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Abstract
In this paper, we introduce the concept of the Fluid Jacobian, which provides a description of the power transmission that
operates between the fluid and mechanical domains in soft robotic systems. It can be understood as a generalization of the
traditional kinematic Jacobian that relates the joint space torques and velocities to the task space forces and velocities of a
robot. In a similar way, the Fluid Jacobian relates fluid pressure to task space forces and fluid flow to task space velocities.
In addition, the Fluid Jacobian can also be regarded as a generalization of the piston cross-sectional area in a fluid-driven
cylinder that extends to complex geometries and multiple dimensions. In the following, we present a theoretical derivation
of this framework, focus on important special cases, and illustrate the meaning and practical applicability of the Fluid
Jacobian in four brief examples.
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1. Introduction

Soft robots are commonly driven using hydraulic or pneumatic
pressure (or vacuum). Such fluid powered soft systems employ
a variety of actuator types such as bellows Pridham (1967),
McKibben muscles Tondu (2012), and pneu-nets Mosadegh
et al. (2014), and they come in a large range of designs in-
cluding grippers Ilievski et al. (2011), crawlers Tolley et al.
(2014), and swimmers Marchese et al. (2014). An important
characteristic of soft robots is that the mechanical structure, the
actuation, and other components are often indistinguishably
connected and embedded in the same substrate. With this in
mind, we will use the word actuator quite broadly when we
talk about soft robotic systems in the following.

An important question in the context of such fluid-driven
systems is how the pressure p in the fluid domain relates to
the forces and torques F exerted in the mechanical domain,
and how that relationship depends on the configuration q.
That is, we are looking for an expression of the relationship

F ¼ f ðp, qÞ, (1)

which is of high utility both in the control and the design of
soft robotic systems. In conventional rigid robots, there
exists a linear relationship between the forces in the actuator
space (often referred to as the joint torques) and the forces in
the task space. The inverse-transpose of the Jacobian of the

mapping between these two spaces maps the joint torques to
the task space forces (Siciliano et al. 2008, Chapter 3.3).

For fluid-driven soft robotic systems, deriving such a
model is a much more challenging task, and the precise
structure of equation (1) is not immediately apparent. Since
mechanical structure and actuation are intertwined, the
actuator space may not be well defined for many soft robotic
systems. In addition, soft systems may have complex ge-
ometries, the actuators themselves may be elastically de-
formable, and additional reinforcing elements such as fibers,
plates, or membranes contribute kinematic constraints and
interrelate forces. Furthermore, many soft robotic systems
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are under actuated and the motion of the internal degrees of
freedom is determined by an equilibrium between pressure-
generated forces and elastic deformations. These effects are
similar to under actuation in rigid robotic systems, such as
robotic hands Birglen et al. (2007).

While in traditional hydraulics and pneumatics, the force
exerted by a piston is simply the pressuremultiplied by the area
of the piston cross-section Ilango and Soundararajan (2011),
we would expect a more complex, state-dependent, and po-
tentially multidimensional relationship in soft robots. Only for
very simple systems can solutions be derived by setting up
expressions for the effective cross-sections while taking into
account the forces exerted by the reinforcing elements Bruder
et al. (2017); Habibian et al. (2022). For more complex
systems, popular choices include formulations based on
continuum mechanics models Sedal et al. (2017, 2018), often
analyzed using finite element methods Buffinton et al. (2020);
Xavier et al. (2021). As an alternative, learned models, for
example, based on artificial neural networks Satheeshbabu
et al. (2019); Hyatt et al. (2019); Thuruthel et al. (2018) or
using Koopman operator theory Bruder et al. (2018a); Bruder
et al. (2020); Bruder et al. (2021); Castaño et al. (2020);
Haggerty et al. (2020), have been used for control. All these
approaches, however, have in common that the resulting
formulations can become quite complex and difficult to in-
terpret. Most importantly, they do not reveal meaningful in-
sights into the fundamental structure of equation (1).

In this paper,we introduce the concept of theFluid Jacobian,
which is an important characteristic of soft fluidic actuators,
describing the relationship between pressure and force. More
precisely, it provides a description of the power transmission
between the fluid and the mechanical domains. It thus can be
regarded as a generalization of the traditional kinematic Jaco-
bian that relates joint torques and velocities to task space forces
and velocities in a conventional robot. In a similar way, the Fluid
Jacobian relates fluid pressure to task space forces and—as a
dual—the change of fluid volume to task space velocities. In
addition, the Fluid Jacobian can be regarded as a generalization
of the piston cross-sectional area in a fluid-driven cylinder that
extends to complex geometries and multiple dimensions.

In contrast to the models discussed in the above paragraph,
our modeling approach is energy-based and our derivation of
the Fluid Jacobian is based on a virtual power formulation,
similar to the approach presented in Bishop-Moser et al. (2013).
In this approach, the Fluid Jacobian of an actuator arises as the
partial derivative of the fluid volume with respect to the task
space variables, analogous to how traditional kinematic Ja-
cobians are defined. The Fluid Jacobian has already been
mentioned and employed in the modeling studies of Bruder
et al. (2018b); Bruder andWood (2021), and Sedal et al. (2021).
A similar expression can be found in Pagitz et al. (2012) and
Stölzle and Santina (2022). Here, we provide a detailed der-
ivation and discussion that also treats elastic deformations,
internal degrees of freedom, additional kinematic constraints,
and experimental determination of the Fluid Jacobian.

In Section 2 of this paper, we first provide a theoretical
derivation of the Fluid Jacobian for the most general case of a

multi-cell soft actuator system which is subject to elastic
deformation and additional kinematic constraints. To this
end, a fluid space, a task space, and an internal motion space
are introduced and connected via the appropriate Jacobians.
Avirtual power law is then used to establish force balances in
the task space and internal motion space, respectively. We
then consider a number of special cases and simplifications
that have important applications in actual soft robotic sys-
tems. Through a number of examples of different soft robotic
actuators, the application of the theory is illustrated in Section
3. Finally, we provide a detailed discussion of the Fluid
Jacobian, its properties, and possible extensions in Section 4.

2. Derivation of the fluid Jacobian

2.1 Preliminaries

We assume that the configuration of a soft actuator systemwith
nv fluid-driven actuator units can be described by a vector q
that lies in the system’s configuration space C � R

nq . The
number of configuration variables nq can be quite large, and
given the continuum nature ofmany soft actuators, Cmay have
to be a suitable approximation of an infinite dimensional space.

Three important functions are defined over C:

1. The “useful” part of the motion of the soft robot is
described by a holonomic forward kinematics function
x ¼ f ðqÞ, where x2R

nx lies in the nx-dimensional
actuator task space. This task space may constitute a
joint angle that is driven by the soft actuator, a
multidimensional displacement that is created by a
soft limb (e.g., described via a piecewise constant
curvature model Della Santina et al. (2020)), or it
could describe the closure of a soft gripper around an
object. The kinematics function f : C→R

nx is as-
sumed to be differentiable with respect to q, with the
kinematic Jacobian JxðqÞ 2R

nx×nq being defined as
Jx : ¼ ∂f ðqÞ=∂q. We further assume that the actuator
system is not driven near a kinematic singularity; that
is, the kinematic Jacobian has a full row rank of nx.
The forces and torques that the actuator applies within
the task space are expressed by the vector F 2R

nx.
2. The internal volumes of the individual actuator units are

expressed in a vector V 2R
nv. These volumes Vmay be

expressed in terms of the configuration q through the
function v : C→R

nv , as in V ¼ vðqÞ. Assuming that v is
differentiable with respect to q, we define the volume
Jacobian JvðqÞ 2R

nv×nq as Jv : ¼ ∂vðqÞ=∂q. Each in-
dividual actuator unit, that is, each individual volume,
may be pressurized to a different value and these
pressures are expressed in the vector p2R

nv.
3. The overall elastic energy E stored in the deformable

structure of the actuator system may be expressed in
terms of the configuration q through the elastic potential
function e : C→R, as in E ¼ eðqÞ. This elastic potential
leads to the restoring forces and torques

