
Received: 1 March 2023 Revised: 10 July 2023 Accepted: 13 July 2023

DOI: 10.1002/qre.3414

RESEARCH ARTICLE

Availability analysis of redundant and replicated cloud
services with Bayesian networks

Otto Bibartiu1 Frank Dürr1 Kurt Rothermel1 Beate Ottenwälder2

Andreas Grau2

1University of Stuttgart, Institute for
Parallel and Distributed Systems (IPVS),
Stuttgart, Germany
2Robert Bosch GmbH, Stuttgart, Germany

Correspondence
Otto Bibartiu, University of Stuttgart,
Institute for Parallel and Distributed
Systems (IPVS), Universitätsstrasse 38
Stuttgart, Germany.
Email: otto.bibartiu@ipvs.uni-stuttgart.de

Funding information
Robert Bosch GmbH

Abstract
Due to the growing complexity of modern data centers, failures are not uncom-
mon any more. Therefore, fault tolerance mechanisms play a vital role in
fulfilling the availability requirements. Multiple availability models have been
proposed to assess compute systems, among which Bayesian network models
have gained popularity in industry and research due to its powerful modeling
formalism. In particular, this work focuses on assessing the availability of redun-
dant and replicated cloud computing services with Bayesian networks. So far,
research on availability has only focused on modeling either infrastructure or
communication failures in Bayesian networks, but have not considered both
simultaneously. This work addresses practical modeling challenges of assessing
the availability of large-scale redundant and replicated services with Bayesian
networks, including cascading and common-cause failures from the surround-
ing infrastructure and communication network. In order to ease the modeling
task, this paper introduces a high-level modeling formalism to build such a
Bayesian network automatically. Performance evaluations demonstrate the fea-
sibility of the presented Bayesian network approach to assess the availability of
large-scale redundant and replicated services. This model is not only applicable
in the domain of cloud computing it can also be applied for general cases of local
and geo-distributed systems.

KEYWORDS
availability analysis, Bayesian networks, fault tolerance, redundancy, replication

1 INTRODUCTION

Due to the growing complexity of modern data centers, failures are not the exception anymore; they are the norm.1
For example, the OVHcloud data center incident in 2021 led to the unavailability of multiple online businesses,2 while
the Facebook outage in late 2021, caused by a miss-configuration of the backbone routers,3 led to an estimated loss
of 65 million dollars in revenue.4 Cloud operation teams and reliability engineers employ fault tolerance techniques

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2023 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd.

Qual Reliab Engng Int. 2024;40:561–584. wileyonlinelibrary.com/journal/qre 561

https://orcid.org/0000-0003-1867-1681
mailto:otto.bibartiu@ipvs.uni-stuttgart.de
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/qre

562 BIBARTIU et al.

F IGURE 1 To assess the availability of a redundant or replicated service, one needs to consider the reachability of the instances through
the communication network, as well as their fault dependencies with the execution context.

to mask faults through redundancy or replication, by deploying multiple instances of the same service to increase
availability. These instances are not fault independent. They normally share common cause failures with the surrounding
execution environment and communication network, raising the question if fault tolerancemeasuresmeet the availability
requirements. To answer this question, this paper proposes a novel Bayesian network modeling approach to assess the
availability of redundant and replicated cloud services in presence of network and common-cause failures.
This work distinguishes between the terms redundant and replicated cloud services to address two different model-

ing semantics with respect to service communication, which can lead to different availability outcomes. In a broader
sense, redundancy implies independent service instances (copies) that work in parallel. Redundant services can be state-
ful or stateless. For example redundant domain-name-system (DNS) servers are stateful, where multiple DNS instances
can independently serve client requests. Stateless redundant services are Amazon Web Service (AWS) Lambda and
Azure Functions, which are part of the Function-as-a-Service (FaaS) layer. In contrast, replication always involves state-
ful services that implement a replication protocol to maintain the desired degree of state consistency between the
instances. Examples of such systems are replicated databases,5–7 and distributed locking services.8 These instances need
to communicated with each other at some point in time as supposed to instances of a redundant service.
The ISO/IEC/IEEE International Standard on Systems and Software Engineering defines availability as the “degree

to which a system or component is operational and accessible when require”.9 Similarly, we refer to availability as the
likelihood of a cloud service to be reachable and operational (up) when required. Figure 1 exemplifies the difference in
failure modes when assessing the availability of a redundant or replicated services. Common cause failures and cascading
faults in the infrastructure can simultaneously lead to the unavailability of multiple service instances. Network faults
might lead to network partitioning, which renders services instances unreachable for client requests or segmenting the
instances of a replicated service into groups that cannot agree upon the next states. For example, Figure 1A shows a
redundant services. A client application regards the redundant service available as long as it can reach at least one of the
instances. In contrast, Figure 1B depicts a replicated service, which has the overhead of inner-replica communication due

BIBARTIU et al. 563

the necessity of implementing a replication protocol. So, the replicated service is reachable as long as at least one working
instance is reachable by the client, and the instance can communicate with sufficient remaining instances to reach the
required quorum size, that is, to correctly implement the replication protocol. As a result, this communication overhead
might involve more network components that form an additional source for potential failures, which we need to account
for in our availability model.
AsMichael R. Lyu noted,10 it is not sufficient to assess the reliability or availability of a software system in isolation. It is

important to also consider the execution (operational) environment, in order to create accurate availability models. How-
ever, while researchers acknowledge the significance of infrastructure and communication faults,11,12 they usually model
either the infrastructure,13–15 or the communication16–19 part of a system. Moreover, with the advent of cloud comput-
ing, reliability engineers face the challenge of modeling the availability of large-scale cloud services. Especially with the
introduction of FaaS in cloud computing and NoSQL databases, such as Cassandra, the number of instances per service
has grown in the hundreds.20 Consequently, a high number of components lead to an increase in structural complexity,
making many availability models impractical or render them infeasible to model large-scale cloud services.
Consequently, in order assess the availability of today’s cloud services, we need holistic availability models that can

model large-scale replicated and redundant cloud services while simultaneously accounting for cascading and common-
cause failures of the network and infrastructure environment. This paper addresses this problem by proposing a Bayesian
network availability model. Bayesian networks have proven helpful in computing the availability of complex systems
since they provide a powerful modeling formalism to express complex fault dependencies and uncertainty between
components.21–23 They support a rich set of efficient inference algorithms suitable for fault diagnostic15 and availability
prediction.Moreover, with the introduction of scalable Bayesian network structures,24,25 we argue that Bayesian networks
are a good fit to assess large-scale redundant and replicated cloud services.
This work provides the following contributions.

1) We introduce a high-level modeling formalism to describe complex redundant and replicated cloud services at any
preferred level of infrastructure and network granularity, since manually building a Bayesian network availability
model of large-scale services can become tiresome, time-consuming, and error-prone (this model gets then translated
into the Bayesian network model later).

2) We explain step-by-step how to address the modeling challenges of implementing a Bayesian network model that
considers cascading infrastructure and network communication failures.

3) Especially for replicated services, we solve the modeling challenge of addressing network partitioning failures, while
also considering a flexible range of fault tolerance semantics like voting and weighted-voting based replication.

4) We also propose a translation procedure that transforms the high-level model into the proposed Bayesian network
availability model automatically.

5) Finally, we provide evaluations that demonstrate the feasibility of building and assessing large-scale cloud services
models with hundreds of infrastructure components and service instances.

The remainder of this paper is structured as follows: In Section 2, we introduce our system assumptions. Next, in Sec-
tion 3, we formulate our high level availability model. Afterward, in Section 4, we show how to build the Bayesian network
available model. In Section 5, we evaluate the performance of our Bayesian network approach to model large scale ser-
vices. Next, in Section 6, we discuss the results and suggest future work topics. In Section 7, we present related work on
availability modeling of replicated systems. Finally, in Section 8, we conclude this paper.

2 SYSTEMMODEL

The proposed availabilitymodel considers redundant or replicated distributed (cloud service) systems as a set of instances.
Instances are assumed to run on virtual or physical hosts, placed within the infrastructure of one or more data centers,
and linked by a communication network. The network is assumed to consist of components such as switches, routers,
and middleboxes, for example, firewalls, which are placed within the same infrastructure as the hosts themselves.
Specifically, redundant services can be stateless or stateful services, where the stateful service does not replicate its state.

Replicated services always refer to stateful services where state is replicated.
A replicated service is available when sufficient replicas are available. Conversely, if too many replicas are unavailable,

that is, have crashed or are not reachable, the service is considered unavailable at the time of the request. A quorum is a

564 BIBARTIU et al.

certain set of k-out-of-n redundant instances that need to be available to provide a particular service function. Note that
different functions such as reading or writing a data object can have different quorum sizes, depending on the replication
protocol. Therefore, in this work, service availability implicitly refers to the availability of a specific service function
or operation.
Themodel considers two types of communication patterns. For redundant services,we assume that a client only needs to

communicate with one instance to issue its request. For replicated services, it is also sufficient for a client to communicate
with one instance to initiate the request.However, that instance needs to be able to communicatewith sufficient remaining
instances to agree upon the result of the client’s request. The exact fault tolerance semantics for redundant and replicated
services is flexible and can be defined by the reliability engineer as part of the system description.
The hosts and the communication network are part of the infrastructure, which forms a complex component-based

system consisting of infrastructure components, such as data centers, racks, power supplies, virtualmachines, and network
appliances. The model assumes that hard – and software – components, including the service instances, have a crash-
recoverymodel. As soon a component encounters a failure, it crashes and stops, and recovers eventually. Each component
in the infrastructure has its probability of failing by its own without external influence.
Moreover, the model assumes that infrastructure components have fault relations, representing potential common

causes of failures. These fault relationships can form a cause-effect chain, where the failure of one component is the cause
of failure of another component, essentially propagating the failure through the infrastructure, until it eventually leads to
the failure of the cloud service, that is, cascading failure. In order to formalize the relationship between two directly fault
dependent components, the model assumes that the dependence can be described by means of a static fault tree.26
Client applications and instances can communicate with each other by exchanging messages via the communication

network. The network is composed of network components forming a network graph. The end-to-end communication,
that is, channels, between instances and clients can be synchronous or asynchronous and implemented by one or more
redundant network routes. A channel crashes when there is no route in the network to connect the two endpoints, and
a route becomes unavailable when at least one network component along the route crashes. Client applications might be
placed outside of the known infrastructure. In this case, themodel considers the paths starting from the network appliance
that constitutes the entry point of the data center; or, if the client application is within the data center, its host. Moreover,
we assume the exists some dedicated network components, for example, firewalls or load balancers, that act as gateways,
that is, entry points, for clients applications to communicate with the service.
A particular placement of instances to virtual or physical hosts is called a deployment and known beforehand. Instances

do not migrate. If an instance crashes, it does not recover on a different host. It recovers back at its former host. Hence,
if a host crashes, all its instances can recover when the host recovers. The model makes no restrictions on the number of
instances per host. Multiple instances can run on the same host. In the case of replication, the model does not assume the
concurrency controlmethod or the particular replication protocol. Either at any given point in time there are enough repli-
cas up and reachable to agree upon the results of a client’s request, or too many replicas crashed or are unreachable, such
that the remaining replicas cannot form a quorum for any client request, resulting into the unavailability of the service.

