
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Investigation on Precise
Measurement of CO2 Emissions

from AI Applications

Pankhuri Verma

Course of Study: Computer Science

Examiner: Prof. Dr. Marco Aiello

Supervisor: Dr. Dinesh Reddy

Commenced: November 28, 2023

Completed: May 28, 2024

Acknowledgement

I am profoundly grateful to Prof. Dr. Marco Aiello and the Institute of Architecture of Application
Systems at the University of Stuttgart for giving me the opportunity to work on this thesis. Prof. Dr.
Marco Aiello’s guidance and expertise since the start of the thesis have significantly enhanced my
understanding and exploration of the subject.

I extend my deepest gratitude to my supervisor, Dr. Dinesh Reddy, who supported and guided me in
every stage of this thesis. His knowledge, patience, constructive feedback, and meticulous attention
to detail played a very important role in this thesis.

I would like to express my heartfelt thanks to my family—my mother, father, brother, and all my
elders—who have always believed in me. Their constant encouragement and belief in my abilities
have always motivated me to strive for excellence.

I am also thankful to my friends Vishesh, Deepanshu, Faiz, and Anurima for their support and
motivation. Their encouragement has been a source of strength and inspiration during the challenging
moments of this journey.

Lastly, I would like to acknowledge everyone who has been a part of my life during my thesis. Their
well-wishes and support have been a pillar of strength for me, and I am grateful for every word of
encouragement I have received.

3

Abstract

The exponential growth of Artificial Intelligence (AI) has significantly increased the reliance on
Data Centers (DCs), making them crucial for processing and storing vast amounts of data. However,
this surge in AI deployment has highlighted an environmental concern of Carbon Dioxide (CO2)
emissions generated by the DCs. These facilities are resource-intensive and demand substantial
power to meet the computational needs of AI applications, thus contributing to a high carbon
footprint. To address the issue, this thesis explores an innovative approach to measure the CO2
emissions by introducing a linear regression energy model based on Performance Monitoring
Counters (PMCs) such as the total number of instructions and the total number of cycles of
the computer processor and the development of energy-efficient AI models by optimising the
hyperparameters and architecture of AI models to minimise the impact on the environment.

The operational efficiency and environmental impact of DCs have been estimated based on
metrics such as Power Usage Effectiveness (PUE), partial Power Usage Effectiveness (pPUE), and
Carbon Usage Effectiveness (CUE). Several types of research have been conducted to optimise
hardware such as processor idleness, power supply to the machine, cooling machines for the
system, and selecting training locations with low carbon intensity to lower energy consumption.
However, such improvements are insufficient since inadequately developed AI models can drastically
drain the processor power. Therefore, engineers should focus on developing highly efficient and
computationally feasible models. During this thesis, PMCs are used to estimate the computational
complexity of AI models running on processors. It has been observed that processor-specific PMCs,
like the total number of instructions and the total number of cycles collected during processing,
strongly correlate with the processor’s energy consumption. They also impose very minimal
overhead on energy utilisation, making them ideal for usage with AI applications. Therefore, PMCs
have been used to calculate the energy consumption of processors and the DCs they are placed in.

Central to our research is the formulation of an energy model that utilises PMCs to estimate
processors’ energy consumption and CO2 emissions. By training various AI models on the
Central Processing Unit (CPU), collecting Performance Monitoring Counter (PMC) data, and their
associated energy consumption, a linear regression energy model to estimate the energy usage of
AI applications is established. Subsequently, the CO2 emissions of applications running on these
Central Processing Units (CPUs) are also calculated. For the simplicity of this research, only CPU
and Dynamic Random Access Memory (DRAM) are taken into consideration, as they consume the
maximum energy in comparison to other parts of the processor. This linear model produced an
error of only 0.158% for CPU and 0.272% for DRAM. Further, the implications of hyperparameter
optimisation and model architecture on energy consumption and CO2 emissions have been studied
based on PMCs with a tradeoff in accuracy.

This research will enable the estimation of energy consumption and CO2 emissions of AI applications
based on inbuilt PMCs, and also reduce energy consumption and CO2 emissions by modifying the
model architecture and hyperparameters while maintaining a tradeoff between accuracy and energy
consumption.

5

Contents

1 Introduction 17
1.1 Problem Statement . 19
1.2 Research Question (RQ) . 20
1.3 Thesis Organisation . 20

2 Background 23
2.1 Energy Consumption . 23
2.2 Tools to Measure Energy Consumption of AI Applications 24
2.3 Approaches to Measure Energy Consumption of AI Applications 25

3 Related Work 29

4 Tools Utilised 33
4.1 Performance Application Programming Interface (PAPI) 33
4.2 Running Average Power Limit (RAPL) Interface 34

5 Methodology 37

6 PMC Based Energy Estimation Model 39
6.1 Evaluation of Linux PMCs . 39
6.2 Energy Consumption and PMC Correlation . 40
6.3 Linear Regression Energy Model . 41
6.4 Results . 43
6.5 CO2 Emission Estimation of AI Applications 46

7 Hyperparameters and Architecture Optimisation for Energy Conservation of AI
Applications 53
7.1 Epoch . 53
7.2 Activation Function . 55
7.3 Batch Size . 58
7.4 Number of Layers . 60
7.5 Learning Rate (LR) . 63

8 Conclusion 67

Bibliography 69

A List of Intel® Core™ i7-8565U CPU PMC Data 73

7

List of Figures

1.1 Graph of Data Center (DC) power demand in terawatt-hour (TWh) (Left Hand Side
(LHS)) and power efficiency gains % (Right Hand Side (RHS)) [Sac24b] 18

1.2 Graph of DC workload demand in million compute instances (RHS) and data center
power demand in TWh (LHS)[Sac24b] . 19

1.3 Power consumption per query/search in watt-hour (Wh) for Chat Generative Pre-
trained Transformer (ChatGPT) [Sac24a] . 19

6.1 Graph of instructions and CPU Energy (in Joules) 41
6.2 Graph of instructions and DRAM Energy (in Joules) 42
6.3 Graph of cycles and CPU Energy (in Joules) . 42
6.4 Graph of cycles and DRAM Energy (in Joules) 43
6.5 Flow diagram for the energy model creation process. 46
6.6 Predicted and Test CPU Energy (in Joules) for different number of instructions . . 48
6.7 Predicted and Test CPU Energy (in Joules) for different number of cycles 48
6.8 Predicted and Test DRAM Energy (in Joules) for different number of instructions 49
6.9 Predicted and Test DRAM Energy (in Joules) for different number of cycles . . . 49
6.10 Predicted and True CO2 emission (in kilogram (kg)) for CPU 50
6.11 Predicted and True CO2 emission (in kg) for DRAM 51

7.1 Graph of PMCs for different number of epochs. 55
7.2 Graph of CPU and DRAM energy in Joules for different number of epochs. . . . 55
7.3 Graph of accuracy for different number of epochs. 56
7.4 Graph of PMCs for different activation functions. 58
7.5 Graph of CPU and DRAM energy in Joules for different activation functions. . . 58
7.6 Graph of accuracy for different activation functions. 59
7.7 Graph of PMCs for different batch sizes. 60
7.8 Graph of CPU and DRAM energy in Joules for different batch sizes. 61
7.9 Graph of accuracy for different batch sizes. 61
7.10 Graph of PMCs for different number of layers. 63
7.11 Graph of CPU and DRAM energy in Joules for different number of layers. 63
7.12 Graph of accuracy for different number of layers. 64
7.13 Graph of PMCs for different LRs. 65
7.14 Graph of CPU and DRAM energy in Joules for different LRs. 66
7.15 Graph of accuracy for different LRs. 66

9

List of Tables

6.1 Spearman’s Rank Correlation Coefficient (𝜌) of PMCs and CPU Energy in De-
scending Order . 44

6.2 𝜌 of PMCs and DRAM Energy in Descending Order 45
6.3 Values of CPU Regression Model Coefficients 45
6.4 Values of DRAM Regression Model Coefficients 46
6.5 Metrics for Accuracy Evaluation of CPU Energy Model 47
6.6 Metrics for Accuracy Evaluation of DRAM Energy Model 47

1 List of PMCs offered by Intel® Core™ i7-8565U CPU @ 1.80 gigahertz (GHz)
(142, 0x8e) . 73

11

Acronyms

𝜌 Spearman’s Rank Correlation Coefficient. 11

𝑅2 R Squared. 44

AI Artificial Intelligence. 5

AMD Advanced Micro Devices. 34

API Application Programming Interface. 33

APIs Application Programming Interfaces. 33

BERT Bidirectional Encoder Representations from Transformers. 18

ChatGPT Chat Generative Pre-trained Transformer. 9

CO2 Carbon Dioxide. 5

CPU Central Processing Unit. 5

CPUs Central Processing Units. 5

CUE Carbon Usage Effectiveness. 5

DC Data Center. 9

DCs Data Centers. 5

DL Deep Learning. 31

DNN Deep Neural Network. 17

DRAM Dynamic Random Access Memory. 5

EPA Environmental Protection Agency. 32

GHz gigahertz. 11

GPU Graphical Processing Unit. 17

GPUs Graphical Processing Units. 18

HDD Hard Disk Drive. 20

IPC Instructions per Cycle. 25

IT Information Technology. 29

kg kilogram. 9

KNN K-Nearest Neighbors. 40

13

KWh Kilowatt-hour. 47

L2 Level 2. 30

LHS Left Hand Side. 9

LLMs Large Language Models. 17

LR Learning Rate. 7

LTS Long Term Support. 39

MAC Memory Access Patterns. 59

MAE Mean Absolute Error. 44

ML Machine Learning. 17

MSRs Model-Specific Registers. 35

MWh megawatt-hour. 47

NAS Neural Architecture Search. 18

NLP Natural Language Processing. 32

NN Neural Network. 35

OS Operating System. 30

PAPI Performance Application Programming Interface. 7

PMC Performance Monitoring Counter. 5

PMCs Performance Monitoring Counters. 5

PP1 graphics. 39

pPUE partial Power Usage Effectiveness. 5

PUE Power Usage Effectiveness. 5

RAPL Running Average Power Limit. 7

ReLu Rectified Linear Unit. 53

RHS Right Hand Side. 9

RQ Research Question. 7

SMI System Management Interface. 68

SSD Solid State Drives. 20

SVM Support Vector Machine. 40

TLB Translation Lookaside Buffer. 32

TPU Tensor Processing Unit. 17

TPUs Tensor Processing Units. 32

14

Acronyms

TWh terawatt-hour. 9

U.S. United States. 32

vEC Virtual Energy Computer. 31

vs. versus. 25

Wh watt-hour. 9

15

1 Introduction

The field of AI is witnessing substantial expansion in high-performance computing clusters and
DCs because of their intensive processing requirements and energy consumption. Advancements
in AI models and algorithms have significantly improved the capabilities in the domains of
machine translation, speech recognition, and object detection. Accelerators such as the Graphical
Processing Unit (GPU) and Tensor Processing Unit (TPU) have greatly influenced the progress
in the training of large AI models such as Deep Neural Network (DNN) models. However, AI
models are computationally demanding due to their large datasets, extensive model sizes, and
numerous parameters and weights used for training. Developing these models also requires thorough
experimentation with various hyperparameters, resulting in a significant demand for resources during
the training. This imposes great stress on the DC processors, leading to more energy utilisation.
In addition to being financially demanding, AI applications also have a negative impact on the
environment due to the substantial CO2 emissions generated by the high-end tensor computations
on the processor. The training of state-of-the-art models is especially energy-intensive, with
certain models, such as Large Language Models (LLMs) requiring weeks or months to complete,
resulting in substantial consumption of computational resources and implications for sustainability
[MMN+24]. A decade ago, training of most Machine Learning (ML) models was manageable on
standard laptops or servers. However, today they require advanced, costly hardware like a GPU or
TPU [Jha11].

In the analysis presented by Goldman Sachs [Sac24b], the DC power demand has increased from
1%-2% in 2022 to 3%-4% in 2023. It is anticipated that the demand for power in DCs will increase
by 160% between the years 2023 and 2030, as shown in Figure 1.1. The graph shows that in addition
to DCs without AI (ex-AI), the power consumption of AI-equipped DCs has significantly increased
since 2023 and is expected to continue rising until 2030. They also predict that the growth in power
demand in DCs would result in an increase in CO2 emissions from DCs by more than 100% (almost
215-220 million tons) by the year 2030 compared to the year 2022. While AI offers numerous
benefits across various sectors and is crucial in today’s world, it is essential to regulate its use due
to its carbon emissions and environmental impacts.

DCs rely on many energy sources to maintain their operations. While some energy sources are
renewable or compensated through carbon credits, the overall energy demand is still a major concern.
Non-renewable sources currently dominate energy generation in several places. In Figure 1.2, we
can see that although the DC workload demand is increasing exponentially, the DC power sourced
from renewable sources is seemingly less [Sac23; Sac24b].

Goldman Sachs [Sac24a] has forecasted that power demand from AI will increase by approximately
200 TWh from 2024 to 2030, with AI expected to account for around 20% of the total DC power
demand by 2030. One of the most computationally intensive AI applications called LLMs are
characterised by their vast number of parameters and intricate model structures and therefore
require significant amounts of energy and resources to operate. Not only does the training of LLMs

17

1 Introduction

Figure 1.1: Graph of DC power demand in TWh (LHS) and power efficiency gains % (RHS)
[Sac24b]

consume substantial amounts of energy, but their inference is also highly energy-intensive. For
instance, using models like ChatGPT requires significant computational power each time a query is
processed. In Figure 1.3 we can see that a ChatGPT search consumes about 6 to 10 times more
power than a traditional Google search [Sac24a]. The carbon footprint of training LLMs like
Bidirectional Encoder Representations from Transformers (BERT) on Graphical Processing Units
(GPUs) is comparable to the emissions from a New York to San Francisco flight [SGM19]. Research
indicates that running Neural Architecture Search (NAS) can result in nearly 626,000 pounds of
CO2 emissions that exceed the lifetime emissions of several cars [SGM19; SLL19; WSS+23]. The
substantial carbon emissions generated by LLMs pose a significant risk to the environment. As the
usage of these models expands, the environmental impact intensifies, contributing to global climate
change. It is imperative to develop and implement strategies to reduce these emissions.

Historically, developers have focused on software qualities such as performance and reliability
without considering energy efficiency. This has often led to highly energy-intensive applications.
Such power-intensive AI applications can deplete 30% to 40% of the device’s battery life [Jha11;
SCC+12]. Recent research has indicated a growing inclination towards estimating the energy usage
of software programs, highlighting the significance of energy efficiency in software development to
reduce the impact on DCs. It is necessary for existing procedures to be modified to include the
reporting of training accuracy and energy requirements. This will ensure that all researchers have
fair access to computational resources and that the development of energy-efficient models and
computer infrastructure is given priority.