τEðqÞ ¼ �ð∂eðqÞ=∂qÞT 2R
nq .
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Another important space that is implicitly defined via the
function f is the null space of Jx. It characterizes the di-
rections of actuator motions _q that do not create a task space
motion _x. Locally, this null space is spanned by the rows of
the orthogonal complement matrix Jy 2R

ny×nq , with
JxJT

y ¼ 0.1 Consequently, the columns of Jy span the in-

ternal motion space of the soft actuator system. Since Jx is
assumed to have full row rank, the dimension ny of this
internal motion space is given by ny = nq� nx. Furthermore,
the right Moore–Penrose inverses Jþ

x ¼ JT
x ðJxJT

x Þ�1
and

Jþ
y ¼ JT

y ðJyJT
y Þ�1

are well defined, and it holds that

Jx

Jy

� �
Jþ
x Jþ

y

� � ¼ 1. In other words, the mapping from

the configuration space to the task and internal motion space
is locally invertible with an inverse function q ¼ f �1

localðx, yÞ
and the associated Jacobians Jþ

x and Jþ
y . Note that due to the

common nonlinearities, including contact, that occur in soft
robot structures these mappings might only be established
locally. Furthermore, due to the ambiguities in the definition
of Jy as an orthogonal complement, the exact choice of the
coordinates y that span the space of internal motion is not
uniquely defined. That is, there exists infinitely many
Jy 2R

ny×nq which fulfill the condition J xJT
y ¼ 0, including

every transformed Jacobian Jy ¼ AJy based on an arbitrary

transformation matrix A2R
ny×ny , since JxJy

T ¼ JxJT
yA

T ¼
0AT ¼ 0.

2.2 Force balance

To establish a relationship between the action of the actuator
(expressed via the vector F) and the applied pressures
(expressed via the vector p), we provide an expression for
the virtual power performed on the actuator by the fluid
pressures, the elastic potential, and the reaction to the task
space forces:

δP ¼ δ _V
T
pþ δ _qTτE � δ _xTF: (2)

Note the minus sign in front of F is a result of F being
defined as the force that the actuator applies onto the en-
vironment. From the kinematics introduced above, we
obtain the following relationships for the virtual velocities:
δ _x ¼ Jxδ _q and δ _V ¼ Jvδ _q. These lead to:

δP ¼ δ _qTJT
vpþ δ _qTτE � δ _qTJT

xF: (3)

As the virtual work vanishes for all δ _q, we arrive at the
following balance of forces in the configuration space:

JT
vpþ τE � JT

xF ¼ 0 (4)

We can further simplify this equation by projecting into
the task space and the internal motion space, respectively
(Blajer, 2001). This projection is achieved by multiplying
from the left with

�
Jþ
x Jþ

y

�T
. With JxJþ

x ¼ 1 and
JxJþ

y ¼ 0, this leads to the following two equations:

�
J vJ

þ
x

�T
pþ �

Jþ
x

�T
τE � F ¼ 0 (5)

�
J vJ

þ
y

	T

pþ
�
Jþ
y

	T

τE � 0 ¼ 0 : (6)

We now define the Task Space Fluid Jacobian (or simply
Fluid Jacobian) to be Jv, x : ¼ JvJþ

x and the Internal
Motion Fluid Jacobian to be Jv, y : ¼ JvJþ

y . Furthermore,

we introduce the abbreviations τE, x : ¼ ðJþ
x ÞTτE and

τE, y : ¼ ðJþ
y ÞTτE. With these abbreviations, the final force

balance has the form:

F ¼ JT
v, xðqÞpþ τE, xðqÞ (7)

0 ¼ JT
v, yðqÞpþ τE, yðqÞ: (8)

The first of these two equations describes the force
balance in task space: forces F are balanced by the pressure
in the actuator p and the elastic deformation τE,x. Since the
task space is well-defined, this expression is unique. The
second equation is the force balance in the internal motion
space. It describes the elastic deformation of the internal
degrees of freedom of the actuator in reaction to the applied
pressure in the actuator. The actuator pressure p enters both
equations linearly by means of the Fluid Jacobians. In the
most general case, however, there is a nonlinear mapping
between pressure p and task space forces F, as the two
equations are coupled through the overall configuration q.
That is, a change in pressure leads to a change in the internal
deformation via equation (8), which influences the Fluid
Jacobian and elastic forces in equation (7).

2.3 Simplifications and special cases

2.3.1 No internal motion. An important special case is a soft
actuator systemwithout internal degrees of freedom. For many
soft robotic systems, this holds at least approximately, as
parasitic internal motion is undesired and thus often avoided
by design. For example, in bellow-like actuators Pridham
(1967); Usevitch et al. (2018); Han et al. (2018), origami
actuators Kim and Gillespie (2015); Zaghloul and Bone
(2023), or in fiber sleeve actuators Ball et al. (2016);
Bishop-Moser and Kota (2015). Mathematically, in this case
the task and configuration spaces are identical. Consequently,
it holds that Jx = 1, and thus Jv,x = Jv and τE,x = τE. The matrix
Jy and equation (8) vanish. Equation (7) then simplifies to:

F ¼ JT
v ðqÞpþ τEðqÞ: (9)

This simplified form of the force balance has already
been reported in Bruder et al. (2018b) and Sedal et al.
(2021). In these publications, the elastic forces were further
approximated with a linear elasticity model: τE = �KΔq.
Since there are no coupling effects, the task space forces F
are linear in pressure, and the Fluid Jacobian represents a
generalization of the piston area of a traditional hydraulic or
pneumatic cylinder.
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2.3.2 Explicit internal motion space. As a second special
case, we consider actuator systems in which a description of
the internal deformation y can be defined explicitly and a
global inverse mapping q ¼ f �1

globðx, yÞ exists. In this case,
we can express the volume V and elastic energy E as a
function of x and y, and we can thus compute Jþ

x , J
þ
y , Jv,x,

Jv,y, τE,x, and τE,y explicitly as partial derivatives of f
�1
globðÞ,

vðÞ, and eðÞ:

Jþ
x ¼ ∂f �1

globðx, yÞ
∂x

Jþ
y ¼ ∂f �1

globðx, yÞ
∂y

J v, x ¼ ∂vðx, yÞ
∂x

J v, y ¼ ∂vðx, yÞ
∂y

τE, x ¼ �


∂eðx, yÞ

∂x

�T

τE, y ¼ �


∂eðx, yÞ

∂y

�T

(10)

Let us now first examine the additional simplification of
τE = 0. That is, of a soft actuator without elastic energy
storage. This could be an origami-type system Kim and
Gillespie (2015), or a bladder-like actuator made from thin
but inextensible material Niiyama et al. (2014); Greer et al.
(2017); Bruder and Wood (2021). Without elastic forces,
equation (8) reduces to:

JT
v, yðx, yÞp ¼ 0: (11)

For nonzero pressures, this can only hold if JT
v, y van-

ishes; that is, if the volume function vðx, yÞ becomes ex-
tremal with respect to the internal motion y. For positive
pressures, this extremum corresponds to a configuration that
maximizes the volume of each actuator unit; for vacuum-
driven systems, the volumes would be minimized. As long
as ∂2vðx, yÞ=∂y2 is nonzero, the implicit equation
JT
v, yðx, yÞ ¼ 0 can be inverted, such that y can be expressed

as a function of x as in y ¼ yðxÞ. Physically, this nonzero-
condition means that the volume has a maximal/minimal
value; that is, it is mechanically bounded2. In other words,
the internal motion of such an actuator system is fully
defined by the task space motion and independent of
pressure. Equation (7) thus becomes:

F ¼ JT
v, xðx, yðxÞÞp ¼ JT

v, xðxÞp (12)

which is, again, linear in pressure p.
This linearity is lost, as soon as we include elastic de-

formations of the actuator. In this case equation (8) remains
mostly unchanged and is only restated with x and y as
arguments:

JT
v, yðx, yÞpþ τE, yðx, yÞ ¼ 0: (13)

This equation provides an implicit relationship between
x, y, and p, which can be solved for y = y (x, p), as long as
∂2vðx, yÞ=∂y2 þ ∂2eðx, yÞ=∂y2 ≠ 0. That is, as long as the
internal motion is bounded either by a maximal/minimal

volume or through elastic forces. Substituting this ex-
pression for y into equation (7) yields:

F ¼ JT
v, xðx, pÞpþ τE, yðx, pÞ: (14)

We can see that this relationship is no longer linear in p,
as changes in pressure now influence the internal defor-
mation, which—in turn—affects the elastic force in the task
space and alters the task space Fluid Jacobian.