3 HIGH LEVELMODEL DESCRIPTION

This section will address the modeling challenge of building a Bayesian network model to infer the availability of a cloud
service in the presence of cascading infrastructure and network faults. To ease the modeling process, we present a high-
level model description first, which we later translate to a Bayesian network. The model contains three basic sub-models:
a failure model for the infrastructure, a model for the network, and a model to describe the fault-tolerance semantics of
the service. This provides the advantage to choose the component granularity of the system. First, we begin with the basic
unit of our model, a component.

Definition 3.1 (Component). A component 𝐶 ∈ 𝑪, from the finite set of all components of the system 𝑪 = {𝐶1, 𝐶2, … },
is an indivisible hard or software entity with the states {𝐹, 𝑇}, and a probability distribution 𝑃(𝐶 = 𝐹) = 𝑞𝑖 to observe the
component as faulty (unavailable) and 𝑃(𝐶 = 𝑇) = 1 − 𝑞𝑖 to observe the component as operational or working (up).

The set 𝑰 = {𝐼1, … , 𝐼𝑛} ⊂ 𝑪 are instances of the service. The remaining components are infrastructure and network com-
ponents.
Components might have fault dependencies between themselves. We describe these fault dependencies as a direct

acyclic graph (DAG).

BIBARTIU et al. 565

F IGURE 2 Example excerpt of a fault dependency graph of a host and its fault tree representation defined by the function 𝐹𝑇(host).

Definition 3.2 (Fault Dependency Graph). Given the set of all components 𝑪, the model defines the fault dependency
graph as a DAG 𝐺FD = (𝑪, 𝐸INF, 𝐹𝑇), with edges 𝐸INF ⊆ 𝑪 × 𝑪, and an associated (static) fault tree model (𝐹𝑇) for every
component in 𝑪.

Directed edges are tuples (𝐶𝑖, 𝐶𝑗), where𝐶𝑖 is said to be a parent component of𝐶𝑗 , and𝐶𝑗 is said to be a child component
of 𝐶𝑖 . These edges can also define a contained-in relation, to signify that one component is contained within another.
In order to express complex component dependencies, 𝐹𝑇(𝐶𝑖) contains the definition of a static fault tree that describes

the fault semantics of a component 𝐶𝑖 as a function of its parent components. 𝐹𝑇(𝐶𝑖) has as the top event (TE) the failure
of component 𝐶𝑖 and as base events 𝐶𝑖 ’s parents components. To illustrate how to apply 𝐹𝑇, Figure 2A shows the excerpt
of a fault dependency graph consisting of a host that depends on its rack, and two redundant power supplies. The fault
dependency graph encodes the external conditions when the host fails. In this case, the host fails if the rack fails, or both
power supplies stopworking.𝐹𝑇(host) encodes this failure relation at the host component, as shown in Figure 2A, leading
to the corresponding fault tree representation shown in Figure 2B. This fault tree has the power supplies and the rack as
basic input events and the host failure as the TE. The hosts failswhen the rack fails, or both power supplies fail, represented
by OR gate at the TE and the AND gate at the basic events of the power supplies. Note that the fault dependency model
is a DAG, disallowing cyclic fault dependencies since it leads to cycles in the final Bayesian network graph, which is not
allowed by definition.
To account for communication faults, themodel needs a representation of the network. Network components represent

network appliances such as switches, routers, load-balancers, and firewalls. Consequently, the failure of related infrastruc-
ture components can influence the failure of a network component, which can lead to communication failures. Unlike
the fault dependency graph, the network graph can have cycles.

Definition 3.3 (NetworkGraph). Given a set of hosts𝐻 ⊂ 𝑪, a set of network components𝑁 ⊂ 𝑪, and their union𝑪NET =

𝐻 ∪ 𝑁, the network is a graph 𝐺NET = (𝑪NET, 𝐸NET) with unidirectional edges, where the edges 𝐸NET ⊆ 𝑪NET × 𝑪NET
define the communication links between any two network components.

With this graph notion, reliability engineers can decide the granularity of the network model. Suppose they have little
or no knowledge of the network. In that case, they can represent the network as ‘one switch’ connecting all instances,
aggregating all potential failure probabilities as one value for one super component. However, they can also describe more
complex network graphs if they have ample knowledge, which improves the model w.r.t. a more realistic representation
of the actual network.
The final system description of the cloud service is the unification of the above model definitions.

Definition 3.4 (High-level System Model). A system

𝑆 = (𝑪,𝑄, 𝐺FD, 𝐺NET, 𝐷, 𝑃,, 𝑐)

is a eight-tuple consisting of the following elements:

566 BIBARTIU et al.

F IGURE 3 Database management system example.

𝑪 The set of all infrastructure, network components and instances.
𝑄 The fault tolerance model defined as a path set of instances 𝑄 = {𝑄1, … , 𝑄𝑚} ⊆ 2𝑰 .

𝐺FD The fault dependency graph.
𝐺NET The network graph.

𝐷 The association of instances to hosts 𝐷 ∶ 𝑰 → 𝐻.
𝑃 The function of all fault probabilities of the components in 𝑪.
 The set of network components that act as entry point for client applications to establish a communication channel
with the instances of the services. ⊆ 𝐶NET.

𝑐 A Boolean value 𝑐 ∈ {𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒} to indicate if the service is redundant or replicated.

The parameter𝑄 defines all instance combinations for which the service is considered in aworking state in the presence
of instance failures. This generic definition fits redundant as well as replicated service. It implies the enumeration of all
valid instance combinations to build 𝑄, building a (minimal) path set of the service instances. For example, let us assume
a service has three instances 𝑰 = 𝐼1, 𝐼2, 𝐼3 and the service works as long as two instances are up. As a result, 𝑄 is the enu-
meration of all combinations with at least two instances 𝑄 = {{𝐼1, 𝐼2}, {𝐼1, 𝐼3}, {𝐼2, 𝐼3}, {𝐼1, 𝐼2, 𝐼3}}. This definition provides
a flexible way to express a wide range of fault tolerance semantics. However, the enumeration of all instance combina-
tions can become inefficient, especially when considering services with hundreds of instances. To alleviate this burden,
we suggest an implicit construction method for k-out-of-n redundancy and voting-based replication models, as well as
for the special cases of read-one and write-all replication. For these specific models, we define 𝑄 as a tuple (𝑉, 𝑡), where
𝑉 = (𝑣1, … , 𝑣𝑛) are instance votes and 𝑡 a threshold value. The availability model will then account for the probability of
observing sufficient working instances such that their votes exceed the threshold. For example, we can express the previ-
ous examples as 𝑄 = ((1, 1, 1), 2) to implement the majority set without enumerating all possible set combinations. If the
service has different thresholds, that is, different quorum size requirements, per operation like read-one write-all replica-
tion. Read-one would have 𝑡 = 1 for the read operation and write-all 𝑡 = 𝑛 for the write operation. The service definition
would then refer to one specific operation.Multiple operations can be supported by defining a servicemodel for each oper-
ation separately and compute their availability values. At this point, it is up to the reliability engineers how to aggregate the
availability of the different operations. They can use the lowest resulting value as a means to assess the probability of the
worst-case service model, or they could compute the (weighted) average availability across all operations. Independently
of what aggregation method a they chooses, this work shows how to build the availability model accordingly.
Let us exemplify the system model by describing a database management system as shown in Figure 3, which we will

then use as a running example for the construction of the Bayesian network model next section.
Figure 3 shows the overall system with its infrastructure and network components that provides the execution envi-

ronment for the database management system. Although the data center infrastructure might be much larger, we only
consider those components which serve the service. The database management system consists of seven replicas 𝐼1 to 𝐼7,
placed on hosts within the infrastructure of two data centers. Without loss of generality, the service is available as long as
the replicas can form a majority quorum.
Black arrows define fault dependencies between infrastructure components and blue edges represent communication

links between network components. Without restrictions, in this example, we assume that a component fails when all its

BIBARTIU et al. 567

parent components fail; however, our Bayesian networkmodel will also be capable of modelingmore complex component
dependencies, such as redundant power supplies. Each component has its own intrinsic fault probability 𝑞 representing
the likelihood of a component failure without external influence. Here, the fault probabilities are sampled from a beta
distribution with ∀𝑖 ∶ 𝑞𝑖 ∼ (10, 1000).
Finally, the database management system has the following service description:

𝑆Example = (𝑪,𝑄, 𝐺FD, 𝐺NET, 𝐷, 𝑃,, 𝑐)

∙ The set of all components is

𝑪 ={𝐷𝐶1, 𝐷𝐶2, 𝑅𝑎1, 𝑅𝑎2, 𝑅𝑎3, 𝐹𝑊,𝑁1,𝑁2,𝑁3,𝑁4,

𝐻1,𝐻2,𝐻3,𝐻4,𝐻5,𝐻6,

𝐻7,𝐻8,𝐻9, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7}

∙ For the majority set, we need to form all combinations of at least four replicas. 𝑄 = {{𝐼1, 𝐼2, 𝐼3, 𝐼4}, {𝐼2, 𝐼3, 𝐼4, 𝐼5}, … }. Or
we can use the short hand notation 𝑄 = ((1, 1, 1, 1, 1, 1, 1), 4).