18

1.1 Problem Statement

Figure 1.2: Graph of DC workload demand in million compute instances (RHS) and data center
power demand in TWh (LHS)[Sac24b]

Figure 1.3: Power consumption per query/search in Wh for ChatGPT [Sac24a]

1.1 Problem Statement

In today’s technology-driven world, DCs play a crucial role due to their computing capabilities.
However, it is essential to recognise their environmental impact. Running AI applications in
DCs is progressively increasing the energy consumption. To mitigate CO2 emissions from DCs,
various strategies have been implemented, including advanced cooling technologies, energy-efficient

19

1 Introduction

hardware, selecting locations with low carbon intensity, and the adoption of renewable energy
sources[HSA22; RSR+17]. However, these measures are meaningless if the AI applications running
in the DCs are not efficient. Therefore, highly energy-efficient models should be developed.

While DC energy metrics such as PUE, pPUE, and CUE provide information about the operational
efficiency of DCs, a fine-grained analysis is essential. A thorough insight into the energy consumption
of AI applications running on DCs is crucial for understanding the specific energy demands at the
component level. This thesis aims to meticulously quantify the energy consumption of such AI
applications, focusing specifically on the individual components of computing devices such as CPU
and DRAM. We concentrate on the CPU and DRAM energy evaluation since they have the largest
and most immediate influence on the AI training processes. We do not consider data storage (Solid
State Drives (SSD), Hard Disk Drive (HDD)) energy consumption as they do not directly influence
the running processes [CM05]. The need for this analysis is crucial as AI applications are becoming
more complex in their quest for greater accuracy. This complexity leads to increased energy
usage, which is predominantly overlooked when developing new models. Acquiring new hardware
to support advancements in this field is both cost-intensive and environmentally unsustainable.
Therefore, it is essential to optimise code to mitigate the model training process and increase its
energy efficiency.

1.2 RQ

To study how PMCs contribute to the precise measurement of energy and CO2 emissions, the
following research questions have been formulated.

• RQ1: Is PMC correlated to the energy consumption of AI applications?

• RQ2: How can precise energy consumption of AI applications be measured based on PMCs?

• RQ3: How can precise CO2 emissions of AI applications be measured?

• RQ4: How do hyperparameters and architecture of AI applications impact PMCs and energy
consumption?

1.3 Thesis Organisation

The organisation of this thesis is designed to ensure a precise investigation of approaches to measure
and reduce the energy consumption and CO2 emissions of AI applications.

The introductory chapter examines the pivotal significance of DCs in the advancement of AI
technologies, with particular emphasis on their growing participation in the execution of large AI
models. This chapter investigates the substantial energy demands of DCs, which are intensified by
the deployment of AI applications. Concepts to precisely measure the energy consumption and CO2
emissions associated with AI model training are also discussed. The second chapter provides a
thorough examination of the current techniques, establishing the foundation for comprehending the
high energy consumption in DCs caused by AI applications. It also describes the techniques used
to obtain precise energy measurements. This includes the use of PMCs as a dependable approach
for tracking energy use in computational tasks.

20

1.3 Thesis Organisation

In the third chapter, we critically examine existing literature that has made attempts to quantify
software energy usage. It identifies the current gap in research and prepares for future investigations.
The fourth chapter includes a thorough discussion of the various tools and instruments used in the
research, highlighting their significance and the reasons behind their selection for the research.

The fifth chapter gives an overview of the methodology used. Chapter six introduces the first
methodology of using PMCs to determine the energy consumption of an AI model. It outlines the
process of creating an energy model using PMC data and then computing CO2 emissions. Further,
the seventh chapter goes into additional detail about the effects of hyperparameter optimisation and
model architecture on PMCs and energy consumption.

The thesis concludes with chapter eight, which discusses the knowledge gathered from the research.
It summarises the study’s findings and suggests areas for more research, guiding future experiments
on GPU that will build on the foundation created by this thesis. This comprehensive method
aims to contribute significantly to the discussion on sustainable AI development and the need for
energy-efficient computational processes.

21

2 Background

It is crucial to understand the fundamental aspects of energy usage in processors before examining
the energy consumption of AI applications. The below section offers a comprehensive overview of
how processors consume power and energy to get a deeper understanding of energy consumption
of AI applications. In the context of computing, energy and power are two essential concepts for
understanding processor efficiency and performance.

2.1 Energy Consumption

Energy: It refers to the total amount of electrical power consumed over time and is measured in
joules (J).

Power: It is defined as the rate at which energy is used and is measured in watts (W). Power has
both static and dynamic elements. They are defined below:

• Static Power: It is the energy consumed by the processor in an idle state. This type of power
consumption occurs due to the leakage of electrical current within the processor’s transistors.
Therefore, it is also known as leakage power.

• Dynamic Power: It is primarily associated with the charging and discharging of capacitive
loads when transistors switch states from off to on and vice versa. The amount of dynamic
power consumed is influenced by several factors such as the operating voltage, the clock
frequency of the processor, and the number of active transistors during a given operation.
Dynamic power consumption is significant because it directly correlates with the processor’s
workload. Reducing dynamic power can be achieved by optimizing software algorithms
[GRRG19].

The formula for dynamic power (𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐) is as follows:

(2.1) 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝛼 · 𝐶 · 𝑉2
𝑑𝑑 · 𝑓

where:

• 𝛼 denotes the activity factor, which represents the percentage of the circuit that is in an active
state.

• 𝐶 denotes the capacitance.

• 𝑉𝑑𝑑 denotes the voltage.

23

2 Background

• 𝑓 denotes the clock frequency.

The energy consumed over a time interval can be calculated using the integral:

(2.2) 𝐸 =

∫ 𝑇

0
𝑃(𝑡) 𝑑𝑡

where:

• P(t) denotes power consumption over time dt.

• dt denotes the time interval.

Learning these foundational concepts is crucial for gaining a deeper comprehension of the dynamics
of power and energy in processors. Understanding the concept of static and dynamic power in
processors is particularly relevant for AI applications as they are often computationally intensive
and require significant processor resources. AI algorithms, especially DNN, can cause processors
to operate at high levels of dynamic power consumption for long hours.

2.2 Tools to Measure Energy Consumption of AI Applications

In this section, we investigate the various tools used to measure computer system energy consumption.
We examine both conventional and more advanced techniques that provide information about the
energy consumption of hardware and software components [GRRG19].

• Traditional Empirical Measurement Methods: Power meters are one of the traditional
ways to measure a computer’s power consumption. These gadgets can be put on the
motherboard or at a wall outlet to measure energy usage. This conventional method gives
precise measurements of actual power consumption at particular periods. However, they are
ineffective in identifying program-wise energy consumption. When attempting to optimise
software for energy efficiency, this restriction is a significant disadvantage because it offers
only limited knowledge about the correlation between code execution and power consumption.

• Using Simulators for Detailed Analysis: To attain a more precise evaluation of energy
consumption, simulators are used more often. One of the primary benefits of using simulators
is that they enable researchers to visually inspect how specific programs interact with each
hardware component. This particular capability is of utmost importance in comprehending
the interaction between hardware and software in terms of energy consumption. In addition,
simulators enable precise measurement of the energy consumption of various programs
through the facilitation of instrumentation.

The main disadvantage of utilising simulators is their intrinsic overhead. The performance
of the system is adversely affected by this overhead, making these tools inappropriate for
real-time energy measurement. Therefore, despite simulators being indispensable tools for
research and development, their utility is constrained in scenarios involving real-time data.

24

2.3 Approaches to Measure Energy Consumption of AI Applications

• Performance Monitoring Counter (PMC): PMC is another advanced technique used to
measure energy consumption. PMCs have been incorporated into the majority of contemporary
processors to monitor micro-architectural events within the CPU during processing. PMCs
can provide a wide range of information about each core, ranging from cache accesses to
Instructions per Cycle (IPC).

By utilising the comprehensive data offered by PMCs, numerous researchers have constructed
power models that approximate energy consumption according to the events recorded by these
counters. In addition, Intel has implemented an energy model called RAPL, which utilises PMC
data to approximate the energy consumption of processors. The methodology employed by RAPL
facilitates a more intricate understanding of the energy consumption patterns of various processes
by establishing connections between energy usage and specific processing activities.

In this study, the RAPL interface was used to calculate energy consumption. This methodology
aided in the direct correlation between energy consumption and performance data acquired from
PMCs, thereby furnishing an analysis of the energy efficiency of AI models. AI applications
can be optimised for improved energy efficiency by establishing precise correlations between AI
applications and their energy implications through the integration of RAPL.

This extensive examination of energy measurement methodologies, spanning from conventional
approaches to sophisticated simulative and monitoring techniques, exemplifies the diversity of
resources accessible to scientists seeking to improve the energy efficiency of computing systems.
Every method presents its own set of advantages and disadvantages, emphasising the significance
of choosing the most suitable approach based on the particular demands and restrictions of the
research or application setting.

2.3 Approaches to Measure Energy Consumption of AI
Applications

This section describes the various methodologies employed to model power and energy consumption
in computing systems. These approaches are systematically categorised based on three distinct
criteria: type, technique, and level of modelling. Each category offers unique insights and
methodologies for understanding and quantifying energy consumption, critical for enhancing the
energy efficiency of processors and software [GLG+19].

2.3.1 Type: Empirical versus (vs.) Analytical Models

Type refers to the scientific modelling approach utilised, distinguishing between empirical and
analytical models.

• Empirical Models: These are developed based on direct observations and measurements
from specific types of processors. These models are highly specific and tailored to particular
hardware, capturing the unique characteristics and behaviours of the observed system.
However, their applicability is generally limited to the type of processor they were derived
from, making them less versatile across different hardware platforms.

25

2 Background

• Analytical Models: In contrast, these models are based on mathematical formulations that
describe the power behaviour across various components of potentially multiple processor
types. These models use theoretical frameworks and equations to estimate power consumption,
offering broader applicability across different types of processors. They provide a generalised
understanding of energy dynamics but may lack the precise accuracy of empirical models in
specific cases.

2.3.2 Technique: Direct Measurement vs. Simulation

Technique encompasses the methods used to model energy consumption, primarily through direct
measurement or simulation.

• Direct Measurement: This involves using tools such as PMCs to gather real-time data
on processor activities. This approach is advantageous in scenarios requiring immediate
feedback, such as machine learning applications where timely data is crucial for optimising
processes and reducing energy overhead.

• Simulation: This offers a theoretical approach in which hardware behaviour is modelled
and executed in a controlled environment. This method allows for extensive instrumentation
and the detailed study of how different parts of the hardware are utilised during operations.
While simulations provide deep insights and facilitate detailed analysis without risking actual
hardware, they often come with significant computational overhead and may not reflect
real-world operational discrepancies.

2.3.3 Level: Architecture vs. Instruction

Level pertains to the granularity at which the energy modelling is conducted.

• Architecture-Level Models: These models break down the energy consumption into various
components of the system architecture, such as the CPU cores, cache, and DRAM. These
models are particularly useful for hardware designers and system architects interested in
optimising specific hardware components or subsystems.

• Instruction-Level Models: These models allocate energy costs to individual instructions
executed by the processor. This fine-grained approach is invaluable for software developers
and engineers seeking to optimise code, as it identifies which specific instructions contribute
most to energy consumption, thereby identifying potential ’energy hotspots’ within the code.

This methodology section offers a thorough framework for comprehending and quantifying the
energy consumption of computer processors by examining the various approaches and considering
their types, techniques, and levels of detail. Because each strategy has unique advantages and
disadvantages, it can be used in various application scenarios and research needs. These models
provide important insights that will guide developments in software and hardware design to minimise
the carbon footprint of AI computing tasks.

26

2.3 Approaches to Measure Energy Consumption of AI Applications

In this research, an empirical type of model has been developed that is specific to Intel-based
processors. PMCs have been used as a direct measurement technique to generate the architectural
level models. An architecture-level model with a focus on CPU and DRAM energy consumption
has been developed with PMC tool for measurement.

27

3 Related Work

In this section, we provide an in-depth exploration of the existing research focused on the energy
consumption of AI applications, with a particular emphasis on the utilisation of PMCs to estimate
the energy usage of processors. This review highlights significant contributions and methodologies
that have shaped the current understanding and approaches towards optimising and monitoring
energy efficiency in computational systems running AI applications.

Initially, an extensive review of the DCs hosting these AI applications was performed. Numerous
research papers have been published that describe the architecture of DCs, the criteria used to assess
their efficiency, and the different strategies employed to reduce their energy usage. These studies
provide detailed insights into DC structural design, highlighting advances in hardware and software
combinations that improve performance while minimising environmental impact. Reddy et al.
[RSR+17] have conducted an in-depth study of various metrics such as energy efficiency metrics,
green metrics, cooling metrics, performance metrics, thermal and air management metrics, network
metrics, storage metrics, security metrics, and financial impact metrics for sustainable DCs. Avelar,
Azevedo, and French [AAF12] researched one of the most important energy efficiency metrics
called PUE used to measure the efficiency of a DC in terms of the ratio of total DC facility energy
consumption to Information Technology (IT) energy consumption. They concluded that it is also
essential to consider the geographical and weather conditions at the DC location. Haghshenas, Setz,
and Aiello [HSA22] and Haghshenas et al. [HSBA22] discuss the best practices for optimising
energy usage, such as advanced cooling techniques, energy-efficient hardware, using renewable
energy sources, suspend-resume scheduling techniques, and selecting locations with low carbon
intensity. Through these efforts, the study emphasises the significance of sustainable approaches
in addressing the increasing energy demands of DCs with AI workloads. While methods work
to improve energy efficiency at a high level, fine-grained analysis is also required. The previous
research discussed further in this chapter explains the analysis of energy consumption based on
software-level metrics.

The pioneering work by Tiwari et al. [TMWL96] was the first of its kind and marked a significant
advancement in understanding how software influences power consumption, especially within
power-sensitive environments like mobile and embedded computing systems. This paper introduces
a novel, instruction-based power analysis approach aimed at quantifying the power costs associated
with software operations. This methodology was groundbreaking because it shifted the focus from
traditional hardware-centric power analysis, which predominantly relied on circuit and gate-level
assessments, to a more granular, software-oriented perspective. The core of this methodology
involved analysing power consumption directly tied to software instructions. They meticulously
measured the power usage of individual instructions and their combinations within typical execution
scenarios on three different processors. Utilising the data obtained from their measurements,
the researchers predicted models of power consumption. These models provided insights into
how different instructions and their sequences impact overall power usage, offering a predictive
tool for assessing software’s power efficiency. A significant outcome of their research was the

29

3 Related Work

identification of low-power software implementations. By understanding which instructions or
sequences consumed less power, developers could optimise software to be more energy-efficient,
which is crucial for extending the battery life of mobile devices and the overall efficiency of
embedded systems.

An approach for calculating both dynamic and static power consumption in multicore processors was
developed by Goel and McKee [GM16]. They emphasised the importance of uncore energy and the
potential energy inefficiencies from using more cores. Alonso et al. [ADMQ14] expanded on this
work by proposing a model that takes memory contention and power dissipation into account when
calculating the energy consumption of dense matrix factorisations. Basmadjian and Mee [BM12]
provided a more precise methodology that takes resource-sharing and power-saving measures into
consideration. The research challenged the notion that power consumption in multi-core processors
is just the sum of the power of each core. Finally, this research adds to a thorough knowledge of
multi-core processor power consumption and offers insightful information for designing and using
energy efficiently.

