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The Tables Turned by William Wordsworth

Up! up! my Friend, and quit your books;
Or surely you’ll grow double:
Up! up! my Friend, and clear your looks;
Why all this toil and trouble?

The sun, above the mountain’s head,
A freshening lustre mellow
Through all the long green fields has spread,
His first sweet evening yellow.

Books! ’tis a dull and endless strife:
Come, hear the woodland linnet,
How sweet his music! on my life,
There’s more of wisdom in it.

And hark! how blithe the throstle sings!
He too, is no mean preacher:
Come forth into the light of things,
Let Nature be your Teacher.

She has a world of ready wealth,
Our minds and hearts to bless –
Spontaneaous wisdom breathed by health,
Truth breathed by cheerfulness.

One impulse from the vernal wood
May teach you more of man,
Of moral evil and of good,
Than all the sages can.

Enough of Science and of Art;
Close up the barren leaves;
Come forth, and bring with you a heart
That watches and receives.
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Abstract

Abstract

Microbial communities provide the potential to support, reorganise, and design complex
biological processes. However, interactions among microorganisms have not yet been fully
explored. Hence, this work draws a line from the benefits available in microbial commu-
nities, over existing techniques studying systems with interacting cells, to a newly devel-
oped compartmentalized fermentation system. The further developing food industry, white
biotechnology, and sustainability concepts demand new bioprocesses. Thus, understand-
ing microbial interactions, how to quantify molecules exchanged among microorganisms,
and the development of techniques with which to analyse microbial communities require
further exploration. Biological systems involving one bacterial strain (mono-culture) have
been investigated in detail and applied to biotechnology. However, less is understood about
systems comprising two (co-culture) or more bacterial strains (community).

The relevant driving issues are how to determine and quantify intra- and intercellular fluxes
and which tools can be applied to improve co-culture technology. Different cell strains in a
co-culture or microbial community might consume or produce the same molecules, which
impedes strain-specific mapping. State-of-the-art methods are not generally applicable
to individual analyses of co-cultured bacterial strains. This hinders the establishment of
predictive models for microbial interactions due to missing strain-specific data.

Therefore, this dissertation considers three strategies for co-culture analysis. The first out-
lines 13C-MFA to calculate intra- and intercellular metabolic fluxes. The second strives for
strain-specific characterisation of a co-culture after cell inactivation and separation. The
third attempts the quantification of strain-specific fluxes in a two-compartment fermenta-
tion system.

This leads to the following results:

• Metabolic interactions between S. thermophilus and L. bulgaricus were quantified
under defined conditions. The results showed that amino acid release rates in co-
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Abstract

cultures were not equivalent to the sum of these rates in individual cultures. A
genome-scale and a pH-dependent kinetic model of L. bulgaricus were created us-
ing experimental datasets. Simulations using the kinetic model explained the faster
growth of L. bulgaricus in a medium containing casein via preferred uptake and
enabled the prediction of acidification profiles during cultivation.

• The potential of compartmentalised mathematical models comprising two interlinked
metabolic networks to reveal flux distribution was determined. Differences in simu-
lated flux profiles exploiting and ignoring compartment-specific data, such as those
of cytosol and mitochondria were investigated. Although cellular analysis provided
good estimates of most intracellular fluxes in the two compartments when non-
compartment-specific data were derived from IgG1-producing Chinese hamster ovary
cells, some fluxes widely differed. Accurate flux estimation of almost all isoenzymes
depends on the presence of subcellular labelling information. Hence, compartment-
specific 13C analysis is a prerequisite for identifying compartment-specific flux distri-
butions.

• Cells were rapidly heat-inactivated to stop metabolic activity and obtain precise
metabolomic data. A developed inactivation device comprised a thin capillary en-
cased in an aluminium block. A retention time of 0.1 s at 160 ◦C was sufficient to
stop metabolic activity of L. bulgaricus while maintaining membrane integrity. How-
ever, the medium contained casein, which clogged the capillary, rendering this system
unsuitable for inactivating lactic acid bacteria.

• The novel compartmentalised cultivation system presented herein enabled the in-
vestigation of interactions between two microbial strains at the metabolic level. A
membrane separating the two compartments allowed for the exchange of amino acids
and peptides between the strains but retained the biomass. The two compartments
enabled quantification of strain-specific production and consumption rates of amino
acids in interacting S. thermophilus-L. bulgaricus co-cultures.
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Abstract

The major topic of this dissertation is the quantification of metabolic interactions between
microorganisms, in particular S. thermophilus and L. bulgaricus. Using several strategies,
this work expands theoretical and experimental methods, and applies a new bioprocess.
The data led to the conclusion that behavior differs between mono- and co-cultured cells.
Hence, understanding co-cultures as well as microbial communities using mechanistic and
data-driven modelling requires a basis of experimental data. The methods and results
presented herein elevate extant co-culture technology, enable a more detailed picture of
intercellular metabolic activity, and promote economic and ecological applications involving
the benefits of microbial interactions.
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Zusammenfassung

Zusammenfassung

Mikrobielle Gemeinschaften bieten das Potenzial, komplexe biologische Prozesse zu unter-
stützen, zu reorganisieren und zu entwickeln. Die Interaktionen zwischen den Mikroor-
ganismen sind jedoch noch nicht vollständig erforscht. Daher erstreckt sich diese Arbeit
von den Vorteilen, die mikrobielle Gemeinschaften bieten, über bestehende Techniken, die
Systeme mit interagierenden Zellen untersuchen, bis hin zu einem neu entwickelten kompar-
timentierten Fermentationssystem. Die sich weiterentwickelnde Lebensmittelindustrie, die
weiße Biotechnologie und Nachhaltigkeitskonzepte suchen nach neuen Bioprozessen. Daher
sollen mikrobielle Interaktionen, die Quantifizierung der zwischen den Mikroorganismen
ausgetauschten Moleküle und die Entwicklung von Techniken zur Analyse der mikrobiellen
Gemeinschaften weiter erforscht werden. Biologische Systeme mit einem Bakterienstamm
(Monokultur) sind eingehend untersucht und in biotechnologischen Prozessen angewandt
worden. Systeme, die zwei (Kokultur) oder mehr Bakterienstämme (Gemeinschaft) um-
fassen, werden selten berücksichtigt.

Dabei geht es um die Frage, wie intra- und interzelluläre Flüsse bestimmt und quan-
tifiziert werden können und welche Techniken zur Verbesserung der Kokultur-Technologie
eingesetzt werden können. Verschiedene Zellstämme in einer Kokultur oder mikro-
biellen Gemeinschaft können dieselben Moleküle aufnehmen oder produzieren, was eine
stamm-spezifische Zuordnung erschwert. Methoden, die dem neuesten Stand der Technik
entsprechen, sind im Allgemeinen nicht auf individuelle Analysen von kokultivierten Bak-
terienstämmen anwendbar. Dies erschwert die Erstellung von Modellen zur Vorhersage von
mikrobiellen Interaktionen durch fehlende stamm-spezifischer Daten.

In dieser Dissertation werden daher drei Strategien für die Analyse von Kokulturen betra-
chtet. In der ersten wird die 13C Metabolische Flussanalyse zur Berechnung der intra- und
interzellulären Stoffwechselflüsse vorgestellt. In der zweiten wird eine stamm-spezifische
Charakterisierung einer Kokultur nach Zellinaktivierung und -trennung angestrebt. Die
dritte Strategie versucht die Quantifizierung stamm-spezifischer Flüsse in einem Zwei-
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Zusammenfassung

Kompartiment-Fermentierungssystem.

Dies führt zu den folgenden Ergebnissen:

• Die metabolischen Interaktionen zwischen S. thermophilus und L. bulgaricus wurden
unter definierten Bedingungen quantifiziert. Das Ergebnis zeigt, dass die Produktion-
sraten von Aminosäuren in Kokulturen nicht den Summen dieser Raten in Monokul-
turen entsprechen. Ein genomisches und ein pH-abhängiges kinetisches Modell von
L. bulgaricus wurden mit Hilfe von experimentellen Daten erstellt. Simulationen des
kinetischen Modells erklärten das schnellere Wachstum von L. bulgaricus in kasein-
haltigem Medium durch höhere Aufnahmeraten und ermöglichten die Vorhersage von
Ansäuerungsprofilen während einer Kultivierung.

• Um das Verhalten von Kokulturen vorherzusagen, wurde das Potenzial von kompar-
timentierten mathematischen Modellen, die zwei miteinander verknüpfte Stoffwech-
selnetzwerke umfassen, zur Entschlüsselung von Flussverteilungen erforscht. Unter-
sucht wurden die Unterschiede zwischen simulierten Flussprofilen, die kompartiment-
spezifische Daten, wie die des Zytosols und der Mitochondrien berücksichtigen,
und solchen, die sie ignorieren. Obwohl die Zellanalyse eine gute Schätzung
der meisten intrazellulären Flüsse in den beiden Kompartimenten lieferte, wenn
nicht kompartiment-spezifische Daten von IgG1-produzierenden Ovarialzellen des
chinesischen Hamsters verwendet wurden, wichen einige Flüsse stark voneinan-
der ab. Die Güte der Flussberechnung fast aller Isoenzyme hängt von vorhan-
denen Informationen über die subzelluläre Markierung ab. Daher schafft die
kompartiment-spezifische 13C-Markierungsanalyse eine Voraussetzung für die Ermitt-
lung kompartiment-spezifischer Flussverteilungen.

• Um präzise Metabolomdaten zu erhalten, wurden Zellen schnell hitzeinaktiviert und
dadurch deren Stoffwechselaktivität gestoppt. Eine entwickelte Inaktivierungsvor-
richtung bestand aus einer dünnen Kapillare, die von einem Aluminiumblock um-
schlossen war. Eine Verweilzeit von 0,1 s bei 160 °C genügte, um die Stoffwechse-
laktivität von L. bulgaricus zu stoppen und gleichzeitig die Membranintegrität zu
erhalten. Die Verwendung eines Kultivierungsmedium mit Kasein führte jedoch zur
Verstopfung der Kapillare. Daher war die Vorrichtung nicht für die Inaktivierung
von Milchsäurebakterien geeignet.

• Das hier vorgestellte, neuartige und zwei Kompartimente umfassende Kul-
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tivierungssystem ermöglichte die Untersuchung der Interaktionen zwischen zwei
Mikrobenstämmen auf der Stoffwechselebene. Eine Membran, die beide Kompar-
timente trennt, ermöglichte den Austausch von Aminosäuren und Peptiden zwischen
den Stämmen und verhindert die Vermischung der beiden Zelltypen. Die beiden Kom-
partimente ermöglichten die Quantifizierung der stamm-spezifischen Produktions-
und Aufnahmeraten von Aminosäuren in interagierenden S. thermophilus-L. bulgar-
icus Kokulturen.

Das übergeordnete Forschungsthema dieser Dissertation ist die Quantifizierung der
metabolischen Interaktion zwischen Mikroorganismen, im Speziellen von S. thermophilus
und L. bulgaricus. Dies wurde in mehreren Strategien angestrebt, die theoretische und ex-
perimentelle Methoden und ein neues Fermentationssystem umfassen. Die Daten führten
zu der Schlussfolgerung, dass sich das Verhalten zwischen mono- und kokultivierten Zellen
unterscheidet. Um Kokulturen und mikrobielle Gemeinschaften mit Hilfe mechanistis-
cher und daten-basierter Modellierung zu verstehen, bedarf es daher grundlegender exper-
imenteller Daten. Die hier vorgestellten Methoden und Ergebnisse erweitern die bestehen-
den Arbeiten zu Kokulturen, schaffen ein detaillierteres Bild der interzellulären Stoffwech-
selaktivität und fördern wirtschaftliche und ökologische Anwendungen, die die Vorteile der
mikrobiellen Interaktionen nutzen.
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Introduction

Chapter 1

Introduction

Predictions indicate that 1012 microbial species populate the Earth [168]. An immense
number of microorganisms have great potential as powerful tools that can enable many
applications [57, 64, 155]. Microbial databases provide information about thousands of
enzymes that accelerate various chemical reactions [41, 43], and synthetic biology expands
and optimises existing cellular systems [48]. However, microorganisms in natural habitats
do not live solitary lives. Cells interact with various organisms and shape environments
such as water, soil, and animal intestines [171, 306]. Estimates have indicated more
numerous bacterial than other cells in humans [257].

Analysing microbial interactions helps to understand fundamental processes such as
bacterial communication [19], enables reshaping for gaining health and environmental
benefits [332], plays an essential role in a sustainable economy [266, 272], and opens the
door to the application of (synthetic) microbial communities to improved biotechnological
applications [113]. Consequently, the application potential of two or more interacting
microbes [92, 144] in natural and synthetic co-cultures to industrial use has been investi-
gated [33, 181, 261, 313].

Interacting bacteria in natural or synthetic communities might confer benefits over mono-
cultures, because the metabolic burden imposed by processes such as gene expression
of desirable compounds is divided among them (fig. 1.1) [93, 197, 317]. Furthermore,
the distribution of reaction pathways among bacteria is beneficial because specialised
cellular compartments satisfy reaction-specific cofactor and precursor requirements [137],
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Figure 1.1: Partitioning a reaction cascade comprising cell segments 1 and 2 into different
compartments such as bacterial strains, increases metabolic power and estab-
lishes advantageous reaction environments that result in increased productivity.

or increase prokaryotic and eukaryotic enzyme activities [330].

Additional advantages, such as reduced control requirements, occur in natural habitats
and industrial processes, including interacting microorganisms. For instance, when applied
to wastewater treatment, microbial communities [58] are more robust against substrate
fluctuations as more metabolic alternatives are available [331]. Their stability is further
enhanced by competing interactions between species (fig. 1.2)[50]. Toxic by-products can
be immediately degraded by another strain [243], thus increasing the long-term persistence
of the process and decreasing amounts of inadvertent products.

Interactions between microorganisms are based on a wide spectrum of chemical molecules
[61] that possess huge potential for medical and industrial applications. Deciphering
chemically based molecules provides a tool to affect microbial communities for medical
purposes and to discover new antibiotics [24, 228, 255]. However, most of these biosyn-
thetic pathways are inactive under mono-culture fermentation conditions [52, 219] and
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Figure 1.2: The stability of a microbial communities increases with more competitive in-
terspecies interactions and increased numbers of species. Perturbation of a
microbial community with insufficient competition or numbers of species (top)
and stable responses to perturbation due to sufficient competition or species
numbers (bottom). (Adapted from [50])

require co-culture conditions for activation.

The applications involving co-cultures [192, 242] have been extended by recent improve-
ments and include:

• Expansion of strain libraries providing numerous co-culture combinations.

• Discovery of stimulated co-cultured microorganisms that produce antibiotics [24].

• Innovations in synthetic biology enabling designed synthetic co-cultures [95, 151].

• Increased availability of genome-scale models has revealed metabolic potential of
many microorganisms [3, 268, 287] and enables reconstruction of metabolic networks
in microbial communities [271] to optimise their productivity.

• Enhanced computation power [109] and smartly reduced requirements to compute
metabolic models of communities [333].

The rising potential of co-cultures is also indicated by an increase in the number of pub-
lished reports (fig. 1.3).
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Figure 1.3: Annual increases in numbers of published articles mentioning co-cultures (1990
to 2021). Data were derived from a GoogleScholar search using the terms "co-
culture" or "coculture".
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1.1 Examples of co-culture processes

Processes that include co-cultures and microbial communities include food, beverage,
biogas production, and wastewater treatment [243]. Over the last decade, co-cultures have
been applied [71, 82, 210, 298, 324, 334] to produce flavonoids [137], tryptamine [298],
3-amino-benzoic acid [324], caproic acid [117], and anthranilate [191]. These individual
co-cultured strains have provided a modular basis for new co-culture combinations, thus
reducing the amount of time required for construction, optimisation, and evaluation [305,
324, 330].

1.2 S. thermophilus-L. bulgaricus co-cultures

Gram-positive, non-sporulating L. bulgaricus and S. thermophilus are co-cultured for dairy
fermentation [115, 116, 184, 264, 291]. Interactions between these lactic acid bacteria are
promoted in food products, such as yogurt, resulting in increased acidification. Various
combinations of strains have led to numerous acidification profiles, textures, and tastes.
To fully understand molecular exchange between these bacteria in co-cultures requires
knowledge of the molecules that they consume and produce [179].

Many L. bulgaricus and S. thermophilus strains are available. Thus, rapid and reliable
methods are needed to characterize strains in mono- and co-cultures; this would pave the
way to rational co-culture assembly, fermentation using plant-based substrates [183, 318],
and metabolic engineering [122, 124, 297]. Only a small subset of all possible co-culture
combinations has been analysed. Thus, comparable experiments quantifying strain-specific
rates would lay a foundation for modelling approaches [268] to predict the co-culture prop-
erties [105, 108, 110, 271] of S. thermophilus, L. bulgaricus, and other microorganisms [287].

1.3 Demands of co-culture technology

Several requirements were identified to fully understand and develop the potential of co-
cultures (A–E).

5



Introduction

(A) The key to realising the potential of co-cultures is the quantification of strain-specific
fluxes, enabling the mapping, prediction, and control [174, 229] of highly dynamic
co-cultures by mathematical representation [31, 63, 98, 287]. This is difficult to
achieve because individual strains in co-cultures often produce or consume the same
molecules. Measuring the extracellular concentration profiles does not always reveal
strain-specific rates because only cumulated fluxes are measured (fig. 1.4)[251]. Inter-
action studies have used plating, flow cytometry, and microfluidics [38] to determine
the composition of various populations [86, 250]. However, computational approaches
rely on strain-specific uptake or consumption rates to reveal flux distribution [268].
Predicting individual growth rates, substrate consumption, and product yields en-
ables the identification of bottlenecks that impede the increased production of target
molecules [109, 293]. Furthermore, disclosed and quantified flux distributions are fun-
damental for metabolic engineering to improve targeted processes [316]. Modelling
the molecular basis of interactions by using strain-specific biochemical knowledge
and high-throughput molecular data [44] enables the calculation and prediction of
molecular exchanges between strains [110].

(B) Efforts in synthetic biology [48] allow for manifold applications of these principles to
design new microbial co-cultures [136]. A toolbox of known interacting mechanisms
between microorganisms it is essential to design new synthetic co-cultures [176]. How-
ever, the identification of further interaction processes can support existing efforts
[109, 265, 314] and optimise synthetic co-cultures [95, 278].

(C) Immense libraries of microbial species must be characterised to determine their
metabolic potential in co-cultures. Computational methods support the challenging
characterisation of all possible combinations [31]. However, they rely on minimum
amounts of necessary experiments and data [268]. Such metabolic characterisation
of the immense diversity of microbial species [109] opens the door to their potential
and enables the smart evolution of co-culture processes.

(D) Maintaining stable coexisting co-culture fermentation is difficult because microorgan-
isms have different growth rates or compete for growth resources, which can result in
strain overgrowth [324]. The adjustment of strain-to-strain ratios in co-cultures, par-
ticularly during continuous fermentation, is challenging because both strains might be
affected. Thus, manipulating population composition is key to co-culture processes
[324]. A carefully selected and maintained biomass ratio prevents the washout of a
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Figure 1.4: Calculation of strain-specific fluxes in co-culture models. Measuring cumulated
consumption or production rates to constrain solution space in models is insuffi-
cient to calculate strain-specific fluxes as combined substrate uptake or product
release is considered. Only strain-specific measurements can reveal individual
rates.

strain or the accumulation of intermediates, thus leading to more efficient processes.

(E) To reveal the metabolic activity of microorganisms, uncover interactions between
microorganisms, and extend the toolbox of bio-based processes with mono- and co-
culture, the performance of reproducible cultivations are fundamental. Especially in
co-culture fermentation, protocols and methods for the on-time preparation of all
strains are essential. However, they still shows white spots and need to be extended.
Well-functioning experimental protocols allow studies of physiological characterisa-
tion using genomic, transcriptomic, or proteomic approaches [154, 289, 300]. Pro-
found metabolomic studies serve as a basis for mathematical descriptions such as
kinetic or genome-scale models [188].

Three strategies for studying interactions among microorganisms at the molecular level
are outlined below to address these needs and gain strain-specific information. Subse-
quent chapters focus on these strategies and investigate and discuss the realisation using
L. bulgaricus and S. thermophilus as an example.

7



Introduction

Table 1.1: Demands to study interactions between microorganisms and to expand applica-
bility of co-culture processes.

Requirements Advantages Chapter

A Quantification of strain-
specific fluxes

Predict, improve, and
control co-culture pro-
cesses

Methods to quantify
strain-specific fluxes:
chapters 6–8

B Mechanistic description
of interaction processes

Design new synthetic
co-cultures

Examples of mechanis-
tic models: chapters 4
and 5. Strategies for co-
culture: chapters 6–8

C Experimental data sets
of different co-cultures

Characterize diversity
of co-cultures

Datasets of S. ther-
mophilus-L. bulgaricus
co-cultures: chapters 3
and 8. Strain-specific
data acquisition: chap-
ters 6–8.

D Techniques to adjust
strain-to-strain ratios

Continuous co-culture
fermentation

Co-culture cultivation
system: chapter 8

E Reproducible cultiva-
tion conditions for used
microorganisms

In-depth metabolomic
studies

Experimental methods
to cultivate S. ther-
mophilus and L. bulgar-
icus: chapters 3 and 7

Right column, chapter: location of information.

Figure 1.5: Overview of three strategies to reveal strain-specific flux distribution in micro-
bial co-cultures. (Left) 13C Metabolic Flux Analysis based on labelled substrate
and product. Circles, carbon atoms. Red circle, one 13Carbon atom. (Cen-
ter) Cell inactivation and separation to analyse individual strains. (Right)
Co-cultures in compartmentalized system enables strain-specific sampling and
subsequent analysis. Created with BioRender.com.
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1.4 Strategy 1: 13C-Metabolic flux analysis of
compartmentalized systems to calculate
compartment-specific flux distribution

A sophisticated 13C-MFA [309] was outlined to unravel intracellular flux distribution in
co-cultures [322], and its practicability was demonstrated [85, 89] (fig. 1.5, left). However,
13C-MFA might not be universally applicable to all co-culture networks because it contains
overlapping metabolic activities [322]. Access to strain-specific measurements can overcome
this limitation, but they are difficult to obtain in co-cultures [243]. Chapter 6 describes a
13C-MFA of data comprising two compartments – similar to a co-culture – and highlights
the analytical barriers overcome by compartment-specific information. Quantification of
stoichiometric networks by 13C MFA does not reveal kinetic information [84, 278, 285],
but efforts have been directed towards merging these needs [134, 201, 202]. In addition,
information about regulation is lacking. Creating 13C models requires effort and time and
13C labelled substrates can be costly or available only in small amounts.

1.5 Strategy 2: Inactivation, separation and
subsequent analysis of individual strains grown in
co-culture

A method that consists of cell inactivation, separation, and individual analysis was consid-
ered and clarified based on the example of S. thermophilus and L. bulgaricus to quantify
strain-specific flux distribution in co-cultures. As indcated, fig. 1.5, center outlines sep-
aration based on morphological differences [269]. Lactic acid bacterial cell inactivation,
while simultaneously maintaining cell integrity has not been reported until now. Chap-
ter 7 describes a method for rapidly inactivating S. thermophilus and L. bulgaricus while
maintaining cell integrity.

9



Introduction

1.6 Strategy 3: A compartmentalized cultivation
system for co-cultures to quantify strain-specific
fluxes

Spatially separated co-cultivation enables the sampling of strain-specific information [95],
such as intracellular metabolite pools. However, extant microfluidic systems [38, 39, 118],
cell culture inserts [120], and cell culture plates [132] do not provide a sufficient volume
for analysis. Furthermore, dialysis bioreactors, as reviewed here [221] are promising, but
expensive due to the high cost of techniques and media, and assembly is time-consuming,
which is a burden when analysing numerous co-cultures. Chapter 8 describes the devel-
opment and application of a new compartmentalised cultivation system that generates
strain-specific information. Continuous cultivation enables strain-specific flux quantifica-
tion (fig. 1.5, right).

1.7 Alternative strategies for studying interactions
among microorganisms

Microdroplets containing individual cells allow high-throughput screening of co-cultures
based on extracellular production [114, 279]. Microdroplet production and sorting are
inexpensive, but metabolome studies can be impeded by low volumes of droplets and cell
numbers.

One type of cells has been immobilised in traps for interaction studies [73]. However, this
creates a gradient for the immobilised cell type and does not offer a sufficient biomass for
subsequent metabolomics.

Co-cultured cells have been fixed in a hydrogel [6]. However, because gels are not liquid,
problems with substrate supply and product allocation can arise, resulting in considerable
heterogeneity.

Fluorescence-based sorting enables cell-specific analyses. However, natural co-cultures
must first be labelled with fluorescence [239, 260]. This might be possible for synthetic
co-cultures, but the expression of fluorescent proteins is a burden on metabolism, and the
accumulation of a sufficient biomass for metabolomics might be difficult. Genome editing
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is avoided for S. thermophilus and L. bulgaricus used in organic food production.

1.8 Study objective

The study described herein aimed to quantify flux distribution in co-cultures. Therefore,
cultivation methods for S. thermophilus and L. bulgaricus were developed to enable their
growth in mono- and co-cultures. Three strategies were evaluated, discussed, and quan-
tification of flux distributions in interacting S. thermophilus and L. bulgaricus co-cultures
was attempted.

The results will increase physiological understanding and enable co-culture reshaping as
well as the use of metabolic engineering to create synthetic co-cultures.

The following chapters illustrate the potential of co-cultures, clarify requirements for co-
culture models, describe the development of experimental methods for strain-specific quan-
tification in co-cultures, and present advanced co-culture cultivation technologies.

This dissertation aims to fill four research gaps as outlined in the following section (fig. 1.6).

(i) Chapters 3 to 5, 7 and 8 describe the metabolic potential of S. thermophilus and
L. bulgaricus in mono- and co-cultures determined using experimental methods for
reproducible cultivation, biomass determination, metabolite profiling, and strain-
specific analysis.

(ii) Chapters 6 to 8 evaluate and discuss these three strategies. Proof-of-concept was at-
tempted to quantify promising flux distribution in interacting co-cultures of S. ther-
mophilus and L. bulgaricus (chapter 8). This allowed for a deeper understanding,
prediction, engineering, and control of co-cultures.

(iii) Chapters 4 and 5 describe a stoichiometric and kinetic model of L. bulgaricus to
provide computational tools. Chapter 6 describes 13C-MFA in a two-compartment
system and outlines limitations associated with analysing intertwined pathways.

(iv) Chapter 8 describes a useful tool for establishing beneficial co-culture processes such
as continuous fermentation.
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Figure 1.6: Outline of dissertation and assignment of chapters.
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Chapter 2

Scientific Background

2.1 Interaction between microorganisms

The cultivation of two different species with a desired interaction targeting their cellular
activity is called co-culture. This system comprising two different organisms is composed
of intra- and inter-kingdom species, such as bacterial-bacteria, bacterial-fungal, or
bacteria-algae species [326]. Microbial communities comprise more than two different
organisms and are also called mixed culture, multi-species, or mixed-species consortium.
Besides naturally occurring communities, synthetic communities were developed [95].
However, it is difficult to establish a stable and controllable state [189].