The opening premise of this section was that the internal
deformation y can be defined explicitly and that a global
mapping q ¼ f �1

globðx, yÞ exists. This is, of course, only

necessary if we seek to derive the Jacobians in equation (10)
analytically. Physically, these relationships still hold, even if
we do not have an explicit description of y or if the internal
motions space becomes infinite dimensional.

2.3.3 Linearized Equations. The influence of the internal
motion on the task space forces that was described in the
previous section can be examined further by considering a
linearization of equations (7) and (8). To this end, we take
the total differential, leading to:

dF ¼ ∂JT
v, xp

∂q
dqþ JT

v, xdpþ
∂τE, x
∂q

dq (15)

0 ¼ ∂JT
v, yp

∂q
dqþ JT

v, xdpþ
∂τE, y
∂q

dq (16)

After substituting dq ¼ Jþ
x dxþ Jþ

y dy, we get:

dF ¼ JT
v, xdp� Kxxdx� Kxydy (17)

0 ¼ JT
v, ydp� Kyxdx� Kyydy (18)

with3

Kxx ¼ �∂JT
v, xp

∂q
Jþ
x � ∂τE, x

∂q
Jþ
x

Kxy ¼ �∂JT
v, xp

∂q
Jþ
y � ∂τE, x

∂q
Jþ
y

Kyx ¼ �∂JT
v, yp

∂q
Jþ
x � ∂τE, y

∂q
Jþ
x

Kyy ¼ �∂JT
v, yp

∂q
Jþ
y � ∂τE, y

∂q
Jþ
y

(19)

These terms represent equivalent stiffness matrices with
physical units of force/torque per unit translational/angular
displacement. They relate motion in the task space and the
internal motion spaces to the resulting generalized forces. In
particular, Kxx is the stiffness of the task space which acts in
parallel to the motion of the output,Kyy is the stiffness of the
internal motion space which acts in series to the output, and
Kxy/Kyx couple the two spaces. The generalized forces arise
not only from elastic deformations due to τE, but also result
from changes to the fluid Jacobian and the consequent
modifications in the conversion of pressures into
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generalized forces. Using these stiffnesses to resolve the
internal motion, we obtain:

dy ¼ K�1
yy

�
JT
v, ydp� Kyxdx

	
(20)

and hence:

dF ¼
�
JT
v, x � KxyK

�1
yy J

T
v, y

	
dp …

�
�
Kxx � KxyK

�1
yy Kyx

	
dx

(21)

Ignoring the influence of q on these stiffness matrices, we
can approximate the change in energy that is stored in Kxx

by dEx = 1/2dxTKxxdx and in the energy stored in Kyy by

dEy¼1=2dyTKyydy¼1=2ðJT
v,ydp�KyxdxÞTK�1

yy ðJT
v,y dp�

KyxdxÞ. These equations highlight what is required to
achieve as closely as possible an actuator that acts as an
ideal transformer without parasitic energy storage: Kxx and
Kyx need to be as small as possible while Kyy should be as
large as possible.

2.3.4 Extension to systems with additional constraints. In
some cases, it may be convenient to express the con-
figuration q with a set of non-minimal coordinates and
include additional kinematic constraints in the model.
We can do so in the framework described above by
including an additional projection step in our formu-
lation. Let us assume that there will be nc additional,
linearly independent, holonomic constraints on the
configuration, limiting the number of independent de-
grees of freedom ni to ni = nq � nc. These constraints can
be expressed implicitly as gðqÞ ¼ 0, with the constraint
function g : C→R

nc and the associated constraint forces
λ2R

nc . The function g is assumed to be differentiable,
with the constraint Jacobian JgðqÞ 2R

nc×nq defined as
Jg : ¼ ∂gðqÞ=∂q.

Let QT 2R
ni×nq denote the orthogonal complement

matrix of Jg. That is, JgQ ¼ 05QTJT
g ¼ 0. Note that, for a

given Jg, the matrix Q is not unique. Its columns define the
directions of all velocities that are admissible under the
constraints of g and thus span a virtual subspace of ad-
missible motion Hemami and Weimer (1981). The matrix Q
can also be interpreted as the Jacobian of a locally defined
function q ¼ qðqminÞ that maps a suitable choice of minimal
coordinates qmin 2R

ni to the admissible generalized coor-
dinates q2C.

The product Jx ¼ JxQ2R
nx×ni consequently describes

the directions of admissible task space motion. Here, we
make the important additional assumption that the matrix Jx

is non-singular (i.e., that it has a full row rank of nx). This
assumption implies two properties. First, the additional
constraints of g only affect the internal degrees of freedom
of the soft actuator system, not its task space motion. This
can be ensured by a suitable choice of the task space.
Second, the soft actuator is operated outside a kinematic
singularity of the constraints.

Similar to Jy, we introduce Jy 2R
ny×ni to be the or-

thogonal complement of Jx, such that JxJT
y ¼ 0. Since Jx

has full row rank, the dimension ny of these internal motions
is given by ny ¼ ni � nx.

The virtual power equation now also has to include a
term for the virtual work performed by the constraints:

δP ¼ δ _V
T
pþ δ _cTλþ δ _qTτE � δ _xTF, (22)

and the associated virtual velocities are given by δ _c ¼ Jgδ _q.
Dropping the δq leads to:

JT
vpþ JT

gλþ τE � JT
xF ¼ 0: (23)

In contrast to the formulation introduced above, we now
have to perform two projections. The first projects into the
space of admissible motions and the second into the task
space and the space of internal motions, respectively. These
projections are achieved by multiplying from the left with�
Jþ
x Jþ

y

�T
QT. With QTJT

g ¼ 0, QTJT
x ¼ ðJxQÞT ¼ JT

x ,

Jþ
x Jx ¼ 1 and JxJT

y ¼ 0, this leads to two constraint-free

equations: �
J vQJ

þ
x

�T
pþ �

QJþ
x

�T
τE � F ¼ 0 (24)

�
J vQJ

þ
y

	T

pþ
�
QJþ

y

	T

τE � 0 ¼ 0 : (25)

and with the new abbreviations (Jv, x : ¼ JvQJþ
x , Jv, y : ¼

JvQJþ
y , τE, x : ¼ ðQJþ

x ÞTτE and τE, y : ¼ ðQJþ
y ÞTτE) we

arrive at the same form as in equations (7) and (8).

3. Examples

In this section, we examine four examples of fluid-driven
actuators. Our goal is two-fold. On the one hand, we seek to
provide insight into the theoretical results presented in the
previous section and to visualize the physical meaning of the
derived equations. On the other hand, we want to show how
the Fluid Jacobian can be obtained in practical examples and
how it can be applied in real systems to predict forces as a
function of pressure and state. As a consequence, the examples
range from simplified/contrived and theoretical, to actual ac-
tuators that are physically built and experimentally examined.

