikar, M. L. (2019). Impacts of climate change on streamflow and sediment
concentration under RCP 4.5 and 8.5: A case study in Purna river basin, India, Science of The
Total Environment 650: 2685–2696.

Nunes, J. P., Seixas, J. and Keizer, J. J. (2013). Modeling the response of within-storm runoff
and erosion dynamics to climate change in two Mediterranean watersheds: A multi-model,
multi-scale approach to scenario design and analysis, Catena 102: 27–39.

Oberkampf, W. L., Trucano, T. G. and Hirsch, C. (2004). Verification, validation, and predictive
capability in computational engineering and physics, Applied Mechanics Reviews 57(5): 345–
384.



52 References

Oladyshkin, S., Mohammadi, F., Kroeker, I. and Nowak, W. (2020). Bayesian3 Active Learning
for the Gaussian Process Emulator Using Information Theory, Entropy 22(8): 890.

Oladyshkin, S. and Nowak, W. (2019). The Connection between Bayesian Inference and In-
formation Theory for Model Selection, Information Gain and Experimental Design, Entropy
21(11): 1081.

Olsen, N. R. B. (2018). A Three-Dimensional Numerical Model For Simulation Of Sediment Move-
ments In Water Intakes With Multiblock Option. User’s Manual, Trondheim, Norway.

Olsen, N. R. B. and Hillebrand, G. (2018). Long-time 3D CFD modeling of sedimentation with
dredging in a hydropower reservoir, Journal of Soils and Sediments 18(9): 3031–3040.

Panagos, P., Ballabio, C., Himics, M., Scarpa, S., Matthews, F., Bogonos, M., Poesen, J. and
Borrelli, P. (2021). Projections of soil loss by water erosion in Europe by 2050, Environmental
Science & Policy 124: 380–392.

Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E. and Montanarella, L. (2015).
Estimating the soil erosion cover-management factor at the European scale, Land Use Policy
48: 38–50.

Panagos, P., Borrelli, P., Meusburger, K., van der Zanden, E. H., Poesen, J. and Alewell, C.
(2015). Modelling the effect of support practices (P-factor) on the reduction of soil erosion by
water at European scale, Environmental Science & Policy 51: 23–34.

Paola, C. and Voller, V. R. (2005). A generalized Exner equation for sediment mass balance,
Journal of Geophysical Research: Earth Surface 110(F4).

Patro, E. R., De Michele, C., Granata, G. and Biagini, C. (2022). Assessment of current reservoir
sedimentation rate and storage capacity loss: An Italian overview, Journal of Environmental
Management 320: 115826.

Paul, M. and Negahban-Azar, M. (2018). Sensitivity and uncertainty analysis for streamflow
prediction using multiple optimization algorithms and objective functions: San Joaquin Wa-
tershed, California, Modeling Earth Systems and Environment 4(4): 1509–1525.

Pesci, M. H., Mouris, K., Haun, S. and Förster, K. (2023). Assessment of uncertainties in a com-
plex modeling chain for predicting reservoir sedimentation under changing climate, Model-
ing Earth Systems and Environment .

Pierson, T. C. (2005). Hyperconcentrated flow - transitional process between water flow and
debris flow, in M. Jakob and O. Hungr (eds), Debris-flow Hazards and Related phenomena,
Springer-Verlag, Berlin, Heidelberg, Germany, pp. 159–202.



References 53

Poesen, J. (1984). The influence of slope angle on infiltration rate and Hortonian overland flow,
Zeitschrift für Geomorpholgie (49): 117 – 131.

Poesen, J., Nachtergaele, J., Verstraeten, G. and Valentin, C. (2003). Gully erosion and environ-
mental change: importance and research needs, Catena 50(2): 91–133.

Pradhan, S. P. and Siddique, T. (2019). Mass Wasting: An Overview, in S. Pradhan, V. Vishal
and T. Singh (eds), Landslides: Theory, Practice and Modelling, Advances in Natural and Tech-
nological Hazards Research, Springer International Publishing, Cham, pp. 3–20.

Prudhomme, C. and Davies, H. (2009). Assessing uncertainties in climate change impact anal-
yses on the river flow regimes in the UK. Part 1: baseline climate, Climatic Change 93(1): 177–
195.

Quinton, J. N., Govers, G., Van Oost, K. and Bardgett, R. D. (2010). The impact of agricultural
soil erosion on biogeochemical cycling, Nature Geoscience 3(5): 311–314.

Renard, K. G. (ed.) (1997). Predicting soil erosion by water: a guide to conservation planning with the
revised universal soil loss equation (RUSLE), number 703 in Agriculture handbook, Washington,
D. C. OCLC: 36721564.

Renard, K. G., Foster, G. R., Weesies, G. A. and Porter, J. P. (1991). RUSLE: Revised universal
soil loss equation, Journal of Soil and Water Conservation 46 (1): 30–33.

Renwick, W. H., Carlson, K. J. and Hayes-Bohanan, J. K. (2005). Trends in recent reservoir
sedimentation rates in southwestern Ohio, Journal of Soil and Water Conservation 60(2): 72–79.

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N.,
Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M.,
Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder,
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Abstract
Purpose The sediment supply to rivers, lakes, and reservoirs has a great influence on hydro-morphological processes. For 
instance, long-term predictions of bathymetric change for modeling climate change scenarios require an objective calculation 
procedure of sediment load as a function of catchment characteristics and hydro-climatic parameters. Thus, the overarching 
objective of this study is to develop viable and objective sediment load assessment methods in data-sparse regions.
Methods This study uses the Revised Universal Soil Loss Equation (RUSLE) and the SEdiment Delivery Distributed (SEDD) 
model to predict soil erosion and sediment transport in data-sparse catchments. The novel algorithmic methods build on free 
datasets, such as satellite and reanalysis data. Novelty stems from the usage of freely available datasets and the introduction 
of a seasonal snow memory into the RUSLE. In particular, the methods account for non-erosive snowfall, its accumulation 
over months as a function of temperature, and erosive snowmelt months after the snow fell.
Results Model accuracy parameters in the form of Pearson’s r and Nash–Sutcliffe efficiency indicate that data interpolation 
with climate reanalysis and satellite imagery enables viable sediment load predictions in data-sparse regions. The accuracy 
of the model chain further improves when snow memory is added to the RUSLE. Non-erosivity of snowfall makes the most 
significant increase in model accuracy.
Conclusion The novel snow memory methods represent a major improvement for estimating suspended sediment loads with 
the empirical RUSLE. Thus, the influence of snow processes on soil erosion and sediment load should be considered in any 
analysis of mountainous catchments.

Keywords Soil erosion · RUSLE · Snow · Sediment load · Satellite imagery · Climate reanalysis

1 Introduction

Hydro-morphological processes in rivers, lakes, and res-
ervoirs strongly depend on the sediment supply from the 
catchment area. Hence, information on sediment load is 
required as an upstream boundary condition for long-term 
predictions of bathymetric changes with deterministic 
hydro-morphodynamic numerical models (Haun et al. 2013; 
Mouris et al. 2018; Hanmaiahgari et al. 2018; Olsen and 
Hillebrand 2018). In addition, engineering interventions, 
such as implementing sustainable reservoir operations, 
require accurate predictions of sediment load, at sufficiently 
high temporal resolution. To this end, a model chain for 
assessing sediment dynamics typically starts with a para-
metric characterization of the catchment to estimate the sed-
iment yield, defined as the amount of sediment load passing 
the outlet of the catchment. Yet, modeling soil erosion and 
sediment transport processes in the catchment area relies 
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on subjective decision-making, which results in partially 
non-measurable uncertainty (Melsen et al. 2019). Thus, 
objectively calculated sediment loads are rarely available 
and the uncertainties of final outputs are often unknown 
(Song et al. 2011).

Soil erosion and sediment transport processes can be 
described by a variety of models that involve, for instance, 
conceptual, empirical, or physical-deterministic approaches 
(Benavidez et al. 2018). The choice of a suitable modeling 
approach depends on the spatio-temporal scales of input 
data, the quality of available data, and the target model 
output (Nearing 2013; Alewell et al. 2019). However, more 
complex process-based physical models do not necessarily 
reduce uncertainty compared to simple empirical models 
(Brazier 2013; de Vente et al. 2013; Alewell et al. 2019) 
because the quality or gaps of available measurement data 
play a superordinate role for large-scale applications (> 1 
 km2) (Tan et al. 2018; Haun and Dietrich 2021; Borrelli 
et al. 2021). Thus, simple empirical soil erosion models are 
often preferred to complex models in areas with limited data 
availability (Efthimiou et al. 2017; Benavidez et al. 2018). 
A performance evaluation of different empirical soil erosion 
models in mountainous Mediterranean catchments showed 
that the Revised Universal Soil Loss Equation (RUSLE) 
(Renard et al. 1991; Renard 1997) yields the best results, 
in particular for investigating long-term trends (Efthimiou 
et al. 2017). This is why we adapted the RUSLE in this 
study along with the SEdiment Delivery Distributed (SEDD) 
model (Ferro and Porto 2000) to estimate the suspended 
sediment load in a region where data are only sparsely avail-
able. Still, the RUSLE involves sketchy empirical parameters 
and subjective decision-making. For instance, the RUSLE 
uses a rainfall-runoff factor that does not distinguish between 
precipitation in the form of rain or snow (Renard 1997; 
Alewell et al. 2019), which may lead to an overestimation 
of erosion during the event, as snowfall is not erosive. For 
this reason, recent studies ignore precipitation (i.e., consider 
it a non-erosive) that occurs at temperatures below 0 °C 
(Meusburger et al. 2012; Schmidt et al. 2016). The subse-
quent snowmelt, which can be highly erosive (Lana-Renault 
et al. 2011; Wu et al. 2018), however, is neglected in these 
approaches (Alewell et al. 2019), resulting in an underesti-
mation of eroded sediments. Thus, Yin et al. (2017) propose 
that future research should focus on the effect of snowmelt 
on erosion. This study aims to close this gap by vetting 
approaches that neglect snow against novel techniques that 
consider the effects of snowfall and snowmelt on suspended 
sediment loads in a Mediterranean catchment. In addition, to 
overcome challenges related to subjective decision-making 
and snow-driven erosion processes in mountainous Mediter-
ranean catchments, this study has the goal to establish an 
objective workflow for generating monthly suspended sedi-
ment loads. Another challenge in many regions of the world 

is a lack of measurement data on catchment characteristics 
and hydro-climatic processes, including precipitation. Thus, 
the superordinate research question in this study is as fol-
lows: How can viable and objective sediment loads from 
mountainous Mediterranean catchments and sparse data be 
generated? To answer this question, this study develops a 
series of algorithms, which constitute an objective workflow. 
The algorithms combine the RUSLE and the SEDD model to 
predict monthly suspended sediment loads coming from the 
Devoll catchment (Southeast Albania, Fig. 1) with mostly 
free data. The SEDD model estimates sediment transport 
and delivery, while the RUSLE calculates the spatial distri-
bution of the gross soil erosion in the catchment. In particu-
lar, to leverage re-using the workflow in other data-sparse 
regions, the approach involves testing the relevance of free 
global datasets (e.g., satellite imagery and hydro-climatic 
parameters from reanalysis datasets). A core element of the 
methods is an algorithm that takes into account both the 
non-erosivity of snowfall and the erosivity of snowmelt by 
introducing a seasonal memory into the RUSLE. The results 
feature the output of the novel algorithmic workflow.

2  Materials and methods

The methods feature study site characteristics, challenges 
associated with data-sparse regions, and a comprehensive 
literature review on the RUSLE and the SEDD model. Thus, 
this section describes step by step the implementation of 
modular research products, related hypotheses, and the 
pathway to validate the hypotheses in a novel algorithmic 
workflow.

2.1  Study area

This study focuses on the upper catchment of the Banja 
Reservoir at the Devoll River in the Southeast of Albania 
(Fig. 1). The 1875  km2 large catchment is surrounded by 
up to 2390 m a.s.l-high mountains, a highland plain in the 
Southeast where the Devoll River has its source, and the, 
in 2016, commissioned Banja Reservoir in the Northwest. 
Downstream of its source, in the Gramos Mountains near the 
Greek border, the Devoll River flows toward the Northwest, 
passing the Korçë plain, and falls into a narrow v-shaped 
canyon section. A monitoring station (close to the village 
of Kokel, red dot in Fig. 1) at the downstream end of the 
canyon section has been measuring sediment concentration 
and discharge instantaneously, but not consistently since 
March 2016. Downstream of the Kokel monitoring station, 
the Devoll River passes into a braided river section that leads 
into the Banja Reservoir.

Approximately 30% of the catchment area is forested, 
25% is covered by scrubs and herbaceous vegetation, and 
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25% is used for agriculture (Copernicus Land Monitoring 
Service 2018). Other minor but non-negligible land cover 
types are pasture, natural grasslands, and sparse vegetation. 
The soils are mainly composed of Eutric Regosol (37%), 
Calcic Cambisol (30%), Calcaric Lithosol (12%), and 
Orthic Luvisol (11%) (Fischer et al. 2008; Hiederer 2013).

The catchment of the Banja reservoir is divided into 
two climatic zones (Kottek et al. 2006; Beck et al. 2018). 
The Eastern (upstream) part of the catchment, including 
the sub-catchment of the Kokel monitoring station, is 
characterized by a warm-summer Mediterranean climate 
(Csb according to the Köppen climate classification). The 
Western (downstream) part of the catchment is character-
ized by a hot-summer Mediterranean climate (Csa accord-
ing to the Köppen climate classification). Both parts of 
the catchment typically experience dry and hot summers 
and humid winters, but the precipitation amounts decrease 
with increasing distance from the coast (i.e., moving in 
the Eastern direction). Thus, the Eastern part receives an 
average of 660 mm  year−1, while the Western part receives 
up to 1600 mm  year−1 (Almestad 2015). In winter, snow-
fall is frequent in elevations higher than 1000 m a.s.l. 
Hence, the flow regime of the Devoll River and its tribu-
taries are driven by precipitation, and also by snowfall 
and snowmelt.

As a part of geographical Mediterranean Europe, the 
Devoll catchment is an erosion hotspot (Walling and Webb 
1996; Borrelli et al. 2017b, 2020), where high soil loss 
occurs because of a combination of high precipitation ero-
sivity and steep topography.

2.2  Revised Universal Soil Loss Equation (RUSLE)

The RUSLE has been developed based on worldwide data-
sets and has already been applied on various spatial scales 
ranging from local case studies (e.g., Yang 2015; Koirala 
et al. 2019; Schmidt et al. 2019; Chuenchum et al. 2019) 
to continental (Panagos et al. 2015c; Teng et al. 2016) and 
global assessments (Yang et al. 2003; Borrelli et al. 2020). 
The RUSLE computes soil loss A (t  ha−1  year−1) as the prod-
uct of six erosion risk factors:

where R is a rainfall-runoff erosivity factor (MJ mm 
 ha−1   h−1   year−1), K  is a soil erodibility factor (t h 
 MJ−1  mm−1), LS is a combined dimensionless topographic 
factor of slope length L (-) and steepness S (-), C is a cover 
and management factor (-), and P is a support practice fac-
tor (-).

The following sections briefly describe the factors and 
hypotheses made in this study to yield a possibly objective 
sediment load calculation.

2.2.1  Rainfall‑runoff erosivity factor R

The rainfall-runoff erosivity factor ( R factor) estimates the 
erosive forces of precipitation and the resulting surface run-
off. The R factor accounts for the combined effect of dura-
tion, strength, and intensity of every precipitation event. The 
rainfall erosivity of an event is the product of its kinetic 
energy and its maximum 30-min intensity (Brown and Foster 

(1)A = R ⋅ K ⋅ C ⋅ LS ⋅ P

Fig. 1  Location of the study 
area. a) European context, 
b) national context, and c) 
the catchment of the Banja 
reservoir with indication of 
the Kokel monitoring station, 
the Devoll river network, the 
subcatchment of the monitoring 
station, and the Banja Reservoir 
in the Northwest (datasource: 
EU-DEM v1.1)
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1987; Renard 1997). The original approach introduces the 
annual R factor as the sum of the rainfall erosivities during 
a defined period divided by the number of years. However, 
high temporal resolution (< 0.5 h) precipitation data are 
not available in many regions of the world, including the 
Devoll catchment. To overcome high-resolution data short-
age, empirical regression equations have been developed to 
correlate the R factor with any available precipitation data 
resolution, such as daily, monthly, or annual totals. Such 
region-specific regression equations calculate the R factor 
with sufficient accuracy and have been successfully applied 
in various case studies (Arnoldus 1980; de Santos and de 
Azevedo 2001; Torri et al. 2006; Diodato and Bellocchi 
2010; Diodato et al. 2013). The so-called rainfall erosivity 
model for complex terrains REMDB (Diodato and Bellocchi 
2007) is one of the most recent developments for calculating 
the R factor and is used in this study for the Devoll catch-
ment. The choice was made because the REMDB is the most 
suitable regarding the available data (temporal and spatial 
resolution) and it was developed to estimate the monthly ero-
sivity factor ( Rm ) in the geographically closely located Italy, 
which shares similar topographic (range of elevations) and 
hydro-climatic conditions with Albania (Beck et al. 2018). 
In addition to the monthly precipitation pm (mm  month−1), 
the approach considers the elevation, latitude, and seasonal 
characteristics of precipitation (Diodato and Bellocchi 
2007):

where f (m) is a monthly sinusoidal function and f (E, L) is a 
parabolic function expressing the influence of site elevation 
E and the latitude L.

The erosive forces of runoff from snowmelt are typically 
not included in the R factor (Renard 1997), though their 
importance was recognized in the RUSLE’s predecessor’s R 
factor by estimating the snowmelt erosivity based on precipi-
tation totals in winter months (Wischmeier and Smith 1978; 
McCool et al. 1982; Schwertmann et al. 1987; Banasik et al. 
2021). Expanding on the insights from the past, this study 
tests a novel method to account for snowfall and snowmelt in 
the R factor. This method accounts for non-erosive snowfall 
and snowmelt that becomes erosive weeks to months after 
the precipitation event. The method calculates a monthly 
total R factor Rm,total (MJ mm  ha−1  h−1  month−1) as the sum 
of the monthly Rm,rain factor resulting from the erosive forces 
of rainfall and monthly Rm,snowmelt factor resulting from the 
erosive forces of snowmelt.

where Rm,snowmelt = 2
MJ

ha⋅h
⋅ SWEsnowmelt and SWEsnowmelt 

denote the snow water equivalent of the melted snow (mm 
 month−1). The amount of melted snow is derived from 

(2)Rm = 0.207 ⋅

[
pm ⋅ (f (m) + f (E, L))

]1.561

(3)Rm,total = Rm,rain + Rm,snowmelt

satellite-based snow cover detection and the analysis of 
temperature and precipitation data.

This study tests a novel method for calculating the snow-
cover-dependent monthly R factor to improve the accuracy 
of predicted monthly sediment yield in mountainous Medi-
terranean regions.

2.2.2  Soil erodibility factor K

The soil erodibility factor ( K factor) describes the suscep-
tibility of soils to be mobilized by the impact of precipita-
tion and surface runoff. In this study, the most used and 
cited equation to calculate soil erodibility from Wischmeier 
and Smith (1978) was applied. The equation calculates the 
soil erodibility as a function of organic matter content, soil 
structure, soil permeability, and soil texture (Wischmeier 
and Smith 1978). In addition, the erodibility of soils reduces 
in the presence of cobbles, which can be accounted for by 
a correction factor (Panagos et al. 2014). This study uses 
the correction for the K factor and derives soil parameters 
from the free soil information of the European Soil Database 
(Hiederer 2013) and the Harmonized World Soil Database 
(Fischer et al. 2008). The here-presented approach is suitable 
for data-sparse regions but does not account for seasonal 
changes and therefore, it should only be used when local 
data is not available. Further details are provided in the sup-
plementary information SI 1.

2.2.3  Land cover and management factor C

The land cover and management factor ( C factor) describes 
the ratio of long-term soil loss from vegetated areas and 
the soil loss from bare grounds (fallow land) with a defined 
gradient and length (Renard 1997). The C factor is a function 
of land cover and takes values between 0 and 1, where 1 cor-
responds to a reference condition of an area of clean-tilled 
fallow land. C factor values can be derived from land cover 
classes (Jain and Kothyari 2000; Märker et al. 2008; Vente 
et al. 2009; Borrelli et al. 2014) or satellite imagery (de 
Asis and Omasa 2007; Schönbrodt et al. 2010; Teng et al. 
2016). This study combines both approaches by first defining 
a plausible range for the C factor for every land cover class 
and second, by calculating seasonal C factors for winter and 
summer months based on satellite imagery and using the 
normalized difference vegetation index (NDVI), as proposed 
by Gianinetto et al. (2019).

For non-arable land, this study calculates the C factor as a 
function of 20 different land cover classes (Copernicus Land 
Monitoring Service 2018), which stem from a summary of 
the most cited European studies (Panagos et al. 2015a). The 
land cover classes are derived from the satellite imagery-
based CORINE Land Cover database (Copernicus Land 
Monitoring Service 2018). For arable land, we calculate the 
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C factor range as a function of cultivated crop types and till-
age practices. Thus, the arable-land C factor is the weighted 
average of crop types and their share of a region unit, mul-
tiplied by a tillage factor (Panagos et al. 2015a). Satellite 
imagery serves to calculate seasonal C factors that account 
for seasonal dynamics of vegetated land cover classes (e.g., 
forests, grasslands, or croplands). The C factors of the land 
cover classes that are not influenced by seasonality (e.g., 
urban fabric) remain constant. Since satellite imagery and 
satellite-based land cover products are globally available, 
this approach is applicable worldwide. The implemented C 
factors and calculation details can be found in the supple-
mentary information SI 2.

2.2.4  Slope length and steepness LS

The dimensionless factors slope length ( L factor) and slope 
steepness ( S factor) are typically combined into the LS fac-
tor that accounts for topographic landscape characteristics. 
The slope length L is defined as “the distance from the point 
of origin of the overland flow to the point where each slope 
gradient decreases enough for the beginning of deposition 
or when the flow comes to concentrate in a defined channel” 
(Wischmeier and Smith 1978). To account for flow accu-
mulation from complex topographies, the slope length is 
substituted by the upslope drainage area per unit of contour 
length (Desmet and Govers 1996). The slope steepness S can 
be calculated with empirical equations as a function of the 
slope angle � (Wischmeier and Smith 1978; McCool et al. 
1987; Liu et al. 1994; Nearing 1997).

This study builds upon the latest development for calcu-
lating LS with a multi-flow direction algorithm as a function 
of slope, aspect, and downhill flow direction using the LS-
Tool (Zhang et al. 2017). The herein-used approach consid-
ers both flow convergence based on the contributing surface 
and slope cutoff conditions according to Griffin et al. (1988).

2.2.5  Support practice factor P

The support practice factor ( P factor) accounts for artificial 
soil stabilization measures (e.g., contouring, strip-cropping, 
or terrace farming) that reduce the erosion potential by 
altering surface runoff paths, patterns, and hydraulic forces 
(Wischmeier and Smith 1965; Renard et al. 1991; Panagos 
et al. 2015b).

In many studies, the P factor predominantly expresses the 
influence of contouring on soil erosion also for larger areas. 
Contouring (i.e., contour farming) is the practice of planting 
and tilling along contours that are perpendicular to the flow 
direction of the runoff. This practice decreases the runoff 
velocity and leaves more time for infiltration (Stevens et al. 
2009). The effectiveness of this method depends on the slope 

and is applied exclusively to agricultural land (Haan et al. 
1994; Morgan and Nearing 2010). Also, in this study, satel-
lite imagery indicates that in the region of interest, farmers 
are contouring the landscape to reduce soil erosion. Thus, 
the P factor values are calculated as a function of the slope 
and the land cover class (SI Table 3).

2.3  SEdiment Delivery Distributed (SEDD) model

The RUSLE only assesses the spatial distribution of the 
gross soil loss Ai , and this is why an additional sediment 
routing is needed to estimate the sediment yield Yb of a 
catchment. The sediment yield Yb is defined as the sediment 
mass per unit time or sediment load that passes a defined 
boundary, such as the outlet of a (sub-)catchment (here, the 
Kokel monitoring station) or a hillslope (ASCE 1982; White 
2006). In addition, the ratio between the sediment yield Yb 
(t) and the gross soil erosion of the catchment Ab (t) rep-
resents the catchment’s sediment delivery ratio SDRb (-). 
Without this additional equation, the soil loss Ai calculated 
with the RUSLE cannot be applied to compute suspended 
sediment loads (e.g., for comparison with measured data). 
Hence, this study uses the Sediment Delivery Distributed 
(SEDD) model for calculating the net sediment delivery on 
a catchment scale, where the catchment’s sediment yield Yb 
is the sum of the sediment yield Yi(t) of morphological units 
(i.e., grid pixels) (Ferro and Porto 2000):

where SDRi (-) is the pixel-wise sediment delivery ratio, Ai 
(t  ha−1) is the soil loss resulting from the RUSLE, SUi (ha) 
denotes the area of a pixel i , and nu is the total number of 
pixels where every pixel is considered a morphological unit 
that has length, steepness, and aspect attributes. The pixel-
specific parameter SDRi can be calculated as follows (Ferro 
and Minacapilli 1995):

where ti is the travel time along the flow path to the clos-
est river channel and � is a catchment-specific parameter 
that depends on the time scale. Thus, the SDRi represents 
“a measurement of the probability that the eroded particles 
from the entire upland area arrive into the nearest stream 
reach” (Ferro and Minacapilli 1995). Moreover, the travel 
time ti is the sum of pixel-specific travel times along hydrau-
lic pathways crossing np pixels (Jain and Kothyari 2000):

(4)Yb = SDRb ⋅ Ab =

nu
∑

i=1

Yi =

nu
∑

i=1

SDRi ⋅ Ai ⋅ SUi

(5)SDRi = exp
(

−� ⋅ ti
)

(6)ti =

Np
�

i=1

li

vi
=

Np
�

i=1

li
√

si ⋅ di
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where li (m) is the length of a pixel i along the flow path 
and vi is the pixel-specific flow velocity (m  s−1) that can 
be calculated by multiplying the square root of the slope si 
of a pixel and the surface roughness coefficient di , which 
is a function of land cover classes (Haan et al. 1994). A 
minimum pixel slope of si,min = 0.3 % is required to ensure 
sediment routing.

This study implements the SEDD model to calculate 
monthly suspended sediment loads in the Devoll catchment 
with an algorithmic model chain. A model calibration is 
performed that involves the modification of the catchment-
specific � parameter to fit the output of the SEDD model to 
measure suspended sediment data monitored at the Kokel 
monitoring station (Ferro and Porto 2000; Porto and Walling 
2015).

