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Abstract:
The analysis of the detailed mechanism of chemical reactions is a key task of compu-
tational chemistry. The detailed knowledge may help to improve known processes or
even contribute to the development of new ones. In this way ecological and economic
demands can be reduced. Furthermore, the course of a reaction path also plays an
important role in the action of drugs. Understanding the binding of the active ingredient
to receptors, such as proteins, can make it possible to optimize drugs by reducing side
effects, or even to find new effects. Unfortunately, chemical reactions are usually too
fast to observe intermediate states by experimental methods. This is where theoretical
chemistry joins the game.

In theoretical chemistry we combine the coordinates of all atoms with the configuration
space. The potential energy forms a hypersurface in this space. Minima represent
stable or metastable states. Saddle points represent transition states which are the
most unfavourable configurations occurring on the most favourable path between two
minima. If the path of a reaction is known, all intermediate states can be observed by
theoretical methods. However, these calculations are usually computationally costly.
This is the reason why, in contrast to experimental methods, it is in general impossible
to sample the whole configuration space. This would in most cases exceed the available
computational resources. It is therefore necessary to use techniques enabling a reaction
path to be found without sampling the whole configuration space.

In the case of a thermodynamic ensemble, e. g. the contents of a test tube, statistical
information has to be included. The corresponding potential is the so-called free
energy landscape, for which some degrees of freedom of the configuration space are
thermostatistically integrated out. Consequently this function includes statistical and
energetic properties. The free energy can in general only be calculated by statistical
simulations (Monte–Carlo or molecular dynamics). Unfortunately, the transition states
in which we have a special interest are rarely sampled. Special methods have to be
applied to get sufficient sampling as well in areas of these rare events.

In this work a non-physical quadratic potential is used to bias the equation of motion
of the particles while doing molecular dynamics simulations. In this way unfavourable
areas in the configuration space can also be sampled sufficiently. This technique is
called umbrella sampling. The bias is applied to one or more coordinates which describe
the reaction and therefore are called reaction coordinates. An umbrella sampling run
will result in a distribution of the reaction coordinates. The expectation value of this
distribution will be located close to the minimum of the bias function without in general
corresponding to it. The difference between the minimum of the bias function and the
expectation value can be used to calculate the gradient of the underlying free energy
surface. Similarly, the covariance of the distribution of the reaction coordinate can be
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used to calculate the Hessian of the free energy surface. This method of interpreting
the data gained by umbrella sampling is called umbrella integration.

At first these values are used for an iterative search of the saddle points, which represent
the transition states. From these configurations, free energy paths can be constructed
by following the gradient down to the minima. This algorithm was successfully tested
for the alanine dipeptide system.

This simple method has the disadvantages that it works serially and that one needs
good initial guesses for the saddle points in order to find them. Therefore, in a second
part of the work, the established method of nudged elastic band optimization (NEB) is
extended for use in the free energy surface. NEB optimization searches for a reaction
path. This path is discretized into a number configurations, so-called images. For the
sake of equal distribution of the images along the path a non-physical spring force
between the images is used. The force, which is actually minimized during the NEB
optimisation, consists of the projection of the real force of the underlying potential
perpendicular to the path, and the projection of the spring force parallel to the path.

An optimizer is developed which archives quadratic convergence of NEB optimizations
in the noise-free potential energy surface of some test systems. This optimiser uses
gradients and Hessians at each step. For the free energy surface both values can be
calculated by umbrella integration as mentioned above. NEB optimizations within the
free energy are performed in this work in the following way: at first a guess path is
assumed, e. g. a straight line between two points in the configuration space, usually
minima. This path is discretized into a number of images. Molecular dynamics umbrella
sampling simulations are performed on each image. The gradient and Hessian from
the umbrella integration are fed into the newly developed NEB optimizer. This way
one does not need good starting guesses for the saddle points but an interpolation
between the much more easily accessible minima is sufficient. Furthermore, the need
for independent molecular dynamics runs at each image makes the method intrinsically
parallel. The whole method is applied to the well-studied alanine dipeptide system
and compared with the results from the serial method. Subsequently the algorithm is
applied to a much more costly system of binding a ligand to its receptor in water.
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Zusammenfassung:
Die genaue Analyse von chemischen Reaktionen ist eine der Schlüsselaufgaben in
der theoretischen Chemie. Das Wissen, das dabei gewonnen wird, hilft bekannte
Prozesse zu verbessern oder neue Prozesse zu entwickeln und somit die ökologischen
und ökonomischen Kosten zu reduzieren. Darüber hinaus spielt der Verlauf von Reak-
tionspfaden auch eine entscheidende Rolle für die Wirkung von Medikamenten. Durch
das genaue Verständnis der Bindungsvorgänge der Wirkstoffe mit Proteinen können
Wirkungen optimiert, Nebenwirkungen reduziert oder sogar neue Wirkmechanismen
gefunden werden. Leider laufen die meisten Reaktion mit hohen Geschwindigkeiten
ab, so dass es oft nicht möglich ist, genaue Informationen über Zwischenzustände aus
experimentellen Daten zu erhalten. Diese Lücke wird von chemischen Simulationen
geschlossen.

In der theoretischen Chemie fasst man die Gesamtheit aller Kernkoordinaten im so
genannten Konfigurationsraum zusammen. Die potentielle Energie bildet eine Hyper-
fläche in diesem Raum. Minima stellen stabile oder metastabilen Zustände dar, die über
längere Zeit existieren können. Sattelpunkte repräsentieren Übergangszustände, die die
energetisch ungünstigste Konfiguration auf einem Weg von einem Minimum zu einem
anderen darstellen. Kennt man nun den Weg, den eine chemische Reaktion im Konfigu-
rationsraum zurücklegt, können alle Zwischenzustände dargestellt werden. Allerdings
sind die nötigen Berechnungen sehr aufwändig. Anders als im Experiment kann in
einer Simulationen in der Regel nicht der ganze Konfigurationsraum erkundet werden.
Dies würde in den meisten Fällen die vorhandene Computerkapazität überfordern. Es
müssen also Techniken zum Einsatz kommen, die den Ablauf einer Reaktion ermitteln
können ohne dafür den gesamten Raum aller Freiheitsgrade abtasten zu müssen.

In einem thermodynamischen Ensemble, zum Beispiel dem Inhalt eines Reagenzglases,
müssen zusätzlich noch statistische Eigenschaften miteinbezogen werden. Das hierfür
relevante Potential ist die Freie-Energie-Landschaft, bei der ein Teil der Freiheitsgrade
im Konfigurationsraum statistisch gemittelt wurden. In diese Funktion gehen also
statistische und energetische Eigenschaften ein. Die Freie Energie kann in Allgemeinen
nur durch statistische Simulationen (molekulardynamische oder Monte-Carlo) berechnet
werden. Leider kommen die Übergangszustände, an denen wir besonderes Interesse
haben, bei statistischen Simulationen besonders selten vor. Daher müssen Techniken
verwendet werden, die eine ausreichende Auflösung auch im Bereich dieser seltenen
Ereignisse erlauben.

In dieser Arbeit wird ein nicht-physikalisches quadratisches Potential, ein sogenan-
nter bias, zur Bewegungsgleichung der Teilchen hinzugefügt. Dadurch wird erreicht,
dass auch ungünstige Bereiche im Konfigurationsraum ausreichend aufgelöst werden.
Dieses Technik wird Umbrella Sampling genannt. Das Bias-Potential wirkt nur entlang
einer oder mehrerer Koordinaten, die die Reaktion beschreiben. Sie werden deshalb

v



Reaktionskoordinaten genannt. Eine Umbrella-Sampling-Simulation wird eine Fluk-
tuation der Reaktionskoordinate ergeben, deren Erwartungswert nahe am, aber im
Allgemeinen nicht auf dem Minimum des Bias-Potentials liegen wird. Aus der Dif-
ferenz zwischen Erwartungswert und Minimum des Bias-Potentials kann der Gradient,
der zugrundeliegenden Freien Energieoberfläche berechnet werden. Ähnlich kann die
Hessematrix der freien Energie aus der Kovarianz-Matrix der Verteilung der Reaktion-
skoordinate hergleitet werden. Diese Methode zur Interpretation der Daten, die man
durch Umbrella Sampling erhält, nennen wir Umbrella-integration.

Zunächst verwenden wir diese Werte um damit die Sattelpunkte, die die Übergangszustände
repräsentieren, iterativ zu bestimmen. Ausgehend von diesen Konfigurationen kann der
Reaktionspfad durch Verfolgen des Gradienten ermittelt werden. Dieser Algorithmus
wurde für das System Alanindipeptid erfolgreich getestet und veröffentlicht.

Diese einfache Methode hat die Nachteile, dass sie zum Einen intrinsisch seriel arbeitet
und zum Anderen recht gute Startwert für die Sattelpunkte voraussetzt. In einem zweiten
Teil der Arbeit wird deshalb die etablierte Methode der Nudged Elastic Band (NEB)-
Optimierungen für die Anwendung in der Freien-Energie-Landschaft erweitert. Bei
NEB-Optimierungen beginnt man mit einer ersten Abschätzung für den Reaktionspfad,
dieser wird durch eine Anzahl von Konfiguration, sogenannten Bildern, mit gleichem
Abstand diskretisiert. Damit die Bilder während der Optimierung gleichmäßig verteilt
bleiben, führt man eine nicht physikalische Federkraft ein, die zwischen den Bildern
wirkt. Zur eigentlichen Optimierung wird nun die Summe aus der Komponente der Kraft
des zugrundeliegenden Potentials, die senkrecht zum Pfad wirkt, und die Komponente
der Federkraft die parallel zum Pfad wirkt, minimiert.

In dieser Arbeit wird zuerst ein Optimierer entwickelt, der für bestimmte Testsysteme
quadratische Konvergenz von NEB-Optimierungen innerhalb der potentiellen Energie
erreicht. Dieser neue Optimierer benutzt für jeden Schritt nicht nur den Gradient
sondern auch die Hessematrix des zugrundeliegenden Potentials. Für die Freie-Energie-
Oberfläche können beide Werte durch Umbrella-integration ermittelt werden. Um
also NEB-Optimierungen in der Freien-Energie Oberfläche durchführen zu können,
wird in dieser Arbeit wie folgt vorgegangen. Zuerst wird ein Startpfad z. B. eine
gerade Linie zwischen zwei Punkten, meist Minima, als Kleinster-Freier-Energie-Pfad
angenommen. Dieser Pfad wird in mehrere Bilder diskretisiert, um dann an jeder
dieser Konfigurationen molekulardynamische Simulationen mit Umbrella-integration
durchzuführen. Die so erhaltenen Gradienten und Hessematrizen finden nun Eingang
in den neu entwickelten NEB-Optimierer. Auf diese Weise benötigt man weniger gute
Startwerte für die Sattelpunkt, als Startwerte reicht eine Interpolation zwischen viel
leichter zugänglichen Minima. Darüber hinaus ist die Methode intrinsisch parallel, da
zu jedem Bild unabhängige molekulardynamische Simulationen durchgeführt werden
müssen. Diese Methode wurde für das System Alanindipeptid erfolgreich getestet
und mit den Ergebnissen der seriellen Methode verglichen. Anschließend wird der
Algorithmus auch für das deutlich aufwendigere System der Bindung von Ligand und
Rezeptor in Wasser eingesetzt.
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1
Background and Motivation

The first chapter explains the contextualisation of this work within its discipline.

Contents
1.1 Why We Do Theoretical Chemistry . . . . . . . . . . . . . 4

1.2 Computational Simulations in Theoretical Chemistry . . 4

1.3 Free Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . 6
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1.1 Why We Do Theoretical Chemistry

Chemistry has a broad impact on our daily life. From drugs and food ingredients to
material design and environment protection, chemical knowledge plays an important
role in the protection of our health as well as in sustainable progress. Research
activities that seek to improve this knowledge are usually based on experimental
lab work. While experimental methods serve as a wide source of important findings,
complementary theoretical studies can help to open ways which would not be
accessible by pure experimental methods. An example of the benefits of using
computational methods is virtual screening. To find a new medical active component
it would be necessary to synthesize thousands of structures and test their impact
on human cells in a Petri dish. Using computational methods, the interaction of a
substance with proteins found in cells can be simulated. This way a preselection can
be made, which helps reduce time and cost of investigation. Further computational
simulation of enzymes can uncover their biological function. This may help to
develop even newer strategies to fight diseases.

Theoretical chemistry can be divided into three areas. The oldest area addresses
theoretical concepts, which use analogies, symmetries and heuristic considerations to
predict structures and reactivities of chemical substances and their components. A
second area is engaged with the calculation of the electronic structures of molecules
and solid state body. Nowadays this work is done exclusively by computational
methods. The third area, to which this work belongs, uses computational methods
to predict chemical structures and reaction mechanisms.

1.2 Computational Simulations in Theoretical Chemistry

We have seen that we can divide the area of theoretical chemistry into three
sub-areas: analytic methods, electronic structure investigations and computational
chemistry. The fast-growing availability of computational performance leads to
an increasing importance of the last two sub-areas. Since this work belongs to
computational chemistry, this and following chapters only deal with this sub-area.

Chemical systems consist of nucleons and electrons. In principle, all properties
should be explained by solving the physical equations governing the systems.
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However, for the predominant number of multibody systems closed solutions
do not exist. In computational chemistry we use numerical methods to find
approximative solutions to the governing equations. This involves such a large
number of calculations that such simulations can only reasonable be done by large
computers. Thus, we use computational simulations to approximate the physical
behavior of chemical systems. These results are further used to investigate the
structure, reactivity and dynamics. Therefore, this area is called computational
chemistry.

1.3 Free Energy

A main task of computational chemistry is to find mechanisms of chemical reac-
tions. While reactants and products of such a reaction can be easily observed by
experimental methods, because they exist in a reasonable time, most reactions take
place at such small time scales, that they are difficult to investigate by experimental
methods. This is where computational simulations join the game. All configurations
reached during a simulation can be studied in detail. However, one needs to ensure
that the simulated course of the reaction is consistent with that found in nature.

Nature has two different ways of driving processes. The most intuitive one is energy.
A river flows from the mountain to the sea because sea level, lying comparatively
deeper as it does, has a lower potential energy than the height of the mountain.
More difficult to understand is entropy. In paradoxically, a piece of sugar at the
bottom of a vessel filled with water dissolves in the whole liquid after some time,
even though sugar has a higher density and should stay at the bottom for energetic
reasons. This process is driven by entropic properties. While at least for these
examples we can clearly distinguish the driving force, in many cases we have to
consider an interaction of both drives. This is described by Helmholtz free energy.
Thermodynamic systems have the tendency to move towards lower Helmholtz free
energy. Its change is described by

∆A =∆E + P∆V − T∆S (1.1)

where ∆E is the change in the energy, P the pressure, ∆V the change of the
volume, T the temperature and ∆S the change of the entropy. This formulation
leads to a lot of confusion. Since a thermodynamic description is only valid for
equilibrium conditions the free energy should not change, ∆A = 0. The only
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satisfying explanation known by the author uses the concept of internal constrains.
Considering again the example of a river flowing down from the mountain: The
water is obviously not in equilibrium conditions. However, we can imagine a dam
keeping water back on the mountain. In this example the dam serves as an internal
constraint, which enables the water to stay in equilibrium condition at a different
position. Taking away internal constraints and opening the dam, the water is not
in equilibrium condition any more, it flows down to the valley or to a deeper barrier
lake, where it will reach another equilibrium with lower free energy after some
time. The change of the macroscopic variables in equation (1.1) describes their
change between different equilibrium conditions under different internal constraints.
However, this concept does not help us to explain how fast the water will flow
and which way it will take. It is different in the case of slow processes, like the
dissolving of sugar in water. Here the internal dynamics happen much faster than
the macroscopically observed process. Describing the solution as infinitely slow, we
can treat the process like an infinitely slow change of the internal constraints. This
approximation can be found under the catchword quasistatic processes in many
textbooks.