The interaction between microbes is favored by the reduced availability of resources such
as carbon sources. The interaction results in efficient utilization and consequently an ad-
vantage over other non-interacting cells [90]. Also, this might explain why the cultivation
of 99.8% of all microbes is not possible in mono-culture [273] indicating their dependence
on other microbes [227]. Microorganisms interact through physical contact, signaling
molecules, or indirectly by changing the physio-chemical properties of an environment [265].

The interaction can be bi-directional (mutualism, parasitism, competition) or uni-
directional (commensalism, amensalism) [133]:

• Mutualism (+/+) (also named symbiosis, cooperation, or proto-cooperation): This
interaction results in positive effects for both species. The interaction can be oblig-
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atory or facultative. For example, species A consumes a waste product from species
B and prevents product inhibition of species B [101, 264].

• Parasitism (+/-): A species benefits from another species while imposing a negative
effect. For example, Species A consumes a product of species B and secretes a
molecule that is toxic for species B [101].

• Competition (-/-): Two species compete for the same resource such as the same
carbon source [101].

• Commensalism (+/0): A species profits from another species without affecting this
species. For example, species A consumes a waste product from species B [101].

• Amensalism (-/0): A species affects negatively another species without any benefits.
For example, a waste product inhibits the growth of species B [101].

2.2 Application of co-cultures

Co-culture processes can be beneficial by division of labor such as reduced metabolic bur-
den, compartment-specific environments [93, 326], or the secretion of specific products
[330]. A co-culture is often not the sum of the included species [314]. Further, co-cultures
might overcome inefficiencies or can use complex substrates such as lignocellulose in a more
beneficial process [133] [chapter 1].

2.3 Modelling of co-cultures

To understand co-cultures and to apply them in an industrial process, it is important to
understand their interaction and to predict their behavior. Therefore, mathematical ap-
proaches are necessary. Further, this allows for improving the co-culture systems. Sequenc-
ing techniques allow the establishment of genome-scale models [203] and the metabolic
potential can be revealed [285], but quantitative data sets are needed to constrain the
solution space of these models in more depth [268, 322]. Hence, metabolic models can be
used to represent and predict the metabolic fluxes between species. These stoichiometric
metabolic models lack kinetic information and regulatory effects reducing the precision of
the simulation [276, 285]. Therefore, the development of kinetic models which might later
be merged with genome-scale models is still an expanding field [201].
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2.3.1 Flux balance analysis (FBA)

Stoichiometric metabolic models based for example on genome-scale reconstructions can
be analysed by Flux Balance Analysis (FBA) [205]. Assuming a steady-state of the system,
the flux vector can be calculated. To constrain the solution space, measurements such as
uptake or production rates, as well as enzymatic capacities can be included as lower and
upper bounds of reaction fluxes [234]. Easily, gene knockouts or different conditions such
as substrate influx can be simulated. The objective function – such as biomass production
– is optimized in an FBA resulting in a specific solution [205].

2.3.2 Community flux balance analysis

A metabolic network comprising different compartments is used to predict fluxes by an
FBA [271]. This demands high computational resources because at least two networks are
connected [333].

2.3.3 Metabolic flux analysis (MFA)

The MFA calculates fluxes in a fully determined stoichiometric network while the FBA
is underdetermined. The additional information to determine a system is gained from
measurements, in particular from intracellular measurements gained from an isotopic tracer
experiment [10, 309].

2.3.4 13C metabolic flux analysis (13C-MFA)

The 13C-MFA [309] allows for the calculation of fluxes in cells by using a 13C labelled sub-
strate. The uptake of the substrate, the release of a product, and intermediate metabolite
pools are measured. This data set allows the calculation of metabolic reaction rates by
using a fully determined (genome-scale) metabolic network. However, 13C-MFA enlarges
the metabolic model by the addition of all isotopomers resulting in long computational run
times [321].
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2.3.5 Isotopes

The isotope 13C is stable and non-radioactive. It has 7 neutrons and therefore, it is heavier
than 12C which can be detected by mass spectrometry [196].

2.3.6 Isotopomers

Each carbon atom in a molecule can be a 12C atom or a 13C atom. Each form is called an
isotopomer. The number of isotopomers of a molecule is n = 2 number of carbon atoms. For
example, glucose has 2 6 = 64 isotopomers.

2.3.7 Isotopologues

Isotopomers with the same number of labelled atoms have the same weight. Therefore,
their mass is the same. All isotopomers with the same mass are called isotopologues.

2.3.8 Stationary and instationary 13C MFA

In both methods, a metabolic steady state is assumed. For a stationary 13C MFA, an
isotopic steady state is reached and the isotopomer fractions are measured. For an in-
stationary 13C MFA, the isotopomer fractions are measured without achieving an isotopic
steady-state. Hence, several measurements are needed in a short time interval. This is ad-
vantageous compared to the stationary 13C MFA because it provides enzyme and reaction
kinetic information. Further, the amount of 13C substrate which is required is lower for an
instationary 13C MFA compared to a stationary [200, 310].

2.3.9 Implementation of 13C MFA in Matlab

To solve the ordinary differential equations (ODEs) of a metabolic network comprising
isotopologues, a numerical approach implemented in Matlab by using the function ode45
is useful. The equations describe the change of isotopologue pools. Numerous for-loops
sum up all equations representing all isotopomers of one metabolite. An isotopologue
includes the information on wheater a carbon position is a 12C (expressed with 0), or a 13C
(expressed with 1). As result, the simulation is able to calculate over time the isotopomer
fractions of each metabolite in a fully determined system based on given fluxes. The
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calculated isotopomer fractions are compared with a dataset and the difference between the
calculated and the measured values are minimized by using the sum of squared differences
(SSD).

2.3.10 Tracer selection

The information which is derived from a 13C MFA experiment depends on the used tracer
or tracer mix [55]. A tracer is a substrate containing 13Carbon atoms [196, 321]. In
addition, an computational evaluation of different tracers is helpful because the costs of
tracers can be very high [30]. However, the selection of an appropriate tracer depends also
on the (biological) question, which means for example which flux will be revealed [54]. In
general, the choice of the tracer has an impact on the slope in the graph which shows the
isotopomer fraction over time. To correctly minimize the SSD, it is beneficial to reach
higher slopes [196].

2.4 Cultivation of L. bulgaricus and S. thermophilus

2.4.1 Milk as a medium for the production of yogurt

Yogurt is conventionally produced from bovine milk. This milk contains approx. 87%
water, 5% lactose, 3% fatty acids, 4% protein, and 1% mineral nutrients (g per 100 g
milk). The pH is around 6.6 [139, 284]. Freshly collected milk contains a very low titer
of bacteria and contamination arise afterward [139]. Pasteurisation and sterilisation of
milk decrease the risk of harmful contamination but change the concentrations of milk
compounds [284].

2.4.2 B-Milk

In industry and laboratories, B-Milk is often used. The water was removed by a drying
process. This hinders the growth of microorganisms and allows them to store B-Milk longer
than fresh milk [223]. Further, B-Milk allows more comparable experimental conditions
[265].
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Figure 2.1: Amino acid composition of casein. Numbers above each bar indicate the exact
concentration. Adapted from chapter 5.

2.4.3 Milk interferes with analytical methods

The composition of raw milk, pasteurised milk, and B-milk is very complex and variable
[265, 284]. Further, Milk contains a high fraction of fatty acids and proteins. This inter-
feres with many sensitive analytical methods such as photometry, high-performance liquid
chromatography (HPLC), and mass spectrometry (MS).

2.4.4 The composition of proteins in bovine milk

Bovine milk contains approx. 36 g protein per kg milk. This protein is composed of 29 g
casein and 7 g whey protein [139]. The whey protein contains alpha-lactoglobulin, beta-
lactoglobulin, immunoglobulin, serum albumin, and protease-peptone [139]. The casein
contains alpha-s1-casein, alpha-s2-casein, beta-casein, kapa-casein, and gamma-casein [67,
96, 97, 139, 236]. The classification of these proteins relies on their electrophoretic mobility
according to the American Diary Science Association [307]. These proteins form casein-
micelles which are stabilized by calcium [78].

2.4.5 The amino acid composition of casein

The fractions of amino acids in the casein were determined (fig. 2.1).

18



Scientific Background

2.4.6 Lactobacillus bulgaricus

The Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is part of the species Lac-
tobacilli. It is gram-positive, non-motile, and non-sporulating [68, 102, 292]. The Lacto-
bacillus delbrueckii subsp. bulgaricus is heterofermentative. However, some Lactobacilli are
obligate-homofermentative, facultative-heterofermentative, or obligate-heterofermentative
[270]. Medium enriched with CO2 supports the growth of L. bulgaricus [13]. The optimal
pH for proliferation and exopolysaccharide production is around 6 [100].

2.4.7 Amino acid metabolism of L. bulgaricus

Casein is the main nitrogen source for L. bulgaricus cultivated in milk [156] and serves as
the source of amino acids. The cell wall-anchored protease PrtB hydrolyses the casein into
oligo-peptides [167, 265] and intracellular peptidases hydrolyses the peptides into amino
acids (fig. 2.2). The proteolysis of casein is essential for the growth of the high auxotroph
L. bulgaricus [265]. However, L. bulgaricus prefers to consume amino acids from the
medium rather than the de novo synthesis [329]. Zheng et al. 2012 [329] assume that
L. bulgaricus is able to synthesize glutamate, glutamine, aspartate, asparagine, lysine,
threonine, serine, cysteine, glycine, methionine, and alanine. On the opposite, Kafsi et
al. [68] assume that L. bulgaricus is not able to synthesize glycine, serine, alanine, and
glutamate, as well as, lysine, aspartate, phenylalanine, tyrosine, tryptophan, valine, leucine,
isoleucine, histidine, and arginine.

2.4.8 Sugar metabolism of L. bulgaricus

The preferred carbon source of L. bulgaricus is lactose [47, 68, 100]. Lactose is con-
sumed and hydrolyzed by the beta-galactosidase into glucose and galactose. The glucose is
metabolised mainly into lactic acid, and the galactose is exported with a lactose-galactose-
antiporter [68].

2.4.9 Streptococcus thermophilus

The Streptococcus salivarius subsp. thermophilus is part of the species Streptococci [125,
212]. S. thermophilus is homo-fermentative and contains an incomplete pentose-phosphate
pathway [212]. S. thermophilus produces an exopolysaccharide-matrix which increases the
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Figure 2.2: The proteolytic system in an S. thermophilus-L. bulgaricus co-culture. Casein
proteolysis and amino acid biosynthesis was adopted from literature as indi-
cated: (1) [167]; (3) [165]; (4) [179]; (5) [163]; (6) [162]; (7) [150]; (8) [91]; (9)
[60]; (10) [49]; (11) [115]
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viscosity of the medium [265]. Further, S. thermophilus contains a pathway to produce
acetaldehyde, which is an important component to establish the “yogurt taste” [212].

2.4.10 Amino acid metabolism of S. thermophilus

The cell wall-anchored protease PrtS is present in some S. thermophilus to allow hydrolysis
of extracellular casein similar to the PrtB in L. bulgaricus [167, 265]. Further, intracellular
aminopeptidases such as PepC, PepN, and PepM release amino acids from the peptides
(fig. 2.2) [167]. S. thermophilus is able to synthesise all amino acids, except histidine.
glutamine and glutamate, as well as cysteine and methionine, are converted into each
other [156, 212, 265]. Methionine, cysteine, and leucine are not essential but promote the
growth of S. thermophilus [156].

2.4.11 Interaction between S. thermophilus and L. bulgaricus

The proteolytic activity of L. bulgaricus by the peptidase PrtB allows the release of peptides
and amino acids from casein which favors the growth of S. thermophilus, especially of
S. thermophilus strains that do not possess the PrtS [49]. On the opposite, S. thermophilus
releases formate and folate which supports the purine synthesis in L. bulgaricus [51, 65, 184,
264]. Further, folate is a cofactor in the biosynthesis of amino acids [265]. S. thermophilus
produces CO2 and NH3 by urease activity from urea [13, 14, 156]. CO2 is a precursor in the
synthesis of aspartate, glutamate, arginine, and for nucleotides [265]. NH3 increases the
pH [13]. Other metabolites which are assumed to be exchanged are pyruvate, long-chain
fatty acids, and ornithine [102, 125, 264].

2.4.12 Types of interaction between S. thermophilus and
L. bulgaricus

S. thermophilus and L. bulgaricus decrease the pH of the environment which reduces the
growth of non-tolerant species for low pH. This indicates amensalism [72]. S. thermophilus
and L. bulgaricus compete for the nitrogen source for example for amino acids, indicating
competition [265]. However, the exchange of metabolites between S. thermophilus and
L. bulgaricus might indicate mutualism and protocooperation [265]. In general, the type
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of interaction between S. thermophilus and L. bulgaricus will change according to the
metabolic level which is considered.

2.4.13 The effect of interacting S. thermophilus and
L. bulgaricus

The metabolic interaction between S. thermophilus and L. bulgaricus is mainly found on the
level of amino acids, purines, and long-chained fatty acids [264]. This results in increased
growth and lactate production [265]. A collectively evolved co-culture of S. thermophilus
and L. bulgaricus showed increased growth rates, lower final pH, faster acidification, and
higher biomass compared to an unrelated S. thermophilus – L. bulgaricus co-culture [107].

2.5 Analysis of co-cultures

With genome sequencing techniques, it is possible to analyse species composition in mi-
crobial communities [289]. However, it is challenging to assign individual characteristics to
a single species [26]. Furthermore, it is not possible to make predictions based on knowl-
edge of the individual metabolic behavior of a strain in a community because interactions
between species alter their dynamics [176, 313]. Cultivation in mono-culture can provide
information on the metabolic capacity of individual strains [243], but not all species can
be cultivated in mono-culture [227]. In addition, synthetic co-cultures can provide better
insight into the interaction dynamics between microorganisms because they represent a
reduced and better defined system [243]. In addition, mathematical models can improve
the understanding of co-cultures [31, 287, 333].

2.5.1 Biomass determination

The medium which is used to cultivate lactic acid bacteria traditionally contains proteins
such as casein. This impedes the measurement of biomass by the optical density method
to some extent [66] or the purification of dry biomass for example by centrifugation [172]
because of insoluble material such as casein remains in the pellet. Biomass amount de-
termination by colony forming units (CFU) might be possible but is very time-consuming
[172, 299]. Further, cell enumeration might also be possible through real-time quantitative
PCR (qPCR) [107, 299]. However, the purification of DNA from lactic acid bacteria is
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challenging and a correlation between qPCR enumeration and OD-values was not consis-
tent [107]. Measuring biomass is important for a deeper physiological understanding as
well as to create predictive models.

2.5.2 Flow cytometer

A flow cytometer is a multi-parameter analysis with up to 50 000 cells per second and can
be used to enumerate cells [237, 299]. The cells flow through a laser beam which scatters
the light. From the scattered light, it is possible to distinguish between cells and medium
particles such as casein [13, 53]. Further, it is possible to distinguish between different cell
types, for example in a co-culture [120, 222, 237]. The data analysis is time-consuming
[299] and software tools still show white spots [147].

2.5.3 Analysis of cells by flow cytometry

The flow cytometry data analysis allows us to distinguish between different cell types as
well as between viable and dead cells by staining the sample with a dye, for example with
propidium iodide [23, 127]. Further, different strains can be enumerated by flow cytometry
due to their differences in structure or size [299]. The scattered light will be different for
different types of cells, as well as staining can facilitate these differences [238]

2.5.4 Using flow cytometry to estimate biomass in milk

The application of flow cytometry analysis for samples containing milk, casein, or other
media with high protein and fat content causes increased background data [104]. For
example, casein forms micelles that interfere with data from cells [294]. Therefore, treat-
ment with proteases [104] or chelating agents [13, 182] can reduce the interferences. The
proteases hydrolyse the proteins into smaller peptides and the chelating agents bind the
calcium ions and disrupt the micelles [34]. Further, a fluorescent labelled antibody that
binds specific species can be used [103, 182]. Mathematical analysis of data sets such as
automatic classification is often used in biology, for example in gene expression analysis
[199]. This is beneficial because manual classification is time-consuming and complicated.
The SVM method relies on the maximization of the margin between data sets [320].
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3.1 Abstract

The mechanistic understanding of the physiology and interactions of microorganisms in
starter cultures is critical for the targeted improvement of fermented milk products, such
as yogurt, which is produced by Streptococcus thermophilus in co-culture with Lactobacillus
delbrueckii subsp. bulgaricus. However, the use of complex growth media or milk is a
major challenge for quantifying metabolite production, consumption, and exchange in co-
cultures. This study developed a synthetic medium that enables the establishment of
defined culturing conditions and the application of flow cytometry for measuring species-
specific biomass values. Time courses of amino acid concentrations in mono-cultures and
co-cultures of L. bulgaricus ATCC BAA-365 with the proteinase-deficient S. thermophilus
LMG 18311 and with a proteinase-positive S. thermophilus strain were determined. The
analysis revealed that amino acid release rates in co-culture were not equivalent to the
sum of amino acid release rates in mono-cultures. Data-driven and pH-dependent amino
acid release models were developed and applied for comparison. Histidine displayed higher
concentrations in co-cultures, whereas isoleucine and arginine were depleted. Amino acid
measurements in co-cultures also confirmed that some amino acids, such as lysine, are
produced and then consumed, thus being suitable candidates to investigate the inter-species
interactions in the co-culture and contribute to the required knowledge for targeted shaping
of yogurt qualities.

3.2 Introduction

Dairy products have been a part of the human diet since ancient times [178]. Detailed iden-
tification and analysis of fermented milk products began in the twentieth century [179].
Efforts are ongoing to develop tools to examine lactic acid bacteria [13, 27, 254, 258].
Yogurt, which is currently an important part of the cuisine of many cultures, will be a crit-
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ical dietary component in the future. Therefore, the identification and determination of
novel co-culture compositions that impart improved technological and organoleptic proper-
ties are active areas of research in the food industry [135]. Streptococcus thermophilus and
Lactobacillus delbrueckii subsp. bulgaricus are the key species that drive yogurt production
[179]. To meet the changing market demands, there is a need to understand the interaction
between S. thermophilus and L. bulgaricus during milk fermentation and to make use of
this knowledge to design improved food products [8]. Despite significant progress in the
past, the current state of understanding still shows white spots [179].

In the last 15 years, metabolomics [163, 204] and transcriptomics [115, 116, 264] have
been widely applied to understand the physiology of S. thermophilus and L. bulgaricus
in mono-culture and co-culture. Previous studies provide insights into the metabolites
exchanged between the strains and elucidated the characteristic gene expression patterns.
However, these datasets have provided a limited scope to assign contextual functionalities
to metabolites [116, 184, 264].

Screening various combinations of S. thermophilus and L. bulgaricus strains in co-cultures
is a time-consuming and costly process. Thus, only a small subset of all possible combi-
nations and conditions has been investigated. To overcome this limitation, mathematical
modelling approaches, such as community flux balance analysis, have been used to predict
the performance of co-cultures [31]. Although the mathematical modelling approach en-
ables the estimation of flux distributions in underdetermined systems, a minimum number
of experimental measurements is required to limit the solution space. Additionally, the
stoichiometry of interactions must be understood for the application of mathematical ap-
proaches. Both constraints require reliable and representative experimental datasets as a
prerequisite for flux balance modelling [268].

Understanding of the complex metabolic interactions between S. thermophilus and L. bul-
garicus, including the exchange of peptides and amino acids, is currently limited [179]. One
key feature is the strong proteolytic activity of L. bulgaricus, which enhances the produc-
tion of peptides and amino acids that become available for S. thermophilus, enabling growth
[264]. However, some S. thermophilus strains exhibit proteolytic activity. Consequently,
the question that arises is whether and what differences in this inter-species interaction ex-
ist when proteolytic and non-proteolytic S. thermophilus are combined with L. bulgaricus
in co-cultures. Acidification, a marker for lactic acid formation, may serve as an easy-
to-follow readout once mono-cultures and co-cultures can be cultured under comparable
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conditions. Limited information is available on amino acid production and consumption
[163] and potential amino acid depletion, which may trigger amino acid biosynthesis [116,
264].

Milk is traditionally used as a growth medium for S. thermophilus and L. bulgaricus culti-
vations in the production of yogurt. S. thermophilus and L. bulgaricus produce lactic acid
from lactose, which imparts an acidic taste and inhibits the growth of microbes, including
S. thermophilus and L. bulgaricus [17,18]. However, milk composition is highly variable.
Furthermore, milk comprises several complex ingredients that interfere with the sensitivity
of analytical methods, such as High-performance liquid chromatography (HPLC) and Mass
spectrometry (MS). Additionally, the acidification of milk leads to an increase in viscosity,
which impairs the sensitivity of the analytical methods [240].

To overcome these intrinsic analytical barriers, this study developed a synthetic medium
supplemented with amino acids (SMaa) to allow the growth of S. thermophilus and L. bul-
garicus in mono-cultures, which enabled the analysis of individual growth characteristics.
The synthetic medium may be supplemented with casein (SMcas) instead of amino acids to
investigate the proteolytic abilities of S. thermophilus and L. bulgaricus in mono-cultures.
The medium allows for investigation of the interactions between S. thermophilus and L.
bulgaricus by excluding individual components that are likely to be exchanged. An impor-
tant effect of the symbiotic relationship between S. thermophilus and L. bulgaricus is the
faster acidification during milk fermentation [31]. Therefore, this study investigated this
feature by co-cultivating the strains in SMcas.

This study presents a new medium and comparable datasets of S. thermophilus and L.
bulgaricus in mono-culture and co-culture conditions, providing useful insights into essen-
tial amino acid production and consumption. Our results demonstrate that the patterns
and levels of amino acid release and consumption in co-cultures are different from those
of mono-cultures. These findings are essential for data-driven modelling and testing hy-
potheses on the induction of basic regulatory mechanisms in cells.
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3.3 Materials and Methods

3.3.1 Strains and Cultivation Conditions

Lactobacillus delbrueckii subsp. bulgaricus strains (LB.1 = ATCC BAA-365, LB.2, LB.3,
and LB.4) were provided by Chr. Hansen A/S and stored at−70 ◦C in Man–Rogosa–Sharpe
(MRS) (69966 MRS Broth, Sigma-Aldrich Chemie GmbH, Steinheim, Germany) containing
20% (v/v) glycerol. For cultivation, the total cell suspension in the cryotube (1 mL) was
transferred into 15 mL of MRS supplemented with 14.3 g L−1 lactose and incubated for 6–8
h at 40 ◦C [100, 166, 224]. After washing twice with 0.9% NaCl solution, the cell pellet was
resuspended in 200 µL of 0.9% NaCl to inoculate the preculture containing SMaa. The
preculture was cultured at 40 ◦C and gently stirred with a 10 mm magnetic bar at 400 rpm
for 14–18 h until the pH was between 5 and 6.

Streptococcus thermophilus strains (ST.1, ST.2, ST.3, and ST.4 = LMG 18311) were pro-
vided by the industrial partner (Chr. Hansen) and stored at −70 ◦C in M17 (56156 M-17
Broth, Sigma-Aldrich Chemie GmbH, Steinheim, DE) containing 20% (v/v) glycerol. The
cells in the cryotube were washed twice with 0.9% NaCl solution. Then, the cell pellet was
resuspended in 200 µL of 0.9% NaCl to inoculate the preculture containing SMaa. The
preculture was cultured at 40 ◦C and gently stirred with a 10 mm magnetic bar at 400 rpm
for 2–6 h until the pH was between 5 and 6.

Calculated amounts of biomass from L. bulgaricus and S. thermophilus precultures were
washed twice with 0.9% NaCl solution and the cell pellets were resuspended in 200 µL
0.9% NaCl to inoculate the main culture. The main culture was carried out in SMaa or
SMcas as indicated in table 3.1.

The preculture (SMaa) and main culture (SMaa or SMcas) were cultured in crimp-top
serum bottles, which were pretreated by flushing with 80% N2 and 20% CO2 for 10 min at
400 rpm. Growth was monitored by measuring the optical density (OD) (λ = 600 nm) using
a photometer (Amersham Bioscience, Ultrospec 10 cell density meter) or flow cytometry.

The SM contains all listed compounds, except amino acids and casein. SM supplemented
with amino acids (SMaa) contains all listed compounds, except casein. SM supplemented
with casein (SMcas) contains all listed compounds, except amino acids.

28



Differential amino acid uptake and depletion

Table 3.1: Composition of synthetic medium (SM)
Category Compound Concentration g L−1 CAS Number

Di-potassium hydrogen phosphate 2.5 7758-11-4
Potassium dihydrogen phosphate 3 7778-77-0
Sodium acetate 1 127-09-3
Ammonium citrate tribasic 0.6 3458-72-8
Manganese sulfate monohydrate 0.02 10034-96-5

− Iron(II) sulfate heptahydrate 0.00132 7782-63-0
Calcium chloride dihydrate 0.08745 10035-04-8
Tween 80 1 mL L−1 9005-65-6
D-Lactose monohydrate 15.75 10039-26-6
Magnesium sulfate heptahydrate 0.2 10034-99-8
Urea 0.12 57-13-6
Adenine 0.01 73-24-5

nucleobases Guanine 0.01 73-40-5
Uracil 0.01 66-22-8
Xanthine 0.01 69-89-6
Biotin 0.0002 58-85-5
Folic acid 0.0002 59-30-3
Pyridoxal hydrochloride 0.001 65-22-5
Riboflavin 0.0005 83-88-5
Thiamine chloride hydrochloride 0.0005 67-03-8

vitamins Nicotinamide 0.0005 98-92-0
Cyanocobalamin 0.0005 68-19-9
4-Aminobenzoic acid 0.0005 150-13-0
D-Pantothenic acid hemicalcium salt 0.004 137-08-6
DL-6,8-thioctic acid 0.0005 1077-28-7
Ammonium molybdate tetrahydrate 0.0000037 12054-85-2
Cobalt(II) chloride hexahydrate 0.000007 7791-13-1

trace elements Boric acid 0.000025 10043-35-3
Copper(II) sulfate pentahydrate 0.0000025 7758-99-8
Zinc sulfate heptahydrate 0.0000029 7446-20-0
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L-Alanine 0.1 56-41-7
L-Arginine 0.317 74-79-3
L-Asparagine monohydrate 0.343 5794-13-8
L-Aspartic acid 0.499 56-84-8
L-Cysteine hydrochloride monohydrate 0.3 7048-04-6
L-Glutamic acid 0.331 56-86-0
L-Glutamine 0.29 56-85-9
Glycine 0.16 56-40-6
L-Histidine monohydrochloride monohydrate 0.273 5934-29-2
L-Isoleucine 0.361 73-32-5

amino acids L-Leucine 0.6 61-90-5
L-Lysine 0.351 56-87-1
L-Methionine 0.119 63-68-3
L-Phenylalanine 0.34 63-91-2
L-Proline 0.921 147-85-3
L-Serine 0.359 56-45-1
L-Threonine 0.3 72-19-5
L-Tryptophan 0.102 73-22-3
L-Tyrosine 0.12 60-18-4
L-Valine 0.468 72-18-4

casein Casein 2 9005-46-3
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3.3.2 Acidification Measurements

The pH was measured offline using a pH meter (SevenEasyTM, Mettler Toledo, Columbus,
OH, USA) connected to a pH electrode (InLab Semi-Micro, Mettler Toledo, Columbus,
OH, USA).