2.4  Data

2.4.1  Available ground truth

To evaluate the soil loss and the resulting sediment yield 
from the catchment, the Kokel monitoring station (Fig. 1) 
continuously recorded discharge and suspended sediment 
concentrations between May 2016 and April 2018, when 
the water depth exceeded 1 m (387 of 730 days). Measure-
ments were performed with two side-mounted H-ADCPs 
(horizontal-acoustic Doppler current profilers) and the mean 
and maximum concentrations (averaged over 1 h) in the 
observation period were 1 g  L−1 and 11.6 g  L−1, respectively 
(Aleixo et al. 2020). Figure 2 plots the measured sediment 
concentrations against the discharge where no strong cor-
relation is visible. For small discharge values, a large scat-
tering can be seen, whereas for higher discharges, almost 
uniform suspended sediment concentrations were recorded. 
One reason for the large scatter in Fig. 2 can be the hyster-
esis effects of single events that cannot be reproduced in the 
absence of a time dimension (Aleixo et al. 2020). The high-
est discharges (above 150  m3·s−1) occurred during one single 
event in March 2018. In addition, the low concentration of 
suspended load might be attributed to snowmelt runoff sub-
jected to pronounced dilution effects (Lana-Renault et al. 
2011). Thus, commonly used sediment rating curves, such 
as a power-law function (e.g., Asselman 2000; Vercruysse 
et al. 2017), are not suitable for sediment load prediction.

2.4.2  Data sparsity and interpolation methods

Soil erosion and sediment transport processes are functions 
of complex parameter sets that result from hydro-climatic 
conditions, topography, land cover types, soil types, and 
erosion control practices. Such complex datasets are rarely 
available without gaps, and therefore, this study tests to what 
extent incomplete datasets can be filled with interpolation 

methods using free climate reanalysis datasets and satellite 
imagery.

The Kokel monitoring station provides suspended sedi-
ment load measurements during high and average flows only. 
Furthermore, single values are missing within the observed 
period due to a low signal-to-noise ratio (Aleixo et al. 2020). 
However, the model chain in this study requires seamless 
sediment load data for calibration. Hence, interpolation meth-
ods are applied for filling in temporal measurement gaps, 
and missing single values are linearly interpolated. Concen-
trations at water levels less than 1 m (below the measuring 
threshold) cannot be objectively calculated and used for cali-
bration because higher sediment concentrations may occur 
even during low-flow periods, after single rainfall events.

Climate reanalysis datasets are an alternative to in situ 
measurements (ground truth) of precipitation or temperature 
(among other parameters). A climate reanalysis uses observa-
tions and weather forecasting models to produce a globally 
complete and consistent dataset of the past weather and cli-
mate. In this process, observations from satellites and ground-
based radars are used along with in situ measurements, for 
example, from weather stations, aircraft, ships, or buoys 
(Hersbach et al. 2020). To estimate precipitation patterns, 
this study employs the ERA5 reanalysis dataset that provides 
atmospheric, land, and hydro-climatic data with a spatial reso-
lution of 30–31 km and an hourly time resolution since 1950 
(Hersbach et al. 2020). In addition, temperature reanalysis 
datasets serve for the differentiation of rainfall and snow-
fall. However, the original calculation of the rainfall-runoff 

Fig. 2  Discharge versus suspended sediment concentration at the 
Kokel monitoring station, recorded for the time period from March 
2016 to May 2018
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erosivity ( R ) factor builds on 30-min data (Brown and Foster 
1987) and cannot be derived from reanalysis datasets. Thus, 
we correlate reanalysis precipitation data through an empiri-
cal regression with the R factor by applying Eq. (2) (Mouris 
et al. 2021d).

Satellite imagery involves spectral bands and enables the 
classification of land cover or vegetation on a catchment scale 
(e.g., Teng et al. 2016; Borrelli et al. 2017a; Gianinetto et al. 
2019). For instance, the CORINE Land Cover for Europe 
(Copernicus Land Monitoring Service 2018), the Dynamic 
Land Cover Dataset for Australia (Thackway et al. 2013), or 
the worldwide Global Land Cover Characterization (Earth 
Resources Observation and Science Center 2017) provide 
classification data. Such satellite imagery also enables track-
ing seasonal and other time-dependent changes in land use 
or vegetation and generates digital elevation models (Mulder 
et al. 2011). Furthermore, snow-covered areas can be detected 
on satellite imagery where the spectral band ratio called Nor-
malized Difference Snow Index (NDSI) enables to differenti-
ate between cloud and snow cover, even though snow can-
not be detected below clouds (Gafurov and Bárdossy 2009). 
The NDSI assumes that snow absorbs light in the ShortWave 
InfraRed region ( SWIR , e.g., band 11 of Sentinel 2 satellite 
imagery) and reflects light in the visible wavelength region 
(e.g., the green band 3 of Sentinel 2 satellite imagery) whereas 
most cloud types reflect both infrared and visible wavelengths. 
Pixels with an NDSI larger than a threshold value (typically 
0.4, published values range from 0.18 to 0.7) are considered a 
snow and the NDSI is calculated as follows (Riggs et al. 1994; 
Härer et al. 2018):

This study involves testing for an optimum NDSI thresh-
old to detect snow cover. Snow cover thickness in the form 

(7)NDSI =
(Green − SWIR)

(Green + SWIR)

of snow water equivalent is calculated by summing up the 
pixel-specific snowfall based on reanalysis temperature and 
precipitation data.

2.4.3  Summary of available data

The input data used in this study involve data from the Kokel 
monitoring station, data from public and free databases, and 
satellite imagery. Table 1 lists all data types, their sources, 
and their purpose in this study.

2.5  Model chain for calculating sediment loads

Figure 3 shows a flowchart of the model chain used in this 
study where satellite imagery, precipitation, soil data, top-
ographic data, and land cover information are mandatory 
input data (white boxes), while temperature data is only 
needed when applying the modified R factor from this study 
(gray box), which enables the detection of snowfall and 
snowmelt. In the case that observed suspended load meas-
urements are available, those can be used for calibration 
by defining them as an optional argument in the workflow. 
The model chain starts with input rasters to calculate the 
spatial distribution of soil loss, suspended sediment load, 
and, optionally, bedload at monthly resolution using the 
RUSLE, the SEDD model, and interpolation methods to fill 
in data gaps. The following sections explain the workflow 
modules in detail.

2.5.1  Pre‑processing

The fully automated core of the model chain (dashed box in 
Fig. 3) requires the alignment of input data in the form of 
pre-processing, which, in contrast, cannot be meaningfully 
automated because of varying data formats.

Table 1  Input data used for the model chain to compute soil loss and suspended sediment load

Input data Source Data type Purpose in this study

Topography (digital elevation 
model)

EU-DEM v1.1 Georeferenced raster LS factor, P factor, R factor, SDR

Precipitation and temperature Post-processed ERA5 Reanalysis 
dataset

Georeferenced raster files R factor

Soil data ESDB v2.0 and HWSD v1.21 Database/georeferenced shapefiles K factor
Land cover CORINE Land Cover 2018 Georeferenced raster C factor, P factor, SDR
Satellite imagery Sentinel 2 – Copernicus Open 

Access Hub
Georeferenced raster for each 

satellite band
Snow cover detection (R factor), 

seasonal variability of vegetation 
( C factor)

Suspended sediment load ADCP measurements (Aleixo 
et al. 2020)

Text files Calibration at the Kokel monitoring 
station

Data on agricultural practice Albanian Institute of Statistics Database Share of a crop in the arable land 
( C factor)
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A digital elevation model (see Table 1) with sufficient 
spatial resolution (i.e., maximum pixel size of 50  m) 
describes the catchment topography and serves to identify 
the river network (SI 4). The Python algorithms (Mouris 
et al. 2021a) calculate the travel time from every raster pixel 
to the nearest channel reach by summing up pixel-specific 
travel times along the flow path (Eq. (6)). The pixel values 
for the C , LS , P , and K factors are assigned to the corre-
sponding rasters as described in the section on the RUSLE. 
Every pixel represents a raster pixel and its size remains con-
stant in the entire model chain, which is defined and achieved 
in the pre-processing along with coherent coordinate refer-
ence systems and no data values. The spatial interpolation of 
data pixels (e.g., to ensure equal raster resolutions) uses the 
nearest neighbor method for discrete (categorical) data, such 
as land cover classes or soil types. Inverse distance weight-
ing with a combination of elevation-dependent regression 
and distance-based interpolation is applied for continuous 
data, such as precipitation or temperature.

2.5.2  Combination of RUSLE, SEDD, snowfall, 
and snowmelt recognition

The calculation of the sediment load at the outlet of a (sub-)
catchment (here, the Kokel monitoring station) is fully 

implemented in a ready-to-use Python code (Mouris et al. 
2021b) that performs the tasks in the dashed box in Fig. 3. 
The sediment delivery ratio and the RUSLE factors K , LS , 
C , and P represent constant input parameters in the form 
of rasters. The R factor is calculated at monthly resolution 
and represents a variable input parameter that makes the 
workflow using either the standard REMDB (Eq. (2)) or the 
modified approach that additionally considers snowfall and 
snowmelt (Eq. (3)). The snowfall and snowmelt options 
require additional climate reanalysis and satellite imagery, 
respectively, and the R factor is calculated as illustrated in 
Fig. 4 (Mouris et al. 2021c). In particular, the algorithm 
uses precipitation and temperature rasters with an hourly or 
daily (here daily) resolution to calculate the spatial distribu-
tions of monthly rainfall intensity and snow water equivalent 
(SWEmonth) of snow cover. For this purpose, a temperature 
threshold of 0 °C is used in this study to define when pre-
cipitation falls as snow.

To detect the size of snow-covered areas at the end 
of every month, the snow detection algorithm uses three 
spectral bands of Sentinel-2 imagery, notably blue (band 
2), green (band 3), and the Short-Wave InfraRed band 11 
( SWIR ). The green and the SWIR bands are used to calculate 
the NDSI (Eq. (7)) to detect snow for every raster pixel, 
which takes a value of 1 when snow is present and 0 without 

Fig. 3  Flowchart of the model chain for calculating soil loss and sediment loads. Input data in the upper part of the flowchart require user inter-
action while the tasks within the dashed box are fully automated in Python algorithms (Mouris et al. 2021b)
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snow (binary value). In addition, a threshold value for the 
blue band is implemented to avoid false snow detection from 
water pixels (mainly turbid lakes and rivers). Subsequently, 
the snow cover rasters are multiplied by the SWE of the 
snow cover where unmelted snow did not have an erosive 
effect in the considered month. The SWE raster accumulates 
newly fallen snow. Snow-covered pixels that are no longer 
covered at the end of the considered month generate ero-
sive snowmelt. Thus, the algorithm has a seasonal memory, 
which should not be applied for a single-month analysis 
only. Ultimately, the algorithm implemented in the Python 
code processes precipitation and optionally temperature ras-
ter files to calculate the resulting monthly R factor for every 
raster pixel. It outputs soil loss and sediment yield rasters 
with monthly resolution along with a table of monthly aver-
ages of soil loss, sediment yield, and suspended sediment 
load at the outlet of the catchment. In addition, the monthly 
bedload fraction can be optionally computed and written to 
the output table using an empirical equation that estimates 
bedload transport from suspended transport rates (Turowski 
et al. 2010). A comparison of the approaches without snow 
recognition (“no snow,” where precipitation is considered 
erosive rain), with snow recognition only (“snowfall,” where 
snowfall is considered non-erosive), and with combined 
snowfall-snowmelt (“snowfall + snowmelt,” where snow-
fall is considered non-erosive, but snowmelt is considered 
erosive) consideration enables to quantify the importance 
and necessity of snow-related processes for sediment load 

prediction in this study. Thus, we test for the relevance of 
the consideration of snowfall and snowmelt in mountainous 
Mediterranean regions at a monthly resolution.

2.5.3  Calibration

The RUSLE parameters are calibrated in this study with 
respect to the effect of snowmelt in the R factor only, which 
is a core novelty in this study. All other parameters stem 
from the databases listed in Table 1. The calibration of sat-
ellite imagery band (NDSI and blue) thresholds for snow 
detection relies on expert assessment of true-color satel-
lite imagery and overlays of snow cover delineation from 
the code and elevation contour lines. All pixels with values 
above the blue band threshold are considered snow-covered 
if also the NDSI is above the threshold value. In the calibra-
tion processes, the NDSI threshold is changed in 0.1-steps 
(i.e., increased and decreased by 0.1) starting from an ini-
tial threshold value of 0.4, which corresponds to the litera-
ture recommendation (Riggs et al. 1994). If the algorithm 
wrongly recognizes clouds or other pixels as snow, the NDSI 
threshold is increased by 0.1 and decreased if snow-covered 
pixels are not recognized. The additional blue band threshold 
is set to the highest blue band values of water pixels to avoid 
false snow detection, especially in turbid river stretches.

To obtain objective suspended sediment loads on a 
monthly resolution, the catchment-specific � parameter 
in the SEDD model is calibrated to measured suspended 

Fig. 4  Simplified flowchart of 
the modified R factor calcula-
tion, also accounting for snow-
fall and snowmelt
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sediment loads at the Kokel monitoring station for the 
observation period between May 2016 and April 2018. 
The calibration of the model chain varies the catchment-
specific � parameter by coupling the soil erosion and 
sediment transport model with the parameter estima-
tion software PEST (Doherty 2001). In this process, the 
weighted squares of the residuals between monthly com-
puted and observed suspended sediment loads are mini-
mized by using a Gauss-Levenberg–Marquardt algorithm 
in the model chain (Levenberg 1944; Marquardt 1963; 
Shoarinezhad et al. 2020). The � parameter requires re-
calibration for every model combination. Hence, the � 
parameter is calibrated in this study for the model chain 
without snow recognition, with snow recognition, and 
with combined snow recognition and additional snowmelt 
using the entire 10 months of observations embracing 
two wet seasons with inherently different hydro-climatic 
pattern. For comparison, we split the 10-month period 
additionally into two separate 5-month periods for cali-
bration and validation, respectively. A complementary 
leave-one-out cross-validation is carried out to evaluate 
the model performance of the three different approaches 
to attempt an assessment of the consequences of limited 
data availability from two wet seasons only.

2.6  Synthesis of hypothesis testing

Testing the hypotheses starts with the calibration of the 
model chain (Fig. 3) to the catchment-specific � parame-
ter for all scenarios (“no snow” without the recognition of 
snow, “snowfall” with snow recognition only, and “snow-
fall + snowmelt” with combined snowfall and snowmelt). 
When snowmelt recognition is activated in the model chain, 

an additional calibration of threshold values for snow cover 
detection on the satellite imagery is required with respect to 
the R factor (Fig. 4). After the calibration, the model chain 
runs the three snow scenarios to verify and refine hypotheses 
related to the superordinate research question of generating 
viable monthly suspended sediment loads from mountainous 
Mediterranean catchments with sparse data availability. In 
particular, the model chain results serve to verify the follow-
ing hypotheses: (1) data interpolation with climate reanaly-
sis and satellite imagery enables viable suspended sediment 
load predictions in data-sparse regions, (2) the accuracy 
of a model chain that relies on satellite and reanalysis data 
improves with the consideration of snowfall in the R factor, 
and (3) the accuracy of the model chain that relies on satel-
lite and reanalysis data improves with the consideration of 
snowmelt in the R factor.

3  Results

Figure 5 shows the average monthly precipitation totals 
(post-processed reanalysis data) in the catchment, the 
observed monthly suspended sediment loads, and the 
computed monthly suspended sediment loads at the Kokel 
monitoring station for all three scenarios. The distribu-
tion of the observed monthly suspended sediment loads is 
heterogeneous and varies significantly with the monthly 
precipitation. Even though months without continuous 
data (water level < 1 m) were excluded and not used for 
calibration, the monthly observed loads cover a wide range 
from 25,800 t  month−1 in June 2016 to 497,859 t  month−1 
in March 2018, whereas the average is 154,615 t  month−1. 
In addition, Fig. 6 compares the observed and computed 

Fig. 5  Average monthly precipi-
tation totals in the catchment, 
the observed monthly sus-
pended sediment loads, and the 
computed monthly suspended 
sediment loads at the Kokel 
monitoring station for all three 
scenarios
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monthly suspended sediment loads in the entire observa-
tion period (10 months) for all three scenarios, whereas 
the dashed line describes the hypothetic perfect model 
accuracy. A calibration with the split observation data 
(i.e., 5 months) yields similar predicted suspended loads 
that are 2% lower in average. The detailed results with the 
5-months calibration are provided with the supplementary 
information (SI 5). The results of the leave-one-out cross-
validation are presented in the SI 6. The following subsec-
tions describe the results and figures in detail and illustrate 
the differences between the scenarios. In the following, 
we will use the 10-month calibration procedure to avoid 
parameter overfitting regarding one particular season only.

3.1  Sediment load prediction without snowfall 
recognition

3.1.1  Calibration of the β parameter

Figure 7 plots the model accuracy in the form of Nash–Sut-
cliffe efficiency (NSE) as a function of the catchment-spe-
cific � parameter at monthly resolution. The figure shows 
that the most accurate result (NSE= 0.78) is yielded with 
a catchment-specific � parameter (Eq. (5)) of 0.85 where 
the monthly catchment’s sediment delivery ratios SDRb 
(Eq. (4)) range between 25 and 39%.

3.1.2  Sediment load prediction

Figure 5 shows the computed monthly suspended sediment 
loads without snow recognition (“no snow”) in gray. The 
distribution of monthly computed suspended sediment loads 
is heterogeneous and varies to a large extent with monthly 
precipitation. The average computed monthly sediment 
load amounts to 71,900 t  month−1, and the sum of Febru-
ary and March 2018 represents 48% (823,000 t) of the total 
computed suspended sediment load in the 2-year observa-
tion period. Furthermore, because of the seasonal variabil-
ity involved in the C factor and R factor for Mediterranean 
regions, the same amount of precipitation results in differ-
ent suspended sediment loads depending on the month. For 
instance, precipitation in December is less erosive than pre-
cipitation in February and March and smaller sediment loads 
tend to be underestimated, whereas the absolute deviations 
are the largest in the 3 months with the highest loads (12/17, 
02/18 and 03/18). The model predicts similar loads for Feb-
ruary and March 2018, but the measurements indicate a dif-
ference of more than 200,000 t. Ultimately, Fig. 5 suggests 
that the model qualitatively reproduces observed sediment 
loads well, where the mean absolute error between computed 
and measured monthly loads is 51,190 t  month−1.

Figure 6 compares observed and computed monthly sus-
pended sediment loads in the calibration period and indi-
cates a larger deviation with increasing sediment loads. 
For instance, when the model predicts 4.1 ×  105 t  month−1, 
the measurements vary between 2.9 ×  105 t  month−1 and 
5.0 ×  105 t  month−1, which stems from the aforementioned 

Fig. 6  Scatter plot of the observed and computed monthly sediment 
loads during the calibration period. The dashed line represents the 
hypothetic perfect model accuracy

Fig. 7  Plot of Nash–Sutcliffe efficiency (NSE) against � parameter for 
the sediment load prediction without snow recognition
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seasonal effects. The overall model accuracy corresponds 
to a Pearson’s correlation coefficient r of 0.92 and the 
Nash–Sutcliffe efficiency (NSE) is 0.78.

3.2  Sediment load prediction with snowfall 
recognition

3.2.1  Calibration of the β parameter

Since snowfall is not erosive, the � parameter requires a 
new calibration at a monthly resolution, which follows the 
approach underlying Fig. 7. The re-calibration results in 
an optimum catchment-specific � parameter of 0.58 for the 
model chain when snow recognition is implemented.

3.2.2  Sediment load prediction

Figure 5 shows the computed suspended load in the obser-
vation period using the modified R factor considering the 
non-erosivity of snowfall in red (“snowfall”). The most 
significant difference compared to the simulations without 
snow recognition (“no snow”) is that the suspended sedi-
ment load is 36,300 t smaller in February 2018 and 55,000 
t larger in March 2018. As a result, the significant errors in 
February 2018 (44%) and March 2018 (18%) reduce to 31% 
and 7%, respectively. The influence of snowfall recognition 
is less significant in the other months of the observation 
period, but the sediment load also decreases in other months 
with significant snowfall (January 2017 and February 2018). 
Moreover, the smaller � parameter causes the monthly catch-
ments sediment delivery ratios SDRb (Eq. (4)) to increase 
by an average of 9%, resulting in an increase in suspended 
sediment load during months without any snow influence. 
By considering snowfall, the overall mean absolute error 
reduces from 51,190 t  month−1 to 35,090 t  month−1.

Figure 6 compares observed and computed monthly sus-
pended sediment loads in the calibration period with the 

recognition of snowfall (“snowfall”), based on temperature 
reanalysis datasets. Compared to the simulations without 
snow recognition (“no snow”), the deviations are signifi-
cantly lower. The improvements can mainly be attributed 
to the distinction between snow and rain in February 2018 
and March 2018. The Pearson’s correlation coefficient r 
increases to 0.96 and the Nash–Sutcliffe efficiency (NSE) 
increases to 0.89.

3.3  Sediment load prediction with snowfall 
and snowmelt recognition

3.3.1  Calibration of the R factor and NDSI threshold

Figure 8 shows an exemplary true-color satellite image 
(March 2018) that served for the expert assessment to 
identify the snow cover when calculating the R factor in 
the model chain (Fig. 4). The detected snow-covered areas 
are highlighted in green. The above-introduced expert 
verification (see chapter 2.5.3) of the snow cover algo-
rithm with an overlay of elevation contour lines yields best 
results with an NDSI threshold of 0.4 in combination with 
a threshold of 1800 (top of atmosphere reflectance) for the 
blue band of Sentinel-2 satellite imagery.

3.3.2  Calibration of the β parameter

Since snowmelt is erosive (unlike snowfall), the � param-
eter again requires a new calibration at a monthly resolu-
tion, which follows the approach underlying Fig. 7. The 
re-calibration results in an optimum catchment-specific � 
parameter of 0.63 for the model chain when snow recogni-
tion and snowmelt are implemented.

Fig. 8  True-color satellite 
image from March 2018 a) 
without and b) with detected 
snow cover in light green and c) 
topography with detected snow 
cover
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3.3.3  Sediment load prediction

Figure 5 shows the computed suspended load in the observa-
tion period using the modified R factor for consideration of 
snowfall and snowmelt (“snowfall + snowmelt”). The most 
significant difference compared to the simulations without 
snow recognition (“no snow”) is that the suspended sedi-
ment load is 44,100 t smaller in February 2018 and 72,000 
t larger in March 2018 compared to the model without any 
snow recognition. As a result, the significant errors in Febru-
ary 2018 (44%) and March 2018 (18%) reduce to 29% and 
3%, respectively, and compared with the model without any 
snow recognition. Compared to the case of snowfall con-
sideration only (“snowfall”), the errors decrease by an addi-
tional 2% in February and 4% in March 2018. In April 2018, 
the error decreases by a further 6% because of significant 
snowmelt. The general trend indicates that the suspended 
sediment load decreases in the months with high snowfall 
(2017–01, 2018–02) and increases in the months with sig-
nificant snowmelt (2017–02, 2018–03, and 2018–04). The � 
parameter causes the monthly catchment’s sediment delivery 
ratios SDRb (Eq. (4)) to increase by an average of 7% com-
pared to the approach without snow recognition. This results 
in an increase in suspended sediment load during months 
without snow. By considering snow-related effects, the over-
all mean absolute error reduces from 51,190 t  month−1 to 
32,860 t  month−1.

Figure 6 compares observed and computed monthly sus-
pended sediment loads in the calibration period with the 
combined consideration of snowfall and snowmelt. The 
accuracy further increases compared to the simulations 
without snow recognition (“no snow”) and with snowfall 
recognition only (“snowfall”). The improvements can mainly 
be attributed to the time-shifted erosion in the spring sea-
sons 2017 and 2018. Erosion attenuates in January 2017 and 
February 2018 because of the above-introduced snowfall and 
amplifies in the spring months February 2017, March 2018, 
and April 2018 because of additional runoff from snowmelt. 
The combined consideration of snowfall and snowmelt 

ultimately yields slightly higher accuracy compared to the 
snowfall-only case with a Pearson’s correlation coefficient r 
of 0.97 and a Nash–Sutcliffe efficiency ( NSE ) of 0.90.

4  Discussion

4.1  Snow cover detection

The satellite imagery indicates that most of the precipita-
tion in February 2018 fell in the form of snow, which was 
confirmed by an additional analysis of the temperature data. 
Figure 9 shows the percentage of snow coverage of the 
catchment area over the entire observation period with two 
peaks at the beginning of February 2017 and the beginning 
of March 2018. The significantly lower snow covers in the 
following months make that the model chain predicts higher 
erosion in February 2017 and the spring months of March 
2018 and April 2018. In particular, the superpositioning of 
daily precipitation and temperature data results in 40% of 
the February 2018 precipitation as snowfall, leading to an 
average snow water equivalent of 60 mm across the catch-
ment. In contrast, only 7% of the March 2018 precipitation 
was snowfall. Furthermore, the analysis of satellite imagery 
reveals that snow cover in the catchment reduced from over 
80% to less than 20% from the beginning of March 2018 to 
the beginning of April 2018, indicating snowmelt processes. 
In February and March 2018, the largest deviation of the 
RUSLE approach without considering snow effects (e.g., 
44% overestimation in February 2018, see Fig. 5) can be 
observed. The resulting erosion patterns are significantly 
different, in particular with regard to peak events. To ensure 
reliable results, any long-term analysis (e.g., of climate 
change scenarios) should not neglect snow-related effects. 
Although only a few months (December to March) of the 
hydrological year might be affected by snow and snowmelt 
in mountainous Mediterranean regions, this study shows that 
their consideration is essential.

Fig. 9  Percentage of snow cover 
of the catchment area between 
05/2016 and 04/2018 using the 
satellite-imagery-based snow 
detection algorithm
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4.2  Improvement of the RUSLE

The original approach for calculating the R factor (Brown 
and Foster 1987; Renard 1997) in the RUSLE requires pre-
cipitation data with at least a 30-min resolution at every 
grid pixel. However, such data are not available in many 
regions of the world and the spatio-temporal resolution of 
reanalysis and climate forecast data underestimate the inten-
sity of locally heavy rainfall events because of scale effects 
resulting from coarse spatial resolution (Chen and Knutson 
2008). Without adjusting the R factor, every precipitation 
event (rain and snow) is considered to be erosive. Hence, 
the predicted suspended sediment transport is significantly 
overestimated in February 2018 since snowfall is not taken 
into account. The 74% higher suspended sediment load in 
March 2018 (compared to February 2018) cannot be mod-
eled without considering snow in the R factor, because the 
precipitation (rain and snow) in March was 10% lower than 
in February 2018. This known limitation of the RUSLE has 
already been identified in previous studies (Alewell et al. 
2019). This study indicates that the results improve signifi-
cantly when a temperature threshold is set to consider snow-
fall in the R factor where the NSE increased by 14% to 0.89.