The research by Bellosa [Bel00] significantly improved awareness of using PMCs for calculating
processor power consumption. This method was one of the first to incorporate the use of PMCs
for power estimation, especially in the context of making Operating System (OS) schedulers more
energy-efficient. The research discovers that PMCs integrated into the majority of modern CPUs,
could act as effective indicators of power usage. PMCs offer a view into the energy consumption
of the CPU by measuring a variety of performance events, including memory references, floating
point operations, and Level 2 (L2) cache references. The paper proposes that an OS scheduler can
prioritise or manage processes in a way that maximises system energy efficiency by calculating thread
power requirements from observable performance events. The foundation for later advancements in
power-aware and energy-efficient scheduling algorithms was established by this concept. It has
sparked more investigation into how operating systems and other system-level software might use
comprehensive performance data to reduce energy usage, particularly in settings like DCs and
mobile devices where power economy is critical.

An advanced approach was presented by Joseph and Martonosi [JM01], which used PMC data as
proxies for measuring computations. The study suggests creating capacitance-based power models
using PMC. These models compute the power consumption based on the known capacitances of
circuit components, which change depending on the operational state and utilisation. The power
models used are grounded in the physical properties of the processor’s circuitry, specifically, the
capacitance associated with different functional units. The model provides an estimate of the power
usage by establishing a connection between these capacitance values and the activity that PMCs
record. This method has a significant drawback because it requires an in-depth understanding of
circuit-level implementation, which may not always be possible for all processors. This includes
knowledge of capacitance information. The requirement for comprehensive hardware specifications
may restrict the model’s capacity to be applied and generalised to various processor kinds in
situations where such extensive technological data is not easily available.

The study conducted by Singh, Bhadauria, and McKee [SBM09] explores various approaches
for measuring CPU power consumption. The authors focus on using PMCs to measure power
consumption in real-time accurately. This approach differs from conventional techniques that use
costly equipment or power meters to measure power directly. The study uses PMCs to gather data
from micro-benchmarks. The research creates analytical models that predict power consumption

30

more accurately across various computing scenarios. The approach divides the analysis into different
categories based on the type of processor activity, such as floating point operations and memory
access, which are critical in understanding and managing power consumption.

Virtual Energy Computer (vEC), an innovative tool was created to estimate user program energy
usage in embedded scenarios. This technology perfectly meets the requirements of systems where
energy efficiency is critical. It is considered a substantial development in energy monitoring
approaches [KCK+01]. A model to predict the power usage of an OS during runtime was also
suggested by Li and John [LJ03]. The model focused on the relationship between power consumption
and IPC. Hu, Li, and Kuo [HLK05] created a runtime power consumption model for multimedia
application routines in embedded systems, which allowed for precise power usage estimation. Yang
et al. [YLL+16] extended these models by proposing a method that emphasises energy optimisation
and uses performance events to predict applications’ overall system power consumption.

While the above research focused on the energy consumption of computer applications or user
programs, García-Martín et al. [GLG+19] researched the energy consumption of ML applications.
The research provides a comprehensive examination of energy consumption estimation techniques
within the context of ML applications. The research offers a thorough examination of modern
approaches for estimating energy usage that is customised for various ML settings. State-of-
the-art methods for estimating energy usage, emphasising their applicability and significance in
a variety of ML scenarios are studied. This survey emphasises the implications of both new
and established methodologies for computational resource optimisation. The energy estimation
techniques are categorised in the study based on how well they function in different ML scenarios,
like processing big datasets, training DNN, and executing inference models. They discussed the
various types of analytical and empirical methods used to measure the energy consumption of ML
applications. Simulation and PMC were also discussed as the best practices for measuring energy
consumption. This classification aids practitioners in selecting the best methods for their particular
machine-learning tasks.

While energy is beginning to be used as a parameter in ML, the majority of research efforts are now
directed toward attaining high levels of accuracy with no computational constraints. Their lack of
experience with energy assessment techniques explains why they have no curiosity. García-Martín
et al. [GRRG19] provide an overview of the many methods for estimating energy usage of ML
applications. The goal of this research was to give the ML community helpful recommendations
and the basic information they needed to develop specialised energy estimation techniques for ML
algorithms. This research showcased the most recent energy estimation software tools, various
methods for estimating energy usage, and energy estimation models. They proposed various
taxonomies of software and hardware-related energy estimation models.

In their study, Haghshenas, Setz, and Aiello [HSA22] explore the fluctuation of CO2 signal intensity
as it comes from the power grid and illustrate the possible emission reduction that may be achieved
by utilising the iterative nature of the training process. Two emission-aware strategies were proposed
to accomplish this goal of temporarily shifting the training jobs and migrating them between
locations. Experimental data on the power and CO2 emissions of the training process, as well as
delay overheads linked to emission reduction approaches, were provided for a range of sample Deep
Learning (DL) models. The results show that emissions may be efficiently decreased by 13% to
57% of the baseline scenarios by following emission signals.

31

3 Related Work

The paper by Strubell, Ganesh, and McCallum [SGM19] analyses the computational and envi-
ronmental costs of training DNN models for Natural Language Processing (NLP), providing an
insightful case study of the full computational resources required for the development and tuning of
a recent state-of-the-art NLP pipeline. They show that Tensor Processing Units (TPUs) are more
economical than GPUs for some workloads by estimating the cost in terms of cloud computing
and carbon emissions for training different NLP models. In addition to encouraging research on
more computationally efficient algorithms and fair access to computational resources for university
researchers, the paper highlights the significance of publishing training time and sensitivity to
hyperparameters. It also provides a formula for power consumption and CO2 emissions based
on power drawn from CPU, DRAM and GPU sockets. This is then multiplied by the average
CO2 produced (in pounds per kilowatt-hour) for power consumed in the United States (U.S.)
(Environmental Protection Agency (EPA), 2018) to get the estimated CO2 emissions. This paper
has been used as a basis for CO2 emission estimation in our research.

Using PMC events, power prediction for Intel XScale processors has been investigated in a number
of studies. Power estimation models mapping hardware events to power consumption were created
by Qianjie et al. [QTJ+06] and Contreras and Martonosi [CM05]. Contreras and Martonosi
[CM05] were able to achieve an average estimated power consumption within 4% of the measured
average CPU power usage. They came up with a power estimation model for the Intel PXA255
processor, which is used in embedded systems with strict power requirements. The model used
PMCs to estimate CPU and DRAM power consumption, allowing for dynamic adaptation to the
device’s power consumption. It presents a linear power estimation model that links PMCs such
as instructions executed, data dependencies, instruction cache misses, and Translation Lookaside
Buffer (TLB) misses with power consumption and demonstrates its accuracy in estimating power
consumption within 4% of measured values. The model also allows for parameterisation of power
at various voltage/frequency settings and lightweight implementation in C for quick estimation of
CPU and DRAM. The results of this paper have been considered the basis for our research and it
has shown better results based on PMCs that have a very high correlation with energy consumption
of CPU and DRAM.

Previous studies have attempted to estimate the energy consumption of software by utilising PMCs
across various benchmarks. Building upon this foundational research, our study advances these
efforts by specifically targeting AI applications. We achieve this by running ML applications
to develop our energy estimation models. This approach allows for a more precise and tailored
understanding of the energy requirements unique to AI workloads.

With this research, we aim to revolutionise the AI industry. Our findings have the potential to
significantly impact the AI community by providing valuable insights into the energy consumption
patterns of ML models. This step can guide the development of more energy-efficient AI systems.
Implementing these energy-efficient practices can lead to reduced operational costs and a lower
environmental footprint, making the deployment of AI technologies more sustainable. Our research
contributes to the scientific understanding of AI energy consumption and offers practical tools and
methodologies that can help AI developers optimise their models for better energy efficiency.

32

4 Tools Utilised

To conduct the research in this thesis, Linux Application Programming Interfaces (APIs) and Python
packages that enabled precise evaluation of processor PMCs and energy consumption of CPU, and
DRAM were utilised. The tools explained below provide a structure for gathering comprehensive
data that was critical to the research.

By integrating these APIs and Python packages, we were able to establish an automated monitoring
environment that recorded the energy consumption and PMCs while various AI models were
executed. By following this systematic approach, it was possible to gather precise, real-time data
and also facilitate the study of the relationship between code execution patterns and their energy
consumption. These observations are of utmost importance to suggest optimisations that may
reduce the energy consumption of AI applications, thereby contributing to the larger objective of
sustainable computing practices.

4.1 PAPI

The PAPI is a portable way to access hardware PMCs available on most modern processors,
independent of the machine and operating system. It enables the tracking of over 100 predefined
events through high-level and low-level programming interfaces [MMDH99]. Simple high-level
Application Programming Interface (API) functions like starting, stopping, and reading counters for
predefined CPU events are its main features. The high-level API comprises eight functionalities.
The low-level API, on the other hand, is intended for more experienced developers who require
exact control and measurement capabilities. It supports both PAPI presets and native events across
all supported components and enables the control of hardware events grouped into user-defined
event sets.

PAPI was created to give researchers, developers, and performance engineers a standardised
approach and interface to access the low-level and high-level PMCs included in the majority
of contemporary microprocessors. These counters offer useful information on the processor’s
performance, such as the number of CPU cycles used, the number of instructions executed, cache
hits and misses, and other metrics that are important for estimating the efficiency of software. PAPI
is very useful in the area of performance optimisation, where knowledge of hardware interactions
can result in considerable increases in software efficiency. It is frequently utilised by performance
analysts seeking to optimise the performance of intricate software systems on diverse hardware
configurations, in scientific computing, and for real-time system monitoring. Our research utilises
the PAPI high-level events called PAPI_TOT_INS and PAPI_TOT_CYC [MMDH99]. Refer to
Appendix 1 for more details.

33

4 Tools Utilised

The Python module known as PyPAPI serves as a wrapper for the PAPI API, enabling Python
programmers to utilise the hardware PMCs available via PAPI [Flo24; Pyp24]. PyPAPI is an
essential package for researchers and developers to access hardware PMCs from Python code in
the context of high-performance computing and performance-critical AI applications. It enables
a thorough analysis of how various algorithmic decisions, model designs, and hyperparameter
settings translate into hardware-level operations. With this tool, researchers can make more
knowledgeable choices about the design and implementation of AI models by measuring these
elements and establishing clear links between algorithmic efficiency and hardware usage. PyPAPI’s
PMC measurement capability can also help clarify how energy-efficient AI algorithms are. PyPAPI
contributes to this thesis on AI applications in various ways, especially to investigate the effective
use of computing resources.

Key Features of PAPI:

• Hardware Abstraction: Developers can design portable code that runs on different architec-
tures more easily by using PAPI, which offers an abstraction layer over the hardware-specific
specifics of performance counters. This eliminates the need to customise code to match the
unique performance monitoring capabilities of each processor.

• Portability: The interface guarantees that applications utilising PAPI can be deployed across
different environments without requiring major modifications by supporting a broad range of
platforms and processors.

• Two Levels of API: PAPI provides both a high-level and a low-level API. The high-level API
is meant for customers who require basic performance data without fine-grained management.
It makes routine activities like starting, stopping, and reading counters simpler. The low-level
API offers comprehensive access to sophisticated users who need accurate performance
statistics and the capacity to manage and modify different event sets.

• Preset and Native Events: In addition to native events unique to individual hardware models,
users can access more than 100 preset events that are typical of many hardware platforms.

• Multiple Programming Languages: PAPI can be used in a variety of development situations
and applications because it supports multiple programming languages, such as C and Fortran.

4.2 RAPL Interface

The RAPL interface is a feature found in modern Intel and some Advanced Micro Devices (AMD)
processors that allow for monitoring and controlling the power usage of various components within
the CPU and other parts of the chipset. RAPL is part of a broader suite of energy-efficiency
technologies aimed at optimising power consumption and thermal outputs across different computing
environments, from servers to desktops and laptops [Mai22; MWKJ17].

Python package PyRAPL is designed to measure computer program energy consumption, with an
emphasis on the power used by a system’s CPU and DRAM. RAPL is a capability of contemporary
Intel CPUs that enables software to track energy consumption. This capability is used by PyRAPL
to give Python applications a means of recording and reporting energy consumption statistics. It can
measure the energy consumption of the CPU socket package, DRAM, and GPU [Lil18; Lil19].

34

4.2 RAPL Interface

Developers can monitor the energy used for Python program execution by using the pyRAPL
Python package. PyRAPL has fine-grained control over what is measured; it can be configured
to track the energy consumption of particular code blocks or the whole program execution. With
ML and other computationally demanding tasks, where knowing the energy footprint is essential
to creating affordable and sustainable solutions, this feature is extremely useful. PyRAPL can be
used, for example, to identify the most energy-intensive operations in Neural Network (NN) training
or large-scale data processing tasks, directing efforts to improve algorithms for increased energy
efficiency.

PyRAPL is a necessary instrument in the framework of this research that looks into exact
measurements of the energy consumption of AI applications. Such data can then guide plans to
reduce the carbon footprint of AI applications, balancing technical progress with the sustainability
of the environment.

Key Features of RAPL:

• Power Monitoring: The RAPL interface is a feature available in modern Intel and AMD
processors that enable monitoring and controlling the power usage of the computing unit.
RAPL is part of a broader suite of energy-efficiency technologies aimed at optimising power
consumption and thermal outputs across different computing environments like servers,
desktops and laptops.

• Power Capping: RAPL enables the real-time monitoring of energy consumption in various
domains of the processor, such as the CPU cores, the uncore, the DRAM, and the package
as a whole. Besides monitoring, RAPL allows the system to enforce power limits on these
components. This feature is critical in situations where energy efficiency must be maintained,
such as DCs.

• Programmatic Access: Developers and system administrators can access RAPL through
several interfaces, including specialised system calls in the Linux kernel, via the python
pyRAPL package and direct access via Model-Specific Registers (MSRs) for those needing
granular control. RAPL can be used to dynamically manage power usage in server environ-
ments, balancing energy use and performance to increase efficiency and save operating costs.
RAPL can be used by developers to fine-tune an application’s performance, particularly to
comprehend power-performance trade-offs in software architecture.

• Data Centers: RAPL allows dynamic power consumption management in DC environments,
balancing energy and performance to optimise efficiency and save running costs.

• Performance Tuning: Developers can utilise RAPL for fine-grained performance tuning of
applications, especially to understand power-performance trade-offs in software design.

• Research and Development: RAPL is extensively used in power-aware computing research,
both academic and industry, to quantify the energy impact of various algorithms, system
configurations, and workload types.