3.1 Double cylinder

Our first example is not truly a soft actuator, but a contrived
example of a double-acting cylinder with additional elastic
elements. Its primary purpose is to highlight and visualize
the terms that are found in equations (7) and (8) and to relate
the concept of the Fluid Jacobian to the piston areas in
traditional pneumatic and hydraulic cylinders. It consists of
a single cylinder chamber (with pressure p) with two pistons
acting in opposite directions (Figure 1). The positions of the
two pistons are described by the configuration variables
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q ¼ ½ q1 q2 �T , and the piston areas are given as A1 and A2.
Two springs (with stiffnesses c1 and c2) are mounted in
parallel to the pistons, and a third spring (with stiffness cc)
links the motions of the two pistons. All springs are un-
loaded when q1 = q2 = 0. An external load (with task space
position x and task space force F) acts directly on piston 1,
while piston 2 is acted upon only by the two connected
springs.

For this system, the forward kinematics are given as x ¼
f ðqÞ ¼ q1, the internal volume is V ¼ vðqÞ ¼ q1A1 þ q2A2,
the elastic energy is E ¼ eðqÞ ¼ 1

2c1q
2
1 þ 1

2c2q
2
2þ

1
2ccðq1 þ q2Þ2, and there are no additional constraints.
Hence:

J x ¼ ½ 1 0 � (26)

J v ¼ ½A1 A2 � (27)

τEðqÞ ¼
"�c1q1 � ccðq1 þ q2Þ
�c2q2 � ccðq1 þ q2Þ

#
: (28)

Since there are no additional constraints, we can compute
Jy as the orthogonal complement to Jx, which is
Jy ¼ ½ 0 1 �. With this, we get:

J v, x ¼ A1 (29)

J v, y ¼ A2 (30)

τE, x ¼ �c1q1 � ccðq1 þ q2Þ (31)

τE, y ¼ �c2q2 � ccðq1 þ q2Þ (32)

and thus:

F ¼ A1p� ðc1 þ ccÞq1 � ccq2 (33)

0 ¼ A2p� ccq1 � ðcc þ c2Þq2: (34)

We can solve the second equation for the unactuated
degree of freedom, q2 and obtain for F:

F ¼


A1 � cc

cc þ c2
A2

�
p�



c1 þ ccc2

cc þ c2

�
q1: (35)

This example nicely illustrates the role of the different
components of equations (7) and (8). The two Fluid Ja-
cobians in equations (29) and (30) are equal to the cross-
sectional areas of the pistons associated with internal and
task space motion. In this special case, they do not depend
on the state q. As can be seen in equation (35), the internal
motion against A2 still influences the force F in the task
space. This is due to the elastic coupling between internal
motion and the task space via the spring of stiffness cc. In
this example, the resulting equations are linear in both qmin

and q, and the stiffness terms of (19) are:

Kxx ¼ c1 þ cc Kyx ¼ cc
Kxy ¼ cc Kyy ¼ c2 þ cc:

(36)

This example also highlights the series/parallel nature of
these elastic elements. This is particularly evident when
setting cc = 0 where only the spring c1 is connected to the
output, exerting forces that act in parallel to the motion in
the x direction. To grasp the series behavior of c2, let’s
imagine using an incompressible4 fluid and closing the fluid
port. In a conventional hydraulic cylinder, this would
completely block the motion of the output. In contrast, in
our example, the output can still be moved. The dis-
placement of the piston at the output results in a corre-
sponding displacement of the piston attached to the spring
c2, leading to a rise in pressure p. The effect is equivalent to
including a series elastic element in the output.

Figure 1. Cylinder with elastic elements connecting two pistons acting in opposite directions.
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As discussed above, to achieve an ideal transformer, Kxx

and Kyx should be as small as possible, while Kyy should be
as large as possible. Applied to this example, c1 and cc
should approach 0 and c2 should approach ∞. In other
words, one should remove the springs c1 and cc, and replace
the spring c2 with a rigid connection. As one might expect,
these changes would result in a conventional hydraulic/
pneumatic cylinder with no springs and a rigid floor.

3.2 Fiber-reinforced elastomeric enclosure

A fiber-reinforced elastomeric enclosure (FREE) Bishop-
Moser and Kota (2015); Krishnan et al. (2015); Bishop-
Moser et al. (2013); Singh and Krishnan (2020), also known
as a fiber-reinforced soft actuator (FRSA) Galloway et al.
(2013); Connolly et al. (2015, 2017), is an actuator that
consists of a fluid-filled elastomeric tube wound with re-
inforcing fibers, patterned to yield a desired mode and
direction of deformation upon pressurization. By changing
the angles and arrangement of these fibers, a FREE can be
customized to yield a large variety of desired deformations
and forces Bishop-Moser and Kota (2015). Their custom-
izability combined with their flexibility and cylindrical
shape makes these actuators well suited for applications
such as a pipe inspection Singh et al. (2019), catheter ac-
tuation Gilbertson et al. (2016), grasping Uppalapati and
Krishnan (2018), and manipulation Grissom et al. (2006);
Satheeshbabu et al. (2019, 2020).

To make the computation of the Fluid Jacobian of a
FREE tractable, we rely on a common assumption for
FREES: that they maintain the geometry of an ideal cylinder
Bishop-Moser and Kota (2015). This neglects the tapering
of the actuator towards the end-caps, any potential bending
along its main axis, and any bulging of the elastomeric tube
between the fibers of the mesh.

An ideal cylindrical FREE in its relaxed configuration
(i.e., when fluid pressure is zero and no external loads are
applied) can be described by a set of three parameters, L, R,

and Γ, where L represents the relaxed length of the FREE, R
represents the radius, and Γ the fiber angle (Figure 2(a)). For
notational convenience, we further define:

B ¼
���� L

cosΓ

���� (37)

N ¼ � L

2πR
tanΓ, (38)

where B is the length of one of the FREE fibers and N is the
total number of revolutions the fiber makes around the
FREE in the relaxed configuration.

The assumption that a FREE is cylindrical with inex-
tensible fibers implies that changes in its radius, length, and
twist are coupled. Therefore, its geometrical deformation
can be fully defined in terms of just two parameters, a
change in its length q1 and a twist about its long axis q2.
These two variables simultaneously constitute the vector of
task space motion and of generalized deformations. Con-
sequently, the vector F describes a force along the main axis
and a torsional moment about that axis. There is no internal
motion.

To arrive at an expression for the volume of the free, we
first compute the length and radius of the deformed FREE
according to:

l ¼ Lþ q1, (39)

r ¼ B

j2πN þ q2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�



Lþ q1

B

�2
s

(40)

and express the volume as

V ðqÞ ¼ πr2l

¼
πðLþ q1Þ

�
B2 � ðLþ q1Þ2

	
ð2πN þ q2Þ2

(41)

With this, the Fluid Jacobian is determined to be:

Figure 2. Shown in (a) are the geometric parameters of an ideal cylindrical FREE in (top) the relaxed configuration where q = 0 and
(bottom) a deformed configuration. To verify the theoretical predictions, we tested a special type of FREE, a McKibben muscle, in a
tensile testing machine (b).
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J vðqÞ ¼

2
664

π
�
B2 � 3ðLþ q1Þ2

�
ð2πN þ q2Þ2

2πðLþ q1Þ
�ðLþ q1Þ2 � B2

�
ð2πN þ q2Þ3

3
775

T

(42)

and the force generated by the FREE is given by:

F ¼ JT
vpþ τE (43)

where the elastic forces τE could be, for example, repre-
sented by a linear force model τE = �Kq.

We experimentally verified these theoretical predictions
through a set of measurements on a so called McKibben
muscle Tondu (2012), a special type of FREE, wherein two
sets of fibers are wrapped at equal and opposite angles. This
prevents any twist of the actuator, leading to the special case
of q2 = F2 = 0. The particular muscle that we tested had
fibers of length B = 29.8 cm and number of revolutions N =
3.3. It consisted of a bladder made of a non-elastic material
(Stretchlon 200) surrounded by a braided sheath of inex-
tensible fibers. Rather than stretching upon pressurization, the
bladder unfurled to the maximum volume allowed by the
fiber constraints. Thus, elastic forces τE were assumed to be
negligible.