Thus, the results confirm the existing recommendations to 
set a temperature threshold for snow detection (Meusburger 
et al. 2012; Schmidt et al. 2016) by comparing modeled and 
observed suspended sediment loads. The RUSLE also does 
not consider snowmelt (Yin et al. 2017; Alewell et al. 2019) 
and this study shows that implementing snowmelt in the 
RUSLE’s R factor results in a further accuracy improvement 

(NSE increases to 0.90). In regions where snow plays a more 
important role or where the time shift between snowfall and 
snowmelt is larger, an even greater influence of the novel 
approach can be expected.

4.3  Sediment delivery ratio

This study shows that the average sediment delivery ratio 
SDR

b of the catchment is higher than indicated in the lit-
erature (Boyce 1975; Walling 1983). However, the RUSLE 
does not reproduce all types of erosion. Thus, an underes-
timation of erosion because of gully erosion, fluvial ero-
sion, or mass movement is a possible explanation. Since the 
model is calibrated to measured suspended sediment load 
and not to soil loss in the catchment area, the erosion may be 
underestimated. To compensate for the underestimated ero-
sion, the SDRb increases. For example, Borrelli et al. (2014) 
found that rill and interrill erosion, which are included in the 
RUSLE, are not the dominant processes contributing to the 
sediment yield of a Mediterranean mountainous catchment 
in Italy. As a result, the RUSLE significantly underestimates 
the observed sediment yield.

To verify the consistency of soil erosion and sediment 
transport, the soil loss and sediment yield can be mapped to 
identify sediment source areas where absolute soil erosion 
rates should be considered rather the best available hypoth-
eses than exact predictions (Borrelli et al. 2021). Figure 10 
shows the annual soil loss and the annual specific sediment 
yield per hectare for the catchment area of the Kokel moni-
toring station for the observation period from May 2016 to 

Fig. 10  Annual soil loss (left) 
and annual specific sediment 
yield (right) in the catchment 
area of the Kokel monitor-
ing station for the observation 
period from May 2016 to April 
2018
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April 2018. In particular, the pixels with high slopes near 
the river network have both high soil erosion and high SDRi 
s, which leads to a high sediment yield. Because these areas 
are close to the outlet of the catchment, a larger catchment 
area does not necessarily result in a reduction of the catch-
ment’s SDRb . For instance, the mean annual soil loss in 
Italy is the highest in Europe (8.46 t  ha−1) and stems from a 
combination of high rainfall erosivity and steep topography 
(Panagos et al. 2015c). In comparison, the average annual 
soil loss in the Kokel catchment was 12.8 t  ha−1  year−1 in 
the observation period, whereas the highest values occurred 
at pixels with a steep slope and sparsely vegetated or agri-
cultural areas. Remote areas with steep slopes close to the 
Korca plain (i.e., with a larger distance to the channel net-
work) only have little effect on the catchment’s sediment 
yield, even though the pixels show high local erosion rates 
(Fig. 10).

4.4  SEDD

The SEDD model does not account for erosion and deposi-
tion processes in the river network. The simplified assump-
tion of an unlimited river transport capacity (i.e., all supplied 
suspended sediments in the river network are transported 
to the outlet of the catchment) is only valid for long-term 
observations. Thus, daily or event-based dynamics can 
solely be modeled in small catchments with an ephemeral 
channel network (Ferro and Porto 2000; Burguet et al. 2017). 
In addition, mass wasting and fluvial erosion are not con-
sidered in the presented approach, which opens the door 
for future research to better encompass the boundary condi-
tions for numerical models of rivers and reservoirs with the 
required complexity.

The SEDD model may be replaced with alternative models 
when sub-monthly data and analysis are the focus of a study. 
These can be runoff-driven Modified Universal Soil Loss 
Equation (MUSLE) approaches, such as the Soil & Water 
Assessment Tool (SWAT) (Arnold et al. 2012; Prabhanjan 
et al. 2015), physics-based models, such as the Water Ero-
sion Prediction Project (WEPP) model (Flanagan and Nearing 
1995), or the improved Morgan approach (Tan et al. 2018). 
However, physics-based models require a larger amount of data 
than empirical models, which is rarely available at large tem-
poral and spatial scales (Nearing 2013). For example, WEPP 
requires more than 100 parameters for the full application of 
a hillslope model (Brazier 2013). MUSLE-based approaches 
use storm-based runoff volumes and peak flows to simulate 
erosion and sediment yield. Whereas these approaches rely 
on calibrated hydrological models, the RUSLE only requires 
precipitation data to calculate erosive energy. Still, even with 
good data availability, SWAT does not always result in a reli-
able prediction of sediment load due to the high degree of 

complexity involved where, in particular, the high temporal 
resolution (daily data) is challenging (Prabhanjan et al. 2015).

4.5  Merits and challenges of free data

This study uses climate reanalysis and satellite data to cal-
culate the R and C factors, which requires the availability of 
appropriate datasets for the region. This is the case almost 
everywhere in the world, by virtue of global reanalysis data-
sets and the availability of satellite imagery. Thus, climate 
reanalysis data enable the implementation of regression 
equations for determining the monthly and the annual rain-
fall-runoff erosivity factor R in the RUSLE for all climatic 
regions (Naipal et al. 2015; Benavidez et al. 2018). However, 
the quality or the suitability of available regression equa-
tions can significantly influence the quality of the results. 
For instance, the uncertainty of the R factor is considerable 
when the selected regression equation does not correctly 
reflect physics-driven trends in the data.

Even without snow recognition, the high NSE (0.78) 
demonstrates that the presented workflow is a viable method 
to calculate monthly suspended sediment loads by using 
free and accessible data when no precipitation data in high 
spatio-temporal resolution are available. The computed sus-
pended sediment loads mainly depend on total precipitation, 
seasonal dynamics of vegetated land cover, and seasonal ero-
sivity characteristics of rainfall, which is in line with theoret-
ical expectations (Perks et al. 2015; Vercruysse et al. 2017). 
For instance, Ranzi et al. (2012) also simulated monthly 
sediment loads in the Lo watershed in Vietnam and obtained 
a lower NSE of 0.45 using directly measured precipitation.

4.6  Limitations of the model chain

The uneven distribution of the measurement data in this 
study additionally involves uncertainty concerning trans-
port processes at low flow conditions. For instance, meas-
urements in the dry summer months are scarce because the 
water depth rarely exceeded the measurement criterion of at 
least 1 m. Hence, the influence of intense but short rainfall 
events in the summer (e.g., thunderstorms) cannot be ana-
lyzed in this study. However, most erosion in Mediterranean 
catchments occurs during the wet season and the influence 
of low-flow periods is almost negligible (Rovira and Batalla 
2006). More observations of snowfall may aid to confirm the 
validity of the modified approach of this study. For instance, 
Eq. (3) used to calculate Rm,snowmelt requires additional data 
for accurate calibration and transferability to other studies.

The here-presented method accumulates snow over 
months and assumes that the snow cover thickness cor-
responds to the accumulated monthly snowfall since the 
last time that a pixel was not snow-covered. Snowmelt is 
only detected when a formerly snow-covered pixel is not 
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covered anymore in the month under consideration. Thus, 
snowmelt corresponds to the total accumulated amount of 
snow that has fallen before, but partial snowmelt (i.e., vari-
ation in snow cover thickness) cannot be detected. Although 
this approach yields good results in this study, it cannot be 
applied to regions permanently covered with snow where 
snow-driven runoff predominantly is a function of snow 
cover thickness variation. For permanently snow-covered 
regions, temperature-dependent snowmelt models (e.g., 
Hock 2003) are more suitable than the here shown approach.

4.7  Validity of hypotheses

The hypotheses made in this study can be partially verified 
and show that the presented model chain, based on free data-
sets, represents a viable approach.

The presented methods rely on empiric formulae that 
wrap complex processes into a simplified workflow. In a 
perfectly documented world, precise deterministic models 
would yield better results, but in the absence of omnipresent 
precise data, model uncertainty in simple empirical models 
is not larger than in deterministic models (Brazier 2013). 
Thus, the here-presented approach is a reasonable tradeoff 
between applicability and reliability of monthly sediment 
load predictions, where readily available climate reanalysis 
datasets serve as input data. Hence, the gridded climate rea-
nalysis data can be considered suitable input data and may 
also be used to simulate historical scenarios and for long-
term predictions of sediment load.

The expert-based refinement of threshold values for the 
NDSI and the blue band of Sentinel-2 satellite imagery 
contributes to a substantial increase in the overall accuracy 
of the model chain. In addition, the plot of monthly snow 
cover (Fig. 9) indicates that the used band thresholds provide 
reasonable estimates. Hence, it can be concluded that the 
proposed strategy for deriving snow cover by using thresh-
olds for the NDSI and the blue band of Sentinel-2 satellite 
imagery represents a viable and reusable approach. Thus, 
the hypothesis that data interpolation with climate reanalysis 
and satellite imagery enables viable sediment load predic-
tions in data-sparse regions is accepted.

Adding snowfall as a function of interpolated tempera-
ture yields an increase in Pearson’s r between modeled and 
observed sediment loads at the Kokel monitoring station 
from 0.92 to 0.96 and the Nash–Sutcliffe efficiency (NSE) 
increases from 0.78 to 0.89. The increase in the accuracy 
of the model chain considering snowfall is most prominent 
comparing computed monthly suspended sediment loads 
with and without snowfall recognition (Fig. 5). The addi-
tional consideration of snowmelt results in a further increase 
in Pearson’s r and NSE to 0.97 and 0.90, respectively. Fig-
ure 5 confirms that the trend of statistics corresponds to 
observations. Thus, the novel model chain represents a major 

improvement for mountainous Mediterranean catchments 
with sparse measurement data, which is also confirmed by 
the 5-month split model calibration and validation (SI 5) 
and leave-one-out cross-validation (SI 6). Ultimately, the 
improved overall model accuracy and the strong capacities 
of the model chain to account for snowfall and snowmelt 
make this novel approach that combines the RUSLE and 
the SEDD model, a viable method in mountainous Medi-
terranean regions. Thus, we accept the hypotheses that the 
accuracy of the model chain improves with the consideration 
of snowfall and snowmelt in the R factor.

4.8  Bedload

Beyond total sediment load, estimates of bedload are cru-
cial for hydro-morphodynamic studies in fluvial systems. 
Yet, bedload is often ignored (Milliman and Syvitski 1991; 
Wright et al. 2010) or estimated as an overly simplified con-
stant fraction of suspended load (Galy and France-Lanord 
2001; Grams et al. 2013). This approach is not recommended 
because bedload can be a significant fraction of the total 
load and can vary relatively to suspended load because of 
changing suspension conditions (Ashley et al. 2020). Since 
none of the existing models for calculating the bedload frac-
tion has been accepted yet as universally valid, an empirical 
equation is used to estimate bedload transport rates from 
suspended transport rates (Turowski et al. 2010). The algo-
rithm in this study enables guesstimating bedload. However, 
this feature is not presented here because the validity of the 
bedload estimates cannot be evaluated in the absence of bed-
load measurement data. A more accurate estimate requires 
the consideration of hydro-morphodynamic processes in the 
river network and measurement data.

5  Conclusions

The good agreement between predicted and observed sus-
pended sediment loads demonstrates that the combination 
of the RUSLE and the SEDD model is a viable approach 
to objectively estimate monthly sediment loads in data-
scarce regions. The here-presented novel approach involves 
a model chain that requires one gauging station for calibra-
tion and most of the input data are interpolated from freely 
available satellite imagery and climate reanalysis data. To 
this end, Sentinel-2 satellite imagery and climate reanalysis 
precipitation data are relevant data sources.

Especially in mountainous Mediterranean regions, the 
implemented snowfall and snowmelt processes significantly 
increase the model accuracy, which can be clearly attributed 
to an improved reproduction of physical processes, enabling 
objective predictions with monthly resolution. The snow-
related processes are incorporated in the rainfall-runoff 
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erosivity ( R ) factor of the RUSLE where temperature data 
informs about snowfall and satellite imagery enables the 
detection of snow cover and snowmelt.

Ultimately, the presented seasonal snow memory methods 
represent a major improvement in the prediction of soil ero-
sion and sediment transport in mountainous Mediterranean 
catchments with limited measurement data availability. As 
a result, information on suspended sediment load is avail-
able at a resolution that enables the prediction of hydro-
morphological processes in rivers, lakes, and reservoirs. 
The approach may also be used in the future to investigate 
climate change scenarios. For this purpose, the historical 
climate reanalysis data are to be replaced by predicted data 
from climate projections.

Supplementary information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11368- 022- 03192-1.
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Abstract
Modeling reservoir sedimentation is particularly challenging due to the simultaneous simulation of shallow shores, tribu-
tary deltas, and deep waters. The shallow upstream parts of reservoirs, where deltaic avulsion and erosion processes occur, 
compete with the validity of modeling assumptions used to simulate the deposition of fine sediments in deep waters. We 
investigate how complex numerical models can be calibrated to accurately predict reservoir sedimentation in the presence 
of competing model simplifications and identify the importance of calibration parameters for prioritization in measurement 
campaigns. This study applies Bayesian calibration, a supervised learning technique using surrogate-assisted Bayesian 
inversion with a Gaussian Process Emulator to calibrate a two-dimensional (2d) hydro-morphodynamic model for simulat-
ing sedimentation processes in a reservoir in Albania. Four calibration parameters were fitted to obtain the statistically best 
possible simulation of bed level changes between 2016 and 2019 through two differently constraining data scenarios. One 
scenario included measurements from the entire upstream half of the reservoir. Another scenario only included measure-
ments in the geospatially valid range of the numerical model. Model accuracy parameters, Bayesian model evidence, and the 
variability of the four calibration parameters indicate that Bayesian calibration only converges toward physically meaningful 
parameter combinations when the calibration nodes are in the valid range of the numerical model. The Bayesian approach 
also allowed for a comparison of multiple parameters and found that the dry bulk density of the deposited sediments is the 
most important factor for calibration.

Keywords Bayesian calibration · Bayesian inference · Metamodel · Bayesian active learning · Calibration parameter 
importance · Reservoir sedimentation

Introduction

Artificial reservoirs are crucial infrastructure for providing 
drinking water, water for irrigation, flood protection, rec-
reation, and hydroelectric power (Zarfl et al. 2015; Schleiss 
et al. 2016; Kim et al. 2020). However, reservoirs interrupt 
the longitudinal continuity of fluvial systems (Hinderer et al. 
2013; Sun et al. 2021). For instance, low flow velocities lead 
to sediment deposition in reservoirs. The deposited sediment 

is missing in downstream reaches and reduces the active 
storage capacity of reservoirs (Kondolf 1997). To minimize 
sediment deposition and ensure sustainable reservoir opera-
tion, it is essential to quantify and accurately predict sedi-
mentation processes. State-of-the-art tools for predicting res-
ervoir sedimentation are two (2d) or three (3d) dimensional 
numerical models coupling hydrodynamics and sediment 
transport (Haun et al. 2013; Hanmaiahgari et al. 2018; Olsen 
and Hillebrand 2018; Khorrami and Banihashemi 2021).

Advances in numerical methods and computing power 
have led to remarkable improvements in the accuracy and 
speed of numerical models. Every numerical model requires 
calibration, which is a subjective and time-consuming 
process. Calibration is particularly important because the 
equations used in numerical models are based on simpli-
fied assumptions that are partly empirical. To calibrate a 
model, uncertain calibration parameters are adjusted within 
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a physically reasonable range to achieve a good agreement 
between modeled and measured data with appropriate toler-
ance (Simons et al. 2000; Oberkampf et al. 2004; Paul and 
Negahban-Azar 2018). A common approach to calibrating 
numerical models is the iterative trial-and-error adaption of 
calibration parameters. However, this method is time-con-
suming, labor-intensive, and subjectively biased because it 
does not account for uncertainty in measured data, modeling 
errors, nor equifinality (Schmelter and Stevens 2013; Mue-
hleisen and Bergerson 2016; Beckers et al. 2020). While 
Bayesian inference, a type of stochastic calibration, can 
address some limitations, it requires many iterations and is 
therefore not practical for use with computationally inten-
sive models (e.g., hydro-morphodynamic models to simulate 
reservoir sedimentation). Mohammadi et al. (2018), Beckers 
et al. (2020), and Scheurer et al. (2021) overcame this chal-
lenge using metamodels (also known as surrogate models, 
response surface, reduced model, etc.) to replicate the full 
complexity of a deterministic numerical model. These stud-
ies employed metamodel updating to reduce the total num-
ber of evaluations of the original model required to train the 
metamodel.

Modeling reservoir sedimentation requires specific 
simplifying assumptions regarding hydrodynamics and 
morphodynamics. In comparison to the simulation of riv-
ers, fluctuating water levels and outflow conditions due 
to reservoir operation, and the simultaneous simulation 
of very shallow shores and tributary deltas along with 
deep waters are particularly challenging in reservoir mod-
eling. For instance, wetting and drying of mesh nodes at 
the shoreline of a reservoir require model simplifications 
(e.g., the definition of a minimum water depth for a cell). 
In addition, channel erosion and deltaic avulsion might 
occur at the head of the reservoir. These erosion and avul-
sion processes and their exact location are hard to predict 
and result from stochastic environmental forcing (Hajek 
and Wolinsky 2012; Chadwick et al. 2019). Furthermore, 
these processes are still an open research topic (e.g., Lan-
gendoen et al. 2016) and difficult to simulate accurately, 
much less with the same model simplifications as the 
deposition of fine sediments in deeper waters. As a result 
of global model assumptions, some regions of a reservoir 
model may not be accurately represented by the numerical 
model. This is because the model is generally calibrated 
to accurately represent either fine sediment deposition in 
deep waters or delta progression and erosion processes 
at the head of the reservoir, but not both. This is why we 
are investigating in this study how complex numerical 
models for reservoir sedimentation can be calibrated in 
light of competing model simplifications. To this end, we 
test the hypothesis (i) that Bayesian calibration only con-
verges toward physically meaningful calibration param-
eter combinations when the model is well-conditioned 

(i.e., measured data are in the validity domain of model 
assumptions). The verification of this hypothesis aims to 
enrich the scientific baseline for modeling complex hydro-
morphodynamic processes in reservoirs, which inherently 
require modeling regions that may be physically invalid. 
To test this hypothesis, we adapt a Bayesian calibration 
technique that uses surrogate-assisted Bayesian inver-
sion with a metamodel in the form of a Gaussian Process 
Emulator (GPE) according to Oladyshkin et al. (2020). 
The metamodel and its updating build on Bayesian active 
learning (BAL), which we further improve through the 
cumulative consideration of measurement and metamodel 
errors. To test hypothesis (i), we introduce two spatially 
distinct measurement data scenarios for calibrating a 2d 
hydro-morphodynamic reservoir sedimentation model of 
the large Banja reservoir in Albania.

Bayesian calibration typically starts with the defini-
tion of calibration parameters and the corresponding 
physically meaningful parameter ranges (e.g., Kim and 
Park 2016; Beckers et al. 2020). Based on initial model 
tests, we selected the four most sensitive parameters in 
the form of dry-bulk density of deposited sediments �b , 
critical shear stress for erosion �cr , critical shear stress for 
deposition �d , and a diameter multiplier � that defines the 
grain size distribution. The large number of four calibra-
tion parameters presents a challenge for any calibration 
process and results in a four-dimensional parameter space 
with millions of combination options, leading to problems 
regarding maximum floating-point precision. Hence, we 
implemented optimization strategies for Bayesian calibra-
tion intending to bypass precision errors (arithmetic under-
flow) caused by the multidimensional space of possible 
calibration parameter combinations. Furthermore, these 
parameters carry a high degree of uncertainty that must be 
thoroughly considered during modeling (Schmelter et al. 
2015; Villaret et al. 2016). The grain size distribution, 
the two critical bed shear stresses for cohesive sediments, 
and the dry-bulk density can only be determined with 
great effort by field sampling. Therefore, it is important 
to identify and prioritize the most important parameters 
when planning field data collection. This insight enables 
the development of optimized measurement concepts, to 
reduce costs and workload. Hence, we investigate whether 
our modified Bayesian calibration enables the identifica-
tion of driving calibration parameters for modeling reser-
voir sedimentation even in a four-dimensional parameter 
space. By examining the importance of four potentially 
important parameters driving reservoir sedimentation, we 
test the hypothesis (ii) that at least one of the four calibra-
tion parameters plays a dominant role in the fluvial depo-
sition of suspended load in reservoirs. Therefore, we aim 
to identify the most important calibration parameter that 
should be addressed in sampling campaigns at reservoirs.
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Materials and methods

Study area

The Banja Reservoir

In this study, we numerically simulated hydro-morpho-
dynamic processes in the Banja Reservoir at the Devoll 
River in central Albania. With a length of 196 km, the 
Devoll River is the third longest river in Albania and has 
its source in the Gramos Mountains near the Greek bor-
der. The river flows northwestward and is dammed after 
approximately 160 km, forming the Banja reservoir (see 
Fig. 1). The reservoir was commissioned in 2016 and has 
a length of 14 km, a maximum water depth of 60 m close 
to the dam, and a surface area of approximately 14 km², 
leading to a storage capacity of approximately 400 mil-
lion m³. It is mainly fed by the Devoll River (89%, MQ ≈ 
33 m³  s-1), Holta River (9%), and two smaller tributaries 
(Zalli and Skebices River, 1% each). The catchment of the 
reservoir is characterized by dry and hot summers and wet 
winters, resulting in low summer, high winter, and high 
spring flows. Since snowfall is frequent in winter at high 
elevations, the flow regime is driven by precipitation and 

snowmelt. The sediment yield of the Banja catchment is 
particularly high due to high rainfall erosivity on steep 
terrains composed of loose soils (Walling and Webb 1996; 
Borrelli et al. 2020; Mouris et al. 2022).

Measurement data

The initial bathymetry was interpolated onto a numerical 
mesh from a photogrammetry-based digital elevation model 
(DEM) from 2016, before filling the reservoir. In addition, 
the reservoir bathymetry was measured in 2019 with an 
acoustic Doppler current profiler (ADCP) boat providing 
approximately 632 ×  103 bed level measurements.

The grain size distribution of the suspended sediment was 
determined based on suspended sediment measurements at 
the Devoll River upstream of the reservoir (Ardiclioglu et al. 
2011) and reservoir bed samples. The per-sample median 
diameters of the deposited sediment ranged from 5.7 to 
37.4 μm with a mean of 10.5 μm, emphasizing the cohe-
sive nature of the deposits. Upstream of the reservoir, the 
extracted granulometric curve had cohesive characteristics, 
with 98% of the volume having grain diameters smaller than 
60 μm. Neither cobble, gravel, nor coarse sand was present 
in the study area. Consequently, bedload was not considered 

Fig. 1  Location of the study area; a European context, b national context, and c the bathymetry of the Banja reservoir with indication of the cali-
bration nodes, major tributaries and turbine intake. The red calibration nodes are excluded in the VALDOME data scenario
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in the numerical model. The available measurement data for 
this study are summarized in Table 1.

Numerical full‑complexity model

General setup

In this study, we used Telemac-2D (Hervouet 2007) with 
its sediment transport and bed evolution module GAIA 
(Audouin et al. 2020) to simulate reservoir sedimentation 
processes. Telemac-2D abstracts river landscapes with 
unstructured grids. The here-used unstructured, triangular 
numerical mesh consisted of 24,241 elements and 12,600 
nodes, resulting in element sizes of approximately 40 m. We 
defined two roughness coefficients to differentiate between 
the original river course (before filling) and the newly wetted 
areas. Due to the low flow velocities, the influence of bound-
ary roughness on reservoir hydrodynamics was small and 
we applied Manning coefficients of 0.032 s  m-1/3 (original 
cobble-gravel-bed river) and 0.06 s  m-1/3 elsewhere (many 
trees and brushes were not removed before the impoundment 
of the reservoir).

Telemac-2D approximates the shallow water equations 
with a combined explicit-implicit solver to calculate the 
flow field. The hydrodynamic module passes the calculated 
hydrodynamic variables (water depth, depth-averaged flow 
velocity) and bed shear stress to the GAIA module. We set 
the numerical model parameters with the premise of maxi-
mizing computational and numeric stability while keeping 
computing time short. Therefore, we applied a finite element 
numerical scheme and treated tidal flats (or dry-wet ele-
ments) according to software recommendations to use only 
positive water depths (Hervouet et al. 2011). Furthermore, 
the method of characteristic solves the advective part of the 
hydrodynamic equations and improves stability (a result 
of preliminary model tests). The mixing length turbulence 
model serves to calculate the turbulent viscosity coefficient, 

which is similar to the k-ɛ model when the transverse shear 
stress is the main turbulence generator, as in the case of a 
reservoir, but requires 20% less computing time (Dorfmann 
and Zenz 2016).

To calculate the depth-averaged concentration C(x, y, t) 
of tracers (i.e., fine particles) in (g  L-1), the 2d advection-
diffusion-equation is solved.

where h is the water depth (m), u (m  s-1) and v (m  s-1) 
are the depth-averaged components of flow velocity, ε is 
the turbulent diffusivity of the sediment (m²  s-1), and E and 
D are the erosion and deposition fluxes (kg  m-2  s1), respec-
tively. We applied the default treatment of the diffusion term 
in Eq. (1) to increase numerical stability. In addition, we 
chose the “Edge-based N-Scheme” to solve the advective 
term because it provides mass conservative results and treats 
tidal flats. The erosion and deposition fluxes for cohesive 
sediment are calculated as follows:

where M is the Krone-Partheniades erosion constant (kg 
 m-2  s-1), �b is the bed shear stress (N  m-2), �ce is the critical 
shear stress for erosion (N  m-2), �d is the critical shear stress 
for deposition (N  m-2), and �s is the settling velocity (m 
 s-1). The settling velocity is a function of the mean sedi-
ment diameter, the ratio of the sediment and water densities, 
and the kinematic viscosity of the water. The measurement 
data (see above) had shown that the deposits predominantly 
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Table 1  Used input data for the Bayesian calibration of the Banja reservoir

Data set name Survey method Data type Purpose in this study

Digital elevation model (2016) Aerial survey Georeferenced raster Initial bathymetry
Measured bed levels (2019) Bathymetric survey Georeferenced shapefiles Target (calibration) bathymetry
Water levels and outflow Direct measurement Text files Liquid boundary conditions (numerical 

model)
Inflow discharge Calculated based on water level and 

outflow
Text files Liquid boundary conditions (numerical 

model)
Grain size distribution Sediment samples (Ardiclioglu et al. 