35

5 Methodology

This research aims to find the correlation between hardware PMCs such as the total number of
instructions, the total number of cycles, IPC and the energy consumption of AI applications. These
PMCs are crucial for understanding comprehensive performance statistics and enhancing software
and hardware efficiency. Monitoring at a detailed level enables accurate fine-tuning of software
and system settings, resulting in improved performance and decreased resource usage. PMCs
offer a vital role in this research for assessing the operational efficiency of computing devices and
determining their energy-associated CO2 emissions. The correlation between energy consumption
and CO2 emissions is intricate and influenced by the composition of energy sources during the
period of utilisation.

The first methodology proposes the use of CO2 emissions to precisely measure the efficiency of AI
applications. The primary objective is to develop an energy estimation model that utilises CO2
to determine the energy usage of the CPU and DRAM during the training of ML models. We
focus primarily on the training process of AI applications, as it is the most resource-intensive part
of model development [HSA22]. By collecting PMC data and corresponding energy usage, a
regression model is formulated to estimate the energy requirements of AI operations. In addition,
we quantify the CO2 emissions generated by the CPU and DRAM when executing AI models.

Furthermore, the second methodology investigates the influence of hyperparameter optimisation
and model architecture on energy usage. We study the influence of various hyperparameters and
model architectures like epochs, LR, number of neurons, activation functions and so on on the
energy consumption of AI applications.

In conclusion, this thesis aims to make a valuable contribution to the field by providing approaches
that improve the sustainability of AI research and guarantee that these advancements are also
ecologically mindful.

37

6 PMC Based Energy Estimation Model

In this thesis, we present a highly portable and efficient methodology that utilises PMCs to measure
energy and performance accurately. These counters are standard features on the majority of
contemporary general-purpose processors. In particular, we use the widely-known RAPL interface
for energy measurement and PAPI for PMC monitoring to estimate energy consumption and measure
PMCs on processors.

The RAPL interface is structured into several domains, including the processor (CPU), graphics
(PP1), and memory (DRAM), depending on whether the platform is a client or a server. In our
study, we concentrate on the CPU and DRAM domains, which are typically the largest consumers
of energy within a system.

6.1 Evaluation of Linux PMCs

Our methodology incorporates dynamic analysis, leveraging PMCs to gather event data in real-time
as the ML model code is executed. The Intel® CoreTM i7-8565U CPU @ 1.80 GHz (142, 0x8e)
running Ubuntu 22.04.3Long Term Support (LTS) and the Linux kernel version 6.5.0-28-generic
served as the experimental platform for this study. This processor provides a strong foundation
for comprehensive performance data collection by granting access via PAPI to 59 different PMCs.
These PMCs are essential for developers, system administrators, and researchers looking to improve
hardware and software efficiency through in-depth performance analytics.

Under Linux, the PMCs keep track of a variety of hardware events, including CPU cycles, instructions
executed, cache hits and misses, and branch predictions. By measuring the impact of system
modifications on performance, these counters play a crucial role in the diagnosis of performance
problems in systems and applications. These counters also aid the alteration of software and system
configurations with extreme precision, improving performance and reducing wasteful resource
usage. These tools are invaluable in high-performance computing environments like DCs, where
optimising operational efficiency is crucial.

We chose performance events that show a strong correlation with power consumption to avoid
redundancy. The selection process involves determining which PMCs are most likely to affect
the processor’s energy-intensive functional units. The statistical method named Spearman’s Rank
Correlation Coefficient (𝜌) was used to identify the relationship between PMCs and energy. This
demonstrates the strength and direction of the correlation (positive or negative) between a given
PMC and energy usage. For this coefficient, a value of +1 denotes a strong positive correlation, and
a value of -1 denotes a strong negative correlation. A comprehensive list of PMCs supported by the
Intel® CoreTM i7-8565U CPU can be found in Appendix 1.

39

6 PMC Based Energy Estimation Model

6.2 Energy Consumption and PMC Correlation

This section aims to answer our first research question.

RQ 1: Is PMC correlated to the energy consumption of AI applications?

We answer this question by finding the correlation between PMCs and Intel processor (CPU and
DRAM) energy consumption by executing various ML model programs. Detailed information on
PMC activity and CPU and DRAM energy consumption is collected while model training.

Similar research has been done in the past on the relation between PMCs and energy use, but it has
used traditional benchmark programs without ML [CM05]. Unlike other approaches, our work is
the first of its kind to use ML applications for evaluation, and the results have been impressive. Our
goal is to accurately model the energy consumption patterns, specifically for ML model training,
which differs from traditional applications in terms of computational demand and energy usage.
Therefore, specific AI models have been used to run tests and gather datasets.

To make this analysis easier, we used the RAPL interface to track CPU and DRAM energy
consumption and the PAPI to collect PMC data. The PAPI interface offers the benefit of low
overhead since data collection happens in parallel with running processes, allowing for the accurate
recording of real-time event data during the execution of particular ML training code snippets
[GLG+19]. Similarly, the RAPL interface offers a practical way to gauge energy usage without
significantly interfering with already running computational processes [GRRG19].

The ML models employed in this study are listed below. The dataset was collected by training these
ML models, giving a solid foundation to our predictive analysis.

• Linear Regression

• Logistic Regression

• K-Nearest Neighbors (KNN)

• Support Vector Machine (SVM)

• Decision Trees

• Neural Networks

We employ these models to obtain the energy and performance of only the model training stage. This
facility is not provided by ML benchmarks currently. To guarantee that a thorough experimentation
was carried out, a dataset comprising approximately 2.5k data points was gathered. Each model
was executed with a range of dataset sizes, hyperparameters, and features to represent the various
operational profiles of ML applications. The experiments gathered values of various PMCs offered
by Intel® CoreTM i7-8565U CPU @ 1.80GHz (142, 0x8e) and the corresponding CPU energy and
DRAM energy. After gathering the data, the patterns and strength of the correlations between the
energy consumption metrics and the PMC data were examined using 𝜌.

The results in Table 6.1 and Table 6.2 show a list of the top 20 PMCs that have a strong correlation
with CPU and DRAM energy consumption respectively. The total number of instructions executed
and CPU cycles have a very high score as compared to other PMC events. It can be observed in
Table 6.1 that total CPU cycles (PAPI_TOT_CYC) and CPU have a 𝜌 of 0.922 and total instructions

40

6.3 Linear Regression Energy Model

(PAPI_TOT_INS) and CPU energy have a 𝜌 of 0.861. Other PMC events do not perform very well
in terms of correlation and have a 𝜌 of around 0.55 and less. Table 6.2 shows that total CPU cycles
(PAPI_TOT_CYC) and DRAM have a 𝜌 of 0.869 and total instructions (PAPI_TOT_INS) and
DRAM have a 𝜌 of 0.751. Other PMC events exhibit poor correlation, with 𝜌 values of 0.55 or lower.
Therefore, these two PMCs have been used to model the CPU and DRAM energy consumption. In
PMC terminology, instructions are the individual operations carried out by a CPU according to the
program. The number of clock cycles that the CPU uses to complete tasks is measured by CPU
cycles. Approximately one CPU cycle is required to do a single simple operation, such as adding
two numbers. As a result, these two PMCs were determined to be crucial indicators for creating
our energy model. Based on the above results, RQ1 has been answered and we can conclude that
PMCs have a very strong correlation with the energy consumption of AI applications. Supporting
the above correlation values, Figure 6.1, Figure 6.2, Figure 6.3, and Figure 6.4 depict the perfect
linear behaviour between the two PMCs and the CPU and DRAM energy.

Figure 6.1: Graph of instructions and CPU Energy (in Joules)

6.3 Linear Regression Energy Model

This section aims to answer the second research question.

RQ 2: How can precise energy consumption of AI applications be measured based on PMCs?

In this section, we create a regression model to forecast the energy usage of different AI models
operating on Intel processors. To achieve this goal, the total number of instructions, the total number
of cycles, and the related CPU energy and DRAM energy were gathered from our generated dataset
because they have a strong correlation with energy consumption of CPU and DRAM. Figure 6.5
describes the detailed process of creating the energy models.

The process involved generating the dataset by running the ML models to collect PMC and energy
data. This dataset was passed through the data preprocessing stage, where the extreme outliers were
removed and the dataset was normalised using Min-Max Scaling [dev07] to bring all the features on

41

6 PMC Based Energy Estimation Model

Figure 6.2: Graph of instructions and DRAM Energy (in Joules)

Figure 6.3: Graph of cycles and CPU Energy (in Joules)

a uniform scale [0,1]. Consequently, the dataset was divided into training (55%), validation (25%),
and testing (20%). A linear regression algorithm was employed to generate the energy models
using total instructions and total cycles as independent variables and CPU and DRAM energy as
dependent variables. The model was fine-tuned using the validation dataset to achieve the highest
accuracy and test data was utilised to test the model’s accuracy.

The following equation represents the model used to predict the CPU energy consumption:

(6.1) 𝐶𝑃𝑈𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑏1,0 + (𝑏1,1 × 𝑡𝑜𝑡ins) + (𝑏1,2 × 𝑡𝑜𝑡cyc)

42

6.4 Results

Figure 6.4: Graph of cycles and DRAM Energy (in Joules)

where:

• 𝑡𝑜𝑡ins denotes the total number of instructions executed.

• 𝑡𝑜𝑡cyc denotes the total number of CPU cycles executed.

• 𝑏1,0, 𝑏1,1, and 𝑏1,2 represent the regression coefficients of the CPU model.

The following equation represents the model used to predict the DRAM energy consumption:

(6.2) 𝐷𝑅𝐴𝑀𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑏2,0 + (𝑏2,1 × 𝑡𝑜𝑡ins) + (𝑏2,2 × 𝑡𝑜𝑡cyc)

where:

• 𝑡𝑜𝑡ins denotes the total number of instructions executed.

• 𝑡𝑜𝑡cyc denotes the total number of CPU cycles executed.

• 𝑏2,0, 𝑏2,1, and 𝑏2,2 represent the regression coefficients of the DRAM model.

RQ2 can be effectively answered based on the above formulation. We can estimate the precise value
of energy consumption by running any AI application based on the total number of instructions and
total number of CPU cycles.

6.4 Results

The energy models devised in the previous section can be used to estimate the energy consumption
of CPU and DRAM. Table 6.3 and Table 6.4 show the values of all the coefficients of the CPU and
DRAM energy models respectively.

43

6 PMC Based Energy Estimation Model

Table 6.1: 𝜌 of PMCs and CPU Energy in Descending Order
PMC Type 𝜌

PAPI_TOT_CYC 0.922
PAPI_TOT_INS 0.861
PAPI_SP_OPS 0.555
PAPI_VEC_SP 0.555
PAPI_STL_CCY 0.514
PAPI_BR_CN 0.510
PAPI_BR_PRC 0.510
PAPI_BR_NTK 0.510
PAPI_FUL_ICY 0.508
PAPI_MEM_WCY 0.504
PAPI_REF_CYC 0.504
PAPI_SR_INS 0.493
PAPI_STL_ICY 0.492
PAPI_BR_INS 0.491
PAPI_LST_INS 0.489
PAPI_FUL_CCY 0.488
PAPI_LD_INS 0.488
PAPI_BR_TKN 0.483
PAPI_VEC_DP 0.477
PAPI_BR_MSP 0.410

By evaluating the performance of the developed models on test data, the results demonstrated
in Table 6.5 and Table 6.6 were observed. The achieved level of accuracy is notably superior
compared to previous research in this domain, which utilised more features in the regression model
but achieved a lower accuracy rate of around 4%. The reduction in complexity and the improvement
in predictive accuracy to 0.158% and 0.273% for CPU and DRAM respectively underscores the
idea of focusing on PMCs such as total instructions and total CPU cycles. Both the energy models
perform exceptionally well with a CPU Mean Absolute Error (MAE) of 0.00060 and DRAM MAE
of 0.00255. The R Squared (𝑅2) scores of 0.9998 and 0.9925 for CPU and DRAM respectively also
support the argument that these models are a good fit for the ML scenario.

The graph in Figure 6.6 shows the accuracy of our CPU energy estimation model based on the total
number of instructions and the total number of cycles. The blue data points represent the predicted
CPU energy (in Joules) and the red data points represent the test CPU energy (in Joules). It can be
observed that most of the data points coincide, validating the accuracy of our model. A similar
trend can be seen in Figure 6.7 for CPU energy based on the total number of cycles. This model
achieves an exceptional error rate of only 0.158%.

44

6.4 Results

Table 6.2: 𝜌 of PMCs and DRAM Energy in Descending Order
PMC Type 𝜌

PAPI_TOT_CYC 0.869
PAPI_TOT_INS 0.751
PAPI_SP_OPS 0.526
PAPI_VEC_SP 0.555
PAPI_STL_CCY 0.483
PAPI_BR_NTK 0.483
PAPI_BR_CN 0.483
PAPI_BR_PRC 0.483
PAPI_FUL_ICY 0.480
PAPI_REF_CYC 0.477
PAPI_MEM_WCY 0.465
PAPI_SR_INS 0.464
PAPI_STL_ICY 0.462
PAPI_BR_INS 0.461
PAPI_LST_INS 0.457
PAPI_FUL_CCY 0.457
PAPI_VEC_DP 0.456
PAPI_LD_INS 0.456
PAPI_BR_TKN 0.456
PAPI_BR_UCN 0.428

Table 6.3: Values of CPU Regression Model Coefficients
Coefficient Value

𝑏1,0 0.00042871
𝑏1,1 0.84030965
𝑏1,2 0.16071597

Similarly, the graph in Figure 6.8 shows the accuracy of our DRAM energy estimation model based
on the total number of instructions and the total number of cycles. The blue data points represent
the predicted DRAM energy (in Joules) and the red data points represent the test DRAM energy (in
Joules). Here it can be observed that the model shows high accuracy with an error rate of 0.273%.
A similar trend can be seen in Figure 6.9 for DRAM energy based on the total number of cycles.

The streamlined approach used in our methodology not only simplifies the energy prediction process
but also enhances the reliability of the predictions, making it a valuable tool for those involved in the
development and deployment of AI technologies. This energy model, based on a thorough analysis
of hardware PMCs, sets a new standard in the field of energy management in AI applications,
providing a replicable method for future research and practical implementations in the field of
sustainable computing.

45

6 PMC Based Energy Estimation Model

Dataset

Process

Collected Energy
and

PMC Dataset

Data Collection

Data Preprocessing

Validation Dataset Training Dataset Test Dataset

Hyperparameter
Tuning

Linear Regression
Model Training

Prediction of CPU
and DRAM Energy

Manual
Operation

Legend

If accuracy is low Linear Regression
Energy Model

Model

Figure 6.5: Flow diagram for the energy model creation process.

Table 6.4: Values of DRAM Regression Model Coefficients
Coefficient Value

𝑏2,0 0.00153388
𝑏2,1 0.84543874
𝑏2,2 0.18049153

6.5 CO2 Emission Estimation of AI Applications

This section aims to answer the third research question.

RQ3: How can precise CO2 emissions of AI applications be measured?