In this work internal constraints are applied to a set of variables ξ, which are a
subset of all micro variables, and used as internal constraints. ∆A(ξ) forms a
landscape in the space of the constraint micro variables. Properties gained from this
landscape are only valid under the condition of the quasistatic approximation.

Reactant and product of a reaction are represented by minima in the underlying
potential, here the free energy ∆A(ξ). These configurations are stable since they
will return to their original state after small perturbations. It has been shown
that the most probable reaction mechanism between two minima takes place along
paths which are tangential to the gradient and lead over saddle points.1,2

1.4 Thesis Overview

The main part of this work consists of five chapters. The first chapter explains the
background and motivation leading to this thesis. In the second chapter I give a
brief overview of literature covering the groundwork necessary to build on this work.
Here I start by explaining molecular dynamics using force fields, followed by the
mathematical background from statistical physics. This chapter ends by explaining
computational methods used to investigate potential and free energy landscapes.
The third chapter contains improvements reached during the work. This includes a
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serial algorithm to find minimum free energy paths (MFEP) and nudged elastic
band simulation, first in the potential energy landscape and then in the free energy
landscape. The latter one requires a number of independent molecular dynamics
simulations at each optimization step. It is therefore an intrinsically parallel process.
All developed algorithms are demonstrated for simple test cases. The method of
doing nudged elastic band simulations in the free energy surface, the final algorithm
which represents the essence of the whole work, is applied to a realistic complex
ligand binding problem.
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2
Literature Overview

This chapter introduces the theoretical and computational concepts used throughout
the thesis

Contents
2.1 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Force Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Thermostats . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Mathematical Concepts . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Free Energy Surface . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Intrinsic Reaction Coordinates . . . . . . . . . . . . . . . . 20

2.2.2.1 Intrinsic Reaction Coordinate at Saddle Points . . 22

2.2.3 Transition State Theory . . . . . . . . . . . . . . . . . . . . 24

2.2.4 On Ergodicity and Finite Sampling Time . . . . . . . . . . 26

2.2.4.1 Discrete Sampling . . . . . . . . . . . . . . . . . . 27

2.2.4.2 Central Limit Theorem . . . . . . . . . . . . . . . 27

2.3 Computational Methods . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Umbrella Integration . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Nudged Elastic Band Simulations . . . . . . . . . . . . . . . 30
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2.1 Molecular Dynamics

In computational chemistry one of the main tasks is to analyze reaction mechanisms.
However, information about the reaction of a particular molecule yields little insight.
The behaviour of chemical structures is subject to statistical properties like thermal
stochastic motion and quantum mechanically Heisenberg’s uncertainty principle. If
we can not generalise the trajectory a single molecule follows during a reaction, we
need to average this over many such processes in order to find statistical information
about the underlying principles. The method used in this work is not to trace one
but many trajectories.

Frankly, this work does not derive statistical properties from many trajectories,
but from a single very long trajectory, which will be justified in the section
about ergodicity later. Trajectories are calculated by molecular dynamics (MD)
simulations. MD simulations approximate the nucleons as classical particles and
use classical equations of motion for time propagation.

2.1.1 Integrators

For the time propagation of classical particles Newton’s equation of motion has to
be solved.

miẍi =F atom,i (2.1)

where mi is the mass, xi the position and F atom,i the force acting on the ith
atom. However, since in molecular dynamics we always deal with many par-
ticle systems, this cannot be done in a closed form, but has to be calculated
numerically. Computers only have a limited performance. Newton’s equation
of motion can not be integrated for every point in time during a period. For
numerical integration, time has to be discretised and a function for stepwise cal-
culation of the trajectory be applied. In this work equally spaced time steps ∆t
are used and spatial coordinates of all N particles are organized in the super
vector X = (x1, y1, z1, x2, y2, z2, x3, y3, z3, . . . , xN , yN , zN )T, and analogously the ve-
locities V = (v1,x, v1,y, v1,z, v2,x, v2,y, v2,z, v3,x, v3,y, v3,z, . . . , vN,x, vN,y, vN,z)T and the
accelerations A = (F1,x

m1
, F1,y

m1
, F1,z

m1
, F2,x

m2
, F2,y

m2
, F2,z

m2
, F3,x

m3
, F3,y

m3
, F3,z

m3
, . . . ,

FN,x

mN
,
FN,y

mN
,
FN,z

mN
)T.
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Within this nomenclature the simplest time stepping algorithm, the explicit Euler
algorithm, applied to equation (2.1) yields

V n+1 =V n + ∆tAn, (2.2)
Xn+1 =Xn + ∆tV n (2.3)

where the index n serves as a shortcut for the position in time e. g. Xn = X(t =
n ·∆t). This method corresponds to a truncation of the Taylor expansion of the real
solution after the linear element. It has therefore an error of O(∆t2). Unfortunately,
this method has a comparatively large error, and it is also known to be unstable
for most cases. A much better method is the so called leapfrog method

V n+ 1
2

=V n− 1
2

+ ∆tAn (2.4)

Xn+1 =Xn + ∆tV n+ 1
2
. (2.5)

By shifting the sampling points of time between velocity and position half a time
step ∆t, we get an error of O(∆t3). This can be seen by plugging equation (2.5)
into (2.4).

Xn+1 =Xn + ∆tV n− 1
2

+ ∆t2An (2.6)

The exact value for V n− 1
2
can be expressed in a Taylor expansion around t =

n ·∆t.

V n− 1
2

=V n −
∆t
2 An −

∆t2
4

d3Xn

dt3 +O(∆t4) (2.7)

Putting the written terms of equation (2.7) in (2.6)

Xn+1 =Xn + ∆t
[
V n −

∆t
2 An −

∆t2
4

d3Xn

dt3

]
+ ∆t2An (2.8)

=Xn + ∆tV n + ∆t2
2 An −

∆t3
4

d3Xn

dt3︸ ︷︷ ︸ (2.9)

while the under-braced term does not coincide with the Taylor expansion of X
and is of the order O(∆t3). In addition, the leapfrog algorithm does not only have
a higher accuracy of one order in comparison to the Euler algorithm, but it has
also been shown that the leapfrog formula is a symplectic integrator.3 It is often
claimed that symplectic integrators produce results which conserve energy in the
system averaged over many steps, and that they preserve the phase space volume
of a thermodynamic ensemble.3–7 Note that using the leapfrog algorithm provides
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higher accuracy and preservation of thermodynamical conservation laws by the
same amount of computational operation used for the Euler stepping and even less
memory since the Euler algorithm needs to store V n to calculate Xn+1. For the
leapfrog algorithm the storage of V n can simply be overwritten by the value of
V n+1. Compare equations (2.4) and (2.5) with (2.2) and (2.3).

Apart from its simple structure and benign numerical behavior, the leapfrog
algorithm has the disadvantage that velocities and positions are calculated at
different times. Within the time discretization of equation (2.4) we can calculate
the velocity at integer time positions by either stepping half a time step forwards
or backwards

V n+ 1
2

= V n− 1
2

+ ∆tAn ⇒ V n = Vn+ 1
2
− 1

2∆tAn (2.10)

V n+ 3
2

= V n+ 1
2

+ ∆tAn+1 ⇒ V n+1 = Vn+ 1
2

+ 1
2∆tAn+1. (2.11)

Subtracting equation (2.10) from (2.11) and rearrange the outcome we get the
stepping formula

V n+1 = Vn + 1
2∆t [An +An+1] . (2.12)

However, this time discretization is not compatible with the leapfrog stepping.
Equation (2.12) calculates the velocity at full time positions but equation (2.5)
needs it at half time positions. Therefore we reformate equation (2.10) to V n+ 1

2
=

Vn + 1
2∆tAn and plug it into equation (2.5).

Xn+1 =Xn + ∆tV n + 1
2∆t2An. (2.13)

Equations (2.12) and (2.13) are together called the velocity Verlet integrator. Since
it is the mathematical equivalent to the leapfrog algorithm, it shares the properties
of symplecticity and order of error.

Both the velocity Verlet as and as the leapfrog integrator are usually available
in molecular dynamics software and are widely used. One may wonder why
integrators with higher accuracy should not be used. The reason is that we do not
aim to numerically calculate a particular trajectory but rather average behaviour.
Therefore it is important that the integrator creates a canonical trajectory, but
small perturbations are not of any consequence if they statistically cancel out. A
symplectic integrator meets these conditions.3,5
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2.1.2 Force Fields

For a correct description of the force between atoms the quantum mechanic equa-
tions of motions have to be solved. This means that the common wave function
for electrons and nucleons has to be found. However, for most cases the Born–
Oppenheimer approximation can be applied. This approximation states that one
can separate the motion of electrons and nucleons because of the different timescales
on which the two kinds of particles are accelerated. In the case of molecular dynamic
simulations this means that the Schrödinger equation is solved for the electrons.
The Coulomb potential of the density probability of the surrounding electrons is
used to calculate the force acting on the nucleons. This force enters the calculation
for the movement of the nucleons. For many cases, and usually for heavy atoms,
nucleons can be treated classically.

Unfortunately, for many atoms such as we usually face in biological systems, even
within the Born–Oppenheimer approximations numerical quantum mechanical
calculations are computationally prohibitive. Therefore we use a types of reduced
models called force fields. A force field models the force acting on a particular
atom by

F i,j =F i,j bound + F i,j nonbound (2.14)

with

F i,j bound =F i,j distance + F i,j angle + F i,j dihedral (2.15)

and

F i,j nonbound =F i,j van der Waals + F i,j electrostatic. (2.16)

These interactions are illustrated in Fig. 2.1. The indices i and j are written to
indicate that all these interactions take place between different atoms.

The whole force acting on the ith atom is the sum

F i =
N∑
i 6=j
F i,j, (2.17)

where we sum up over all N atoms but exclude the ith one. The single terms
for a certain kind of interaction between two atoms F i,j are formed by analytical
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Figure 2.1: Illustration of interactions encountered in molecular dynamic simulations
with force fields. Bonded interactions: bond length, angle and dihedral are marked
with turquoise arrows. Non-bonded interactions: the electrostatic and van der Waals
interactions are marked with yellow arrows. Each kind of interaction is visualized only
once but acts on each atom.

functions, which approximate the real behavior. For example, in the bounded
distance in most molecular dynamics simulations software force is represented by
either the harmonic approximation

Vij distance =1
2k (rij − rij,0)2 (2.18)

or a Morse potential

Vij distance =D
(
1− eα(rij−rij,0)

)2
, (2.19)

where rij denotes the actual and rij,0 the equilibrium distance. The term Vx
denotes the potential of the corresponding force F x = −∇Vx. A Morse potential
has the advantage that it better approximates the potential for larger distances.
The functions are tuned by fitting the parameters k, D and α to experimentally
archived and calculated properties for the particular bond. All these parameters
depend on atom and bond types. Obtaining all the parameters for different atom
types and different kind of interactions demands a huge amount of work. Databases
so-called force fields like charmm8 or amber9 are usually used.
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Chemical experiments very seldom take place in the vacuum or gas phase, where
one only needs to model molecules with very little interaction with other molecules.
Most chemical reactions are observed within a solvent e. g. water. One has to
admit that water molecules do not only act as a thermal reservoir but also interfere
in the molecular dynamic properties by electrostatic forces and spatial dimension.
A ligand entering a binding pocket has to crow the water out, while without water
in many cases an enzyme would not fold into the active geometry. Therefore
realistic modelling of solvents is necessary. On the other hand, in usual systems
many more atoms belong to the solvent, which are dynamics we are not interested
in. The model for the parameter should therefore compromise between reducing
computational effort and reproducing the influence of the solvent on the observed
part of the system as closely as possible.

In this work the TIP3P water model10 is used. This model uses three point charges,
each for one atom to represent the electrostatic influence of one water molecule.
The spatial crowding is modeled by Lennard–Jones potential around each atom.
The bond distances and angles are kept fixed, since we are not interested in the
dynamics of the water itself.

The TIP3P water model10 is not the only simplified water model used in common
force fields. It has been used in this work because of its width spread application.
Since this work focuses on the techniques rather than a particular reaction mech-
anism, the main motivation for the choice of the water model was comparability
with former work.

2.1.3 Thermostats

Time propagation in molecular dynamics simulations are designed to conserve
energy over many steps. This is ensured by the use of symplectic integration
algorithms and is an important property because the simulation aims to reproduce
the behaviour of the real system. If it were possible to model a system perfectly,
only configurations with the same energy would occur. We have seen that averaged
over many time steps, symplectic integrators are a good approximation to reality
with respect to energy conservation. The particles can exchange energy between
each other, but the sum of the energy as a whole must be constant because of
the empirical principle of energy conservation. If one also keeps volume and the
number of particles constant, as we usually do in molecular dynamic simulations,
such an ensemble is called a micro-canonical ensemble. Contrary, even with high
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quality isolation a real system always interacts with the world. The total amount of
energy within the ensemble can change by energetic exchange with the environment.
Configurations occur with the probability of the Boltzmann factor

Pi = exp(−βEi) (2.20)

where β = 1
kBT

and Ei is the energy of the particular configuration and microstate
respectively. Such a system is called a canonical system and has different statistic
from a system with a constant energy.

The most intuitive way to simulate a canonical ensemble would be to simulate a part
of the environment of the system, a thermal reservoir, and allow energy exchange.
However, we would spend a lot of computational performance by calculating
the dynamics of the thermal reservoir. Therefore, various algorithms, so-called
thermostats were developed in order to allow the system to visit configurations
with different energies with thermostatistical behaviour.

In this work I use the Nosé–Hoover chain11–14 thermostat, a variant of a thermostat
proposed by Nosé.11 This thermostat is based on the idea of reducing the thermal
reservoir to one degree of freedom s to which an effective mass Q and potential
of

V(s) =− g

β
ln s (2.21)

is assigned. The parameter g = 3N + 1 and the form of the potential V(s) will
be justified later. One degree of freedom can of course give and take energy but
cannot have a stochastic behaviour like a realistic thermal reservoir.

The more sophisticated part of the algorithm is to couple this one dimensional
thermal reservoir to the simulated system. In nature this is always done by the
interaction of particles of the subsystems which each other. This corresponds to a
temporal modification of the force respective to the potential in the equation of
motion. However, this would require a high dimensional thermal reservoir with
stochastic behaviour. Otherwise a modification of the potential of the form

V (q) → Ṽ (q) = f(s, q)V (q) (2.22)

would result in strong correlated energetic interaction between the thermal reservoir
and the different degrees of freedom of the system. Nosé therefore modified the
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kinetic energy term in order to introduce an interplay between the system and the
thermal reservoir. The resulting kinetic Energy term reads

T (p) =
N∑
i=1

p2
i

2mi

→ T̃ (p) =
N∑
i=1

p2
i

2mis2 . (2.23)

For s < 1 the potential of equation (2.21) will be positive, consequently the kinetic
energy of the simulated system will be amplified, equation (2.23). For s > 1 the
opposite is true. Joseph Louis Lagrange introduced a formalism to describe classical
mechanical systems by just one scalar function L = T − V . We get the modified
Lagrange function for the whole system (simulated system of interest plus thermal
reservoir) by means of

L̃ =T̃ (p) + T (s)− Ṽ (q)− V(s) =
N∑
i=1

miq̇
2
i

2s2 − V (q) + Q

2 ṡ
2 + g

β
ln s (2.24)

The Hamilton function is formed by a Legendre transformation and yields with
pi = miq̇i and ps = Qṡ

H(q,p, s, ps) =
N∑
i=1

p2
i

2mis2 + V (q) + p2
s

2Q −
g

β
ln s. (2.25)

The effective mass Q of the thermal reservoir determines how strongly the systems
are coupled. The larger Q is, the slower the simulated system returns to the desired
temperature after fluctuations or perturbations. Molecular dynamics tools usually
use the dubiously justified term response time for the shortcut τ =

√
Qβ
g
.