∙ The deployment of replicas to hosts is given by the function 𝐷.

𝐷(𝐼1) = 𝐻1 𝐷(𝐼2) = 𝐻2 𝐷(𝐼3) = 𝐻3

𝐷(𝐼4) = 𝐻4 𝐷(𝐼5) = 𝐻5 𝐷(𝐼6) = 𝐻7

𝐷(𝐼7) = 𝐻7

∙ The fault dependency graph has the following definition.

𝐺FD = (𝑪, 𝐸INF, 𝐹𝑇)

𝐸INF = {(𝐷𝐶1, 𝑅𝑎1), (𝐷𝐶1, 𝑅𝑎2), (𝐷𝐶2, 𝑅𝑎3),

(𝑅𝑎1, 𝐹𝑊),… , (𝐷(𝐼4), 𝐼4),

(𝐷(𝐼5), 𝐼5), (𝐷(𝐼6), 𝐼6), (𝐷(𝐼7), 𝐼7)}

Here, the instances use the deployment function to identify their host within the fault dependency graph.
In this example, a component automatically fails when its parent component fails. So, 𝐹𝑇 is a simple mapping of the

failure event of the parent component of 𝐶, denoted as 𝑝𝑎(𝐶).

∀𝐶 ∈ 𝑪 ∶ 𝐹𝑇(𝐶) =
⋀

𝐶𝑖∈𝑝𝑎(𝐶)

(𝐶𝑖 = 𝐹)

If a component has no parent, for example, 𝐷𝐶1, then 𝑝𝑎 returns the empty set.
∙ The network graph has the following form.

𝐺NET = (𝐶NET, 𝐸NET)

𝐶NET = {𝐹𝑊,𝑁1,𝑁2,𝑁3,𝑁4,𝐻1,𝐻2,𝐻3,𝐻4,𝐻5, 𝐻6,𝐻7,𝐻8,𝐻9}

𝐸NET = {{𝐹𝑊,𝑁2}, {𝑁2,𝑁1}, {𝑁2,𝑁3}, … ,

{𝑁4,𝐻7}, {𝑁4,𝐻8}, {𝑁4,𝐻9}}

568 BIBARTIU et al.

∙ The fault probabilities of observing the components as unavailable are:

𝑃(𝐷𝐶1 = 𝐹) = 0.0092 𝑃(𝐷𝐶2 = 𝐹) = 0.0069…

𝑃(𝐻8 = 𝐹) = 0.0084 𝑃(𝐻9 = 𝐹) = 0.0107

For the sake of readability, we assume that instances do not fail due to intrinsic faults. Hence, they have an availability
of one.

∙ The entry point for client applications is the firewall: = {𝐹𝑊}
∙ With 𝑐 = 𝑡𝑟𝑢𝑒, the model will consider communication between the instances, describing a replicated service.

For example, the final model would address failure modes where rack 𝑅𝑎1 would fail, which leads to the failure of all its
built-in components. This includes its hosts𝐻1 to𝐻3, the firewall, and the switches𝑁1 and𝑁2 to fail as well. As a result,
the replicas 𝐼1 to 𝐼3 would also fail since 𝑅𝑎1 is a common cause of failure here. The Bayesian network model compactly
encodes all combinations of component state and their probabilities, for which the service is considered available, as part
of its qualitative representation, without enumerating all potential failure combinations explicitly.

4 BAYESIAN NETWORKMODEL

The translation of the high-level service model into a Bayesian network consists of three steps. First, it builds a Bayesian
networkmodel of the fault dependency graph. Afterward, it extends the initial Bayesian networkwith the failuremodel for
inner-replica communication when considering replicated services. The third step finalizes the Bayesian network model
by including the failure model for the client-to-instance communication. This modeling approach is novel insofar it can
address network partitioning failures, which defines the availability of the service as a function of the channels between
instances. For instance, in the case of replicated services with voting-based replication, instead of building a model that
accounts for at least k-out-of-n working instances, we build a model where we can infer the probability that for any
reachable instance, there are at least (k-1)-out-of-(n-1) working channels connected to the remaining working instances.

4.1 Background

Wewill use the Bayesian network representation of fault tree gates throughout themodeling process. This section provides
the necessary background to understand fault trees and their equivalent Bayesian network notation. Readers familiar with
this notation are free to skip this subsection.
There are three basic gate types that have all fault tree variants in common: the AND, OR, and the k-out-of-n voting

gate.27 Bobbio et al.28 introduced the general approach to represent fault tree gates with the help of Bayesian networks.
This work will use the translation concepts as templates to construct the proposed Bayesian network availability model.
A discrete Bayesian network29 is a DAG 𝐺 = (𝑋, 𝐸) that represents a joint probability distribution 𝑃(𝑋) over the set of

discrete random variables 𝑋 = {𝑋1, 𝑋2, …𝑋𝑛}. The term variable or node are used interchangeably to denote the vertices
of the Bayesian network graph. For every edge (𝑋𝑖, 𝑋𝑗) ∈ 𝐸 between the nodes 𝑋𝑖 and 𝑋𝑗, 𝑋𝑖 is said to be a parent node of
𝑋𝑗 , and 𝑋𝑗 is a child node of 𝑋𝑖 . Each variable has a conditional probability distribution 𝑃(𝑋𝑖 = 𝑥𝑖|pa(𝑋𝑖)) encoded as a
conditional probability table (CPT). The CPT contains the probability to observe a certain state𝑋𝑖 = 𝑥𝑖 given the observed
states of its parent nodes denoted by parent function pa(𝑋𝑖) = {𝑋𝑝 ∶ ∀(𝑋𝑝, 𝑋𝑖) ∈ 𝐸}. Nodes without parents are called root
nodes and have an a prior probability distribution 𝑃(𝑋𝑖 = 𝑥𝑖).
A Bayesian network entails a full joint probability distribution compactly as the product of all the nodes’ conditional

probability distributions:

𝑃(𝑋) =
∏
𝑥∈𝑋

𝑃(𝑥|pa(𝑥)) (1)

With the help of the joint probability distribution, one can use inference to compute the posterior distribution 𝑃(𝑌|𝑋′) of
some query 𝑌 ⊂ 𝑋 of uncertain variables from a given subset 𝑋′ ⊂ 𝑋∖𝑌 of observations of the remaining variables.

BIBARTIU et al. 569

F IGURE 4 Basic Bayesian network to represent the fault tree’s AND/OR, or k-out-of-n voting gates (left). Example instance of a
Bayesian network k-out-of-n model (right).

Figure 4 (left side) shows the main Bayesian network structure to realize the AND/OR and the k-out-of-n voting gate.
The basic structure has 𝑛 components 𝐶1 to 𝐶𝑛 with prior probabilities represented by their eponymous binary random
variables with states {𝐹, 𝑇}, observing the component either faulty or available, respectively. The individual semantics of
the gate types are encoded within the CPT of the Gate node.

4.1.1 AND model

For every state combination of the parent nodes, we define Gate = 𝐹 if all parent nodes are observed to be in state 𝐹.
Hence, the conditional probability distribution for the Gate node has the following short-hand definition:

𝑃(Gate = 𝑇|∀𝐶 ∈ 𝑝𝑎(Gate) ∶ 𝐶 = 𝐹) = 0

𝑃(Gate = 𝐹|∀𝐶 ∈ 𝑝𝑎(Gate) ∶ 𝐶 = 𝐹) = 1

𝑃(Gate = 𝑇|∃𝐶 ∈ 𝑝𝑎(Gate) ∶ 𝐶 = 𝑇) = 1

𝑃(Gate = 𝐹|∃𝐶 ∈ 𝑝𝑎(Gate) ∶ 𝐶 = 𝑇) = 0

(2)

4.1.2 OR model

For every state combination of the parent nodes, we will observe Gate = 𝐹 if at least one parent node is in state 𝐹.

𝑃(Gate = 𝑇|∀𝐶 ∈ 𝑝𝑎(Gate) ∶ 𝐶 = 𝑇) = 1

𝑃(Gate = 𝐹|∀𝐶 ∈ 𝑝𝑎(Gate) ∶ 𝐶 = 𝑇) = 0

𝑃(Gate = 𝑇|∃𝐶 ∈ 𝑝𝑎(Gate) ∶ 𝐶 = 𝐹) = 0

𝑃(Gate = 𝐹|∃𝐶 ∈ 𝑝𝑎(Gate) ∶ 𝐶 = 𝐹) = 1

(3)

4.1.3 k-out-of-n model

For example, Figure 4 (right side) shows an instance of the k-out-of-n model for a two-out-of-three voting gate. The k-out-
of-n voting gate triggers a fault event when 𝑘 or more input events are in a faulty state. Hence, the CPT of the Gate node
has to count how many parent nodes are in the state 𝐹. This is done for each column. We set the probability to 1 for state
𝑇 if less than 𝑘 parent nodes are in the state 𝐹, or set the probability of 𝐹 to 1 if 𝑘 or more parent nodes are in the state 𝐹.
Formally, the conditional probability distribution of the k-out-of-n model has the following definition:

∀𝑐1, … , 𝑐𝑛 ∈ {𝐹, 𝑇}𝑛

570 BIBARTIU et al.

ALGORITHM 1 Generating the service model.

1: procedure CreateServiceModel𝑆
2: (𝑪, 𝑄, 𝐺FD, 𝐺NET, 𝐷, 𝑃,, 𝑐) ← 𝑆

3: 𝐵𝑁 = (𝑋, 𝐸) with 𝑋 = {} and 𝐸 = {}

4: 𝑋 = 𝑋 ∪

5: CreateFaultGraph(𝐵𝑁,𝐺FD, 𝐷, 𝑃)
6: if c then
7: ReplicatedService(𝐵𝑁,𝑄, 𝐺NET,, 𝐷)
8: else
9: RedundantService(𝐵𝑁,𝑄, 𝐺NET,, 𝐷)
10: end if
11: return 𝐵𝑁

12: end procedure

𝑃(Gate = 𝐹|𝑐1, … , 𝑐𝑛) =

⎧⎪⎨⎪⎩
1

𝑛∑
𝑖=1

𝟏𝐹(𝑐𝑖) ≥ 𝑘

0 otherwise

𝑃(Gate = 𝑇|𝑐1, … , 𝑐𝑛) = 1 − 𝑃(Gate = 𝐹|𝑐1, … , 𝑐𝑛) (4)

where 𝟏𝐹(𝑥) is an indicator function such that

𝟏𝐹(𝑥) ∶=

{
1 if 𝑥 = 𝐹,

0 otherwise.