46

6.5 CO2 Emission Estimation of AI Applications

Table 6.5: Metrics for Accuracy Evaluation of CPU Energy Model
Metrics Value

CPU MAE 0.00060
CPU 𝑅2 Score 0.9998
CPU Error% 0.158%

Table 6.6: Metrics for Accuracy Evaluation of DRAM Energy Model
Metrics Value

DRAM MAE 0.00255
DRAM 𝑅2 Score 0.9925
DRAM Error% 0.273%

The next step in our methodology is the assessment of CO2 emissions resulting from the AI
applications. It is important to recognise that there is a non-strict relationship between CO2
emissions and energy usage. Numerous factors, such as geographic location, the kinds of fuels used
to generate energy, and the degrees of economic and technical development, affect the differences
in emissions from different nations [Cod20a].

6.5.1 Carbon Intensity

We use the carbon intensity in our estimates to accurately represent the geographical variations
in emissions. This coefficient shows the weight of CO2 emissions, expressed in kg, for each
Kilowatt-hour (KWh) of electricity produced. The carbon intensity is determined by the energy mix
of a region that includes fossil fuels and renewable energy sources like solar power, hydroelectricity,
biomass and more [Cod20a].

Equation 6.3, provides the formula to calculate the cumulative carbon intensity based on the
weighted average of all the energy sources.

(6.3) 𝐶𝑎𝑟𝑏𝑜𝑛𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
∑︁

(𝑓𝑖 × 𝐶𝑖)

where:

• i represents individual energy sources such as solar power, hydroelectricity, and biomass.

• 𝑓𝑖 denotes the fraction of each energy source used within a specific region in %.

• 𝐶𝑖 denotes the carbon intensity (kg/megawatt-hour (MWh)) for each energy source.

Hence, the overall carbon intensity for a region is a weighted sum of the intensities for each energy
source, accounting for their respective proportions within the regional energy profile. In areas
with a high proportion of renewable energy sources, the overall carbon intensity is relatively lower,
indicating a cleaner energy system. In contrast, a higher carbon intensity is associated with a higher
level of emissions from electricity generation [Cod20a].

47

6 PMC Based Energy Estimation Model

Figure 6.6: Predicted and Test CPU Energy (in Joules) for different number of instructions

Figure 6.7: Predicted and Test CPU Energy (in Joules) for different number of cycles

6.5.2 Precise CO2 Emission Estimation of AI Applications

In cases where the estimation of CO2 emissions is not possible via energy mix, the carbon intensity of
geographical region is considered [Cod20a]. As of April 29, 2024, the coefficient for carbon intensity
for the German region is 385.389, according to Codecarbon [Cod20b]. Since our experiments are
conducted on a locally running Intel machine in Germany, the carbon intensity of Germany will
give the precise value of CO2 emissions from any AI application. The aggregate carbon footprint
produced throughout the training of AI applications is determined by multiplying the cumulative
energy used by the CPU and DRAM with the carbon intensity value of Germany.

48

6.5 CO2 Emission Estimation of AI Applications

Figure 6.8: Predicted and Test DRAM Energy (in Joules) for different number of instructions

Figure 6.9: Predicted and Test DRAM Energy (in Joules) for different number of cycles

Equation 6.4 depicts the way to precisely calculate the CO2 emission of a computing unit by taking
the sum of energy consumption of CPU and DRAM and multiplying it by the carbon intensity of
the region in which the computation is taking place.

(6.4) 𝑇𝑜𝑡𝑎𝑙𝐶𝑂2𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =
∑︁

(𝐸𝑛𝑒𝑟𝑔𝑦𝑖) × 𝐶𝑎𝑟𝑏𝑜𝑛𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

where:

• i represents CPU and DRAM

• 𝐸𝑛𝑒𝑟𝑔𝑦𝑖 denotes the energy consumed by the CPU and DRAM.

49

6 PMC Based Energy Estimation Model

• 𝐶𝑎𝑟𝑏𝑜𝑛𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 denotes the carbon intensity of the corresponding region.

Based on Equation 6.4, the estimated values for CPU and DRAM energy are added together and
multiplied by Germany’s unique carbon intensity. The proportion of error in our calculations is
then calculated by comparing this predicted emission value with the actual CO2 emissions. Similar
to energy percentage error, the CO2 emission error rate by CPU is 0.158% and CO2 emission error
rate by DRAM is 0.273%. This comparison aids in evaluating how well our model predicts the
environmental effects of executing particular AI applications.

Figure 6.10 and Figure 6.11 show the accuracy of our model in terms of the true and predicted CO2
emissions. The graph shows a linear trend between the true and predicted values, indicating that the
model can perfectly fit the data points with high accuracy.

The above formulation, answers RQ3 and precisely measures the CO2 emissions of AI applications.

Figure 6.10: Predicted and True CO2 emission (in kg) for CPU

50

6.5 CO2 Emission Estimation of AI Applications

Figure 6.11: Predicted and True CO2 emission (in kg) for DRAM

51

7 Hyperparameters and Architecture
Optimisation for Energy Conservation of AI
Applications

This section aims to answer the fourth research question.

RQ4: How do hyperparameters and architecture of AI applications impact PMCs and energy
consumption?

While optimising the efficiency of AI applications, it is crucial to also consider the software
optimisation in addition to the hardware aspects to minimise energy consumption. Effective
hyperparameter tuning and architectural design play a significant role in reducing the computational
burden of ML models, which in turn decreases energy use [CM15; WMV20].

This research aims to thoroughly evaluate the impact of various hyperparameters and architectures
on the model’s computational demands, specifically focusing on instructions, cycle counts, CPU
and DRAM energy consumption. The analysis aims to understand the trade-off between these
metrics and the accuracy of the model. It presents a comparative analysis of these metrics to explain
how changes in hyperparameters and model architecture can impact the energy usage and accuracy
of the model.

By refining hyperparameters, we can significantly lower the carbon footprint of AI training processes.
This aligns with the development of more sustainable AI practices, where energy efficiency is as
critical as computational performance. To experiment with this ideology, a classic NN model with
sequential dense layers has been used for classification using the sklearn breast cancer dataset. The
dataset has a sample size of 569 with two classes. All experiments have been performed on CPU
and the energy consumption of CPU and DRAM has been recorded.

The various hyperparameters and model architectural designs that have been studied are explained
below:

7.1 Epoch

In this section, we analyse the behavioural change in the instruction count, cycle count, CPU energy,
DRAM energy and accuracy of the NN model as the number of training epoch varies from 30 to
50. The NN model consists of an input layer, two hidden layers and an output layer. The Rectified
Linear Unit (ReLu) activation function has been used in the hidden layer, followed by the sigmoid
activation function in the output layer for binary classification. The model utilises adam optimiser

53

7 Hyperparameters and Architecture Optimisation for Energy Conservation of AI Applications

with a LR of 0.001 and binary cross entropy loss function. The aim is to understand how changes
in epochs affect various aspects like instruction count, cycle count, model accuracy, CPU energy
consumption, and DRAM energy consumption of NN training.

Instructions vs. Epochs: The graph of instructions vs. epochs in Figure 7.1 indicates that
as the number of training epochs increases, the number of executed instructions also increases,
suggesting that the model does more computations during this time. This trend implies that the
model performs additional computations as it is exposed to more data throughout each growing
training epoch. Essentially, this implies that the model is using data multiple times to learn and
modify its parameters according to the input data.

Cycles vs. Epochs: The cycles vs. epochs graph in Figure 7.1 exhibits a consistent upward
trend with occasional dips. The number of CPU cycles increases as the model goes through each
training epoch. These cycles are the fundamental units of time that a CPU spends processing data.
This trend in CPU cycles resembles the instruction count trend. This suggests a direct relationship
between the intensity of computations required and the training process. As the model learns and
adapts from more data during the epoch, it needs more processing power and a higher number of
CPU cycles.

CPU Energy vs. Epochs: In the CPU energy vs. epochs graph in Figure 7.2 it can be observed
that, after the 40th epoch ends, CPU energy usage starts to rise noticeably. The instructions and
CPU cycles can be connected to the observed increase in energy consumption, which indicates a
higher degree of computational activity in later epochs. As the training progresses, the complexity
and the volume of the calculations required by the model training also increases, which results in
the CPU performing more cycles and executing more instructions. This leads to a rise in the CPU
energy consumption.

DRAM Energy vs. Epochs: In the DRAM energy vs. epochs graph in Figure 7.2, the DRAM
energy usage also shows an increasing trend with an increase in the number of epochs. This
indicates that memory access requirements increase when the number of epochs is increased during
training time. The memory access requirement rises with each increasing epoch because the model
is handling more data and operations as training progresses. In every training epoch, the model
passes through the whole dataset it is being trained on and modifies the weights to increase accuracy.
In this process, data is retrieved multiple times from the DRAM resulting in more memory usage.

Accuracy vs. Epochs: The accuracy vs. epochs graph in Figure 7.3 displays an accuracy range
of 94% to 99% for epochs ranging from 30 to 50. The accuracy of the model plateaus at 99.12% after
the 44th epoch. This suggests that there is no noticeable rise in accuracy as the number of epochs
increases and the model is either overfitting or has plateaued. The lack of improvement in accuracy
despite additional epochs is a signal to review the training process. Measures like adjusting the
model’s parameters, considering different models, dataset quality checks, or introducing techniques
like early stopping to halt the training process once the model’s performance ceases to improve

54

7.2 Activation Function

significantly should be employed. The development of efficient, effective, and generalised ML
models requires an understanding of when a model plateaus or starts to overfit. This understanding
facilitates the optimisation of training epochs and resource-saving.

Conclusion: The data gathered from these five graphs suggests that there is a precise correlation
between the number of epochs, resource consumption and accuracy of the NN model. As training
advances, the upward trajectory of both instructions and CPU cycles signifies a rise in computational
requirements, thereby demanding increased energy consumption from both the CPU and DRAM.
Therefore, an evaluation of the model epoch count is needed to identify a trade-off between accuracy
and energy consumption and the best epoch needs to be identified by ML developers that do not
consume large energy.

Figure 7.1: Graph of PMCs for different number of epochs.

Figure 7.2: Graph of CPU and DRAM energy in Joules for different number of epochs.

7.2 Activation Function

In this section, we analyse the variation in the instruction count, cycle count, CPU energy, DRAM
energy and accuracy of the NN model for different activation functions namely - tanh, softmax,
sigmoid, and ReLu. Similar to the previous experiment, this NN model also consists of an input
layer, two hidden layers and an output layer. The activation functions listed above have been used in

55

7 Hyperparameters and Architecture Optimisation for Energy Conservation of AI Applications

Figure 7.3: Graph of accuracy for different number of epochs.

the hidden layers followed by the sigmoid function in the output layer for binary classification. The
model uses adam optimiser with a LR of 0.001 and a binary cross-entropy loss function. The aim is
to understand how the different activation functions affect the instruction count, cycle count, model
accuracy, CPU energy consumption, and DRAM energy consumption of the NN training.

Instructions vs. Activation Functions: According to instructions vs. activation functions
graph in Figure 7.4, the tanh function starts with the highest number of instructions, followed by
sigmoid and softmax and ends with ReLu, which shows the least number of instructions. This
indicates that tanh requires more complex computations due to its complex mathematical operation,
and ReLu function’s basic computation requires fewer instructions.

Due to its mathematical complexity, the tanh function leads this list. Tanh is a non-linear function
that transitions between -1 and 1. Extensive calculations are needed to map inputs to outputs making
it computationally costly. Positive and negative values require multiple processing steps due to
the function’s S-shaped curve. In contrast, the ReLu function uses a simple threshold technique
to map all negative values to zero and maintain positive values as they are. Due to its simplicity,
ReLu requires fewer instructions than tanh. Like tanh, the sigmoid function outputs values between
0 and 1. Since it is positioned around the origin it is a little less computationally intensive than
tanh. Softmax is generally employed in the final layer of a classification network to represent class
probabilities using exponents and normalisation operations, placing it between sigmoid and ReLu
in terms of the total number of instructions executed.

Cycles vs. Activation Functions: The trend seen in instruction count is also reflected in the
CPU cycles count. The cycles vs. activation functions graph in Figure 7.4 shows that the tanh
function consumes the most CPU cycles among the activation functions compared. Tanh function
is followed by softmax, sigmoid and ReLu activation functions. This suggests as these functions
perform more calculations per input value, more CPU cycles are needed to compute the outcomes.

56

7.2 Activation Function

ReLu’s exceptional results in this area prove its computational efficiency. The ReLu function
outputs the input directly if it is positive and zero otherwise. This simplicity allows ReLu function
to process inputs in fewer CPU cycles than tanh, softmax and sigmoid functions.

CPU Energy vs. Activation Functions: The CPU energy vs. activation functions graph in
Figure 7.5 suggests that tanh consumes the most CPU energy. This is consistent with its high
instruction and cycle counts, indicating its correlation with computation cost. In terms of CPU
energy consumption, ReLu function performs the best. The level of complexity of the operations in
activation functions increases the computation cost and the CPU energy. It can be inferred that
energy consumption can be reduced by utilising less complex activation functions.

DRAM Energy vs. Activation Functions: In the DRAM energy vs. activation functions
graph in Figure 7.5, we observe that the DRAM energy consumption decreases as we move from
more complex to simpler activation functions in NN. Starting with the tanh function followed by
softmax, sigmoid, and ReLu functions, it can be concluded that activation functions with higher
computational complexity consume more energy from memory operations.

The tanh function requires more memory resources due to its mathematical complexity and the
smooth, continuous shape of its output curve. This is because tanh needs to calculate more complex
gradients leading to more memory demands. These operations are energy-intensive, as they require
the frequent reading and writing of values to and from the memory, increasing the energy used by
DRAM.

Similar to tanh, the softmax function also requires a high level of computation and memory access
due to its exponentiation and normalisation processes. Sigmoid function maps input values to a
bounded range between 0 and 1. It involves calculations that are slightly less intense than softmax.
However, they still require significant memory interaction. At the end of the spectrum is the ReLu
function that outputs the input if it is positive and zero otherwise, involving minimal computation
and memory access compared to tanh, sigmoid, and softmax.

Accuracy vs. Activation Functions: In the accuracy vs. activation functions graph in
Figure 7.6, there is no specific trend observed. However, ReLu’s position on this graph indicates
that, despite being computationally advantageous, its simplicity hinders effectively modelling the
data. Considering all the activation functions, the sigmoid function can be a good alternative for
classification as it has fewer computational demands in terms of instructions and cycles executed
and a higher accuracy.

Conclusion The insights gathered from these graphs underscore a complex interplay between
the choice of activation function, computational efficiency, and model performance. Tanh, despite
its computational expense, offers the best accuracy at the cost of energy efficiency. ReLu, while
energetically favourable, might not achieve the highest accuracy, thus compromising the model
performance. The softmax and sigmoid functions present a balanced compromise. Therefore,
the selection of an activation function within NN models must be conducted with a strategic
understanding of these trade-offs, particularly when balancing the computational cost against the

57

7 Hyperparameters and Architecture Optimisation for Energy Conservation of AI Applications

performance objectives of the model. This decision is important in the context of energy-efficient AI
system design, especially in scenarios with limited energy resources or where energy consumption
has substantial economic or environmental implications.