2011) and field survey in 2021
Text files Used to define the range for the three 

grain size fractions
Suspended sediment concentration Soil erosion and sediment transport 

model calibrated upstream of the 
reservoir (Mouris et al. 2022)

Text files Boundary conditions for numerical 
model

Sediment samples (reservoir bed) Measurement campaign Text files Verification of model assumptions
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consisted of cohesive sediment, and therefore, only sus-
pended transport was considered in this study.

After determining the erosion and deposition fluxes and 
calculating the net transport flux per element, GAIA updates 
the bed level using the Exner equation (Paola and Voller 
2005). For a detailed description of the free surface flow and 
sediment modeling algorithms used, the reader is referred 
to Hervouet (2007, 2020) and Audouin and Tassi (2020). 
The steering file for the Telemac-2D simulations is available 
at Acuna Espinoza et al. (2022).

The focus of the numerical model was on the time-effi-
cient simulation of suspended sediment transport in a large 
reservoir to ease repetitive calibration runs. Therefore, bed-
load was not considered and a coarse mesh resolution was 
used. Due to these simplifying assumptions, but also because 
of the general limitation of numerical models, it is not pos-
sible to accurately predict channel avulsion and erosion 
through previously deposited cohesive sediments (Hajek and 
Wolinsky 2012; Liang et al. 2015). Furthermore, channel 
bank failure depends on the sediment type, moisture content, 
and seepage processes (Luppi et al. 2009; Rinaldi and Nardi 
2013; Olsen and Haun 2020). Therefore, bank failure cannot 
be simulated with a numerical setup for reservoir sedimenta-
tion due to fine particle deposition. Since bank failure pro-
cesses only occur at the head of the reservoir, the bed level 
changes in this domain cannot be predicted in a physically 
correct and stable manner. Still, the above-introduced model 
setup is valid in deep-water model domains outside of the 
shallow deposition delta of the Devoll River.

Boundary conditions

For the simulation of reservoir sedimentation over three 
years, between the two surveys from August 2016 and 
August 2019, we defined the reservoir inflow Qin (m³  s-1) 
as a function of measured water levels and measured out-
flow Qout (m³  s-1) based on a routing equation. More detailed 
information can be found in SI 1.

Since the suspended sediment concentrations at the 
tributaries were not known for the simulation period, we 
implemented a previously developed indirect calculation 
method (Mouris et al. 2022). The indirect method builds 
on a calibrated soil erosion and sediment transport model 
with a monthly resolution (tons  month-1) to calculate the 
suspended sediment yield (SSY) of the catchment of the 
Banja reservoir. We divided the SSY from Mouris et al. 
(2022) at the Devoll River by the monthly inflow volume to 
prescribe suspended sediment concentrations (SSC) at the 
liquid model boundaries. Thus, SSC was constant for every 
month but varied from month to month. The mean SSC at 
the Devoll River for the calibration period was 1.36 kg  m-3 
with a maximum of 4.0 kg  m-3 in September 2017.

Calibration parameters

This study optimized four calibration parameters in the form 
of dry-bulk density of deposited sediments �b , critical shear 
stress for erosion �cr , critical shear stress for deposition �d , 
and a diameter multiplier � for settling velocities. The cali-
bration parameter values were to be adapted to yield a possi-
bly best simulation of the measured bed level changes �zmeas
between 2016 and 2019.

The dry-bulk density �b and consolidation processes of 
mud-sand mixtures strongly depend on the sand content (van 
Rijn and Barth 2019). Because more than 98% of the depos-
ited sediment in the Banja reservoir is cohesive, we defined 
�b based on reported literature values for very low (< 10%) 
sand content. We considered the dry-bulk density a quasi-
random variable with equally likely values (i.e., uniformly 
distributed) between 200 kg  m-3 and 500 kg  m-3 (van Rijn 
and Barth 2019; van Rijn 2020).

The critical shear stresses for erosion �cr and deposition �d 
control the exchange rate between suspended and deposited 
sediment. To define quasi-random, uniformly distributed 
value ranges for �cr and �d , we referred to field and labora-
tory tests with sediment mixtures with similar characteristics 
(grain size distribution, bulk density) as in the Banja reser-
voir. To this end, we tested value ranges for �cr between 0.05 
and 0.4 Pa (Kornman and Deckere 1998; Widdows et al. 
1998; Houwing 1999; Lumborg 2005; Shi et al. 2012; van 
Rijn 2020), and for �d between 0.01 and 0.1 Pa (Krone 1962; 
Lumborg 2005; Shi et al. 2012).

The deposition pattern in the reservoir also depends on the 
particle size that drives the settling velocity �s (see Eq. (2)). 
We applied the granulometric curves of suspended sediment 
upstream of the reservoir, which were subjected to consider-
able variability (i.e., uncertainty) in the model domain. Fig-
ure 2 plots the granulometric curve defined by three diameters 
representing the lower, middle, and upper third of the total vol-
ume. To account for uncertainty, we multiplied every diameter 
by a factor � that takes uniformly distributed values between 

Fig. 2  Granulometric curve with the minimum and maximum grain 
sizes defined by the �-multiplier
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0.8 and 1.7. Thus, the upper limit of grain sizes was 41 μm, 
which was larger than 95% of the sediment sample volume. 
The lower limit of 1.8 μm (2.3 μm ∙ 0.8) was based on prelimi-
nary model runs, in which we tested the smallest possible sedi-
ment particles that remain in suspension and have an almost 
negligible influence on the deposition volume. Table 2 shows 
the resulting value ranges for the four calibration parameters 
considered in this study.

Bayesian calibration

Bayesian inference

To calibrate a numerical model using Bayesian inference, we 
inferred the posterior distribution p

(
�|zmeas

)
 of the model 

calibration parameters (and hence the corresponding model 
responses) based on the measured bed levels zmeas and defined 
initial ranges for the calibration parameters. The posterior dis-
tribution p

(
�|zmeas

)
 is the result of evaluating Bayes’ theorem 

in the context of model updating:

 where p(�) is the prior probability distribution that defines 
the initial probability of the calibration parameters before 
considering new or additional evidence ( zmeas ). p

(
zmeas|�

)
 

is the so-called likelihood function and indicates how well 
the metamodel reproduces the measured data zmeas given a 
parameter combination � . p

(
�|zmeas

)
 is the posterior prob-

ability distribution (i.e., the updated probability of the cali-
bration parameters � given measured data zmeas ), which is 
expected to be narrower than p(�) (Box and Tiao 1992; Ola-
dyshkin and Nowak 2019). p

(
zmeas

)
 is a normalization factor, 

often referred to as Bayesian model evidence (BME), and is 
important when different posterior distributions are being 
compared with each other or several competing models are 
being evaluated (Mohammadi et al. 2018). Assuming that 
the deviations between the measured bed levels zmeas and 
the modeled bed levels zmod are normally distributed and 
independent, the likelihood function p

(
zmeas|�

)
 is calculated 

proportionally to the sum of squared errors �2
i
 between meas-

ured and simulated bed levels zmeas − zmod weighted by the 
total error ei , where i indicates the calibration node.

(4)p
(
�|zmeas

)
=

p
(
zmeas|�

)
∙ p(�)

p
(
zmeas

)

This study provides additional novelty by improving BAL 
because of how we implement the measurement error emeas 
and the metamodel error emeta . In particular, we calculated 
the total errors ei for each calibration node i as the sums of 
emeas,i and emeta,i according to the following descriptions.

The measurement errors emeas resulted from the interpola-
tion of the bed level measurements at the calibration nodes 
of the numerical mesh and uncertainties of field measure-
ments. We used an interpolation radius of 3 m around the 
calibration nodes to average the bed level. Thus, the number 
of measurements per calibration node varied from 1 to 35 
(8 on average). The variable amount of measurements avail-
able for averaging affected the confidence in the averaged 
values because, for instance, 15 measurements are more 
representative than two. The mean measurement error emeas 
was approximately 0.4 m (measurement precision according 
to operator) where possible sources of errors were a high 
concentration of suspended sediment near the bottom, uncer-
tainties in the water level of the reservoir, and the move-
ment of the ADCP boat due to waves. Thus, to calculate 
the measurement errors emeas,i at every node, we introduce 
Eq. (6) where si is the number of observation points within 
the 3-m radius:

where an adaptederror of 1.02 m was computed itera-
tively to ensure that the average value of emeas for the total 
number of calibration nodes was 0.4 m. Thus, for example, 
emeas,i for a calibration node where the bed level was calcu-
lated based on 26 survey points is 0.24 m, while two survey 
points resulted in an emeas,i of 0.6 m.

In addition, we accounted for a metamodel error emeta in 
the likelihood function because the metamodel is just an 
approximation of the full-complexity numerical model. We 
calculated e

meta
 through a leave-one-out cross-validation 

(LOO-CV), in which the model is repeatedly fitted on n-1 
calibration nodes. Then, we calculated the LOO-CV error 
for each calibration node and training point. The LOO-CV 
error variance per calibration node was subsequently calcu-
lated and implemented as metamodel error emeta,i . Finally, 
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)

(6)emeas,i =
adapted error

1 + ln
(
si
)

Table 2  Calibration parameters 
and their value ranges for 
uniform distributions U(min, 
max) considered in this study

Calibration parameter Investigated range Prior assumption

Critical shear stresses for erosion �cr (Pa) 0.05 0.4 U(0.05, 0.4)
Critical shear stresses for deposition �d (Pa) 0.01 0.1 U(0.01, 0.1)
Dry-bulk density �b

(
kgm−3

)
200.0 500.0 U(200, 500)

Diameter multiplier � (-) 0.8 ∙ d 1.7 ∙ d U(0.8, 1.7)
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the total error ei included in the likelihood function is com-
posed of the calibration node-specific measurement error 
emeas,i (6) and the metamodel error emeta,i:

If the total errors ei (Eq. (7)) were significant, the influ-
ence of the difference between the measured and modeled 
bed level on the likelihood score decreased (Eq. (5)).

Metamodel construction

Equation (4) can be approximated through Monte Carlo sam-
pling, which requires thousands of numerical model evalu-
ations. However, models that simulate hydrodynamic and 
morphodynamic processes may require a long computing 
time, making it computationally impractical to perform thou-
sands of trials. To circumvent unacceptably long comput-
ing time, we employed a surrogate-assisted (referring to the 
metamodel being a surrogate for a full-complexity model, 
Oladyshkin et al. 2020) Bayesian inversion technique, which 
replaces the full-complexity numerical model with a meta-
model. In particular, a metamodel emulates the output trends 
of a complex model but requires orders of magnitude less 
computing time (Beckers et al. 2020; An et al. 2022). Here, 
we used a Gaussian process emulator (GPE) as metamodel, 
which is discussed in more detail by Rasmussen and Wil-
liams (2006). As the GPE requires the definition of a kernel, 
we used a radial basis (i.e., squared exponential covariance) 
function (RBF) kernel in this study. The RBF needs the defi-
nition of length scales and their boundaries. The resulting 
GPE metamodel can then be trained with numerical model 
responses resulting from various combinations of possible 
calibration parameter values. Thus, the GPE metamodel was 
fitted toward a multidimensional response surface where the 
number of dimensions corresponds to the number of calibra-
tion parameters. Note that the metamodel cannot generally 
replace the numerical model and only serves the purpose of 
accelerating model calibration.

Bayesian active learning through metamodel training

In this study, we used the GPE metamodel to approximate 
the prior p(�) through  106 random Monte Carlo samples. 
The quality of the surrogate-assisted Bayesian calibration 
depends on the ability of the metamodel to replicate the 
full-complexity model. The more training points used to 
train the metamodel, the better the predictions, since more 
information is provided to the metamodel with fewer gaps 
in the parameter space (i.e., fewer gaps need to be closed 
through stochastic interpolation). However, filling the 
entire parameter space with training points with a compu-
tationally expensive full-complexity model is practically 

(7)e2
i
= e2

meas,i
+ e2

meta,i

not feasible because it requires several hours to compute 
one training point (sums up to more than 500 years of 
computing time in our case). To bypass long computing 
time, we applied BAL, which identifies optimal regions in 
the parameter space for calibrating parameters as a func-
tion of metamodel responses. BAL iteratively improves the 
metamodel in those regions of the parameter space that are 
most important for Bayesian inference (Oladyshkin and 
Nowak 2019; Oladyshkin et al. 2020).

Before starting the BAL process, a prior probability dis-
tribution p(�) was assigned to every calibration parameter. 
Initially, a uniform probability distribution between two limit 
values was assumed. The next step is to compute an initial 
metamodel, using m parameter realizations and the corre-
sponding full-complexity numerical model runs to train the 
metamodel. BAL starts with iteratively updating the initial 
metamodel with new training points so that the metamodel 
predictions better represent the full-complexity model. For 
this purpose, we sampled q parameter realizations �i that 
compete to be the next training point (exploration).

The parameter realizations constitute the parameter space 
and each combination is evaluated in the metamodel to gen-
erate an output space. Here, we had n outputs, associated 
with the location of our calibration nodes. An advantage 
of Gaussian processes for generating the metamodel is that 
each prediction of the output space consists of a mean �n 
and a standard deviation �n . Therefore, one can explore the 
output space using a multivariate Gaussian distribution. 
Figure 3 shows the BAL workflow and exemplary features 
two random exploration samples (black and gray circles), 
which in our study, are not just two but  105 random explo-
ration samples forming the output space prior. To yield 
the output space posterior distribution, we considered two 
options, notably rejection sampling and Bayesian reweight-
ing. Due to the high dimensionality of the output space (142 
calibration points), the rejection rate for the first case was 
too high, and we chose Bayesian reweighting. For this pur-
pose, we renormalized each value of the prior´s likelihood 
by their total sum to generate the posterior distribution. 
Consequently, all realizations (i.e., Monte Carlo samples) 
of the prior contributed to the posterior statistics (i.e., length 
scales), proportional to their likelihood. Once the prior p(�) 
and posterior p

(
�|zmeas

)
 distributions had been generated, 

we used Eq. (8) to evaluate the so-called relative entropy 
DKL

(
p
(
�|zmeas

)
, p(�)

)
 (also referred to as Kullback–Leibler 

divergence) between both distributions (Kullback and Lei-
bler 1951; Oladyshkin et al. 2020).

where Ep(�|zmeas) is the average of the posterior sample’s 
likelihood (through the likelihood function, cf. 

(8)
DKL

(
p
(
�|zmeas

)
, p(�)

)
= −ln[BME] + Ep(�|zmeas)

(
ln
[
p
(
zmeas|�

)])
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Equation  (5)). In this context, the relative entropy 
expresses the information gain from the prior to the pos-
terior distribution.

To this end, every BAL iteration involves the calculation 
of DKL

(
p
(
�|zmeas

)
, p(�)

)
 for q samples from the parameter 

space. After evaluating DKL

(
p
(
�|zmeas

)
, p(�)

)
 , we calcu-

lated the parameter combination �max(DKL) that produced the 
maximum value of relative entropy to select the stochasti-
cally best-performing values for the calibration parameters 
in this iteration step (exploitation). We used the set of cali-
bration parameters with the highest relative entropy to re-run 
the numerical full-complexity model and prepared the next 
BAL iteration step. In particular, the results of the new full-
complexity model run serve as new training points for the 
GPE at the beginning of the next BAL iteration step. The 
BAL iterations continue until a stop criterion is reached, 
which is typically the convergence of relative entropy and 
BME (Oladyshkin et al. 2020). In this study, we addition-
ally considered the evolution of the root-mean-square error 
(RMSE) after every BAL iteration. The BAL workflow 
(Fig. 3) and creation of the initial metamodel are explained 
in detail in the supplemental material SI 2. The complete 
procedure is implemented in a Python code (Acuna Espinoza 
et al. 2022).

Selection of calibration nodes for model calibration

The numerical model of the Banja reservoir was calibrated 
toward measured bed levels at the end of the three-year sim-
ulation period from 2016 to 2019. However, we could not 
use the totality of the available 632 ×  103 bed level meas-
urements because we needed to meet two criteria. First, the 
measurements needed to comply with the computational 

mesh and we agglomerated multiple measurements into one 
at the calibration nodes of the mesh. Second, the number of 
BAL iterations depends on the number of calibration nodes, 
and a large number of nodes can result in the so-called curse 
of dimensionality (Bellman 1957), which we will discuss 
later in light of the results. For instance, if we used 3500 
measurement points, the multivariate Gaussian density for 
calculating the prior output space would have 3500 dimen-
sions of spatially explicit bed level change.

Therefore, we only used nodes located at a maximum dis-
tance of 1.5 m from a measured point for calibration, and we 
agglomerated all measurements in a 3-m radius at the result-
ing calibration nodes into one bed level value. Further, we 
did not consider measurements in the downstream section 
of the reservoir, as we are only interested in the upstream 
area, where most sediments deposit. These selection filters 
resulted in 142 calibration nodes at which we evaluated mod-
eled bed levels in the calibration process (see also Fig. 1). 
For testing the hypothesis (i) that Bayesian calibration only 
converges toward physically meaningful model parameter 
combinations when the model is well-conditioned, we intro-
duced two scenarios of measurement data available for the 
calibration process. First, we considered all 142 calibration 
nodes that define the MAXME (MAximum MEasurements) 
data scenario (black and red calibration nodes in Fig. 1). 
Second, we removed points in regions where deltaic avulsion 
and channel erosion occurred according to the observation 
from 2016 to 2019 to define a VALDOME (VAlid DOmain 
MEasurements) data scenario, where all calibration nodes 
are in the domain of validity of the numerical model. In 
particular, we removed points adjacent to dry areas (tidal 
flats) and all measurements where the model uncertainty 
from the MAXME data scenario was high, as indicated by 

Fig. 3  Flow diagram explaining 
the Bayesian active learning 
method applied in this study
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LOO-CV error greater than 5.5 m based on an expert assess-
ment. These two removal criteria essentially excluded model 
regions where avulsion and channel erosion occurred at the 
head of the reservoir, which the full-complexity model will 
not be able to simulate correctly. The application of these 
removal criteria left 109 calibration nodes that we used for 
the VALDOME scenario (black calibration nodes in Fig. 1).

Experimental procedure

Bayesian calibration stability

The proposed optimization of the Bayesian calibration 
scheme refers to the extension of the BAL framework, nota-
bly the adaptive implementation of errors in the likelihood 
function through LOO-CV, and its application to four cali-
bration parameters. With these two novel aspects of BAL, 
we investigated the robustness of Bayesian calibration 
regarding the quality of the numerical model and in light 
of equifinality. Therefore, we applied Bayesian calibration 
to the two above-introduced data scenarios (MAXME and 
VALDOME).

To prepare the BAL iterations, we ran the full-complexity 
model with 15 calibration parameter combinations to train 
the initial metamodel. 13 of the parameter combinations 
stemmed from random sampling in the parameter space, and 
the remaining two corresponded to theoretically maximum 
and minimum sedimentation (i.e., high/low �cr , low/high �d , 
low/high �b , high/low � , respectively). A minimum of one 
training point would be sufficient for the initial metamodel, 
but more initial training points for BAL can reduce the total 
time required to achieve convergence. We tracked BME, and 
RMSE to evaluate if the calibration reached convergence 
regarding uncertainty and error (see the above section on 
Bayesian active learning). However, convergence may not be 
achieved if multiple high-probability regions cause exploi-
tation to jump between very different calibration parameter 
combinations in the BAL iterations. In these cases, BAL the-
oretically bounces back and forth eternally between nearly 
equally likely combinations of calibration parameters. This 
phenomenon, known as equifinality, poses a great challenge 
for model calibration (e.g., Franks et al. 1997).

To address equifinality, we analyzed the BAL conver-
gence in the two measurement data scenarios (see above) 
with 55 iterations according to literature recommendations 
(Mohammadi et al. 2018; Beckers et al. 2020; Scheurer et al. 
2021). We verified hypothesis (i) if the VALDOME scenario 
led to more unique and physically meaningful maximum 
likelihood regions than the MAXME data scenario, and 
less significant, later, or no convergence in the MAXME 
data scenario. To this end, we investigated the evolution 
of BME, RMSE, and the variability of the four calibration 
parameters in the last five BAL iteration steps. To assess 

the ability of the metamodel to reproduce the results of the 
full-complexity model, we compared the results predicted by 
the metamodel with those predicted by the numerical model. 
We present the global model accuracy after the Bayesian 
calibration by comparing the calculated and measured bed 
level changes after running the two data scenarios.

Importance of calibration parameters

The Bayesian calibration looks for the best-fit combination 
of the four calibration parameters �cr , �d , �b , and � to inves-
tigate optimization methods for multidimensional calibra-
tion parameter spaces and find the most relevant parameters 
driving reservoir sedimentation in this numerical model. 
The four calibration parameters are known to be relevant 
for hydro-morphodynamic processes in reservoirs (Haun 
et al. 2013; Dutta and Sen 2016; Hillebrand et al. 2016). 
However, to our best knowledge, the four parameters have 
never been directly compared with each other due to the 
limited capacities of subjective trial-and-error calibration. 
The adapted Bayesian framework and the VALDOME sce-
nario enable us to perform such a comparison of the four 
calibration parameters. Thus, we aim to test hypothesis (ii) 
that at least one of the calibration parameters �cr , �d , �b , or � 
plays a governing role in the fluvial deposition of suspended 
sediments in reservoirs. To this end, we made use of a multi-
parameter plot of the posterior distributions (Eq. (5)) of the 
four calibration parameters for both data scenarios. We will 
accept hypothesis (ii) if at least one of the four calibration 
parameters has a considerably narrower posterior distribu-
tion than the other parameters. This parameter will be more 
important than the other calibration parameters because it 
has the smallest uncertainty (i.e., narrowest posterior) of the 
maximum likelihoods.

Results

Convergence speed

In the VALDOME scenario, the BME began converging 
toward a value of approximately  10–31 after the 46th BAL 
iteration, and we ran in total 55 iterations to monitor the con-
vergence trend (see Fig. 4). The BME for the MAXME sce-
nario fluctuated around a value of  10–37 during the 55 BAL 
iterations, and no clear convergence trend was observed. 
In addition, Fig. 4 also shows the evolution of the RMSE 
between the metamodel and full-complexity model results 
for every tested parameter combination used as a training 
point in BAL. The plots reveal that the RMSE is higher for 
the MAXME scenario, and more importantly, there is no 
decreasing trend for this scenario. In contrast, the evolu-
tion of the RMSE for the VALDOME scenario decreased. 
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Figure 5 shows the variability of the four calibration param-
eters in the last five BAL iterations for the VALDOME sce-
nario in black and the MAXME scenario in gray. Comparing 
the two data scenarios shows that the MAXME scenario had 
significantly higher variability and no physical convergence 
for �cr and �d . In contrast, there was hardly any variability of 
�b in both scenarios, whereas the variability in � was slightly 
higher in the VALDOME scenario. The total computing 

time for the BAL iterations per scenario was approximately 
one month (on 12 Cores using AMD Ryzen 9 5950 × 16- 
(32) @ 3.4 GHz processor), which was only possible with 
the coarse mesh resolution.

Posterior distributions and importance 
of calibration parameters

Maximum likelihoods

Table 3 shows the maximum likelihood of posterior distribu-
tions for the calibration parameters, which is the realization 
of the Monte Carlo sample with the highest likelihood and 
comparable to a deterministic best-fit solution. The maxi-
mum likelihood of �cr was 0.39 Pa, close to the upper limit 
considering all calibration nodes (MAXME). In the physi-
cally relevant-only (VALDOME) scenario, �cr was 0.25 Pa. 
The critical shear stress for deposition �d was close to the 
lower limit at 0.02 Pa and 0.01 Pa in the MAXME and VAL-
DOME scenarios, respectively. The maximum likelihood of 

Fig. 4  BME (top) and RMSE evolution including linear trend lines 
(bottom) for the 55 BAL iterations and both data scenarios

Fig. 5  Variability of the four 
calibration parameters for the 
five last BAL iterations 50–55 
and both data scenarios

Table 3  Calibrated parameters for the morphodynamic model of the 
Banja reservoir using BAL

Maximum likelihoods

Calibration Parameter Prior assumption MAXME VALDOME
�cr (Pa) U(0.05, 0.4) 0.39 0.25
�d (Pa) U(0.01, 0.1) 0.02 0.01
�b
(
kgm−3

)
U(200, 500) 416.2 403.6

� (-) U(0.8, 1.7) 0.82 0.98
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�b was close to 410 kg  m-3 in both scenarios. The diameter 
multiplier � was 0.82 in the MAXME scenario and 0.98 in 
the VALDOME scenario. A detailed analysis of the posterior 
parameter space is provided below.

Posterior parameter distributions

The posterior distributions of the calibration parameters 
indicate the uncertainty in the maximum likelihoods listed in 
Table 3. Figure 6 shows the individual posterior histograms 
for each calibration parameter after the MAXME scenario 
at the top (433 posterior samples) and after the VALDOME 
scenario at the bottom (540 posterior samples).

As a standardized measure to identify driving calibra-
tion parameters and evaluate their uncertainty, we calcu-
lated the Kullback–Leibler divergence (Kullback and Leibler 
1951), also known as relative entropy (RE), to measure the 
information gain between the initial (uniform) prior and the 
final posterior probability distribution for every calibration 
parameter. High RE characterizes a narrow distribution, 
which represents high information gain and low uncertainty 
in the maximum likelihoods.

Figure 6 shows that �b and �d have the narrowest posterior 
distribution in both calibration scenarios, which indicates 
that these parameters are the most restrictive and important 
in the calibration process. This finding is also supported by 
the high RE of 1.68 and 2.29 for �b and 2.01 and 1.77 for �d . 
That is, only values close to the maximum likelihood value 
(dashed line) led to accurate results. However, the maximum 
likelihood for �d was close to the lower limit in both data 
scenarios. The histogram for �cr differs significantly between 
the two different scenarios. For the MAXME scenario, the 
distribution peaks close to the upper limit, and the RE was 

1.23 whereas the histogram for the VALDOME scenario 
peaks at 0.25 Pa and gets wider, characterized by a lower RE 
of 0.89. The histogram of the diameter multiplier � peaks in 
both scenarios close to the lower limit of the initial range 
and the RE slightly increased from 1.23 to 1.34 for the VAL-
DOME scenario.