3.3.3 Medium Preparation

Complex Media

MRS (69966 MRS Broth, Sigma-Aldrich Chemie GmbH, Steinheim, Germany) was dis-
solved in Milli-Q water and the pH of the medium was adjusted to 6.5 using 2 M NaOH.
Then, the medium was filtered using a 0.22 µm filter (ROTILABO®, PVD, Carl Roth
GmbH & Co. KG) and sterile polysorbate 80 (CAS-Nr.: 9005-65-6, Sigma-Aldrich Chemie
GmbH, Steinheim, Germany) was added according to the manufacturer's instructions. M17
(56156 M17 Broth, Sigma-Aldrich Chemie GmbH, Steinheim, DE) was prepared following
the manufacturer’s instructions and autoclaved.

Semi-Synthetic Medium

A sterile 5× basal solution containing di-potassium hydrogen phosphate, potassium dihy-
drogen phosphate, sodium acetate, ammonium citrate, manganese sulfate, iron(II) sulfate,
and Tween 80 was prepared as indicated in table 3.1. Sterile lactose, magnesium sulfate,
urea, nucleobases, and amino acids were added to the solution. After the pH was set to
6.5 with 1 M HCl, trace elements, vitamins, calcium chloride, and casein were added. The
serum bottle was sealed, crimped, and flushed with sterile 80% N2 and 20% CO2 for 10 min
at 400 rpm. The casein stock solution was prepared in a beaker containing glass beads
(3 mm in diameter), which were covered with a thin layer of 200 µL of Tween 80. Next,
100 mL of water containing 0.26 g L−1 CaCl2 was added, and the solution was stirred slowly
overnight, followed by autoclaving for 5 min at 121 ◦C.

3.3.4 Cell Dry Weight (DW)

A glass vial (1 mL, VWR) was dried at 105 ◦C for at least 36 h, cooled at 20 ◦C for at
least 1 h, and weighed. Aliquots of 1 mL of culture samples in SMaa were washed thrice
with Milli-Q water (40 ◦C) in a 1.5-mL reaction tube (Eppendorf), resuspended in 300 µL
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of Milli-Q water, and transferred into a dried glass vial. The reaction tube was rinsed with
200 µL of Milli-Q water, and the water was transferred to the glass vial. The glass vial was
dried at 105 ◦C for at least 36 h, cooled at 20 ◦C overnight in a desiccator, and weighed to
calculate the cell dry weight.

The correlation between optical density, flow cytometry data (events mL−1), and cell dry
weight (gDW L−1) was as follows: for LB.1, 1 gDW L−1 = 0.17101671 × 10−12 events mL−1

= 0.2527 × OD600 nm; for ST.1, 1 gDW L−1 = 0.01970622 × 10−12 events mL−1 = 0.2075
× OD600 nm; for ST.4, 1 gDW L−1 = 0.043115 × 10−12 events mL−1 = 0.243 × OD600 nm.

3.3.5 Biomass Measurements Using Flow Cytometry

Samples for flow cytometry analysis were prepared as described previously [13]. The cell
suspension (100 µL) was diluted 10-fold with Tris-HCl (1.3 M) EDTA (0.13 M) buffer
(pH 8) and incubated for 10 min on a shaker (Eppendorf Thermomixer 5436, Ham-
burg, Germany) at 1200 rpm and 50 ◦C. Next, the cell suspension was incubated with
1 x SYBR™Green I nucleic acid gel stain concentrate (Thermo Fisher Scientific, Waltham,
MA, USA) for at least 10 min at 20 ◦C in the dark. The sample was filtered through a
filter (Partec CellTrics®30 µM mesh filter size, Sysmex, Germany) into a polystyrene tube
immediately before measurements and analysed using a flow cytometer (BD AccuriTM

C6; BD Bioscience, Franklin Lakes, NJ, USA) equipped with four fluorescence detectors
(FL1 533/30 nm, FL2 585/40 nm, FL3 > 670 nm, and FL4 675/25 nm), two scatter de-
tectors, a blue laser (488 nm), and a red laser (640 nm). Sterile Milli-Q water was used as
the sheath fluid. The instrument performance was monitored weekly with BDTM CS&T
RUO Beads. The threshold settings, FSC-H 500 and FL1-H 500, a limit of 25 µL, and the
slow flow rate of 14 µL/min were used for the analysis of the samples.

The log-transformed FL1-A and FSC-H signals were used to enumerate the total number of
events in a sample. The flow cytometry data of the first 10,000 events of the pure medium
sample were used for a one-class support vector machine (SVM) classifier implemented in
MATLAB® using the command 'fitcsvm' to identify and remove signal from medium in
samples. Additionally, the lower background data were removed using a linear line as the
gate, resulting in a cleaned dataset. Linear correlations between cleaned flow cytometric
data and the dry weight of cells cultured in SMaa were fitted to the measured data from
LB.1, ST1, and ST.4 cultures (figure S8). To determine the transferability of the linear
correlation between flow cytometric data and cell dry weight from cells cultured in SMaa to
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cells cultured in SMcas, a 1:1 mixture (v/v) of both samples was prepared and measured
using flow cytometry. Additionally, each sample was individually analysed using flow
cytometry. The calculated sum of the number of cell events cultured in SMaa and the
number of cell events cultured in SMcas resulted in the same number of cell events in the
measured mixture, indicating transferability (figure S8). Cell dry weight in co-cultures
was calculated using the same method with determined transferability (figure S9). The
strain-specific cell events of S. thermophilus and L. bulgaricus in co-culture were estimated
using manual classification or SVM classification depending on the pH of the sample (figure
S10). Manual classification was achieved by separating the flow cytometry data using a line
(the log-transformed FSC-H signal was plotted against the log-transformed FL1-A signal
and separated by a linear line). The data points above and below the line represent L.
bulgaricus and S. thermophilus, respectively. Classification of strains in co-culture using
SVM was achieved using the log-transformed FSC-H and FL1-A signals of mono-culture
datasets. Background data were removed to optimize SVM parameters in MATLAB® using
the command fitcsvm' (figure S11).

3.3.6 Quantification of Fermentation Products

The culture sample (0.5 mL) was centrifuged for 3 min at 20,000× g and 4 ◦C. The super-
natant was stored at−70 ◦C. Sugars (lactose, glucose, galactose) and organic acids (lactate,
succinate, formate) were quantified using the Agilent 1200 series HPLC system equipped
with an RI detector [36]. Before analysis, the supernatant was incubated with 4 M NH3

and 1.2 M MgSO4 solutions, followed by an incubation for 15 min with 0.1 M H2SO4 to
precipitate phosphate. Isocratic separation was achieved using a Rezex ROA organic acid
H (8%) column (300 × 7.8 mm, 8 µm; Phenomenex) protected by a Phenomenex guard
carbo-H column (4 × 3.0 mm) at 50 ◦C. The HPLC conditions were as follows: mobile
phase, 5 mM H2SO4 solution; constant flow rate, 0.4 mL min−1. Absolute concentrations
were obtained by standard-based external calibration, and rhamnose was used as an in-
ternal standard (1 g L−1) to correct measurement variability. Amino acid concentrations
were determined by an Agilent 1200 series instrument (Agilent Technologies) [36]. Bicratic
separation was achieved by an Agilent Zorbax Eclipse Plus C18 column (250 by 4.6 mm,
5 µm), which was protected by an Agilent Zorbax Eclipse Plus C18 guard column (12.5 by
4.6 mm, 5 µm). After automatic precolumn derivatization with ortho-phthaldialdehyde,
fluorometric detection (excitation at 230 nm and emission at 450 nm) was carried out.
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The elution buffer consisted of a polar phase (10 mM Na2HPO4, 10 mM Na2B4O7, 0.5 mM
NaN3, pH 8.2) and a nonpolar phase (45% [v/v] acetonitrile, 45% [v/v] methanol). The
quantification of amino acids was achieved by standard-based external calibration, and
4-aminobutanoic acid was used as an internal standard at 100 µM to correct for analyte
variability.

3.3.7 Total Amino Acid Composition in the Supernatant

The culture sample (0.3 mL) was centrifuged for 3 min at 20,000× g and 4 ◦C. The
supernatant was stored at −70 ◦C. The supernatant (200 µL) was incubated with 300 µL
of 32% HCl at 100 ◦C for 24 h, cooled at 20 ◦C for at least 1 h, slowly mixed with 490 µL
of 6.23 M NaOH, and stored at −20 ◦C until quantification of amino acid concentrations
by HPLC analysis.

3.3.8 Calculation of Amino Acid Production Rates

Individual biomass-specific amino acid production rates qaa [mol gDW
−1 h−1] were calcu-

lated for each amino acid in a differential manner at 1 h intervals. The average biomass
cx [gDW L−1] in the period ∆t [h], and the net amount of produced amino acids ∆caa

[mol L−1] eq. (3.1) were considered.

qaa = ∆caa

cx1 + cx2

2 ·∆t
(3.1)

3.3.9 Fitting of Gaussian Models to pH-Dependent Amino Acid
Production Rate

The release of amino acids strongly relies on enzymatic proteolysis. As the proteolytic
activity depends on various enzymes with each contributing to an individual optimum pH
[150, 235], integral activities may be described by the superposition of Gaussian activity
distributions. However, exact values for pH optima were not available. Additionally,
de novo biosynthesis may occur, albeit to a minor extent. Consequently, the Gaussian
model was considered a suitable proxy for the observed amino acid 'production' profiles.
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Parameter regression was achieved by fitting the pH-dependent qaa of the L. bulgaricus
LB.1 mono-culture (figure S13) using eq. (3.2) [119].

qaa =
n∑

i=1
ai · e
−
(

pH − bi

ci

)2

(3.2)

where qaa is the amino acid production rate [mol gDW
−1 h−1]; n is the number of pH

optima to fit; and a, b, and c are regression parameters coding for the shape of the curve.
MATLAB® was used for fitting. The consideration of a single pH dependency is not
always sufficient. Then, overlaying Gaussian models considering two pH optima were used
to improve the model prediction quality (figure S13).

3.3.10 Simulation of Amino Acid Concentrations

Changes of biomass, substrate, and product concentrations were described in a pro-
cess model assuming batch operation modes by balancing biomass (eq. (3.3)), substrate
(eq. (3.4)), and product (eq. (3.5)) within the system boundary.

dcx

dt
= µ · cx (3.3)

dcs

dt
= −qs · cx (3.4)

dcp

dt
= qp · cx (3.5)

The amino acid production kinetics were integrated into the process model to predict caa(t).
The simulation time steps ∆t considered the mean pH and biomass values as indicated in
eq. (3.6).

caa = qaa · cx ·∆t =
n∑

i=1
ai · e
−
( pH1+pH2

2 − bi

ci

)2

· cx1 + cx2

2 ·∆t (3.6)
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The feasibility of this approach was demonstrated for the mono-culture of L. bulgaricus
LB.1 (figure S12).

3.3.11 Uncertainty Analysis

Metabolite concentrations, pH, OD, flow cytometric data, and dry weight values were
analysed using Microsoft® Excel. Mean and standard deviation were calculated using
duplicates and triplicates (STABW.S) in Microsoft® Excel. All experimental results are
expressed as the mean of three biological replicates with experimental errors unless other-
wise stated.

3.4 Results

3.4.1 Medium Development

The main objectives for preparing the SMcas were as follows: (a) enabling the growth of
both species in mono-culture, (b) enabling the growth of both species in co-culture, and
(c) potential metabolites that may be exchanged [13, 179, 258], [115, 204], [116, 184] were
excluded if growth was not affected. To obtain this medium, previously reported defined
growth medium compositions of S. thermophilus [47, 156] and L. bulgaricus [47, 100] were
compiled, resulting in a long list of constituents. This list was further reduced to achieve
a lean growth medium to fulfil the demands (a–c). Medium acidification, which mirrors
growth-coupled lactate formation, was used as a readout to verify the ability of the strains
to grow with different modifications in the medium. Oleic acid, pyruvic acid, formic acid,
orotic acid, niacin, spermine, ascorbic acid, thioglycolate, and 2'-deoxyguanosine, which
were used in the growth medium by Chervaux et al. [47] but not by Grobben et al.
[100], were excluded from the medium because they are not essential for the growth of L.
bulgaricus. Additionally, we evaluated whether the addition of orotic acid is essential since
it was considered to be an important component of the growth medium by Otto et al.
[206] and Letort et al. [156]. Growth analysis of L. bulgaricus and S. thermophilus in the
medium lacking orotic acid revealed culture acidification. The omission of biotin, thiamine,
aminobenzoic acid, and thioctic acid did not result in the acidification in S. thermophilus
culture but promoted the acidification in L. bulgaricus culture. Furthermore, urea was not
excluded from the medium because it has previously been established that it increases the
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buffer capacity of the medium [156] and provides carbon dioxide and ammonia [13].

Studies using SMcas revealed the ability of three proteinase-positive S. thermophi-lus
(ST.1, ST.2, and ST.3) strains and the four L. bulgaricus strains to acidify the medium.
The proteinase-negative S. thermophilus ST.4 was not able to acidify SMcas and required
access to free amino acids provided in SMaa (figure S1).

Protocooperation between L. bulgaricus and S. thermophilus in co-culture has industrial
relevance [179]. Co-culture benefits from the rapid exchange of metabolites, leading to
accelerated acidification [264]. The effect of this protocooperation in the co-culture was
observed in SMcas in the form of a faster acidification rate and a lower final pH (figure
S2).

3.4.2 Growth and Amino Acid Release in L. bulgaricus
Mono-Culture

L. bulgaricus hydrolyzes amino acids from casein through its cell wall proteinase PrtB,
which is complemented by other intracellular and extracellular peptidase activities [49,
116, 164, 264]. Therefore, peptides and free amino acids can be utilized by S. thermophilus.
Furthermore, amino acid depletion may upregulate amino acid biosynthesis in co-cultures
[116, 264]. Hence, a key step in understanding cellular responses to extracellular amino
acid depletion is to monitor amino acid release and uptake.

L. bulgaricus LB.1 was cultured in SMcas as a mono-culture. The biomass of the culture
increased from 0.05 to 0.6 gDW L−1, whereas the pH decreased from 6.4 to 4.3 (fig. 3.1).

Lactose was consumed, glucose was initially secreted (up to 1.4 mM) and then consumed,
and galactose, lactate, formate, and succinate were produced (figure S7) in the culture, in-
dicating metabolic activity. The following two patterns of amino acid release were observed
(fig. 3.1): accumulation of alanine, serine, lysine, tyrosine, and valine from the beginning of
culturing; other amino acids began to increase after 2 h. A previous study suggested that
this lag time indicates cellular adaptation to casein through upregulation of proteolytic
activity [163]. The initial release of tyrosine, arginine, serine, leucine, and valine indicates
active proteolytic activity from the beginning of culturing as they might not be produced
de novo from L. bulgaricus [102, 264].
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Figure 3.1: Amino acid concentrations were measured in Lactobacillus bulgaricus LB.1 cul-
ture in synthetic medium supplemented with casein (SMcas). The line indicates
a change in increasing amino acid concentration profiles after 2 h. Downright:
biomass (triangle) and pH (rhomb) measurements
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Figure 3.2: Amino acid concentrations were measured in proteinase-positive S. ther-
mophilus ST.1 culture in synthetic medium supplemented with casein (SMcas).
The lines indicate three phases according to the growth. Downright: biomass
(triangle) and pH (rhomb) measurements.

3.4.3 Growth and Amino Acid Release in Proteinase-Positive S.
thermophilus Mono-Culture

The dynamics of amino acid release and uptake in the proteinase-positive S. thermophilus
ST.1, amino acid concentrations were measured over a culturing period of 14 h (fig. 3.2).

The following three distinct phases were identified: 0–5 h, increase of some amino acid
concentrations but no change in biomass and pH; 5–10 h, acidification, biomass increase,
and decrease of some amino acid concentrations while others kept increasing; 10–15 h,
acidification, biomass decrease, and uptake and release of amino acids. The concentration
of all analysed amino acids increased at some time point. Additionally, the pH decreased
from 6.6 to 4.7, whereas the biomass increased from 0.03 gDW L−1 to 0.1 gDW L−1 (fig. 3.2).
Furthermore, 12 out of the 15 amino acids were consumed at some points in time. Moreover,
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the concentrations of some amino acids exhibited an oscillating release-consumption-release
profile (e.g., serine and leucine). After 12 h, almost all lactose was consumed (30 mM),
which was accompanied by the production of large amounts of glucose (22 mM) and lactate
(30 mM) (figure S3).

3.4.4 Growth and Amino Acid Release in the Co-Culture of
Proteinase-Positive S. thermophilus and L. bulgaricus

Next, the amino acid concentrations in an L. bulgaricus LB.1—proteinase-positive S. ther-
mophilus ST.1 co-culture were examined. The strains could grow in both SMcas (fig. 3.1
and fig. 3.2) and SMaa (figure S4 and S6), indicating their ability to utilize casein and free
amino acids. As shown in fig. 3.3, the concentration of all amino acids increased during
cultivation at some point. The concentrations of aspartate, arginine, lysine, alanine, and
isoleucine began to decrease after approximately 2 h. Meanwhile, the decrease in glycine
concentration was delayed until 4 h. The following two phases were observed in amino
acid release (fig. 3.3), growth, and acidification (fig. 3.4): 0–4 h, pH decreased from 6.4
to 4.7 while the growth of both strains was weak (fig. 3.4); 4–7 h, the biomass of L. bul-
garicus increased from 0.05 gDW L−1 to 0.22 gDW L−1. Additionally, the consumption of
30 mM lactose, the production of 57 mM lactate, and the secretion (up to 10 mM) and
uptake of glucose were observed (figure S5).

3.4.5 Growth and Amino Acid Release in the Co-Culture of
Proteinase-Negative S. thermophilus and L. bulgaricus

Next, the effects of replacement of proteinase-positive S. thermophiles ST.1 with protei-
nase-negative S. thermophilus ST.4 on the amino acid availability and the nutrient needs
in the co-culture with L. bulgaricus LB.1 were examined. ST.4 could not grow in SMcas
but could grow in SMaa (figures S4 and S6). Therefore, a higher biomass fraction of
S. thermophilus ST.4 was inoculated to avoid the anticipated overgrow of L. bulgaricus.

The fig. 3.4B shows the following three phases: 0–2.5 h, increased biomass of S. ther-
mophilus ST.4; 2.5–4 h, dominant growth of L. bulgaricus LB.1; 4–7 h, decreased biomass of
S. thermophilus ST.4 even as L. bulgaricus LB.1 continued to grow. Hence, the presence of
L. bulgaricus LB.1 enables the growth of S. thermophilus ST.4 in SMcas, which is consistent
with previous findings [116]. Additionally, 25 mM of lactose was consumed and 58 mM of
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Figure 3.3: Amino acid concentrations in different co-cultures. (filled) Lactobacillus bul-
garicus LB.1 co-cultured with proteinase-positive Streptococcus thermophilus
ST.1 in synthetic medium supplemented with casein (SMcas). (non-filled) L.
bulgaricus LB.1 co-cultured with proteinase-negative S. thermophilus ST.4 in
SMcas. (line) Simulated amino acid concentration released from L. bulgaricus
LB.1 in LB.1–ST.1 co-culture. (dashed line) Simulated amino acid concentra-
tion released from L. bulgaricus LB.1 in LB.1–ST.4 co-culture.

lactate was produced (figure S5). Interestingly, lactose consumption severely slowed down
after the growth stop of ST.4, while lactate formation continued. Furthermore, the concen-
trations of arginine (0–5 h), isoleucine (0–3 h), and lysine (0–7 h) decreased. Overall, the
amino acid concentration in the proteinase-negative S. ther-mophilus ST.4—L. bulgaricus
co-culture was lower than that in the proteinase-positive S. thermophilus ST.1—L. bulgar-
icus LB.1 co-culture.

3.4.6 Simulation of Amino Acid Concentrations to Compare
Mono- and Co-Culture Cultivations

To indicate the changes in the amino acid profile when S. thermophilus was added to the L.
bulgaricus culture, a Gaussian model of amino acid release dependent on pH and biomass
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Figure 3.4: Strain-specific biomass profiles measured by flow cytometry and pH measure-
ments in (A) LB.1–ST.1 (initial biomass fraction of 1:2 (LB:ST)) and (B)
LB.1–ST.4 (initial biomass fraction 1:10 (LB:ST)) co-cultures in synthetic
medium supplemented with casein (SMcas).

was generated (see section 3.3.9). This model enables the simulation of the amount of
amino acids released solely from L. bulgaricus in co-culture, which could not be identified
in the mixed culture. Hence, the comparison between the simulation and measured data
will indicate if the amino acid release activity differs between mono-culture and co-culture.

Amino acid profiles of L. bulgaricus mono-culture (fig. 3.1) were used to fit the Gaussian
qaa models. The fig. 3.3 compares the simulated amino acid profiles of L. bulgaricus with
the measured amino acid profiles of the co-cultures, reflecting the results of the mixed
culture interaction.

Generally, the amino acid concentrations in the proteinase-positive S. thermophilus
ST.1—L. bulgaricus co-culture were higher than those in the simulated amino acid time
courses of L. bulgaricus in mono-culture, with the exception of glycine and leucine. By
way of analogy, fig. 3.3 shows the difference between the measured amino acid concentra-
tions in the S. thermophilus ST.4—L. bulgaricus co-culture and the simulated amino acid
concentrations released from L. bulgaricus. Here, most of the measured amino acid pro-
files, except for alanine, tryptophan, and histidine, were lower than those of the simulated
courses. This indicates increased uptake of amino acids, likely via the proteinase-negative
S. thermophilus ST.4, which can only feed on amino acids and peptides released from L.
bulgaricus but not from casein.
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3.5 Discussion

3.5.1 Amino Acids Are Consumed by L. bulgaricus and S.
thermophilus

In this study, amino acids were consumed by L. bulgaricus and S. thermophilus cultured
in SMcas in both mono-culture (fig. 3.1 and fig. 3.2) and co-culture (fig. 3.3). This is
in accordance with [166]. Amino acids were consumed even in the presence of peptide-
bound amino acids (table S1). For example, lysine was consumed in the S. thermophilus
ST.1—L. bulgaricus LB.1 co-culture after 4 h (fig. 3.3), although at least 230 µM of lysine
bound to proteins and peptides was available (table S1). This indicates that amino acid
transporters are active and enable the strains to exchange amino acids that are produced
through casein hydrolysis or biosynthesis [125, 329]. Hence, it allows interaction [231, 265,
267]. Additionally, this enables the manipulation of S. thermophilus and L. bulgaricus
cultivations in biotechnological processes by adding amino acids, such as lysine [128].

3.5.2 Amino Acids Can Accumulate in Cultivations with L.
bulgaricus and S. thermophilus

L. bulgaricus LB.1 could accumulate all analysed amino acids (fig. 3.1). Some of these
amino acids accumulated from the beginning of culturing, indicating basal proteolytic
activity although the strain was precultured under SMaa conditions. This suggests that
L. bulgaricus LB.1 releases more amino acids from casein or/and produces amino acids
than it is needed for growth and that amino acids become available for other strains [145].
The accumulation of amino acids indicates that extracellular peptidases are highly active
[162], unusable amino acids are separated from peptides to gain posteriorly required amino
acids, or proton-coupled amino acid secretion supports the maintenance of intracellular
pH during acidification [131]. The poor release of amino acids in a S. thermophilus ST.1
cultivation reflects its low activity of peptidases [225, 235].
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3.5.3 Differences between Co-Cultures with Different S.
thermophilus Strains

The proteinase-negative S. thermophilus ST.4—L. bulgaricus LB.1 co-culture yielded lower
amino acid concentrations than the proteinase-positive S. thermophilus ST.1—L. bulgar-
icus LB.1 co-culture. This phenotype can be attributed to the increased growth of S.
thermophilus ST.4 (fig. 3.4), which results in an enhanced demand for amino acids [25]. In
addition, this observation is consistent with the lack of protease activity of S. thermophilus
ST.4 (fig. 3.3). The depletion of arginine, lysine, and isoleucine observed in this study can
upregulate peptidases or amino acid biosynthesis, which is consistent with the hypothesis
of previous studies [116, 163, 264].

3.5.4 Co-Culture Is Not the Sum of Mono-Cultures

The proteinase-positive S. thermophilus ST.1—L. bulgaricus LB.1 co-culture yielded higher
amino acid concentrations than the simulated concentration of amino acids released from
only L. bulgaricus LB.1 (fig. 3.3). In particular, histidine was rarely released in the pre-
sumably histidine auxotroph S. thermophilus ST.1 mono-culture (fig. 3.2) [212] but was
detected in high amounts in the S. thermophilus ST.1—L. bulgaricus LB.1 co-culture. The
interaction between the two species may trigger metabolic changes in the strains, resulting
in the rearrangement of metabolic fluxes [102, 258, 313]. Future studies must identify these
co-culture triggers that serve as stimuli for basic metabolic adjustments.

The amount of amino acid released from the co-culture was higher than the individual
sums of the amounts of amino acid released from the mono-cultures. This might be a
consequence of an upregulated proteolytic system in L. bulgaricus LB.1 and S. thermophilus
ST.1. Alternatively, individual biosynthetic pathways might be stimulated in co-culture
but not in mono-culture [111, 212]. Previous studies have alluded to the up-regulation of
histidine biosynthesis [116, 264].

3.5.5 Stimulatory Effects of Branched-Chain Amino Acid
(BCAA) Depletion

Previous studies have hypothesized that BCAA availability is limited in the S. ther-
mophilus—L. bulgaricus co-cultures due to the upregulation of BCAA permease in L.
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bulgaricus [264] and BCAA biosynthesis in S. thermophilus [83, 116, 264]. In this study,
the levels of isoleucine, but not those of valine or leucine, were temporarily depleted in the
co-cultures (fig. 3.3). Furthermore, the release of BCAA in the L. bulgaricus LB.1 mono-
culture was similar to that reported in a previous study [163], which revealed that the
proteolytic activity of L. bulgaricus promotes the excess release of BCAA from casein. In
the LB.1 mono-culture, the final concentration of isoleucine (200 µM) was lower than that
of valine (417 µM) and leucine (746 µM). This indicated isoleucine as a potential candidate
for depletion. Additionally, low concentrations of isoleucine (up to 5 µM), leucine (up to
15 µM), and valine (up to 16 µM) were observed in the protease-positive S. thermophilus
ST.1 mono-culture, indicating its ability to release BCAA from casein or biosynthesize
BCAA [125, 212]. However, the levels of isoleucine, leucine, and valine were lower than
those in L. bulgaricus. Hence, isoleucine depletion is plausible and may result in the up-
regulation of BCAA permease in L. bulgaricus and BCAA biosynthesis in S. thermophilus,
respectively.

3.5.6 Arginine and Lysine Depletion in Co-Cultures

Arginine and lysine concentrations were limited in the proteinase-negative S. thermophilus
ST.4—L. bulgaricus LB.1 co-culture and oscillated in the proteinase-positive S. ther-
mophilus ST.1—L. bulgaricus LB.1 co-culture (fig. 3.3). Previous studies [115, 264] have
reported the upregulation of arginine biosynthesis in S. thermophilus co-cultured with L.
bulgaricus. Hence, our results support the hypothesis that low arginine concentrations
might influence physiological responses [14], such as the up-regulation of arginine biosyn-
thesis in S. thermophilus.