Figure 7.4: Graph of PMCs for different activation functions.

Figure 7.5: Graph of CPU and DRAM energy in Joules for different activation functions.

7.3 Batch Size

In this section, we analyse the variation in the instruction count, cycle count, CPU energy, DRAM
energy and accuracy of the NN model for different batch sizes from 20 to 40. Similar to the previous
experiment, this NN model also consists of an input layer, two hidden layers and an output layer.
The model uses an adam optimiser with a LR of 0.001 and a binary cross-entropy loss function.
The aim is to understand how the different batch sizes affect instruction count, cycle count, model
accuracy, CPU energy consumption, and DRAM energy consumption of NN training.

Instructions vs. Batch Size: In Figure 7.7 an overall decreasing trend is seen in instructions vs.
batch size graph, as the batch size increases. Due to parallel processing capabilities, processing
instructions in bigger batches results in more efficient instruction processing. Parallel processing is
a method used in computing where multiple processors handle different parts of an overall task

58

7.3 Batch Size

Figure 7.6: Graph of accuracy for different activation functions.

simultaneously. When data is processed in larger batches, more data points are processed at the
same time. The capability to handle multiple data points concurrently allows the system to optimise
its instruction execution.

Cycles vs. Batch Size: In the cycles vs. batch size graph in Figure 7.7, a similar downward
trend is also observed. Larger batches use CPU cycles more efficiently because the cost of loading
and processing data is spread over a larger number of examples. When data is processed in larger
batches, the initial overhead of loading data, setting up processing tasks, and distributing these tasks
across CPU cycles is divided across larger data sizes as compared to several smaller batches. As a
result, the CPU maintains a steady state of processing for a longer time, which is more efficient than
repeatedly stopping and starting smaller batches.

CPU Energy vs. Batch Size: The CPU energy vs. batch size graph in Figure 7.8 exhibits a
steep decrease with increasing batch size. This suggests that when batch size increases, more data
is processed in a single batch and increases the parallel computing capabilities. Therefore, data
processed in larger batches requires less CPU energy.

DRAM Energy vs. Batch Size: The DRAM energy vs. batch size graph in Figure 7.8, does
not show much variation based on batch sizes. This can be the result of the interaction between
batch size-dependent caching effects, Memory Access Patterns (MAC), and data loading durations.
The stability in DRAM energy usage across different batch sizes suggests the benefits of efficient
caching and optimised MAC in ML model training.

59

7 Hyperparameters and Architecture Optimisation for Energy Conservation of AI Applications

Accuracy vs. Batch Size: The accuracy vs. batch size graph in Figure 7.9 does not represent
a specific trend. It suggests that there is a nonlinear relationship between batch size and model
accuracy. This can be due to the complexity and size of the dataset. The absence of a straightforward
trend in model accuracy as batch sizes vary implies that different batch sizes can affect the learning
outcome in various ways. Larger batch sizes offer advantages like faster computation and reduced
training times due to more efficient processing. However, they have disadvantages such as inaccurate
gradient estimation. On the other hand, more frequent weight updates due to smaller batch sizes can
result in a more thorough learning process that can capture minute patterns in the data. However,
this also results in longer training times and increased computational demands, as the model needs
to process many more updates than it would with larger batches. Therefore, a trade-off between
accuracy and batch size should be decided based on the energy requirements.

Conclusion: Based on a thorough analysis of these graphs, it appears that larger batches can not
always result in better computational efficiency. However, they use fewer instructions and CPU
cycles, and lower CPU and DRAM energy. No one batch size works for all cases, as indicated by
the accuracy and energy consumption graph. Instead, the batch size should be selected based on the
particular model and training environment. This customisation involves finding a trade-off between
energy consumption, computational efficiency, and model performance. Because it affects both the
practical deployment of NN models and the environmental impact of training procedures, choosing
an appropriate batch size is thus an important stage in the design and training of NN models.

Figure 7.7: Graph of PMCs for different batch sizes.

7.4 Number of Layers

In this section, we analyse the variation in the instruction count, cycle count, CPU energy, DRAM
energy and accuracy of the NN model with the number of layers ranging from 1 to 20. This NN
model has the same input layer, two hidden layers, and an output layer as the last experiment.
The hidden layers utilise the ReLu activation function, and the output layer uses the sigmoid
activation function. A binary cross-entropy loss function and an LR of 0.001 are employed with

60

7.4 Number of Layers

Figure 7.8: Graph of CPU and DRAM energy in Joules for different batch sizes.

Figure 7.9: Graph of accuracy for different batch sizes.

adam optimiser. The objective is to understand how the number of layers affects the number of
instructions, cycles, model accuracy, and energy consumption of the CPU and DRAM during NN
training.

Instructions vs. Layers: The instructions vs. layers graph in Figure 7.10 shows a linear
relationship between the total number of instructions executed and the number of layers. This
is expected since a NN with additional layers will do more operations in both the forward and
backward training passes. Given the structure and operation of NN, the linear rise in instruction
count with each layer is natural. A set of neurons makes up each layer of a NN, and each neuron in a

61

7 Hyperparameters and Architecture Optimisation for Energy Conservation of AI Applications

layer carries out several calculations. These computations have two steps: first, the weighted inputs
from neurons in the preceding layer are aggregated, and then these weighted inputs are subjected to
a non-linear transformation or activation function. This proves that as the depth of the network
increases, the computational burden in terms of instructions also increases.

Cycles vs. Layers: The cycles vs. layers graph in Figure 7.10 shows a generally rising trend with
considerable variability. A complex series of computational steps are involved in both the forward
pass, where the NN generates predictions, and the backward pass, where the network modifies its
weights according to the gradient of the loss function in a NN. The increase indicates that deeper
networks need more processing cycles because they have more parameters to update during training
and are therefore more complex.

CPU Energy vs. Layers: The CPU energy vs. layers graph in Figure 7.11 shows that the
CPU energy increases with the number of layers increasing almost exponentially. The expense
of calculating more instructions and CPU cycles for each further layer is reflected in the rise in
energy consumption. Each layer of a NN processes inputs and produces output for further layers.
Non-linear processes like activation functions and linear transformations like weighted sums are
involved in these computations. Additionally, each layer’s parameters are changed during the
training phase in response to the loss function’s feedback. Backpropagation to change the weights
based on the gradients of the loss function. The path that these gradients must take increases with
the number of layers added and the complexity of calculations also increases. To complete the
required computations, more CPU cycles are required which raises the CPU energy usage.

DRAM Energy vs. Layers: The DRAM energy vs. layers graph shown in Figure 7.11 similarly
indicates a rise in DRAM energy with the number of layers. This increase is supported by the fact
that more data needs to be stored and retrieved during training. The computational requirements of
NN grow with the number of layers as more data needs to be processed and stored. Each neuron in
the layers has a weight and bias associated with it. Furthermore, intermediate data from each layer
needs to be temporarily stored during the forward pass of training and in the backward pass, where
the network modifies its parameters based on the error gradient. Inputs, outputs, weights, biases,
and gradients are all essential for the model training and increase along with its depth. The DRAM
is used to read, write, and access the data which increases energy consumption.

Accuracy vs. Layers: The accuracy vs. layers graph in Figure 7.12 shows peaks and valleys
but no discernible pattern, making it noticeably more unpredictable. This implies that while
having more layers may improve the model’s performance by enabling it to learn more complicated
characteristics, it may also increase the risk of overfitting or other optimisation issues that could
reduce accuracy. Therefore, a fair trade-off should be maintained between the number of layers and
energy usage.

62

7.5 LR

Conclusion: The examination of these graphs demonstrates that as a NN’s layers are added, its
computing requirements also rise, as evidenced by the rising CPU cycles and instruction counts. The
energy requirements for CPUs and DRAM are also raised due to this increased complexity, which
emphasises the significance of network architecture optimisation for energy efficiency, especially in
bigger models.

Nevertheless, deeper NN do not always mean better accuracy. This suggests that there is an optimal
point beyond which adding more layers would not improve the model’s performance. This research
highlights the need to carefully weigh the model’s complexity which maintains a balance between
the network’s depth and energy expenses. These findings have important applications when using
DNNs in energy-constrained settings. Choosing the ideal number of layers is a crucial choice that
affects the model’s functionality and environmental sustainability.

Figure 7.10: Graph of PMCs for different number of layers.

Figure 7.11: Graph of CPU and DRAM energy in Joules for different number of layers.

7.5 LR

In this section, we analyse the variation in the instruction count, cycle count, CPU energy, DRAM
energy and accuracy of the NN model with different learning rates such as 0.001, 0.01, and 0.1. This
NN model has the same input layer, two hidden layers, and an output layer as the last experiment.

63

7 Hyperparameters and Architecture Optimisation for Energy Conservation of AI Applications

Figure 7.12: Graph of accuracy for different number of layers.

The hidden layers utilise the ReLu activation function, and the output layer uses the sigmoid
activation function for binary classification. A binary cross-entropy loss function is employed with
adam optimiser. The objective is to understand how different learning rates affect the number of
instructions, cycles, model accuracy, and energy consumption of the CPU and DRAM during NN
training.

Instructions vs. LR: In the instructions vs. LR graph in Figure 7.13, when the LR is raised from
0.001 to 0.01 there is a sharp drop in the number of instructions, and then it settles out at 0.1. The
first decline implies that more instructions are needed for a lower LR because more iterations are
required to reach convergence. The LR is a critical parameter that affects how quickly a network
learns. The network makes very small updates to its weights at a lower LR, such as 0.001. This
results in more number of iterations to converge thereby increasing the total instructions. When the
LR is increased to 0.01 and 0.1, larger updates are made to its weights with each iteration. Therefore,
convergence is reached faster, reducing the total number of iterations and consequently the total
number of instructions. This relationship between the LR and the total number of instructions
highlights the importance of tuning the LR for efficient training of NN.

Cycles vs. LR: In the cycles vs. LR graph in Figure 7.13, the CPU cycles show a decreasing
trend moving from 0.001 to 0.1. This pattern suggests that the model needs fewer CPU cycles with
a higher LR. CPU cycles are a measure of the processing time that the CPU requires for executing
tasks. This involves operations such as computing the forward pass, backpropagation, and updating
weights in NN. At a lower LR, like 0.001, the weight updates are very small. This slow rate of
improvement requires more iterations to achieve convergence for the model. Consequently, more
iterations require more CPU cycles, making the training process computationally intensive. As
the LR is increased to 0.01 and 0.1, each iteration results in larger updates to the model’s weights.
These larger updates result in faster convergence, reducing the total number of iterations and CPU
cycles.

64

7.5 LR

CPU Energy vs. LR: In the CPU energy vs. LR graph in Figure 7.14, the CPU energy
consumption decreases substantially as the LR is increased from 0.001 to 0.01. The most energy-
efficient operation occurs at a LR of 0.1 due to fewer instructions and CPU cycles being executed.
However, this leads to faster convergence of the model.

DRAM Energy vs. LR: The DRAM energy consumption in the DRAM energy vs. LR graph
in Figure 7.14 shows an initial peak at a LR of 0.001 and later a decreasing trend. This is due to
the frequent access of DRAM to store intermediate data such as weights, biases, and gradients.
With lower LR, more gradients are calculated to achieve slower convergence. This resulted in high
DRAM energy due to frequent access.

Accuracy vs. LR: The accuracy vs. LR graph in Figure 7.15 shows that the accuracy fluctuates
between 0.964 to 0.973. The accuracy is highest at 0.01 LR and lowest at 0.001. This suggests that
smaller updates to the model’s weights help it learn more effectively, however, they can sometimes
underfit the data. A very large LR can cause overshooting and miss the optimal performance point
leading to overfitting. Therefore, the optimal LR should be used that fits the data well and achieves
the highest accuracy.

Conclusion: These findings suggest that the connection between computing efficiency and LR,
as well as model performance, is not straightforward. Higher instruction counts and CPU cycles are
the outcome of a reduced LR. On the other hand, the corresponding rise in energy and computing
demands highlights the need to choose a LR that is both resource-efficient and supportive of model
accuracy.

The apparent optimal intermediate LR exemplifies a balance between computational expense
and model accuracy. These insights can guide the implementation of NN models, especially in
resource-constrained environments where both performance and energy efficiency are critical. The
choice of LR, therefore, should not be made in isolation but as part of a holistic approach to model
training that weighs the trade-offs between accuracy, convergence speed, and energy consumption.

Figure 7.13: Graph of PMCs for different LRs.

65

7 Hyperparameters and Architecture Optimisation for Energy Conservation of AI Applications

Figure 7.14: Graph of CPU and DRAM energy in Joules for different LRs.

Figure 7.15: Graph of accuracy for different LRs.

The above experiments have enabled the understanding of the impact of hyperparameters and
architecture optimisation on the change in PMCs and energy consumption of AI applications and
answered RQ4. It can be concluded that the right configuration of hyperparameters is essential for
achieving the highest accuracy along with minimal energy consumption.

66

8 Conclusion

When developing ML algorithms, energy consumption is an important factor to consider. Large AI
model development and training account for a considerable amount of greenhouse gas emissions.
Nevertheless, the majority of research focuses on improving the predictive performance of algorithms,
even though some work is being done to minimise the computations required for ML tasks. Measuring
the energy consumption of programs is one of the main challenges today. For NLP based ML
models, reporting the time to retrain and the sensitivity to hyperparameters is necessary. Fair access
to computational resources is necessary for academic researchers, and developing effective models
and hardware should be their top priority. Training time and sensitivity to hyperparameters should
be disclosed by the authors. Our ultimate goal is to make energy estimation modelling approaches
available to the ML community, as we believe this will help improve energy efficiency in ML.

The thesis delves into the precise measurement of CO2 emissions from AI applications and critically
examines the complex relationship between energy consumption, AI model training, and CO2
emissions. The idea that processor-specific PMCs and AI applications’ energy consumption are
directly correlated was supported by our research. A solid framework for estimating the energy
consumption and, consequently, the CO2 emissions of different AI models was provided by the use
of a linear regression energy model that integrated PMCs like total instructions and total cycles.

The high accuracy of our energy models indicates their potential utility in real-world applications,
particularly in optimising the energy efficiency of AI-driven systems. By applying these regression
models, system administrators and developers can predict and manage the energy consumption of
AI operations more effectively, leading to significant energy savings and reducing the environmental
impact associated with running intensive AI tasks

Furthermore, the study of AI model architecture and hyperparameters marked a significant
advancement toward sustainable AI practices. By carefully balancing accuracy and energy
consumption, these models are designed to minimise the environmental impact of large-scale
computational tasks that are part of AI research and applications. This thesis demonstrates
that modifications to model architecture and hyperparameters can significantly reduce energy
consumption without sacrificing accuracy. This provides a road map for developing AI systems that
are both efficient and ecologically conscious.