The meaningfulness and qualitative significance of the 
yielded maximum likelihoods can also be interpreted by 
examining data patterns and regions of high and distinguish-
able maximum likelihoods in the parameter space. For this 
purpose, Fig. 7 illustrates the likelihood of all possible cali-
bration parameter combinations of �d , �cr , � , and �b at the 
end of the VALDOME scenario. Similar plots of the results 
for the MAXME scenario can be found in SI Fig. 2. Since a 
four-dimensional parameter space cannot be plotted graphi-
cally, we created six two-dimensional plots of the possible 
combinations. The three plots on the right of Fig. 7 clearly 
show that the likelihoods for �b< 300 kg  m-3 are very small 
and quite small for �b> 450 kg  m-3 (in line with Fig. 6). 
Thus, values of �b significantly lower or higher than the max-
imum likelihood did not lead to accurate results, and the data 
pattern of �b confirms its high relative importance compared 
to the other three calibration parameters. In contrast, the 
boundary between high and low probabilities in the data 
pattern for �d was less distinct, with the highest likelihoods 
occurring for �d < 0.05 Pa. �cr had the least pronounced data 
pattern, and high probabilities occurred almost throughout 
the entire range. In addition, the data pattern for � showed 
high likelihoods over a wide range with � < 1.2.

Furthermore, there was no significant correlation 
between the calibration parameters (see SI Fig. 3), which 
indicates that the calibration parameters were well chosen 
and independent. If there were high correlations between 

Fig. 6  Posterior distributions in the parameter space, and associated relative entropy (RE) at the end of the MAXME scenario in gray (top) and 
the VALDOME scenario in light gray (bottom). The dashed vertical lines indicate the maximum likelihood values of the calibration parameters
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the calibration parameters, they would contain redundant 
information and the variation in one parameter could be 
compensated by a change of another parameter. In such 
a case, calibration would be restricted to determining the 
ratios between the parameters.

Simulated bed level changes

Figure 8 shows the cumulative bed level changes and water 
depth in the Banja reservoir after the end of the three-year 
simulation period with the calibration parameters for the 
VALDOME scenario listed in Table 3. In the region near 
the Devoll River tributary, the water became shallow and 
several channels formed. The highest deposits of more than 
4 m occurred in the upstream part of the reservoir. At low 
water levels, some of the deposited sediment in the upstream 
part of the reservoir was eroded, resulting in the formation 
of smaller channels. These channels did not occur in perma-
nently impounded regions (shown in dark blue). The sedi-
ment deposit height decreased in flow direction because of 
the decreasing flow velocity and the continuous settling of 
sediment particles. In the reservoir, the deposition heights 

in flow direction were less than 4 m after 2.4 km, less than 
1.5 m after 4.6 km, and less than 0.5 m after 8.0 km.

Model accuracy

Agreement between GPE metamodel and numerical model

Since the final calibration parameters stem from the meta-
model, we performed two analyses to evaluate the calibra-
tion quality. First, we compared the metamodel with the 
2d hydro-morphodynamic model to quantify how well the 
metamodel mimics the full-complexity model results. Sec-
ond, we compared the calibrated numerical model with the 
measurement data to evaluate the final model quality.

To evaluate the quality of the metamodel results, the 
numerical model was run with the optimal calibration 
parameter combinations shown in Table 3. The inclusion of 
all calibration nodes (MAXME) led to a Pearson’s correla-
tion r of 0.92, an RMSE of 0.87 m, and a mean absolute error 
(MAE) of 0.45 m (Fig. 9). Hence, the metamodel reproduced 
the numerical model results with good accuracy. However, 
the metamodel significantly overestimated bed level changes 
for some calibration nodes in the upstream part near the 

Fig. 7  Likelihood values along 
the six possible parameter space 
combinations at the end of the 
VALDOME scenario
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Devoll River tributary. Excluding these upstream nodes 
(VALDOME) resulted in a significantly better r of 0.98, an 
RMSE of 0.32, and an MAE of only 0.13 m. Therefore, the 
trained metamodel accurately emulated the full-complexity 
numerical model results at the end of the simulation period. 

To assess the regions of high uncertainty in the meta-
model, we calculated the LOO-CV errors for the 142 cali-
bration nodes and the 70 parameter combinations used as 
training points. We averaged the absolute values of the 
differences for each point to estimate the expected error 
between the metamodel and the full-complexity model. 
This analysis is important because a high model metamodel 
error causes decreased influence of the difference between 
the measured and modeled bed level on the likelihood 
(Eq. 5). Therefore, calibration nodes with a large LOO-CV 
error indicate high uncertainty in the metamodel and carry 

less weight in the final likelihood calculation. The LOO-CV 
mean errors for the MAXME scenario ranged from 0.04 to 
4.04 m (0.8 m on average). The highest errors occurred near 
the upstream boundary, which is also shown in SI Fig. 4. In 
contrast, the LOO-CV errors for the VALDOME were sig-
nificantly smaller and ranged from 0.03 to 1.76 m (0.35 m 
on average).

Modeled and measured agreement

To evaluate the quality of the calibrated hydro-morpho-
dynamic numerical model, we calculated Pearson’s r and 
the RMSE for both scenarios. The MAXME scenario led 
to an r of 0.70, RMSE of 1.62 m, and MAE of 1.17 m. 
The VALDOME scenario yielded a similar r of 0.66, a 
smaller RMSE of 1.04, and a smaller MAE of 0.91 m. 

Fig. 8  Cumulative bed level 
changes (left) and water depth 
(right) after the end of the simu-
lation period of the VALDOME 
scenario

Fig. 9  Scatter plot of the 
computed bed level changes 
�z from the metamodel and 
the numerical model after the 
MAXME scenario at the left 
and VALDOME scenario at the 
right. The dashed line repre-
sents the hypothetic perfect 
metamodel accuracy
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Thus, both scenarios yielded satisfactory agreement 
between the measured and modeled results according to 
global statistics indicating a good representation of the 
sedimentation patterns in the Banja reservoir (see Fig. 10). 
Still, the MAE and RSME were not negligible but signifi-
cantly lower in the VALDOME scenario. In the MAXME 
scenario, there were 11 calibration nodes with bed level 
change errors greater than 2 m compared to only three 
such nodes in the VALDOME scenario (see SI Fig. 5). 
In addition, Fig. 10 indicated that the numerical model 
tends to underestimate small measured bed level changes 
by approximately 1 m in both scenarios.

Discussion

Deposition patterns and model deviations

Figure 11 shows the results of the bed level evolution in the 
upstream part of the reservoir after three years and for two 
simulations with similar parameter combinations. The figure 
shows several channels with high topographic gradients at 
different locations. Thick sediment deposits occurred next 
to these channels, particularly at mesh nodes that were only 
temporarily wet in the simulation period. These nodes can 
be inside a channel (small sediment deposits) in one model 
run and outside the channel (thick sediment deposits) in the 
next model run. Although the physical model environment 

Fig. 10  Scatter plot of modeled 
and simulated bed level changes 
�z for the MAXME scenario at 
the left and VALDOME sce-
nario at the right. The dashed 
line represents the hypothetic 
perfect model accuracy

Fig. 11  Simulated bed level 
changes (2016–2019) in the 
upstream part of the reservoir 
for two different simulations 
with similar calibration param-
eters at the end of the simula-
tion period
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is similar, the patterns in Fig. 11a and b are very different, 
which indicates numerical instabilities that the metamodel 
attempted to emulate by drastically changing the calibration 
parameter values (see Fig. 5).

The coarse mesh used in this study (to reduce comput-
ing time) affected the accuracy of the results and numerical 
stability. In addition, the model only considered suspended 
sediment transport and was not able to reproduce shallow 
water regions experiencing channel erosion, deltaic avul-
sion, or bank failures. The simplification assumptions made 
the model physically not fully well defined for simulating 
morphological processes at the head of the reservoir. In the 
MAXME scenario, the BAL iterations attempted to over-
come mismatches between measured and modeled erosion 
channels by prominent changes in the calibration parameter 
values, indicating equifinality. As a result, the BAL itera-
tions were unstable and did not converge. This is reflected in 
the higher fluctuations of the calibration parameters (Fig. 5) 
and maximum likelihoods near the limit of the investi-
gated range for three of the four calibration parameters in 
the MAXME scenario. In addition, the BME (Fig. 4) did 
not converge because every BAL iteration tried to explore 
numerical instability in the delta region. Yet, the adapted 
Bayesian calibration worked well in the model domain 
where suspended sediment deposition could be reproduced 
and the model was stable (VALDOME). The BAL converged 
toward a solution that is confirmed by a very low RMSE of 
0.32 m and a high Pearson’s r of 0.98 between the full-com-
plexity and the metamodel. However, the RMSE of 1.04 m 
of the numerical model regarding measured data was signifi-
cantly smaller compared to the MAXME scenario but not 
negligible, which is due to the limitations of the modeling 
approach. For instance, complex three-dimensional hydro-
dynamics and stratified flow cannot be represented by a 2d 
model, which is expected to affect the deposition pattern in 
the reservoir. Also, we assumed a constant �b for the entire 
reservoir, while consolidation occurs over time and the den-
sity increases (Mehta et al. 1989; Winterwerp and Kesteren 
2004; Lo et al. 2014; Hoffmann et al. 2017). Accordingly, 
the average bulk density in a reservoir is often heterogene-
ous and varies over time, which is not reflected in our model 
assumptions. In addition, some boundary conditions were 
not measured directly, and therefore, subject to additional 
uncertainty. For example, the inflow into the reservoir was 
calculated from measured outflow, reservoir water levels, 
and hydrological model outputs. Also, the sediment yields 
of the tributaries stem from a model with monthly resolu-
tion only (Mouris et al. 2022). Considering the uncertainty 
related to these model simplifications, as well as the mean 
measurement error of approximately 0.4 m, the final model 
quality is acceptable in the VALDOME scenario. In light 
of the instability of the MAXME scenario, we verify the 
hypothesis (i) that Bayesian calibration only converges 

toward physically meaningful model parameter combina-
tions when the model is well-conditioned (i.e., measured 
data are in the validity domain of model assumptions).

Relevant calibration parameters

Since the Bayesian calibration only converges toward physi-
cally meaningful model parameter combinations when the 
calibration nodes are in the range of validity of the numeri-
cal model, we only used the VALDOME scenario to identify 
the calibration parameter importance for reservoir sedimen-
tation modeling.

Figure 6 shows that the density �b was the most restrictive 
(i.e., constraining) calibration parameter due to its narrow-
shaped posterior distribution, which was not imposed by the 
initial value ranges (Table 2). This is also evident in the clear 
data pattern of �b across the parameter space (Fig. 7), where 
high likelihoods occurred only in a very narrow range. Yet, 
many studies exclude �b from the calibration process and 
use fixed literature values or empirical equations to obtain 
a representative value (Foster and Charlesworth 1994; Ver-
straeten and Poesen 2001; Banasik et al. 2021). Our find-
ings suggest that �b should be either calibrated or directly 
measured, rather than simply derived from the literature. 
This finding is important because, for instance, models for 
calculating the sediment yield are often calibrated against 
the volume change in lakes or reservoirs. Since the volume 
of the deposited sediments is directly related to the dry-bulk 
density of the sediments, an incorrect value for �b results in 
an incorrect calculation of sediment masses. For example, 
if the sediment inflow is underestimated, the error can be 
compensated for by a lower dry-bulk density for the depos-
ited sediment. In this study, the Bayesian calibration led to a 
reasonable value of 403.6 kg  m-3 in the VALDOME scenario 
(van Rijn and Barth 2019; van Rijn 2020).

According to the posterior distribution (see Fig. 6), �d 
was the second most restrictive (i.e., constraining) param-
eter with a small maximum likelihood of 0.01 Pa. Yet, the 
maximum likelihood was located at the lower limit of the 
investigated range, which suggests that the Bayesian calibra-
tion would have tried an even smaller �d if possible. Hence, 
the posterior distribution should be interpreted carefully, as 
a broader range may result in a wider distribution. A pos-
sible explanation for why the Bayesian calibration preferred 
small values of �d is the maximization of suspended load 
trajectories. Since fine particles are kept in suspension by 
turbulence even at low flow velocities, the BAL attempted 
to compensate for the insufficient model assumptions regard-
ing 3d turbulence (mixing length model) by decreasing �d . 
Furthermore, the actual shear stresses in a large reservoir 
are very small. Thus, only very small �d values affect the 
deposition process in the numerical model, especially since 
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we disregarded measured data in the shallow delta region in 
the VALDOME scenario.

The calibrated diameter multiplier � was 0.98, which 
falls into the lower half of the initial range. � was not very 
restrictive and yielded high likelihoods for a comparatively 
wide range with � < 1.2. These small � values indicate that 
the observed particle size diameters and the corresponding 
settling velocities were rather too large and smaller particle 
sizes and settling velocities lead to better results. Gener-
ally, the grain size distribution of a suspended sediment load 
sample represents the present hydraulic conditions. There-
fore, we recommend using grain sizes in a reasonable range 
for calibration or varying the grain size distributions as a 
function of discharge. The stochastic approach led to repre-
sentative grain size ranges:  d17 = 1.89 to 2.25 μm,  d50 = 7.0 to 
8.33 μm, and  d83 = 19.76 to 23.62 μm. However, flocculation 
processes can alter the settling velocity of cohesive particles 
(Dyer and Manning 1999; Winterwerp and Kesteren 2004), 
and therefore, the actual grain sizes of individual particles 
can be even smaller.

The optimum �cr was 0.25 (VALDOME) and the cor-
responding likelihood pattern was not very pronounced and 
had little impact on the calibration process, because only the 
very upstream calibration nodes were affected by erosion 
and resuspension. In contrast to a free-flowing river, sedi-
mentation dominates in the reservoir due to the large water 
depths and low flow velocities. Thus, there were signifi-
cant differences between the two sets of calibration nodes, 
underlining that particularly the upstream delta section of 
the reservoir was controlled by �cr . Hence, the RE further 
decreased with the exclusion of the calibration nodes in the 
upstream part (VALDOME), which emphasizes the dimin-
ishing importance and higher uncertainty of �cr.

Ultimately, we verify hypothesis (ii) since the Bayesian 
calibration identified �b as the driving calibration parameter 
in the fluvial deposition of suspended sediments in reser-
voirs. In contrast, � or �cr had significantly less influence 
on the final sedimentation pattern. Parameters with narrow 
posterior distributions and high relative entropy compared 
to a uniform distribution can be interpreted as driving and 
restrictive, while parameters with wide posterior distribu-
tions can be interpreted as less important and uncertain. The 
narrow posterior distribution for �d suggests a high informa-
tion gain through BAL, with the maximum likelihood at the 
lower limit. Consequently, small �d lead to more accurate 
results, although the importance of �d cannot be objectively 
assessed.

The curse of dimensionality

The so-called curse of dimensionality (see also the methods 
section on Bayesian calibration) forced us to limit the num-
ber of calibration nodes. Even though we limited the number 

of calibration nodes, the dimensions of the response surface 
were still too high and both scenarios were subjected to the 
curse of dimensionality. This phenomenon occurred because 
of the exponential term of the likelihood function (Eq. (5)), 
which represents the (negative) weighted sum of the squared 
difference between the measured and modeled bed level 
change. The more calibration nodes we used, the larger the 
negative value of the sum becomes. In consequence, the 
exponential term became a number so close to zero that the 
precision of a computer is insufficient to express it. This 
problem, known as arithmetic underflow (e.g., Coonen 
1980), caused the likelihood function to become zero, which 
does not allow for the calculation of convergence scores and 
selection of a next training point. To solve this problem, we 
artificially increased the total error in Eq. (7) by multiplying 
it by 5. The artificial error amplification was equally applied 
to all individual errors and represented the smallest integer 
amplification factor that avoided arithmetic underflow. Since 
the amplification factor was constant, the rank of the output 
realization remained unchanged.

The curse of dimensionality also affected the number of 
Monte Carlo (MC) samples that could be drawn to approxi-
mate the posterior distribution in Eq. (5). With increasing 
dimensionality, the required computing power for a repre-
sentative sample increased exponentially. In consequence, 
the region with the highest density became more restrictive 
and the vast majority of the probability density function was 
concentrated in low-likelihood areas. To balance representa-
tiveness, the curse of dimensionality, and computing time, 
we limited the sample size to  105 MC realizations.

The curse of dimensionality also affects the generation of 
the posterior distribution through rejection sampling (Smith 
and Gelfand 1992) or the here-used Bayesian weighting 
strategy, as most of the samples were concentrated in low-
likelihood areas. Thus, the weight of nearby all samples was 
close to zero or arithmetic underflow occurred. The above-
introduced error multiplier helped to avoid these arithmetic 
underflow issues by increasing the width of the high-likeli-
hood region and enabling a representative posterior.

Conclusion

The region where the model simplifications were not 
entirely valid caused stability issues in the upstream part 
of the reservoir, where small channels with low water 
depths led to high topographic gradients and large model 
uncertainty. Hence, the inclusion of all calibration nodes 
resulted in a degradation of model accuracy, fluctuating 
Bayesian model evidence, and higher variability of the 
four calibration parameters in the last five BAL itera-
tions. In addition, the maximum likelihood values of the 
calibration parameters were located near the limit of the 
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investigated range. Consequently, Bayesian calibration 
only converged toward physically meaningful parameter 
combinations when the model was well-conditioned (i.e., 
when the measurement data are in physically representa-
tive regions of the model domain). The final model quality 
was still affected by the limitations of the 2d numerical 
model, leading to a considerable mean absolute error of 
approx. 1 m regarding the modeled deposition height.

Bayesian calibration identified the dry-bulk density as 
the driving and most important parameter to simulate the 
fluvial deposition of suspended sediments in reservoirs. 
Thus, the dry-bulk density should be prioritized in data 
collection, already before setting up a reservoir sedimen-
tation model. In contrast, the particle diameter multiplier 
and the critical shear stress for erosion had less influence 
on the deposition pattern as can be seen from the wider 
posterior distribution. The importance of the critical shear 
stress for deposition could not be objectively assessed 
because the maximum likelihood is located at the lower 
limit of the initial range. Yet, small values led to better 
results because the BAL tried to maximize suspended 
load trajectories to compensate for insufficient model 
assumptions about 3d turbulence that keeps fine particles 
in suspension.

Ultimately, this study shows that a robust Bayesian cali-
bration can also be achieved when global model simpli-
fication hypotheses cannot be applied to the entire model 
domain, requiring that the measurement data for calibra-
tion must be from model domains where the simplifying 
assumptions are valid. Furthermore, our modified BAL 
approach accounted for both measurement and metamodel 
errors, enabling a multi-parametric comparison and iden-
tification of driving calibration parameters even in four-
dimensional parameter space.

Supplementary Information The online version contains supplemen-
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Abstract
Long-term predictions of reservoir sedimentation require an objective consideration of the preceding catchment processes. 
In this study, we apply a complex modeling chain to predict sedimentation processes in the Banja reservoir (Albania). The 
modeling chain consists of the water balance model WaSiM, the soil erosion and sediment transport model combination 
RUSLE-SEDD, and the 3d hydro-morphodynamic reservoir model SSIIM2 to accurately represent all relevant physical 
processes. Furthermore, an ensemble of climate models is used to analyze future scenarios. Although the capabilities of 
each model enable us to obtain satisfying results, the propagation of uncertainties in the modeling chain cannot be neglected. 
Hence, approximate model parameter uncertainties are quantified with the First-Order Second-Moment (FOSM) method. 
Another source of uncertainty for long-term predictions is the spread of climate projections. Thus, we compared both sources 
of uncertainties and found that the uncertainties generated by climate projections are 408% (for runoff), 539% (for sediment 
yield), and 272% (for bed elevation in the reservoir) larger than the model parameter uncertainties. We conclude that (i) 
FOSM is a suitable method for quantifying approximate parameter uncertainties in a complex modeling chain, (ii) the model 
parameter uncertainties are smaller than the spread of climate projections, and (iii) these uncertainties are of the same order 
of magnitude as the change signal for the investigated low-emission scenario. Thus, the proposed method might support 
modelers to communicate different sources of uncertainty in complex modeling chains, including climate impact models.

Keywords Uncertainty · Modeling chain · Model parameters · Climate projections · Runoff · Reservoir sedimentation

Introduction

Albania possesses adequate conditions for hydroelectricity 
production because of its location in the Balkans and its 
mountainous topography. Considering that the country’s 
power supply is, with a value of 99%, almost exclusively 
based on hydroelectric power (IEA 2022; Lehner et al. 2005; 
Statkraft 2019), the Devoll River offers great potential for 
hydropower development due to its large streamflow. How-
ever, as a result of the active erosion processes taking place 
in the catchment and the consequent transport of sediments, 
it is also considered the most turbid river that drains into the 
Mediterranean Sea (Ardıçlıoğlu et al. 2011). Constructed 

reservoirs along the river interrupt the sediment continuum, 
resulting in the deposition of sediments and progressive res-
ervoir sedimentation.

In addition, climate change may not only directly (e.g., 
change in temperature and precipitation) but also indirectly 
(e.g., change in land use) influence erosion processes in the 
catchment, resulting in higher sediment loads and amplified 
sedimentation processes in these reservoirs (e.g., Plate 1993; 
Walling and Fang 2003). Therefore, the lifetime of planned 
and constructed reservoirs and the efficiency of hydropower 
production may decrease (Mahmood 1987). These trends are 
also predicted for other areas and catchments within Europe. 
According to Wagner et al. (2017), the average annual elec-
tricity generation for the Alpine region will slightly decrease 
by the year 2050, due to the effects of climate change. Addi-
tionally, Panagos et al. (2021) stated that climate change is 
the main cause of the increase in mean soil erosion rates on 
agricultural land in Europe by the year 2050. Hence, climate 
change will have negative impacts on soil erosion, especially 
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in regions where this process can already be considered criti-
cal, such as the Devoll River basin (Li and Fang 2016).

While several studies show an expected annual increase in 
sediment yield due to future climate change scenarios (Azari 
et al. 2016; Chen et al. 2020; Li et al. 2022), others indicate 
that sediment yield could even decrease in some regions 
(Bussi et al. 2014; Hirschberg et al. 2021). These contrasting 
findings suggest that the behavior of hydrological and mor-
phological processes under the impacts of climate change 
depends not only on regional characteristics but also on the 
models involved, especially the climate models that provide 
the forcing data. As part of the DIRT-X project (https:// 
dirtx- reser voirs 4futu re. eu/), the dynamics of the different 
hydrological and morphological processes in the Devoll 
catchment are identified and their response to climate change 
is quantified. Hence, a special focus is given to the reservoir 
inflow (runoff and transported sediments) and sedimenta-
tion processes within the reservoir. Since the latter relies on 
the behavior of the inflow boundaries, a modeling chain is 
required to predict the future development of all involved 
variables and finally to predict the bed level changes within 
the reservoir (target variable).

Even though several studies were carried out for differ-
ent regions worldwide to predict the erosion processes in the 
catchment and the resulting sediment yield, they all focused on 
a single model. In addition, they focused mainly on the catch-
ment and no hydro-morphological processes in the river or 
reservoir were considered. For example, Shrestha et al. (2013), 
Azari et al. (2016), Zettam et al. (2017), Santos et al. (2021) 
and Li et al. (2022) employed the Soil and Water Assessment 
Tool (SWAT) to predict the sediment yield coming from catch-
ments in Laos, Iran, Algeria, Brazil, and China, respectively. 
In the study carried out by Bronstert et al. (2014), the Water 
Availability in Semi-arid Areas with SEdiment Dynamics 
(WASA-SED) model was implemented to predict water and 
sediment fluxes in semi-arid environments. Other examples 
can be found in Nerantzaki et al. (2015) and Nunes et al. 
(2013), who also applied the SWAT model in Mediterranean 
catchments for predicting suspended sediment transport and 
erosion dynamics, respectively. Although the latter applied a 
chain of models combining SWAT with a physically based 
distributed erosion model, reservoir sedimentation processes 
were not included. Wagner et al. (2017) also focused on a mod-
eling chain applied to an Alpine catchment. However, the mod-
eling chain consists only of a hydrological and a hydropower 
model, thus the focus is not on intermediate erosion and sedi-
ment transport processes as in this study. More recently, Wild 
et al. (2021) developed a Python-based framework to simu-
late runoff, sediment, and hydropower production. Although 
several processes are considered in the model, the focus is 
on decision-making and the evaluation of possible reservoir 
configurations. Furthermore, the model has some limitations 
regarding the representation of physical processes (e.g. runoff 

generation), where it still relies on the output of other external 
models.

The novelty of our study is the development and applica-
tion of a process-based modeling chain composed of three 
different models that aim to predict the sedimentation pro-
cesses in the Banja reservoir under changing hydro-climatic 
conditions. With this modeling chain, we ensure a detailed 
representation of the physical processes leading to reservoir 
sedimentation, while exploiting the capabilities of state-of-
the-art models tailored to particular processes. Since each 
model works independently and has different input and out-
put variables (e.g., runoff or sediment yield), the subsequent 
models rely on accurate output variables to ensure the appli-
cability of the modeling chain for predicting bed elevation 
as the final target variable.

However, when more than one model is involved in pre-
dicting a target variable, superposition effects of uncertain-
ties from different sources may occur, resulting in a propa-
gation and an increase in the uncertainty of the final target 
variable. Since the selection of model parameters and their 
associated values might be challenging, e.g., due to a lack of 
measurements, it is of interest to know not only their impact 
on the final simulation results but also the confidence of 
these results (Moges et al. 2021). Other types of uncertain-
ties are related to the Global Climate Models (GCMs), to 
the downscaling techniques used for linking the large scale 
of GCMs to the regional models (Regional Climate Mod-
els, RCM), and finally to the model scale (Prudhomme and 
Davies 2009).

The significance of the aforementioned uncertainties is 
investigated and presented in this study. The question that 
arises at this point is: Are simulation results more affected 
by perturbations in the model parameters (parameter uncer-
tainty) than by the spread of climate projections (climate 
model uncertainty)? To answer this question, approximate 
uncertainties related to model parameters are calculated 
using a simplified method and compared to the spread of 
climate projections by analyzing three GCM/RCMs and the 
Representative Concentration Pathway RCP2.6. The selec-
tion of RCP2.6 is motivated by the fact that this (mitigation) 
scenario is subject to the smallest change signals amongst 
all available emission scenarios. Consequently, results from 
parameterizations with only small variations are not com-
pared to higher change signals that would result from high 
emission climate scenarios.