3.6 Conclusions

In this work, we developed a synthetic medium that supports the growth of the dairy
organisms S. thermophilus and L. bulgaricus in mono- and co-culture, which enables the
quantitative monitoring of growth as well as substrate consumption and metabolite pro-
duction dynamics. Amino acid release profiles in co-culture were not the sum of amino
acid release profiles in mono-cultures. Additionally, the amino acid release profiles were
not similar in co-cultures with different strain combinations. Amino acid depletion was
observed in S. thermophilus—L. bulgaricus co-cultures, which may provide an explanation
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for the induced expression of proteolytic enzymes.

The uptake of several amino acids was observed during growth. Knowledge of co-culture-
specific consumption rates for peptide and amino acid uptake along with release rates of
amino acids provides a tool for determining yogurt quality and useful insights into cellular
fitness for further strain and process optimization. Understanding cellular amino acid needs
may enable a quantitative and detailed understanding of interactions in yogurt cultures.
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Chapter 4

Integration of proteomics and
metabolomics into a genome-scale
metabolic model of Lactobacillus
bulgaricus identifies unique
adaptations to protein-rich
environment

Chapter not included in the published version
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Chapter 5

The pH-dependent lactose
metabolism of Lactobacillus
delbrueckii subsp. bulgaricus: an
integrative view through a
mechanistic computational model
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tioned activities. Andreas Ulmer reviewed and edited the manuscript.

5.1 Abstract

The fermentation process of milk to yogurt using Lactobacillus delbrueckii subsp. bulgaricus
in co-culture with Streptococcus thermophilus is hallmarked by the breakdown of lactose
to organic acids such as lactate. This leads to a substantial decrease in pH - both in
the medium, as well as cytosolic. The latter impairs metabolic activities due to the pH-
dependence of enzymes, which compromises microbial growth. To quantitatively elucidate
the impact of the acidification on metabolism of L. bulgaricus in an integrated way, we
have developed a proton-dependent computational model of lactose metabolism and casein
degradation based on experimental data. The model accounts for the influence of pH on
enzyme activities as well as cellular growth and proliferation of the bacterial population.
We used a machine learning approach to quantify the cell volume throughout fermentation.
Simulation results show a decrease in metabolic flux with acidification of the cytosol. Ad-
ditionally, the validated model predicts a similar metabolic behaviour within a wide range
of non-limiting substrate concentrations. This computational model provides a deeper un-
derstanding of the intricate relationships between metabolic activity and acidification and
paves the way for further optimization of yogurt production under industrial settings.

5.2 Introduction

Lactobacillus delbrueckii subsp. bulgaricus is a homofermentative lactic acid bacterium
(LAB) widely used in co-culture with Streptococcus thermophilus in the dairy industry.
Lactic acid bacteria produce mainly lactic acid as an end product of fermentation. This
leads to a remarkable pH drop in the medium [241], while achieving the desired charac-
teristics of yogurt such as acidity, taste and texture [44, 46, 87]. Further, the acidification
inhibits the growth of competing bacteria, prevents spoilage, and prolongs the product
shelf-life [81]. However, bacteria vary in their ability to maintain growth under acidic
stress. Coping with low pH is an essential aspect for survival and productivity, and conse-
quently for the industrial use such as for the choice of starter cultures or probiotics [131].
L. bulgaricus reduces the cytosolic pH (pHc) as a function of the extracellular pH (pHe)
[232, 259, 263]. The reduction in pH causes a decreased catabolic flux and increased rates

49



The pH-dependent lactose metabolism of L. bulgaricus

for energy consumption, resulting in energy limiting growth conditions [185]. In addition,
an acidic pHe can lead to membrane damage [5], affects the growth rates [45, 186], viability
and reduces metabolic activities. In vitro studies of enzyme kinetics in L. lactis indicate
that a reduction of one pH unit to 5, reduces the activity of the glycolytic enzymes by
around 50% [69]. The pH does not only alter the protonation state of the functional
groups of enzymes, it also affects the equilibrium and kinetics for reactions including pro-
tons. For these reasons, it is essential to consider the pH dynamics when investigating the
reaction velocities and thermodynamics of metabolism in LAB. While pH is a key factor in
metabolism, especially in environments which can reach a pH of 4 or lower [62], it is often
overlooked in models. To the authors’ current knowledge, no prior computational models
exist describing the lactose metabolism of L. bulgaricus using pH-dependent kinetics and
suitable data is scarce. The change of pHc in L. bulgaricus following an abrupt change in
extracellular, more acidic pHe was already measured (e.g., [149, 262]). However, no study
could be found explaining the development of pHc throughout fermentation, especially not
continuously between lag phase and stationary phase and in growing cells. Further, mea-
suring pHc during batch fermentation and in a changing pH environment experimentally
pose challenges difficult to tackle with the available technology. Experimental methods
require high cell densities [193], staining [262] or the expression of genetic modified pH
sensors [173], which are not always compatible with the experimental design or even food
industry regulations. Only a few models consider the effect of inherent acidification and
metabolic processes in LAB (e.g., [4, 9, 70]), however, pHc as a dynamic value impacting
the activities of individual glycolytic enzymes has not been incorporated in such models.
While pHc-dependent enzyme kinetics are rarely considered in models of other organisms
[170, 187, 295], such models highlight the importance of pHc in metabolic regulation. Con-
sequently, the influence of pH on glycolytic flux and its impact on growth behaviour is
not fully elucidated yet. Understanding pHc dynamics will contribute to strengthen our
knowledge about lactose metabolism and the underlying reason for the incomplete lactose
catabolism. Further, such models can be used to stir the fermentation product outcome in
terms of acidity and residual lactose concentration. Systems biology approaches to model
lactose fermentation with protons as species can help to shed light upon the processes
behind lactic acid bacteria metabolism and its interdependence with pH dynamics. In this
work, we investigated the lactose metabolism of L. bulgaricus using a proton-dependent
computational model, wherein pHc and pHe were simulated and pHc implemented into
the enzyme kinetics of the glycolytic reactions. In addition, growth changes throughout

50



The pH-dependent lactose metabolism of L. bulgaricus

batch fermentation were integrated into the kinetic model. We present a proton dependent
computational model with predictive power to provide new insights into the central carbon
metabolism of L. bulgaricus and its intricate dependency with pH levels.

5.3 Materials and Methods

Strain and culture conditions

All experiments were conducted with Lactobacillus delbrueckii subsp. bulgaricus
ATCC®BAA-365 in synthetic medium (SM) under microaerophilic conditions (80% V/V
N2 and 20% V/V CO2) as previously described in [291] with deviations in the concentra-
tion of lactose monohydrate or substitution of the amino acids by casein as indicated in
the respective experimental setup. The fermentation to measure extracellular metabolites
was performed without pH control, using an initial pH of 6.3, SM containing 2 g/L casein
(Sigma-Aldrich Chemie GmbH, #9005-46-3, Steinheim, Germany) as a substitute for the
amino acids and 43.85 mM lactose a constant fermentation temperature of 40°C and stir-
ring with 500 rpm. The SM for maintenance and experiments to determine the cytosolic
volume contained 21 g/L lactose monohydrate (58.3 mM) and amino acids.

Biomass and dry weight quantification

The biomass was quantified using flow cytometry as described in [291].

Optical density and correlation to total cellular volume

Growth was determined spectrophotometrically in SM containing amino acids and 15 g/L
lactose by measuring the optical density at 600 nm in biological triplicates. To evaluate
the cytosolic volume, ten images of the cell suspension per time point were captured in
two biological replicates during the time course using a bright-field light microscope with a
400-fold magnification in Bürker-Türk counting chambers. The area occupied by cells per
image was determined in Fiji (Version 1.52p, [249, 253]). Cell segmentation was performed
using the machine learning tool Trainable Weka Segmentation [11] with default settings
and the Particle Analyser implemented in Fiji. Only particles smaller than 10-7 mm2 and
a circularity lower than 0.7 were considered. The volume of all cells within the culture
was calculated using eq. (5.1) assuming a cylindrical cell shape. The volume of each
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particle n was calculated as the product of the respective area An of particle n, π and the
respective secondary axis of a fitted ellipse, depicting the width of the particle Mn. The
volumes of all particles were summed up for each image k, representing the cellular volume
in 2,5 · 10−4 mm3 medium.

n∑
k=1

Vk = An · π ·
Mn

4 (5.1)

The mean of two samples per time point with the 10 technical replicates per sample was
used to calculate the volume. The linear relationship between OD600 and the total cytosolic
volume shown calculated using this method was used to convert OD600 values to cytosolic
volume.

Quantification of metabolites

The concentrations of extracellular metabolites were measured using high-performance liq-
uid chromatography (HPLC). The concentration of carbohydrates (lactose, glucose, galac-
tose, lactate) was measured in cell-free supernatants using the Agilent 1200 series HPLC
system with a RI detector. The isocratic separation was achieved by a Rezex ROA organic
acid H (8%) column (300 by 7.8 mm, 8 µm; Phenomenex) protected by a Phenomenex
guard carbo-H column (4 x 3.0 mm) maintained at 50°C. 5 mM H2SO4 was used as mobile
phase with a constant flow rate of 0.4 mL min−1. To precipitate phosphate, the super-
natants were treated with 4 M NH3 and 1.2 M MgSO4 solutions and incubated with 0.1 M
H2SO4 before the experiment. Rhamnose was used as internal standard at 1 g/L to correct
for measurement variability. The quantification of amino acids was conducted with an
Agilent 1200 series instrument (Agilent Technologies, Santa Clara, USA). Separation was
achieved by an Agilent Zorbax Eclipse Plus C18 column (250 x 4.6 mm, 5 µm) which was
protected by an Agilent Zorbax Eclipse Plus C18 guard column (12.5 x 4.6 mm, 5 µm).
After automatic precolumn derivatization with ortho-phthaldialdehyde, fluorometric de-
tection (excitation at 230 nm and emission at 450 nm) was carried out. The elution buffer
consisted of a polar phase (10 mM Na2HPO4, 10 mM Na2B4O7, 0.5 mM NaN3, pH 8.2)
and a nonpolar phase (45% [vol/vol] acetonitrile, 45% [vol/vol] methanol). Quantification
of amino acids was achieved by using 4-aminobutanoic acid as internal standard at 100 µM
to correct for analyte variability.
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Preparation of cell extracts

The enzyme activity was assayed using a modified protocol by Goel et al. [94] with cell
pellets harvested in prior at mid-log phase and stored at -80°C until further use. The frozen
pellet was resuspended in cell lysis buffer (50 mM HEPES (Sigma, #H4034), pH 7.5, 2 mM
MgCl2 (Sigma, #M2670) and 1x HaltTM Protease Inhibitor-Cocktail (Sigma, #78425) and
disrupted with the the FastPrep-24TM 5G cell homogenizer (MP Biomedicals) immediately
according to Goel et al. [94]. Then, the cell extract was diluted with the same amount of
cell lysis buffer and diluted with a serial dilution (1:2, 1:4, 1:8, 1:16, 1:32). The protein
concentration was measured in three diluted cell extract samples using the bicinchoninic
acid assay (PierceTM BCA, Protein Assay Kit, Thermo Scientific, #23225) according to
the manufacturer’s instructions.

Evaluation of enzyme activity

The enzyme activity was measured by following spectrophotometrically changes in con-
centration of NAD(P)H at 340 nm. The method to determine the enzymatic activity was
based on the protocols of Goel et al [94] with modifications. The enzyme activity was
measured in in vivo-like assay buffer containing: 0.1 M MES (Applichem, #A0689), 0.4 M
glutamic acid potassium salt (Fluka, #49601), 0.05 M sodium chloride (Merck, #1.06404),
0.001 M K3PO4 (Fluka, #60495), 1:10-diluted metals given in supplementary material and
the respective reaction specific compounds stated in table 5.1. The pH of each solution
was adjusted to 5.25, 5.5, 6.0 and 6.5, respectively, at 30°C. The activities were measured
in triplicates using excess amounts of substrate, co-substrate and, if required, coupling
enzymes. To ensure non-rate-limiting conditions and to capture dilution rate where the
enzyme activity scaled linearly with the enzyme concentration, the assay was performed
using six different dilutions. The NAD(P)H formation or consumption as monitored at
340 nm using a MultiskanTM FC Microplate-Photometer (Thermo Scientific, #11590685).
The data was evaluated in Python 3.7.1. . The script determined the slope of the linear
part of the progress curve over time and determined the range where the enzyme veloc-
ity scaled linear with the used amount of cell extract using the random sample consensus
(RANSAC) algorithm [214] with a threshold of 20% of the median absolute deviation to
determine outliers. The slope of the inliers was corrected by the base activity by subtract-
ing the slope of the control without cell extract. The corrected slope was divided by the
respective dilution and the mean of all corrected slopes of inliers was used as final value.
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Table 5.1: Reaction specific compounds for the in vivo-like assay buffer. The
given concentrations refer to the final concentrations in the assay.

Enzyme EC Reaction Specific Compounds Based
on

PFK 2.7.1.11 ATP: 5 mM, NADH: 0.3 mM; MgSO4: 7 mM;
Phosphocreatine: 80 mM; Creatine Kinase
(EC: 2.7.3.2): 30 µg/mL, Aldolase (EC:
4.1.2.13): 2 U/mL; G3PDH (EC: 1.1.1.8):
4 U/mL, TPI (EC: 5.3.1.1): 5 U/mL.
Start: F6P: 20 mM

[209]

GAPD 1.2.1.12 ADP: 3 mM; NAD+: 5 mM; KH3PO4: 50 mM;
PGK (EC: 2.7.2.3): 14.5 U/mL; MgSO4: 5 mM,
Cysteine: 5 mM.
Start: G3P: 10 mM

[94]

PYK 2.7.1.40 ADP: 3 mM; NADH: 0.3 mM; MgSO4: 5 mM;
F1,6BP: 5 mM; LDH (EC: 1.1.1.27): 10 U/mL.
Start: PEP: 6 mM

[94]

LDH 1.1.1.27 NADH: 0.3 mM; F1,6BP: 3 mM; MgSO4: 2 mM.
Start: PYR: 20 mM

[94]

Computational approaches for model construction

The computational model was constructed using a system of ODEs. The model was build
using COPASI 4.36 (Build 260) [126]. The rate laws were formulated in accordance with
Liebermeister and Klipp’s convenience kinetics [161] and mass action. The reaction stoi-
chiometries were taken from literature or KEGG [140, 141, 142]. The model was parame-
terized using parameter ranges for the parameter estimation task in COPASI corresponding
to the minimum and maximum value of the respective glycolytic enzyme occurring in the
class of bacteria in SABIO-RK [315] or from Bar & Even et al. [18], if SABIO-RK had only
a few listed values. Parameters were estimated with the Parameter Estimation Task in
COPASI, using Particle Swarm (swarm size 50, standard deviation for an alternative end-
ing of 10−6), based on the experimental data. Equilibrium constants Keq were estimated
in a range between 0.5 to 100. Some parameter ranges were adjusted iteratively to fit the
experimental data. The effect of the pH on the enzyme activities was included by adding
a pH-dependent scaling factor to the respective rate laws by multiplying the Vmax by the
respective pHc-dependent factor FE, pHc in eq. 5.9 as a Global Quantity.
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Determination of the buffer capacity

The parameters of the cytosolic buffer system were estimated by the parameter estimation
function in COPASI. The buffer system was modeled employing the equations of Anderson
et al. [9], with the deviation that only three buffers for the cytosol and medium, respec-
tively, were used. The initial values for all buffer systems were implemented with initial
conditions for the protonated buffer bh to assure an equilibrium of the buffer compounds
at time point 0 (eq. 5.2).

[bh0] = k1 · [h0] · [btotal, 0]
k2 + k1 · [h0]

(5.2)

Retrieving pH profiles

In order to implement the effect of pHc, the enzyme activity of every glycolytic enzyme
is adjusted by pHc using eq. 5.9 with pH as a function of the cytosolic concentration of
protons (eq. 5.3).The values for the pH profile was retrieved by experimental measurements
as stated above or taken from literature. The reference of the pH profiles is given in table
A4. All values were normalized to the maximal value in the respective data set. As the
model was in mmol/L, the pH was calculated by eq. (5.3), respectively for the cytosolic
and pHe. The parameters of eq. 5.9 for every enzyme were estimated using the Parameter
Estimation function in COPASI. Only literature pH profiles from enzymes with a sequence
similarity in terms of chemical similarity of < 65% was used. The sequence similarity was
calculated by the alignment function of UniProt [20].

pH = −(log10)
[h]

1000 (5.3)

5.4 Results

In this work, we developed a model of L. bulgaricus, which links the extracellular pH (pHe)
with the cytosolic pH (pHc) and its impact on glycolytic activity. The model can predict
acidification profiles and residual amounts of lactose for various cultivation conditions. To
accommodate the impact of pH on enzymatic activity, we constructed a kinetic model that
includes the lactose metabolism of L. bulgaricus, as described in section 1. In section 2, we
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depict the measured substrate conversion of glycolytic enzymes across multiple pHs to cou-
ple pHc and enzyme activities. We additionally developed a machine learning based image
analysis approach to estimate cytosolic volume from flow cytometry measurements. The
influence of pH on the enzyme kinetics and the increase in total cytosolic volume was inte-
grated into the model in section 3. Section 4 describes further parameterization processes
and model validation with additional data sets not used for parameterization. Lastly, we
used the model to predict the final pH of cultures at various lactose concentrations.

5.4.1 Setup of L. bulgaricus Model Reactions

The stoichiometric reactions required for the metabolism of lactose were selected based
on literature. Our model consists of import reactions for the uptake of carbohydrates,
the respective anaerobic catabolism and export of lactic acid, the degradation of casein
to peptides and amino acids, to generate energy and finally, a cytosolic buffer system to
control cytosolic acidity. We grouped protonated and unprotonated species except for the
buffer systems (eq. (5.5)).

Carbohydrate uptake

Our model includes two import systems for lactose (lcts_e): an antiporter with galactose
(gal) and a symporter with protons (h_e) via the lactose permease LacS (LACS, TC:
2.A.2.2.1) [77, 130, 304]. The symport reaction accounts for the kick start of lactose
uptake while the antiport reaction is used predominantly to sustain the majority of lactose
uptake in later stages [220]. No functional phosphoenolpyruvate:lactose phosphotrans-
ferase system (PTS) for the lactose uptake was reported [121], therefore we omitted a
phosphoenolpyruvate:lactose PTS. We integrated a reversible glucose uptake reaction
with the phosphoenolpyruvate:glucose (pep:glu) PTS (GLUpts) [121] and two symport
reactions exporting and importing equimolar amounts of glucose called GLUe and GLUi,
respectively.

Lactose catabolism

The uptaken lactose is irreversibly split into glucose (glu) and galactose (gal) by the β-
galactosidase LacZ (LACZ, EC: 3.2.1.23). This hydrolysis is non-competitively inhibited by
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Figure 5.1: Illustration of the reactions in the kinetic model. The model repre-
sents the relevant reactions for the glucose metabolism of L. bulgaricus ATCC
BAA-365. The green arrows indicate an activating effect, and the red arrows
represent an inhibitory impact of the compound. The cytosolic compartment
is growing. The reactions to correct the concentrations of the three cytoso-
lic buffers bh and b, adenosine phosphates (ATP and ADP) and nicotinamide
adenine dinucleotides (NAD+ and NADH) by the growth rate were not im-
plemented in the figure. The buffer system is depicted as one reaction in this
figure, while it was modelled with three identical reactions with different pK s.

glucose and galactose [194], however, the competitive effect of glucose is rather negligible.
Therefore, we did not implement the inhibitory effect of glucose and considered only the
impact of galactose. The majority of galactose is extruded by LacS and the glucose moiety
is further metabolized to pyruvate (pyr) by glycolytic enzymes and eventually reduced to
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lactate [68, 121, 296].

Regarding glycolysis, glucose is degraded to lactate through eleven reactions, all modelled
as pHc-dependent. Further, we account for the regulatory mechanisms acting upon phos-
phofructokinase (EC: 2.7.1.11) and pyruvate kinase (EC: 2.7.1.40). Phosphofructokinase
is inhibited by ADP and phosphoenolpyruvate (pep) [209]. Pyruvate kinase is inhibited by
fructose 1,6-bisphosphate (fdp) and activated by glucose 6-phosphate (g6p) and fructose
6-phosphate (f6p) [32] (see reaction PYK in fig. 5.1). In the lower branch of glycolysis,
pyruvate is oxidized to lactate (lac), which is excreted by a lactate-proton symporter
LACt and a leak reaction, as the membrane is permeable to undissociated lactic acid
[42]. Undisccociated lactic acid is present to a small extent at pH values between 5.5 and
6.5. NADP-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase
(EC:1.2.1.9) was neglected in our model, as we could not observe any activity under
our experimental setting (fig. A14). To include side branches of glycolysis related with
catabolism, two sink reactions were implemented: one for fructose-1,6-diphosphate (fdp)
and one for pyruvate (pyr).

Casein degradation and amino acid catabolism

L. bulgaricus BAA-365 possesses a powerful proteolytic system to degrade casein into
peptides and eventually amino acids [163, 165]. Albeit L. bulgaricus BAA-365 has lost the
arginine deiminase pathway and glutamate decarboxylase [68], some amino acids can be
decarboxylated or catabolized and used in the carbon cycle, thus supplying additional ATP
[215]. For example, aspartate can be converted in two reactions to phosphoenolpyruvate,
which can be used in glycolysis. Aspartate can be synthesized from other amino acids
such as asparagine or glutamine [111, 329], making other amino acids available for ATP
production as well. To ensure that amino acids are available in our model, we implemented
a simplified version of proteolysis, where casein is degraded into peptides followed by
cytosolic breakdown into amino acids. At the end of the proteolytic pathway, the amino
acids are catabolized in an irreversible reaction that generates ATP, as exemplarily shown
in eq. 5.4.

aa + adp + h+ −−→ atp (5.4)
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We lumped the amino acid into two groups based on the transport mechanisms described
by Zheng et al. [329]: reversible transport via a permease or irreversible export by an ATP-
binding cassette (ABC) transporter. Arginine, asparagine, aspartate, glutamate, glutamine
and glycine were included in the second group, and thus grouped as abc. Alanine, histidine,
isoleucine, leucine, lysine, phenylalanine, serine, threonine, tryptophan, tyrosine and valine
were allowed to diffuse via permeases and were grouped as per. In this model, we did not
include cysteine, serine and threonine. The stoichiometric coefficients for all reactions
were calculated based on previously published data [290] and a genome-scale metabolic
reconstruction of L. bulgaricus. For each amino acid, we determined the experimental and
the predicted secretion rate. Then, we calculated experimental and predicted amino acid
yields using the secretion rates and the specific growth rate predicted by the model (pFBA).
The algorithm selected uses an iteratively process to adjust the amino acid stoichiometry
until the experimental and predicted yield match.

Cytosolic acidity control and buffer system

Weak organic acids, such as lactic acid, as well as other compounds are acting as an internal
buffer system, which contribute to pH buffering. We generically consider this contribution
by an estimated buffer capacity in the model. This lumped buffer capacity is modelled in a
similar way as in to the model of Andersen et al. [9] and consists of a buffer system for the
cytosolic and extracellular compartment, respectively. Each buffer system contains three
stepwise distributed protonation reactions with different pK s. Every reaction is modelled
using reversible mass action and consists of a buffer (bh), which can be depronated to the
unprotonated buffer b and the proton h (eq. 5.5). Additionally, leak flux for protons was
included in the model [175], and implemented as a reversible flux of protons between the
extracellular and cytosolic compartments.

b + h+ −−⇀↽−− bh (5.5)

5.4.2 pH-dependent enzyme activity and total cytosolic volume

pH-dependency of enzymes

In our model, the activities of every glycolytic enzyme with the addition of LACZ and
LDH are modulated by pHc. To achieve this, we fitted pH-dependent activity values we
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obtained from literature and experiments (tab. A2) to a bell-shaped algebraic function
(eq. 5.9). The values determined in this work were obtained by measuring the substrate
conversion rates of enzymes using cell lysate in in vivo-like buffer at pH 5.25, 5.5, 6.0 and
6.5. Although this pH range only allowed an extrapolation of the relative activity for pHs
beyond this range, existing literature confirmed our work for PFK [153] and PYK [32] in
L. bulgaricus and for GAPD in L. lactis [69].

All enzymes showed the highest activity at a neutral pH around 7, and we consistently
observed a substantial decrease in enzyme activity at lower pH values. The enzyme
activity of most enzymes decreased at pH 6 by approximately 50% relative to activity at
pH 7 (fig. 5.2). It can be assumed that pHc is maintained above 6 if the pHe is higher
than 5 [262].

Increase of cytosolic volume

As L. bulgaricus proliferates during the process of fermentation, the total volume in which
lactose can be metabolized increases. For this reason, our model comprises a volume growth
function describing the time-dependent volume changes of cytosol derived from biomass
measurements. The cytosolic volume was fitted to eq. (5.6). The extracellular volume was
assumed by subtracting the cytosolic volume from the total fermentation volume of 0.05 L
eq. (5.7).

Vt, c = b · tn

tn + kn (5.6)

Vt, e = 0.05− Vt, c (5.7)

5.4.3 Model construction

The metabolic network given in section 1 is translated into a kinetic model based on
ordinary differential equations (ODEs). The reaction rates of enzymatically catalyzed
reactions were predominantly described using convenience kinetics [161], as exemplarily
shown in eq. 5.8 for a reversible reaction with one substrate S and one product P. The
changes in apparent enzyme activity caused by pH were included by the pH-dependent
algebraic function FE, pH (eq. 5.9). Non-enzymatic reactions are implemented using mass
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Figure 5.2: Enzyme activities of the glycolytic enzymes report different pH de-
pendencies. The activities of the respective enzymes in D, G, K and L were
measured in in vivo-like assay buffer at pH 5.25, 5.5, 6.0 and 6.5. The other
profiles were retrieved from literature. The black part of the curve lies within
the range of measurements. The dotted grey lines are extrapolated based on the
measured values fitted to an algebraic function. The activity of each pH profile
was normalized to the highest value within the dataset. (A) β-galactosidase
LACZ [194], (B) Glucokinase GLUK [99], (C) Glucose-6-phosphate isomerase
PGI [69], (D) Phosphofructokinase PFK, (E) Fructose-1,6-bisphosphate al-
dolase FBA [69], (F) Triosephosphate isomerase TPI [69], (G) Glyceraldehyde-
3-phosphate dehydrogenase GAPD, (H) Phosphoglycerate kinase PGK [29],
(I) Phosphoglycerate mutase PGM [69], (J) Enolase ENO [69], (K) Pyruvate
kinase PYK, (L) Lactate dehydrogenase LDH.

action as rate law. A schematic overview of the model is given in fig. 5.1.

S
k1−−⇀↽−−k-1

P, v = FE,pHc ·
(Vmax · kM, P) · ([S] · keq − [P])

keq · (kM,S · kM,P + [S] · kM,P + [P]) (5.8)
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with FE,pHc =
(

kopt

1 + 10k1-pHc + 10pHc−k2

)n

(5.9)

5.4.4 Measurement and simulation of glycolytic metabolites

Parameter estimation.