4.2 Transformation overview

Algorithm 1 introduces the pseudo code to build the Bayesian network model based on the high-level service description.
Here, the notion (𝑥, 𝑦, 𝑧) ← 𝑆 means that a structure, say 𝑆, provides its elements 𝑥, 𝑦, and 𝑧 to the outer scope, which
is known as pattern matching in the context of functional programming. First we set up a an empty Bayesian network
with the node set 𝑋 and edge set 𝐸. Afterward, we add our first node 𝑆, which is a binary random variable representing
the availability of the service. At the end of the procedure, one can then infer the fault probability, or availability, of the
service by computing themarginalization𝑃(= 𝐹), or𝑃(= 𝑇) respectively. The definition of the conditional probability
distribution of 𝑆 follows in the procedures in line 7 or 9.
For any given service model 𝑆, we build the Bayesian network availability model of the fault dependency graph with the

method CreateFaultGraph in line 5, in order to account for cascading and common cause failures, and then include
the concrete service type according to 𝑐. If 𝑐 is true, we include the replicated servicemodel with themethod Replicated-
Service in line 7, otherwise the procedure builds the redundant servicemodel in line 9. The remainder of this section will
introduce each of the three sub-procedures in detail.

4.3 Fault dependency graph

Given a system model 𝑆, the first step in the translation procedure is to build the Bayesian network representation of
the fault dependency graph. Perhaps it is not apparent why the fault dependency graph forms the beginning. However,
due to the cause-effect semantics of Bayesian networks, it is essential to start with root causes first and then successively
attach the effects, which themselves are failure causes for other components. Hence, infrastructure failures form the initial
causes of failures.

BIBARTIU et al. 571

F IGURE 5 AND fault relation between infrastructure components.

4.3.1 Failure model of a component

A component 𝐶 ∈ 𝑪 fails either because of an intrinsic failure or because of an external fault caused by its parent compo-
nents. First, we define the general Bayesian network structure of a single component. This structure will then be used as
a building block for the upcoming Bayesian network representation of the fault dependency graph.
First, the procedure creates a binary random variable for every component in with the states {𝐹, 𝑇}, where each

variable defines the probability of observing the eponymous component as faulty or available. The procedure applies to
each component 𝐶 the Bayesian network transformation of 𝐹𝑇(𝐶) according to,28 where the fault of 𝐶 is the TE, and 𝐶’s
parent components are the base events. For example, Figure 5 shows the Bayesian network representation of a component
𝐶 that expresses its dependability to its parent components 𝐶𝑝1

to 𝐶𝑝𝑁
as a fault tree with one AND gate. Hence, the CPT

uses the previously introduced AND model from Equation (2). A component 𝐶 can also fail by its intrinsic fault with
probability 𝑞, which is part of 𝐶’s CPT definition. The conditional probability distribution of 𝐶 represents a noisy-AND
model. Hence, the CPT of 𝐶 from Figure 5 has the following definition.

𝑃(𝐶 = 𝑇|𝑨𝑵𝑫 = 𝐹) = 0

𝑃(𝐶 = 𝐹|𝑨𝑵𝑫 = 𝐹) = 1

𝑃(𝐶 = 𝑇|𝑨𝑵𝑫 = 𝑇) = 1 − 𝑞

𝑃(𝐶 = 𝐹|𝑨𝑵𝑫 = 𝑇) = 𝑞

(5)

4.3.2 Translating the fault dependency graph

Algorithm 2 repeats the approach mentioned above for each component. It transforms a given fault dependency graph
𝐺FD into a Bayesian network. First, the procedure creates a node for every component (line 3). Then, it creates their
corresponding Bayesian network fault tree representation defined in 𝐹𝑇(𝐶) (line 7), using the building formalism intro-
duced by Bobbio et al. in ref. [28], and then connecting the parent components as base events to the resulting structure
at line 9. Finally, we also connect the node of the component that represents the TE with the corresponding component
node (line 11). Afterward, it adds the node representation of the instances to the host nodes according to a predefined
deployment 𝐷 (line 15).
Applying Algorithm 2 to the example 𝑆Example leads to the preliminary Bayesian network shown in Figure 6. Here,

without loss of generality and for the sake of readability, the AND fault relation between all infrastructure components
can be simply combined to one node with the noisy ANDmodel of the component. With this simplification, the Bayesian
network corresponds in its shape to the fault dependency graph, as illustrated in Figure 3. Moreover, to visually assist the
translation procedure, the nodes in Figure 6 are rearranged. All network components are on the left, and all hosts with
their processes are on the right side (gray dashed box).

572 BIBARTIU et al.

ALGORITHM 2 Building the Bayesian network
infrastructure model.

1: procedure CreateFaultGraph𝐵𝑁,𝐺FD, 𝐷, 𝑃

2: (𝑪, 𝐸INF, 𝐹𝑇) ← 𝐺FD

3: for 𝐶 ∈ 𝑪 do
4: 𝑋 = 𝑋 ∪ 𝐶 ▹ Create node 𝐶 with state {𝐹, 𝑇}

5: end for
6: for 𝐶 ∈ 𝑪 ⧵ 𝑰 do
7: 𝐵𝑁𝐶 = 𝐹𝑇(𝐶) ▹ Create Bayesian network model of

𝐹𝑇(𝐶) according to28

8: for 𝐶𝑝𝑗 ∈ pa(𝐶) do
9: 𝐸 = 𝐸 ∪ (𝐶𝑝𝑗, 𝐵𝑁𝐶,𝑗)

10: end for
11: 𝐸 = 𝐸 ∪ (𝑇𝐸(𝐵𝑁𝐶), 𝐶)

12: add CPT to 𝐶 using 𝑃 and Equation (5)
13: with 𝑞 = 𝑃(𝐼𝑖 = 𝐹)

14: end for
15: for 𝐼𝑖 ∈ 𝐼 do
16: 𝐸 = 𝐸 ∪ (𝐷(𝐼𝑖), 𝐼𝑖)

17: add CPT to 𝐼𝑖 using 𝑃 and Equation (5)
18: with 𝑞 = 𝑃(𝐼𝑖 = 𝐹)

19: end for
20: return 𝐵𝑁

21: end procedure

F IGURE 6 Bayesian network infrastructure model of the data management system example.

4.3.3 Channel model

In order tomodel service reachability in the presence of network partitioning failures, we need to discuss how tomodel the
probability of observing communication failures with Bayesian networks. Instances and client applications communicate
over channels, which is realized as a route along the network graph. The goal of a channel is to assess the accessibility
between two instances in the presence of possible network faults. From an availability perspective, when a route fails,
because some network component had failed along the route, then a channel can be established along a different if one
still exists. Therefore, a channel is considered unavailable, when all potential routes have failed. A channel subsumes the
fault probability of observing all routes between the two endpoints as interrupted.
Figure 7 shows the Bayesian network structure that contains the node 𝐶𝐼𝑖−𝐼𝑗

, representing the probability of a commu-
nication failure between two instances 𝐼𝑖 and 𝐼𝑗 . For readability, this section refers to 𝐶𝐼𝑖−𝐼𝑗

simply as a channel node. A
channel node is conditionally dependent on three nodes: an AND node and two nodes for the endpoints of the channel.

BIBARTIU et al. 573

F IGURE 7 Bayesian network representation of a single communication channel.

The AND node represents the failure probability that no route exists, whereas the endpoint nodes represent the failure
probability of the corresponding instances. The CPT of the channel node entails an ORmodel, defining the probability of
observing a channel failure when one of the endpoints fails, or no working route exists.
The nodes that define the failure of the endpoints, that is, 𝐼𝑖 and 𝐼𝑗 , are the node representations of the service instances.

However, they could also represent different failure causes that indirectly affect the channel, which could be a client
application, for example, the host of the client, or a common endpoint of a second channel. The latter is essential for the
replicated service model, to model inner-replica communication.
Finally, nodes 𝑅1 to 𝑅𝑛 define the failure probabilities of routes. These route nodes use an ORmodel for their CPTs and

are conditionally dependent on the network components 𝑁1 to 𝑁𝑚 that are part of the corresponding route in the net-
work graph. This model also considers correlating route failures when a route shares the same network components.
For example, if 𝑁𝑖 fails, route 𝑅1 are 𝑅𝑛 are interrupted. The same applies when multiple channels share the same
routes, respectively.
Algorithm 3 formalizes the construction of a channel as a procedure. Necessary inputs are source 𝐶𝑠𝑟𝑐 and destination

𝐶𝑑𝑠𝑡 component and a pair of Bayesian network nodes 𝑋𝑠𝑟𝑐 and 𝑋𝑑𝑠𝑡, which represent the failure causes of the channel’s
endpoints. As discussed briefly, themodel distinguishes between the components for which it computes the routes and the
parent nodes that provide the failure causes at the channel’s endpoints. The node𝐴𝑁𝐷𝑠𝑟𝑐−𝑑𝑠𝑡 indicates that the ANDnode
belongs to the channel 𝐶𝑠𝑟𝑐−𝑑𝑠𝑡, in order to distinguish the AND nodes between multiple channels. First, the procedure
computes all routers in the network graph at line 3. Afterward, line 4 to 8 initializes the channel nodes with its parent
nodes. Line 9 iterates over the list of routes and determines if the route has existed as a node in the Bayesian network
graph or not. If yes, then the corresponding route node is directly added to the channel as shown in line 17. If not, the
procedure creates the new route node and connects it with its corresponding network components (lines 10 to 13). The
remainder of the procedure finalizes the CPT of the channel node and returns it as a reference.
Without a doubt, the number of routes can get intractably large. In this case, onemight resort to simplifying the network

graph. That can be done either by aggregatingmultiple network components, or by considering a limited number of routes
– or both. However, while this simplification increases performance, it comes to the expense of model fidelity.