If a Hamilton function does not explicitly depend on time, energy must be conserved.
Consequently the whole system described by the Hamilton function of equation
(2.25) must be a microcanonical ensemble if we keep volume and the number of
particles fixed. The central property to describe a thermostatistical system is the
partition function. It is the overall sum of occupied microstates. The partition
function of the microcanonical system treated here reads

Q =
∫
s

∫
ps

∫
R3N

∫
R3N

s3Nδ

[
H(q,p′) + p2

s

2Q −
g

β
ln s− E

]
dsdpsdqdp′, (2.26)

where H(q,p′) denotes the part of the Hamilton containing the actual system of
interest and the substitution p′ = p/s was used. E is the energy of the whole
system. The number of possible states of a system is proportional to the phase space
volume

∫
s

∫
ps

∫
R3N

∫
R3N

s3Ndsdpsdqdp′. In a microcanonical system we only allow states
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with a certain energy to be occupied. This is the reason why the δ distribution
appears in the support of the integral. Actually in equation (2.26) the factor(
(N + 1)!h3N+1

)−1
concerning that according to Heisenberg’s uncertainty principle

states are not infinitely dense is missing. However, it will not change the qualitative
result of this analysis. A simple substitution leads to the rule

∫
δ [f(x)] dx =

∫ ∑
i

δ [x− xi]
f ′(xi)

dx (2.27)

with xi being the roots of the function f(x). The only root of the function in the

argument of the delta distribution in equation (2.26) is s0 = exp
(
−H(q,p′)+ p2

s
2Q
−E

g
β

)
.

Hence the microcanonical partition function can be reformulated as

Q =β
g

∫
s

∫
ps

∫
R3N

∫
R3N

s3Ns0 · δ [s− s0] dsdpsdqdp′

=β
g

∫
ps

∫
R3N

∫
R3N

exp
− (3N + 1)

H(q,p′) + p2
s

2Q − E
g

β

 dpsdqdp′

= β

(3N + 1)

∫
ps

exp
(
−
(
p2
s

2Q − E
)
β

)
dps

∫
R6N

exp (− (H(q,p′)) β) dqdp′ (2.28)

where the shortcut g = 3N + 1 was used. We clearly see in equation (2.28) that the
microcanonical partition function of the whole system containing the one dimen-
sional thermal reservoir and the simulated system only differs from the partition
function of a canonical system by the factor 1

(3N+1)kBT

∫
ps

exp
(
−
(
p2

s

2Q − E
)
β
)
dps.

Note that in this nomenclature E denotes the fixed energy of the microcanonical en-
semble, while Ei in equation (2.20) denotes the energy of the particular microstate,
which is equivalent to its Hamilton function.

In equation (2.26) we implicitly assumed that the system visits all points in
phase space, with the particular energy E. This is a safe assumption for a large
chaotic fluctuating thermal reservoir. However, the simple one-dimensional thermal
reservoir of the Nosé–Hoover thermostat may not be able to activate some degrees
of freedom. It was shown that even for such cases one gets a canonical distribution
by using a chain of k one-dimensional thermal reservoirs si = {s1, . . . , sk}.14 While
the simulated system itself is regulated by the thermal reservoir s1, s1 is driven by
s2 and so on. Since each thermal reservoir only consists of one degree of freedom,
typical chain lengths from 4 to 10 are of no consequence in comparison with the
few thousand degrees of freedom used to describe realistic systems.
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2.2 Mathematical Concepts

2.2.1 Free Energy Surface

For investigation of reaction mechanisms in a thermodynamic ensemble, e. g. the
contents of test tube statistical information have to be included. A potential
which does so is the free energy landscape, for which some degrees of freedom
of the configuration space are thermostatistically integrated out. This function
therefore includes statistical and energetic properties. The free energy surface can
be calculated by15

A(ξ) = − 1
β

ln
[
Q(ξ)
Q

]
. (2.29)

The coordinate ξ denotes an arbitrary degree of freedom, where β = 1
kBT

with T
being the temperature, kB the Boltzmann’s constant and the partition function

Q =
∫∫

exp(−βE(q,p)) d3Nq d3Np . (2.30)

E(q,p) denotes the energy of a certain point in phase space described by the spatial
coordinates q and the momenta p.

Q(ξ) =
∫∫

δ(ξ′(q)− ξ) exp(−βE(q,p)) d3Nq d3Np (2.31)

with δ being Dirac’s delta function, is a constrained partition function in which all
degrees of freedom but ξref are integrated out. ξ(q) may be a component of the
position vector q or a non-linear function out of those e. g. a torsion angle. The
only restriction implicitly made is in equation (2.31), that it is defined at every
position in the configuration space. As will be discussed later, this condition yields
problems if we want to use the arc length of a path as reaction coordinate. In these
cases we have to generalize it for the environment.

In the absence of an external electromagnetic field the whole energy is a sum of
potential energy and kinetic energy E(p, q) = K(p) + V (q). Consequently, the
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integrations over p in equations (2.30) and (2.31) cancel. Equation (2.29) can be
generalized to higher dimensional subspaces of RM , which results in

A(ξ) = − 1
β

ln
∫
δ(ξ′(q)− ξ) exp(−βV (q)) d3Nq∫

exp(−βV (q)) d3Nq
, (2.32)

where ξ is a general coordinate, or a set of those e. g. two torsion angles.16

A(ξ) is often referred to as free-energy surface. This may be confusing, because the
free energy is actually a thermodynamical state function independent of microscopic
variables such as e. g. the configuration space, compare equation (1.1). In fact, the
potential of mean force is neither a potential energy nor a pure free energy but can
be tuned step by step from a potential energy to the free energy by integrating out
more and more degrees of freedom.

The careful reader may have noticed that the free energy surface A(ξ), equation
(2.32), derived here is not the same as the change of free energy under different
internal constraints explained in section 1.3. Equation (2.32) only considers a
slice of the non-constrained equilibrium distribution, while internal constraints
would force all microstates to a certain value of the considered degree of freedom ξ.
However, this difference is only a constant factor in the partition function leading
to a constant shift of the free energy potential. Obviously, only differences and
deviations but not the absolute value of a potential are of physical relevance.

2.2.2 Intrinsic Reaction Coordinates

A chemical reaction can be described as a path in a reaction space, E. g. the 3N
dimensional configuration space of all spatial coordinates of the N atoms forming
the studied system. Describing the chemical reaction A −→ B in a reaction space,
reactant A and product B occupy different areas. An infinite amount of lines
can be drawn to connect both areas. Each line represents a possible course of
the reaction between A and B. However the possibility of occurrence differs a lot
depending on the physical properties of the system. This is taken into account by
the introduction of a reaction potential. In terms of the configuration space this
would be the potential energy. In this work I mainly use the free energy landscape
in respect to the potential of mean force as defined in equation (2.32), which will
be explained in detail later. For the potential of mean force the reaction space is a
subspace of the configuration space, only containing a subset of atoms important
to describe the reaction. Work done shows that the most probable reaction path
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leads over saddle points and is always parallel to the gradient of the underlying
potential.1,2 Considering a potential energy surface this would be the minimum
energy path (MEP). For the free energy surfaces this path is called the minimum
free energy path (MFEP).17–24

The MFEP is a one dimensional curvilinear line embedded in the high dimensional
reaction space. In this work I exclusively use the symbol s to denote the arc
length s along the MFEP, the so-called intrinsic reaction coordinate. ξ denotes
any one-dimensional reaction coordinate. At the MFEP, the value of the reaction
coordinate s is merely the arc length of the path. Furthermore the path s is
not defined. To generalise the concept of an intrinsic reaction coordinate for
configuration in environment, to the best of the author’s knowledge no satisfactory
mathematical conception exists. However, in this work, equation (2.31) will only
be evaluated for Cartesian coordinates or the MFEP. The latter describes the
path with the highest probability of the reaction taking place. In most cases all
significant contribution to the reaction occurs from paths in the vicinity of the
MFEP, where one may approximately assign equal values of the reaction coordinate
s to isosurfaces perpendicular to the path as illustrated in figure 2.2.

sA

sTS

sB

Figure 2.2: Sketch to illustrate the concept of intrinsic reaction coordinate. An arbitrary
example free energy landscape is drafted by isolines. The red line shows minimum free
energy path (MFEP). The reaction coordinate s denotes arc length along the MFEP.
Thin straight lines crossing the MFEP illustrate the approximative generalisation of the
reaction coordinate in the vicinity of the path by perpendicular surfaces.
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2.2.2.1 Intrinsic Reaction Coordinate at Saddle Points

The tangent vector of the intrinsic reaction coordinate reads

τ (s) =ds
ds = − g(qRCS(s))

|g(qRCS(s))| . (2.33)

The minus sign results from the arbitrary definition starting the measurement of
the arc length at the saddle point. At a saddle point the gradient is zero and
equation (2.33) is not defined. In the infinitesimal vicinity of the saddle point
qRCS(0)) we can use a first order Taylor expansion of the gradient.

g(qRCS(0) + dqRCS) = H(s = 0)dqRCS. (2.34)

The constant part of the Taylor expansion at the saddle point is zero by definition.
On the MFEP

ds =∂q
RCS(s = 0)
∂s

ds = qRCS(s = ds)− qRCS(s = 0). (2.35)

Putting all these ingredients together we get a condition for the MFEP in the
vicinity of the saddle point

−|H(s = 0)ds|dsds =H(s = 0)ds. (2.36)

This is obviously an eigenvalue equation for negative eigenvalues only. Therefore
we can state that the MFEP at the saddle point is tangential to an eigenvector
with a negative eigenvalue.

One may argue that the minus sign in equation (2.33) comes from an arbitrary
choice of the start of the arc length. Consider a definition of the arc length, where
s increases when the MFEP approaches the saddle point. In this case one side of
equation (2.35) has to be multiplied by −1 and we end up with a similar eigenvalue
equation, with the only difference being that s 6= 0.
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Figure 2.3: Sketch to illustrate concepts used in transition state theory. Individual
configurations residing in area A are said to be in the reactant state. Everything in B is
said to be in the product state. The surface TS denoting the border between reactant
and product state is drawn with a fine dashed line. Arrows symbolise the chemical
reaction A −−→ B. The solid serpentine line illustrates the intrinsic reaction coordinate.
Illustration below shows an example potential energy profile resulting from cutting along
one particular spatial degree of freedom symbolized by a dashed straight line. Since
the reaction from A to B happens on time scales much larger than equilibration within
reactant and product we can assume thermal equilibrium within A but not between A
and B.
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2.2.3 Transition State Theory

In transition state theory one searches for an expression to calculate the rate of a
chemical reaction from the potential along the reaction coordinate. Here I follow
the idea of reference [25] but will end up with a formulation known from [26]. The
rate of a chemical reaction is usually expressed with the help of a rate constant k
which obeys the formula

d
dt [A] = −k [A] , (2.37)

while [A] denotes the concentration of the reactant A. In the following we regard
the chemical reaction A −→ B as taking place between two minima separated by a
barrier as illustrated in figure 2.3. The peak of the barrier is called the transition
state, and denoted by ξTS. Every microstate at the left side of ξTS is taken to be
in A. Furthermore the assumption is made that the residence time in A is much
longer than the time needed for equilibration between species in A. The probability
in terms of concentration of finding an individual structure at a certain volume
element of the phase space is consequently

d [A] = exp(−βE(q,p))dqdp∫R6N Θ(ξTS − ξ) exp(−βE(q,p))dqdp
[A] . (2.38)

The nominator serves for normalization. Θ(ξ) denotes the Heavy side function,
indicating that integration merely runs over the subspace of the phase space
belonging to the reactant A. To know the change of the concentration of A over
time one needs to divide equation (2.38) by dt and integrate over the subspace
belonging to A.

d
dt [A] = 1

µ

∫
p1 exp(−β p2

1
2µ)dp1∫

exp(−β p2
1

2µ)dp1

∫ TS exp(−βE(q,p))dqdp2 . . . dp3N∫R6N−1 Θ(ξTS − ξ) exp(−βE(q,p))dqdp
[A] .

(2.39)

where I used dq1
dt = v1 = p1

µ
and implicitly presumed that the Energy can be split

into independent summands. The mass is called µ to indicate that it is the reduced
mass of the atoms involved in the reaction. The hypersurface TS is a 3N − 1
dimensional subspace orthogonal to q1. Obviously the support of the integration
over p1 is antisymmetric and the result of the integral is

∫
p1 exp(−β p

2
1
µ

)dp1 = 0 –
and how should it be otherwise since we are considering equilibrium condition?
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This induces the need for a further assumption. All individuals crossing TS in the
direction of B and accordingly p1 > 0 are seen as taking part in the reaction and
belong immediately to state B. This is not wrong in itself. The problem arises from
adding the back reaction to equation (2.37)

d
dt [A] = −k [A] + k← [B] . (2.40)

Calculating the rate k← for the back reaction one needs to address the fact that
individuals are not in thermal equilibrium with state B by merely crossing an
arbitrary boundary. Even if at the beginning of the reaction the concentration [B]
is very small, the few individuals which had already crossed the boundary from A
to B are close to the dividing surface TS, so that they can easily recross.

In transition state theory the approximation of no early recrossing is made. An
individual with a momentum p1 > 0 is treated as thermally equilibrated in B
first. Obviously this assumption mad is most valid by choosing the surface S so as
to reside at the “watershed” of the free energy landscape between A and B, the
previously mentioned generalized transition state. Equation (2.39) is transformed
to

d
dt [A] =

√
TkB
2µπ

∫ TS exp(−βE(q))dq∫R3N Θ(ξTS − ξ) exp(−βE(q))dq
[A] , (2.41)

where integration over p1 in the enumerator was done between the borders 0 → ∞
and equal to equation (2.32) the integral over all other momenta was canceled.

A constant value of the generalized coordinate ξ = ξTS was already assigned to
the surface TS. Doing so, in general hypersurfaces with ξ = const cannot be flat.
Indeed in a curvilinear coordinate system energy cannot be expressed as a sum of
functions of the single components of q and p. This seems to be in contradiction to
some assumptions made in the derivation before. However, for every infinitesimal
element of phase space appearing in the integral expression a local flat linearisation
of the coordinate system can be used. Writing

∫ TS
exp(−βE(q))dq =

∫ R3N

δ(ξ − ξTS) exp(−βE(q))dq = Q(ξTS) (2.42)

one gets

d
dt [A] =

√
TkB
2µπ

Q(ξTS)∫ ξTS
0 Q(ξ)dξ

[A] (2.43)

which is consistent with the result in reference [26].
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2.2.4 On Ergodicity and Finite Sampling Time

The term ergodicity denotes a statistical property of dynamic systems. A system is
said to be ergodic if the thermal average over time is equal to the average over all
possible configurations, namely that the expectation value of an observable o is

〈o〉 = lim
� →∞

1
�

∫ �

0
o(t)dt != 1

Q

∫
o(q,p) exp (−βE(q,p)) dqdp. (2.44)

This assumption states that the system visits the whole phase space in infinite
time. Ergodicity can not be proved for most systems. Therefore we state it as an
assumption here. Obviously tracking infinite time is not possible. In computational
applications the following approximation is deduced from equation (2.44)

o = 1
�

∫ �

0
o(t)dt ≈ 1

Q

∫
o(q,p) exp (−βE(q,p)) dqdp. (2.45)

The assumption that the approximation of equation (2.45) is valid states that
the system visits all local minima which are deep enough to have a countable
contribution to the right hand side of equation (2.45) within the time � . If several

deep minima are separated by large barriers, � has to be chosen very large in order

to get a good approximation for the expectation value 〈o〉. Otherwise the system
may stay in one minimum the whole time, and calculations by equation (2.45) will

not take into account the contribution of other minima. In many realistic systems

barriers between minima are too high for reasonable sampling of the whole system

within computational time. For these cases computational methods which allow

the system to leave the local pond more easily have to be applied. A method

developed to deal with this problem is replica exchange simulation27 or the ap-

plication of constraints in the essential subspace.28 However, supposed knowledge

about the locations of ponds and barriers exists, rare event methods, like umbrella

sampling,29 methadynamics,30 transition path sampling31,32 and many others, can

be used.