We cultivated L. bulgaricus in synthetic medium (SM) with casein to obtain time-
dependent data for pHe, lactose, glucose, galactose, lactate and amino acids, as well as
biomass measurements. This dataset, excluding biomass, was added to the parameter esti-
mation task in COPASI [126] to estimate parameter values in our model. Additionally, to
avoid solutions with parameter sets where the pHe drops below 3.65 or becomes higher than
8, we defined an ODE which increases if pHe is outside of this range and added the min-
imization of this function to the parameter estimation task. Having a well-parameterized
model, we can estimate the dynamics of pHc. The simulations with the parameterized
model are in good agreement with the experimental data for lactose, lactate, glucose and
galactose (fig. 5.3 A to D). The dynamics for pHe were reproduced well for the first four
and last two hours of the time course, however, the model overestimates pHe for time
points 5 and 6 hours slightly by 0.4 pH units (fig. 5.3E). The model shows a continuous
metabolization of lactose with an increase in the concentrations of lactate and galactose.
The decrease of lactose can be divided in four stages (fig. 5.3A). During the lag phase and
the early exponential phase, lactose is consumed very slowly. Then, during the exponential
phase, lactose is consumed with a high rate, followed by a lower rate with a linear behavior
in the transition and early stationary phase. After approximately 14 hours, a sudden stag-
nation in the concentrations of lactose, lactate, galactose, and in pHe becomes apparent.
By the end of the time course, 30 mM of lactose were approximately consumed. Glucose
differs from the other curves in its dynamics (fig. 5.3C). In the first 2.5 hours, glucose
accumulates to 1 mM and then drops to 0 mM. Only after 24 hours, the concentration
increases again reaching 0.22 mM. The model resembles the peak of glucose concentra-
tion within the first hours, however, the concentrations at 24 and 26 hours were lower by
approx. 0.15 mM in the simulation (fig. 5.3C).
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Figure 5.3: Metabolic profiles of extracellular metabolites and pH. Shown are the
experimental values (squares) of a batch fermentation in SM with an initial
concentration of 45 mM lactose and casein measured in triplicate the standard
deviation shown as a transparent error band and the calculated concentrations
after the model was fit to the experimental data (solid line) of (A) extracellular
lactose, (B) lactic acid, (C) glucose, (D) galactose and (E) extracellular pH.
Growth phases are color-coded in the background. Red: lag-phase, white:
exponential phase, green: transition phase, blue: stationary phase

Glycolytic flux and cytosolic pH

This model incorporates dynamic changes in pHc. Therefore, we measured substrate
conversion rates in vitro in different pH environments (fig. 5.2) and implemented pH-
dependent kinetic equations (eq. 5.8 and 5.9). The resulting parameterized model allows
to gain a better understanding of the changes in pHc during cultivation and interdepen-
dence between pHc, glycolytic flux and carbohydrate metabolism. Hereafter, we will use
the flux through the PYK as representative for the glycolytic flux because it is the last
step to pyruvate followed by lactate production.

Figure 5.4A shows the change of pHc and glycolytic flux for PYK during a batch
fermentation in SM with initially 45 mM lactose and casein. According to this, we
identified four phases: an active phase between 0 and 3.5 hours with increasing glycolytic
flux and a decreasing pHc from 7.6 and 6.9 marked in red in fig. 5.4A. This phase includes
the highest extracellular acidification rate (fig. 5.3E) and biomass increase (fig. 5.4B).
After 3.5 hours, a short and radical transition phase occurs where pHc drops to 5.9, while
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Figure 5.4: Glycolytic flux in dependence of cytosolic pH. (A) Simulated time course
for the glycolytic flux, represented by the flux of PYK (blue), pHc (red) and
extracellular lactose (green). (B) Total intracellular volume in Litre (L) in
dependence of model time. The solid line gives the model value while the dots
represent the mean of three experimentally determined values. Growth phases
are color-coded in the background. Red: lag-phase, white: exponential phase,
green: transition phase, blue: stationary phase.

the glycolytic flux regresses. Then, a long stationary phase follows for about 11 hours
indicated by a steady low glycolytic flux and a small decrease of pHc from 5.8 to 5.4,
depicted in green. Interestingly, enzymes of the upper branch of glycolysis are strongly
affected in their activity by this reduction in pH, while enzymes such as PGK, PGM,
PYK, and LDH are less affected and do not show a steep decline in their relative activity
(fig. A7). Thereafter, approx. 14 hours after the start of fermentation, pHc again drops to
2.7, glycolytic flux ceases and depletion of lactose stops. The consequent stop of lactose
metabolization can be explained by inactivation of all glycolytic enzymes (fig. A7), as pHc

rapidly drops to 2.7 (fig. 5.4A). Further, fig. 5.4A indicates two main states for glycolytic
activity: a high glycolytic flux at pHc above 6.9 (within the first 3.5 hours) or a reduced
glycolytic flux during pHc between 5.8 to 5.0 (3.5 to 14 hours).

Quantification of predictive power

To determine the predictive power of the model, the batch fermentation experiments were
repeated with altered concentrations of initial lactose. We increased the initial lactose
concentration to 60 mM to investigate any effects of high lactose concentrations on lactate
production and we decreased it to 30 mM to achieve complete consumption of lactose. All
three initial lactose concentrations lead to a glucose peak of 1 mM at 3 hours after inocula-
tion and a rapid depletion afterward. With 30 and 45 mM initial lactose, glucose maintains

64



The pH-dependent lactose metabolism of L. bulgaricus

a concentration close to 0 mM, while, intriguingly, glucose accumulates to 1.5 mM with
an initial lactose concentration of 60 mM (fig. 5.5C). Next, the initial values for lactose in
the previously parameterized model were adjusted to the respective initial concentration
of the experiments and the simulation outcomes were compared to the experimental data
as shown by the blue, black and red curves in fig. 5.5. The simulations predict a similar
behavior in terms of dynamics for lactose, lactate, glucose, galactose and pHe. Difference
between the simulated and the measured data set were found for the simulation with a
high initial lactose concentration (60 mM), particularly, in the final glucose concentration.
Overall, the model can simulate the correct acidification profile for all initial lactose con-
centrations which supports its predictive power based in pH-dependency (fig. 5.5E). As
predicted by the model, substrate limitation occurs at around 30 mM lactose.

Figure 5.5: Prediction of metabolic behavior with different initial concentrations
of lactose at pH 6.3. The concentration of (A) extracellular lactose (B) lactic
acid, (C) glucose, (D) galactose and pHe was measured at pH 6.3 with 30 mM
(blue), 45 mM (red) and 60 mM (black) initial lactose. The dots with the
standard deviation shown as a transparent error band are the experimentally
determined concentrations measured in tree biological replicates. The lines are
model predictions based on the parameterized model shown in fig. 5.3.

Prediction of pH as a results of various lactose concentrations.

Our aim was to predict the final pHe of cultivation with L. bulgaricus. Therefore, we
developed and parameterized a model which could reproduce several experiments. Next,
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we used this model with a wide range of initial lactose concentrations to predict pHe after
24 hours. Fig. 5.6A shows the pH value after 24 hours from simulations with initial lactose
concentration from 0 to 80 mM. We found that an initial lactose concentration of 41 mM
results in the lowest pH of 3.6. A lower initial lactose concentration results in a higher pH
as less lactose depletion occurs. Interestingly, an increase of initial lactose concentration
above 41 mM results in a slightly increased pH of up to 4.1. Similar dynamics can be
observed for the production of lactic acid in fig. 5.6B. As expected, to gain an excess of
lactose above 1 mM after 24 h, the initial lactose concentration must be at least 30 mM.
The maximal consumed lactose (33.7 mM) and maximal produced lactic acid (67.2 mM)
occurs at 41 mM initial lactose concentration.

Figure 5.6: Prediction of final pH, lactose concentration and lactate concentra-
tions after 24 hours with different initial concentrations of lactose.
pHe (A) extracellular lactose and extracellular lactic acid (B), respectively.
The lines are model predictions based on the parameterized model shown in
fig. 5.3. The squares are the mean of three independent experiments with the
respective standard deviation shown in fig. 5.5. The results from a fourth ex-
periment (grey or light red triangle) were added with a different experimental
set-up: Pre-culture conditions were SM with casein instead of amino acids, and
main culture contained 5 g/L casein.

5.5 Discussion

In contrast to most other bacteria, LAB thrive in acidic environments. Fermentation
processes by LAB can cause a dramatic drop in pHe leading to outcompeting other microbes
and preservation of foods. Although L. bulgaricus maintains a more alkaline cytosolic
environment in comparison to the medium, its pHc is decreasing in co-dependence to the
environmental pHe and can potentially reach values below 6 as the pH of the medium
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declines [232, 259, 263]. As enzyme activities are pH-dependent, changes in pHc affect the
catabolic flux. The resulting impact is often neglected in metabolic models and including
pHc is a step towards more physiologically accurate approach to the study of metabolism
and eventually the production of high-quality fermented dairy products.

General methodology

In this study we introduced an approach to account for changes in cellular volume during
batch cultivation. Since the total volume changes at least 10-fold, this drastically changes
the uptake and release of metabolites and protons in the culture. To our knowledge,
this is the first time that a mechanistic biochemical model of intracellular processes in
microbial batch culture has been integrated with volume growth. Only in the context of
vertebrate cells - human brain cells - we found one example integrating volume changes and
intracellular behaviour [226]. In addition, we included protons as an independent species
in our model - something that has been done in the context of LABs before (e.g., [9]),
albeit rarely. Another new insight is further offered, as we took measured pH dependent
enzyme activities into account, which hasn’t been done before for studying batch cultures
and LABs. Generally, we know of only one study on skeletal muscle metabolism [295]
that takes measured pH dependencies of enzyme activities into account and one study that
used simplified forms of computed pH dependency in a model of Clostridium acetobutylicum
[187]. The drastic changes in pH during fermentation of LAB, and especially L. bulgaricus,
emphasize the importance of considering pH and its impact on metabolism.

Modeling pH and its impact on metabolism During fermentation, protons are intrin-
sically produced in metabolic reactions e.g., upon the usage of ATP, while other reactions
such as e.g., the pyruvate kinase consume protons. In our model, those protons are con-
sidered as an independent species, which can further impact enzyme activities due to pH-
dependent Vmax values. The pH-activity profiles implemented in max (fig. 5.2) demonstrate
that the resulting changes in pHc affect the activities of the different glycolytic enzymes
in distinct ways. According to our data, enzymes in L. bulgaricus which are less sensitive
to pH variation in terms of their activity are e.g., PGK, PGM, and especially TPI. TPI
and PGM maintain around 10% of their activity even at pH 4.2 compared to pH 6.5, while
the other enzymes function at approximately 2% (fig. 5.2). Thus, TPI and PGM are still
capable to potentially maintain a high metabolic flux. In contrast, enzymes which catalyze
the often flux controlling reactions are more affected by pH, such as PYK, GLUK, FBA,
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halting glycolysis at a lower pHc. When pHc reached values lower than 5.5, the glycolytic
flux diminishes and even converges to 0 mmol · min-1, if pHc becomes lower than 5, as
depict in fig. 5.4A. The structure of the rate laws in our model is limited for pH-mediated
changes in activity, however neglecting effects of changing enzyme concentrations, since
these are kept constant throughout simulation. The results of Even et al. [69] suggest an
increase in enzyme synthesis for many glycolytic enzymes at lower pH values for L. lactis
in steady-state, indicating a compensation mechanism. So far, it is unclear in which man-
ner L. bulgaricus changes enzyme concentrations during batch cultivation. Including the
changes in enzyme concentration during acidification could help to increase the predictive
power of the model further.

pHc and growth phases

Maintaing glycolytic flux is necessary for bacterial growth and ultimately, the survival of
the population. Our model showed that L. bulgaricus can maintain a low glycolytic flux at
acidic pHc down to 5.5 and that the pHc needs to be above 5.5 to enable enzyme activity
and therefore, glycolytic flux. According to our model, pH values between 5.5 and 5.0
occurred at the late stationary phase (Fig. 5.4B). Those predictions are consistent with
existing research indicating that lactic acid production diminishes rapidly at pH values
below 6 in permeabilized cells [13] and pHc 4.7 as the limit for growth [186]. Fig. 5.4B
revealed a drop in pHc after 13 hours, which stops the activity of all enzymes and explains
the incomplete lactose metabolism and growth arrest. However, the model predictions
about the drop in pHc at this time point and abruptness may be inaccurate, as we have a
gap in data between 6 and 24 hours and due to the lack of such data reported in literature.
Nevertheless, the model findings depict the observation that L. bulgaricus starts to fail
maintaining the gradient between pHc and pHe after the beginning of the stationary phase
[233]. Our model could demonstrate how the continuous metabolic acidification ultimately
leads to the collapse of the pH gradient and inactivation of cytosolic enzymes. Accurate
predictions of this behaviour require time-course data of cytosolic metabolites and could
further give insights into the impact of organic acid accumulation, which is also suspected
to cause growth arrest [40, 245].
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Different lactose concentrations and their impact on metabolic behavior

Another industrially relevant aspect in yogurt making is the effect of substrate con-
centration on the product outcome, such as product yield and acidity. To validate our
model, we cultivated L. bulgaricus with different substrate concentrations and measured
the pHe, carbohydrates and biomass. As shown in fig. 5.5, the metabolic behaviour
with different initial concentrations of lactose followed similar dynamics - in our model
and in the experimental data. Regardless of the non-limiting substrate concentration,
metabolic inhibition occurred, which suggests an internal effect. This internal effect can
be explained by the diminishing pHc depicted by our model. As our model reproduced
the experimental data well without changing parameter values, we applied our model
to a parameter scan with a range of initial lactose concentrations to simulate pHe and
remaining lactose concentration after 24 hours of batch fermentation. The results in
fig. 5.6 point out that approximately 33 mM lactose were consumed, independent of the
initial lactose concentration. The lowest pHe was obtained with an initial concentration of
41 mM lactose. A decrease or - interestingly - an increase of initial lactose concentration
provoked a higher pHe after 24 hours. As the acidity of yogurt is an essential parameter
for taste and consumer acceptance, this model can be applied to optimize the fermentation
condition to achieve a desired product outcome.

Conclusion

In summary, our model allows the simulation of pHc and the computation of biotechnolog-
ically relevant parameters like external pH and residual lactose as a function of the initial
lactose concentration. Moreover, this study provides valuable insights into how activity
of enzymes and their inactivation by the internal pHc changes the metabolic activity of
the cell culture. The model simulation illustrated that metabolic activity continuously
acidifies the cytosol. Once a threshold of a pH below 5.5 is reached, the metabolic activity
regressed, with the consequence of growth arrest. Thus, the model can be used for the op-
timization of batch cultures of Lactobacillus delbrueckii subsp. bulgaricus and can be used
as starting point for more complex questions like modeling co-cultures with Streptococcus
thermophilus during yogurt cultivation. This can lead to a deep understanding of growth
inhibition under non-limiting substrate conditions and e.g., to obtain a milder yogurt with
a higher pHe or less residual lactose for lactose intolerant customers.
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Chapter 6

Compartment-specific metabolome
labeling enables the identification of
subcellular fluxes that may serve as
promising metabolic engineering
targets in CHO cells
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6.1 Abstract
13C labeling data are used to calculate quantitative intracellular flux patterns reflecting
in vivo conditions. Given that approaches for compartment-specific metabolomics exist, the
benefits they offer compared to conventional non-compartmented 13C flux studies remain
to be determined. Using compartment-specific labeling information of IgG1-producing
Chinese hamster ovary cells, this study investigated differences of flux patterns exploit-
ing and ignoring metabolic labeling data of cytosol and mitochondria. Although cellular
analysis provided good estimates for the majority of intracellular fluxes, half of the mito-
chondrial transporters, and NADH and ATP balances, severe differences were found for
some reactions. Accurate flux estimations of almost all iso-enzymes heavily depended on
the sub-cellular labeling information. Furthermore, key discrepancies were found for the
mitochondrial carriers vAGC1 (Aspartate/Glutamate antiporter), vDIC (Malate/H+ sym-
porter), and vOGC (α-ketoglutarate/malate antiporter). Special emphasis is given to the
flux of cytosolic malic enzyme (vME): it could not be estimated without the compartment-
specific malate labeling information. Interesting enough, cytosolic malic enzyme is an im-
portant metabolic engineering target for improving cell-specific IgG1 productivity. Hence,
compartment-specific 13C labeling analysis serves as prerequisite for related metabolic en-
gineering studies.

6.2 Introduction
13C metabolic flux analysis (13C MFA) is a key tool for quantitative analysis in systems
metabolic engineering. First, applications dealt with prokaryotic cells [309], but the tech-
nique was also applied for eukaryotes, such as yeast [79, 312], fungi [328], mammalian
[1, 138, 274, 283], and plant [8] cells. Among others, prokaryotes and eukaryotes differ
in cellular compartmentation, which is particularly important when using 13C MFA. In
eukaryotes, compartmentation is essential since each cellular compartment fulfils differ-
ent functions [2]. Even multi-compartment isozymes exist that serve different purposes.
For example, Chinese hamster ovary (CHO) cells comprise cytosolic and mitochondrial
malic enzymes (MEs) with different NAD+ and NADP+ regeneration capacities, thereby
fulfilling diverse catabolic and anabolic needs [138].

Metabolic compartmentation must be considered when performing 13C MFA [2]. There
are two levels of complexity; on the one hand, subcellular metabolic models should be used
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to enable proper in silico predictions. On the other hand, in vivo compartment-specific
metabolome data should be available to allow data-driven studies. Nicolae et al. (2014)
and Pfizenmaier and Takors (2016) provided evidence for the importance of subcellular sto-
ichiometric models for estimating fluxes in CHO cells [180, 195, 217]. Regarding the latter,
Matusczcyk et al. (2015) applied compartment-specific metabolomics in CHO outlining
that cytosolic ATP pools are considerably larger than their mitochondrial counterparts
[180]. Later, Junghans et al. (2019) continued investigating mitochondrial and cytoso-
lic metabolic patterns under different cultivation conditions. They found that pool sizes
differed between cytosol and mitochondria for all conditions [138].

Given that subcellular metabolomics are very laborious [138, 180] the question arises what
differences may occur if 13C flux analysis is based on whole-cell metabolomics instead of
compartment-specific measurements. In other words, whether the additional lab-efforts
justify the information gain of subcellular studies. Alternative approaches such as su-
perimposing the patterns of two independent 13C experiments using labeled glucose and
labeled glutamine also aim to decipher subcellular flux distributions [274]. However, they
rely on glutamine synthase deficient cells whereas the suggested subcellular metabolomics
approach may be universally applicable.

Given that labeling dynamics in metabolite pools expressed by the 13C labeling turn-over
(τ13 C) are a key information for quantifying fluxes, influencing factors may be considered.
Two factors, pool size of metabolite i and net labeling flux j through this pool exist
[37]. Either factor may change when a system’s analysis shifts from simplifying single
to realistic multi-compartment analysis. Differences in τ13 C may occur originating from
individual pool sizes and fluxes inside the compartments. In theory, the same metabolite
in different compartment might present a different labeling dynamic providing that the
metabolite turn-over time is different. Thus, resulting on a different labeling dynamics
(τ13 C).

Exploiting the unique subcellular labeling dataset of Junghans et al. (2019), this study
investigated whether subcellular labeling information is crucial to obtain the correct
compartment-specific flux patterns [138]. Flux distributions considering and ignoring sub-
cellular metabolite labeling were performed using CHO as the showcase. This study in-
vestigated whether significant differences exist using whole-cell and compartment-specific
metabolic information.
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6.3 Materials and Methods

This study was based on published metabolome and 13C isotopologue data [8]. In partic-
ular, the 13C dataset covering the first 24 h was used to focus on the exponential growth
phase.

6.3.1 Cell culture and experimental set-up

The CHO DP-12 cell line (ATCC©CRL-1445TM) was cultivated in a suspension with TC-
42 medium (Xell AG, Bielefeld, Germany) supplemented with 42 mM D-glucose, 6 mM
L-glutamine, and 200 mM methothrexate. Precultures were cultivated in pre-sterilized
disposable shake flasks (Corning Inc., NY, USA) with culture volume ranging from 125
mL to 1 L at an initial viable cell density (VCD) of 0.4 × 106 cells/mL in a humidified
shaking incubator (Infors HT Minitron, Infors GmbH, Einsbach, Germany) at 37 ◦C, 150
rpm, and 5% saturated CO2. Bioreactor cultivations were performed in a two-fold parallel
CellFerm Pro bioreactor system (DASGIP, Eppendorf, Germany) equipped with pitched
blade impellers and a process control system. Bioreactor cultivations were started with
a VCD of about 0.4 × 106 cells/mL, temperature was set to 37 Celsius and agitation to
150 rpm. Additionally, the dissolved oxygen content was controlled using an amperometric
electrode (Mettler-Toledo Inc., Columbus, OH, USA) at 40%. The pH was measured with
a conventional pH probe (Mettler-Toledo Inc., Columbus, OH, USA) and maintained at
7.1 using 1 M Na2CO3 or CO2 gassing. Carbon labeling experiments were performed in
the same setup using [U-13C6]-D-glucose as a carbon tracer with an average isotopic ratio
of 25% [U-12C6]- and 75% [U-13C6]-D-glucose. Experiments were performed as biological
duplicates. In addition to carbon labeling experiments, bioreactor cultivations with [U-
12C6]-D-glucose were performed using the same conditions for metabolome profiling.

6.3.2 Extracellular and intracellular analytics

VCD was monitored with a 12 h interval with Cedex XS, an offline cell counting system (In-
novatis AG, Bielefeld, Germany). Extracellular D-glucose and L-lactate were monitored
offline with LaboTRACE, an amperometric biosensor system (Trace Analytics GmbH,
Braunschweig, Germany). Extracellular antibody (IgG1) concentrations were measured
using ELISA as reported previously [15]. Extracellular amino acid concentrations were
quantified with reversed-phase chromatography (Agilent 1200 Series, Agilent Technolo-
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gies, Waldbronn, Germany) [8]. Sampling for metabolomics was performed using differen-
tial fast filtration [8, 13]. Then, processed samples were analysed regarding metabolome
quantification using an Agilent 1200 HPLC system coupled with an Agilent 6410B (Ag-
ilent Technologies, Waldbronn, Germany) triple quadrupole mass spectrometer equipped
with an electrospray ion source. Analytical sample preparation and methodology were
conducted as reported previoysly [8, 16].

6.3.3 13C metabolic flux analysis

Isotopic non-stationary 13C MFA was performed in MATLAB 2018a (The MathWorks, Inc.,
MA, USA). Before performing 13C MFA, measured 13C labeling distributions were corrected
for natural stable isotope abundances [17]. Parameter optimization was conducted using
MATLAB least square optimization fmincon function in combination with GlobalSearch
and MultiStart algorithm in a multi-core computing machine [18]. The first derivative
of each isotopomer balance was solved using MATLAB Ordinary Differential Equations
ode15s solver. The study used the metabolic and carbon-atom transition model in the
previous study [8]. Details of the model are indicated in Table S1 (Supplementary Material
S1) and are displayed in Figure 1.

Metabolite balancing

The two-compartment CHO-cell model comprises the stoichiometric matrix S (Supple-
mentary Material S1, Table S1) consisting of m metabolites and n reactions (m× n). The
following cell-specific rates [pmol cell-1 h-1]were defined: q for cellular uptake and secretion
rates, k as inter-compartment transport, and v as compartment-specific reaction. The
balance of metabolite i participating in reaction j localized externally, in cytosol, or in
mitochondria was described by Equations 1 and 2.

dCi,ex

dt
= Qi,feed + qicX (6.1)

dci,in

dt
=
−qi − ki +

n∑
j=1

vj

 · cx = 0 (6.2)

Where ci denotes the concentration of metabolite i [mol L-1], cx denotes VCD [cell L-1], t
denotes time [h], and Qi,feed denotes the feed-rate of metabolite i [pmol L-1 h]. The process
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model describing the batch cultivation is given in Equation 1 and allows the estimation of
q for metabolite i by time-series analysis of extracellular concentrations ci.

Therefore, the metabolic steady-state was defined as mirrored in the constraint,
dcc,intracellular

dt
= 0 which is a prerequisite for 13C flux analysis. Both stationary and non-

stationary labeling patterns were analysed, originating from the metabolic steady-state
condition.

Metabolic flux analysis

MFA was performed using the metabolic network S considering the following constraints:
(i) pool sizes of cytosolic and mitochondrial metabolites were in a steady-state and (ii) the
entire system was (over)-determined because of the ample 13C labeling information.

Fluxes were estimated according to:

v =
 S

M

−1 0
[qmeas p]

 (6.3)

Where M is the measurement matrix containing the stoichiometric coefficients of qmeas

(measured rates [pmol cell-1 h-1]) and p contains the estimated fluxes using mass-isotopomer
data [pmol-1 cell h-1]).

Isotopomer balancing and bidirectional reactions

Isotopomer balancing was applied to mathematically describe the incorporation of 13C
tracers into intracellular metabolite carbon skeletons [19 – 20]. Isotopomer balances for
intracellular metabolites are according to eq. (6.4).

d(CiIi)
dt

=
N∑

j=1

α


0
⊗

k = 1

(
n∑

m=1
IMMk→m

)
Ik

 rj + 1− α)(virjIi)


with

α =

 1, ifvij > 0
0, else

(6.4)
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where the isotopomer transition from reactant k to product m is described by IMMk→m.
Furthermore, Equation [5] was used to describe labeling dilution by extracellular pools
(L-lactate, L-glutamate, L-aspartate, and L-alanine).

d(Ii,ex)
dt

= 1
c1,ex

[
cX

(
qi,ex · Ii,in − qi,ex · Ii,ex − dci,ex

dt
Ii,ex

)]
with
−→q i,ex = βi · qnet

i,ex
←−q i,ex = −→q i,ex − qnet

i,ex

(6.5)

Exchange fluxes were defined for each reversible biochemical reaction [21 – 22] according
eq. (6.6).

−→v j = βj · vnet
j

←−v j = −→v j − vnet
j

(6.6)

Parameter estimation and uncertainty

Parameter (flux) estimation was achieved by fitting the simulated mass isotopomer distri-
bution (MID) to the measured in vivo MID as presented in eq. (6.7).

minf(θ) =
∑(

MIDsim
i −MIDexp

i

σi

)2

(6.7)

Cytosolic and mitochondrial MIDs were defined for subcellular studies. Non-
compartmented analysis considered that no subcellular measurements were available. In-
stead, only entire cell labeling patterns should exist. Consequently, compartment-specific
information was merged again, applying eq. (6.8).

MIDcom
i = MIDcyt

i · f + MIDmit
i · (1− f) (6.8)

Where f denotes the molar fraction of metabolite i in the cytosol. During simulations,
f was treated as an optimization parameter for those metabolites presented in both com-
partments; pyruvate, citrate, α-ketoglutarate, malate, alanine, aspartate, asparagine, and
glutamine. Accordingly, f serves as an alternate indicator for the importance of consid-
ering compartments properly. Furthermore, flux estimation was achieved by fitting the
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measured non-compartment metabolome data with calculated MID using eq. (6.9).

minf(θ) =
∑(

MIDcomb
i −MIDexp

i

σi

)2

(6.9)

A χ2 statistical test was used to assess goodness of fit as described in eq. (6.10).

χ2 = ∑ (xsim−xexp)2

σi

dof = (n− p)
χ2 ≤ χ2

(1−α,dof)

(6.10)

Parameter uncertainty is essential to evaluate the flux differences including versus excluding
compartment-specific data. Conventional parameter uncertainty estimates make use of the
local calculation of the Jacobian matrix as a linearized proxy for variance. However, this
approach only shows poor performance if a complex and non-linear set of equations should
be analysed, as it is the case in this 13CMFA study. Thus, confidence intervals of each
parameter (fluxes) were estimated using the chi-square (χ2) statistics, which works best
for non-linear equations [23] as demonstrated by Antoniewicz et al. (2006). The method
relies on the assumption that the minimized variance-weighted sum of squared residuals is
χ2 distributed. Thus, the residual difference evaluating the global optimum and fixing one
parameter is χ2 distributed with one degree of freedom.