4.4 Redundant service model

Given the channel model, we can build the model of a redundant service first. Successful communication exists when
clients can access sufficient working instances directly. In real-life, a client application will most likely try to connect to
one instance, whereas the Bayesian network represents the probability of connecting to any of those instances. Due to the
high user-load assumption, we need to account for the likelihood of observing sufficient working instances, even if we
need one instance to handle the request.
Algorithm 4 describes how to extend the previously created Bayesian network model of the infrastructure with the

redundant service model. We stated in the system model, that a client application can access a service through one or
more dedicated network component that act as entry points, that is, gateways, in the network. Therefore, we introduce
a new set of binary random variables 𝐾 = {𝐾𝑖}

𝑚
𝑖=1
, with 𝑚 = ||, which represents the probability of accessing sufficient

instances through the i-th entry point defined in .

574 BIBARTIU et al.

ALGORITHM 3 Routine to create Bayesian network
sub-graph for channels.

1: procedure CreateChannel(𝐵𝑁, 𝐺NET, 𝐶𝑠𝑟𝑐 ∈ 𝐶NET,
𝐶𝑑𝑠𝑡 ∈ 𝐶NET, 𝑋𝑠𝑟𝑐 ∈ 𝑋, 𝑋𝑑𝑠𝑡 ∈ 𝑋)

2: (𝑋, 𝐸) ← 𝐵𝑁

3: routes := compute all paths from 𝐶𝑠𝑟𝑐 to 𝐶𝑑𝑠𝑡 in 𝐺NET

4: 𝑋 = 𝑋 ∪ 𝐶𝑠𝑟𝑐−𝑑𝑠𝑡

5: 𝑋 = 𝑋 ∪ 𝐴𝑁𝐷𝑠𝑟𝑐−𝑑𝑠𝑡

6: 𝐸 = 𝐸 ∪ (𝐴𝑁𝐷𝑠𝑟𝑐−𝑑𝑠𝑡 , 𝐶𝑠𝑟𝑐−𝑑𝑠𝑡)

7: 𝐸 = 𝐸 ∪ (𝑋𝑠𝑟𝑐, 𝐶𝑠𝑟𝑐−𝑑𝑠𝑡)

8: 𝐸 = 𝐸 ∪ (𝑋𝑑𝑠𝑡, 𝐶𝑠𝑟𝑐−𝑑𝑠𝑡)

9: for in routes do
10: if ∉ 𝑋 then
11: 𝑋 = 𝑋 ∪

12: for 𝐶 ∈ .𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 do
13: 𝐸 = 𝐸 ∪ (𝐶,)

14: end for
15: add OR model to CPT of
16: end if
17: 𝐸 = 𝐸 ∪ (, 𝐴𝑁𝐷𝑠𝑟𝑐−𝑑𝑠𝑡)

18: end for
19: add OR model to CPT of 𝐶𝑠𝑟𝑐−𝑑𝑠𝑡

20: add AND model to CPT of 𝐴𝑁𝐷𝑠𝑟𝑐−𝑑𝑠𝑡

21: return 𝐶𝑠𝑟𝑐−𝑑𝑠𝑡

22: end procedure

ALGORITHM 4 Implementation of the redundant
service model.

1: procedure RedundantService𝐵𝑁,𝑄, 𝐺NET,, 𝐷

2: (𝑋, 𝐸) ← 𝐵𝑁

3: 𝑚 = ||
4: for 𝑖 ∈ [1,𝑚] do
5: 𝑋 = 𝑋 ∪ 𝐾𝑖

6: end for
7: for 𝐺𝑖 ∈ do
8: for 𝐼𝑖 ∈ 𝑰 do
9: 𝐶𝐺𝑖−𝐼𝑖

∶=CreateChannel(𝐵𝑁,𝐺NET,
10: 𝐺𝑖, 𝐷(𝐼𝑖), 𝐺𝑖, 𝐼𝑖)
11: 𝐸 = 𝐸 ∪ (𝐶𝐺𝑖−𝐼𝑖

, 𝐾𝑖)

12: end for
13: 𝐸 = 𝐸 ∪ (𝐾𝑖, 𝑆)

14: add CPT of 𝐾𝑖 according to 𝑄.
15: end for
16: add AND model to CPT of 𝑆
17: end procedure

BIBARTIU et al. 575

F IGURE 8 The Bayesian network of a redundant service example.

At line 10, the procedure creates the channel nodes for each entry point in the set to each instance. The channel
creation procedure takes as input the network component that acts as an entry point, the host of the instances as defined
by their deployments, and the two nodes that represent the failure of the channel’s endpoints. In a follow up step (line
11), all channel nodes that are related to the i-th entry point component connect to one node 𝐾𝑖 , which implements the
reachability requirement of accessing sufficient instances form that entry point as part of its CPT. For example, if one
instance is sufficient for a working service, then each 𝐾𝑖 would implement an AND model at line 14, representing the
fault probability that the i-th client cannot communicate with any instance at all. A detailed discussion on how to integrate
general requirements for 𝐾𝑖 at line 14 can be found at the end of this section.
Finally, Algorithm 4 finishes by introducing the final service node . This node accounts for the probability that no

client at any entry point has sufficient working channels to communicate with the instances. Hence, we can compute the
probability of a single service failure as the marginal 𝑃(= 𝐹) or its availability 𝑃(= 𝑇) using Bayesian inference.
For instance, Figure 8 shows theBayesiannetworkmodel of the example service fromSection 3, assuming a redundant

service. In this example, all clients communicate with the instances via the firewall (represented by node FW). There are
three routes1 to3, which are shared by all seven channels, emphasized by the dashed box. Each channel is connected
to the firewall node, representing the client. Since there is only one entry point, the set 𝐾 = {𝐾1} contains one node. For
example, assuming the service can tolerate three instance failures, node 𝐾1 implements a four-out-of-seven model (see
Equation 4).

4.5 Replicated service model

For replicated services, we said that clients first send their request to one instance, which then communicates with the
remaining instances. This communication pattern subsumes and implements the likelihood of accessing at least one
instance that can communicate with sufficient remaining instances. Hence, we will show how to use this communication
pattern to encode all possible states in which the instances, or cannot, reach the desired number of votes, for example,
quorum size, as defined by the fault tolerance model in 𝑄. Consequently, the final Bayesian network will encode the
probability of observing the service in a working state, giving potential infrastructure and communication faults.
Algorithm 5 begins first by modeling the communication channels between instances. It introduces again the set of

binary random variables 𝐾 = {𝐾𝑖}
𝑛
𝑖=1

where 𝑛 = |𝑅|, which represent the failure probability of communicating with an
insufficient number of instances when the i-th instance initiates the replication protocol. Hence, every 𝐾𝑖 is a child node
of 𝑛 − 1 channel nodes (line 12 and 13), since the fault probability of instance 𝑅𝑖 is already part of one of the endpoints

576 BIBARTIU et al.

ALGORITHM 5 Implementation of the replicated
service model.

1: procedure ReplicatedService𝐵𝑁,𝑄, 𝐺NET, , 𝐷

2: (𝑋, 𝐸) ← 𝐵𝑁

3: 𝑋 = 𝑋 ∪ ▹ Create service node
4: 𝑛 = |𝑅|
5: for 𝑖 ∈ [1, 𝑛] do
6: 𝑋 = 𝑋 ∪ 𝐾𝑖

7: end for
8: for (𝑅𝑖, 𝑅𝑗) in 𝑅 × 𝑅 do
9: if 𝐶𝑅𝑖−𝑅𝑗

∉ 𝑋 and 𝐶𝑅𝑗−𝑅𝑖
∉ 𝑋 then

10: 𝐶𝑅𝑖−𝑅𝑗
:= CreateChannel(𝐵𝑁,𝐺NET,

11: 𝐷(𝑅𝑖), 𝐷(𝑅𝑗), 𝑅𝑖, 𝑅𝑗)
12: 𝐸 = 𝐸 ∪ (𝐶𝑅𝑖−𝑅𝑗

, 𝐾𝑖)

13: 𝐸 = 𝐸 ∪ (𝐶𝑅𝑖−𝑅𝑗
, 𝐾𝑗)

14: end if
15: end for
16: add CPT for all 𝐾𝑖 ∈ 𝐾 according to 𝑄.
17: for 𝐺𝑖 ∈ do ▹ Second Step
18: 𝑋 = 𝑋 ∪ 𝐺𝑖

19: for j=1; j < n; j++ do
20: 𝐶𝐺𝑖−𝑃𝑗

:= CreateChannel(𝐵𝑁,𝐺NET,
21: 𝐺𝑖, 𝐷(𝑅𝑗), 𝐺𝑖, 𝐾𝑗)
22: 𝐸 = 𝐸 ∪ (𝐶𝐺𝑖−𝑅𝑖

,)

23: end for
24: end for
25: add AND model to CPT of
26: end procedure

of the channels. Next, the procedure builds a channel node for every entry point 𝐺𝑖 to every instance 𝑅𝑖 by using 𝐾𝑖 as
failure cause(line 21). Instead of directly addressing the failure probability of an instance, the model uses 𝐾𝑖 to represent
the instance 𝑅𝑖 . In the case of a network partitioning, 𝐾𝑖 would contain the probability that 𝑅𝑖 can still access sufficient
processes in its partition.
Finally, node accounts for the failure probability that no client can access the service through any gateway(line 25).

Hence, one can now infer the fault probability, or availability, of the service by computing the marginalization 𝑃(= 𝐹),
or 𝑃(= 𝑇) respectively.
For example, Figure 9 shows the Bayesian network of the database service example, based on the assumption that client

applications access the service via the firewall. The left box shows the channel nodes representing the fault probabilities
for the communication between clients and service instances. The right box shows the channels of each instance to every
other instance. A node 𝐾𝑖 has as parent nodes the channel nodes of the i-th instance. Hence, to implement the majority
set requirement, one can use a three-out-of-six model for 𝐾𝑖 to encode the probability of observing at least three working
channels, which implies that the i-th instance is also working.
Next, we discuss in detail how to implement the CPTs of the nodes in 𝐾 as hinted at line 16.