Materials and methods

Study area

The study area is located in the Devoll River catchment, 
upstream of the Banja reservoir in Albania, approx. 70 km 
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south of the capital city Tirana. The catchment covers a sur-
face area of 3140  km2 with varying topography and alti-
tudes, ranging from 100 to 2000 m a.s.l. Figure 1a shows the 
location of the study area within Albania and the catchment 
area. In this figure, the catchment is subdivided into two sub-
catchments (Fig. 1c), which were delineated according to the 
topography and location of the gauging stations (Banja and 
Kokel). The main city located in the study area is Korça and 
is also shown in the figure.

Since Albania belongs to the Mediterranean climatic belt, 
the climate in the study area is mainly characterized by dry 
and hot summers and mild, rainy winters (Eftimi 2010). The 
mean annual temperature in Korça is 10.3 °C, with a mean 
value of 19.9 °C during summer (July) and 0.9 °C during 
winter (January) (climate-data.org 2019). The mean annual 
precipitation in the highland plain near Korça is around 
800 mm  yr− 1 while the Western part receives up to 1600 mm 
 yr− 1 (Almestad 2015; climate-data.org 2019; Eftimi 2010). 
However, in higher altitudes, snowfall is common during 
the winter months. Snow cover depths and days with snow 
cover vary strongly, depending on the location within the 
catchment (Mouris et al. 2022). Although the majority of the 

study area is forested (30%) and covered by scrubs and her-
baceous vegetation (25%), agriculture predominates in the 
Korça plain. Since parts of the catchment are characterized 
by barren and steep slopes, loose soil results in high erosion 
and subsequently high sediment loads entering the Devoll 
River from the catchment. Hence, reservoir sedimentation 
will be a severe challenge for existing and planned reservoirs 
along the Devoll River. The river is dammed approximately 
160 km from its source, forming the Banja reservoir located 
near the town Gramsh. The embankment dam with a clay 
core has a maximum height of 80 m (between 95 and 175 m 
a.s.l.) and was impounded in 2016, with a maximum storage 
capacity of the reservoir of approx. 400 million  m3.

Data availability

Meteorological data

Within the study area, four meteorological stations are in 
operation and record daily values of precipitation, tempera-
ture, and wind speed. Measurements are available for the 
period from 09/2015 to 08/2020. Other variables, such as 

Fig. 1  a Location of the study area within Albania; b  important tributaries and outflow boundaries of the Banja reservoir; c  topography, sub-
catchments, gauging stations and location of the Banja reservoir. (adapted from the European Environment Agency (2016))
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radiation and relative humidity, are not recorded by these 
stations. Thus, the prediction of the hydrological response 
of the catchment becomes quite challenging, since a long-
term time series of all meteorological variables would be 
required. As a viable alternative, the ERA5 reanalysis data-
set is used for the hydrological simulations. This dataset 
is available with an hourly resolution on a grid of approx. 
31 × 31 km since 1959 onwards (Copernicus Climate Change 
Service 2017).

Measured data

Hourly measurements of runoff are available at the Kokel 
gauging station, covering the period from 03/2016 to 
04/2018. Furthermore, suspended sediment concentration 
measurements are available at the same gauging station. 
The runoff and the suspended sediment concentrations are 
obtained by using the acoustic backscatter signal from two 
side-looking H-ADCPs (Horizontal-Acoustic Doppler Cur-
rent Profiler; 0.6 and 1.2 MHz). The approach used to cal-
culate suspended sediment concentrations based on acoustic 
backscatter data for this study site is described in Aleixo 
et al. (2020). Nevertheless, these measurements are only 
available for water depths at the gauging station exceeding 
1 m. In the final step, the suspended sediment load is calcu-
lated by using the measured suspended sediment concentra-
tion and the associated runoff.

In addition, there are Digital Elevation Models (DEM) 
available from two bathymetric surveys of the Banja reser-
voir. The first survey was carried out in 2016, shortly before 
the impoundment of the reservoir. It was a drone survey 
of the terrain and a subsequent structure-from-motion post-
processing. The second survey was conducted in 2019, after 
3 years of operation, by moving ADCP measurements and 
was used to calibrate the reservoir model. A digital eleva-
tion model of differences (DoD) of the two surveys shows 
a general sedimentation trend, with an average deposition 
height of 2.7 m in the upstream part (> 5 km distance to the 
dam) of the reservoir.

Modeling chain

The prediction of sedimentation processes within a reser-
voir involves several preceding catchment processes, which 
need to be considered in the simulations. To tackle these 
processes in a reliable manner, hydrological, soil erosion, 
sediment transport, and hydro-morphodynamic models are 
necessary. In some cases, some of these processes can be 
simulated in a simplified way by a single model (e.g. with 
SWAT). However, limitations often arise regarding the 
representation of physical processes, and this must be con-
sidered when analyzing the results. Due to the progressive 
development of modeling tools and their specialization in 

certain processes, the use of multiple state-of-the-art models 
in a modeling chain seems to be a promising approach to 
increase the quality of simulation results. For these reasons, 
a modeling chain composed of different and independent 
models is applied in this study to benefit from several mod-
els with a specialization in particular processes.

The schematic modeling chain is depicted in Fig.  2. 
Besides the models used, the target variables (output varia-
bles) of each model are shown, which then serve as input for 
the subsequent model. For example, the target variable of the 
soil erosion and sediment transport model (RUSLE-SEDD) 
is the suspended sediment load, which serves as input for 
the hydro-morphodynamic reservoir model (SSIIM 2). The 
final target variable of the modeling chain is the bed eleva-
tion along the thalweg of the Banja reservoir. A description 
of each model is presented in the following section.

Model setups

This section summarizes the main processes included in 
the three models used in the modeling chain for the Devoll 
catchment and the Banja reservoir.

Water balance model

The hydrological processes are simulated by the Water Flow 
and Balance Simulation Model (WaSiM, Schulla 1997, 
2021). It is a physically based distributed model capable 
of representing the water cycle above and below the land 
surface. WaSiM uses physically based modeling approaches 
for the simulation of the different hydrological components 
(Schulla 2021). In this study, the Richards version 10.04.07 
is used, including the most recent snow canopy intercep-
tion sub-model (Förster et al. 2018). The model domain 
has a spatial and temporal resolution of 1  km2 and 3 h, 
respectively. The calibration period spans from 05/2016 to 
04/2018, for which measured runoff is available. A first year 
(05/2015–04/2016) is considered as a warm-up period.

Table  1 summarizes the main processes involved in 
WaSiM and the selected methods for obtaining the values 
for each of them. As the ERA5 dataset is available with a 
spatial resolution coarser than the model grid, the values are 
interpolated using the methods described in Table 1.

Soil erosion and sediment transport model

Soil loss and sediment transport are calculated at the 
catchment scale with the Revised Universal Soil Loss 
Equation (RUSLE) model (Renard 1997) in combination 
with the Sediment Delivery Distributed (SEDD) model 
(Ferro and Porto 2000). The RUSLE calculates the gross 
soil erosion in the catchment, while the SEDD model 
estimates sediment transport and delivery. The model is 
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spatially discretized into cells of 25 m x 25 m. Since this 
model combination enables the estimation of a monthly 
or annual suspended sediment load for any point in the 
river network, the sediment input to the reservoir is com-
puted. Monthly suspended sediment loads from 05/2016 
to 04/2018 are used for the calibration of the presented 
RUSLE-SEDD model.

The soil loss A [t  ha− 1  yr− 1] is determined as a mul-
tiplication of six erosion risk factors (Eq. (1)), which are 
summarized in Table 2. More detailed information on the 

input datasets, applied methods, and codes can be found in 
Mouris et al. (2022).

Reservoir model

The fully 3d numerical model Sediment Simulation In 
Intakes with Multiblock Option (SSIIM 2) is used to simu-
late flow characteristics, suspended sediment transport, 

(1)A = R ⋅ K ⋅ C ⋅ L ⋅ S ⋅ P

Fig. 2  Selected modeling chain and target variables for the study case of the Devoll catchment and the Banja reservoir

Table 1  Summary of the main sub-processes and approaches selected for the WaSiM simulations

a IDW = Inverse distance weight method, EDRINT = Elevation dependent regression with internal pre-processing
b ETP = Potential evapotranspiration
c ETR = Real evapotranspiration

Sub-processes Selected method(s) Comments

Temperature, precipitation and relative 
humidity interpolation

IDW +  EDRINTa Linear combination of IDW and EDRINT

Wind speed and global radiation interpolation IDW –
Evapotranspiration Penman-Monteith approach for  ETPb ETRc estimated from actual soil water content 

and actual capillary pressure
Snow accumulation and snow melt Energy balance approach The fraction of snow on the total precipitation is 

given by a threshold temperature
Interception Includes a bucket canopy model Snow accumulation and melt is computed for 

both canopy and the surface below
Soil model Richards approach Model of fluxes within the unsaturated soil zone
Groundwater model Integrated conceptual approach Baseflow is generated as exfiltration from the 

groundwater system into the river surface 
system

Routing model Kinematic wave approach + single linear 
storage

Translation is determined from Manning’s for-
mula; single reservoir to account for retention
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and morphodynamic processes in the Banja reservoir 
(Olsen 2018). SSIIM 2 solves the Reynolds-averaged 
Navier–Strokes equations (RANS) in three dimensions and 
uses a finite volume method for discretization. The adap-
tive grid consists of cells with a spatial resolution of 50 x 
50 m, and up to 10 vertical cells in the deepest zones of 
the reservoir. Sediment samples demonstrate that the sedi-
ment depositions within the reservoir predominantly consist 
of cohesive sediments. Consequently, bedload transport is 
not considered in this study. Besides the initial bathymetry, 
the runoff hydrographs from the WaSiM model and sedi-
ment loads from the RUSLE-SEDD model are used as input 
data for the main tributaries. Hence, in this study, four main 
tributaries and two outflows (spillway and turbine) are con-
sidered (Fig. 1b). Due to the implicit time discretization, 
time steps up to 5400 s are used in this study and enable 
long-term (08-2016–12-2100) 3d sedimentation modeling 
in a reasonable computing time (3.5 weeks per run using 8 
cores, 3.7–4.8 GHz).

Uncertainty quantification of model parameters

Several types of uncertainties are expected in modeling, aris-
ing from the complex behavior of environmental systems, 
simplifications in models, unknown boundaries, and missing 
or inaccurate input data (Shoarinezhad et al. 2020). Some of 
these uncertainties are related to parameters used to simulate 
different processes in each model. In this study, the variation 
in the simulation results (target variables) due to perturba-
tions in selected model parameters is analyzed. The main 
objective is to achieve an approximation of the parameter’s 
uncertainties by using a simplified method, which is more 
economic in terms of computing time compared to other 
stochastic methods (e.g., Monte-Carlo simulations). Hence, 
the analysis of the variations in the target variable is per-
formed with a First-Order Second-Moment Method (FOSM) 
(Gelleszun et al. 2017). The FOSM method, which was suc-
cessfully validated by Gelleszun et al. (2017), is based on 
the variance-covariance propagation and, according to Kun-
stmann et al. (2002), the results are comparable to the ones 

obtained by applying more sophisticated methods (such as 
Monte-Carlo methods).

The covariance matrix of the selected target variable y is 
expressed by the following Eq. (2):

 where Cyy is the covariance matrix of the calculated tar-
get variable y, with size m × m ; Cxx is the empirical covari-
ance matrix of the selected parameters, with size n × n ; A 
is the Jacobian, sensitivity or functional matrix, with size 
m × n and contains the partial derivations of the model with 
respect to its parameters; m is the number of time steps and 
n is the number of parameters.

The variance of the target variable y can be obtained 
from the diagonal of the covariance matrix Cyy , according 
to Eq. (3):

 where aij are the elements of the Jacobian matrix A and cjk 
are the elements of the empirical covariance matrix of the 
parameters Cxx.

The variance-covariance propagation (Eqs. (2) and (3)) 
gives the confidence intervals of the model with respect to 
the perturbations of the selected parameters. The empirical 
covariance matrix of the parameters, Cxx , can be determined 
with the following Eq. (4):

 where Se2 is the empirical residual variance (scalar value) 
that can be obtained for the entire simulation period accord-
ing to Eq. (5):

 yobs is the observed data (of the target variable y); ysim is the 
simulated data (of the target variable y); u is the length of the 

(2)Cyy = ACxxA
T ,

(3)var(y) =

n∑
j=1

n∑
k=1

aijaikcjk,

(4)Cxx = Se
2
(

ATA
)−1

,

(5)Se
2 =

∑
�

yobs − ysim
�2

u − n
.

Table 2  Summary of the soil loss erosion risk factors

Risk factor Unit Description

R MJ mm (ha h yr)−1 Rainfall erosivity factor calculated from post-processed precipitation data from the water balance model 
according to Diodato and Bellocchi (2007)

K t ha  MJ− 1  mm− 1 Soil erodibility factor calculated according to Wischmeier and Smith (1978)
C – Cover management factor calculated based on the land cover (European Environment Agency 2019)
L, S – Slope length and slope steepness are usually combined and represent the effect of topography on soil erosion 

according to Zhang et al. (2017)
P – Support practice factor expresses the influence of contouring on soil erosion, applied only to agricultural land
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available observed and simulated data and n is the number 
of selected parameters.

The Jacobian matrix A is calculated by numerical deriva-
tion in the optimum (central differences as an approxima-
tion of the derivatives that cannot be determined analytically 
in the case of numerical models). Then, each parameter is 
changed ± 1% from its optimum value (Hill 1998), accord-
ing to Eq. (6):

 where i is the selected parameter; y_id is the target variable 
y obtained as an approximation of the derivatives, which 
composes the Jacobian Matrix A; opt_value_i is the optimum 
value of parameter i, obtained after calibration of the model; 
y_il is the target variable y obtained with the lower value of 
parameter i ( opt_value_i – 1%) and y_iu is the target variable 
y obtained with the upper value of parameter i ( opt_value_i 
+ 1%).

The empirical variance Se2 (Eq. (5)) gives an idea of the 
parameter perturbations in relation to the chosen optimiza-
tion algorithm, which is used during the calibration of the 
model, to obtain the set of parameters that best simulate the 
target (output) variable y in each model. The empirical 
standard deviation, which has the same units as the target 
variable y, can be obtained as Se =

√

Se
2.

Finally, the approximate uncertainties of the model 
parameters can be represented with the standard deviation 
of the target variable, expressed by the root square of the 
variance (Eq. (7)):

Target variables and selected model parameters

A target variable (output) is selected for each model. Fur-
thermore, we choose a maximum of five parameters per 
model for the analysis of uncertainties to constraint comput-
ing times. Table 3 shows the target variable (output) for each 
of the models, whereas Table 4 summarizes the selected 
model parameters and their corresponding optimum values, 
which were obtained from the calibration processes for the 
single models. In addition, the lower value refers to the per-
turbation when the parameters have been decreased by -1%, 

(6)y_id =
y_il − y_iu

2 × 0.01 × opt_value_i
,

(7)std(y) =
√

var(y)

while the upper value refers to the perturbation when the 
value has been increased by + 1% from the optimum value. 
For spatially distributed parameters, such as the C factor, or 
seasonal factors, such as the R factor, the respective mean 
values are given in Table 4. In all cases, the selected model 
parameters are the most sensitive ones and have the greatest 
impact on the simulation results in each model.

A perfect agreement between observed and simulated 
bed levels in the reservoir is not to be expected since the 
WaSiM and RUSLE-SEDD models were calibrated for the 
Kokel gauging station and not for the reservoir (see Fig.1). 
Consequently, the deviations in reservoir bed elevation may 
be closely related to under- or overestimation of the runoff 
and sediment load entering the reservoir, since they were not 
measured directly at the reservoir inflow.

Workflow

In total, 11 runs were carried out with WaSiM, 17 runs with 
RUSLE-SEDD, and finally 23 runs with SSIIM 2 to capture 
the changes in the parameters. Figure 3 shows the selected 
workflow applied to the modeling chain.

Model simulations under different climate 
projections

The modeling chain is used to predict the catchment’s 
response under different future climate projections. Table 5 
summarizes the GCM and RCM model combinations used 
under different Representative Concentration Pathways 
(RCP). These datasets are provided with a spatial resolu-
tion of 0.11 degrees (EUR-11 grid, WCRP 2009) and with a 
3-hourly time step. As reference data, the ERA5 reanalysis 
dataset is used, considering a reference period from 01/1981 
to 12/2010. The bias adjustment is performed according 
to the MultI-scale bias AdjuStment (MidAS) tool, v0.2.1, 
which provides cascade adjustments in time and space, using 
a day-of-year scaling step (Berg et al. 2022).

RCPs represent climate projections under different green-
house gas concentrations that might lead to an increase in 
radiate forcing by the end of the century. For example, 
RCP2.6 is the lowest of all RCPs and expects a radiative 
forcing of 2.6 W  m− 2 by 2100. Furthermore, each RCP is 
related to a global mean temperature increase compared to 
a reference period considered from 1986 to 2005. In the 

Table 3  Target variables 
(output) of each model in the 
modeling chain

Model Target variable Unit Comment

WaSiM Runoff mm 3  h− 1 Simulated runoff at Kokel
RUSLE-SEDD Suspended sediment yield tons  month− 1 Simulated suspended sediment yield at Kokel
SSIIM 2 Bed elevation m a.s.l. Simulated bed elevation along the thalweg of 

the Devoll river within the reservoir
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case of RCP2.6, the global mean temperature increase is 
1.0 °C, for RCP4.5 1.8 °C, and for RCP8.5 3.7 °C (Collins 
et al. 2013).

The main objective of our study is to scrutinize whether 
the spread of the climate projections for future simulations 
is broader than the variations in simulation results as a con-
sequence of perturbations in the model parameters. In other 
words, we aim to analyze whether the uncertainties inherent 
to model parameterization are higher than uncertainties from 
climate projections. The perturbations in the model param-
eters are represented by a ± 1% change of their optimum 
value, according to the method previously described. For 
the comparison with the spread of the climate projections, 
RCP2.6 is selected. In this way, a tangible comparison (1% 
parameter variation vs. 1.0 °C increase in temperature) is 
carried out. Furthermore, we would like to highlight that in 
this case, the smallest climate change signals are generated 
and thus the results of this RCP are used for comparison 
to the parameter perturbation approach. By doing so, we 
avoid overestimating climate change signals. If the spread of 
the climate projections exceeds the approximate parameter 
uncertainties in the low emission scenario, this is also to be 
expected for the high and medium emission scenarios.

Results

The bed level changes along the upper part of the thalweg 
(> 5 km distance to the dam) of the Banja reservoir are pre-
sented, considering uncertainties in selected model param-
eters, but also different climate projections. The results of 
the climate impact simulations refer not only to the final 
target variable of the modeling chain (bed elevation along 
the thalweg of the Banja reservoir) but also to intermedi-
ate results (climate variables, monthly runoff, and sediment 
yield). Finally, a comparison between the uncertainties of 
the model parameters and the climate projections is per-
formed. Figure 4.

Uncertainty quantification of model parameters

To assess the uncertainties associated with model param-
eters and their impact on the simulation results, the final 
target variable of the modeling chain is analyzed. Figure 3 
shows the measured bed elevation along the thalweg of the 
Banja reservoir in 2016 and 2019, together with the simu-
lated bed elevation in 2019. In addition, the standard devia-
tion (dark gray shaded area) is shown, which considers the 
spreading of the simulation results from a total of 23 model 
runs, and may hence be related to the approximated uncer-
tainties of the model parameters. The figure also includes the 
standard deviation obtained only for the reservoir model and 

without considering the variations of parameters from the 
previous models (yellow shaded area), thus focusing only 
on the parameters of the reservoir model. In both cases, the 
values refer to the standard deviation, which was obtained 
after applying Eq. (7).

The average value of the standard deviation for the res-
ervoir model only (after Eq. (7)) is 0.28 m. The average 
standard deviation for the entire modeling chain, considering 
the uncertainties of all 11 parameters, is 0.64 m. Hence, it 
becomes obvious, that the largest uncertainties in the mode-
ling chain result from the reservoir model. Figure 3 indicates 
in addition that higher variations of the target variable are 
located near the head of the reservoir, where a delta forma-
tion is visible.

Model simulations under different climate 
projections

Since precipitation and temperature are important forcing 
variables for the generation of runoff, soil erosion, and the 
consequent transport of sediments into the reservoir, a spe-
cial focus is set on future changes in these variables. Fig-
ure 5a shows the decadal changes in the mean monthly pre-
cipitation regarding the reference period (1981–2010). The 
values are taken as an average value of the entire catchment 
and refer to the ensemble mean of the three GCM/RCMs and 
for RCP2.6. A positive change indicates an increase in the 
mean monthly precipitation values (green color), whereas 
a negative change indicates a decrease in the values (red 
color). Although there is no clear trend in the changes 
between the decades (y-axis), a reduction in precipitation 
during the summer months is visible (x-axis), whereas at the 
same time an increase during the winter months will occur.

Figure 5b shows the mean monthly changes in tempera-
ture, where a positive change suggests that temperature will 
increase in the future (red color) and a negative change sug-
gests a decrease (blue color). The figure makes it visible that 
the mean monthly temperature will face an increase in the 
future, reaching higher values, especially during the spring 
months (April–May).

Finally, changes in mean monthly runoff at Kokel are 
analyzed (Fig. 5c). In this figure, a positive change sug-
gests that the runoff will increase in the future (purple 
color) and a negative change suggests a decrease (brown 
color). In this case, there is a clear trend in the decreas-
ing mean monthly runoff during the spring months 
(April–May), becoming larger by the end of 2050 and 
2090. The reduction of the mean monthly runoff during 
spring is related to the rise in mean monthly tempera-
tures, which leads to an increment in the evapotranspira-
tion values and therefore less water will be available as 
runoff. Furthermore, the early melting of snow (shifted 
to late winter months) and the decrease in snow storage 
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contribute to the reduction of runoff during spring. On 
the contrary, an increase in the mean monthly runoff is 
predicted mostly for the winter months. This is also due to 
the rise in mean temperatures, leading to early snowmelt, 
less snowfall and more rainfall.

Uncertainty assessment: parameter vs. climate 
model uncertainties

In this section, the uncertainties in model parameters and 
their impacts on simulation results are compared with the 
spread of climate projections for RCP2.6. In addition to 
the final target variable (i.e. bed elevation along the thal-
weg of the reservoir), results are also shown for the output 
variables of each individual model in the chain.

Mean monthly runoff at Kokel

The diagrams on the left in Fig. 6a show the mean monthly 
runoff at Kokel obtained from the water balance model, for 
three different periods as an ensemble mean of the three 
GCM/RCMs and RCP2.6 (rows, from bottom to top): 
2011–2040, 2041–2070, and 2071–2100 and its correspond-
ing standard deviations. In addition, the mean monthly run-
off for the reference period (1981–2010, black dashed line) 

together with the mean monthly standard deviation due to 
uncertainties in model parameters (gray shaded area) are 
presented.

The hydrographs plotted on the bottom row for the period 
2011–2040 indicate that the mean monthly runoff will not 
change significantly in the near future. However, a slight 
increase is expected during winter (an increase of 9.4 mm 
for January). For the rest of the year, the values will be on 
a similar level.

When looking at the second half of the century (middle 
row, period 2041–2070), there is a clear shift in the maxi-
mum value from spring (April) to late winter (March). 
Furthermore, the peak is below the values of the refer-
ence period (a decrease of 7.2 mm is expected for April). 
Similar results are obtained for the last period (upper row, 
period: 2071–2100), where the shift in peak flow from 
April to March manifests itself and a decrease of almost 
9.0 mm is expected for the peak runoff.

Observing Fig. 6a, it is possible to conclude that the 
approximate uncertainties arising from model parameters 
in the water balance model are by far smaller (almost 5 
times) than the ones coming from the climate impact mod-
els (spread of climate projections, measured as the stand-
ard deviation of the ensemble mean). On average, these 
values rise from 3.8 mm  month− 1 to 15.2 mm  month− 1 

Table 4  Summary of selected model parameters for each model, including definition and units

*All sub-processes belong to the unsaturated zone model.
The optimum value refers to the value obtained from the calibration and lower and upper values refer to the ± 1% variation of the optimum value

Model Param. Definition Sub-process Unit Optimum value Lower value Upper value

Water balance model kd Recession constant 
for surface runoff

Direct runoff * h 5.0000 4.9500 5.0500

ki Recession constant 
for interflow

Interflow * h 21.6375 21.4211 21.8539

dr Drainage density for 
interflow

Interflow * m− 1 6.0642 6.0036 6.1248

kb Recession constant 
for baseflow

Baseflow * m 1.4056 1.3915 1.4197

Q0 Scaling factor for 
baseflow

Baseflow * mm  h− 1 0.2186 0.2164 0.2208

Soil erosion & trans-
port model

C Cover and manage-
ment factor

Erosion - 0.007671 0.007594 0.007748

β Basin-specific 
parameter

Sediment delivery 
ratio

h− 1 0.5639 0.5583 0.5695

Rseas Seasonal factor for 
rainfall erosivity 
factor

Erosion MJ mm (ha h yr)−1 0.4860 0.4811 0.4909

Reservoir model F_26 Fraction of com-
pacted sediment in 
bed deposits

Erosion/Deposition - 0.3500 0.3465 0.3535

v
s

Settling velocity Deposition m  s− 1 34.83 ×  10− 6 34.48 ×  10− 6 35.18 ×  10− 6

actlay Active layer thick-
ness

Erosion/Deposition m 0.3000 0.2970 0.3030
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(300% rise), 18.6 mm  month− 1 (389% rise), and 19.3 mm 
 month− 1 (407% rise) for the first, second, and third period, 
respectively.

Mean monthly sediment yield at Kokel

The diagrams on the right in Fig. 6b show the mean monthly 
sediment yield at Kokel, obtained from the soil erosion and 
sediment transport model, for three different periods as 
an ensemble mean for the three GCM/RCMs and RCP2.6 
(rows, from bottom to top): 2011–2040, 2041–2070 and 
2071–2100 and its corresponding standard deviation. Simi-
larly to the mean monthly runoff, the black dashed line 
indicates the mean monthly sediment yield for the reference 
period (1981–2010). In addition, the mean monthly stand-
ard deviation regarding uncertainties from model parameters 
(gray shaded area) is shown in the figure.

The sediment yield behaves similarly to runoff. Conse-
quently, the maximum values are expected from February to 
April (between the end of the winter season and the begin-
ning of the spring months). In general, the mean maximum 
sediment yield will not experience great changes, except for 
the near future, where an increase of around 20,000 tons 
is expected for March, which corresponds to the predicted 
increase in runoff.