6.3.4 Statistical analysis

The significant differences between the two analyses were assessed using Welch’s t-test for
unequal variances [24].

6.4 Results

Prior to the 13C MFA studies, a metabolic network model was formulated (Supplemen-
tary Material S1). First the structural identifiability and calculability of the network was
assessed applying well established methodologies (Supplementary Material S4). Next, the
identifiability of distinct fluxes was checked by simulating intracellular 13C labeling pat-
terns assuming pool sizes measured by Junghans et al. (2019). Results presented in the
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appendix indicate the good identifiability of intracellular fluxes which motivated us to
continue the study by analysing real labeling patterns and flux distributions.

In the study by Junghans et al. (2019), CHO-DP12 cells were cultivated in a bioreactor
to investigate three distinct growth scenarios; (I) exponential growth with no (carbon and
nitrogen) limitation; (II) moderate growth with L-glutamine depletion and L-asparagine
saturation; and (III) stationary phase with severe nitrogen limitation [138]. However, the
current study regarding the impact of subcellular 13C data only covers the exponential
growth phase during the first 24 h. This period is typically investigated in vitro because
labeling and cultivation conditions can be controlled easily, giving accurate results re-
garding flux distributions and cell-specific productivities [1, 283]. Furthermore, additional
cultivation study data investigating the same cell line and process conditions was used for
broadening the data set of subcellular versus cellular 13C metabolomics for flux analysis
(see Supplementary Material S6). The summary of all estimated intracellular fluxes is
provided in Supplementary Material S2.

6.4.1 Cell growth and carbon labeling studies

During the exponential growth phase, cells grew with 0.025 ± 0.001 h−1. Carbon and
nitrogen sources were constantly consumed, and metabolic byproducts were steadily re-
leased with constant specific rates (Supplementary Material S1, Table S2). D-Glucose was
consumed as a major carbon source while L-glutamine and L-asparagine served as primary
nitrogen sources. Additionally, the Warburg effect [301] was observed, showing a glucose-
to-lactate ratio of 0.93 molD−glucose/molL−lactate. 13C carbon labeling was introduced by
the addition of 75% [U-13C6]-D-glucose after 2.5 days, revealing no phenotypic changes,
i.e., no alterations of cellular metabolism.

6.4.2 13C metabolic flux analysis using compartment-specific
metabolome data

13C MFA was performed using compartment-specific metabolome data reflecting subcellu-
lar pools of cytosol and mitochondria together with isotopomer profiles of the said com-
partments. Flux estimations were performed at least 100 times with randomized input
values and rational boundary values for each parameter (Supplementary Material S2). Fi-
nally, the chi-square tests achieved 228.87, which served the statistical constraint of 232.92
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on a 95% significance level.

Glycolysis and PPP

High glycolytic (0.112 ± 0.017 pmol cell−1 h−1 of hexokinase) and extremely low PPP
fluxes (0.008 ± 0.001 pmol cell−1 h−1 of G6P dehydrogenase) were found. The latter
accounted for 6.68% of the D-glucose consumed. These observations are in agreement with
the findings of Ahn and Antoniewicz (2011), who performed 13C MFA in adherent CHO-K1
cells [1]. Additionally, approximately 15% (0.016 ± 0.002 pmol cell−1 h−1) of intracellular
G6P was continuously in exchange with endogenous glycogen.

in vivo mitochondrial shuttle

Glycolytic carbon fueled into mitochondria via two transport mechanisms; 77% entered via
the mitochondrial pyruvate carrier (MPC1/2) and 23% via a putative l-alanine transporter.
MPC1/2 showed the highest mitochondrial transport activities while other transporters
exchanged compounds for different purposes; (i) mitochondrial citrate carrier (citrate/-
malate antiporter; 0.049 ± 0.002 pmol cell−1 h−1) served as a citrate exporter to provide
cytosolic acetyl-CoA for the de novo lipid biosynthesis pathway; (ii) the malate-aspartate
shuttle comprising 2-oxoglutarate carrier (α-ketoglutarate/mal antiporter) and aspartate-
glutamate carrier (aspartate/glutamate antiporter), which is often described as an indirect
NADH shuttle because imported malate is oxidized to oxaloacetate, releasing NADH, ful-
filled a different function; malate was net exported from mitochondria to fuel cytosolic
ME.

Cytosolic malic enzyme and NADPH production

NADPH is a key electron donator for anabolic pathways and is essential for monoclonal
antibody biosynthesis. Templeton et al. (2013) and Ahn and Antoniewicz (2011) suggested
MEs as key NADPH producers in CHO cells [1, 283]. This hypothesis was further confirmed
via compartment-specific flux analysis by Junghans et al. (2019) [138]. Cytosolic ME
(MEcyt) was identified as the primary provider serving NADPH needs. Compartment-
specific 13C MFA estimated that about 86% of the NADPH requirement was fulfilled by
MEcyt (0.09 ± 0.01 pmol cell−1 h−1).
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6.4.3 13C Metabolic flux analysis using non-compartmented
metabolome data

An additional 13C MFA was performed to investigate the importance of distinct sub-cellular
information to elucidate proper in vivo subcellular flux patterns. analysing the merged
data (eq. (6.6)) via 13C MFA yielded a chi-square value of 140.12 on the 95% confidence
level, which was accepted as a good fit (with 154.30 as the χ2 statistical threshold on 95%
confidence interval). This study was performed using the same model consisting of 42
intracellular biochemical reactions. Figure 6.2A provides the comparison of intracellular
flux distributions estimated with (left) and without (right) sub-cellular information. The
related single-compartment key fluxes and iso-enzymatic rates are depicted as bar plots in
fig. 6.2B and fig. 6.2C. Notably, the term ’iso enzymes’ encodes fluxes connecting the same
substrates and products but localized in different compartments.

Biochemical reactions localized in a single compartment

fig. 6.2 (b, c left) shows fluxes of biochemical reactions that exist in one compartment (cy-
tosol or mitochondria) only. Most of them revealed similar results irrespective of whether
compartment-specific information was used (black) or not (grey). Figure 6.3b demonstrates
the case the metabolome pools and the respective fluxes were the same for both studies,
yielding a similar τ13C . This is also true for citrate synthase vCS, although identifiability
was poor. Similar results were observed for cytosolic-based reactions: pyruvate carboxy-
lase (vpc) and PEP carboxykinase (vpepck) (fig. 6.2(c)). These single-compartment reactions
possessed the particularity of utilizing the same metabolites but in different compartments
(fig. 6.1). In this particular case, no statistically sound difference between vpc and vpepck

was found, most likely because compartment-specific OAA values lacked.

Iso-enzymatic reactions localized in different compartments

Special emphasis is laid on the so-called iso-enzymatic reactions of fig. 6.2(c right) that
catalyze similar conversions in different compartments. The fluxes of malate dehydroge-
nase (vmdh), ME (vme), aspartate amino-transferases (vast), and alanine amino-transferases
(valt) are localized in cytosol and mitochondria, respectively. Of the eight iso-enzymes
analysed, seven conversion rates were significantly different. The only exception is the mi-
tochondrial malate dehydrogenase (vmdh,mit) which revealed statistical similarity although
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Figure 6.1: Metabolic model of CHO cells used in this study (modified figure from [138]).
Arrow coloring indicates the localization of biochemical reactions as follows:
black encodes single compartment; red encodes multi-compartments; and blue
encodes inter-compartment transporters. Additionally, multi-compartment
metabolites are indicated in red.
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Figure 6.2: (a) Intracellular flux distribution estimated using compartment-specific (left)
and non-compartmented data (right); (b) fluxes of biochemical reactions in-
volving single-compartment metabolites; (c) fluxes of biochemical reactions in-
volving multi-compartment metabolites; and (d) mitochondrial carrier fluxes
estimated with compartment-specific and non-compartmented data (* indicates
significance p < 0.05).
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Figure 6.3: Cell-specific production of monoclonal antibodies in CHO cells (modified from
Junghans et al., 2019 [138])
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fluxes even reversed. On contrary, the cytosolic malate dehydrogenase (vmdh,cyt) also dis-
closed flux reversion but with a sound statistical identifiability. Non-compartmented data
were not able to properly reflect real fluxes of the amino-transferases (vast), namely alanine
amino-transferases (valt) and aspartate amino transferases (vast). The analysis of whole-cell
data resulted in flux overestimation compared to compartment-specific analysis. Notably,
the substrate aspartate occurred in cytosol and mitochondria and is a key player of the
aspartate-malate shuttle. Moreover, alanine was involved in the co-transport of glycolytic
carbon into mitochondria with the MPC1/2. In this case, proper localization and labeling
information of the compound is key to estimate fluxes correctly. Additionally, severe bias
was observed for fluxes of both malic enzymes (vme) as displayed in fig. 6.2(c right). By
trend, 13C flux estimations using non-compartmented data identified significantly lower
(about 30%) cytosolic vme,cyt than the non-compartmented data. Regarding mitochondria,
the opposite was found. The finding for vme using non-compartmented data is consistent
with the observations of Ahn and Antoniewicz (2011) and Templeton et al. (2013) who
also performed 13C MFA with cellular data [1, 283]. Importantly, cytosolic ME activity
via vme,cyt was identified as a key supplier for NADPH needed for IgG production in CHO
cells (Junghans et al., 2019) [138].

Mitochondrial metabolite carriers

Comparing shuttle activities using sub-cellular and cellular labeling information reveals sig-
nificant differences for half of the inter-compartment transporters, namely the aspartate/g-
lutamate antiporter (vAGC1), malate carrier (vDIC), α-ketoglutarate/malate antiporter
(vOGC), and the putative alanine carrier (vmAla) (fig. 6.2d). Similar to the identification
of aspartate amino-transferases, the proper identification of vAGC1 depends on the labeling
turnover τ13C of Asp in both compartments. Missing compartment-specific measurements
lead to the different shuttle fluxes, which are also reflected in the biased flux vast. The same
scenario also holds true for the putative alanine carrier (vmAla) and the corresponding reac-
tions (alanine amino-transferases; valt). Shuttle estimations regarding vDIC and vOGC using
non-compartment-specific data contradict flux calculations using compartment-specific in-
formation estimation. The sub-cellular labeling information of malate is essential to get
accurate flux estimates. Interestingly, the flux estimation of putative asparagine carrier
(vmAsn) was not biased by the use of whole-cell labeling data only. This may reflect that
vmAsn heavily depends on the measured L-asparagine uptake rate (qAsn) irrespective of the
existence of additional subcellular information.
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Estimated cytosol-mitochondrial fraction (f factor)

Using eq. (6.8), f factors were estimated for each metabolite and compared with the
measurements of Junghans et al., (2019) (table 6.1) [138]. As indicated, all estimated
cytosolic fractions (f) were poorly identified with pyruvate showing the smallest difference
of 8.59% only. On average, 59.71% difference was found compared to the real labeling
fraction. Notably, the best estimates of pyruvate and asparagine also enabled improved
flux values for the corresponding biochemical reactions, e.g. vMP C1/2, vpdh for pyruvate,
and vasns, vmAsn for asparagine.

Table 6.1: Complete list of estimated and measured cytosolic fractions of subcellular
metabolites used for 13C MFA.

Cellular NADH and NADPH production

table 6.2 shows a comparison of NADH and NADPH production via compartment-specific
analysis and neglection of sub-cellular data. Neglecting sub-cellular data, NADPH pro-
duction is underestimated by approximately 25%. This reflects the 30% underestimation
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of cytosolic vME when cellular and not subcellular data are used. In the case of NADH
and ATP, the utilization of different datasets disclosed only minor differences. NADH and
ATP fluxes were overestimated by 9% and 14% for non-compartmented data, respectively.

Table 6.2: Comparison of NADH, ATP, and NADPH net production rates in compartment-
specific analysis and whole-cell analysis (values presented in pmol cell−1 h−1).

Challenging the key statements by an additional data set

To investigate whether or not the observed flux characteristics may be specific for the data
sets used, additional data of cultivations with the same cell line, cultivation conditions,
and analytical tools was used. Figure S6-1:S6-3 (Supplementary Material S6) outlines that
very similar key messages are obtained analysing the new data set: Glycolytic fluxes are
fairly similar irrespective whether subcellular or cellular 13C metabolomics is used. On
contrary, fluxes for cytosolic malate dehydrogenase and malic enzyme differ statistically
significant depending on the granularity of metabolic labeling resolution. The same holds
true for shuttle activities such as DIC, GC1, and OGC which is in agreement with the
results derived from the other data sets.

6.5 Discussion

This study challenges the information gain when performing 13C MFA with compartment-
specific metabolome data compared to exploiting cellular labeling information not distin-
guishing between cytosol and mitochondria.

fig. 6.2 outlines the complexity of the interactions. A group of fluxes (vpgi, vGAP dh, vG6P dh,
and vphdgh) located in a single compartment (here: cytosol) disclose equal values irrespective
of the analytical approach selected. Interestingly, this also holds true for vcs, located in mi-
tochondria, primarily due to poor flux identifiability. Furthermore, vpepck and vpc revealed
such high flux variances that no distinction could be found whether cellular or subcellular
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13C data were used. Apparently, both reactions depend on cytosolic (OAAcyt) and mito-
chondrial oxaloacetate (OAAmit). They act at the interphase of the two compartments
and rely on proper sub-cellular measurement information (τ13C) for correct identification.
Distinct OAA measurements were not available in the current study due to challenging
analytical access to the compound. Accordingly, flux estimations might be biased by the
quality of OAA pool estimations.

Additionally, some other fluxes should be interpreted with great care, too. This holds
particularly true for mitochondrial malate dehydrogenase (vmdh,mit) and the pyruvate car-
rier vMP C1. Both disclose large error bars rendering a discrimination between cellular
versus subcellular approaches hardly possible (fig. 6.2(c,d)). Flux imprecisions reflect
the lack of reliable CO2 evolution rates (qCO2) and CO2 labeling profiles. The whole-
cell (cellular) flux estimation failed to estimate the mitochondrial and cytosolic fluxes of
the amino-transferases valt and vast. This may reflect that those fluxes heavily depend
on the compartment-specific labeling information of alanine and aspartate. Not providing
this information by using whole-cell labeling data leads to the large discrepancies given in
fig. 6.2(c).

Almost all mitochondrial carrier fluxes were poorly estimated when using non-
compartmented data. Inaccurate estimations of vAGC1 and vmAla are also reflected by
the results of vast and valt. Additionally, the poor estimation of the malate carriers vDIC

and vOGC depended on vme. In general, fluxes of transporters and bioreactions heavily
relied on the labeling dynamics measured in the related metabolites. Regarding vMP C1,
the reduced shuttle activity based on non-compartmented data reflects the missing malate
exported into cytosol (fig. 6.2(d)).

To check whether the additional use of labeled glutamine (Ahn and Antoniewicz, 2013)
[274] might have achieved similar subcellular flux resolutions as the compartment-specific
analysis, simulations were performed using U-13C5-L-glutamine (Supplementary Material
S3). Interestingly, without information about compartment-specific metabolomics, cytoso-
lic 13C signals obtained from simulations are pretty similar to those of the whole-cell. This
is mainly due to the relatively low information gain with respect to the key mitochon-
drial metabolites malate and aspartate. Compartment-specific labeling information and
turnover of the latter are decisive to resolve activities of mitochondrial transporters.

In general, most of the flux estimations using either non-compartmented or compartmented
data led to similar values. Even global cell qualifications, such as rates of total ATP
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formation and NADH production, were similar. However, two main findings should be
considered:

1. Often, cellular analysis achieved similar flux estimations as subcellular studies by
fitting measured cytosolic labeling fractions for the sake of estimating pool sizes
properly (table 6.1). In other words, flux optimization algorithms adapted cytosolic
and mitochondrial pool sizes to complement missing labeling information. However,
the simulated pool size readouts were strongly misleading.

2. Among the fluxes with the largest discrepancies is the cytosolic ME vme. Remarkably,
this flux was found to be a promising metabolic engineering target to maximize the
formation of heterologous proteins by improved NADPH supply [138]. Accordingly,
exact estimation is a prerequisite for proper strain engineering. Figure 6.3 illustrates
that even the result of non-compartment data analysis still fits to the subcellular
kinetics published in Junghans et al. (2019). Whether or not experimentalists may
have identified this enzyme as a metabolic engineering target remains open and is a
matter of qualitative discussion rather than quantitative target identification [138].

To date, the compartment-specific analytical approach of Matuszczyk et al. (2015) [180]
has shown its suitability for multiple metabolomic studies investigating CHO cells under
in vivo-like conditions [21, 22, 138, 216, 218, 301, 303]. The latter is enabled by fast
and standardized metabolism inactivation. Furthermore, data quality essentially relies
on the quantitative access to internal standards, such as G6P/F6P (in cytosolic space)
and cis-aconitate (in mitochondrion) to correct for mitochondrial leakage. In general, fast
metabolic inactivation, standardized sample processing and use of internal standards are
prerequisites for any compartment-specific metabolomics approach that might be used in
future applications.

6.6 Conclusions

Investigating the need for using subcellular 13C labeling data, the study revealed that
non-compartmented data enabled to identify most fluxes involving single compartment
metabolites. Besides, half of the mitochondrial shuttle fluxes and global properties, such
as ATP and NADH formation, were fairly well estimated without requiring further subcel-
lular labeling information. However, there is a number of sensitive fluxes that could only
be identified properly if compartment-specific pool information was used. Among those
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were mitochondrial shuttles that rely on alanine, aspartate and malate. Furthermore,
key metabolic engineering targets, such as the cytosolic ME flux for NADPH formation,
were severely underestimated using (total) cellular data. This may disguise their role as
promising metabolic engineering target if non-compartmented pool analysis is performed,
only. The finding underlines the necessity to apply subcellular data for flux estimation, not
only to quantify cytosolic/mitochondrial shuttle activities but also to identify metabolic
engineering targets and obtain valid values for real pool sizes.
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Chapter 7

Evaluation of heat inactivation
enabling intracellular metabolite
profiling in S. thermophilus and
L. bulgaricus for small time intervals

The author of this dissertation, Andreas Ulmer, is the sole author of the manuscript pre-
sented in this chapter.

7.1 Abstract

The determination of substrate conversation rates of enzymes in microorganisms is a piece
of important information to gain more insight into cell activity as well as to create predictive
models. Exposing cells to heat can stop metabolic activities enabling the determination
of intracellular metabolite concentrations and subsequently enzymatic activities by using
a labelled substrate. To maintain cell integrity which is essential for further analysis
such as fractionating co-cultures into individual strains, a new heat treatment method
was developed. The established inactivation unit consists of a thin capillary encased by
an aluminium block allowing applied temperatures to at least 200◦C. Heat-treated cells
(S. thermophilus and L. bulgaricus) were analysed for alterations in intracellular metabolite
pools as well as metabolite leakage into the extracellular matrix. The enzyme activity of
LDH was determined to illustrate reduced substrate conversion and constant pool size after
heat inactivation. A retention time of 0.1 s at 160 ◦C was found for L. bulgaricus to be
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promising to stop metabolic activity while maintaining membrane integrity.

7.2 Introduction

In order to obtain precise flux distributions and enzyme turnover rates in microorganisms,
intracellular metabolite pool sizes are essential [247]. The turnover of these metabolite
pools is within milliseconds [280] demanding a fast inactivation without disturbing the
pool size [123, 248, 302]. Several inactivation methods such as using cold methanol [148]
or fast centrifugation [280] were developed. However, treating L. bulgaricus with cold
methanol results in not reproducible results (Ulmer, personal communication), and fast
centrifugation takes several seconds to minutes allowing pool changes, especially in glycol-
ysis.
The inactivation unit (IU) presented is adaptable to methods that demand fast inactivation
of metabolism and is suitable for applications such as continuous cultivations with unlim-
ited sample volume. Further, dynamic experiments are possible due to fast inactivation
(within seconds). However, the oxygen supply is reduced in connection and in the IU.
To prevent changes in intracellular metabolite pool size, the objective was to reduce en-
zyme activity and leakage of molecules by reduced cell membrane integrity. To monitor
enzyme activity in cells, LDH was chosen. LDH reduces pyruvate to lactate while NADH
is oxidized. The decrease of NADH over time was monitored at λ = 340 nm. LDH activity
was examined and used to demonstrate cellular activity. Further analytic methods to point
out cellular activity were growth and propidium iodide staining to demonstrate damage
to the cellular membrane, and quantification of metabolite pool sizes in various set-ups
indicating leakage [123].

7.3 Methods

7.3.1 Cultivation conditions

Cultivation of L. bulgaricus and S. thermophilus was adapted from [291]. Lactobacillus
delbrueckii subsp. bulgaricus (LB.1 = ATCC BAA-365) was received from an industrial
supplier and stored at −70 ◦C in MRS (Man et al. 1960) (pH 6.5) containing 20%
(vol/vol) glycerol until use. MRS (69966 MRS Broth, Sigma-Aldrich Chemie GmbH,
Steinheim, DE) was solved in deionized water, pH adjusted at 6.5 with 2 M NaOH, and
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filtrated (ROTILABO, PVD, 0,22 µm, Carl Roth GmbH & Co. KG). Then, 0.5 mL sterile
polysorbate 80 (CAS-Nr.: 9005-65-6, Sigma-Aldrich Chemie GmbH, Steinheim, DE) was
added. The cells from the cryo tube (volume = 1 mL) were transferred into 15 mL MRS
supplemented with additional 14.3 g/L lactose and incubated for 6-8 h at 40 ◦C. After two
wash steps (with 0.9% NaCl solution), the preculture was inoculated containing synthetic
medium with amino acids (SMaa) and stirred (400 rpm) at 40 ◦C for 14-18 h until pH was
between 6 and 5.
Streptococcus thermophilus (ST.1) was received from an industrial supplier and stored
at −70 ◦C in M17 (56156 M17 Broth, Sigma-Aldrich Chemie GmbH, Steinheim, DE)
(pH 6.5) containing 20% (vol/vol) glycerol until use. M17 was prepared according to the
manufactures description and autoclaved. The cells from the cryo tube were washed twice
with 0.9% NaCl solution and preculture was inoculated containing synthetic medium with
amino acids and stirred (400 rpm) at 40 ◦C for 2-6 hours until pH was between 6 and
5. Calculated amounts of cells from L. bulgaricus and S. thermophilus precultures were
washed twice in 0.9% NaCl solution and the main culture was inoculated containing amino
acids or casein as indicated. Preculture and main culture were cultivated in crimp-top
serum bottles pretreated by flushing with 80% N2 and 20% CO2 for 10 min and 400 rpm.
Growth was monitored by optical density (λ = 600 nm) with a photometer (Amersham
Bioscience, Ultrospec 10 cell density meter) or by flow cytometry (chapter 3).

7.3.2 Medium preparation

A sterile 5x basal solution was prepared containing di-potassium hydrogen phosphate,
potassium dihydrogen phosphate, sodium acetate, ammonium citrate, manganese sulfate,
iron(II) sulfate, and Tween80 as indicated in table 3.1. Then sterile lactose, magnesium
sulfate, urea, nucleobases, and amino acids – if required – were added. After pH was set
to 6.5 with 1 M HCl, trace elements, vitamins, calcium chloride, and casein – if required
– was added. The serum bottle was sealed, crimped, and flushed with sterile 80% N2 and
20% CO2. Casein stock solution was prepared in a beaker containing glass beads (3 mm
diameter) which were covered with a thin layer of Tween 80. After casein powder was
mixed with beads, 100 mL containing 0.26 g/L CaCl2 was added and the solution was
stirred slowly overnight followed by autoclaving carefully for 5 min at C121 ◦C.
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7.3.3 Lactate dehydrogenase activity assay

The pellet of inactivated cells was used to determine the enzymatic activity of LDH ac-
cording to a modified protocol from [94].

7.3.4 Cell lysis

An aqueous solution of HEPES (0.05 mol/L) was prepared and pH was set to 7.5 using 5
M KOH. MgCl2 (0.2 mol/L) was prepared. HaltTM Protease Inhibitor (ThermoScientific,
Waltham, USA) and MgCl2 were diluted 1:100 with HEPES buffer before use.

7.3.5 Medium salt solution

Compounds (table 7.1) were disolved in MiliQ water.

7.3.6 Master Assay Buffer

Compounds (table 7.2) were disolved in MiliQ water and pH was set to 6.5.

7.3.7 Cell lysis

Cell pellets were dissolved in 500 µL lysis buffer on ice. After the addition of 0.5 g glass
beads (diameter = 100 µM), the cells were disrupted in a homogenizer (precellys 24, Bertin
Instruments, Frankfurt, Germany) with a speed of 5000 rpm, 3 bursts of 20 s. The sus-
pension was centrifuged (15 min, 4°C, 20 000 g) and diluted in lysis buffer (1:2, 1:4, and
1:8). Subsequently, the enzyme activity was measured.

7.3.8 LDH Assay

To determine the lactate dehydrogenase activity, the following (table 7.3) reagent assay
was used.

The fructose-1,6-bisphosphate stock solution was prepared by solving 121.8 mg of D-
Fructose 1,6-bisphosphate trisodium salt in 1 mL MiliQ water. Pyruvate stock solution
was prepared by solving 20 mg of Pyruvate Monosodium in 10 mL.
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Table 7.1: Medium salt solution

Table 7.2: Master Assay Buffer
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Table 7.3: LDH Assay
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Subsequent to the assay, the 0.3 mol/l fructose-1,6-bisphosphate, 0.015 mol/L NADH, and
0.2 mol/L pyruvate stock solutions were prepared. Then, 5 µL of pure or diluted sample
was transferred in a 96-well plate and 265 µL of reagent mix was added. After 2 min, the
baseline was measured at λ = 340 nm for 20 min. Then 30 µL pyruvate stock solution was
added and LDH activity was followed at λ = 340 nm. LDH activity was determined by
considering the slope of measured absorption. The relative enzyme activity was calculated
by considering cell pellet samples of cells without heat treatment.

7.3.9 Determination of extra- and intracellular metabolite pools

(a) Cell suspension (12 mL) from cultivation in crimp-top serum bottles was centrifuged (3
min, 4°C, 20 000 g) using three 5 mL Eppendorf tubes (0030119401, Eppendorf, Germany).
Cell pellets and supernatant were immediately separated and frozen in liquid nitrogen and
stored at -70°C. (b) After cell inactivation in the inactivation unit, the cell suspension was
centrifuged (3 min, 4°C, 20 000 g). Cell pellets and supernatant were immediately separated
and frozen in liquid nitrogen and stored at -70°C. For metabolite extraction, pellets were
supplemented with 120 µL 100 µM Norvalin to correct for analyte variability, boiled at
95°C for 4 minutes, and immediately centrifuged for 20 minutes at 20 000 g and +4°C. All
supernatants were filtered (Centrifugation Units ROTI Spin, MINI-3, Carl Roth, Germany)
and stored at -70°C. The metabolite concentration was measured on an Agilent 1200 HPLC
system coupled with an Agilent 6410B triple quadrupole mass spectrometer (MS-QQQ)
using an electrospray ion source (ESI). Chromatographic separation was achieved according
to [282]. The metabolite pool concentration was quantified in some samples by the addition
of defined amounts of analyte standards into the reaction mixture. Data analysis was
performed with the MassHunter B.05.00 software (Agilent Technologies).