This McKibben muscle was installed in a tensile testing
machine (Instron 6800 Series single column), using custom
made pneumatic connectors (Figure 2(b)). The pressure
inside the McKibben was fixed while the ends were slowly

pulled apart. The resulting forces as a function of length
were recorded for pressures of 34, 69, 103, and 138 kPa and
compared to the force predictions according to (43)
(Figure 3(a)). The Fluid Jacobian predictions have an
RMSE over all trials of 5.1 N, with the maximum force
magnitude measured being 125 N.

As the length increases, so does the error of the Jacobian
predictions. This deviation may be due to a source of un-
modeled elasticity, which we would expect to contribute
larger forces as the length increases. Yet, even without
explicitly accounting for this elasticity, the agreement be-
tween the Fluid Jacobian and measured data is on par with
existing models. When comparing theoretically predicted
and measured forces, the Fluid Jacobian produced RMS
errors of around 4% of the full range, which is comparable
to the best results from Sedal et al. (2021), which achieved
an average normalized error of 5.5% using a learned neural
network model. While the data in Sedal et al. (2021) was
recorded on a FREE with elastic elements, it also required
the fitting of 62 model parameters. In general, for static force
models of McKibben muscles, “an experimental estimate
higher in accuracy than about 5% is difficult to obtain”
Tondu (2012).

Figure 3(b) shows the theoretical Fluid Jacobian com-
pared to the actual force divided by pressure at every point.
The experimental data matches the theoretical Jacobian with
a RMSE of 75.7 mm2, and the maximum measured value of
the force divided by pressure was 844 mm2. In both theory

Figure 3. Shown in (a) are the theoretical prediction (solid line, based on equation (43)) and experimental measurements (circles) of the force
generated by a McKibben actuator as a function of actuator length l. For (b), we plotted the force divided by the pressure and compare it
against the theoretical prediction of the value of the Fluid Jacobian (based on equation (42)). Note that the Fluid Jacobian is negative, as the
actuator creates a pulling force.
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and measurement, we observe a singular configuration of
the FREE at a length of 172 mm and a fiber angle of 54.7°.
In this configuration, the Fluid Jacobian is equal to zero,
which corresponds to a local maximum in the FREE vol-
ume. Since the muscle seeks to maximize its volume, the
actuator “locks” and does not produce any force. In the
literature, this singular configuration is known as the “magic
angle” Demirkoparan and Pence (2015). At lengths below
this threshold, the muscle generates positive (pushing)
forces.

A more detailed description of modeling this class of
actuators with the Fluid Jacobian can be found in Bruder
et al. (2018b). Here, the approach is also exploited to predict
the force generation of parallel combinations of FREEs. A
comparison of the predictive capabilities of different
modeling approaches, including the one based on the Fluid
Jacobian and linear elastic forces can be found in Sedal et al.
(2021).

3.3 Six-plate actuator

In this example, we consider an origami-style actuator
consisting of six hinged plates (Figure 4(a)). For the the-
oretical derivation of the Fluid Jacobian, we treated the
system as a quasi-planar structure with depth d. The top and
bottom plates both have a length of l1, and the connecting
plates a length of l2. The top plate is guided, such that it can
only move vertically without rotation. This vertical trans-
lation, which also constitutes the task space of the system, is
described by the configuration variable h, the height of the
actuator. The actuator thus has a prismatic action, similar to
that of a hydraulic or pneumatic cylinder. However, the
transmission ratio between the force F and a given internal
pressure p (as it is provided by the Fluid Jacobian) is state-
dependent.

To highlight the use of the constrained formulation in
equations (24) and (25), we use non-minimal coordinates to

describe this system. In particular, we include the folding
angle θ of the connecting plates as an auxiliary variable,
such that the complete configuration is given as

q ¼ ½ h θ �T . Notably, the system has a kinematic singu-
larity at θ = π/2, and in the following, we limit ourselves to
“> < ”-configurations, in which the side walls fold inward
(θ ≤ π/2). The forward kinematics function is given as
f ðqÞ ¼ h, there is no elastic energy storage ðeðqÞ ¼ 0Þ, and
the additional constraints are gðqÞ ¼ h� 2l2sin θ. The in-
ternal volume is given as:

vðqÞ ¼ dl1h� dl2h cos θ: (44)

These functions lead to:

J x ¼ ½ 1 0 � (45)

J v ¼ ½ dl1 � dl2cos θ dl2h sin θ � (46)

τE ¼ 0 (47)

J g ¼ ½ 1 �2l2h cos θ �: (48)

To account for the additional constraints, we introduce
Q ¼ ½ 2l2h cos θ 1 �, for which it is straightforward to
verify JgQ

T = 0. With this, we can compute: Jx ¼ 2l2cos θ,
Jþ
x ¼ 1=ð2l2cos θÞ, and obtain a vanishing Jy. Conse-

quently, the Fluid Jacobian is:

J v, x ¼ d



l1 � l2cos θ þ 1

2
tan θh

�

¼ d

0
B@l1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l22 � h2

p
2

þ h2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l22 � h2

p
1
CA,

(49)

with the substitution: θ ¼ sin�1ðh=2l2Þ. From this, we get
the following model for the relationship of forces and
pressure:

Figure 4. In this example, we consider an origami-type actuator made from six rigid hinged plates. The top plate of the actuator is
constrained, such that it can only move vertically. The actuator is shown as a schematic in (a), while the actual experimental test rig is
shown in (b). In the experiments, actuator height h, Volume V, pressure p, and forces F were varied and measured.
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F ¼ d

0
B@l1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l22 � h2

p
2

þ h2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l22 � h2

p
1
CAp: (50)

In addition to the theoretical analysis, we also performed
an experimental validation of the transmission capabilities
of this system. To this end, a folding structure was made
from 3D-printed plates. Metal rods were used as hinges to
connect the side plates with the top/bottom plate, while the
joints between the side plates were made from adhesive
tape. The chosen dimensions were l1 = 57.15 mm, l2 =
31.12 mm, and d = 50.80 mm. To contain the fluid volume, an
inflatable pouch made from an inextensible Mylar membrane
was inserted into the actuator. To prevent the extension of this
pouch in the direction of the open ends at the front and back of
the actuator, two acrylic plates were put in place. The actuator
was installed in a test rig that constrained the system to axial
motion (Figure 4(b)). Two separate experiments were per-
formed in order to determine the Fluid Jacobian of the actuator
and its effect on power transmission.

In the first experiment, we measured the change in height
h (using a USDigital EM2 Optical Encoder) while inserting
a known volume Vof water into the actuator. Height started
at 12.70 mm (with an initial volume of 7.5 mL) and water

was injected in increments of 2.0 mL using a 20.0 mL
medical syringe until a volume of 173.5 mL was reached,
close to the actuator’s kinematic singularity. This volume
data is shown in Figure 5(a) in comparison to the theoretical
volume prediction from equation (44). The theoretical
prediction matched the experimental measurements with an
RMSE of 6.8 mL. From this data, we computed an ex-
perimental Fluid Jacobian by numerically evaluating the
partial derivative ∂V=∂h via finite differences using the
gradient() function in MATLAB. Data were not filtered for
this step. In Figure 5(b), this experimentally obtained Fluid
Jacobian is compared to the prediction of equation (49).
This prediction matched the derivative of the measurements
with an RMSE of 60.7 cm2 (The RMSE value is dominated
by the data close to the singularity. If we exclude the 6 data
points with forces > 100 N, the RMSE reduces to 8.7 cm2).
The largest measured Fluid Jacobian value was 525 cm2.