Similar to the mean monthly runoff, the values are not 
expected to change significantly during summer (low-flow 
season) because erosion is strongly correlated with precipi-
tation and thus with runoff. Furthermore, the standard devi-
ation of the sediment yield regarding perturbations in the 
model parameters (gray shaded area) is also smaller (almost 
5 times) than the spread of climate projections, given by 
the standard deviation of the ensemble mean. In this case, 
the values increase on average from approx. 13,600 tons 
 month− 1 to 44,300 tons  month− 1 (225% rise), 55,700 tons 
 month− 1 (310% rise), and 86,900 tons  month− 1 (539% rise) 
for the first, second, and third period, respectively.

Bed elevation along the thalweg of the Banja reservoir

Figure 7 shows the bed elevation along the thalweg of the 
upstream part of the Banja reservoir, simulated with the 

Fig. 3  Selected workflow applied for the modeling chain of the Banja reservoir located in the Devoll catchment (Albania). The three models, 
their parameters, perturbations and the number of model runs are shown as well

Table 5  GCMs and RCMs used in the modeling chain

GCM RCM

ICHEC-EC-EARTH SMHI-RCA4_v1a
MPI-M-MPI-ESM-LR SMHI-RCA4_v1
MOHC-HadGEM2-ES KNMI-RACMO22E_v2
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reservoir model, for three different years and for RCP2.6 as 
an ensemble mean of the three GCM/RCMs. The selected 
years are 2036, 2066, and 2100, which corresponds to 20, 
50, and 84 years after the impoundment of the reservoir, 
respectively. The bed elevation for the reference year 2016, 
right before the impoundment, is also included (black dashed 
line) together with the mean standard deviation regarding the 
perturbations in the model parameters of the entire modeling 
chain (gray shaded area).

The simulated bed levels in the near future (2036) show 
an increase in bed elevation within the reservoir, espe-
cially in the upper part. Here a clear delta formation is vis-
ible (compare Morris and Fan (1998)). For the mid-term 
period, in the year 2066, on one hand, the bed elevation 
will increase, but also a delta progression becomes visible, 
which is in accordance with literature. The highest deposi-
tions are observed at approx. 10,500 m distance from the 
dam. Although in Fig. 7 it is not possible to gain insight 
into the impact of seasonality on the evolution of the bed 
elevation, in general, a higher accumulation of sediments 
occurs during months with high runoff and higher sediment 
transport (e.g., Fan and Morris (1992)).

Finally, by the year 2100, the maximum deposition height 
will increase from approx. 10 m in 2036 up to approx. 30 m. 
There is no clear difference between the maximum bed lev-
els, but the largest increase occurs at a distance of around 
9000 m upstream of the dam, which also indicates that the 

delta migrates further into the reservoir, when comparing 
the location of the delta at the end of the mid-term period 
(10,500 m distance to the dam). Hence, the deposition 
regime moves further downstream, whereas a sediment bal-
ance between erosion and deposition is established in the 
upstream part (9000–14,000 m distance to the dam).

In the case of the bed elevation, the spread of the cli-
mate projections is determined by the maximum differ-
ence between the ensemble members, represented finally 
as an average value for all the x-locations (distance from 
the dam). Similar to the previous simulation results (mean 
monthly runoff and mean monthly sediment yield at Kokel), 
the impact on the bed elevation along the thalweg of the 
Banja reservoir (target variable) is smaller than the spread 
of climate projections due to perturbations in the model 
parameters. The average change in bed elevation (along the 
thalweg) considering uncertainties in the model parameters 
is 0.64 m, whereas the average changes due to uncertainties 
in the climate projections are 0.96 m, 2.33 m, and 2.38 m for 
the years 2013, 2066, and 2100, respectively. These values 
represent an increase of 50%, 264%, and 272% compared to 
the average change of the bed elevation due to uncertainties 
in the model parameters.

Fig. 4  Measured (solid red line for the year 2016, solid blue line for 
the year 2019) and simulated (dotted blue line for the year 2019) bed 
elevation along the thalweg of the upstream part of the Banja reser-
voir as a result of executing the entire modeling chain. The standard 

deviations for the entire model chain and the reservoir model only are 
indicated as dark gray shaded area and yellow shaded area, respec-
tively
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Discussion

A complex modeling chain composed of different individual 
models is adopted to predict the sedimentation processes 
in the Banja reservoir in this study. The main advantage of 
applying such a chain lies in the detailed and process-based 
representation of each intermediate process. The results of the 
modeling chain are satisfactory and can be used for predicting 
the sedimentation processes under future climate conditions.

Nevertheless, uncertainties cannot be neglected. In our 
study, we focus mainly on parameter uncertainties and com-
pare them to those inherent in climate models. The approxi-
mate uncertainties related to model parameters are deter-
mined by using the method developed by Gelleszun et al. 
(2017). The modeling chain includes three representative 
models that are used to study the impact of 11 sensitive 
parameters on the bed elevation changes of the Banja reser-
voir. Within this study, these 11 parameters were changed 
in the range of ± 1%, resulting in 23 model runs of the final 

Fig. 5  Decadal changes of mean 
monthly values relative to the 
reference period (1981–2010): 
a change of the mean monthly 
precipitation as an average 
for the entire catchment [mm 
 month−1] ; b change of the 
mean monthly temperature as an 
average for the entire catchment 
[°C  month−1]; c change of the 
mean monthly runoff at Kokel 
[mm  month−1]. All values refer 
to the ensemble mean of the 
three GCM/RCMs and RCP2.6
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model. According to the mentioned study, this approximate 
method proves to be robust and efficient, thus reducing 
dramatically the computing times that other sophisticated 
methods (such as Monte-Carlo simulations) might require.

Even though the ± 1% uncertainty of selected model 
parameters proved to work well, it needs to be considered that 
the possible change is strongly parameter-dependent, which 
means that for some parameters this change may be a major 
change, whereas for others, it might be considered as only a 
minor change. Hence, future studies should focus on deter-
mining how much the model parameters can deviate from 
their optimal value, to ensure that the approximate uncertain-
ties are smaller than the spread of climate projections.

Additionally, uncertainties that might arise from climate 
model predictions are analyzed and compared to the approxi-
mate uncertainties in model parameters. In this study, the 
climate predictions are presented for RCP2.6, correspond-
ing to three different GCM/RCMs realizations. The analysis 
of the results reveals that the approximate uncertainties in 
model parameters of the water balance model is significantly 
smaller than the uncertainties coming from the different 

climate projections (Fig. 6a). The same can be concluded 
when analyzing the simulated mean monthly sediment yield 
(Fig. 6b) and the final bed elevation along the thalweg of 
the Banja reservoir (Fig. 7). The results agree with the ones 
found by Kingston et al. (2011) and Wagner et al. (2017). 
They studied different uncertainties influencing their model 
results. In both studies, the authors conclude that the uncer-
tainties arising from model parameterization are remarkably 
smaller than the ones generated by the climate projections 
for the case that the models were calibrated and validated 
with existing data in a first step.

Among all RCPs, RCP2.6 is seen as the lowest mitigation 
scenario. Although reaching RCP2.6 emission values by the 
end of the century may be technically feasible, urgent actions 
are required to achieve this. For example, reducing emissions 
rapidly during the first decades of the century and increasing 
the use of renewable energy sources, for which countries 
beyond the Organization for Economic and Co-operation 
Development (OECD) are also required to participate (van 
Vuuren et al. 2011). Thus, climate projections under RCP2.6 
may be too optimistic and the need of contemplating other 

Fig. 6  Mean monthly runoff a  and mean monthly sediment yield 
b  at Kokel station for three different periods (rows, from bottom to 
top: 2011–2040, 2041–2070, 2071–2100). The values represent the 
ensemble mean of the three GCM/RCMs and RCP2.6 (dark colored 
solid lines ± standard deviation of the ensemble mean). The black 

dashed lines indicate the mean monthly runoff and mean monthly 
sediment yield in the past (reference period, 1981–2010, also as an 
ensemble mean), whereas the gray shaded areas indicate the associ-
ated standard deviations of each model regarding perturbations in the 
model parameters
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RCPs with higher emission scenarios comes into play, 
especially the RCP8.5 scenario, since the emissions for the 
period between 2005 and 2020 are most consistent with the 
historical data (Schwalm et al. 2020).

However, RCP2.6 was chosen here from a methodologi-
cal perspective: we intend to scrutinize whether even the 
spread of results from a set of climate projections with low 
change signals exceeds typical variations in results achieved 
through perturbation in the model parameters. The climate 
change signal is defined as the absolute difference between 
the ensemble mean values obtained for the future period 

and the reference period (historical climate), respectively. 
For example, for monthly runoff in the last period of the 
twenty-first century (2071–2100), the climate signals are (for 
the ensemble mean) 3.25 mm  month− 1 for RCP2.6 (i.e., the 
difference between the colored and the black dashed lines), 
whereas a value of 6.20 mm  month− 1 is obtained when con-
sidering RCP8.5. This suggests that the climate signals in 
RCP2.6 are on average in the same order of magnitude as 
the approximate uncertainties related to model parameteriza-
tion, where a mean value of 3.8 mm  month− 1 was obtained. 
Indeed, on a seasonal level, climate change signals can still 

Fig. 7  Bed elevation along the 
thalweg of the Banja reservoir 
[m a.s.l.] for the years 2036, 
2066, and 2100 (20, 50, and 
84 years after impoundment of 
the dam). The ensemble means 
of the three GCM/RCMs for 
RCP2.6 are shown (dark colored 
solid line), together with the 
mean value of spread between 
ensemble members (colored 
shaded areas). The black dashed 
line indicates the bed elevation 
in the past (for the year of finali-
zation of the dam construction, 
2016), together with its standard 
deviation, obtained from the 
impacts on simulation results 
due to perturbations in model 
parameters
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be higher. This is especially evident in the spring months, 
where the climate signal for runoff is almost 2.5 times 
higher. These findings show that low climate signals might 
be masked by model parameter uncertainties. On a minor 
note, the + 1 °C increase in the global mean temperature in 
RCP2.6 corresponds to ± 1% changes in model parameters 
as a mere and thus tangible comparison of numbers.

When predicting the response of a variable in the future 
(such as the bed elevation along the thalweg of the Banja 
reservoir), the use of multiple scenarios or ensembles is 
recommended, in order to cover further possibilities on 
how the climate is predicted (Collins et al. 2013). Accord-
ing to Teutschbein and Seibert (2010), complex Ensembled 
Regional Climate Models (E-RCMs) considering more than 
one RCM and a range of GCMs and RCPs are useful for 
hydrological simulations. Although our study can be classi-
fied into the mentioned group of E-RCM, considering fur-
ther GCMs and RCMs might be interesting to understand 
how the climate spread changes and influences the predic-
tion of the hydrological variables.

It is also worth mentioning that in our study, we focus 
only on the approximate uncertainties related to model 
parameters. However, other uncertainties might arise when 
applying such a modeling chain, such as the selected cali-
bration approach (e.g., manual or automatic approach), the 
errors in measured data (e.g., in runoff or sediment yield), 
or the meteorological forcing data used as input. Addition-
ally, changes in land use may contribute to alterations in the 
hydrological response of the catchment and should also be 
considered when predicting a catchment’s response in the 
future (Li and Fang 2016).

Conclusion

A complex modeling chain was set up to predict the bed 
elevation along the thalweg of the Banja reservoir in the 
Devoll River (Albania), by considering hydro-climatic 
changes, monthly runoff, and sediment yield coming from 
the catchment. Despite the challenge of using three different 
models for predicting the final target variable, we benefit 
from the main features and accuracy of three process-based 
state-of-the-art models. As each model predicts a target vari-
able, which serves as input for the subsequent model in the 
chain, the final target variable of the modeling chain depends 
strongly on the reliability of the antecedent results. To see 
how well this reliability can be ensured, model parameter 
uncertainties are studied for the entire modeling chain by 
using a simplified approach based on the FOSM Method.

These approximate parameter uncertainties (measured 
as a standard deviation) for predicting the bed elevation 
changes along the reservoir increased from 0.28 m (reser-
voir model parameters only) to 0.64 m when considering 

the uncertainties of all 11 parameters of the three models. 
Despite this increase, the values are still comparatively small 
(only 0.19% and 0.44% of the mean measured elevation bed 
in the year 2019, reprectively), and it can be concluded that 
the perturbations in the model parameters are not a signifi-
cant source of uncertainty for the final simulation results.

Furthermore, three combinations of GCM/RCMs for 
RCP2.6 were selected to study the behavior of the involved 
variables in the future (until the year 2100). The spread 
of the climate projections is compared to the approximate 
uncertainties resulting from the perturbations in the model 
parameters. The results show that the spread of climate pro-
jections by the end of the century is on average larger than 
the approximate parameter uncertainties, being 408%, 539%, 
and 272% higher for the prediction of runoff, sediment yield, 
and bed elevation, respectively. However, as demonstrated 
in the case of runoff, they are in the same order of mag-
nitude as the climate change signal inherent in the mitiga-
tion scenario RCP2.6. Nevertheless, and given that change 
signals are higher in other RCPs, the use of such a complex 
modeling chain is a valuable tool for predicting sedimenta-
tion processes in a reservoir for different climate change sce-
narios. The method described in this paper highlights how the 
parameter uncertainty for each model is quantified approxi-
mately, whilst demonstrating their robustness when compar-
ing the larger spread imposed by climate projections. This is 
in particular helpful to guide modelers and practitioners to 
communicate different sources of uncertainties in complex 
modeling chains including climate models, and to highlight 
how uncertainties compare to climate change signals.
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An interdisciplinary model chain 
quantifies the footprint of global 
change on reservoir sedimentation
Kilian Mouris 1*, Sebastian Schwindt 1, María Herminia Pesci 2, Silke Wieprecht 1 & 
Stefan Haun 1

Global change alters hydro-climatic conditions, affects land use, and contributes to more frequent 
droughts and floods. Large artificial reservoirs may effectively alleviate hydro-climatic extremes, but 
their storage capacities are threatened by sedimentation processes, which in turn are exacerbated 
by land use change. Envisioning strategies for sustainable reservoir management requires 
interdisciplinary model chains to emulate key processes driving sedimentation under global change 
scenarios. Therefore, we introduce a model chain for the long-term prediction of complex three-
dimensional (3d) reservoir sedimentation considering concurrent catchment, hydro-climatic, and 
land-use conditions. Applied to a mountainous Mediterranean catchment, the model chain predicts 
increased sediment production and decreased discharge for high and medium emission pathways. 
Increased winter precipitation, accompanied by a transition from snowfall to rainfall, is projected to 
aggravate reduced summer precipitation, emphasizing a growing need for reservoirs. Additionally, 
higher winter precipitation proliferates sediment production and reservoir sedimentation. Land use 
change can outweigh the increased reservoir sedimentation originating from hydro-climatic change, 
which highlights the significance of localized actions to reduce sediment production. Finally, a 3d 
hydro-morphodynamic model provides insights into interactions between global change and reservoir 
sedimentation with spatially explicit information on future sedimentation patterns facilitating the 
implementation of management strategies.

Global change driven by human legacies since the mid-twentieth century is causing a wide range of hydro-
climatic and land use changes that affect the availability of water resources and water  distribution1–5. Additionally, 
global warming intensifies impacts on water resources by bolstering evapotranspiration and extreme weather pat-
terns such as more frequent and intense  droughts6. Large artificial reservoirs for storing water are one of the most 
powerful tools to buffer the effects of such hydrological extremes. However, reservoir sedimentation threatens 
buffer capacities by reducing the storage volume and exacerbating local water availability  problems7–10. Although 
the loss of storage volume depends on regional characteristics, reservoir sedimentation is a global problem, lead-
ing to an annual loss of approximately 0.5–1% in global storage  volume11–15. This trend has led to a decline in the 
existing net reservoir storage volume, though more than 3500 new large dams for hydropower production have 
been built worldwide since  200016,17. Also, the global per-capita storage capacity is shrinking even faster owing 
to population  growth18. Moreover, the anticipated hydro-climatic and land use changes are expected to intensify 
soil erosion and the influx of suspended sediment, hastening the loss of storage  volume19–23. Predicting reservoir 
sedimentation and the subsequent storage loss requires precise and holistic assessments of catchment, river, and 
reservoir processes. Because each system is unique, emulating relevant processes and global change impacts is 
challenging but necessary for designing reservoirs and implementing targeted reservoir management strategies.

A fundamental challenge is that most of the currently available modeling tools to assess global change impacts 
lack the necessary level of detail and capacities for simulating the principal processes driving sediment dynamics 
and reservoir sedimentation. For instance, some models can examine the impact of climate change on the sedi-
ment yield and loads for specific  catchments9,19,24–29 or  continents30,31, but they neglect the influence of land use 
change, albeit acknowledging its importance. Other models account for past land use change but do not account 
for future long-term climate and land use  changes22,32,33. Only a few existing models are capable of accounting for 
combined land use and hydro-climatic change impacts on sediment  dynamics34–37, but they reduce reservoirs to 
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simple lines in one-dimensional hydro-morphodynamic  models38,39 or use simple empirical  estimates40 such as 
the Brune or Churchill curve to assess the effect of climate change on reservoir sedimentation. Such simplistic 
models have limited relevance for decision-making in reservoir management, which requires explicit knowl-
edge of sediment deposition patterns that a line-like model cannot show. Simplistic reservoir models can still 
approximate the storage loss of a reservoir, but they cannot account for spatially explicit morphological processes, 
including bed level changes such as deposition delta evolution. Furthermore, simplified models do not consider 
recirculation zones, lateral inflows, the influence of the outflows (e.g., turbine operation), and other complex 3d 
hydrodynamics. However, such information is essential for the development and implementation of appropriate 
and sustainable reservoir management strategies. For example, venting of rapid sediment-laden flows on the 
reservoir bottom, referred to as turbidity  currents41, and other sediment routing actions (e.g., sluicing) require 
a deep understanding of 3d hydrodynamics. Also, sediment deposits in front of the bottom outlets of a dam 
pose a significant risk to the safe operation of a  reservoir42, which can be alleviated through local dredging or 
flushing operations. Both dredging and spatio-temporally efficient flushing require 3d information on hydro-
morphodynamic processes, but currently, no modeling system or chain provides such information. Thus, state-
of-the-art modeling tools do not imply multidisciplinary simulations needed to predict reservoir sedimentation 
processes and patterns in the long term and in light of global change scenarios.

To address these challenges, we present a novel model chain that uses information on catchment physics, 
including the hydro-climatic state and land use to predict long-term sediment dynamics and multi-dimensional 
reservoir sedimentation processes. The process-based model chain accounts for changes in temperature, precipi-
tation, discharge, sediment yield, and reservoir sedimentation, by also considering the geometry and operating 
scheme of the reservoir. The centerpiece of the model chain is a three-dimensional (3d) numerical model, which 
predicts flow dynamics and sediment transport and enables us to show how different global change scenarios 
impinge on reservoir sedimentation processes.

Methods
Model chain and application example
The process-based model chain assesses the effect of climatic, land use, and resulting hydrological changes 
on reservoir sedimentation. First, the primary impacts of climate change are predicted for three Representa-
tive Concentration Pathways (RCPs) using three different climate models, including near-surface temperature 
and precipitation. To predict secondary climate change impacts resulting from temperature and precipitation 
changes, a state-of-the-art hydrological model, a soil erosion plus sediment transport model, and a 3d hydro-
morphodynamic reservoir model are set up and combined, to benefit from their specialization and the possibility 
to correctly account for physical processes at different scales. In addition, datasets derived from a downscaled 
global change analysis  model43 enable the emulation of future land use change for four Shared Socioeconomic 
Pathways (SSP-RCPs). The model chain served to simulate future projections of sediment trapping in a reservoir 
as a function of three scenarios of hydro-climatic change and four scenarios of combined climate and land use 
change (Fig. 1).

Although individual model input parameters are calibrated, the output is still subject to uncertainty that 
propagates through the entire model chain and leads to superposition effects. Additional uncertainty stems 
from long-term predictions of climate projections, which exceed the inherent uncertainty of the calibrated input 
 parameters44. Finally, the model chain enables long-term process simulation to examine the influence of climate 
and land use changes on reservoir sedimentation, where quantitative outputs are still subject to uncertainty.

An application of the model chain showcases the Banja reservoir in the Devoll catchment in Southeastern 
Albania (Fig. 2) with a typical Mediterranean climate featuring high erosion rates and vulnerability to climate 
 change45–47. The emerging region is experiencing major land use changes and large investments in  hydropower48. 
The mountainous Devoll catchment spans 2900  km2 with elevations ranging from 113 to 2390 m a.s.l. The land 
use is currently characterized by forest (30%), scrub and herbaceous vegetation (25%), and agriculture (25%). 
Over recent decades, land use has undergone substantial changes, particularly after the collapse of communism, 
and is increasingly influenced by global market  principles49. Dry hot summers and wet winters characterize the 
Mediterranean hydro-climate with low summer and high winter and spring flows. In winter, high elevations 
of the catchment are frequently covered by snow leading to a precipitation and snowmelt-driven flow regime. 
High rainfall erosivity on steep slopes with poorly aggregated soils contributes to high sediment production 
and sediment  yields50,51 leading to a great potential for reservoir sedimentation of existing and planned reser-
voirs. Commissioned in 2016, the Banja reservoir has a length of 14 km, a maximum water depth of 60 m near 
the dam, a surface of 14 km2, and a maximum storage capacity of 400 million  m3. A further upstream-located 
reservoir, commissioned in 2020, was not included in this study because ground truth data were not available 
at the time of calibration.

Available ground truth data
Ground truth data on discharge and suspended sediment concentrations (SSCs) were obtained from the Kokel 
gauging station (Fig. 2) for a period between May 2016 and April 2018, when the water depth exceeded a 
minimum measurement threshold of 1 m. Discharge and SSC were monitored with two stationary-mounted 
horizontal acoustic Doppler current profilers (H-ADCPs)52.

A digital elevation model (DEM) of the bathymetry was generated based on a drone survey prior to the 
reservoir filling in 2016. In 2019, the bathymetry of the reservoir was re-assessed using moving ADCP measure-
ments. The 2016 and 2019 topography recordings were projected on a numerical mesh and served to calculate 
the height of sediment deposits in the reservoir. Calibration of the 3d numerical model was performed based on 
bed level changes along the thalweg. During a field survey in 2021, sediment samples were collected from the 
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reservoir bed at 27 locations in the reservoir using an Ekman grab sampler that samples the uppermost 20 cm 
of the deposits. Sampling was carried out in both deep (> 40 m) and shallow (near tributaries) areas of the entire 
reservoir. The grain size distributions of the samples were determined with a portable particle size analyzer based 
on laser diffraction and revealed that the sediment depositions predominantly consisted of fine sediments with 
cohesive characteristics (< 63 µm). A laboratory analysis of the deposited sediments showed dry bulk densities 
ranging from 726 to 950 kg  m−3.

Climate and land use projections
The impacts of climate change on reservoir sedimentation are estimated for three RCPs using ensembles of three 
Global Climate Models (GCMs), which are dynamically downscaled by two different Regional Climate Models 
(RCMs). To mitigate potential bias stemming from the selection of climate models, specific model combinations 
with similar climate trends for precipitation and temperature were grouped. One climate model from each group 
was used to represent the large variety of GCMs while using only 3 GCM-RCM combinations (Supplementary 
Information, Table S1). The selected combinations (Supplementary Information, Table S1) are considered rep-
resentative of the large variety of GCM-RCMs. The climate models provide meteorological information on total 
precipitation, near-surface temperature, near-surface relative humidity, surface downwelling, shortwave radia-
tion, and near-surface wind speed using the MultI-scale bias AdjuStment (MidAS v0.2.1)  tool53 for correcting 
daily mean values and the ERA5 reanalysis  dataset54 as reference data. The resulting projections have a spatial 
resolution of 0.11 degrees and a temporal resolution of 3 h over a period from 01/1981 to 12/2100.

The here-used three RCPs encompassed a low greenhouse gas emissions pathway (RCP2.6), a medium green-
house gas emissions pathway (RCP4.5), and a high greenhouse gas emissions pathway (RCP8.5). In combina-
tion with hydro-climatic change scenarios, land use  projections43 were implemented in the model chain (Fig. 1) 
through four Shared Socioeconomic Pathways (SSPs). The SSPs embrace greenhouse gas emissions and account 
for climate change, population growth, economic development, and technological advancement, thereby offering 
more holistic global change  scenarios55 in accordance with the Coupled Model Intercomparison Project Phase 
6 (CMIP6)  design56. Thus, catchment responses to sustainable development (SSP1-RCP2.6), middle-of-the-
road development (SSP2-RCP4.5), unequal development (SSP4-RCP4.5), and fossil-fueled development (SSP5-
RCP8.5) were evaluated in combination with the GCMs, RCMs (Table 1; more detail in Supplementary Informa-
tion, SI1). In total, the model chain was run for 21 scenarios comprising 3 RCP and 4 SSP-RCP scenarios, each 

Figure 1.  Model chain simulating the effects of global change on reservoir sedimentation as a function 
of land use (in gray and by means of Shared Socioeconomic Pathways, SSPs) and climate change based 
on Representative Concentration Pathways (RCPs), and three Global Climate Models (GCMs) with local 
refinement through two Regional Climate Models (RCMs).
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using 3 GCM-RCM combinations. The mean values of the climate model ensemble served to obtain robust trends 
and derive a range of possible outcomes due to the spread of climate projections (see details in Pesci et al.44).

Figure 3 illustrates the four global change scenarios for the Devoll catchment, indicating the major land use 
classes and their projected changes by 2100. The urban land use category shows almost no change and constitutes 
approximately 5% of the total area. In contrast, the distribution of crops, forests, and grasslands varies consid-
erably across the scenarios. In the SSP1-RCP2.6, both forest and grassland areas are projected to experience a 
substantial increase of up to 70% by 2100. Conversely, the SSP2-RCP4.5 and SSP4-RCP4.5 scenarios predict a 
decline in forest and grassland cover by 40% and 55%, respectively. In both RCP4.5 scenarios, the decline in 
forest and grassland in the far future is primarily caused by the expansion of agricultural land, particularly for 
cultivating bioenergy crops. For example, the SSP2-RCP4.5 scenario shows a significant increase in energy crop 
production due to the requirement of reducing greenhouse gas emissions with socioeconomic trends follow-
ing their original course. Bioenergy crops are commonly used grain-based crops, such as rapeseed, corn, and 
sunflower. In the SSP5-RCP8.5 scenario, the land use changes marginally, as technological progress is achieved 
through fossil-fueled development. Popp et al.57 provide more details on land use projections for various SSPs.