7.3.10 Construction of the aluminium-inactivation unit

An aluminium cube (40 or 60 mm) was cut in half and a small furrow was engraved between
both halves to insert the capillary. The aluminium cube was placed on a heat plate. The
temperature of the aluminium block was monitored by a temperature sensor inserted in
the aluminium block. The cooling unit comprises a tube immersed in a water-ice bath.
Cells suspension was filled into a syringe pump (HSW HENKE-JECT 20 ml, Henke Sass
Wolf, Tuttlingen, Germany) and injected into the IU by a syringe pump (Spritzenpumpe
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Figure 7.1: Drawing of the aluminium-inactivation unit with an aluminium block used as
heat unit and an attached cooling unit.

LA-30, HLL Landgraf Laborsysteme, Langenhagen, Germany) (fig. 7.1).

7.3.11 Characterization of the inactivation unit

The radius of the fused silica capillary was rcapillary,inner = 0.27mm, and with an indicated
length lcapillary. The heat Q [J] and the heat flow dQ/dt through the area A of the capillary
into the fluid in the capillary were calculated according to eq. (7.1). The heat which exits
the capillary was determined by eq. (7.2).

Q̇1 = −mfluid · cp,fluid ·
∂ϑfluid

∂t
(7.1)

Q̇2 = α · A · (ϑfluid − ϑapplied) (7.2)

α =
−ln

ϑfluid,out − ϑapplied

ϑfluid,in − ϑapplied
· ρfluid · cp,fluid · V̇fluid

2 · π · rcapillary,inner · lcapillary

(7.3)

In eqs. (7.1) and (7.2), m is the mass of the fluid in the capillary; cp is the heat capacity (cp =
4190J ·K−1 ·Kg−1); tfluid is the temperature of the fluid; tapplied is the applied temperature
in the water bath or in the aluminium block.; and α the heat transfer coefficient. The
temperature difference ∂tfluid was replaced by (tfluid - tapplied) and eqs. (7.1) and (7.2) were
equated assuming constant heat transfer coefficient α. The flow rate was included by an
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expansion of the equation with m · t−1 = ρ · V · t−1 (ρ = 0.997 kg · L−1). This allows the
calculation of the heat transfer coefficient α (eq. (7.3)) by measuring the temperature of
the fluid.

7.3.12 Dependency of reaction rate constant from temperature

The relation between the reaction rate constant k and the temperature T is provided by
equation eq. (7.4) [275] where B is a pre-exponential factor, Ea is the standard reaction
enthalpy [J/mol], and R is the universal gas constant.

k = B · e
Ea
R·T (7.4)

7.4 Results

7.4.1 Dynamics in intracellular pool size during cultivation of
L. bulgaricus

L. bulgaricus was studied in a (semi-) synthetic medium containing casein (fig. 7.2). This
allowed profound analysis and a deeper understanding of the original casein habitat. In-
tracellular poolsizes of L. bulgaricus were measured during cultivation in crimp-top serum
bottles at three time points. The cell suspension was centrifuged, and the cell pellet was
separated from the supernatant and boiled for metabolite extraction (see methods). Fig-
ure 7.3 reveals that the upper glycolysis, particularly the fructose-1,6-bisphosphate pool
was enriched during cultivation. Only malate and succinate were found, whereas alpha-
ketoglutarate, fumarate, and citrate were not found. The very high intracellular concen-
tration of succinate (91.5 µmol/gDW ) is intriguing. Thus, using centrifugation and boiling
to extract metabolites allowed to quantify intracellular pool sizes in L. bulgaricus. How-
ever, centrifugation takes several seconds to minutes allowing pool changes, especially in
glycolysis.
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Figure 7.2: Concentration profils of sugars and organic acids were measured in extracellular
matrix in L. bulgaricus LB.1 cultivation containing (semi-) synthetic medium
supplemented with casein using crimp-top serum bottle. Downright: biomass
(circle) and pH (rhomb) measurements.

7.4.2 Using an inactivation unit to stop the metabolic activity
and allow strain separation

The method using centrifugation of cell suspension enabled intracellular metabolomics
(fig. 7.3), however, it might change the intracellular pool size because the centrifugation
step takes minutes whereas (glycolytic) enzymes convert metabolite pools in seconds [281].
Subsequent steps such as density-gradient centrifugation [269] to separate different strains
of a co-culture collected in the pellet might also change the cellular state. Thus, initially cell
inactivation by using the inactivation unit (fig. 7.4) without demolishing the cell membrane
might overcome this limitation.

7.4.3 Leakage of intracellular metabolites

It was assumed that the treatment of cells with the IU might enable fast cell inactivation,
but also decrease the stability of the cellular membrane [123]. An unstable membrane might
facilitate an increased diffusion of intracellular metabolites to the environment as well as
the invasion of staining molecules into the cell [294]. To quantify whether intracellular
metabolite pools might leak into the extracellular matrix, phosphoenolpyruvate (PEP)
amounts were monitored in the supernatant after cells were treated in IU (m). This might
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Figure 7.3: Dynamic intracellular poolsizes during cultivation of L. bulgaricus in a crimp-
top serum bottle. Cells were harvested by centrifugation and boiled for metabo-
lite extraction. Each circle represents the aligned poolsize of a metabolite
in µmol/gDW . Top to bottom illustrates the metabolic sections glycolysis,
pentose-phospate-pathway (ppp) and tricarbon-cycle (TCA). G6P: glucose-
6-phosphate; F6P: fructose-6-phosphate; F16bisP: fructose-1,6-bisphosphate;
DHAP: dihydroxy-acetone-phosphate; 2/3-PG: 2,3-bisphosphoglycerate; PEP:
phosphoenolepyruvate; 6-PG: 6-phospho-gluconate; Pen5Ps: pentose-5-
phosphate; Mal: malate; Suc: succinate.
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Figure 7.4: Experimental set-up of inactivation unit. Cells cultivated in a crimp-top serum
bottle were transferred into syringe pumpe and injected into the capillary inte-
grated in the inactivation unit. Subsequent centrifugation separates cells and
cultivation broth.

uncover if leakage is present.

As indicated in fig. 7.5, a retention time longer than 0.3 s at 95°C results in a strong increase
of leakage for S. thermophilus. Here, the extracellular PEP concentration is almost equal
to the extracellular PEP concentration after heat treatment of cells at 95°C for 5 minutes.

7.4.4 Detection of intracellular metabolites in the intracellular
matrix

To uncover the effects of IU treatment on cells, the intracellular metabolite pools were ex-
amined in L. bulgaricus (fig. 7.4). Alterations of the intracellular concentrations might be
due to (i) increased enzyme activity facilitation conversion, or (ii) leakage through mem-
brane breaking. However, previously presented leakage in S. thermophilus of intracellular
PEP into the extracellular matrix (fig. 7.5) indicates that leakage is present. To intracel-
lular metabolite pools of eight metabolites were measured for various retention times at
95°C (fig. 7.6).

The measurement of intracellular metabolite reveals that pools in L. bulgaricus decreased
with longer exposure to 95°C (fig. 7.6). The reduction of intracellular pool size might be
due to leakage as shown in fig. 7.5 for S. thermophilus. To exclude the impact of heat
treatment at 95°C on intracellular pools, the retention time should be shorter than 0.17 s
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Figure 7.5: Concentration of intracellular phosphoenolpyruvate in extracellular matrix af-
ter treatment in water-IU at different retention times (applied temperature was
95°C). The retention time of 5 minutes was achieved by boiling cell suspension
and not by using the water-IU. S. thermophilus ST.1 was used.
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Figure 7.6: Intracellular metabolite pools in L. bulgaricus after treatment in IU with dif-
ferent retention times (applied temperature was 95°C).
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(fig. 7.6).

7.4.5 Results of existing water-IU

To summarize previous results presented in [123] and the experiments outlined in this
dissertation, fig. 7.7 illustrates time frames for retention times to constrain experimental
set-up enabling successful cell inactivation. Different objectives such as reduced enzyme
activity or intact membrane were chosen to allow sophisticated intracellular metabolome
analysis.

The conclusion from fig. 7.7 is, that IU as presented in [123] with a temperature of 95°C
was not suitable for demanded inactivation of cells. For example, a retention time of 0.3
s will inhibit the growth of L. bulgaricus for 24 h, but not completely inactivate enzyme
activity.

7.4.6 From water-inactivation unit (water—IU) to
aluminium-inactivation unit

To meet the requirements of unaltered intracellular metabolite pools after heat treatment,
the above-mentioned water-IU was adjusted. One possibility was to increase the temper-
ature of the heat unit (HU). This introduces more energy in a shorter time interval to
the cells and promotes enzyme inactivation assuming that eq. (7.4) was adapted for en-
zyme inactivation. The increased temperature might also cause damage to the membrane.
Contrasting, another option might be to increase the exposure time to the temperature in
the HU. This will lead to damage to the membrane as shown in fig. 7.7. Therefore, the
construction of the IU was changed: the HU attached to a water bath was exchanged by
an aluminium block encasing the HU and allowing a temperature above 95°C.

7.4.7 Simulation of temperature profiles in heat unit

To indicate the exposed (maximum) temperature of a cell in an IU, the temperature profile
was simulated in Matlab.
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Figure 7.7: Constrains of potential retention times in a heat unit to allow intracellular
metabolome analysis. Filled (blue) bars: Retention times from IU with 125
mm heatunit at 95°C. Gray bars: Retention times from from IU with 60 mm
heat unit (upper bar) or 40 mm heat unit (lower bar) and various temperature
between 120°C to 170°C. At least one measurement was used to extrapolate a
bar assuming that result holds true for longer or shorter retention times, re-
spectively. Heat treated cells were analysed for growth recovery for 24 hours,
for lactate dehydrogenase activity (reduced enzyme activity indicates reduction
of at least 80%), for intact membrane by propidium iodid staining, for suces-
ful detection of intracellular metabolites (IC), or for detection of intracellular
metabolites in extracellular matrix (EC). Source: #1: [123]; #2: this disserta-
tion.

105



Evaluation of Heat Inactivation

Figure 7.8: Determination of heat transfer coefficient alpha. The temperature of the fluid in
the capillary attached to a water-IU (125 mm, 95°C, water [123] was determined
for various flow rates.

7.4.8 Calculation of heat transfer coefficient

The heat transfer coefficient α in a water-IU adjusted with 125 mm HU at 95°C [123] was
determined and revealed dependency between α and the flow rate (fig. 7.8). This allows the
simulation to set α in accordance with the flow rate. Changing this setup to an aluminium-
IU as presented below might impact α. The thermal conductivity of aluminium is much
higher than water provoking a change of α. An adjustment of the applied temperature
from 95°C to 160°C will also impact α. Both effects were not considered in the simulation
code.

7.4.9 Enzyme inactivation in IU

The simulated temperature profile (fig. 7.9) of a water-IU (applied temperature 95°C)
with a retention time of 0.42 sec resulted in decreased enzyme activity of 80% (fig. 7.7).
Cells were exposed to the maximum temperature of 85°C (fig. 7.9). This indicated that at
85°C the metabolization of intracellular pools is strongly reduced due to reduced enzyme
activity. Therefore, the requirement of the aluminium-IU was to reach a temperature of
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Figure 7.9: Simulated temperatur profil of the water-IU (HU: 125 mm; CU: 400 mm; flow
rate: 4 mL/min; retention time: 0.42 s). With this set-up, enzyme inactivation
was achieved (adapted from [123]).

at least 85°C while reducing the exposure (retention) time in the HU.

7.4.10 Construction of the aluminium-IU

An aluminium-IU was constructed with 60 mm length and the applied temperatures were
between 120-160°C (see methods). From the simulation was assumed that the enzymatic
activity should be reduced for an applied temperature higher than 130°C reaching an
exposure temperature of 85°C (fig. 7.10).

The measured enzyme activity revealed that treatment in the aluminium-IU (60 mm) with
an applied temperature higher than 140°C was sufficient to reduce the enzyme activity
from 100% to 20% (fig. 7.10B). An applied temperature of 140°C results in a maximal
temperature of 91°C (fig. 7.10A) and was assumed to be sufficient for inactivation of the
most enzyme activity (fig. 7.9).

Further, the aluminium-IU enabled to apply temperatures above 160°C and decreased
enzyme activity was already observed at 140°C. Therefore, we decreased the size of the
aluminium-IU from 60 mm to 40 mm to reduce the residence time at high temperatures
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Figure 7.10: (A) Simulated temperature profil in the aluminium-IU with a length of 60 mm
(HU) and 400 mm (CU). The flow rate was 5 mL/min resulting in a retention
time of 0.1 s. The applied temperatures were 120°C, 130°C, 140°C, 150°C,
and 160°C. The maximum (exposure) temperature reached in HU is indicated
in the figure. (B) Relative enzyme activity of LDH after treatment in the
IU. L. bulgaricus was cultivated accordung to methods. Cells were harvest in
preculture and resuspended in 0.9% NaCl to OD 0.1. Flow rate of pump was
5 mL/min which results in an retention time of 0.16 sec in the HU. The length
of the HU was 60 mm and the applied temperature between 120°C and 160°C
as indicated. After treatment in the IU, cells were harvested by centrifugation
and LDH activity was determined as indicated in the method section. Error
bar were calculated from two treatments with the IU.
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Figure 7.11: (A) Simulated temperature profil in the aluminium-IU with a length of 40 mm
(HU) and 400 mm cooling unt (CU). The flow rate was 5 mL/min. The applied
temperatures were 150°C, 160°C, and 170°C. (B) Relative enzyme activity
of LDH after treatment in the IU. L. bulgaricus was cultivated accordung to
methods. Cells were harvest from main culture containing medium with casein
or medium with amino acids. The flow rate was 2 or 5 mL/min resulting in
different retention times as indicated. The applied temperatures were 150°C,
160°C, and 170°C. After treatment with with the IU, cells were harvested
by centrifugation and LDH activity was measured indicated in the method
section. Error bar were calculated from two treatments with the IU.

reducing assumed damage to the cellular membrane. The simulation of the tempera-
ture profile pointed out that a maximum temperature of 83°C is achieved for the 40 mm
aluminium-IU when 160°C was applied (fig. 7.11).

As fig. 7.11B indicates, enzymatic activity is decreased by 80% when temperatures above
160°C were applied in a 40 mm aluminium-IU with a retention time of 0.24 s. Using casein
in the medium was only possible for samples treated at 150°C. In all experiments with a
medium containing casein, the capillary was quickly clogged and IU had to be repaired.
Only a small sample volume was inactivated before clogging.

7.5 Discussion

Precise analysing of intracellular metabolite pools after stopping metabolization is only
possible when enzyme activity is reduced and the cellular membrane is active preventing
changes in pool size and leakage for a given time range. This does not imply that cells are
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dead indicating that long-term proliferation might be still possible after treatment in the
HU.

As indicated in fig. 7.7, the reduction of enzyme activity and membrane integrity was
achieved by a water-IU (applied temperature was 95°C, HU length was 120 mm). However,
no setup was sufficient to meet all demands simultaneously (suppressed growth, sufficient
enzyme inactivation, and membrane integrity). To overcome this limitation, an aluminium-
IU was developed to apply higher temperatures to rapidly inactivate enzyme activity while
preventing long residence times in HU (fig. 7.7, gray bars). Thus, results presented in
Figures figs. 7.10 and 7.11 indicate for L. bulgaricus that a retention time of 0.1 seconds
at 160°C was sufficient for cell inactivation and might strive for cell membrane integrity as
indicated in figs. 7.5 and 7.6.

Using a medium with casein caused clogging of the capillary. Therefore, the IU was not
suitable to inactivate lactic acid bacteria grown in a medium containing casein. However,
a medium containing casein is a prerequisite to quantify the interaction between S. ther-
mophilus and L. bulgaricus.
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A two-compartment fermentation system

8.1 Abstract

To fulfil the growing interest in investigating microbial interactions in co-cultures, a novel
two-compartment bioreactor system was developed, characterised, and implemented. The
system allowed for the exchange of amino acids and peptides via a polyethersulfone mem-
brane that retained biomass. Further system characterisation revealed a Bodenstein num-
ber of 18, which hints at backmixing. Together with other physical settings, the existence
of unwanted inner-compartment substrate gradients could be ruled out. Furthermore, the
study of Damkoehler numbers indicated that a proper metabolite supply between com-
partments was enabled. Implementing the two-compartment system (2cs) for growing
Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus, which are mi-
croorganisms commonly used in yogurt starter cultures, revealed only a small variance
between the one-compartment and two-compartment approaches. The 2cs enabled the
quantification of the strain-specific production and consumption rates of amino acids in
an interacting S. thermophilus–L. bulgaricus co-culture. Therefore, comparisons between
mono- and co-culture performance could be achieved. Both species produce and release
amino acids. Only alanine was produced de novo from glucose through potential transam-
inase activity by L. bulgaricus and consumed by S. thermophilus. Arginine availability
in peptides was limited to S. thermophilus'growth, indicating active biosynthesis and de-
pendency on the proteolytic activity of L. bulgaricus. The application of the 2cs not only
opens the door for the quantification of exchange fluxes between microbes but also enables
continuous production modes, for example, for targeted evolution studies.

8.2 Introduction

Interactions between bacteria are common in ecology [171, 306] and involve complex
mechanisms that are not yet fully understood [56]. Analysing these natural consortia
is important because it improves our understanding of fundamental processes, such as
bacterial communication [19]; enables community reshaping to gain health and environ-
mental benefits [332]; and opens the door for the application of (synthetic) microbial
consortia in biotechnological applications [113]. Consequently, thorough studies have been
performed to investigate the application potential of interacting microbes [92, 144], leading
to the development of natural and synthetic co-cultures for industrial use [33, 181, 261, 313].
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Microbial interactions allow for a reduction in individual metabolic burden and are consid-
ered beneficial for metabolic productivity. For instance, one strain may provide essential
nutritional components to another strain and vice versa [197]. Furthermore, the advantages
of cofactor and precursor availability may be created for one microorganism if biosynthetic
pathways are shared between two strains [137]. In some cases, increased enzyme activity
is also observed [330]. Pande et al. [208] provided experimental evidence for the antici-
pated benefits and studied the growth performance of a synthetic co-culture that relied on
the exchange of essential amino acids. Indeed, the growth of the co-culture outperformed
that of the mono-culture in the 24 h experiment. Furthermore, the co-culture was stable
despite the presence of non-cooperating cells. Smartly sharing metabolic activity between
mutually dependent strains yields improvements in biomass production [93, 277, 288, 325].
Driven by the promising potential of microbial consortia for biotechnological applications,
here, whether the toolbox for experimental analyses is already complete or should be com-
plemented with novel devices to elucidate strain interactions inside consortia was evaluated.
In particular, the following research trends are anticipated to benefit strongly from knowl-
edge of quantitative exchange fluxes among interacting bacteria, which may be measurable
in dedicated devices:

• Computational approaches are being steadily extended to unravel and predict inter-
actions between bacteria [88, 152, 319]. To improve the simulation results, data from
quantitative experiments providing strain-specific information—in particular, strain-
specific growth rates, metabolite production, and consumption rates—are essential
to validate model qualities, as indicated previously [17, 31, 106, 268, 323].

• Synthetic co-cultures should be rationally assembled to achieve the desired targets.
This demands knowledge of individual uptake and production rates inside co-cultures
for fine-tuning the metabolite exchange rates to prevent bottlenecks in supply and
the accumulation of intermediates [74, 298].

• Adaptive evolution experiments have been used to improve the performance of strains
[16, 256] and have been adapted for co-culture systems [146, 244, 327]. However, to
select them for the jointly increased growth of co-cultures, individual adjustments
may be necessary, such as the implementation of individual dilution rates to prevent
overgrowth and washout scenarios.

Consequently, to meet the demands for strain-specific quantification in co-cultures and to
extend co-culture cultivation techniques, several approaches have been developed in recent
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years: One approach to obtaining strain-specific rates in co-cultures without disturbing
metabolic activities is 13C metabolic flux analysis [322]. To increase the accuracy of esti-
mated fluxes in co-cultures, elegant methods have already been presented by Gebreselassie
et al. [85] based on 13C-labelled amino acids, and Ghosh et al. [89] used labelled peptides.
These methods are restricted to specific metabolic networks or require specific experimen-
tal conditions. Interestingly, even higher flux-resolution patterns may be obtained when
applying compartment-specific metabolomics [311]. These observations have shed some
light on the potential to unravel exchange fluxes between interacting compartments, each
hosting different species of a bacterial consortium.
Alternatively, strain-specific information may be obtained by separating the cells of a co-
culture after harvesting. If the cell morphology differs significantly, centrifugation may be
an appropriate separation approach [269]. However, this is a time-consuming procedure
and is, consequently, prone to changes in intracellular states because of ongoing enzymatic
activities [69]. The latter may be prevented by the application of proper cell inactivation
technologies, which thus far are still missing. Furthermore, related approaches call for the
individual development and optimisation of protocols, making them difficult to transfer to
other co-cultures.
Other approaches utilise the spatial separation of interacting strains, as reviewed previ-
ously [95]. Often, such experimental settings are miniaturised, allowing the verification
of multiple synthetic constructs in a parallel manner, thereby restricting sampling vol-
umes. Examples include microfluidic systems [38, 39, 118] and cell culture plates [132].
Our own studies have indicated that a culture sample of approximately 100 µL is the
minimal amount required to quantify the biomass correctly. An additional 100 µL of the
supernatant is likely necessary to quantify the metabolites. Hence, the sophisticated and
quantitative analysis of interacting cells requires larger reaction volumes than those pro-
vided by microfluidic and well-plate approaches. Alternatively, dialysis bioreactors [221]
may be applied to cultivate co-cultures in two compartments. However, they incur rather
high operational and investment costs and may appear somewhat oversized for studying
multiple co-cultures in parallel. To address these limitations, this study aimed to develop
a device for co-culture analysis that provides strain-specific information independent of
metabolic activity and phenotype. Systematic strain evaluation was enabled by offering
a sufficient sampling volume for extensive analysis, and the device was designed to allow
quick assembly.
To this end, a compartmentalised fluid system that allowed the growth of two metabolite-
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exchanging strains was developed and applied. A strain-specific analysis of growth, pro-
duction, consumption rates, and intracellular metabolite pools was undertaken. Reflecting
the importance of co-cultures in yogurt production, the usability of the system was show-
cased by investigating the anaerobic interaction between Streptococcus thermophilus and
Lactobacillus delbrueckii subs. bulgaricus.
The metabolic activities of the strains are linked to each other: the proteolytic system of
L. bulgaricus comprises the extracellular proteinase PrtB [49] and intracellular peptidases
[162], enabling the strain to gain amino acids from casein, which is likely the reason why
the strain loses de novo biosynthetic capacities for many amino acids from sugar [165]. The
non-proteolytic proteinase-negative strain S. thermophilus benefits from this relationship
as it consumes peptides and amino acids from L. bulgaricus [212, 264]. The proteolytic
system of S. thermophilus consists of intracellular and extracellular peptidases [7, 179,
235], which hydrolyse the peptides supplied by L. bulgaricus. Peptide and amino acid
transporters have been predicted [125, 235] and belong to the ABC binding cassette family
[7]. Consequently, amino acids are released from S. thermophilus, as measured here [156,
160, 166]. These lactic acid bacteria are used in industrial processes, such as yogurt and
bulk chemical production [177, 286], but their interactions are not yet fully understood
[179].

8.3 Materials and Methods

8.3.1 Medium Conditions

The synthetic medium (SM) for cultivation (table S1 in Supplementary Materials) was
chosen from a previous study [291]. SM containing lactose is indicated as SM + lactose,
and SM containing glucose is indicated as SM + glucose. SM containing casein is denoted
as SMcas, and SM containing amino acids is denoted as SMaa.

8.3.2 Strain Cultivation

Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and Streptococcus thermophilus
LMG 18311 were received from Chr. Hansen A/S (Horsholm, Denmark). Precultures and
cultivations were performed in crimp-top serum bottles, as described previously [291]. If
predefined dilutions were to be installed in cultivations using crimp-top serum bottles, the
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related medium was removed and replaced with fresh medium every hour.
For cultivations in two-compartment systems (2cs), precultures were prepared as previ-
ously described [291]. Calculated amounts of biomass from one or several precultures were
washed twice with 0.9% NaCl solution, and the cell pellets were resuspended in the medium
to inoculate each compartment.

8.3.3 Biomass Quantification via the Optical Density Method

Biomass was monitored by optical density (λ = 600 nm) using a photometer (Amersham
Bioscience, Ultrospec 10 cell density meter) by applying the biomass/optical density cor-
relation from a previous study [291]. The pH was measured off-line with a pH meter
(SevenEasyT M ;, Mettler Toledo, Columbus, OH, USA) connected to a pH electrode (In-
Lab Semi-Micro;, Mettler Toledo, Columbus, OH, USA).

8.3.4 Biomass Quantification via Flow Cytometry

Samples were processed with Tris-HCl (1.3 M) EDTA (0.13 M) pH 8 buffer; stained
with 1X SYBRT M Green I nucleic acid gel stain concentrate (Thermo Fisher Scientific,
Waltham, MA, USA); analysed with the flow cytometer BD AccuriT M C6 (BD Biosciences-
US) equipped with four fluorescence detectors (FL1 533 / 30 nm, FL2 585 / 40 nm, FL3
> 670 nm, and FL4 675 / 25 nm), two scatter detectors, a blue laser (488 nm), and a
red laser (640 nm); and correlated to biomass concentration cx (gDW L−1), as described
previously [291].

8.3.5 Membrane Unit

A membrane unit with two layers was built from polycarbonate to allow the integration of
a polyethersulfone (PES; poly(oxy-1,4-phenylsulphonyl-1,4-phenyl)) membrane (pore size
0.2 µm, 15407-47-MIN, Sartorius, Goettingen, Germany) or a polyamide (PA) membrane
(pore size 0.2 µm, 25007-47-N, Sartorius, Goettingen, Germany).

8.3.6 Vessel Bioreactor System

Two vessels (50 mL, 101116;, Glasgeraetebau Ochs Laborfachhandel e.K., Bovenden, Ger-
many) were connected to the membrane unit using Teflon tubes (inner diameter, 3 mm)
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and stirred. Each side was equipped with a mixing pump (Watson-Marlow 101U/R) to
circulate the cultivation broth between the vessels and the membrane unit. The vessels
and membrane units were maintained at 40 ◦C. The vessels and tubes were sterilised via
autoclaving, and the membrane unit was sterilised via immersion in 70% (v/v) ethanol for
1 h. The sterile assembled vessel bioreactor system was filled with sterile medium as indi-
cated and warmed up to the cultivation temperature. The biomass was then introduced,
and samples were collected using a sterile needle and syringe at the vessel openings.

8.3.7 Tube Bioreactor System

The inlets and outlets of the membrane unit were connected to tubes equipped with a
feed and harvest unit. The mixing pump (Watson-Marlow 101U/R) was equipped with a
PharMed®-tube (Saint-Gobain, Courbevoie, France) with an outer diameter of 4.8 mm,
inner diameter of 1.6 mm, and a length of 18 cm, resulting in a volume of 0.4 mL. An
additional connecting tube (Rotilo-silicon tube; Carl Roth GmbH + Co. KG, Karlsruhe,
Germany) between the inlet and outlet had an inner diameter of 1.5 mm and a length of 31
cm, which resulted in a volume of 0.5 mL. The feed and harvest tubes had inner diameters
of 1 mm. The particles in the membrane unit were removed using 70% (v/v) ethanol
followed by washing with sterile Milli-Q water. The tubes and membranes were sterilised
via autoclaving. After connecting the tubes and the membrane unit, the cells were seeded
into the system by flushing the cell suspension through the feed until the air was removed.
Subsequently, the membrane unit and tubes (without the tubes in the mixing pump) were
immersed in water at 40 ◦C to ensure optimal cultivation conditions.