For both assumptions, ergodicity itself and that the approximation of equation

(2.45) is valid, no conditions exist.
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2.2.4.1 Discrete Sampling

In molecular dynamics simulations we cannot calculate the value of the observable

o(t) at each time, because equations of motions are integrated by time steps. The

integral in equation (2.45) has to approximated by a discrete sum. In this work I

use the very simple end point rule.

o = 1
�

∫ �

0
o(t)dt = 1

N∆t

N∑
i=1

o(i ·∆t) ·∆t+ 1
N∆tO(∆t) ≈ 1

N

N∑
i=1

oi (2.46)

∆t cancels out in the sum and oi = o(i ·∆t) is just an abbreviation. Of course, more

accurate quadrature rules exist. However, since the sampling error decreases with

1/
√
N , as we will see in the next chapter, the error is dominated by sampling.

2.2.4.2 Central Limit Theorem

Besides systematical errors, one also needs to take care with stochastic �uctuations.

Their in�uence on the error of the expectation value can be estimated by the

variance

σ2
N = lim

M→∞

1
M

M∑
j=1

(oN − 〈o〉)2 , (2.47)

where σN is the variance of the mean values oN gained by sampling over N samples.

In other words, if one were to calculate oN in�nite times, the values would be

distributed with a variance of σN . The central limit theorem states that

σN = σ√
N

(2.48)

where σ is the variance of the distribution of oi. Equation (2.48) is only true for

statistical, not correlated samples.

As a practical consequence of the central limit theorem, we have to quadratically

increase the number of samples if we want to reduce the error of the approximation

o ≈ 〈o〉, e. g. we have to use 100 times more samples if we want to increase the

precision of the sampling result by one digit.
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2.3 Computational Methods

2.3.1 Umbrella Integration

In the rest of the work, the con�guration space is always described in Cartesian

coordinates. The free energy landscape will always be expressed as a function of

coordinates of a set of R atoms. The subspace of these M = 3 × R Cartesian

coordinates is not integrated out in equation (2.32) and will be called reaction

coordinate space (RCS). A point in the RCS is denoted by the vector qRCS.

The high dimensional integral equation (2.32) is predestined to be calculated by the

use of Monte�Carlo or molecular dynamics simulations. Unfortunately the most

interesting states, the transition states which are represented by saddle points in

the potential energy landscape, are also the con�gurations which are most unlikely

to appear along the path. Su�cient sampling of these rare events by na��ve Monte-

Carlo integration would be computationally prohibitive.

In this work we use umbrella integration,16,33,34 to get information about the free

energy surface around unfavorable con�gurations. Therefore a quadratic bias of

the form

wb(qRCS) = K

2
(
qRCS − qRCS

ref

)2
(2.49)

is applied, where K is the force constant, and qRCS
ref the reference value of the

reaction coordinate. It has been shown that after su�cient sampling we obtain

the free-energy gradient by16,33

g(qRCS) = ∇RCSA(qRCS) = C−1 1
β

(
qRCS −

〈
qRCS

〉)
−K(qRCS − qRCS

ref ) , (2.50)

where C is the covariance matrix of qRCS and
〈
qRCS

〉
is the mean value of qRCS

in the biased ensemble. Consequently, the gradient at the mean value is16

g(
〈
qRCS

〉
) = −K

(〈
qRCS

〉
− qRCS

ref

)
. (2.51)

The Hessian is16

H = ∇∇A(qRCS) = 1
β

C−1 −K1 (2.52)
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with the unit matrix 1. With the RCS atoms restrained, we obtain the gradient

as a M -dimensional vector g(qRCS) and the corresponding M ×M Hessian matrix

H, where M = 3×R the number coordinates in the RCS.

(a) The shift of the expectation value of
the distribution can be used to calculate
the gradient.

(b) The variance of the umbrella dis-
tribution can be used to calculate the
curvature and accordingly the Hessian
of the free energy surface.

Figure 2.4: Sketch to illustrate umbrella integration. The thick red line symbolises
the underlying free energy potential. The green line is the non-physical bias used for
umbrella sampling and the thin red line shows the resulting potential which is the sum
of bias and underlying potential. The light blue distribution is what we expect without
underlying potential. Its expectation value is equal to the minima of the quadratic bias.
The dark blue distribution is what we actually get by umbrella sampling.

Principles for calculating gradients and Hessians of a free energy landscape are

illustrated in the sketches of �gure 2.4. Higher order deviations can in principle

be calculated from higher order moments of the umbrella sampling distribution.

However, since these moments are more strongly e�ected by noise, it is usually

cheaper to get desired information from several umbrella sampling runs at di�erent

positions.35
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2.3.2 Nudged Elastic Band Simulations∗

Di�erent classes of methods exist for �nding an intrinsic reaction coordinate.

Chain of states methods approximate it as a series of replicas of the system, so-

called images. They include the nudged elastic band37�40 (NEB) method and vari-

ants thereof,41 string methods,42�44 and conjugate peak re�nement.45 This work

builds on NEB. A good introduction to the NEB method can be found in reference

46.

The potential energy is V (Ri), where Ri is the position of the ith image along the

path. The force F i = −∇V (Ri) acting on each image is calculated. The aim is

to minimize the component of the force perpendicular to the path. The simplest

way to do so would be to solve the equation

0 != (1− τ̂ iτ̂ iT)F i, (2.53)

for each image where τ̂ i is the unit vector tangential to the path. The projection

operator is τ̂ τ̂T. Several schemes to approximate the tangent vector for discretized

paths have been developed.38,46 Here we stick to the upwind scheme, used in the

improved tangent NEB method38

τ i =
{
τ+
i = Ri+1 −Ri if Vi+1 > Vi > Vi−1

τ−i = Ri −Ri−1 if Vi+1 < Vi < Vi−1
, (2.54)

where Vi = V (Ri) is the corresponding potential energy of image i. If an image

has a lower (Vi+1 > Vi < Vi−1) or higher (Vi+1 < Vi > Vi−1) energy than both its

neighbors, a linear combination of both di�erences is used

τ i =
{

∆V max
i τ+

i + ∆V min
i τ−i if Vi+1 > Vi−1

∆V min
i τ+

i + ∆V max
i τ−i if Vi+1 < Vi−1

(2.55)

with

∆V max
i = max (|Vi+1 − Vi|, |Vi−1 − Vi|)

∆V min
i = min (|Vi+1 − Vi|, |Vi−1 − Vi|) . (2.56)

∗Parts of this chapter were published in reference 36: M. U. Bohner, J. Meisner and J. Kästner:
“A Quadratically-Converging Nudged Elastic Band Optimizer”, J. Chem. Theory Comput. 9,
3498 (2013).

30



In the following we use the general expression τ i = aτ+
i + bτ−i and choose a and

b according to the case.

An optimizer based on equation (2.53) would cause many images to gather near

the minima. This problem can be addressed by introducing a penalty, which

leads to an equal distribution of the images. In NEB, non-physical spring forces

between the images are used. However, this force, unlike a real spring, should only

act tangentially to the path. Altogether in improved-tangent NEB, the force on

image i to be minimized reads38

F NEB
i = k

(∣∣∣τ+
i

∣∣∣− ∣∣∣τ−i ∣∣∣) τ̂ i + (1− τ̂ iτ̂ iT)F t
i, (2.57)

where k denotes the spring constant. We introduced the superscripts NEB and t

to discriminate between the NEB force and the true force F t = −∇V . The spring,
or penalty, term k

(∣∣∣τ+
i

∣∣∣− ∣∣∣τ−i ∣∣∣) τ̂ i reduces the di�erence between the distances to

both neighbor images but not the distances themselves. A humble attempt to

illustrate the NEB force can be found in �gure 2.5. This is necessary to avoid

arti�cially shortening the NEB path (corner cutting). The penalty term should

act on physically meaningful di�erences between the images. Translation or ro-

tations e. g. of the whole system do not have chemical meaning. Thus molecular

geometries have to be superimposed to remove any translation or rotation between

the images.46

Figure 2.5: Sketch to illustrate NEB force of equation (2.57). Images are connected
with non-physical spring forces. Spring force does not punish path length, like real world
springs, but the unequal distribution of images along the path. Only the component of
the true force acting perpendicular to the path is included in NEB force.
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Methods
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3.1 Serial Algorithm to Find Minimum Free Energy Paths∗

The minimum free energy path (MFEP) leads over saddle points of the free en-

ergy landscape and follows the gradient down to the minima.1,2 This imposes,

starting with the search for saddle points. The algorithm explained in this chap-

ter uses a Newton�Raphson iteration to converge to the next saddle point in the

free energy landscape. Once a saddle point is found up to a certain precision, the

corresponding MFEP can be reconstructed by following the gradient down to the

minima.

We have seen how biased molecular dynamics, namely umbrella sampling, can be

used to calculate gradients and Hessians of the free energy landscape via umbrella

integration. Both values enter the iterative search for the closest stationary point

using the Newton�Raphson method:

qRCS
n+1 = qRCS

n −H−1(qRCS
n ) · g(qRCS

n ). (3.1)

Due to statistical noise the components of the gradient as well as the Hessian

corresponding to overall rotational and translational movements are generally non-

zero. Therefore the gradient is orthogonalized to translations and rotations by

g̃(qRCS) = g(qRCS)−
6∑

k=1
t̂k(t̂k · g(qRCS)), (3.2)

where t̂k are the unit vectors of translations and rotations, which can be obtained

algebraically from qRCS. Furthermore the overlap of t̂k with the eigenvectors of

the Hessian v̂i is calculated, εi = ∑6
k=1 (v̂i · tk)2. The Newton�Raphson step in

equation (3.1) is replaced by

qRCS
n+1 = qRCS

n −
∑

i/∈{i1...i6}
v̂i

1
λi

(
v̂i · g̃(qRCS)

)
, (3.3)

so that the summation runs from one to 3S but omits the indices of the six largest

εi. v̂i denote the eigenvectors and λi the corresponding eigenvalues of the Hessian

at the point qRCS
n . In all cases tested this was su�cient to remove rotational and

translational noise from the step.

∗Parts of this chapter were published in reference 36: M. U. Bohner and J. Kästner: “An algorithm
to find minimum free-energy paths using umbrella integration”, J. Chem. Phys. 137, 034105
(2012).
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The reference point of an umbrella sampling simulation is qRCS
n . Essentially, equa-

tion (3.3) contains a pseudo-inverse of the Hessian rather than its full inverse.

The approximations for the gradient and the Hessian are most accurate at the

average coordinates of the biased sampling,
〈
qRCS
n

〉
. Thus, the Newton�Raphson

step is performed relative to the average coordinates of the current step to provide

the reference coordinates for the next step qRCS
n+1 . The adjusted formula for the

Newton�Raphson iteration reads

qRCS
n+1 =

〈
qRCS
n

〉
−

∑
i/∈{i1...i6}

v̂i
1
λi

(
v̂i · g̃(qRCS

n )
)
. (3.4)

The algorithm is converged to a stationary point if qRCS
n+1 equals

〈
qRCS
n

〉
. A proper

choice of the initial values is required for convergence to a saddle point on the

free-energy landscape.

The whole algorithm is explained in �gure 3.1. One starts at an initial point in the

RCS, where umbrella integration using a quadratic bias is performed. A subrou-

tine subtracts the rotational and translational components from the gradient as

described in equation (3.2). Another one excludes the eigenvalues of the Hessian

matrix which are dominated by rotational and translational character, equation

(3.3). If the resulting gradient is smaller than a pre-de�ned criterion the algorithm

is assumed to be converged. If not, a Newton�Raphson step is performed and the

result is used as reference coordinates of the next iteration.

Once a saddle point is found the corresponding MFEP is reconstructed by following

the gradient down to the associated minima. However, at the saddle point the

gradient is zero, the MFEP follows the transition mode. Integration of the path

starts by

qRCS(±∆s0) = qRCS(0)± v̂1∆s0, (3.5)

where ∆s0 is a pre-de�ned step length of the �rst step along the path, qRCS(0) the
coordinates of the saddle point and v̂1 is the normalized eigenvector associated

with the negative eigenvalue of H. The MFEP can be followed by integration of

ds = dqRCS(s) = − g(qRCS(s))
|g(qRCS(s))| ds, (3.6)

where s represents a scalar parameter describing the progress along the path.

Therefore the gradient is approximated by a Taylor expansion to second order,

equation (2.50). Obviously this approximation is only valid in a small area around〈
qRCS

〉
of the corresponding umbrella sampling simulation. Therefore subsequent
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Figure 3.1: Flow chart to illustrate the algorithm to find the free-energy saddle points
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runs of umbrella sampling have to be done. This reduces the whole problem from

a multidimensional surface scan to one dimension.

Figure 3.2: Flow chart of the algorithm to reconstruct the MFEP

The algorithm to follow the MFEP is explained in �gure 3.2. The same process is

used for umbrella integration and for the removal of rotational and translational

contributions from the gradient and the Hessian as described in equations (3.2)

and (3.3). On the saddle point the algorithm simply follows the direction of the

eigenvector of negative eigenvalue of the Hessian for one step of the length ∆s0.

∆s0 is an input parameter. The result is used as reference coordinates qRCS
ref for the

next umbrella sampling run. In the following proceeder g(qRCS
ref ) is calculated by

equation (2.50) and used by equation (3.6). Equation (3.6) itself is solved stepwise
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using an explicit Euler algorithm. The path is followed for the length ∆s until

another umbrella sampling run is performed. ∆s is an input parameter as well.

For �at saddle points it turned out to be useful to use large ∆s0 > ∆s. If a

Newton�Raphson step to the minimum is shorter than ε∆s, the Newton�Raphson
step is performed and the path search is �nished. ε is a scalar input parameter,

ε < 1.

Finally, the height of the reaction barrier is to be determined. The free-energy

di�erence for each step is given by

∆nA
RCS = A(qRCSn+1)− A(qRCSn ). (3.7)

Umbrella integration with reference qRCSn obtains the free energy landscape most

accurately around
〈
qRCSn

〉
, which is located between qRCSn and qRCSn+1 . Therefore to

calculate the di�erence between A(qRCSn ) and A(qRCSn+1 ) in equation (3.7) run n was

used. The di�erence along the whole path ∆ARCS = ARCS(s = 0)−ARCS(s = sRS)
is the sum of all ∆nA

RCS. s is set to zero at the saddle point and sRS at the

minimum (reactant state).

Since constraints are applied to the coordinates of S atoms, the di�erences of

the potential of mean force in the RCS are obtained. This excludes the entopic

contributions of the coordinates within the RCS. Instead of ARCS(qRCS), which is

a function of 3S coordinates, one aims at As(s) which is a function of the one-

dimensional arc length s of the path:

As(s) = − 1
β

ln
∫

exp[−βARCS(qRCS)]d3S−7q⊥. (3.8)

The integration is performed over the 3S − 7 degrees of freedom q⊥ orthogonal

to the translations and rotations and orthogonal to the tangent of the path. A

basis of q⊥ can be found algebraically by e.g., Gram�Schmidt orthogonalization.