In the second experiment, we used the actuator with
compressed air and measured actuator force F as a function
of height h and pressure p. Force F was measured using a
load cell (HT Sensor Technology Co. TAL220B) with a
force measurement range of 50 N. Height h was varied in
increments of 6.35 mm starting at 12.70 mm. It was adjusted
manually with a lockable linear slide and measured via the
linear encoder. An Enfield TR-010-g10-s electronic

Figure 5. Shown in (a) are the theoretical prediction, based on equation (44), and experimental measurements of the volume of the six-
plate actuator as a function of actuator height (h) For (b), we took the partial derivative of these data and compare it against the
theoretical prediction of the value of the Fluid Jacobian based on equation (49).
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pressure regulator was used to apply seven different pres-
sure values p. For these pressure values, the measured forces
are shown in Figure 6(a) as a function of actuator height h
and compared with the predictions from equation (50).
Here, the theoretical force predictions matched the mea-
surements with an overall RMSE of 3.0 N, compared to an
overall range of forces of 47 N. From this data, we computed
an equivalent Fluid Jacobian from the ratio F/p. This data is
shown in Figure 6(b). The theoretical prediction of the Fluid
Jacobian matched the ratio of forces and pressures with an
RMSE of 8.2 cm2. In this experiment, the maximum value
of the Fluid Jacobian was 75 cm2.

In this example, the origami-style folding structure of
the presented actuator yields a Fluid Jacobian that is
highly dependent on the state h. In particular, close to the
kinematic singularity of the actuator (for θ = pi/2), the
effective area of power transmission is almost a factor of
20 larger than the size of the top plate of the actuator.
Such a state-dependent force amplification could be
used, for example, as part of a continuously variable
transmission which, for a given internal pressure, can
greatly amplify the force output of the enclosed inflatable
based on the configuration of the mechanism Brei and
Gillespie (2022).

In the experimental evaluation, we saw that the
simplified geometric model of the internal volume,
which completely ignored the effect of the Mylar pouch,

worked quite well and very closely predicted the mea-
sured volume values. In turn, the “experimental” Fluid
Jacobian that was obtained by taking the partial deriv-
ative of the height–volume measurements, very closely
matched the theoretical prediction, as well. This close
match was achieved without any filtering or smoothing
of the raw data, which was also generated in a rather
crude way by means of a medical syringe. We believe
that more carefully recorded data, for example, using a
constant displacement pump, and appropriate filtering
prior to taking partial derivatives could yield a Fluid
Jacobian that is on par with one derived from the ge-
ometry of the actuator. This approach could be very
useful when characterizing soft actuators with complex
geometries and a high-dimensional internal motion
space.

When comparing theoretically predicted and mea-
sured forces, the Fluid Jacobian produced RMS errors
of around 6% of full range. Figure 6(b) also nicely
illustrates the linearity of forces and pressure. In this
normalized view of the ratio F/p, the data points at a
given displacement overlap fairly closely.

3.4 Six-plate actuator with internal motion

In this final example, we want to revisit the six plate
actuator from Section 3.3 and remove the physical

Figure 6. Shown in (a) are the theoretical predictions of actuator forces F (solid lines, based on equation (50)) and experimental
measurements for seven different values of pressure p. In addition, we computed an equivalent Fluid Jacobian value from the ratio F/p,
which is compared to the theoretical prediction from equation (49) in (b).
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constraint that restricts the motion of the top plate to
purely vertical or axial motion. That is, the top plate can
now move vertically in h, laterally in r, and it can pitch
with an angle of φ. We still only consider h to constitute
the useful motion of the actuator, while r and φ would be
part of the internal motion. To enable this additional motion,
we need to account for the fact that the four angles of the
connecting plates can now all be different (Figure 7). The
overall configuration vector for this extended system thus

is q ¼ ½ r h φ θ1 θ2 θ3 θ4 �T. The forward kine-
matics function still is f ðqÞ ¼ h, such that
Jx ¼ ½ 0 1 0 0 0 0 0 �. We can compute the vol-
ume, just using the angles θi as:

V ¼ dl1l2
2

ðsinθ1 þ sin θ2 þ sin θ3 þ sin θ4Þ …

�dl22
2

ðsinðθ1 þ θ2Þ þ sinðθ3 þ θ4ÞÞ
(51)

with the volume Jacobian:

J v ¼

2
6666666666666666666664

0

0

0

dl1l2
2

cosθ1 � dl22
2

cosðθ1 þ θ2Þ

dl1l2
2

cosθ2 � dl22
2

cosðθ1 þ θ2Þ

dl1l2
2

cosθ3 � dl22
2

cosðθ3 þ θ4Þ

dl1l2
2

cosθ4 � dl22
2

cosðθ3 þ θ4Þ

3
77777777777777777777777775

T

: (52)

Two vector loop equations can be used to produce four
scalar constraint equations (Figure 7). The first goes from P0

over P1, P2, and P3 to Pe (along the links A and B), while the
second goes from P0 over P6, P5, and P4 to Pe (along the
links C and D). These are transcendental equations that can
be expressed in implicit form in gðqÞ ¼ 0, with:

g ¼

r þ l1
2
� c1 þ c3 � l1

2
cos φ

hþ 0� s1 � s3 � l1
2
sin φ

r � l1
2
þ c2 � c4 þ l1

2
cos φ

h� 0� s2 � s4 þ l1
2
sin φ

2
66666666666664

3
77777777777775

(53)

with

s1 ¼ l2sinðθ1Þ c1 ¼ l2cosðθ1Þ
s2 ¼ l2sinðθ2Þ c2 ¼ l2cosðθ2Þ
s3 ¼ l2sinðθ3 � φÞ c3 ¼ l2cosðθ3 � φÞ
s4 ¼ l2sinðθ4 þ φÞ c4 ¼ l2cosðθ4 þ φÞ:

Differentiation with respect to q yields the constraint
Jacobian:

J g ¼

1 0
l1
2
sin φþ s3 s1 0 �s3 0

0 1 � l1
2
cos φþ c3 �c1 0 �c3 0

1 0 � l1
2
sin φþ s4 0 �s2 0 s4

0 1
l1
2
cos φ� c4 0 �c2 0 �c4:

2
66666666666664

3
77777777777775

(54)

Figure 7. We further examine the actuator from Section 3.3, to include lateral and pitching motion of the top plate (given by r and φ). In
this 2D view of the actuator, the additional configuration variables are introduced.
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The following is an orthogonal complement to this
matrix Jg, with JgQ = 0:

Q ¼

1 0 0

0 1 0

0 0 1

�c3
s1c3 þ s3c1

s3
s1c3 þ s3c1

�l1l2sinθ3
2ðs1c3 þ s3c1Þ

c4
s2c4 þ s4c2

s4
s2c4 þ s4c2

l1l2sinθ4
2ðs2c4 þ s4c2Þ

c1
s1c3 þ s3c1

s1
s1c3 þ s3c1

�l1l2sinðθ1 � φÞ
2ðs1c3 þ s3c1Þ þ 1

�c2
s2c4 þ s4c2

s2
s2c4 þ s4c2

l1l2sinðθ2 þ φÞ
2ðs2c4 þ s4c2Þ � 1

2
666666666666666666666666664

3
777777777777777777777777775

(55)

with this choice of Q, the minimal coordinates are equal to
the three degrees of freedom of the top plate�
qmin ¼ ½ r h φ �T

	
. These three coordinates, in a sense,

become the independent coordinates, while the θi become
the dependent coordinates. Out of this choice of minimal
coordinates, hwould constitute the task space motion, while
r and φ describe the internal motion. This is reflected in the
Jacobians:

J x ¼ ½ 0 1 0 � J y ¼
"
1 0 0

0 0 1

#
(56)

Jþ
x ¼

2
64
0

1

0

3
75 Jþ

y ¼

2
64
1 0

0 0

0 1

3
75 : (57)

We now can go ahead and compute the Task Space Fluid
Jacobian:

J v, x ¼ þdl2s3ðl1cosθ1 � l2cosðθ1 þ θ2ÞÞ
2ðs1c3 þ s3c1Þ …

þdl2s4ðl1cosθ2 � l2cosðθ1 þ θ2ÞÞ
2ðs2c4 þ s4c2Þ …

þdl2s1ðl1cosθ3 � l2cosðθ3 þ θ4ÞÞ
2ðs1c3 þ s3c1Þ …

þdl2s2ðl1cosθ4 � l2cosðθ3 þ θ4ÞÞ
2ðs2c4 þ s4c2Þ ,

(58)

and the Internal Motion Fluid Jacobian:

J v, y ¼
�
j1dl2 j2dl1l22

�
, (59)

with

j1 ¼ �c3ðl1cosθ1 � l2cosðθ1 þ θ2ÞÞ
2ðs1c3 þ s3c1Þ …

þc4ðl1cosθ2 � l2cosðθ1 þ θ2ÞÞ
2ðs2c4 þ s4c2Þ …

þc1ðl1cosθ3 � l2cosðθ3 þ θ4ÞÞ
2ðs1c3 þ s3c1Þ …

�c2ðl1cosθ4 � l2cosðθ3 þ θ4ÞÞ
2ðs2c4 þ s4c2Þ

and

j2 ¼ �sinθ3ðl1cosθ1 � l2cosðθ1 þ θ2ÞÞ
4ðs1c3 þ s3c1Þ …

þsinθ4ðl1cosθ2 � l2cosðθ1 þ θ2ÞÞ
4ðs2c4 þ s4c2Þ …

�sinðθ1 � φÞðl1cosθ3 � l2cosðθ3 þ θ4ÞÞ
4ðs1c3 þ s3c1Þ …

þsinðθ2 þ φÞðl1cosθ4 � l2cosðθ3 þ θ4ÞÞ
4ðs2c4 þ s4c2Þ …

þcosθ3 � cos θ4
2l2

:

For the case of a vertical and centered top plate, that is,
for φ = r = 0, the four internal angles need to be equal: θ1 =
θ2 = θ3 = θ4 = θ. In this case, the Task Space Fluid Jacobian
becomes:

J v, x ¼ dl1 � dl2
cosð2θÞ
cos θ

(60)

which is identical to equation (49) for h = 2L2 sin θ. More
importantly, for this choice of configuration variables, the
Internal Motion Fluid Jacobian vanishes:

J v, y ¼ ½ 0 0 �: (61)

Equation (61) is a case of a fluid singularity, in which the
Fluid Jacobian vanishes. More specifically, the internal
volume of the actuator becomes maximal for φ = r = 0. That
is, as long as no elastic forces are being applied, any positive
pressure will move the internal degrees of freedom φ and r
into this configuration, as shown in equation (11). The
additional mechanical constraints that were introduced in
the experimental setup of Section 3.3 to limit the motion of
the top plate to be purely vertical, are thus superfluous and
could potentially be avoided while still creating a purely
vertical force.

4. Discussion

In this paper, we introduced the concept of the Fluid Ja-
cobian, which provides a framework to model the
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relationship between task space forces and fluid pressure in
fluid-driven soft robotic systems. In a sense, the Fluid Ja-
cobian can be regarded as a generalization of the cross-
sectional area of a piston in a traditional hydraulic or
pneumatic cylinder. In fact, in the introductory example of
the double cylinder in Section 3.1, the Fluid Jacobians are
exactly identical to the cross sections of the two cylinders
(equations (29) and (30)).

The first key difference, compared to hydraulic/
pneumatic cylinders, is that Fluid Jacobians can be multi-
dimensional and couple multiple actuators to a multi-
dimensional task space motion. In a well-defined actuator
system, the Task Space Fluid Jacobian should be square and
invertible, such that a given number of degrees of freedom
in the task space is driven by an equal number of actuators.
If this is not the case for a certain actuator type, one can
either introduce additional kinematic constraints on the task
space (as done in the experiments in Sedal et al. (2021)) or
combine multiple actuators to work in parallel (as done in
Bruder et al. (2018b)). Otherwise, the uncontrollable di-
mensions should be removed from the task space and re-
garded as part of the internal motion space.

As a second key difference, and in stark contrast to the
cross sections in hydraulic/pneumatic cylinders, Fluid Ja-
cobians are configuration dependent; that is, they are
functions of q. This can be seen, for example, in the case of
the FREE in Section 3.2 (equation (42)) and the six-plate
actuator in Section 3.3 (equation (49)). This configuration-
dependency gives rise to the possibility of additional sin-
gularities in the robotic system. We refer to them as fluid
singularities. In contrast to kinematic singularities (that we
explicitly excluded in the assumptions of Section 2.1), the
robotic system is not subject to a reduction in its DOFs.
Instead, the volumes of individual actuator cells become
linearly coupled with respect to the configuration. As a
consequence, and according to the loss of rank in the Ja-
cobian, the dimensions of the achievable task-force direc-
tions are reduced. A special case is one in which
singularities cause an entire row of the Fluid Jacobian to
become zero. For single actuators, this is the only possible
fluid singularity. In this case, the internal volume of the
corresponding actuator becomes maximal (minimal) and
cannot expand (contract) further in the presence of positive
(negative) pressure. The actuator cell “locks.” For the FREE
actuator, for example, this effect is known as the “magic
angle” Demirkoparan and Pence (2015); Krishnan et al.
(2015), and occurs at a fiber angle of 54.7°. We believe that
such fluid singularities and the associated locking effects
will provide ample space for further research on the design
and control of soft robotic systems. For example, and as
discussed above, fluid singularities are an important effect
to limit unwanted internal motion.

By introducing the Fluid Jacobian, our work helps es-
tablish structure in the fundamental relationship of forces F,
pressures p, and configurations q in fluid-driven soft ac-
tuator systems. The most general case for this structure was
given by the force balances in equations (7) and (8) which

provide conditions for the static equilibria in the task space
and internal motion space, respectively. Notably, pressure
enters both equations linearly by means of the Fluid Ja-
cobians Jv,x and Jv,y. Without degrees of freedom of internal
motion y, or without elastic energy storage in the actuator
system τE, this linearity is preserved at the output, and task
space forces are proportional to the applied pressures via the
Fluid Jacobian Jv,x (equations (9) and (12)). For these
special cases, the Fluid Jacobians only depend on the task
space configuration x. As soon as the actuator system allows
for an internal motion against an elastically deformable
structure, this linearity is lost. In this case, varying pressures
p change the internal configuration y, which in turn influ-
ences the Fluid Jacobians and the elastic forces in the task
space. This results in a nonlinear relationship between
forces F and pressures p as described by equation (14).

Beyond establishing structure to equation (1), the Fluid
Jacobian also has practical relevance, as demonstrated by
the examples in this paper and in previous work. Since it
highlights a fundamentally linear relationship between
forces and pressures, the concept is particularly well suited
for control applications, and can be easily extended to
describe systems of multiple actuators. This has been
shown, for example, in Bruder et al. (2018b), where the
Fluid Jacobian was used to estimate the workspace of
different soft manipulator designs.

The predictive capabilities of models based on the Fluid
Jacobian are on par with other modeling approaches, as
demonstrated by the experimental evaluation of the FREE
and the six-plate actuator in Sections 3.2 and 3.3. A more
detailed analysis of this modeling approach and a com-
parison with learned models and predictions based on
continuum mechanic models can be found in Sedal et al.
(2021). Sedal et al. show that a prediction based on the fluid
Jacobian with a linear stiffness model (for which the co-
efficients were fitted to the evaluated actuator) has an av-
erage error of 17.4% compared to 17.0% for a continuum
model and 5.51% for a neural network. These numbers
change when the parameters are identified based on a
different actuator than the one evaluated. In this case, the
fluid Jacobian model has a mean error of 29.3%, the
continuum model of 17.3%, and the neural network of
30.4%. That is, while not being the most accurate model in
absolute terms, the predictions of the Fluid Jacobian ex-
trapolate better than a learned model and have the benefit of
computational simplicity compared to finite element models
or other types of continuum mechanics models.