4.5.1 Read-one/write-all

Read-one/write-all is a special case in replication since every operation has its particular quorum requirements. We
already had a brief introduction on read-one/write-all in the last section. There, we discussed how to implement the
service requirements for read 𝑄𝑟𝑜 = 2𝑅∕∅, and for write quorums 𝑄𝑤𝑎 = {𝑅}. Consequently, each operation needs its own

BIBARTIU et al. 577

F IGURE 9 The Bayesian network of the indirect communication pattern for the database example.

Bayesian network model to assess its availability individually. Read-one can be modeled by using the redundant service
model. Hence, the model uses an AND model for all CPTs of the nodes in 𝐾 to account for the fault probability that no
channel works. In contrast, for write-all, it depends on the system design. One can use either the redundant or the repli-
cated service model. Both models use the OR model for the CPTs of nodes in 𝐾, accounting for the fault probability that
there is at least one channel faulty to an instance.

4.5.2 k-out-of-n voting

In voting-based replication, instances have one vote to decide on an incoming operation request. The system is available
when it can reach k-out-of-n votes for some request, for example, majority sets require 𝑘 = ⌊𝑛

2
⌋ + 1 votes. For replicated

services that use the indirect communication pattern, the i-th replica is part of the voting process, where it must acquire
at least 𝑘 − 1 votes from the remaining 𝑛 − 1 replicas to consider the service as available. Thus, the CPT of 𝐾𝑖 implements
an 𝑛 − 𝑘 + 1-out-of-𝑛 − 1mode as defined in Equation (4), that is, considering the inverse on howmany channel failures
can be tolerated.
For redundant services that use the direct communication pattern with 𝑛 instances, where 𝑘 instances are sufficient to

signify that the service does not fail due to overload, the model implements the CPT of 𝐾𝑖 by using an (𝑛 − 𝑘)-out-of-𝑛
model. Thus, the system fails if there are more than 𝑛 − 𝑘 channels faulty.

4.5.3 Weighted voting

In weighted voting, individual replicas can have multiple votes. This forms the general case of the normal voting-based
approach from above. To reach a potential quorum, the total number of votes that are available byworking instances needs

578 BIBARTIU et al.

to exceed a given threshold 𝑡. As a result, this work extends the k-out-of-n model from Equation (4) to account for the
individual vote counts of the replicas. We use the tuple notation for 𝑄 = (𝑉, 𝑡), where 𝑉 = (𝑣1, … , 𝑣𝑛) are instance votes
and 𝑡 the threshold value. Given that 𝐾𝑖 refers to the i-th instance, the models use 𝑣𝑗 to denote the number of votes of
the instance at the opposing endpoint of the j-th channel for a given state combination 𝑐𝑖−1, … , 𝑐𝑖−𝑚 of the channel nodes
connected at 𝐾𝑖 . Here, since the i-th instance initiated the replication protocol, we automatically assume that its votes 𝑣𝑖

contribute to the request. Hence we reduce the threshold by its votes.

∀𝑐𝑖−1, … , 𝑐𝑖−𝑚 ∈ {𝐹, 𝑇}𝑚

𝑃(𝐾𝑖 = 𝑇|𝑐𝑖−1, … , 𝑐𝑖−𝑚) =

⎧⎪⎪⎨⎪⎪⎩
1

𝑚∑
𝑗=1

𝟏𝑇(𝑐𝑖−𝑗)𝑣𝑗 ≥ 𝑡 − 𝑣𝑖

0 otherwise

𝑃(𝐾𝑖 = 𝐹|𝑐𝑖−1, … , 𝑐𝑖−𝑚) = 1 − 𝑃(𝐾𝑖 = 𝑇|𝑐𝑖−1, … , 𝑐𝑖−𝑚)

For every state combination 𝑐𝑖−1, … , 𝑐𝑖−𝑚, the model builds the weighted sum of those channels that are available and
checks if the result is above the threshold.

4.6 Scalability

Bayesian networks are subject to an exponential growth of memory with regard to their CPTs.30 The CPT of a node has
to implement a conditional probability distribution for each state combination of its parent nodes. If the parent nodes
are binary, then the number of CPT entries is 𝑂(2𝑛). Hence, all CPTs of 𝐾 will exhibit an exponential memory growth
in the number of instances. We have a similar situation for nodes that represent the availability of routes. Those nodes
implement an OR model, which can have multiple network components that represent a route. Assuming a CPT entry
is just several bytes large, it is not hard to see that a node with 30 parent nodes will have a CPT with several gigabytes of
memory. Therefore, this Bayesian network approach is suitable only for services with up to 30 instances and short network
routes; afterward, the memory becomes the limiting factor.
However, this problem can be mitigated for the AND/OR, and k-out-of-n model. Heckerman25 provides an equivalent

AND/OR model that reduces the space complexity to linear, while Bibartiu et al.24 provide an equivalent (scalable) k-
out-of-n model with polynomial complexity. Having these scalable models, we can substitute the existing AND/OR, and
k-out-of-n models in the Bayesian network model with their scalable counterparts. Hence, we can overcome the memory
limitations for redundant services and voting-based replication models for large services.

5 EVALUATION

This section provides an in-depth analysis of the performance and modeling feasibility of the presented Bayesian net-
work availability model. The evaluation will analyze the availability, build, and inference performance for redundant and
replicated services for an increasing number of instances. All experiments were performed on a 64-bit machine with 64
Intel(R) Xeon(R) CPU E7-4850 v4 at 2.10 GHz and 1 TB of main memory, running Arch Linux 5.13.12 with GCC 11.1.0,
Python 3.9.6, and with pgmpy 0.1.7 (the Bayesian network modeling package) and Numpy 1.20.3. Bayesian network infer-
ence is performedwith approximate and exact inferencewhenever possible. For approximate inference,weuse the forward
sampling method, and for exact inference, we used the Lauritzen-Spiegelhalter Algorithm method31 from the gRain 1.3.2
package.32,33 Furthermore, we used in all experiments the scalable Bayesian network representations for AND/OR and
voting gates by Heckerman25 and Bibartiu et al.24 The implementation of the algorithms and evaluation methods for the
presented Bayesian network model are available as open source1.
Moreover, all experiments will consider two different data center infrastructures. The first infrastructure corresponds

to the example used in Section 3, which consists of 19 components. The evaluation will refer to this example as the small

1 https://github.com/openclams/bn-availability-model

BIBARTIU et al. 579

F IGURE 10 The availability results of a service for increasing the number of instances, using approximate and exact inference.

infrastructure. Consequently, the second infrastructure will be called the large infrastructure. The large infrastructure
consists of three data centers with 40 hosts each, using a random topology of 20 network components to connect hosts
and data centers. Moreover, each data center has 100 additional infrastructure components that influence the hosts and
the network components. The large infrastructure has in total 440 components. All components in the large infrastructure
have an availability value sampled from a beta distribution with 𝐶 ∼ Beta(10, 000, 1), resulting in an average downtime of
1 h during a mission time of 10,000 h. Without loss of generality, we will require that the majority of instances are needed
for both service types to be considered available. Other k-out-of-n schemes are also possible, but a different 𝑘 changes only
the content of the corresponding nodes and not the structure of the Bayesian network.
The plot in Figure 10 shows the expected availability for both service types for an increasing number of instances, using

the small and large infrastructure, applying approximate and exact inference. Instances were placed in round-robin. We
computed the availability for services with up to 300 instances using approximate inference. Exact inference was only
possible for up to 27 instances for the redundant service experiments and for up to six instances for the replicated service
experiments, independently of the infrastructure size. Approximate inference might vary by nature with every execution.
So we compared the results of the exact and approximate inference methods by repeating them 40 times to compute their
confidence intervals. As a result, it can be statedwith 95% confidence that there is no significant difference in the inference
results between the exact and approximate inference methods here.
The availability results between the redundant and the replicated service are similar. The availability decreases up until

six instances for the small infrastructure experiments. This is mainly because all instances are placed in the first data
center. The follow-up placements also consider the second data center in the small infrastructure for services with seven
or more instances. The more instances, the less common-cause failures are shared. However, adding more instances does
not lead to higher availability. The higher the distribution of instances, the higher the risk of communication failures
since more network components are involved. This limits the availability to a point where the influence of the shared
infrastructure outweighs the benefits of replication. Even in the large infrastructure example, where we assume a low
average downtime per component, the availability does not converge arbitrarily near to 1.
The plot in Figure 11 shows the mean inference time to compute the presented availabilities. Here we can observe

the exponential time increase (linear function in a semi-log plot) of the exact inference method, which contrasts the
polynomial time increase (log function in a semi-log plot) of the approximate inference method. There are two main
observations. First, the inference time between the redundant and replicated services have different polynomial complex-
ities, and second, the inference time converges independently of the infrastructure size. Clearly, due to the twenty-fold
increase of components in the large infrastructure compared to the small infrastructure, the former is slower than the
latter for small numbers of instances. However, the number of channels nodes increases with the number of instances.

580 BIBARTIU et al.

F IGURE 11 The inference time to compute the availability of a service with increasing number of instances for the small and large
infrastructure example, using approximate and exact inference.

F IGURE 1 2 Comparing the time to build the Bayesian network model for increasing number of instances.

Hence, the more instances, the more channel nodes. The number of channel nodes outweighs the number of infrastruc-
ture components until they become the influencing factor in the computation. The model of the redundant service has a
linear increase of channels, whereas the replicated service has a quadratic increase of channel nodes due to the indirect
communication pattern.
Finally, Figure 12 introduces the build time to construct the Bayesian network. Clearly, the build time shows a significant

difference between the large and small infrastructure examples for small numbers of instances with 𝑛 less than 30 w.r.t.

BIBARTIU et al. 581

service type. However, with increasing numbers instances the time difference diminishes. Afterwards, the sole factor that
determines the build time is the service type. For large numbers of instances, the infrastructure has almost not significant
influence on the build time anymore. Again the number of channel nodes that grow in proportion to the number of
instances outweighs the component nodes of the infrastructure.