The basis vectors provide the column vectors of a (3S − 7)× (3S) transformation

matrix U:

q⊥ = UTqRCS, qRCS = Uq⊥. (3.9)

The free energy ARCS(qRCS) in (3.8) is expanded to second order perpendicular to

the path:

ARCS(qRCS) = ARCS(qRCS(s)) + 1
2q

T
⊥H⊥q⊥ (3.10)
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with H⊥ = UTHRCSU. The (3S − 7) × (3S − 7) matrix H⊥ is positive de�nite

by construction. Using (3.10) turns the integral in (3.8) into a Gaussian integral,

which results in

As(s) = ARCS(qRCS(s))− 1
β

ln

√√√√ π3S−723S−7

β3S−7 det H⊥(s)

 . (3.11)

Free-energy di�erences are obtained as

∆As = As(s = 0)− As(s = sRS) =

ARCS(s = 0)− ARCS(s = sRS) + 1
2β ln det H⊥(s = 0)

det H⊥(s = sRS) . (3.12)

For the case that more than one saddle point is found between two minima, the

path over each barrier has to be calculated. If the barrier heights di�er a lot, it

can be assumed that the path over the lower barrier dominates the reaction.

3.1.1 Application: Alanine Dipeptide

A simple example for free-energy simulations is N-acetyl-alanine-N'methylamide,

commonly named alanine dipeptide. In the gas phase this molecule has three sta-

ble con�gurations, C5, C
eq
7 , and Cax

7 . The last one is shown in �gure 3.3. The

method described above is applied using MD simulations with the peptide placed

in vacuum. The CHARMM228 force�eld is used. A Nosé�Hoover chain11�14 ther-

mostat generates a canonical ensemble at T = 300 K. The thermostat has a chain

length of 4 and a response time of 20 fs. The actual integration of Newton's equa-

tion of motion is performed with a reversible non-iterative leapfrog-type integrator

with time steps of 1 fs. The calculations use DL_POLY47 within the ChemShell48

program.

The Cartesian coordinates of the 5 backbone atoms, highlighted as spheres in

�gure 3.3, are assigned to the RCS. The starting points of the saddle-point searches

are taken from a nudged-elastic band37�39 path obtained on the potential-energy

surface. The force constant K is chosen between 0.1 and 0.3 atomic units (≈ 93758

to 281275 kJ mol−1 nm−2). The number of time steps sampled is adjusted to the

magnitude of the gradient: 109/|g(qRCS)|2(with a minimum of 5 · 105). Here the

gradient g(qRCS) in kJ mol−1 nm−1 is taken from the previous umbrella integration

run. The background of this choice is that the gradient has to be signi�cantly
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larger than the noise and the error is expected to decrease with the square root

of the number of time steps as mentioned in section 2.2.4.2. The saddle point

search is accepted as converged if the root mean square of the gradient is below

10 kJ mol−1 nm−1.

An example of a transition state search, the one between Ceq
7 and Cax

7 , is shown

in �gure 3.4. Since a 15-dimensional space can not be illustrated, a projection

into the two-dimensional space of the backbone torsion angles Ψ and Φ, de�ned
in �gure 3.3, is used.

Figure 3.3: The minimum structure of Cax
7 of the alanine dipeptide. The backbone

torsion angles Ψ and Φ are indicated. The backbone atoms belonging to the RCS are
highlighted as spheres. Graphic generated using the visualization tool VMD.49

To integrate the MFEP the �xed values of K = 0.2 atomic units

(≈187517 kJ mol−1 nm−2) and 106 time steps were used. The �rst step length

is set to ∆s0 = 0.008 nm except for the saddle point between C5 and Ceq
7 , where

∆s0 = 0.016 nm had to be chosen. For following steps the lengths are always

∆s = 0.008 nm. The resulting 15-dimensional paths are again projected into the

two-dimensional space of the two backbone torsion angles. This is plotted over

the level curve of the potential-energy surface in �gure 3.5.

The transition states and minima obtained by this method are in good agreement

with those from Ψ and Φ as active space,16 see table 3.1. The detailed path
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Figure 3.4: Search path of the saddle point between Ceq
7 and Cax

7 of the alanine dipeptide.
The reference coordinates for each umbrella sample run qRCSref are marked with × signs.
The mean value of each umbrella sampling run

〈
qRCS

〉
is marked with 2 symbols. The

umbrella sampling displacements are shown by green dotted lines, while the Newton–
Raphson steps from

〈
qRCS

〉
to the next reference coordinates qRCSref is drawn by red solid

lines. The dashed black line represents the MFEP.

43



C5

Ceq
7

Cax
7

Φ [deg]

Ψ
[d
eg
]

180900-90-180

180

90

0

-90

Figure 3.5: Two-dimensional projection to the backbone torsion angles of the paths
calculated with the serial algorithm. The level curves represent the potential-energy
surface as a function of Φ and Ψ. The big crosses represent the saddle points found by
Newton–Raphson search. The symbols along the path mark the reference coordinates for
each umbrella sampling in the path search. The minima Cax

7 , Ceq
7 , and C5 are labeled.
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k
J
/
m
o
l

1.21.00.80.60.40.20.0

0

-5

-10

-15

-20

-25

Figure 3.6: Free energy along the MFEP. The graph starts at the saddle point between
Cax

7 and C5 and ends at Cax
7 . The path length is approximated by the sum of the beelines

between the reference coordinates. The green dashed line shows the result neglecting the
entropic contribution of the RCS, the red solid line shows the corrected values.

characteristics between saddle point and minimum are hard to compare because

di�erent RCSs were used.

The free energy along the path from the saddle point between Cax
7 and C5 to the

minimum Cax
7 is shown in �gure 3.6. The green dashed line shows the result ne-

glecting the entropic contribution of the RCS, the red solid line shows the corrected

values. The diagram shows that this correction does not change the qualitative re-

sult. The whole di�erence from this saddle point to Cax
7 corresponds to the barrier

height for a reaction from Cax
7 to C5.
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Barrier ∆AΦ, Ref16 ∆As ∆ARCS

Cax
7 → Ceq

7 25.31 ± 0.32 26.06 23.92
Ceq

7 → Cax
7 36.92 ± 0.37 33.40 32.61

Cax
7 → C5 22.27 ± 0.31 22.11 22.09

C5 → Cax
7 31.98 ± 0.35 28.98 27.57

Table 3.1: Free-energy barrier in kJ mol−1 along the MFEP compared to literature data
along Φ.16

3.2 Nudged Elastic Band Optimisations

3.2.1 Quadratically Converging Nudged Elastic Band Algorithm†

The root of a multidimensional function F (R) can be iteratively approached using
the Newton�Raphson method

Rn+1 = Rn − J−1F (R), (3.13)

where n is the number of the iteration and J is the Jacobian matrix of the function.

Here we are looking for the root of the NEB force, equation (2.57). In many

optimisation problems a scalar potential function can be found, the minimum of

which is sought in the optimisation. Then the Hessian, the symmetric matrix

of second derivatives of the potential function, can be used in Newton�Raphson

optimisations, e. g. equation (3.1). However, such a potential is not available for

the NEB force, which is why we have to use the Jacobian matrix, which in general

is not symmetric.

Let us de�ne an (N·M)-dimensional super vector, where N is the number of images

and M the number of coordinates for each image. For a molecule with 5 atoms M

†Parts of this chapter were published in reference 36: M. U. Bohner, J. Meisner and J. Kästner:
“A Quadratically-Converging Nudged Elastic Band Optimizer”, J. Chem. Theory Comput. 9,
3498 (2013).
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will in general beM = 15. This super vector reads F = ((F NEB
1 )T, (F NEB

2 )T, (F NEB
3 )T, . . . ,

(F NEB
N )T)T. The Jacobian is divided into sub-matrices

JNEB =


JNEB

1,1 JNEB
1,2 . . . JNEB

1,N
JNEB

2,1 JNEB
2,2 . . . JNEB

2,N
...

...
. . .

...

JNEB
N,1 JNEB

N,2 . . . JNEB
N,N

 (3.14)

with the vector gradient

JNEB
i,j = gradj F NEB

i =
(
∇Rj

⊗ F NEB
i

)T
, (3.15)

where the derivative of the NEB force of image i with respect to the coordinates

of image j is calculated and x⊗ y = xyT denotes the dyadic product. JNEB
i,j is an

M ×M matrix.

To derive the Jacobian of the NEB force in equation (2.57) the following general

expressions will be used.

gradA =(∇⊗A)T, (3.16)
grad(fA) =A⊗ (∇f) + [f(∇⊗A)]T , (3.17)

grad(A ·B) = (grad(A))TB + (grad(B))TA. (3.18)

Here A and B are vector-valued and f is a scalar-valued function.

A further ingredient is the gradient of the length of the tangent vector:

gradj |τ
+/−
i | =1

2
1

|τ+/−
i |

gradj
(
τ

+/−
i

)2
(3.19)

which leads with equation (3.18) to

gradj |τ+
i | =

1
|τ+

i |
(
δji+1 − δ

j
i

)
1τ+

i = τ̂+
i

(
δji+1 − δ

j
i

)
(3.20)

and, equivalently,

gradj |τ−i | =τ̂−i
(
δji − δ

j
i−1

)
(3.21)
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with δ being the Kronecker delta. Further indispensable relations are

−gradj F t
i =Ht

iδ
j
i = Ht

i
T
δji , (3.22)

τ̂ i ⊗
((

gradj τ̂ i
)T
F t
i

)
=
(
τ̂ i ⊗ F t

i

)
gradj τ̂ i (3.23)

where Ht
i denotes the Hessian of the potential V (Ri). A straightforward calcula-

tion leads then to

JNEB
i,j =− kτ̂ i ⊗

{
τ̂+(δji+1 − δ

j
i )− τ̂−(δji − δ

j
i−1)

}
+ Hiδ

j
i − τ̂ iHiτ̂ iδ

j
i +

{
(F t

i · τ̂ i)1 +
(
τ̂ i ⊗ F t

i

)
−k (|τ+| − |τ−|)1}gradj τ̂ i. (3.24)

The vector gradient of the unit tangent vector reads

gradj τ̂ i =|τ i|−1 (1− τ̂ i ⊗ τ̂ i) gradj τ i. (3.25)

Plugging it into equation (3.24) gives

JNEB
i,j =− kτ̂ i ⊗

{
τ̂+(δji+1 − δ

j
i )− τ̂−(δji − δ

j
i−1)

}
+ Hiδ

j
i − τ̂ iHiτ̂ iδ

j
i + A · gradj τ i (3.26)

with

A =
{[
F t
i · τ̂ i − k

(
|τ+| − |τ−|

)]
1 +

(
τ̂ i ⊗ F t

i

)}
· 1− τ̂ i ⊗ τ̂ i

|τ i|
. (3.27)

Now we can see that the Jacobian of the NEB force of equation (2.57) is a band

matrix since every term contains one of the Kronecker deltas {δji−1, δ
j
i , δ

j
i+1}. How-

ever, it must be kept in mind that the indices i and j do not determine a single

element but an M ×M submatrix.

While τ̂ i depends on the following case distinctions, equation (3.27) provides A
for all cases.
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Case: Vi+1 > Vi > Vi−1

τ i = τ+
i = Ri+1 −Ri. The vector gradient gradj τ+

i reads

gradj τ i = gradj τ+
i =

(
δji+1 − δ

j
i

)
1. (3.28)

We get the diagonal and sub-diagonal elements of the NEB-Jacobian

JNEB
i,i−1 =− kτ̂ i ⊗ τ̂−i , (3.29)

JNEB
i,i =kτ̂ i ⊗

{
τ̂+
i + τ̂−i

}
+ Hi − τ̂ iHiτ̂ i −A, (3.30)

JNEB
i,i+1 =− kτ̂ i ⊗ τ̂+

i + A. (3.31)

All other elements in the ith row vanish.

Case: Vi+1 < Vi < Vi−1

τ i = τ− = Ri −Ri−1. The vector gradient gradj τ−i reads

gradj τ i = gradj τ−i =
(
δji − δ

j
i−1

)
1. (3.32)

We get the diagonal and sub-diagonal elements of the NEB-Jacobian

JNEB
i,i−1 =− kτ̂ i ⊗ τ̂−i −A, (3.33)

JNEB
i,i =kτ̂ i ⊗

{
τ̂+
i + τ̂−i

}
+ Hi − τ̂ iHiτ̂ i + A, (3.34)

JNEB
i,i+1 =− kτ̂ i ⊗ τ̂+

i . (3.35)

All other elements in the ith row vanish.

Other cases

These cover the situation of image i being a maximum or a minimum along the

path. In this case τ i is a linear combination

τ i = aτ+ + bτ− = aRi+1 + (b− a)Ri − bRi−1 (3.36)
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The vector gradient gradj τ i reads

gradj τ i =
(
aδji+1 + (b− a)δji − bδ

j
i−1

)
1

+ τ+
i ⊗ grad(a) + τ−i ⊗ grad(b). (3.37)

Case: a = |Vi+1 − Vi|, b = |Vi−1 − Vi|

grad(a) =1
2

1
|Vi+1 − Vi|

2(Vi+1 − Vi) ·
(
δji+1∇Vi+1 − δji∇Vi

)
=sign(Vi+1 − Vi)

(
δji+1∇Vi+1 − δji∇Vi

)
(3.38)

grad(b) =sign(Vi−1 − Vi)
(
δji−1∇Vi−1 − δji∇Vi

)
(3.39)

Since the images i considered here are always minima or maxima signi = sign(Vi+1−
Vi) = sign(Vi−1 − Vi)

gradj τ i =(aδji+1 + (b− a)δji − bδ
j
i−1)1

+ signi ·
(
δji+1τ

+ ⊗∇Vi+1

− δji (τ+ + τ−)⊗∇Vi +δji−1τ
− ⊗∇Vi−1

)
. (3.40)

The resulting elements of the Jacobian are:

JNEB
i,i−1 =− kτ̂ i ⊗ τ̂− −A

{
b1− signi · τ− ⊗∇Vi−1

}
(3.41)

JNEB
i,i =kτ̂ i ⊗

{
τ̂+ + τ̂−

}
+ Hi − τ̂ iHiτ̂ i + A {(b− a)1

−signi · (τ+ + τ−)⊗∇Vi
}

(3.42)

JNEB
i,i+1 =− kτ̂ i ⊗ τ̂+ + A

{
a1 + signi · τ+ ⊗∇Vi+1

}
. (3.43)

Case: a = |Vi−1 − Vi|, b = |Vi+1 − Vi|

A similar calculations leads to:

JNEB
i,i−1 =− kτ̂ i ⊗ τ̂− −A

{
b1− signi · τ+ ⊗∇Vi−1

}
(3.44)

JNEB
i,i =kτ̂ i ⊗

{
τ̂+ + τ̂−

}
+ Hi − τ̂ iHiτ̂ i + A {(b− a)1

−signi · (τ+ + τ−)⊗∇Vi
}

(3.45)

JNEB
i,i+1 =− kτ̂ i ⊗ τ̂+ + A

{
a1 + signi · τ− ⊗∇Vi+1

}
(3.46)
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Figure 3.7: Visualization of the NEB Jacobian for the linear starting path in the MB
potential. The darker a field is, the higher is the amount of the corresponding entry.
White areas are zero. The Jacobian clearly shows asymmetry.

51



These expressions cover all cases so that the Jacobian, equation (3.14), can be set

up and the Newton�Raphson method using equation (3.13) can be implemented.

In order to demonstrate the asymmetry as well as the band matrix character, the

Jacobian of the starting path within the M�uller�Brown potential is visualized in

�gure 3.7. The M�uller�Brown potential and its use for the application of the NEB

method described here will be covered in one of the next sections.