Soft actuators have almost inevitably some amount of
internal motion y. Describing this motion and its effect on
volume can be difficult, as the motion can be geometrically
complex and high-dimensional. This may seem to limit the
value of an analytical Fluid Jacobian for some applications.
However, in many cases, the simplifying assumption of no
internal motion, as discussed in Section 2.3.1, is often
closely approximated in actual soft robotic systems, and
equation (9) can be used to describe the force-motion
relationship. In this case, the volume of the actuator
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system only needs to be described in terms of the task space
motion x, which is much lower dimensional than the in-
ternal motion.

The reason why this approximation works well is be-
cause in many soft robotic systems, elastic internal motion is
actually undesired and often minimized by design. Not
following this principle is probably the biggest anomaly in
the contrived example of the double cylinder in Section 3.1.
In an actual hydraulic cylinder, one would clearly fix the
bottom of the cylinder and one would not attach springs to
the output. In other words, c1 and cc, would be made as soft
as possible to minimize the resistance to desired motion and
c2 would be made as stiff as possible to minimize the
amount of undesired internal motion. Analogous consid-
erations apply to general soft fluidic actuators. In a sense,
the primary purpose of fibers, plates, and other reinforcing
components that are embedded in soft robotic systems is
specifically to direct the effort into the task space and reduce
internal deformation Galloway et al. (2013); Marchese et al.
(2015); Rus and Tolley (2015). In FREEs, for example, a
single fiber would be theoretically sufficient to create a
desired behavior, yet a mesh of fibers is used in practice to
restrict bulging of the elastomer, which would constitute an
undesired internal motion.

It should be noted that both high stiffness of the internal
motion (in the example of Section 3.1: large c2) and a low
stiffness combined with an extremal volume (as shown in
the example in Section 3.4) each lead to a Task Space Fluid
Jacobian that is independent of pressure. These features in
turn lead to a linear force/pressure relationship. In the first
case, the high stiffness reduces internal motion, in the
second case, the force balance in equation (8) can only be
fulfilled when the Internal Motion Fluid Jacobian becomes
zero. This corresponds to an extremum in the volume. In
other words, the internal motion will seek to maximize (for
positive pressure) or minimize (for vacuum) the volume of
the actuator. As long as the pressure is nonzero, the internal
motion is independent of the actual pressure value. These
effects are also visible in the linearized model in
equation (21).

In many cases, deriving Fluid Jacobians from an ana-
lytical expression of the actuators’ volume can provide the
most rapid way of arriving at a force-pressure
relationship. This holds in particular if fibers or other re-
inforcing elements make other approaches, such as deter-
mining an equivalent area manually or computing
individual constraint forces, impractical. As an additional
alternative, the Fluid Jacobian could be determined ex-
perimentally. In many applications of soft fluidic actuators,
the internal motion has a high (if not infinite) number of
dimensions and is inherently difficult to describe. In con-
trast, the task space is often low-dimensional, straightfor-
ward to describe, and motion in the task space is often
measured with encoders or other sensors as part of a robot’s
design. In such cases, the Fluid Jacobians in equations (12)
and (14) could be determined experimentally. To this end,
the volumes of the actuator units Vmust be measured over a

range of task space motions and, in the case of equation
(14), pressure values. The Fluid Jacobian could then be
determined from these experimental values by taking the
partial derivative Jv, x ¼ ∂VðxÞ=∂x or J v, x ¼ ∂V ðx, pÞ=∂x,
respectively. As demonstrated in the example of Section 3.3,
such an experimentally determined Jacobian can closely
match the expected values, even when using finite differ-
ences without any additional filtering or smoothing. The
advantage of this method would be that it does not require
the measurement of task space forces, which are not as
readily accessible as task space motions.

There still is substantial potential to further extend the
concept of the Fluid Jacobian. First of all, one could use it to
reason about the dual relationship to force versus pressure,
namely, task space velocities versus change of fluid vol-
umes. For incompressible fluids, this relationship directly
follows from the definition of the Fluid Jacobians as partial
derivatives of volume against internal and task space mo-
tion, respectively. For compressible fluids, such a rela-
tionship would be more complex, as one now needs to
distinguish between actuator volume, fluid mass, and fluid
volume, as discussed in Stölzle and Santina (2022). In
compressible fluids, fluid mass and fluid volume are related
via the applied pressure. In a sense, such a compressible
fluid will create a “series elastic” effect in the actuator
system, similar to the effect that results from the elastic
deformation due to the internal motion.5

A second extension of the concept would pertain to non-
traditional task spaces, which cannot be described by a small
number of distinct motions. An example of such a system
would be the closure of a soft gripper around a number of
different objects. Instead of defining the task space of such a
system via the high-dimensional geometrical deformation
of the continuously compliant interaction surface, one could
seek to define the task space via a number of “shape
functions” that encode different gripping modes. A Fluid
Jacobian could then be determined based on a limited
number of such shape functions.

In summary, this paper has presented a theoretical basis
and formulation of the Fluid Jacobian and given specific
examples of its use and physical interpretation. By pro-
viding structure based on general power conversion laws,
we hope that the Fluid Jacobian helps expand the under-
standing and interpretation of power transmission in fluid-
mechanical systems as well as facilitates modeling, design,
and control. In deriving the Fluid Jacobian, the vantage
point of our work is that of a traditional roboticist. We
established motion spaces and emphasized the role of the
forces generated in a soft robotic system, rather than fo-
cusing on their shape and deformation. While such a force-
based point of view is well established in traditional ro-
botics, in many applications of soft robotic systems, the
focus is less on the ability to generate task space forces but
rather on the influence of pressure on the shape of the robot
and resulting motion. This will no doubt change in the future
as appropriate models for the interactions of soft robotic
systems with their environments become increasingly
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important. Although the ultimate utility of the Fluid Jacobian
in creating these models is still to be determined, in our work
the Fluid Jacobian has had the distinct advantage that it en-
abled us to take established techniques from classical robotics,
in particular kinematic Jacobians, and bring them into the
world of soft robotics. Our hope is that our work has not only
established a strong foundation for the use of the Fluid Ja-
cobian but also that it will inspire the exploration of similar
links between concepts well understood in traditional robotics
and those important to soft robotics, such as in controller
development and motion planning.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by the CZS Prisma Program of the Carl-Zeiss-
Stiftung and by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy–EXC-2075–390740016. We acknowledge the support by
the Stuttgart Center for Simulation Science (SimTech).

ORCID iDs

C David Remy  https://orcid.org/0000-0002-4072-8034
Zachary Brei  https://orcid.org/0000-0002-7864-731X
Daniel Bruder  https://orcid.org/0000-0001-7683-2725
R. Brent Gillespie  https://orcid.org/0000-0002-1051-0026

Notes

1. A common, yet not necessary choice is to select Jy such that it is
orthonormal in its rows. That is, in addition to JxJT

y ¼ 0, it

holds that J yJT
y ¼ 1 and thus Jþ

y ¼ JT
y .

2. An actuator design with an unbounded internal motion space
does not make a lot of sense. Please see Section 3.1 for the
(contrived) example of an exception. Here a hydraulic/
pneumatic cylinder is discussed, which is considered to be
part of the internal motion. The Jacobian corresponds to the
piston area. Since this area is constant, ∂2v=∂y2 ¼ 0. The
system thus requires an elastic connection to this piston in order
to work.

3. Under the assumptions of Section 2.3.2 (existence of an explicit
description of the internal motion space), we could further
simplify these expressions as ∂JT

v, xp=∂qJ
þ
x ¼ ∂JT

v, xp=∂x,

∂τE, y=∂qJþ
x ¼ ∂τE, y=∂x ¼ �∂2e=∂x∂y, etc.

4. A compressible fluid would have a similar effect and would act
as an additional series compliant element.

5. Whereas the elastic deformation due to the task space motion
would constitute a ‘parallel elasticity.’
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