In summary, this thesis highlights the dire need for energy-efficient AI practices while also laying
the groundwork for future research in this important area. It is imperative that the AI research
community start developing models with innovative strategies for reducing AI technologies’ carbon
footprint in mind.

67

8 Conclusion

The research done so far has established a foundational understanding of energy consumption and
CO2 emissions in AI applications, with a particular emphasis on CPU-based models. However,
since GPUs have better processing power and efficiency for parallel computations, their use for
machine learning tasks has increased. Therefore, a crucial next step is to broaden our research to
create GPU-based energy estimation models.

1. Combining GPU-Based Estimation Techniques: Subsequent research endeavours should
concentrate on utilising and optimising GPU-oriented approximation techniques customised
for ML usage. Notably, there are particular opportunities and challenges for energy estimation
when it comes to desktop GPUs, which are primarily used in ML research for model training.
On desktop platforms, tools like NeuralPower and Synergy have started to meet these needs,
but there is no comprehensive framework that covers mobile GPUs [CJSM17; RRL18].

2. Examining GPU PMCs in Detail: A thorough investigation of GPU-based PMCs is
necessary. These PMCs are essential for deciphering patterns of energy consumption and
provide detailed insights into how the device operates. But unlike CPUs, these counters’
extraction and interpretation techniques are not as advanced. The main goals of research
should be to determine which PMCs have the biggest effects on energy consumption and how
to keep an eye on them while AI models are being trained.

3. Creation of Frameworks and Tools: GPU’s PMCs can be measured with the help of
programs like nvprof and Nvidia Nsight Systems. Future development should concentrate on
combining these instruments with energy assessment tools such as Nvidia System Management
Interface (SMI) to build a unified system that can monitor energy data and PMCs at the same
time. This integration will help improve current energy models by enabling a more thorough
examination of the relationships between GPU’s performance and energy consumption.

4. Development of Energy Models Using GPUs: The next stage of the research should focus
on creating predictive energy models, especially for GPUs, building on the integrated tools
and data. These models would forecast and optimise AI model energy consumption by
utilising the insights obtained from GPU’s PMCs.

5. Development of Policies and Standards: There is an urgent need to create industry standards
and policies that direct energy-efficient AI research in comprehension with technological
advancements. These guidelines would guarantee that energy efficiency is considered from
the start when developing AI models.

6. Joint Research Projects: Lastly, encouraging cooperative research projects that unite
ML engineers with research scholars working on sustainability can enable the adoption of
sustainable AI practices.

Future studies can greatly improve our knowledge and control over energy usage in AI applications
by tackling these areas, which will eventually result in more ecologically friendly and sustainable
AI technologies.

68

Bibliography

[AAF12] V. Avelar, D. Azevedo, A. French. Pue: A comprehensive examination of the metric.
2012. url: https://www.thegreengrid.org/en/resources/library-and-tools/20-
pue%3A-a-comprehensive-examination-of-the-metric (visited on 05/22/2024)
(cit. on p. 29).

[ADMQ14] P. Alonso, M. F. Dolz, R. Mayo, E. S. Quintana-Orti. “Modeling power and energy con-
sumption of dense matrix factorizations on multicore processors”. In: Concurrency
and Computation: Practice and Experience 26 (Dec. 2014). doi: 10.1002/cpe.3162
(cit. on p. 30).

[Bel00] F. Bellosa. “The Benefits of Event-Driven Energy Accounting in Power-Sensitive
Systems”. In: Jan. 2000. doi: 10.1145/566726.566736 (cit. on p. 30).

[BM12] R. Basmadjian, H. de Meer. “Evaluating and modeling power consumption of multi-
core processors”. In: Proceedings of the 3rd International Conference on Future
Energy Systems: Where Energy, Computing and Communication Meet. e-Energy ’12.
Madrid, Spain: Association for Computing Machinery, 2012. isbn: 9781450310550.
doi: 10.1145/2208828.2208840. url: https://doi.org/10.1145/2208828.2208840
(cit. on p. 30).

[CJSM17] E. Cai, D.-C. Juan, D. Stamoulis, D. Marculescu. “NeuralPower: Predict and Deploy
Energy-Efficient Convolutional Neural Networks”. In: (2017). arXiv: 1710.05420
[cs.LG] (cit. on p. 68).

[CM05] G. Contreras, M. Martonosi. “Power prediction for intel XScale® processors using
performance monitoring unit events”. In: Proceedings of the 2005 International
Symposium on Low Power Electronics and Design. ISLPED ’05. San Diego, CA,
USA: Association for Computing Machinery, 2005, pp. 221–226. isbn: 1595931376.
doi: 10.1145/1077603.1077657. url: https://doi.org/10.1145/1077603.1077657
(cit. on pp. 20, 32, 40).

[CM15] M. Claesen, B. D. Moor. Hyperparameter Search in Machine Learning. 2015. arXiv:
1502.02127 [cs.LG] (cit. on p. 53).

[Cod20a] CodeCarbon. Carbon Intensity. 2020. url: https://mlco2.github.io/codecarbon/
methodology.html#carbon-intensity (visited on 04/28/2024) (cit. on pp. 47, 48).

[Cod20b] CodeCarbon. Germany Carbon Intensity Value. 2020. url: https://github.com/
mlco2/codecarbon/blob/master/codecarbon/data/private_infra/global_energy_

mix.json (visited on 04/28/2024) (cit. on p. 48).

[dev07] scikit-learn developers. MinMaxScaler. 2007. url: https://scikit-learn.org/
stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html (visited on
05/21/2024) (cit. on p. 41).

69

https://www.thegreengrid.org/en/resources/library-and-tools/20-pue%3A-a-comprehensive-examination-of-the-metric
https://www.thegreengrid.org/en/resources/library-and-tools/20-pue%3A-a-comprehensive-examination-of-the-metric
https://doi.org/10.1002/cpe.3162
https://doi.org/10.1145/566726.566736
https://doi.org/10.1145/2208828.2208840
https://doi.org/10.1145/2208828.2208840
https://arxiv.org/abs/1710.05420
https://arxiv.org/abs/1710.05420
https://doi.org/10.1145/1077603.1077657
https://doi.org/10.1145/1077603.1077657
https://arxiv.org/abs/1502.02127
https://mlco2.github.io/codecarbon/methodology.html#carbon-intensity
https://mlco2.github.io/codecarbon/methodology.html#carbon-intensity
https://github.com/mlco2/codecarbon/blob/master/codecarbon/data/private_infra/global_energy_mix.json
https://github.com/mlco2/codecarbon/blob/master/codecarbon/data/private_infra/global_energy_mix.json
https://github.com/mlco2/codecarbon/blob/master/codecarbon/data/private_infra/global_energy_mix.json
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

Bibliography

[Flo24] Flozz. pyPAPI GitHub. 2024. url: https://github.com/flozz/pypapi (visited on
05/22/2024) (cit. on p. 34).

[GLG+19] E. García-Martín, N. Lavesson, H. Grahn, E. Casalicchio, V. Boeva. “How to Measure
Energy Consumption in Machine Learning Algorithms”. In: ECML PKDD 2018
Workshops. Cham: Springer International Publishing, 2019, pp. 243–255. isbn:
978-3-030-13453-2 (cit. on pp. 25, 31, 40).

[GM16] B. Goel, S. A. McKee. “A Methodology for Modeling Dynamic and Static Power
Consumption for Multicore Processors”. In: 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 2016, pp. 273–282. doi: 10.1109/
IPDPS.2016.118 (cit. on p. 30).

[GRRG19] E. García-Martín, C. F. Rodrigues, G. Riley, H. Grahn. “Estimation of energy
consumption in machine learning”. In: Journal of Parallel and Distributed Computing
134 (2019), pp. 75–88. issn: 0743-7315. doi: https://doi.org/10.1016/j.jpdc.
2019.07.007. url: https://www.sciencedirect.com/science/article/pii/

S0743731518308773 (cit. on pp. 23, 24, 31, 40).

[HLK05] Y. Hu, Q. Li, C.-C. Kuo. “Run-time power consumption modeling for embedded
multimedia systems”. In: 11th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA’05). 2005, pp. 353–356.
doi: 10.1109/RTCSA.2005.86 (cit. on p. 31).

[HSA22] K. Haghshenas, B. Setz, M. Aiello. “CO2 Emission Aware Scheduling for Deep
Neural Network Training Workloads”. In: 2022 IEEE International Conference on Big
Data (Big Data). 2022, pp. 1542–1549. doi: 10.1109/BigData55660.2022.10020544
(cit. on pp. 20, 29, 31, 37).

[HSBA22] K. Haghshenas, B. Setz, Y. Bloch, M. Aiello. Enough Hot Air: The Role of Immersion
Cooling. 2022. arXiv: 2205.04257 [cs.DC] (cit. on p. 29).

[Jha11] S. Jha. “Poorly written apps can sap 30 to 40% of a phone’s juice”. In: CEO, Motorola
Mobility, Bank of America Merrill Lynch 2011 Technology Conference. 2011 (cit. on
pp. 17, 18).

[JM01] R. Joseph, M. Martonosi. “Run-time power estimation in high performance micro-
processors”. In: Proceedings of the 2001 International Symposium on Low Power
Electronics and Design. ISLPED ’01. Huntington Beach, California, USA: As-
sociation for Computing Machinery, 2001, pp. 135–140. isbn: 1581133715. doi:
10.1145/383082.383119. url: https://doi.org/10.1145/383082.383119 (cit. on
p. 30).

[KCK+01] I. Kadayif, T. Chinoda, M. Kandemir, V. Narayanan, M. Irwin, A. Sivasubramaniam.
“vEC: Virtual Energy Counters”. In: June 2001, pp. 28–31. doi: 10.1145/379605.
379639 (cit. on p. 31).

[Lil18] U. of Lille. pyRAPL 0.2.3.1. 2018. url: https://pypi.org/project/pyRAPL/ (visited
on 05/22/2024) (cit. on p. 34).

[Lil19] U. of Lille. Welcome to pyRAPL’s documentation! 2019. url: https://pyrapl.
readthedocs.io/en/latest/ (visited on 05/22/2024) (cit. on p. 34).

70

https://github.com/flozz/pypapi
https://doi.org/10.1109/IPDPS.2016.118
https://doi.org/10.1109/IPDPS.2016.118
https://doi.org/https://doi.org/10.1016/j.jpdc.2019.07.007
https://doi.org/https://doi.org/10.1016/j.jpdc.2019.07.007
https://www.sciencedirect.com/science/article/pii/S0743731518308773
https://www.sciencedirect.com/science/article/pii/S0743731518308773
https://doi.org/10.1109/RTCSA.2005.86
https://doi.org/10.1109/BigData55660.2022.10020544
https://arxiv.org/abs/2205.04257
https://doi.org/10.1145/383082.383119
https://doi.org/10.1145/383082.383119
https://doi.org/10.1145/379605.379639
https://doi.org/10.1145/379605.379639
https://pypi.org/project/pyRAPL/
https://pyrapl.readthedocs.io/en/latest/
https://pyrapl.readthedocs.io/en/latest/

Bibliography

[LJ03] T. Li, L. K. John. “Run-time modeling and estimation of operating system power
consumption”. In: Proceedings of the 2003 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems. SIGMETRICS ’03.
San Diego, CA, USA: Association for Computing Machinery, 2003, pp. 160–171.
isbn: 1581136641. doi: 10.1145/781027.781048. url: https://doi.org/10.1145/
781027.781048 (cit. on p. 31).

[Mai22] U. of Maine System. Running Average Power Limit Energy Reporting. 2022. url:
https://www.intel.com/content/www/us/en/developer/articles/technical/

software- security- guidance/advisory- guidance/running- average- power-

limit-energy-reporting.html (visited on 05/22/2024) (cit. on p. 34).

[MMDH99] P. Mucci, S. Moore, C. Deane, G. Ho. “PAPI: A Portable Interface to Hardware
Performance Counters”. In: (Jan. 1999) (cit. on p. 33).

[MMN+24] S. Minaee, T. Mikolov, N. Nikzad, M. Chenaghlu, R. Socher, X. Amatriain, J. Gao.
Large Language Models: A Survey. 2024. arXiv: 2402.06196 [cs.CL] (cit. on p. 17).

[MWKJ17] A. Mazouz, D. C. Wong, D. Kuck, W. Jalby. “An Incremental Methodology for
Energy Measurement and Modeling”. In: Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering. ICPE ’17. L’Aquila, Italy:
Association for Computing Machinery, 2017, pp. 15–26. isbn: 9781450344043. doi:
10.1145/3030207.3030224. url: https://doi.org/10.1145/3030207.3030224 (cit. on
p. 34).

[Pyp24] Pypapi. Welcome to PyPAPI’s documentation! 2024. url: https://flozz.github.
io/pypapi/ (visited on 05/22/2024) (cit. on p. 34).

[QTJ+06] Qianjie, C. Tianzhou, H. Jiangwei, Qianjie, C. Tianzhou, H. Jiangwei. “Power
Estimation for an Application on the Xscale Platform Using PMU events”. In:
International Conference on Digital Telecommunications (ICDT’06). 2006, pp. 43–
43. doi: 10.1109/ICDT.2006.61 (cit. on p. 32).

[RRL18] C. Rodrigues, G. Riley, M. Luján. “SyNERGY: An energy measurement and
prediction framework for Convolutional Neural Networks on Jetson TX1”. In: (Aug.
2018). doi: 10.13140/RG.2.2.36489.54881 (cit. on p. 68).

[RSR+17] V. Reddy, B. Setz, G. K. Rao, G. Gangadharan, M. Aiello. “Metrics for Sustainable
Data Centers”. In: IEEE Transactions on Sustainable Computing 2.03 (July 2017),
pp. 290–303. issn: 2377-3782. doi: 10.1109/TSUSC.2017.2701883 (cit. on pp. 20,
29).

[Sac23] G. Sachs. How quantifying Avoided Emissions can broaden the decarbonization
investment universe. 2023. url: https://www.goldmansachs.com/intelligence/
pages/gs-research/how-quantifying-avoided-emissions-can-broaden-the-

decarbonization-investment-universe/report.pdf (visited on 05/21/2024) (cit. on
p. 17).

[Sac24a] G. Sachs. AI, Data Centers and the Coming US Power Demand Surge. 2024. url:
https://www.goldmansachs.com/intelligence/pages/gs-research/generational-

growth-ai-data-centers-and-the-coming-us-power-surge/report.pdf (visited on
05/21/2024) (cit. on pp. 17–19).