Figure 2.  Location of the Mediterranean showcase catchment (a) in Albania, (b) the extent of the 3d hydro-
morphodynamic numerical model including tributaries (blue arrow) and outflows (red arrows), and (c) the 
catchment topography with gauging stations, sub-catchments, and location of the Banja reservoir. The figure was 
created by the authors using QGIS3.18.1 (https:// qgis. org/ en/ site/).

Table 1.  Investigated scenarios to analyze climate change (RCP) and global change (SSP-RCP) impacts on 
reservoir sedimentation.

RCP (climate change only) SSP-RCP (global change)

RCP2.6 (low emissions) SSP1-RCP2.6 (sustainability)

RCP4.5 (stabilized emissions)
SSP2-RCP4.5 (middle of the road)

SSP4-RCP4.5 (inequality)

RCP8.5 (high emissions) SSP5-RCP8.5 (fossil-fueled development)
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Hydrological model
The hydrological processes in the catchment are implemented in the model chain in the form of the Water Flow 
and Balance Simulation Model  (WaSiM58,59) using the process-oriented Richards approach, with an additional 
sub-model for snow interception under forest  canopies60. The model domain is defined at a spatial resolution of 
1  km2 and a temporal resolution of 3 h. In the case of the Devoll catchment, the calibration period spanned from 
May 2016 to April 2018 for which discharge measurements were available. WaSiM was initiated with a warm-up 
period of one year (May 2015 to April 2016). WaSiM produces hydrographs that constitute the liquid upstream 
boundary for the 3d hydro-morphodynamic model. Snow cover was estimated by WaSiM based on an energy 
balance approach and served as input for the soil erosion and sediment transport model. Missing information 
on the climate variables of relative humidity, wind speed, and global radiation was interpolated through inverse 
distance weighting. In addition, missing precipitation and temperature data were derived with a combination 
of elevation-dependent regression and inverse distance weighting in the model. More detailed information on 
the hydrological model, its calibration and validation, and the selected modeling approaches is provided in 
Supplementary Information SI2.

Soil erosion and sediment transport model
In the model chain, the Revised Universal Soil Loss Equation (RUSLE)61 serves to predict gross soil erosion, 
and the SEdiment Delivery Distributed (SEDD)62 model estimates the sediment delivery and transport at the 
catchment scale. The predicted monthly suspended sediment yields constitute the solid-materials upstream 
boundary of the 3d hydro-morphodynamic reservoir model. A semi-automated (Python) workflow evaluates 
the combination of the RUSLE and SEDD model to account for the non-erosivity of snowfall and the erosiv-
ity of snowmelt by introducing a seasonal memory into the RUSLE. In the case of the Devoll catchment, the 
combined soil erosion and sediment transport model was calibrated using suspended sediment load measure-
ments from 05/2016 to 04/201850. Alternative methods for estimating sediment concentrations, such as constant 
concentration-discharge relationships, are not suitable because they are likely to vary with climate change. The 
key advantage of choosing the RUSLE-SEDD combination is the efficient consideration of future changes in land 
use, precipitation, and temperature (Fig. 1). To implement the calculated Suspended Sediment Yield (SSY) into 
boundary conditions for the next model element, it must be converted into a time-discrete Suspended Sediment 
Concentration (SSC). SSY is the total suspended sediment transported by the river (or through the outlet of a 
catchment) over a specific period, and SSC refers to the concentration of sediment particles suspended in the 
water column. Hence, the SSC is calculated back from the monthly SSY and is therefore constant for each month. 
Detailed information on the RUSLE-SEDD, the validation, and the conversion of SSY to SEDD are provided 
with the Supplementary Information SI3.

3d hydro-morphodynamic model
The centerpiece of the interdisciplinary model chain for the coupled simulation of hydro-morphodynamic pro-
cesses driving reservoir sedimentation is a 3d numerical model (SSIIM 2-Sediment Simulation In Intakes with 
Multiblock Option)63. 3d modeling is particularly important to represent variations in vertical suspended sedi-
ment concentrations, velocities, and the complex three-dimensional flow field with helical flows. For modeling 
reservoir sedimentation resulting from fine sediment deposition, multiple grain sizes are considered in the 
model. For the Banja reservoir, the model accounted for four inflow and two outflow boundaries (spillway and 

Figure 3.  Projected land use changes in the Devoll catchment for the four investigated global change scenarios 
(combinations of RCPs and SSPs).
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turbine inlet), with inflow discharges and inflowing sediment derived from the hydrological model and the soil 
erosion and sediment transport model, respectively. The outflow was calculated as a function of the reservoir 
water level, the inflow, the storage curve, and site-specific operating rules that target a seasonal water level. The 
model calibration was performed based on the observed bed changes between the bathymetric surveys conducted 
in 2016 and 2019.

Since the computing time of a hydro-morphodynamic numerical 3d model tends to take several weeks to 
months (Supplementary Information, SI4), several simplifications were made to obtain acceptable runtimes 
for predicting global change impacts by 2100. For example, the resolution of the computational mesh may be 
as coarse as 50-m edge lengths, which then require specific turbulence models, such as the Reynolds-averaged 
Navier–Stokes (RANS) equations. Furthermore, SSIIM2 uses an implicit solver for the Navier–Stokes equa-
tions, which allows the use of large time steps (5400 s) and consequently reasonable computing  times64,65. Also, 
additional algorithms, such as flow limiters, were implemented for computational stability in flat or triangular 
cells near the reservoir banks that may result from the wetting and drying algorithm. The advantage is that only 
wetted cells are considered in SSIIM2, which reduces the number of cells during calculation, especially when 
the water level changes, but also when reservoir sedimentation occurs.

The physical simplifications and numerical workarounds are expressed in the numerical model by calibration 
parameters that must be adjusted individually for each  reservoir66. In the context of calibration, the evaluation of 
uncertainties is of paramount importance and can only be estimated by data-driven approaches, such as Bayesian 
 calibration67,68. Still, 3d-modeling is physically more precise than often-used 1d or 2d hypotheses that reduce 
the complex flow patterns in a reservoir to a geometric line or plan. As a result of detailed spatial modeling of 
hydro-morphodynamic processes, the related uncertainties are  lower69, leading to less risk of  equifinality70. 
Further details on the 3d hydro-morphodynamic model and the developed codes used to generate the upstream 
and downstream boundary conditions can be found in Supplementary Information SI4.

Results
The process-based model chain was used to assess the impact of hydro-climatic and land use changes on res-
ervoir sedimentation and its preceding processes in the Devoll catchment and Banja reservoir from January 
1981 to December 2100. The first 30 years (1981–2010) served as a reference period for comparison with three 
future periods: the 2011–2040 period represents the near future, the 2041–2070 period the mid future, and the 
2071–2100 period the far future. The subsequent reservoir sedimentation of the Banja reservoir was simulated 
from impoundment in 2016 to December 2100 (84 years).

Climate change impacts
Temperature and precipitation
Climate change primarily affects temperature and precipitation (primary climate change impacts) which drive 
hydrological and sediment-related processes, such as discharge, soil erosion, and the transport of sediments into 
the reservoir (secondary climate change impacts). The mean annual temperature in the catchment increases the 
most for RCP8.5, notably by 2.5 °C for the mid future and by 4.3 °C for the far future compared to the refer-
ence period (Fig. 4a and Supplementary Information, Fig. S4). The temperature increase is smaller for medium 
(RCP4.5) and low (RCP2.6) emissions for the mid (1.8 °C and 1.3 °C, respectively) and (2.2 °C and 1.3 °C, respec-
tively) far future. Also, the seasonal temperature trends are expected to remain nearly unchanged for all RCPs, 
with slightly higher temperature increases in summer compared to winter, particularly for RCP8.5 (Fig. 4a).

Predicted changes in precipitation patterns are less clear (Fig. 4b), with trends toward more winter (January to 
March) and less summer precipitation. Thus, typical Mediterranean precipitation patterns of wet winters and dry 
summers can be expected to slightly intensify (Supplementary Information, Fig. S5). This trend is evident across 
all emission RCPs but is most pronounced for RCP8.5. In the far future, total annual precipitation is expected to 
increase by 2–4% for RCP2.6, while total annual precipitation is expected to decrease by up to − 9% for RCP8.5 
(Supplementary Information, Table S7). No considerable total precipitation changes are expected for RCP4.5

Discharge and suspended sediment yield
As a result of higher temperatures (Fig. 4a), mean annual snow storage is projected to decrease substantially in 
all RCPs, with the largest decrease of 83% anticipated for RCP8.5 and the smallest decrease of 36% for RCP2.6 
in the far future (2071–2100) (Supplementary Information, Table S7, and Fig. S6).

Similar to precipitation, RCP2.6 results in a higher mean annual discharge than the other scenarios, most 
prominently in the near to mid future with an increase of up to 6%. However, the mean annual discharges 
show a declining trend in both the RCP4.5 and RCP8.5, with an accelerated decrease over time. Particularly for 
RCP8.5, the mean annual discharge is expected to decrease by more than 20% in the far future (Supplementary 
Information, Table S8). The seasonal variations are similar for the three RCPs and intensify with increasing emis-
sions, with spring and summer discharge decreasing (e.g., by more than 40% in May) and January and February 
discharge increasing (Fig. 5a). Due to the changes in the precipitation regime, the decrease in snow storage, and 
the earlier snowmelt, the discharge peak is predicted to shift from April to March (Supplementary Information, 
Fig. S7). While annual and monthly discharge averages exhibit decreasing trends, the occurrence of extreme 
events such as floods with a 50-year return period increase by 7% (RCP2.6), 11% (RCP4.5), and 19% (RCP8.5) 
in the far future, also effecting on soil erosion.

The annual suspended sediment yield (SSY) of the Mediterranean Devoll catchment is expected to increase 
from 1.2 million tons  year−1 by up to 9% for RCP2.6 and by up to 4% for RCP4.5 (Supplementary Information, 
Table S8). Despite a decrease in precipitation and discharge for RCP8.5, the simulations show an increase in 
SSY by 5% in the near to mid future. Only in the far future will the SSY also decrease by approximately 3%. The 
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predicted seasonal changes are similar to the predictions for precipitation and discharge and show a considerable 
increase in the winter months and a decrease in spring and summer (Fig. 5b). In contrast to the annual SSY, the 
mean annual SSC increases for all emission scenarios but most substantially for RCP8.5 (27%) in the far future 
(Supplementary Information, Table S8). The increase in SSC for RCP2.6 is the lowest and ranges from 3 to 8%. 
The resulting predictions of discharge and sediment yield control the amounts of water and sediment arriving 
at the upstream boundary of the 3d reservoir sedimentation model.

Reservoir sedimentation
The predicted loss in storage volume of the Banja reservoir was most prominent for RCP2.6 (Fig. 6a). Specifically, 
the loss is estimated to be 23% after 85 years since the impoundment and is caused by the highest sediment flow 
along with the highest discharges for RCP2.6. However, the uncertainty in the climate projections is highest for 
RCP2.6 which is indicated by the high standard deviation (Fig. 6a). The storage volume loss for RCP4.5 and 
RCP8.5 is similar with approximately 21%. Interestingly, in the far future, the storage volume loss for RCP4.5 
slightly surpasses that of RCP8.5, which can be explained by the declining SSY associated with RCP8.5 in the far 
future. In addition, the spread of climate projections is smallest for RCP4.5, where all climate projections within 
the ensemble resulted in similar volume losses.

The sedimentation rate and subsequent decrease in reservoir storage volume are not only determined by the 
sediment inflow but also by the trapping efficiency (TE, Fig. 6b), which depends on geometric reservoir char-
acteristics and its operation. TE represents the ratio of the deposited sediments to the time-integrated sediment 
inflow over a certain period. During the first simulation decade, nearly all inflowing sediment is trapped, result-
ing in a TE exceeding 99%. TE decreases for all RCPs to 95.8 to 97.2% after 80 years of impoundment as a result 
of changed hydrodynamics because of bathymetric change (i.e., fine sediment deposition). Yet, the trend is not 
generally continuous. For instance, in the case of RCP2.6, TE exhibits an initial increase to more than 98% after 
50–60 years but decreases abruptly afterward. This fluctuation is caused by a predicted wet season with excep-
tionally high inflows over several weeks in one of the climate projections within the RCP2.6 ensemble, leading 

Figure 4.  Decadal changes in monthly and spatial averages for the Mediterranean Devoll catchment relative 
to the reference period (1981–2010). (a) Average monthly temperature change (°C) and (b) average monthly 
precipitation change (mm). The figure was created by the authors using Matplotlib 3.5.1 (https:// matpl otlib. 
org/).
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to a decrease in TE and also contributing to increased uncertainty. The TE trends are subjected to significant 
uncertainty due to the variability in climate projections and the resulting timing of flood events, which means 
that a statistically significant difference between the RCPs cannot be identified.

The reservoir bed levels after 84 years of operation show similar sedimentation patterns across the RCPs 
and climate models (Fig. 7). Following the commissioning of the dam, the reservoir is in a deposition regime, 
characterized by ongoing sedimentation primarily concentrated at the head of the reservoir. As sedimentation 
progresses, the deposition delta gradually moves in the downstream direction. Consequently, a river channel 
develops in the upstream section of the reservoir, which reaches a state of sediment balance (see bed level evolu-
tion in Supplementary Information, SI9). The channel and delta progression extends slightly further downstream 
in RCP2.6 because the sediment yield is higher compared to RCP4.5 and RCP8.5 (Fig. 7). In addition, the sub-
stantial sediment deposition at the confluence of the two main tributaries causes the eastern tributary in RCP2.6 
to be temporally disconnected for MOHC-HadGem2 at low water levels.

Global change impacts through combined and isolated climate and land use change
The application of projected land use change in addition to climate change projections amplifies the differences 
in future predictions for the SSY (Fig. 8). The only global change scenario with a decreasing SSY trend for the 
Mediterranean Devoll catchment is SSP1-RCP2.6 with − 3% for the mid and − 8% for the far future (Supplemen-
tary Information, Table S9). The SSY increases the most for SSP2-RCP4.5 in the mid (21%) and the far (41%) 
future. SSP4-RCP4.5 leads to a slightly lower increase in SSY in the mid (12%) and far (19%) future. SSP5-RCP8.5 
causes a peak increase in SSY of 13% in the mid future, while SSY increases by 8% in the far future. The SSY 
seasonality is not affected by land use change and is solely driven by hydro-climatic variables, which is why all 
four scenarios show a decrease in spring and summer and an increase in winter.

The isolated effects of hydro-climatic and land use change on the SSY of the Devoll catchment reveal that land 
use exerts a continuous influence resulting in either a steady decrease (e.g., SSP1-RCP2.6, see Fig. 9) or increase 
(e.g., SSP2-RCP4.5, see Fig. 9). Hydro-climatic change does not exhibit such a continuous change pattern. For 

Figure 5.  Decadal percent changes relative to the reference period (1981–2010) for the three climate change 
scenarios investigated. (a) Changes in mean monthly discharge (%) and (b) changes in mean monthly 
suspended sediment yield (%) of the Mediterranean Devoll River. The figure was created by the authors using 
Matplotlib 3.5.1 (https:// matpl otlib. org/).
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Figure 6.  Evolution of (a) the loss in storage volume after impoundment and (b) the trapping efficiency at 
10-year periods for the Banja reservoir and the three investigated RCPs. The shadowed areas represent the 
spread of ensemble climate projections, calculated as the mean value ± standard deviation.

Figure 7.  Comparison of reservoir bed levels across three RCPs and three climate models after 84 years of 
operation (2100).
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example, the influence of hydro-climatic change on the SSY for SSP1- RCP2.6, SSP2-RCP4.5, and SSP4-RCP4.5 
peaks in the mid future and decreases in the far future. For SSP5- RCP8.5, the trend changes completely in the 
far future, and hydro-climatic changes only result in a lower annual SSY compared to the reference period due 
to a decrease in precipitation.

The considerable changes in the SSY effect on sedimentation processes in the reservoir. Among the global 
change scenarios, the greatest volume loss is observed for SSP2-RCP4.5, while SSP1-RCP2.6 leads to the lowest 
loss (Supplementary Information, Fig. S8a). The differences between the global change scenarios are much more 
significant than those observed among isolated climate change scenarios. Similar to the climate change scenarios, 
the TE decreases across all SSPs over 84 years of impoundment, declining from initial values exceeding 99% to 
values ranging between 96.3 and 98.6% (Supplementary Information, Fig. S8b). Notably, no statistically signifi-
cant differences in TE were identified among the SSPs, while the deposition patterns point to considerable delta 
formation and progression for SSP2, and less pronounced, SSP4. Specifically, these two scenarios with high SSY 
cause the delta to advance up to 4.5 km into the reservoir after 84 years of operation (Fig. 10). In contrast, for 
SSP1, the scenario with the lowest SSY, the delta does not reach the eastern tributary. Furthermore, scenarios 
with higher storage losses and consequently lower storage volumes tend to exhibit lower TEs.

Discussion
The model chain was applied to the Mediterranean Devoll catchment, serving as a representative example of 
regions characterized by high erosion rates and a Mediterranean hydro-climatic pattern. Temperature and pre-
cipitation trends aligned with studies conducted in other Mediterranean areas and impact both discharge and 
sediment production within the  catchment1,28,45,71. While the average precipitation patterns vary marginally for 

Figure 8.  Decadal percent changes relative to the reference period (1981–2010) of the mean monthly change 
in the suspended sediment yield, SSY (%), of the Mediterranean Devoll catchment for the four global change 
scenarios investigated. The figure was created by the authors using Matplotlib 3.5.1 (https:// matpl otlib. org/).
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RCP4.5 and the average decreases for RCP8.5, the seasonal variations for these pathways without emission reduc-
tion are projected to intensify with less precipitation and discharge in spring and summer. Projected increases in 
winter precipitation are unlikely to be stored as snow due to significant temperature rises across all RCPs. As a 
result, the elevated winter precipitation will be less available during the even drier spring and summer months, 
which are crucial for plant growth and  agriculture72. Consequently, Mediterranean regions are expected to require 
increased artificial water storage, irrespective of the ultimately adopted RCP. Furthermore, more sediment will 
be mobilized due to less snow and higher peak flows in winter appearing nearly one month earlier in the  year1,73, 
which will increase reservoir sedimentation in Mediterranean regions.

Reservoir sedimentation is controlled by the sediment yield and discharge coming from the catchment. 
Seasonal changes in the sediment yield show an increase in the winter months and a decrease in spring and 
summer. However, the changes in the sediment yield may not necessarily be proportional to changes in precipi-
tation and  discharge30,74. Despite considerable reductions in discharge for RCP4.5 and 8.5, the sediment yield 
either increases or remains within the margin of error of the model chain, providing evidence of rising sediment 
concentrations, particularly in high emissions scenarios. The higher sediment yields occur despite reduced 
discharge, which can be attributed to more frequent extreme precipitation events and winter rainfall (instead of 
snow) on less vegetated soils, which are more susceptible to erosion. Consequently, more erosive rainfall affects 
erodible soils, especially in the most likely and less sustainable climate change scenarios of RCP4.5 and RCP8.5. 
The consideration of the decreasing share of grassland and forest in SSP2-RCP4.5 and SSP4-RCP4.5 leads to an 
even more pronounced increase in soil erosion and sediment yield. Thus, unsustainable development in Medi-
terranean catchments leads to higher soil erosion and consequently soil loss, which threatens the livelihood of 
large portions of the  population75. Particularly for SSP4-RCP4.5, a vicious circle risks opening up, since global 
inequality might lead to further environmental degradation and thus even more soil  loss76. Land use change in 
the SSP1-RCP2.6 sustainability scenario results in a trend reversal and the sediment yield decreases due to the 
expansion of grasslands and forests despite increasing precipitation.

In the Mediterranean Devoll catchment, the impact of land use change on annual sediment yield outweighs 
the effect of hydro-climatic changes, particularly in the far future (Fig. 9). The crucial importance of land use 
on erosion and sediment yield is consistent with previous  findings22,25,33,77. For example, alterations in land use 
resulting from climate change were shown to have a more pronounced effect on soil erosion than changes in 
precipitation or temperature  alone78. Therefore, effective management of local land use represents an opportunity 
to alleviate the effects of climate  change79. Actions such as  afforestation78, contour farming, or riparian buffers can 
effectively reduce sediment yields and subsequent reservoir sedimentation. In cases where bioenergy production 
requires acreage (e.g., SSP2), the considerate selection of bioenergy crops can help regulate sediment production 
in a  catchment80. Preferably, the cultivation of perennial grasses with extensive vegetation cover should be favored 
over grain-based energy crops, such as soybean, corn, and  rapeseed81. However, not all sediment production 

Figure 9.  Influence of global (land use and hydro-climatic) change on the SSY (%) of the highly erosive 
Mediterranean catchment of the Devoll River for future 30-year periods.
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processes are directly driven by land use. For instance, fluvial erosion is affected by bank stability and the basal 
shear stress of a river.

While projections for the Devoll catchment indicate that land use change will dominate over the effects of 
climate change on soil erosion and suspended sediment yield in Mediterranean areas, contrasting results are 
expected in regions with substantial increases in rainfall  erosivity47. For instance, in central Europe or along 
the North American East coast, hydro-climatic change is likely to exert a greater influence on soil erosion than 
changes in land use.

Reservoirs can mitigate seasonal hydrological fluctuations caused by global change, provided that sediment 
inflow does not substantially diminish their storage capacity. However, storage capacity is expected to decrease 
as sedimentation rates increase, which in turn will affect, for example, the availability of water for irrigation. 
To this end, sustainable reservoir operation should aim for a small trapping efficiency, which naturally declines 
over time due to narrower cross-sections with higher sediment conveyance capacity through increased mean 
flow  velocities42. In the Banja reservoir, a typical decrease in TE is observed (Fig. 6), especially in scenarios 
characterized by high sediment yield. However, the high uncertainty in the climate projections hampers a clear 
differentiation between TE trends among RCPs and SSPs. Due to higher flow velocities and transport capacities in 
the reservoir, TE decreases primarily when high discharges occur over a period of several weeks, while sediment 
originating from stochastically occurring singular extreme events tends to be largely trapped. Beyond TE, the 
predicted reservoir bed levels (Fig. 10) indicate considerable sedimentation at the reservoir head (delta deposi-
tion), leading also to the formation of a channel. This process of channel formation is a common characteristic 
observed in large  reservoirs42,82. The most significant difference among the global and climate change scenarios 
is that the channel and the delta progression extend further downstream in scenarios with high sediment yield 
(e.g., RCP2.6, SSP2-RCP4-5, and SSP4-RCP4.5).

These findings provide valuable insights for implementing targeted reservoir management strategies. For 
example, one option to reduce significant upstream sediment deposition is to lower the water level before the 
anticipated high sediment inflow during the wet season. This approach allows sediments to be re-suspended and 
transported closer to the dam, with the option of routing them through the reservoir or storing them in the dead 

Figure 10.  Comparison of reservoir bed levels across four SSPs and three climate models after 84 years of 
operation (2100).
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storage. However, these sediment deposits near the dam can pose safety concerns, such as blockage of bottom 
outlets, while offering opportunities for easier flushing that facilitates reservoir  management7. Thus, the precise 
3d modeling also aids in delineating dam safety concerns, but the model chain cannot yet process feedback of 
decreasing reservoir storage on water availability and thus on land use.

Although this study did not consider specific management strategies and the monitoring period was limited, 
it emphasizes the capacities of a novel interdisciplinary model chain to predict long-term reservoir sedimenta-
tion in Mediterranean areas. Still, absolute sediment-related quantities are subject to considerable uncertainty, 
primarily stemming from variations in climate projections and their propagation through the model chain. 
On the contrary, the lower uncertainty because of the physically greater precision of the 3d numerical model 
played a subordinate role. Thus, to address the uncertainty in long-term predictions of reservoir sedimentation, 
a primary concern will be to improve the accuracy of climate predictions. Ultimately, the climate projections 
only determine the framework conditions of this inherently precise and efficient model chain, which produces 
predictions of reservoir sedimentation with unprecedented precision and time horizons to test and implement 
effective land-use management actions, even in remote regions.

Conclusions
A complex interdisciplinary and physics-informed model chain demonstrates considerable impacts of hydro-
climatic and land use changes on water availability, sediment production, and reservoir sedimentation in a 
Mediterranean region Applied to the Devoll catchment, a typical Mediterranean mountainous region with high 
sediment production, the model chain shows that global change leads to increased sediment yields and decreased 
river discharge, with seasonal shifts for most of the climate and land use change projections considered. A low-
emission scenario (SSP1-RCP2.6) sustains higher discharges by 2100, while mid to high greenhouse gas emis-
sion and unequal development (SSP4-RCP4.5) or fossil-fueled development (SSP5-RCP8.5) scenarios amplify 
water scarcity. Specifically, increased winter rainfall, reduced snowfall, and decreased summer precipitation 
contribute to limited water availability during hot and dry Mediterranean summers, emphasizing the need for 
artificial water storage in reservoirs.

In the low-emissions scenarios, higher discharges lead to elevated sediment yields but lower sediment con-
centrations compared to less sustainable emissions scenarios. In particular, the sediment concentration decreases 
with the implementation of sustainable land use (SSP1-RCP2.6). In contrast, less sustainable land use leads to 
higher sediment concentrations and sediment yields (SSP2-RCP4.5 and SSP4-RCP4.5) due to decreased forest 
and grassland areas. The scenarios with higher sediment yields experience the most substantial loss of storage 
volume and the delta moves further downstream, resulting also in a decrease in trapping efficiency (TE).

The three-dimensional (3d) hydro-morphodynamic model at the end of the model chain goes beyond simplis-
tic parameters, such as TE, and provides valuable insights into sedimentation patterns and processes controlled by 
global change. Although simplistic models may yield similar TE results as multidimensional numerical models, 
a spatially explicit 3d model pinpoints hotspots of sedimentation, providing crucial information for sustainable 
reservoir management practices like dredging or reservoir flushing.

Ultimately, the interdisciplinary model chain highlights that land use change outweighs climate change effects 
in Mediterranean regions. Therefore, localized management actions for land use change in the catchment, such 
as policy-enforced crop adaptations and afforestation, can reduce soil loss and sediment production. In addi-
tion, the long-term prediction strength of the model and the spatially explicit deposition patterns enable the 
implementation of targeted reservoir management strategies.

Data availability
The complete datasets generated during and/or analyzed during the current study are available from the cor-
responding author on reasonable request.
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