6 DISCUSSION

The evaluation demonstrated the feasibility of the Bayesian network approach tomodel large-scale and replicated systems.
Build and inference time is within manageable time frames for reliability engineers to make informed decisions on the
service. Overall, for small service sizes with three to seven replicas as commonly used for transaction-oriented database
systems, the reliability engineer can even use exact inference to assess the availability in order to compute deterministic
results. We discussed that the number of channels has the most influence with regard to the build and inference time.
Replicated services lead to a quadratic growth of channel nodes in the number of instances. Also, the build procedure needs
to compute all possible routes that constitute a channel. Finding all possible routes in a graph can become a performance
impediment, which is why we suggest considering only a subset of essential routes if performance is of higher priority.
The largest model with 300 instances took about 1 h to build. But once the model is built, inference can be performed
independently often. Even updating individual beliefs of component failures can be done directly to the respective nodes
if needed, without rebuilding the whole Bayesian network.
A particular modeling challenge is the potential lack of accurate availability data (failure probabilities). Acquiring accu-

rate failure data is a non-trivial task for rare events, which require a large number of observations to conclude statistical
significance. However, this issue can be addressed in several ways. First, many vendors already provide mean time to
failure (MTTF) information for their software or hardware components. Secondly, cloud providers host larger numbers of
hardware components in their data centers, which are constantly monitored, providing significant amounts of data also
for rare events.34 Thirdly, for yet unobserved failures of highly available components, one can use rare event analysis (an
active research area) in conjunction with expert knowledge acquisition to incorporate prior beliefs first and later refine
the estimate with observation during mission time.
Moreover, our model does not consider the effects of long-running requests and the implications of component failures

and recoveries during a longer execution time. This would require a dynamic Bayesian network approach35,36 to model
the time dimension, bringing new challenges w.r.t. model assumptions, which might require additional implementation
details of the particular replication protocol, increasing the model complexity. Therefore, we consider this challenge as
future work.

7 RELATEDWORK

Modeling complex infrastructures is subject to various areas of reliability engineering.13,18,37,38 Jammal et al.14 provide
a hierarchical infrastructure model for cloud services with Petri nets as an evaluation framework. They consider fault
propagation within a hierarchical infrastructure model supporting redundant cloud services with a one-out-of-n fault
tolerance semantic. However, they do not consider network communication.
Ghosh et al.,16 and Narayanan et al.38 consider a k-out-of-n redundancy model for their instances; however, their

infrastructure model only considers fault-independent compute nodes or data centers, respectively.
The Palladio Component model39,40 provides a holistic modeling approach to evaluate the performance and availabil-

ity of complex software systems unifying hard- and software into one model. However, the Palladio availability model
supports only a one-out-of-n redundancy model and cannot model quorum requirements.
There are several methods to evaluate the availability of a system, among which Bayesian networks have gained large

acceptance within the industry and research.41–44
Bobbio et al.28,45 demonstrated the applicability and superiority of Bayesian networks inmodeling and evaluating equiv-

alent fault trees.26 Moreover, Boudali and Dugan35,36 showed how to use dynamic Bayesian networks to model dynamic
fault trees as well, effectively proving that the Bayesian network formalism is powerful enough to cover all non-state
space models.
Bennacer et al.15 use Bayesian networks for network diagnostics by introducing a case-based reasoning inference

approach to increase diagnostic performance for large-scale Bayesian network models. While they only focus on

582 BIBARTIU et al.

network communication, they provide a tailored inference technique for efficient diagnostics of root causes, which can
also be combined with our Bayesian network model when diagnostics is of interest.
Pitakrat et al.46 use Bayesian networks for online failure predictions ofmicroservice applications. The Bayesian network

represents the interconnection between themicroservice instances and updates the fault probabilities of the services based
on the online monitoring of performance metrics. They consider fault propagation between services; however, replication
is not considered.
In summary, a Bayesian network modeling approach, covering a wide range of redundant and replicated services

that also includes cascading and correlated faults caused by dependent infrastructure and network communication,
was missing.

8 CONCLUSION

This work introduced a Bayesian network availability model for redundant and replicated services. The Bayesian net-
work model unifies the fault aspects defined within a high-level model description of the service. The high-level model
consists of three sub-models: a fault dependency graph to express the failure relation between components of the infras-
tructure and execution environment, a network model to address communication and network partitioning failures, and
a model to define fault-tolerance requirements of the service. We show how to translate the high-level model into one
Bayesian network to compute the expected availability. Finally, evaluations demonstrate the feasibility of the Bayesian
network approach to represent and assess the availability of large-scale service with hundreds of fault influences and
service instances.

ACKNOWLEDGMENTS
This work was supported by the Robert Bosch GmbH.
Open access funding enabled and organized by Projekt DEAL.

DATA AVAILAB IL ITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article.

ORCID
OttoBibartiu https://orcid.org/0000-0003-1867-1681

REFERENCES
1. Cotroneo D, Simone LD, Liguori P, Natella R, Bidokhti N. Enhancing failure propagation analysis in cloud computing systems. In: 2019

IEEE 30th International Symposium on Software Reliability Engineering (ISSRE). IEEE; 2019:139-150. doi:10.1109/issre.2019.00023. ISSN
1071-9458

2. RosemainM, Satter R.Millions of websites offline after fire at French cloud services firm. https://www.reuters.com/article/us-france-ovh-
fire-idUSKBN2B20NU, Mar. 2021, [Online; accessed 12-Oct-2021].

3. Janardhan S. Update about the october 4th outage. https://engineering.fb.com/2021/10/04/networking-traffic/outage/, Oct. 2021, [Online;
accessed 12-Oct-2021].

4. Brown A. Facebook Lost About $65 Million During Hours-Long Outage. https://www.forbes.com/sites/abrambrown/2021/10/05/
facebook-outage-lost-revenue/. Oct. 2021, [Online; accessed 12-Oct-2021].

5. Lakshman A, Malik P. Cassandra: a decentralized structured storage system. ACM SIGOPS Oper. Syst. Rev. 2010;44(2):35-40. doi:10.1145/
1773912.1773922

6. Schiper N, Sutra P, Pedone F. P-store: genuine partial replication in wide area networks. In: 2010 29th IEEE Symposium on Reliable
Distributed Systems. IEEE; 2010:214-224. doi:10.1109/srds.2010.32

7. AlposO, CachinC. Consensus beyond thresholds: generalized byzantine quorumsmade live. In: 2020 International SymposiumonReliable
Distributed Systems (SRDS). IEEE; 2020:21-30. doi:10.1109/srds51746.2020.00010

8. M Burrows. The chubby lock service for loosely-coupled distributed systems. In: Proceedings of the 7th Symposium on Operating Systems
Design and Implementation. USENIX Association; 2006:335-350.

9. ISO/IEC/IEEE international standard - systems and software engineering–vocabulary. ISO/IEC/IEEE 24765:2017(E). IEEE; 2017:1-541.
doi:10.1109/IEEESTD.2017.8016712

10. Lyu MR. Software reliability engineering: a roadmap. In: Future of Software Engineering (FOSE ’07). IEEE; 2007:153-170. doi:10.1109/fose.
2007.24

https://orcid.org/0000-0003-1867-1681
https://orcid.org/0000-0003-1867-1681
https://doi.org/10.1109/issre.2019.00023
https://www.reuters.com/article/us-france-ovh-fire-idUSKBN2B20NU
https://www.reuters.com/article/us-france-ovh-fire-idUSKBN2B20NU
https://engineering.fb.com/2021/10/04/networking-traffic/outage/
https://www.forbes.com/sites/abrambrown/2021/10/05/facebook-outage-lost-revenue/
https://www.forbes.com/sites/abrambrown/2021/10/05/facebook-outage-lost-revenue/
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1109/srds.2010.32
https://doi.org/10.1109/srds51746.2020.00010
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/fose.2007.24
https://doi.org/10.1109/fose.2007.24

BIBARTIU et al. 583

11. Garraghan P, Yang R, Wen Z, et al. Emergent failures: rethinking cloud reliability at scale. IEEE Cloud Comput. 2018;5(5):12-21. doi:10.
1109/mcc.2018.053711662

12. Gunawi HS, Hao M, Leesatapornwongsa T, et al. What bugs live in the cloud? a study of 3000+ issues in cloud systems. In: Proceedings of
the ACM Symposium on Cloud Computing. ACM; 2014:1-14. doi:10.1145/2670979.2670986

13. KimMC. Reliability block diagram with general gates and its application to system reliability analysis. Ann Nucl Energy. 2011;38(11):2456-
2461. doi:10.1016/j.anucene.2011.07.013

14. Jammal M, Kanso A, Heidari P, Shami A. A formal model for the availability analysis of cloud deployed multi-tiered applications. In: 2016
IEEE International Conference on Cloud Engineering Workshop (IC2EW). IEEE; 2016:82-87. doi:10.1109/ic2ew.2016.21

15. Bennacer L, Amirat Y, Chibani A, Mellouk A, Ciavaglia L. Self-diagnosis technique for virtual private networks combining Bayesian
networks and case-based reasoning. IEEE Trans Autom Sci Eng. 2015;12(1):354-366. doi:10.1109/tase.2014.2321011

16. Ghosh R, Longo F, Frattini F, Russo S, Trivedi KS. Scalable analytics for IaaS cloud availability. IEEE Trans Cloud Comput. 2014;2(1):57-70.
doi:10.1109/tcc.2014.2310737

17. Epstein A, Kolodner EK, Sotnikov D. Network aware reliability analysis for distributed storage systems. In: 2016 IEEE 35th Symposium on
Reliable Distributed Systems (SRDS). IEEE; 2016:249-258. doi:10.1109/srds.2016.042

18. Ford D, Labelle F, Popovici FI, et al. Availability in globally distributed storage systems. In: Osdi. 2010;10:1-7.
19. Chiang MC, Huang CY, Wu CY, Tsai CY. Analysis of a fault-tolerant framework for reliability prediction of service-oriented architecture

systems. IEEE Trans Reliab. 2021;70(1):13-48. doi:10.1109/tr.2020.2968884
20. Cockcroft A, Sheahan D. Benchmarking cassandra scalability on AWS - over a million writes per second. https://netflixtechblog.com/

benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e. [Online; accessed 22-Feb-2022].
21. Langseth H, Portinale L. Bayesian networks in reliability. Reliab Eng Syst Saf. 2007;92(1):92-108. doi:10.1016/j.ress.2005.11.037
22. Duan R, Zhou H. A new fault diagnosis method based on fault tree and Bayesian networks. Energy Procedia. 2012;17:1376-1382. doi:10.1016/

j.egypro.2012.02.255
23. Pan R, Yontay P. Reliability assessment of hierarchical systems with incomplete mixed data. IEEE Trans Reliab. 2017;66(4):1036-1047.

doi:10.1109/tr.2017.2760802
24. Bibartiu O, Dürr F, Rothermel K, Ottenwälder B, Grau A. Scalable k-out-of-n models for dependability analysis with Bayesian networks.