71

https://doi.org/10.1145/781027.781048
https://doi.org/10.1145/781027.781048
https://doi.org/10.1145/781027.781048
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://arxiv.org/abs/2402.06196
https://doi.org/10.1145/3030207.3030224
https://doi.org/10.1145/3030207.3030224
https://flozz.github.io/pypapi/
https://flozz.github.io/pypapi/
https://doi.org/10.1109/ICDT.2006.61
https://doi.org/10.13140/RG.2.2.36489.54881
https://doi.org/10.1109/TSUSC.2017.2701883
https://www.goldmansachs.com/intelligence/pages/gs-research/how-quantifying-avoided-emissions-can-broaden-the-decarbonization-investment-universe/report.pdf
https://www.goldmansachs.com/intelligence/pages/gs-research/how-quantifying-avoided-emissions-can-broaden-the-decarbonization-investment-universe/report.pdf
https://www.goldmansachs.com/intelligence/pages/gs-research/how-quantifying-avoided-emissions-can-broaden-the-decarbonization-investment-universe/report.pdf
https://www.goldmansachs.com/intelligence/pages/gs-research/generational-growth-ai-data-centers-and-the-coming-us-power-surge/report.pdf
https://www.goldmansachs.com/intelligence/pages/gs-research/generational-growth-ai-data-centers-and-the-coming-us-power-surge/report.pdf

Bibliography

[Sac24b] G. Sachs. AI/Data Centers’ Global Power Surge and the Sustainability Impact. 2024.
url: https://www.goldmansachs.com/intelligence/pages/gs-research/ai-data-
centers-global-power-surge-and-sustainability-impact/report.pdf (visited on
05/21/2024) (cit. on pp. 17–19).

[SBM09] K. Singh, M. Bhadauria, S. A. McKee. “Real time power estimation and thread
scheduling via performance counters”. In: SIGARCH Comput. Archit. News 37.2
(July 2009), pp. 46–55. issn: 0163-5964. doi: 10.1145/1577129.1577137. url:
https://doi.org/10.1145/1577129.1577137 (cit. on p. 30).

[SCC+12] C. Sahin, F. Cayci, J. Clause, F. Kiamilev, L. Pollock, K. Winbladh. “Towards power
reduction through improved software design”. In: 2012 IEEE Energytech. 2012,
pp. 1–6. doi: 10.1109/EnergyTech.2012.6304705 (cit. on p. 18).

[SGM19] E. Strubell, A. Ganesh, A. McCallum. “Energy and Policy Considerations for Deep
Learning in NLP”. In: (2019). arXiv: 1906.02243 [cs.CL] (cit. on pp. 18, 32).

[SLL19] D. So, Q. Le, C. Liang. “The Evolved Transformer”. In: Proceedings of the 36th
International Conference on Machine Learning. Ed. by K. Chaudhuri, R. Salakhut-
dinov. Vol. 97. Proceedings of Machine Learning Research. PMLR, Sept. 2019,
pp. 5877–5886. url: https://proceedings.mlr.press/v97/so19a.html (cit. on
p. 18).

[TMWL96] V. Tiwari, S. Malik, A. Wolfe, M.-C. Lee. “Instruction level power analysis and
optimization of software”. In: Proceedings of 9th International Conference on VLSI
Design. 1996, pp. 326–328. doi: 10.1109/ICVD.1996.489624 (cit. on p. 29).

[WMV20] H. J. P. Weerts, A. C. Mueller, J. Vanschoren. Importance of Tuning Hyperparameters
of Machine Learning Algorithms. 2020. arXiv: 2007.07588 [cs.LG] (cit. on p. 53).

[WSS+23] C. White, M. Safari, R. Sukthanker, B. Ru, T. Elsken, A. Zela, D. Dey, F. Hutter.
Neural Architecture Search: Insights from 1000 Papers. 2023. arXiv: 2301.08727
[cs.LG] (cit. on p. 18).

[YLL+16] S. Yang, Z. Luan, B. Li, G. Zhang, T. Huang, D. Qian. “Performance Events Based
Full System Estimation on Application Power Consumption”. In: 2016 IEEE 18th
International Conference on High Performance Computing and Communications;
IEEE 14th International Conference on Smart City; IEEE 2nd International Confer-
ence on Data Science and Systems (HPCC/SmartCity/DSS). 2016, pp. 749–756. doi:
10.1109/HPCC-SmartCity-DSS.2016.0109 (cit. on p. 31).

72

https://www.goldmansachs.com/intelligence/pages/gs-research/ai-data-centers-global-power-surge-and-sustainability-impact/report.pdf
https://www.goldmansachs.com/intelligence/pages/gs-research/ai-data-centers-global-power-surge-and-sustainability-impact/report.pdf
https://doi.org/10.1145/1577129.1577137
https://doi.org/10.1145/1577129.1577137
https://doi.org/10.1109/EnergyTech.2012.6304705
https://arxiv.org/abs/1906.02243
https://proceedings.mlr.press/v97/so19a.html
https://doi.org/10.1109/ICVD.1996.489624
https://arxiv.org/abs/2007.07588
https://arxiv.org/abs/2301.08727
https://arxiv.org/abs/2301.08727
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0109

A List of Intel® Core™ i7-8565U CPU PMC
Data

Table 1: List of PMCs offered by Intel® Core™ i7-8565U CPU @ 1.80 GHz (142, 0x8e)
Name Code Avail Deriv Description (Note)
PAPI_L1_DCM 0x80000000 Yes No Level 1 data cache misses
PAPI_L1_ICM 0x80000001 Yes No Level 1 instruction cache misses
PAPI_L2_DCM 0x80000002 Yes Yes Level 2 data cache misses
PAPI_L2_ICM 0x80000003 Yes No Level 2 instruction cache misses
PAPI_L3_DCM 0x80000004 No No Level 3 data cache misses
PAPI_L3_ICM 0x80000005 No No Level 3 instruction cache misses
PAPI_L1_TCM 0x80000006 Yes Yes Level 1 cache misses
PAPI_L2_TCM 0x80000007 Yes No Level 2 cache misses
PAPI_L3_TCM 0x80000008 Yes No Level 3 cache misses
PAPI_CA_SNP 0x80000009 Yes No Requests for a snoop

PAPI_CA_SHR 0x8000000a Yes No Requests for exclusive access to shared
cache line

PAPI_CA_CLN 0x8000000b Yes No Requests for exclusive access to clean
cache line

PAPI_CA_INV 0x8000000c No No Requests for cache line invalidation
PAPI_CA_ITV 0x8000000d Yes No Requests for cache line intervention
PAPI_L3_LDM 0x8000000e Yes No Level 3 load misses
PAPI_L3_STM 0x8000000f No No Level 3 store misses
PAPI_BRU_IDL 0x80000010 No No Cycles branch units are idle
PAPI_FXU_IDL 0x80000011 No No Cycles integer units are idle
PAPI_FPU_IDL 0x80000012 No No Cycles floating point units are idle
PAPI_LSU_IDL 0x80000013 No No Cycles load/store units are idle
PAPI_TLB_DM 0x80000014 Yes Yes Data translation lookaside buffer misses

PAPI_TLB_IM 0x80000015 Yes No Instruction translation lookaside buffer
misses

PAPI_TLB_TL 0x80000016 No No Total translation lookaside buffer
misses

PAPI_L1_LDM 0x80000017 Yes No Level 1 load misses
PAPI_L1_STM 0x80000018 Yes No Level 1 store misses
PAPI_L2_LDM 0x80000019 Yes No Level 2 load misses
PAPI_L2_STM 0x8000001a Yes No Level 2 store misses

Continued on next page

73

A List of Intel® Core™ i7-8565U CPU PMC Data

Table 1 continued from previous page
Name Code Avail Deriv Description (Note)
PAPI_BTAC_M 0x8000001b No No Branch target address cache misses
PAPI_PRF_DM 0x8000001c Yes No Data prefetch cache misses
PAPI_L3_DCH 0x8000001d No No Level 3 data cache hits

PAPI_TLB_SD 0x8000001e No No Translation lookaside buffer
shootdowns

PAPI_CSR_FAL 0x8000001f No No Failed store conditional instructions

PAPI_CSR_SUC 0x80000020 No No Successful store conditional
instructions

PAPI_CSR_TOT 0x80000021 No No Total store conditional instructions

PAPI_MEM_SCY 0x80000022 No No Cycles Stalled Waiting for memory
accesses

PAPI_MEM_RCY 0x80000023 No No Cycles Stalled Waiting for memory
Reads

PAPI_MEM_WCY 0x80000024 Yes No Cycles Stalled Waiting for memory
writes

PAPI_STL_ICY 0x80000025 Yes No Cycles with no instruction issue
PAPI_FUL_ICY 0x80000026 Yes Yes Cycles with maximum instruction issue
PAPI_STL_CCY 0x80000027 Yes No Cycles with no instructions completed

PAPI_FUL_CCY 0x80000028 Yes No Cycles with maximum instructions
completed

PAPI_HW_INT 0x80000029 No No Hardware interrupts
PAPI_BR_UCN 0x8000002a Yes Yes Unconditional branch instructions
PAPI_BR_CN 0x8000002b Yes No Conditional branch instructions
PAPI_BR_TKN 0x8000002c Yes Yes Conditional branch instructions taken

PAPI_BR_NTK 0x8000002d Yes No Conditional branch instructions not
taken

PAPI_BR_MSP 0x8000002e Yes No Conditional branch instructions
mispredicted

PAPI_BR_PRC 0x8000002f Yes Yes Conditional branch instructions
correctly predicted

PAPI_FMA_INS 0x80000030 No No FMA instructions completed
PAPI_TOT_IIS 0x80000031 No No Instructions issued
PAPI_TOT_INS 0x80000032 Yes No Instructions completed
PAPI_INT_INS 0x80000033 No No Integer instructions
PAPI_FP_INS 0x80000034 No No Floating point instructions
PAPI_LD_INS 0x80000035 Yes No Load instructions
PAPI_SR_INS 0x80000036 Yes No Store instructions
PAPI_BR_INS 0x80000037 Yes No Branch instructions

PAPI_VEC_INS 0x80000038 No No Vector/SIMD instructions (could
include integer)

PAPI_RES_STL 0x80000039 Yes No Cycles stalled on any resource
Continued on next page

74

Table 1 continued from previous page
Name Code Avail Deriv Description (Note)
PAPI_FP_STAL 0x8000003a No No Cycles the FP unit(s) are stalled
PAPI_TOT_CYC 0x8000003b Yes No Total cycles
PAPI_LST_INS 0x8000003c Yes Yes Load/store instructions completed
PAPI_SYC_INS 0x8000003d No No Synchronization instructions completed
PAPI_L1_DCH 0x8000003e No No Level 1 data cache hits
PAPI_L2_DCH 0x8000003f No No Level 2 data cache hits
PAPI_L1_DCA 0x80000040 No No Level 1 data cache accesses
PAPI_L2_DCA 0x80000041 Yes No Level 2 data cache accesses
PAPI_L3_DCA 0x80000042 Yes Yes Level 3 data cache accesses
PAPI_L1_DCR 0x80000043 No No Level 1 data cache reads
PAPI_L2_DCR 0x80000044 Yes No Level 2 data cache reads
PAPI_L3_DCR 0x80000045 Yes No Level 3 data cache reads
PAPI_L1_DCW 0x80000046 No No Level 1 data cache writes
PAPI_L2_DCW 0x80000047 Yes Yes Level 2 data cache writes
PAPI_L3_DCW 0x80000048 Yes No Level 3 data cache writes
PAPI_L1_ICH 0x80000049 No No Level 1 instruction cache hits
PAPI_L2_ICH 0x8000004a Yes No Level 2 instruction cache hits
PAPI_L3_ICH 0x8000004b No No Level 3 instruction cache hits
PAPI_L1_ICA 0x8000004c No No Level 1 instruction cache accesses
PAPI_L2_ICA 0x8000004d Yes No Level 2 instruction cache accesses
PAPI_L3_ICA 0x8000004e Yes No Level 3 instruction cache accesses
PAPI_L1_ICR 0x8000004f No No Level 1 instruction cache reads
PAPI_L2_ICR 0x80000050 Yes No Level 2 instruction cache reads
PAPI_L3_ICR 0x80000051 Yes No Level 3 instruction cache reads
PAPI_L1_ICW 0x80000052 No No Level 1 instruction cache writes
PAPI_L2_ICW 0x80000053 No No Level 2 instruction cache writes
PAPI_L3_ICW 0x80000054 No No Level 3 instruction cache writes
PAPI_L1_TCH 0x80000055 No No Level 1 total cache hits
PAPI_L2_TCH 0x80000056 No No Level 2 total cache hits
PAPI_L3_TCH 0x80000057 No No Level 3 total cache hits
PAPI_L1_TCA 0x80000058 No No Level 1 total cache accesses
PAPI_L2_TCA 0x80000059 Yes Yes Level 2 total cache accesses
PAPI_L3_TCA 0x8000005a Yes No Level 3 total cache accesses
PAPI_L1_TCR 0x8000005b No No Level 1 total cache reads
PAPI_L2_TCR 0x8000005c Yes Yes Level 2 total cache reads
PAPI_L3_TCR 0x8000005d Yes Yes Level 3 total cache reads
PAPI_L1_TCW 0x8000005e No No Level 1 total cache writes
PAPI_L2_TCW 0x8000005f Yes Yes Level 2 total cache writes
PAPI_L3_TCW 0x80000060 Yes No Level 3 total cache writes
PAPI_FML_INS 0x80000061 No No Floating point multiply instructions
PAPI_FAD_INS 0x80000062 No No Floating point add instructions

Continued on next page

75

Table 1 continued from previous page
Name Code Avail Deriv Description (Note)
PAPI_FDV_INS 0x80000063 No No Floating point divide instructions
PAPI_FSQ_INS 0x80000064 No No Floating point square root instructions
PAPI_FNV_INS 0x80000065 No No Floating point inverse instructions
PAPI_FP_OPS 0x80000066 No No Floating point operations

PAPI_SP_OPS 0x80000067 Yes Yes
Floating point operations; optimised to
count scaled single precision vector
operations

PAPI_DP_OPS 0x80000068 Yes Yes
Floating point operations; optimised to
count scaled double precision vector
operations

PAPI_VEC_SP 0x80000069 Yes Yes Single precision vector/SIMD
instructions

PAPI_VEC_DP 0x8000006a Yes Yes Double precision vector/SIMD
instructions

PAPI_REF_CYC 0x8000006b Yes No Reference clock cycles

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Problem Statement
	1.2 RQ
	1.3 Thesis Organisation

	2 Background
	2.1 Energy Consumption
	2.2 Tools to Measure Energy Consumption of AI Applications
	2.3 Approaches to Measure Energy Consumption of AI Applications

	3 Related Work
	4 Tools Utilised
	4.1 PAPI
	4.2 RAPL Interface

	5 Methodology
	6 PMC Based Energy Estimation Model
	6.1 Evaluation of Linux PMCs
	6.2 Energy Consumption and PMC Correlation
	6.3 Linear Regression Energy Model
	6.4 Results
	6.5 CO2 Emission Estimation of AI Applications

	7 Hyperparameters and Architecture Optimisation for Energy Conservation of AI Applications
	7.1 Epoch
	7.2 Activation Function
	7.3 Batch Size
	7.4 Number of Layers
	7.5 LR

	8 Conclusion
	Bibliography
	A List of Intel® Core™ i7-8565U CPU PMC Data