The �rst challenge to be faced is that the radius of convergence of the Newton�

Raphson algorithm is, from experience, often rather small. By contrast, Newton�

Raphson steps become large for a �at energy surface. Therefore the truncated

Newton�Raphson approach was adopted. The Newton�Raphson step dNewton =
|J−1F | is scaled back if it extends the prede�ned maximal step length dmax. This

results in the iteration formula

Rn+1 =
{
Rn − J−1F if dNewton ≤ dmax
Rn − J−1F dmax

dNewton
if dNewton > dmax

(3.47)

The modi�ed Newton�Raphson scheme for NEB optimisations presented here was

implemented in a local branch of DL-FIND,50 which is one of the optimiser options

in ChemShell.48 In the examples in the following section the method presented

here is compared to the existing optimiser in DL-FIND, which was used in several

applications.51�56 There a quasi-Newton scheme is applied with the inverse Jaco-

bian obtained from an L-BFGS update57,58 of a scaled unitary matrix using the

NEB force of the whole path. Details of this implementation are given elsewhere,52

it is similar to an approach previously termed GL-BFGS.59

3.2.1.1 Global translation and rotation

For free (i.e., non-frozen) endpoints the NEB force is invariant with respect to

translation and rotation of the whole path if the potential energy is invariant

under these transformations (which is the case for molecules). Thus the Jacobian

in Cartesian coordinates becomes singular. A step like in in equation (3.13) cannot

be formed since J cannot be inverted. A singular value decomposition (SVD) of

the form UTJV = diag(σ1, σ2, . . . , σNM ) of J will result in one or more singular

values σi being zero.

Even if the endpoints are frozen, the �rst derivative of the NEB force is zero along

the direction of a global translation of the non-frozen path as long as the frozen
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endpoints have a lower energy than their neighboring points. In this case, the

upwind scheme, equation (2.54), causes the tangent vectors at the image next to

the frozen endpoints to point towards the movable neighbor images. Speci�cally, if

image 1 is frozen and the energy increases for the images 1, 2, and 3 in that order,

then τ 2 = τ+
2 = R3 −R2. The only term in the expression of the NEB force of

image 2 which changes under a global translation of the path is |τ−2 |, see equation
(2.57). However, grad2 |τ−2 | = τ̂−2 , see equation (3.21). Since the molecules of

the start and end images (and thus all intermediate images) are superimposed to

remove a translation between them, τ̂−2 is orthogonal to a translation of R2 and

the global NEB force vanishes. The same arguments hold for the other end of the

NEB path. It should be noted that the NEB force is only invariant to a global

translation of �rst order. The second derivative is non-zero and in fact the NEB

force changes for non-zero displacements of the path. For a three-dimensional

system three singular values are zero (two for a two-dimensional system). They

correspond to translations. Those corresponding to rotations only approach zero

for a converged NEB path with all forces approaching zero. For a system with

one intermediate local minimum, the same arguments can be used to prove that

translations of the two individual parts of the paths against each other also result in

a �rst derivative of the NEB force of zero. Thus, in two dimensions, four singular

values are zero for any general path, 6 for the converged path. In the system

studied later three barriers with two minima between them in two dimensions, six

singular values are zero for a general path, 13 for the converged one. Overall, a

scheme is needed to deal with singular Jacobian matrices.

The inversion of the Jacobian matrix is replaced by a pseudo-inversion of the

form

J−1 → J+ = V diag
( 1
σ1
,

1
σ2
,

1
σ3
, . . . ,

1
σK

)
UT, (3.48)

where V and U are the matrices of the right-singular and left-singular vectors and

σ1 . . . σK with K ≤ NM are all non-zero singular values. Since numerical noise

a�ects the singular values, we ignore those with an absolute value smaller than a

threshold.

The aim is to minimize the NEB force. The Newton�Raphson algorithm, however,

converges to any stationary point, not necessarily to a minimum. Therefore the

step direction for each pair of singular vectors is checked individually. In order

for the step to point to a smaller NEB force, the scalar product of the right-side

singular vector and the left-side singular vector to the same singular value should

be positive. If it is negative, the step in the corresponding direction is reversed,

i.e., the corresponding singular values are multiplied by −1. Practical application
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shows that this procedure ensures the convergence of the algorithm to the correct

MEP.

3.2.1.2 Order of Convergence

A series {uk}, k = 1, 2, . . . converges with the order p to its limit u∞ if

lim
k→∞

= |uk+1 − u∞|
|uk − u∞|p

= c with c > 0, (3.49)

While this is a formal de�nition, it is less useful for numerical purposes. It is

therefore more common to de�ne a series εk > 0 which converges to zero and

ful�lls condition 3.49. Thereupon a numerical series can be said to converge with

the order p if60

|uk − u∞| ≤ εk (3.50)

An example of a quadratically (p = 2) convergent series is

εk = 10−2k (3.51)

Colloquially it is often said that a series converges quadratically if the number of

correct decimal �gures doubles with each iteration. However, this is a su�cient,

but not a necessary condition.

3.2.1.3 Application: M�uller�Brown Potential

The method is applied to the two-dimensional M�uller�Brown (MB) potential.61

A straight line between the two main minima is used as initial guess, see �gure

3.8. 19 images approximate the path. The �rst and last image are �xed to the

minima. This system is not invariant with respect to translation and rotation,

since the potential energy changes in each of the two dimensions. Therefore a

direct inversion of the Jacobian is used here rather than the pseudo inversion via

the SVD.

The convergence properties of the method are given in 3.2 and compared to the

L-BFGS optimizer in 3.9. Beginning from iteration 7 quadratic convergence is

archived. To demonstrate the convergence rate numerically the remaining |F NEB|
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is compared to a series which is known to converge quadratically. Sets of param-

eters other than those used here (k = 2.93, dmax = 0.15) also lead to quadratic

convergence, which may, however, set in only after more cycles.

Table 3.2 also attempts to quantify how asymmetric the Jacobian actually is.

For that purpose, the Euclidean norm of the Jacobian ||JNEB|| is compared to

||JNEB − (JNEB)T||. For a symmetric Jacobian, the latter should be zero. It is

clear that the Jacobian signi�cantly deviates from a symmetric matrix. This is

one reason why the L-BFGS approach, which results in a symmetric approximative

Jacobian matrix, converges slowly compared to the approach shown in this work.

In cases where the step is scaled back according to equation (3.47), the scaling

factor dmax/d is given in table 3.2. Scaling is only necessary before the region of

quadratic convergence is entered.

y

2
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1

0.5

0

-0.5

x

10.50-0.5-1-1.5

Figure 3.8: Contour plot of the MB potential. The green dashed line shows the initial
guess of the NEB path. The red solid line shows the converged MEP. Images used to
approximate the path are marked by crosses.

The results clearly show that the optimisation algorithm presented in this work

e�ciently �nds the region of convergence of the Newton�Raphson method where

it adopts quadratic convergence. This two-dimensional example does not include

translational or rotational invariance, however. The resulting Jacobian can be

inverted. A more stringent test for molecular systems is presented in the following

example.
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Figure 3.9: Convergence of an NEB optimisation in the MB potential with 19 images
using the algorithm presented in this work (red solid line) compared with the L-BFGS
optimiser (green dashed line).

iteration |F NEB| ε0
102k dmax/d ||JNEB|| ||JNEB − (JNEB)T||

0 2.85952 0.39 55.7 48.1
1 1.59505 0.81 53.2 30.8
2 0.66294 0.22 49.9 23.6
3 0.630337 0.93 49.9 21.9
4 0.149348 0.85 51.7 23.2
5 0.247031 53.7 24.4
6 0.047369 54.5 23.6
7 0.0349786 10−1 55.3 23.9
8 0.000450947 10−2 55.3 23.7
9 0.00000235723 10−4 55.3 23.7

10 0.0000000000105215 10−8

Table 3.2: Convergence of an NEB optimisation in the MB potential. The third column
shows a suitable series to demonstrate quadratic convergence. Doubling correct digits in
bold. The Euclidean norm of the Jacobian and its asymmetric components in the fifes
and sixth columns aim to demonstrate the magnitude of the asymmetry.
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3.2.1.4 Application: Rearrangement of a Two-Dimensional Lenard�Jones Cluster

As a second example the method is applied to the rearrangement of a planar

Lennard�Jones cluster of seven particles. The pair interaction is de�ned by

V (r) = 4ε
[(
σ

r

)12
−
(
σ

r

)6
]
, (3.52)

where r is the distance between two particles. The parameters ε and σ denote the

depth and position of the minimum respectively.

The example was taken from reference 31. The minima along the path are il-

lustrated in �gure 3.10. A linear interpolation between these minima is used as

the initial path. Movement of all atoms is restricted to a two-dimensional plane.

This results in 14 degrees of freedom per image including one for rotation and

two for translation. Again 19 images are used to resolve the path unless noted

otherwise and the �rst and last images are frozen. The spring constant is set to

k = 15 and the step limitation to dmax = 0.04. All quantities for this example

are given in Lennard�Jones units (ε and σ). The images of the initial path are

superimposed to minimize rotational and translational displacement. This had

been shown previously to be important in NEB optimisations.46

Figure 3.10: Rearrangement of a planar Lennard–Jones cluster with seven atoms. The
configurations show the minima which are passed along the path.

In �gure 3.11 the convergence properties for this system of the optimisation method

presented here is compared to the L-BFGS algorithm. The resulting numbers are

given in table 3.3. From iteration 7 onwards we obtain quadratic convergence as

shown by comparison to a quadratically converging series.

The method converges for a wide range of parameters (k, dmax), although the

number of steps needed to arrive in the basin for quadratic convergance di�ers.

Using more images to discretize the path shows a di�erence from the previous

example. Here, translations and rotations leave the potential energy unchanged.

These additional degrees of freedom transform the intrinsic minima from points to

three-dimensional hyperplanes in con�gurational space. The system can minimize
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iteration |F NEB| ε0
102k dmax/d ||JNEB|| ||JNEB−(JNEB)T||

0 3.21598 0.49 318.5 57.3
1 1.8302 273.3 41.3
2 0.352492 0.45 226.8 28.5
3 0.202129 221.5 27.0
4 0.0202993 218.6 26.8
5 0.0318344 217.6 26.5
6 0.00687046 218.4 26.7
7 0.000448025 218.5 26.7
8 0.0000244796 10−4 218.5 26.7
9 0.00000335986 10−5 218.5 26.7

10 0.00000000250889 10−7 218.5 26.7
11 0.00000000000000923465 10−11

Table 3.3: Convergence of an NEB optimisation for the Lennard–Jones cluster rear-
rangement with 19 images.

Figure 3.11: Convergence of an NEB optimisation for the Lennard–Jones cluster with
19 images using the algorithm presented in this work (green solid line) compared with
the L-BFGS optimizer (red dashed line).
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the NEB force by gathering images at a minimum, displaced by translation and/or

rotation. While there should not be any force which displaces images along the

translational and rotational modes, numerical errors in the force or in the initial

coordinates can build up due to incomplete projection. To improve the stability

remaining translational components are also removed from each Newton�Raphson

step before performing it. In �gure 3.12 the energy pro�le along the NEB path

after an NEB optimisation with 49 images is shown. Obviously, fewer images

are gathered at the minima when the translational component is projected out.

In �gure 3.13 the norm of the total NEB force of all images with altered and

unaltered steps is compared. Quadratic convergence is reached in both cases, but

much earlier if translations are removed. Further improvements could be possible

by removing rotational components from the steps as well.

This work presents calculations for a two-dimensional cluster because it is easier

to visualize and to interpret than a real three-dimensional system. However, no

further challenges are expected for three-dimensional chemical applications.

It should be noted that the invariance of the potential with translation and rotation

does not cause problems in the L-BFGS approach. BFGS results in a positive

de�nite Hessian even if the exact one would be positive semide�nite. Translations

and rotations are simply ignored in the L-BFGS approach without altering the

convergence properties.

3.3 NEB Optimisations in the Free Energy Landscape ‡

In the previous sections we have seen that NEB can be used to �nd an MEP by

minimising the NEB force. Here the free-energy gradients of equation (3.2) are

used and the free-energy Hessian is reassembled as

H̃ =
∑

i/∈{i1...i6}
v̂iv̂

T
i λi (3.53)

where v̂i are the eigenvectors and λi are the eigenvalues of the Hessian gained

by umbrella integration according to equation (2.52). The omitted indices are

those with the largest overlap with rotational and translational modes equal to

‡Parts of this chapter were published in reference 62: M. U. Bohner, J. Zeman, J. Smiatek, A.
Arnold, and J. Kästner: “Nudged-elastic band used to find reaction coordinates based on the
free energy”, J. Chem. Phys. 140, 074109 (2014).
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Figure 3.12: Energy profiles of the NEB paths of the planar Lennard–Jones system
with translations removed from each optimisation step (red solid line) and unaltered
steps (green dashed).

Figure 3.13: Comparison of the convergence with translations removed from each step
(red solid line) and unaltered steps (green dashed) for the NEB optimisation for the
Lennard–Jones cluster with 49 images.
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the proceeder leading to equation (3.3). While gradient and Hessian are easily

available by umbrella integration, the actual underlying potential is not accessible

like the directly free-energy di�erences between adjacent points on the NEB path.

Such an energy di�erence is required in the original version of NEB for de�ning

the tangent vector. In the upwind scheme, the tangent vector of each image i

points to the neighbouring image with the higher energy. This work relies on a

quadratic approximation of the free-energy surface around the coordinates Ri of

each image:

∆Ai =g̃iτ+
i + 1

2
(
τ+
i

)T
H̃τ+

i (3.54)

(3.55)

This results in the de�nition of the tangent vector τ i:

τ i =
{
τ+
i = Ri+1 −Ri if ∆Ai > 0 > −∆Ai−1

τ−i = Ri −Ri−1 if ∆Ai < 0 < −∆Ai−1
, (3.56)

if the free-energy change is monotonous and

τ i =
{

∆Amax
i τ+

i + ∆Amin
i τ−i if ∆Ai > −∆Ai−1

∆Amin
i τ+

i + ∆Amax
i τ−i if ∆A+

i < −∆Ai−1
(3.57)

with

∆Amax
i = max (|∆Ai|, |∆Ai−1|)

∆Amin
i = min (|∆Ai|, |∆Ai−1|) . (3.58)

if image i is a minimum or a maximum along the path.

The reduced gradient, equation (3.2) and Hessian, equation (3.53), enter the for-

mula for the improved tangent NEB force, equation (2.57), and its Jacobian, equa-

tion (3.26), previously derived.

For M images along the NEB path the Jacobian J for the whole NEB force is a

non-symmetric 3SM×3SM -matrix. It again contains 6 components corresponding

to translation and rotation. Thus it is singular and cannot be directly inverted

to form a Newton�Raphson step of the form Rn+1 = Rn − J−1
n F

NEB(Rn). The

inverse is replaced by a pseudo-inverse J+ and some components of steps direction

inverted equal to the proceeder explained in section 3.2.1.1.
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3.3.1 Levenberg�Marquardt minimization of the NEB force

The NEB force is minimized using the Levenberg�Marquardt63 algorithm. It is

related to a truncated Newton�Raphson approach. While in the latter the step is

simply scaled back as soon it exceeds a trust-radius dmax, Levenberg�Marquardt

adopts a more �exible approach. The Newton�Raphson step

Rn+1 = Rn − J+
nF

NEB(Rn), (3.59)

is replaced by

Rn+1 = Rn − (Jn + λ1)−1 F NEB(Rn), (3.60)

if the Newton�Raphson step is larger than dmax. The scalar parameter λ is chosen

such that the step length equals dmax. 1 denotes the identity matrix.