Reliab Eng Syst Saf. 2021;210:107533. doi:10.1016/j.ress.2021.107533
25. Heckerman D. Causal independence for knowledge acquisition and inference. In: Uncertainty in Artificial Intelligence. Elsevier; 1993:122-

127.
26. Ruijters E, StoelingaM. Fault tree analysis: a survey of the state-of-the-art inmodeling, analysis and tools.Comput Sci Rev. 2015;15-16:29-62.

doi:10.1016/j.cosrev.2015.03.001
27. Stamatelatos M, Vesely W, Dugan J, Fragola J, Minarick J, Railsback J. Fault tree handbook with aerospace applications. Office of safety

and mission assurance NASA headquarters. Washington DC 20546, 2002.
28. Bobbio A, Portinale L, Minichino M, Ciancamerla E. Improving the analysis of dependable systems by mapping fault trees into Bayesian

networks. Reliab Eng Syst Saf. 2001;71(3):249-260. doi:10.1016/s0951-8320(00)00077-6
29. Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Reasoning. Morgan Kaufmann Publishers; 1988.
30. Koller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques. MIT press; 2009.
31. Lauritzen SL, Spiegelhalter DJ. Local computations with probabilities on graphical structures and their application to expert systems. J R

Stat Soc, Series B (Stat Methodol). 1988;50(2):157-194. doi:10.1111/j.2517-6161.1988.tb01721.x
32. Højsgaard S. Bayesian networks in R with the gRain package. J Stat Softw. 2012;46(10):1-26.
33. Højsgaard S. Graphical independence networks with the gRain Package for R. J Stat Softw. 2012;46(10):1-26. doi:10.18637/jss.v046.i10
34. Hochschild PH, Turner P, Mogul JC, et al. Cores that don’t count. In: Proceedings of the Workshop on Hot Topics in Operating Systems, ser.

HotOS ’21. ACM; 2021:9-16. doi:10.1145/3458336.3465297. ISBN 9781450384384.
35. Boudali H,Dugan J. A discrete-timeBayesian network reliabilitymodeling and analysis framework.Reliab Eng Syst Saf. 2005;87(3):337-349.

doi:10.1016/j.ress.2004.06.004
36. Boudali H, Dugan JB. A new Bayesian network approach to solve dynamic fault trees. In: Annual Reliability and Maintainability

Symposium, 2005. Proceedings. IEEE; 2005:451-456. doi:10.1109/rams.2005.1408404. ISSN 0149-144X.
37. Kim DS, Machida F, Trivedi KS. Availability modeling and analysis of a virtualized system. In: 2009 15th IEEE Pacific Rim International

Symposium on Dependable Computing. IEEE; 2009:365-371. doi:10.1109/prdc.2009.64
38. Narayanan I, Kansal A, Sivasubramaniam A. Right-sizing geo-distributed data centers for availability and latency. In: 2017 IEEE 37th

International Conference on Distributed Computing Systems (ICDCS). IEEE; 2017:230-240. doi:10.1109/icdcs.2017.118
39. Brosch F, Koziolek H, Buhnova B, Reussner R. Architecture-based reliability prediction with the palladio component model. IEEE Trans

Softw Eng. 2012;38(6):1319-1339. doi:10.1109/tse.2011.94
40. Becker S, Koziolek H, Reussner R. The palladio component model for model-driven performance prediction. J Syst Softw. 2009;82(1):3-22.

doi:10.1016/j.jss.2008.03.066
41. Torres-Toledano JG, Sucar LE. Bayesiannetworks for reliability analysis of complex systems. In:LectureNotes inComputer Science. Springer

Berlin Heidelberg; 1998:195-206.
42. Ye T, Zhou Y, Chen A, Liu L, Liu S. Extend GO methodology support common-cause failures modeling explicitly by means of Bayesian

networks. IEEE Trans Reliab. 2020;69(2):471-483. doi:10.1109/tr.2019.2917752

https://doi.org/10.1109/mcc.2018.053711662
https://doi.org/10.1109/mcc.2018.053711662
https://doi.org/10.1145/2670979.2670986
https://doi.org/10.1016/j.anucene.2011.07.013
https://doi.org/10.1109/ic2ew.2016.21
https://doi.org/10.1109/tase.2014.2321011
https://doi.org/10.1109/tcc.2014.2310737
https://doi.org/10.1109/srds.2016.042
https://doi.org/10.1109/tr.2020.2968884
https://netflixtechblog.com/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://netflixtechblog.com/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://doi.org/10.1016/j.ress.2005.11.037
https://doi.org/10.1016/j.egypro.2012.02.255
https://doi.org/10.1016/j.egypro.2012.02.255
https://doi.org/10.1109/tr.2017.2760802
https://doi.org/10.1016/j.ress.2021.107533
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/s0951-8320(00)00077-6
https://doi.org/10.1111/j.2517-6161.1988.tb01721.x
https://doi.org/10.18637/jss.v046.i10
https://doi.org/10.1145/3458336.3465297
https://doi.org/10.1016/j.ress.2004.06.004
https://doi.org/10.1109/rams.2005.1408404
https://doi.org/10.1109/prdc.2009.64
https://doi.org/10.1109/icdcs.2017.118
https://doi.org/10.1109/tse.2011.94
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1109/tr.2019.2917752

584 BIBARTIU et al.

43. Cai B, Kong X, Liu Y, et al. Application of Bayesian networks in reliability evaluation. IEEE Trans Industr Inform. 2019;15(4):2146-2157.
doi:10.1109/tii.2018.2858281

44. Kammouh O, Gardoni P, Cimellaro GP. Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and
dynamic Bayesian networks. Reliab Eng Syst Saf. 2020;198:106813. doi:10.1016/j.ress.2020.106813

45. BobbioA, Portinale L,MinichinoM, Ciancamerla E. Comparing fault trees and bayesian networks for dependability analysis. In:Computer
Safety, Reliability and Security. Springer Berlin Heidelberg; 1999:310-322.

46. Pitakrat T, Okanović D, van Hoorn A, Grunske L. Hora: architecture-aware online failure prediction. J Syst Softw. 2018;137:669-685. doi:10.
1016/j.jss.2017.02.041

How to cite this article: Bibartiu O, Dürr F, Rothermel K, Ottenwälder B, Grau A. Availability analysis of
redundant and replicated cloud services with Bayesian networks. Qual Reliab Eng Int. 2024;40:561–584.
https://doi.org/10.1002/qre.3414

AUTH OR BIOGRAPH IES

OttoBibartiu is a PhD candidate at theDistributed SystemsDepartment, Institute of Parallel andDistributed Systems,
University of Stuttgart, Germany. He received his Bachelor’s andMaster’s degrees in computer science at ETH Zurich.
His research interests include cloud computing availability and probabilistic graph models.

Frank Dürr received the Doctoral and Diploma degrees in computer science from the University of Stuttgart. He is
a Senior Researcher and a Lecturer with the Distributed Systems Department, Institute of Parallel and Distributed
Systems, University of Stuttgart, Germany, where he is currently leading the the software-defined networking/time-
sensitive networking groups of the Distributed Systems Department. His research interests include deterministic real-
time communication in wired and wireless networks as well as mobile and pervasive computing.

Kurt Rothermel received the Doctoral degree in computer science from the University of Stuttgart in 1985. From
1986 to 1987, he was Post-Doctoral Fellow with IBM Almaden Research Center, San Jose, USA, and then joined IBM’s
European Networking Center, Heidelberg. Since 1990, he has been a Professor of computer science with the University
of Stuttgart. From 2003 to 2011, he was the Head of the Collaborative Research Center Nexus (SFB 627), conducting
research in the area of mobile context-aware systems. He was the Director of the Institute of Parallel and Distributed
Systems. His current research interests are in the field of distributed systems, computer networks, andmobile systems.

Beate Ottenwälder received the Doctoral and Diploma degree in computer science from the University of Stuttgart.
She was a researcher at the Distributed Systems Department, Institute of Parallel and Distributed Systems, University
of Stuttgart, Germany, focusing on complex event processing systems. Currently, she is a product owner for the cloud
management engine in the private cloud at the Robert Bosch GmbH, Germany.

Andreas Grau received the Doctoral and Diploma degree in computer science from the University of Stuttgart. He
was a researcher at the Distributed Systems Department, Institute of Parallel and Distributed Systems, University of
Stuttgart, Germany, focusing on the scalability of network emulation. Currently, he is a senior manager for private
cloud infrastructure at the Robert Bosch GmbH, Germany.

https://doi.org/10.1109/tii.2018.2858281
https://doi.org/10.1016/j.ress.2020.106813
https://doi.org/10.1016/j.jss.2017.02.041
https://doi.org/10.1016/j.jss.2017.02.041
https://doi.org/10.1002/qre.3414

	Availability analysis of redundant and replicated cloud services with Bayesian networks
	Abstract
	1 | INTRODUCTION
	2 | SYSTEM MODEL
	3 | HIGH LEVEL MODEL DESCRIPTION
	4 | BAYESIAN NETWORK MODEL
	4.1 | Background
	4.1.1 | AND model
	4.1.2 | OR model
	4.1.3 | k-out-of-n model

	4.2 | Transformation overview
	4.3 | Fault dependency graph
	4.3.1 | Failure model of a component
	4.3.2 | Translating the fault dependency graph
	4.3.3 | Channel model

	4.4 | Redundant service model
	4.5 | Replicated service model
	4.5.1 | Read-one/write-all
	4.5.2 | k-out-of-n voting
	4.5.3 | Weighted voting

	4.6 | Scalability

	5 | EVALUATION
	6 | DISCUSSION
	7 | RELATED WORK
	8 | CONCLUSION
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	AUTHOR BIOGRAPHIES