This algorithm can be seen both as a damped Newton�Raphson method or a

mixture of steepest descent and Newton�Raphson. The larger λ is, the more

steepest descent character the step includes. If the Jacobian J has eigenvalues

with a negative real part, more than one value for λ can be found to result in a

step size of dmax. In these cases we always chose the largest λ to ensure the step

to point into the direction of the NEB force. Note that the choice of λ to damp

the Newton�Raphson step to the desired length also ensures that (Jn + λ1) is

non-singular and can be directly inverted.

In summary, the NEB optimisation algorithm works as follows:

1. Calculate free-energy gradients and Hessians of each NEB image by umbrella

integration.

2. Calculate the NEB-Jacobian J from image data using the equations given in

reference 64.

3. Calculate the Newton�Raphson step δNR by use of the pseudo-inverse, J+.

4. Calculate the Newton�Raphson step length dNR = |δNR|.

5. If dNR ≤ dmax use Newton�Raphson step δ = δNR
Else:

a) Optimise λ so that

dmax =
∣∣∣(J + λ1)−1 F NEB(R)

∣∣∣.
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b) Calculate the step

δ = − (J + λ1)−1 F NEB(R).

6. Apply the step δ and go to next iteration

Optimisation of λ

Usually the Levenberg�Marquardt algorithm is used to �nd minima of a potential

function. For these classes of problems the algorithm uses the Hessian like the

Newton�Raphson scheme in equation (3.1). The λ optimisation problem then

reads

|(H + λ1)︸ ︷︷ ︸
HLM

−1g| = dmax. (3.61)

In the following I call the underbraced term HLM. Its eigenvalues µLM,i can be

calculated as follows

0 !=det|HLM − µLM1| = det|H− {µLM − λ}︸ ︷︷ ︸
=µ

1|

⇒µLM,i = µi + λ, (3.62)

where µi are the eigenvalues of the Hessian H. The right eigenvectors are the same

for HLM and H.

HLMν̂i =(H + λ1)ν̂i = µiν̂i + λν̂i = µLM,iν̂i

⇒ ν̂LM,i = ν̂i. (3.63)

The force term g can be decomposed into the basis of the eigenvectors by solving

the linear system of equations

g = (ν̂LM)x ⇒ g =
∑
j

ν̂LM,jxj (3.64)

where (ν̂LM) denotes the matrix of eigenvectors. Since a Hessian of a potential

function is symmetric, the eigenvectors form an orthogonal system. The coe�-

cients x can be calculated more e�ciently by

x = (ν̂LM)Ag (3.65)
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because a matrix of orthogonal columns is unitary. The su�x A denotes the

conjugated transposed matrix. Obviously:

H−1
LMg =

∑
i

1
µLM,i

ν̂LM,iν̂
T
LM,i

∑
j

ν̂LM,jxj

=
∑
i

xi
µLM,i

ν̂LM,i (3.66)

and

∣∣∣H−1
LMg

∣∣∣2 =
∑
i

|xi|2

|µLM,i|2
. (3.67)

The derivative of (3.67) with respect to λ can be calculated analytically, and the

problem of optimising λ can be e�ciently solved by a Hebden method.65 To

the best of the authors knowledge this is the proceeder which is used in most

implementations of the Levenberg�Marquardt algorithm.

Unfortunately, the problem of NEB optimisations does not deal with a symmetric

Hessian but with a non-symmetric Jacobian. Steps leading to equations (3.66) and

(3.67) are only valid if the eigenvectors form an orthonormal basis. In this work

the author does not know how else to proceed and applies a brute force approach,

calculating the step length for each optimisation step by a matrix inversion.

From equation (3.67) one can easily see that for µLM,i ≈ 0 and λ ≈ −µi respectively
the step length becomes very large, like its deviation. This is in principle also true

for a non-symmetric Jacobian even if the eigenvalues can be complex. Several tries

with di�erent methods showed that a simple bisectional algorithm has a good speed

of convergency for this application. A Bisectional algorithm shows much better

convergency than e. g. a pseudo Newton�Raphson algorithm. A pseudo Hebden-

method was not tested.

3.3.2 Application: Alanine Dipeptide

As a test case the well studied alanine dipeptide system in vacuum was chosen.

The �ve backbone atoms were assigned to the RCS as illustrated in �gure 3.3.

For backbone torsion angles the three minima named C5, C
eq
7 and Cax

7 are known.

As an initial guess for the transition path a linear interpolation in terms of tor-

sion angles between two minima is used. The paths between C5 and Ceq
7 and

Cax
7 are approximated by 16 images each. The NEB spring constant is set to at
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Figure 3.14: Starting paths (dashed lines) and converged free-energy NEB paths (solid
lines) projected into the space of torsion angles Ψ and Φ of the alanine dipeptide. The
contour lines show the potential energy with all degrees of freedom but Ψ and Φ relaxed.
The minimum at Ceq

7 is at 0 kJ mol−1. Dotted lines are contours at 2.5, 5.0, and
7.5 kJ mol−1. Solid lines are contours from 10 kJ mol−1 in steps of 10 kJ mol−1. Gray
lines show the MFEP and crosses the saddle points obtained with the serial algorithm.
Red circles mark the images used as estimates for the saddle points. The indices of these
images are printed as red numbers.
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0.025 atomic units ≈ 2.3 × 104 kJ mol−1 nm−2 and the maximal step length at

dmax = 0.025 nm. While the precise number of steps to reach convergence obvi-

ously depends on the choice of these parameters, convergence was found for a wide

range of values, sometimes with fewer steps than reported with the values given

here. The author assumes that these values are also in a sensible range for other,

bigger systems. A much smaller spring force leads to an uneven distribution of the

images, larger spring forces reduce the radius of convergence. Similarly, a larger

trust radius may in some cases speed up convergence, but increases the danger

of complete divergence as well. Overall there is not much need to search for an

optimal parameter set.

The actual molecular dynamic simulations were done using the software GRO-

MACS66 version 4.6.2. Unfortunately the author does not know how to use Carte-

sian coordinates as reaction coordinates in GROMACS. The position restraints

algorithm in GROMACS should in principle serve for this issue. However, the

author was not able to produce reasonable results this way. The GROMACS code

was therefore patched with PLUMED67 version 1.3, a code which adds a power-

ful capacity to freely de�ne reaction coordinates to various MD packages. With

PLUMED it is not only possible to restrain the reaction coordinate to the value of

a reference structure, but also to an arbitrary value. This is an important feature

of PLUMED for any method which searches an unknown point in the RCS.

As force �eld CHARMM228 a temperature of 300 K and a time step of 1 fs is

used. The umbrella sampling uses the velocity Verlet integrator, a Nose�Hoover

chain11�14 thermostat with a chain length of 4 and a response time of 200 fs. The

bias for umbrella sampling is K = 0.2 atomic units (≈ 1.9× 105 kJ mol−1 nm−2).

Independent MD runs have to be performed for each image in each step of the

NEB optimisation. The accuracy obtained in the gradient and Hessian is obvi-

ously increased by longer sampling. While more noise can be tolerated at the

beginning of an optimisation, more accurate values are required close to conver-

gence. Therefore the number of steps to be sampled are increased by the heuristic

criterion NSTEP = max(106, 1010/(RMS(F NEB))2) with F NEB being the NEB force

of the previous step in kJ mol−1 nm−1 and RMS denoting the root of the mean

square. From the resulting trajectories the �rst 0.1 ps is omitted and every tenth

step is used for the analysis. Each path is converged until RMS(F NEB) undercuts
10 kJ mol−1 nm−1.

Describing the reaction with �ve backbone atoms in the RCS one obtains a path in

15 dimensions (six of those belonging to translation and rotation, however). Since

this cannot be illustrated directly, we use a projection on to the two dimensional

space of the backbone torsion angles shown in �gure 3.3. In �gure 3.14 the pro-
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jection of the initial guess and the converged paths are shown in a contour map

of the potential energy. The results gained by the serial method,36 using the same

RCS but with the saddle points found by Newton�Raphson search, are shown in

gray.

The saddle points (transition states) are the points with highest free energy along

the path. Using umbrella integration, there is no direct access to the free energy

along the path. However, the gradient of the free energy at each image is known.

A projection of the gradient on to the tangent of the path gi · τ i allows an ap-

proximation of the free energy via integration. The points where gi · τ i is zero are
stationary points. Images close to these are used as approximations to the saddle

point and can be used as an initial guess for a Newton�Raphson re�nement.

In the following, convergence properties of speci�c paths are discussed.
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Figure 3.15: Convergence of the NEB force of a path between the minima C5 and Ceq
7

using 16 images and a linear interpolation in terms of the backbone torsion angles as
starting guess. The red solid, red line corresponds to the total NEB force, the green
dashed line to the component of the force perpendicular to the path (ignoring uneven
distribution of the images).
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iteration |δ| |δNR| λ
0 0.0250 0.6921 18,132
1 0.0250 0.1608 5,203
2 0.0250 0.0811 2,668
3 0.0250 0.0272 2,406
4 0.0124 0.0124 0
5 0.0184 0.0184 0

Table 3.4: Levenberg–Marquardt parameters for the NEB optimisation of the path
between C5 and Ceq

7 . The step lengths |δ| and |δNR| are given in nm, the shift parameter
λ in kJ mol−1 nm−2.
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Figure 3.16: Gradient profile of the path between the minima C5 and Ceq
7 after conver-

gence. The diagram shows free energy gradient projected on to the tangent vector τ̂ i of
each image. Images number 7 and 8 are good estimates for saddle point.
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The convergence of the NEB force for the path of the transition between C5 and

Ceq
7 is shown in �gure 3.15. The convergence criterion for the NEB optimisation

(RMS(F NEB) < 10 kJ mol−1 nm−1) is already reached after six NEB search steps.

The �rst four of these are Levenberg�Marquardt steps with a non-zero λ, see

table 3.4, the last two are pure Newton�Raphson steps. Figure 3.16 shows the

projection of the gradient of each image on to the tangent vector for the converged

path. Images 7 and 8 are the best approximations for the saddle point. This

saddle point lies in a �at but rough area of the free-energy surface. Therefore the

following Newton�Raphson search converges only with di�culty. A saddle where

found point at Φ = −104.4◦, Ψ = 139.2◦ which is in good agreement with the

values from the literature36 Φ = −105.8◦, Ψ = 140.7◦. However, already before the
Newton�Raphson search, image 7 of the converged NEB path has an RMS of the

gradient of 5.5 kJ mol−1 nm−1, which is already below the convergence criterion

of 10 kJ mol−1 nm−1 previously used in the serial algorithm. Image 8 needs one

Newton�Raphson step to reach an RMS of the gradient of 2.2 kJ mol−1 nm−1,

which is also below the convergence threshold.

Transition between Ceq
7 and Cax

7

The convergence of the NEB force for this transition is shown in �gure 3.17. This

optimisation is somewhat more challenging than the path discussed previously. In

14 steps the Newton�Raphson step size is longer than dmax = 0.025 nm so that

the Levenberg�Marquardt algorithm reduces the step size, see table 3.5. It is only

towards the convergence, from step 14 onwards, that a pure Newton�Raphson

step is used. Convergence is smooth and the threshold is reached after 20 steps.

Figure 3.18 displays the projection of the gradient of each image on to the tangent

vector for the converged path. Image 11 is the best approximation for the saddle

point. In �gure 3.3 it appears that this would already perfectly coincide with the

saddle point found previously.36 However, the projection on to only two degrees of

freedom hides details. 4 further Newton�Raphson steps with dmax = 0.001 nm were

performed to re�ne this transition state to the one known from the literature36 at

Φ = −1.4◦ and Ψ = −68.4◦, see �gure 3.19.
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Figure 3.17: Convergence of an NEB path between the minima Ceq
7 and Cax

7 using 16
images and a linear interpolation in terms of the backbone torsion angles as starting
guess. The solid red line corresponds to the total NEB force, the dashed green line to
the component of the force perpendicular to the path.
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iteration |δ| |δNR| λ
0 0.0250 1.3012 211,692
1 0.0250 1.1858 216,716
2 0.0250 0.4166 156,690
3 0.0250 0.0928 109,847
4 0.0250 0.1203 71,291
5 0.0250 0.0694 39,171
6 0.0250 0.0394 17,596
7 0.0250 0.6282 14,741
8 0.0250 0.0547 12,917
9 0.0250 0.0683 14,041
10 0.0250 0.1693 13,805
11 0.0250 0.1387 10,668
12 0.0250 0.0470 7,359
13 0.0250 0.0397 3,414
14 0.0109 0.0109 0
15 0.0065 0.0065 0
16 0.0088 0.0088 0
17 0.0047 0.0047 0
18 0.0102 0.0102 0
19 0.0072 0.0072 0

Table 3.5: Levenberg–Marquardt parameters for the NEB optimisation of the path
between Ceq

7 and Cax
7 . The step lengths |δ| and |δNR| are given in nm, the shift parameter

λ in kJ mol−1 nm−2.
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Figure 3.18: Gradient profile of the path between the minima Ceq
7 and Cax

7 after
convergence. The diagram shows the free energy gradient projected on to the tangent
vector τ̂ i of each image. Image number 11 is a good estimates for the saddle point.

iteration

|g
|k

J
m
o
l−

1
n
m

−
1

43210

25

5

1

Figure 3.19: Newton–Raphson refinement to the saddle point at Φ = −1.43◦ and
Ψ = −68.36◦, starting from image 11 of the converged path between Ceq

7 and Cax
7 . The

fast convergence shows that image 11 is a good approximation for the saddle point.
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3.3.3 Application: FKB12 Complex

(a) Complex; ligand is bound to the protein

(b) Unbound state

Figure 3.20: Visualization of the investigated system. The receptor protein is illustrated
in cartoon style, while the ligand is represented by a ball and stick model. The large
balls indicate the seven atoms chosen to be in the reaction coordinate space (RCS). Blue
lines indicate the edges of the water box. Graphic generated with the visualization tool
VMD.49
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(a) 1,3 - diphenyl - 1 - propyl - 1 -
(3,3 - dimethyl - 1,2 - dioxypentyl)
- 2 - piperidine carboxylate.
Structure of ligand as found in the
protein data base68 in the structure
file of the 1FKG complex69,70
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(b) phenyl - 1 - propyl - 1 - (3,3 -
dimethyl - 1,2 - dioxypentyl) - 2 -
piperidine carboxylate .
Ligand used in this work

Figure 3.21: Structural formulas of ligands mentioned in this work. The structure (b)
is generated by removing a phenyl group from the structure (a)

To test the concept for more relevant systems the binding of the ligand phenyl - 1 -

propyl - 1 - (3,3 - dimethyl - 1,2 - dioxypentyl) - 2 - piperidine carboxylate with the

human protein FKBP12 is investigated. The structure of this ligand is shown in

�gure 3.21b. This system was chosen because many studies on complexes including

this protein were done before and can be used for comparison.71�75 The initial

con�guration of the protein was taken from the complex found by X-ray studies of

the crystal structure69,70 as it can be obtained from the protein database.68 The

structure for the ligand used in this work was generated by removing a phenyl group

from the ligand 1,3 - diphenyl - 1 - propyl - 1 - (3,3 - dimethyl - 1,2 - dioxypentyl)

- 2 - piperidine carboxylate found in the 1FKG structure.70 This ligands structure

is illustrated in �gure 3.21a

The system was placed in a 5.5 nm× 5.0 nm× 8.0 nm water box. The dimension in

the Z-direction was set to a greater value in order to have space to pull the ligand

out of the cavity. After minimization and equilibration the water box dimension

relaxed to 5.62449 nm× 5.11318 nm× 8.18108 nm.

The AMBER9976 force �eld is used for the protein and TIP3P10 as water model,

where the ligand was parameterized with the GAFF77 force �eld using the software

antechamber.78 The Newton equations of motion are integrated using a velocity-

Verlet integrator with a time step of 1 fs. The simulation is done with periodic

boundary conditions in all dimensions. Electrostatic interactions are treated with

a cut o� of 1 nm for short range, and by way of particle mesh Ewald sum for long

range interaction using a grid spacing of 0.135 nm. The Van-der-Waals force is cut
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o� for interactions longer than 1.4 nm. The thermostat is a Nosé�Hoover chain11�14

thermostat with a chain length of 4. Temperature is set to 300 K and pressure to

1.01325 bar. The pressure is controlled by a Martyna�Tuckerman�Tobias�Klein

barostat.79,80 The con�guration of the unbound end image is visualized in �gure

3.20.

In this work seven atoms are chosen to be in the RCS. Three belong to the receptor

protein and four to the ligand. This choice is indicated by larger spheres in the

visualisation of the whole system in �gure 3.20.

The path to be observed is the route of the ligand into the binding pocket of

the protein. As a preparation for the actual umbrella sampling simulations the

complex of the ligand and the protein was formed and placed in the water box.

The system was minimised and equilibrated. The resulting structure is used as

the starting point for the construction of the initial guess of the path.

3.3.3.1 Construction of the initial path

The most crucial part of applying the method developed in this work to realistic

systems is the de�nition of the initial path. Performing NEB optimisations using

deterministic optimisation schemes the path will converge to the next local minima.

Heuristic algorithms may be able to escape from the local pond to �nd global

minima. The algorithm simulated annealing, for example, is applied to �nd the

MEP of alanine dipeptide in literature.81

However, for optimisations within the free energy landscape, such global optimisa-

tions algorithms are computationally prohibitive. The initial path must therefore

be placed within the area of convergence of the MFEP. If it is placed within the

convergence area of a path leading over a less favorable saddle point, the itera-

tions will not converge to the desired path. Worse, if parts of the images lie in

the convergence radiuses of di�erent paths, convergence can be unacceptably slow

because many iterations will be needed until one path dominates over the other.

A na��ve linear interpolation between the end points of an observed reaction often

leads to energetically very unfavourable intermediate states. Recently a promising

improvement for de�ning the initial path to carry out NEB optimisations within

the potential energy landscape was made.82 In this work more heuristic approaches

de�ning the initial path are used.
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Reminding the aim of the optimisations in this chapter is to describe the MFEP

of ligand receptor binding. The end points of the path represent the complex on

one side and a state with the ligand outside of the pocket on the other. To de�ne

the intermediate states of the initial guess two di�erent approaches were carried

out.

In a �rst attempt, a steered molecular dynamic simulation was used. Thereby

a non physical force pulled the ligand away from the protein. A quadratic bias

was applied, restraining the centre of mass of the ligand to a certain distance to

the centre of mass of the protein. This was done in one run, while the distance

was slowly increased. The parameters used for the steered MD simulation are

the following: The spring force for the quadratic bias was 100 kJ mol−1nm−1,

and pulling was done with a speed of 0.01 nm ps−1. Every 1000th time step was

written to disk. The resulting trajectory does not yield a linear path between

bound complex and unbound state but rater con�gurations �uctuating around the

aimed distances. To start with the most equally spaced path possible, the root

mean square deviation (RMSD) of the seven atoms chosen to be in the RCS was

plotted in �gure 3.22. The range of RMSD was divided into 15 equally spaced

intervals. The frames which match most to the intersection were used as images

for the initial path. This procedure is illustrated in �gure 3.22.

A second attempt to generate an initial path focuses on the RCS. For this a

preliminary reaction coordinate Λ is chosen. Λ describes the progress along a

linear interpolation of the RCS between two reference con�gurations A and B.

qRCSΛ = (Λ− 1)qRCSi,A + ΛqRCSi,B . (3.68)

Here qRCSA refers to the coordinates of the RCS for the bound state con�guration,

and qRCSB are the coordinates of the RCS for the con�guration with the ligand

pulled out of the protein. The con�gurations A and B are the endpoints of the

starting path gained by steered molecular dynamics as described above.

To construct the initial path 16 equally spaced values for Λ = {0, 0.0625, 0.125, . . . , 1.0}
were chosen. For each value of Λ a molecular dynamics run with the additional

bias

wΛ(qRCS) = kΛ

2
(
qRCS(t)− qRCSΛ

)2
(3.69)

was executed. kΛ was set to 1000 kJ mol−1nm−2. This bias can be applied using

the position restraints algorithm of GROMACS66 and does not require any further

modi�cation of the molecular dynamics code. For each Λ value the con�guration
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Figure 3.22: Illustration of the construction of the initial path from the steered dynamics
run. The graph shows the root mean square deviation (RMSD) of the atoms belonging
to the RCS of a steered molecular dynamics run. The range of RMSD was divided into
15 equally spaced intervals (horizontal lines). The frames matching best to the desired
RMSD values are assigned to the corresponding images of the initial path (vertical lines).

after 100000 steps was used as an image of the initial path. In the following this

work refers to the path gained this way as the initial path gained by position

restrains.

3.3.3.2 Calculations

Comparative Umbrella Integration

To compare the results with an established method, comparative calculations of

one-dimensional umbrella integration16,33,34 are performed. The reaction coordi-

nate χ was de�ned to be the distance of the centre of mass of the protein and the

centre of mass of the ligand. This de�nition is included in the GROMACS package

and can be used for umbrella sampling without modi�cation of the code.
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A quadratic bias of the form wb = k
2 (χ−χref)2 with k = 1000 kJ mol−1nm−2 is used

for all windows, while the reference coordinates χref are located at positions spaced

by about 0.1 nm. At each window moleculardynamics simulations of 1 ns with a

time step of 1 fs are performed. Every 10th step is used for the umbrella integra-

tion analysis while the �rst 40 ps are omitted in order to avoid non-equilibrium

artifacts. However, since the speci�ties of the GROMACS software require biased

molecular dynamics simulations to be started at a con�guration with the reaction

coordinate χ = χref, these con�gurations have to be generated before the actual

umbrella sampling run. Doing this carefully, the simulations start with already

well equilibrated con�gurations. As a consequence, the number of omitted steps

at the beginning of the simulations do not show a signi�cant e�ect.

The close distance of the umbrella sampling windows assures a wide overlap of

neighbouring windows. Reliable results could also be gained by using less sampling

time. The addressed points yield some space for optimisation. Recalling, that

umbrella integration is an established technique and not the objective of this work,

the author chose to play safe in order to get a reliable pro�le to compare with his

own work.

Comparing the pro�le gained by umbrella integration with those from NEB opti-

misations, raises the problem that reaction coordinates are measured in di�erent

ways. The comparative umbrella integration studies use the distance of the centre

of mass of the protein and the ligand called χ in the following. For natural con-

�gurations this is never zero. It is di�erent for the NEB optimisations. Here the

reaction coordinate for image i is de�ned as

ξi =
i∑

k=2

∣∣∣qRCSk−1 − qRCSk

∣∣∣ (3.70)

In other words, ξi is simply the length within the RCS of the path from the �rst

to the ith image. Therefore ξ0 is necessarily zero. To get some visual comparative

graphs the centre of mass distances between protein and ligand, of the �rst (χ0)

and last (χN−1) image of NEB chain are calculated. Here the path of the last

optimisation iteration was used. For plotting the χ values of the intermediate

images are approximated by

χi ≈
χN−1 − χo
ξN−1

ξi + χ0. (3.71)

Even if the actual χreali values of the con�gurations are easily calculated, the author

chose this linear relation in order not to disturb the character of the NEB pro�les.

Selected scaled NEB pro�les are plotted together with the pro�le gained by the
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established umbrella integration techniques in �gure 3.24 and 3.25. Details are

discussed in the following.

Results

For no parameter set NEB optimisations in the free energy landscape converged

to reasonable free energy pro�les. I therefore discuss a representative case at this

point. Many other parameters were tried, but no qualitatively di�erent behavior

was visible. Starting from the path gained by position restrains, the NEB force

is signi�cantly smaller in the �rst steps. However, in this case the path does not

converge either.

The parameters of the illustrated examples are the following: 16 images are used to

approximate the path, the NEB spring constant is 0.001 in atomic units (≈ 937.583
kJ mol−1 nm−2) the maximal step length dmax = 0.05 nm and the umbrella sam-

pling bias is set to 0.05 atomic units (≈ 46879.15 kJ mol−1 nm−2). The convergence

behavior is shown in �gure 3.23. Even for much longer runs the convergence cri-

terion is never met. At iteration 15 a peak of the NEB force is observed. In �gure

3.24 free energy pro�les from the iterations before this peak are compared with

the pro�le calculated by one-dimensional umbrella integration technique. NEB

pro�les are calculated by summing up the projection of the gradient on to the

local tangent vector, A(ξi) = ∑i
k=2 g̃k · τ k. To get comparable graphs the reaction

coordinate of the NEB pro�les are scaled according to equation (3.71). In order

not to confuse the reader's eye, only pro�les of each second NEB iteration are

plotted.

In �gure 3.25 the same comparison is done for the iterations up from iteration

15. We clearly observ that the peak corresponds to a qualitative change of the

path. Before iteration 14 the path has a monotonic characteristic. After iteration

15 a minimum at the 8th image (χ ≈ 1.5) appears. This minimum is caused by

hydrophobic binding of the ligand's phenyl group with residues of the protein.

The minimum con�guration is shown in �gure 3.26. Even after many iterations

the pro�le still changes a lot and does not reproduce the pro�le gained by the

one-dimensional umbrella integration.
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Figure 3.23: Convergence of nudged elastic band optimisations for the complex ligand
system. While at the beginning the nudged elastic band force significantly decreases,
convergence is not observed. The peak at iteration 15 represents an qualitative change of
the path.
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Figure 3.24: Free energy profile at different iterations. To avoid confusion, the plot
only contains every second iteration before the iteration 15, which represents a reordering
of the path. Crosses represent the actual positions of the images, while the thick black
line shows the profile gained by one-dimensional umbrella integration. For the latter the
reaction coordinate is the protein ligand center of mass distance. In order to compare
profiles gained from NEB optimisations and umbrella integration, the reaction coordinate
of the NEB profiles is scaled according to equation (3.71).

81



25

23

21

19

17

15

reaction coordinate [nm]

fr
ee

en
er
g
y
[k
J
/
m
o
l]

2.62.42.221.81.61.41.210.80.6

160

140

120

100

80

60

40

20

0

-20

Figure 3.25: Free energy profile at different iterations. To avoid confusion, the plot
just contains every second iteration up from iteration 15 which represents a reordering
of the path. Crosses represent the actual positions of the images, while the thick black
line shows the profile gained by one-dimensional umbrella integration. For the latter, the
reaction coordinate is the protein ligand centre of mass distance. In order to compare
profiles gained from NEB optimisations and umbrella integration the reaction coordinate
of the NEB profiles is scaled according to equation (3.71).
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Figure 3.26: Intermediate minimum structure at iteration 15. The ligand’s phenyl
group hydrophobically interacts with residues of the protein which are illustrated in
grayed colours. Graphic generated with the visualization tool VMD.49
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4
Conclusions and Outlook

This chapter draws conclusions and discusses future development
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4.1 Conclusion

The main task of computational chemistry is to �nd reaction mechanisms. Such

a mechanism can be described as a minimum free energy path (MFEP) in the

reaction coordinate space RCS, which consists of the coordinates of the atoms

playing an important roll during the reaction. Unfortunately, the free energy sur-

face, which includes statistical information of all atoms not included in the RCS,

is not directly accessible. This work uses umbrella integration,16,33,34 to calcu-

late gradients and Hessians from biased molecular dynamics simulations, so-called

umbrella sampling. In the �rst part these values are used for an iterative search

of saddle points. The MFEP is then constructed by following the gradient down

to the minima. This procedure has the drawbacks that it needs good guesses for

the saddle points to start because of the small convergence radius of the Newton�

Raphson method and that is inherently serial. Each step is based on information

gained by the previous one.

To overcome these drawbacks, in the second part of the results chapter a Newton�

Raphson scheme for nudged elastic band NEB optimisations is developed which

uses gradients and Hessians of the underlying potential. NEB optimisations start

from an initial guess of the path, discretize it in a number of conformations (images)

and iteratively approach the minimum energy path (MEP). In the free energy

surface gradients and Hessians can be obtained by umbrella integration. At each

conformation independent umbrella sampling simulations have to be done. This

makes the method intrinsically parallel. In addition it is usually easier to �nd

good guesses for a reaction path than for the saddle points. The proof of concept

is done by applying the method to the well studied system of alanine dipeptide.

The algorithm depends on the non-physical parameters bias for umbrella sampling

simulation, spring force and maximal step length. Successful optimisations with

simple systems imply that, while the bias of the molecular dynamics simulations

seems to be less problematic, spring force and maximal step length have crucial

in�uences on the convergence. Weak spring forces lead to an unequal distribu-

tion of the images while strong spring forces reduce the convergence radius of the

Newton�Raphson method. Small values for the maximal step length slow down

the convergence while large values may lead to faster convergence but increase

the danger of leaving the convergence radius. Here further methodical work is

required.
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The choice of the initial path is in general very crucial for the convergence for

any NEB optimisation. This work could only archive convergence from initial

paths gained by linear interploation of Cartesian coordinates for the simple test

systems of the M�uller�Brown potential and the reordering of a two-dimensional

Lennard�Jones cluster. However, in the case of the Lennard�Jones cluster, only

if the interpolation was done between all known local minima. For optimisation

within the free energy surface of alanine dipeptide a linear interpolation of the

torsion angles was necessary.

As a system with realistic complexity the binding of FKBP-type peptidyl-prolyl

cis-trans isomerase with a ligand is performed. Unfortunately, the convergence

properties of the NEB optimisation were unsatisfactory. There may exist a range

of parameter sets for which convergence may be archived; di�erent choice of the

RCS may be useful. However, to achieve the aim of the overall project to develop

a method which can be used generally to �nd intrinsic reaction coordinates with

little or no previous knowledge of the particular system further work is required.

To make the method applicable for realistic systems it would be necessary to de-

velop a systematic way of either determining good parameters or �nding better

initial paths. Experience so far implies that the second point has more potential.

However, even if good parameters and initial paths are available, it is still ques-

tionable if the method could be used competitively. First, because the necessary

sampling time increases quadratically when approaching the minima, and at sec-

ondly because approaching the minima in small steps may lead to an oversampling

of areas of little interest.

4.2 Outlook

In this work an algorithm to �nd the MFEP using umbrella integration and NEB

optimisations was developed. Unfortunately, for a system with realistic complexity

optimisations failed to converge to a �nal path. Using the algorithm for a less

complex system already showed that the choice of certain parameters has a crucial

impact on convergence of the algorithm. Further work may develop systematic

approaches to determine these parameters, and to achieve convergence for realistic

systems as well.

Another crucial condition for convergence is the initial path. Further work may

develop reliable methods to �nd initial paths within the convergence area of the
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method. Then the method developed in this work could probably serve for re�ne-

ment of the intrinsic reaction coordinate.

The Newton�Raphson based optimiser developed in this work, which shows quadratic

convergence for NEB calculations in the potential energy surface, relies on the gra-

dient and Hessians at each step at each window of the chain of states. While the

Hessians do not require more computational e�ort in the case of umbrella integra-

tion, Hessians of the potential energy may become unreasonably costly. Further

work will use this optimiser to �nd the MEP of realistic systems, but in combi-

nation with updated Hessians. In doing so, the author does perhaps not expect

quadratic convergence, but still a signi�cant improvement over established meth-

ods for NEB optimisation.

In this work it was shown that removing translational components from the NEB

optimisation step yields important improvement for convergence. Also Excluding

the rotational part from the step promises further improvements to this work.
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