8.3.8 Continuous Cultivation in the Tube Bioreactor System

Each compartment in the tube bioreactor system was equipped with a feed inlet and an
outlet to harvest the cultivation suspension for installing individual dilution rates. Syringe
pumps (Landgraf Laborsysteme LA100;, Landgraf Laborsysteme, Langenhagen, Germany)
were used to ensure feeding to each compartment. To enable accurate harvesting, one out-
let was equipped with a drawing syringe pump (LA100; Landgraf Laborsysteme LA100,
Langenhagen, Germany), whereas the other outlet allowed the free outflow of the cultiva-
tion medium. The harvest was collected for 1 h in an ice-cooled syringe or bottle. A new
syringe and bottle were then connected to the harvest for the next sampling. The samples
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were analysed for biomass via flow cytometry or centrifuged (3 min, 14,000 rpm, 4 ◦C),
and the supernatant was stored at −70 ◦C for further analysis.

8.3.9 Metabolite Balancing

The eq. (8.1) depicts the mass balance for metabolite i which may enter one compartment
via diffusion and feed (8.1), may be produced (or consumed) in the reaction volume VR,
and leaves the compartment via efflux-indexed production. Considering equal reaction
volumes in each compartment, eq. (8.2) (process model) was derived as follows:

dmi

dt
= ṁi,feed − ṁi,out + ṁi,diffusion + ṁi,production (8.1)

dci

dt
= D · (ci,feed − ci) + ki · (ci,connected compartment − ci) + Qi (8.2)

where mi (kg) denotes the mass of metabolite i; t (h) denotes the time; ci (mol L−1) de-
notes the concentration of metabolite i in the balanced compartment; ci,connected compartment

(mol L−1) denotes the concentration of metabolite i in the connected compartment; D

(h−1) denotes the dilution rate; ci,feed (mol L−1) denotes the concentration of metabo-
lite i in the feed; ki (h−1) denotes the transport coefficient for diffusion in the membrane
unit; and Qi (mol L−1 h−1) denotes the metabolic productivities (i.e., the production or
consumption of metabolite i). As indicated, ki denotes the trans-membrane transport co-
efficient resulting from the driving concentration profile between connected compartments.
To exploit the experimental data, Equation 2 was discretised for the time intervals t2 - t1.
The metabolic productivity Qi,1 in compartment 1 was calculated by Equation 3, and the
metabolic productivity Qi,2 in compartment 2 was calculated by Equation 4. Indexes 1, 2,
t1, and t2 code for the compartments and time points (h), respectively.

Qi,1 = ci,1,t2 − ci,1,t1

t2 − t1
−D1 · ci,1,feed + D1 ·

ci,1,t1 + ci,1,t2

2 −ki ·
(

ci,2,t1 + ci,2,t2

2 − ci,1,t1 + ci,1,t2

2

)
(8.3)
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Qi,2 = ci,2,t2 − ci,2,t1

t2 − t1
−D2 · ci,2,feed + D2 ·

ci,2,t1 + ci,2,t2

2 −ki ·
(

ci,1,t1 + ci,1,t2

2 − ci,2,t1 + ci,2,t2

2

)
(8.4)

Hence, the biomass-specific activity qi (mol gDW
−1 h−1 L−1) for amino acid i was calculated

by dividing the metabolic productivity Qi by the biomass ci. If 13C-labelled amino acids
were used, the related production and consumption terms Q13

i were estimated as follows:

dc13
i,1

dt
= D1 · (c13

i,1,feed − c13
i,1) + ki · frac13 ·

(
ctotal

i,2 − ctotal
i,1

)
+ Q13

i,1 (8.5)

where c13 denotes the concentration (mol L−1) of the fully 13C-labelled isotopologues;
ctotal denotes the total concentration of an amino acid irrelevant to its labelling pattern.
For non-labelled amino acids, the sum of m + 0 plus the natural m + 1 background of
isotopologues was considered. frac13 (molar 13C concentration divided by total molar
concentration) denotes the fully 13C-labelled isotopologue fraction of an amino acid pool
either in compartment 1 (if ci,1 > ci,2) or compartment 2 (if ci,2 > ci,1).

8.3.10 Reaction Rate Constant Of Metabolite Productivity

The consumption rate constant kconsumption,i (h−1) for amino acids was derived from the
productivity Qi for each amino acid concentration ci according to eq. (8.6).

kconsumption,i = Qi

ci

(8.6)

8.3.11 Determination of amino acid transport coefficients in the
membrane unit

To determine the transport coefficient ki, the feed and harvest flows were disconnected, and
compartment 1 was filled with 65 mL of various concentrations of amino acids (pH 6.5),
whereas compartment 2 was filled with 65 mL of Milli-Q water. A constant mixing pump
rate of rpump = 10 mL min−1 was installed in each compartment. Samples (0.5 mL) were
taken from each bioreactor after 0, 5, 10, 15, 20, 25, and 30 min or 0, 5, 15, and 30 min, and
amino acid concentrations were quantified using HPLC. The process model of eq. (8.2) is
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simplified to eq. (8.7) for compartment 1, and ki was identified as the least-square estimate
in MATLAB® (R2020a) (code S1 in Supplementary Materials).

dci,1

dt
= −dci,2

dt
= ki · (ci,2 − ci,1) (8.7)

8.3.12 Determination of the Bodenstein Number

To determine the Bodenstein number (Bo) in the membrane unit, bromothymol blue so-
lution with a pH of 7.5 (KK19.3;, Carl Roth GmbH & Co. KG, Karlsruhe, Germany) was
pumped through each side of the membrane unit at a typical cultivation mixing pump
rate of 3.7 mL min−1. Subsequently, 15 µL of 2 M HCl tracer was pulsed into one side
of the membrane unit, leading to a colour change. The experiment was recorded using
video. Then, one image of the outlet was decomposed into squares for colour analysis
using 'imread' from MATLAB®. As the red r-values showed maximum variability, related
intensities were applied for the mixing studies. The average residence time (τ) and its
variance (σ2) were calculated after the pulse perturbation, as defined by a previous study
[157]. To characterise the degree of mixing in the membrane unit, the Bo was extracted
from τ and σ2 (eq. (8.8)):

σ2

τ 2 = 2
Bo

+ 8
Bo2 (8.8)

8.3.13 Calculation of the Damkoehler Number

The Damkoehler number (Da) is a dimensionless mass balance that was adapted to indicate
whether amino acid consumption in a compartment encountered limitations due to low
amino acid supply by membrane transport [59]. DaI (dimensionless) was calculated for
each amino acid iI in a compartment between two subsequent data points (t1 and t2) when
amino acid consumption and transport in the membrane unit into the compartment were
present. A homogeneous distribution of amino acids in the compartment was assumed.
Da considered amino acid decrease by consumption (Qi) and washout by dilution (D). An
increase in amino acid concentration in a compartment was expected from transport across
the membrane (see XXX Section 3.6.6.)Figure 7). Da depicts the quotient between Qi, D

for washout, and the transport rate in the membrane unit for an amino acid i as follows:
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Dai,t1−t2 = Daconsumption + Dadilution = −Qi,t

ki · gi,t1−t2

+ D · ci,t1−t2

ki · gi,t1−t2

(8.9)

Trans-compartment concentration gradients gi (mol L−1) were estimated by considering
the arithmetic mean (∆c) of the concentrations between time points (t1 and t2) according
to eq. (8.10).

gi = ∆ci,connected compartment,t1−t2 −∆ci,t1−t2 (8.10)

The pool turnover rate (kmembrane unit (h−1) of metabolite pools in the membrane unit with
the volume Vmembrane unit (L) imposed by the circulation of the fermentation broth with a
mixing pump adjusted to the rate rmixing pump ( litre/min) was calculated as follows:

kmembrane unit = rmixing pump

Vmembrane unit

(8.11)

8.3.14 Quantification of extracellular metabolites

Sugar and lactate concentrations were measured with an isocratic Agilent 1200 series HPLC
system (Agilent Technologies, Santa Clara, CA, USA) equipped with a Phenomenex guard
carbo-H column (4 × 3.0 mm) and a Rezex ROA organic acid H (8%) column (300 ×
7.8 mm, 8 µm; Phenomenex) maintained at 50 ◦C [291]. Separation was achieved with
5 mM H2SO4 with a constant flow rate of 0.4 mL min−1. Samples were pretreated for
the precipitation of abundant phosphate by the addition of 4 M NH3 and 1.2 M MgSO4

solution followed by incubation with 0.1 M H2SO4. Absolute concentrations were ob-
tained by standard-based external calibration and normalisation with L-rhamnose as the
internal standard. The amino acid concentrations were determined using an Agilent 1200
series instrument (Agilent Technologies, Santa Clara, CA, USA) [291]. Separation was
achieved with an Agilent Zorbax Eclipse Plus C18 column (250 by 4.6 mm, 5 µm), which
was protected by an Agilent Zorbax Eclipse Plus C18 guard column (12.5 by 4.6 mm,
5 µm), according to a previously established method [112]. After automatic pre-column
derivatisation with ortho-phthaldialdehyde, fluorometric detection (excitation at 230 nm
and emission at 450 nm) was performed. The elution buffer consisted of a polar phase
(10 mM Na2HPO4, 10 mM Na2B4O7, 0.5 mM NaN3, and pH 8.2) and a non-polar phase
(45% (v/v) acetonitrile and 45% (v/v) methanol). The quantification of amino acids was
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achieved via standard-based external calibration and using 4-aminobutanoic acid as an
internal standard at 100 µm to correct for analyte variability.

8.3.15 Quantification of Extracellular And Intracellular
Metabolites

For extracellular metabolite quantification via LC-MS / MS, the samples were centrifuged
at 20,000 × g for 3 min at 4 ◦C, and the supernatant was stored at −70 ◦C. The samples
were then filtered (Centrifugation Units ROTI®Spin, MINI-3; Carl Roth GmbH & Co.
KG, Karlsruhe, Germany, Carl Roth) and mixed (1:1 v/v) with methanol to precipitate
the remaining particles. Biomass samples for intracellular metabolome analysis via LC-MS
/ MS were centrifuged at 4,500 × g for 3 min and 4 ◦C, washed with 0.9% (w/v) sodium
chloride solution, centrifuged at 20,000 × g for 3 min at 4 ◦C, and the pellet was stored at
−70 ◦C. For metabolite extraction, the pellets were supplemented with 120 µL of 100 µm
norvalin to correct for analyte variability, boiled at 95 ◦C for 4 min, and immediately cen-
trifuged for 20 min at 20,000 × g and 4 ◦C. The supernatants were filtered (Centrifugation
Units ROTI®Spin, MINI-3; Carl Roth GmbH & Co. KG, Karlsruhe, Germany, Carl Roth)
and stored at −70 ◦C. The metabolite concentrations in the samples were measured using
an Agilent 1200 HPLC system coupled with an Agilent 6410 B triple quadrupole mass
spectrometer using an electrospray ion source. Chromatographic separation was achieved
according to a previously described method [282]. The metabolite pool concentration was
quantified by adding defined amounts of analyte standard to the reaction mixture. Data
analysis was performed using MassHunter B.05.00 software (Agilent Technologies), and
peaks of isotopologues containing 13C were checked for interference by comparing samples
of cultivation from 12C and 13C substrates.

8.3.16 Determination of Amino Acid Composition in Casein

First, 32% HCl (200 µL) was slowly added to casein solution (200 µL), vortexed, and
incubated at 100 ◦C for 24 h. After cooling at 18 ◦C (1 h), 490 µL of 6.23 mM NaOH was
slowly added. The samples were stored at −20 ◦C until HPLC was used to quantify the
amino acid concentrations.
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Figure 8.1: (left) Image of the membrane unit. The inlet and outlet of the channel were
connected to vessels or tubes to allow the circulation of cells. Two polycarbon-
ate elements were used to clamp a semi-permeable membrane that was aligned
and fixed. (right) Mass balance of a compartment with inflow (feed), outflow
(harvest), and diffusion flows in the membrane unit. The mixing pump allowed
the circulation of the cultivation broth within the compartment.

8.3.17 Uncertainty Aanalysis

The measured data were analysed using Microsoft®Excel. The mean and standard devia-
tion were calculated using duplicates and triplicates (STABW.S) using Microsoft®Excel.

8.4 Results

8.4.1 Design of the Membrane Unit

Membrane Unit Characteristics

The channels in the membrane unit (see Materials) were located next to each other and were
separated by the membrane (fig. 8.1). This setting enabled the diffusion of metabolites,
such as amino acids, but retained the cells. The channel in the membrane unit had a length
of approximately 166 mm and volume of approximately 2.7 mL. The inserted membrane
area was approximately 6.7 × 10−4 m2.
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Amino Acid Transport in the Membrane Unit

A PES or PA membrane was used to determine the amino acid transport coefficient (ki)
between the two vessels connected by the membrane unit. Three independent experiments
were performed. Each experiment contained all of the amino acids. For each experiment,
another initial amino acid concentration was set between 150 and 3,200 µM (table S2 in
Supplementary Materials). The ki for amino acid i was estimated based on all three exper-
iments (for example, see kalanine in figure S1 in Supplementary Materials). The membrane
unit equipped with a PES membrane showed a higher mean transport coefficient (k =
0.36 ± 0.03 h−1) compared to a membrane unit equipped with a PA membrane (k = 0.09
± 0.01 h−1) (figure S2 in Supplementary Materials). Therefore, PES membranes were used
in this study. Whether the power input by the mixing pump may bias ki values by affecting
the supply or removal of molecules in the membrane unit was considered. Given a mixing
pump rate of rpump = 10 mL min−1, the average pool turnover rate in the membrane unit
was approximately kmembrane unit = 222 h−1 on one side of the membrane unit. Considering
that the maximum transport coefficients were approximately k = 0.4 h−1, the fraction of
molecules exchanged by diffusion in the membrane unit was fdiffusion = k / kmembrane unit =
0.02%. In other words, 99.98% of all the molecules in one compartment of the membrane
unit was exchanged via pumping. Reducing rpump to 3.7 mL min−1 increased fdiffusion to
0.05%, which was still considered to be a low value. Hence, the ki was barely affected by
the pumping rates used in this study.

8.4.2 Design of the 2cs

The presented 2cs was designed to investigate metabolic interactions in a co-culture. This
system enabled the characterisation of individual strains by calculating strain-specific rates
and quantifying intracellular metabolite pools. As shown in (fig. 8.2), the experimental
setup comprised a central membrane unit separating compartments 1 and 2 that may or
may not embed an additional vessel section.

8.4.3 Vessel Bioreactor System: Set-up and Growth Experiment

The vessel bioreactor system comprised two vessels connected by a membrane unit. Each
compartment was filled with 61.9 mL of cultivation broth (fig. 8.2A). To evaluate growth be-
haviour, compartment 1 was filled with SM + lactose and inoculated with S. thermophilus,
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Figure 8.2: (A) Diagram of a vessel bioreactor system. The vessels were connected to the
membrane unit, and circulation of medium in each compartment was achieved
by mixing pumps. (B) Diagram of a tube bioreactor system. The inlets
and outlets of the membrane unit were connected by tubes, and circulation
of medium in each compartment was achieved by mixing pumps. Addition-
ally, attached tubes for feeds and harvests allowed sampling and continuous
cultivation by using feed pumps for each compartment. (C) Technical parame-
ters and results of co-cultivations in respective two-compartment systems (2cs)
with Lactobacillus delbrueckii subs. bulgaricus in synthetic medium (SM) con-
taining casein and lactose and Streptococcus thermophilus in SM containing
lactose. Strains were cultivated in co-culture in the 2cs, enabling exchange
of metabolites, and strain-specific growth rates were determined from biomass
measurements (figure S4 and S5 in Supplementary Materials). V, volume.
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whereas compartment 2 contained L. bulgaricus in SMcas + lactose. The biomass ratio in
the 2cs at inoculation was 1 : 2.75 (gDW

LB : gDW
ST). This experimental setting was chosen

to investigate whether the non-proteolytic S. thermophilus cultivated in compartment 1
benefited from metabolite exchange with the proteinase-positive L. bulgaricus cultivated
in compartment 2. Notably, proteinase-negative S. thermophilus was not able to grow in
SMcas + lactose as a pure culture (figure S3 in Supplementary Materials). Consequently,
the strain crucially relied on L. bulgaricus, which released amino acids and peptides from
casein that further diffused through the membrane. Considering the geometries and mixing
pump rate of 10 mL min−1 in each compartment, the estimated cellular residence time was
355 s in the vessel and 16 s in the membrane unit. Cultivation studies revealed a growth
rate of µ = 0.39 h−1 for L. bulgaricus and µ = 0.06 h−1 for S. thermophilus (figure S4 in
Supplementary Materials). This observation is the first evidence that amino acids and pep-
tides are released from L. bulgaricus and that they diffuse into compartments containing
S. thermophilus. However, the growth of S. thermophilus is nutrient-limited.

8.4.4 Tube Bioreactor System

To increase the growth rate of S. thermophilus, the vessels were removed from the vessel
bioreactor system, leading to a simplified tube bioreactor system design (fig. 8.2B). Ac-
cordingly, the compartment volume reduced from 61.9 to 3.6 mL, increasing the volume
fraction in the membrane unit to 74% (instead of 4% in the vessel bioreactor system). By
analogy, the membrane-to-compartment ratio improved from 11 m−1 in the vessel bioreac-
tor system to 186 m−1 in the tube bioreactor system. In other words, the residence time
of amino acids and peptides inside the membrane unit increased from 4% to 74% of the
total cycling time. Again, similar experimental conditions were chosen for the first vessel
bioreactor system tests; namely, the cultivation of S. thermophilus in compartment 1 with
SM + lactose and of L. bulgaricus in compartment 2 with SMcas + lactose. The mixing
pump rate was reduced to 3.7 mL min−1. Dilution rates of D = 0.14 h−1 were installed
in each compartment, resulting in mean residence times of 7.1 h per compartment. The
feed medium was equivalent to the medium in the compartments (SM + lactose for feeding
into compartment 1 and SMcas + lactose for feeding into compartment 2). The biomass
ratio in the 2cs at inoculation was 1 : 0.7 (gDW

LB : gDW
ST). As expected, the growth of

L. bulgaricus and S. thermophiles was µ = 0.91 h−1 and µ = 0.27 h−1, respectively (figure
S5 in Supplementary Materials). For both strains, the growth rates were higher than those
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in the studies using the vessel bioreactor system.

8.4.5 Comparison Between Bacterial Growth in Serum Bottles
and in the Tube Bioreactor System

To further characterise the growth of a co-culture in the tube bioreactor system (two-
compartments), a crimp-top serum bottle (one-compartment) was additionally inoculated
in parallel to the experiment described in section 8.4.4. The crimp-top serum bottle con-
tained SMcas + lactose (50 mL) inoculated with the same biomass concentrations of S. ther-
mophilus and L. bulgaricus and was diluted at the same dilution rate of D = 0.14 h−1. A
defined volume was removed each hour and replaced with new SMcas + lactose medium,
imitating the continuous process conditions in the tube bioreactor system described in
section 8.4.4. Biomass was determined via flow cytometry at each harvest of the tube
bioreactor system and in the crimp-top serum bottle. Then, the cell events of both com-
partments of the tube bioreactor system were summed up. It was not possible to measure
the strain-specific biomass in a one-compartment bottle. As depicted in figure S6 in Supple-
mentary Materials, the growth of the co-culture in the one-compartment bottle approach
was fairly similar to the added-up biomass course in the tube bioreactor system for the first
2 h. Then, exponential growth continued in the tube bioreactor system while the growth
rate slowed down in the one-compartment system, finally leading to 3.2 × 107 events mL−1

compared to 4.1 × 107 events mL−1 in the tube bioreactor system. Apparently, the tube
bioreactor system approach was beneficial for the growth of the co-culture.

8.4.6 Determination of Strain-Specific Rates in Co-Culture

To demonstrate the applicability of the tube bioreactor system for identifying exchange
rates of metabolites, proteinase-negative S. thermophilus and proteinase-positive L. bulgar-
icus were cultivated using medium containing 13C glucose in the tube bioreactor system.
The goal of the experiments was to determine the strain-specific release and consumption
of amino acids in the interacting co-culture. Furthermore, experiments were performed to
determine whether the released amino acids originated from casein or were synthesised de
novo from sugar.
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Dynamic Cultivation Tests in the Tube Bioreactor System

L. bulgaricus was cultivated in one compartment of the tube bioreactor system containing
SMcas + 13C glucose. In the connected compartment, proteinase-negative S. thermophilus
was cultivated in SM + 13C glucose. The experiments were designed such that dynamic
growth conditions were set, which were individually adapted to the kinetics of each strain.
The biomass ratio in the 2cs at inoculation was 1 : 4.4 (gDW

LB : gDW
ST). After 2 h of culti-

vation in the tube bioreactor system, the operational mode switched to continuous fermen-
tation. Pumps feeding the medium with the same composition as the related compartment
were started, together with the harvest pump. For the compartment with S. thermophilus,
a dilution rate of D = 0.34 h−1 was set to avoid the anticipated overgrowth of the said
strain with respect to L. bulgaricus. For the latter, a dilution rate of D = 0.07 h−1 was
set to prevent fast washout. After 8 h, that is, 24 h after the start of the experiments, the
biomass of each compartment was collected for intracellular metabolite analysis. During
the continuous mode period, a mean growth rate of µ = 0.05 h−1 for S. thermophilus and an
intermediary maximum of µ = 0.1 h−1 between 1 and 3 h were observed (figure S7 in Sup-
plementary Materials). This indicated the growth of S. thermophilus, which is only possible
in the presence of amino acids or peptides supplied by L. bulgaricus (figure S3 in Supple-
mentary Materials). Therefore, amino acids and peptides must have diffused between the
compartments and enriched the medium of S. thermophilus (fig. 8.3). Additionally, the pH
dropped in the S. thermophilus compartment from 6.5 to 5.5, and lactate production was
measured, which revealed the metabolic activity of S. thermophilus, L. bulgaricus, or both
(figure S8 in Supplementary Materials). Growth and pH were not measured in compart-
ments containing L. bulgaricus. Throughout the continuous mode (8 h), S. thermophilus
and L. bulgaricus were replaced 2.7- and 0.6-fold, respectively. In other words, the system
did not run under a hydrodynamic steady state. Accordingly, the derived kinetics may
serve as operational conditions, demonstrating the feasibility of this approach.

Calculation of Strain-Specific Rates

In co-culture, proteinase-negative S. thermophilus consumed peptides and amino acids
provided by L. bulgaricus to satisfy its nitrogen demand. A previous study using similar
strains and experimental conditions [291] demonstrated that co-cultures of L. bulgaricus
and S. thermophilus released and consumed amino acids (as aspartate, arginine, alanine,
lysine, isoleucine, and glycine). Consequently, tracking these components may open the
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door for the identification of strain-specific dynamics and to gain further insight into the
interactions of the strains.

The strength of the 2cs is that it allows the calculation of strain-specific amino acid rates
by the individual analysis of sample concentrations (table S3 in Supplementary Materials).
As shown in (fig. 8.4), positive values indicate amino acid release regardless of the precursor
origin, that is, casein or glucose, whereas negative numbers correlate with amino acid con-
sumption. By trend, both strains released amino acids during the first 3 h before metabolic
productivity declined or even before consumption occurred. In particular,L. bulgaricus re-
leased amino acids (table S3 in Supplementary Materials) based on its high proteolytic
activity. Glutamate, aspartate, and alanine were only produced by L. bulgaricus and con-
sumed by S. thermophilus during the first 3 h. Another exception was methionine, which
was consumed by both strains in the continuous mode.

Biomass-Specific Activity of S. thermophilus in Mono- and Co-Cultures

To gain a deeper understanding of amino acid metabolism in S. thermophilus, amino acid
productivity has often been studied and modelled [212, 231]. However, only strain- and
biomass-specific measurements may enable detailed metabolic flux distributions in co-
cultures [268], thereby linking mono- and co-culture models [98, 230]. Figure 8.5 compares
the amino acid productivity of S. thermophilus in a mono-culture grown on SMaa + lac-
tose with the performance when co-cultivated with L. bulgaricus in the tube bioreactor
system on SMcas + glucose (as shown in fig. 8.4). Most amino acids were released by
S. thermophilus in the co-culture, indicating the uptake of peptides as well as intracel-
lular and extracellular peptidase activity [125] compared to the mono-culture condition,
where amino acids were almost entirely consumed. Similar to the mono-culture activities,
glutamate and aspartate were consumed by S. thermophilus in the co-culture. This is re-
markable, as peptide-bound glutamate and aspartate are available (fig. 8.3) but are not
preferred. Apparently, S. thermophilus prefers consumption rather than replenishing its
demand via the hydrolysis of peptides or interconversion through transaminases [12, 14].
Methionine was consumed by S. thermophilus in the co-culture, but uptake was limited by
low methionine concentrations (fig. 8.3), which might indicate an insufficient supply [231].
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Figure 8.3: Amino acid profiles in the compartment containing Streptococcus thermophilus
during co-cultivation with Lactobacillus delbrueckii subs. bulgaricus in the
tube bioreactor system. (rhomb) Extracellular amino acid concentrations
(µM) in the compartment containing S. thermophilus during the continuous
mode. (bars) Extracellular peptide-bound amino acid concentrations (µM)
in the compartment containing S. thermophilus during the continuous mode.
S. thermophilus was cultivated in co-culture with L. bulgaricus in the tube
bioreactor system containing synthetic medium (SM) with casein and glucose
in the L. bulgaricus compartment and SM with glucose in the S. thermophilus
compartment. *Profile data for these peptide-bound amino acids not measured.
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Figure 8.4: Metabolic productivity of Lactobacillus delbrueckii subs. bulgaricus (rhomb)
and Streptococcus thermophilus (triangle) cultivated in the tube bioreactor
system as a co-culture. Positive values indicate the release or production of
amino acids; negative values indicate the uptake of amino acids. Strains were
cultivated in a tube bioreactor system containing synthetic medium (SM) with
casein and glucose in the L. bulgaricus compartment and SM with glucose in
the S. thermophilus compartment. Amino acids were sorted in rows according
to the mol-fraction in casein, except tyrosine, proline, tryptophan, and methio-
nine.
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Figure 8.5: Biomass-specific activity of Streptococcus thermophilus. Amino acid production
or consumption rates of S. thermophilus bridging amino acid productivity in
mono-culture and co-culture. (Filled) S. thermophilus grown in co-culture with
Lactobacillus delbrueckii subs. bulgaricus. Strains were cultivated in a tube
bioreactor system containing synthetic medium (SM) with casein and glucose
in the L. bulgaricus compartment and SM with glucose in the S. thermophilus
compartment. (Non-filled) S. thermophilus grown in a crimp-top serum bottle
containing SM with amino acids and lactose (modified from [291]). Amino acids
were sorted in rows according to mol-fraction in casein, except tyrosine, proline,
tryptophan, and methionine.
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Analysis of Extracellular 13C Alanine Enrichment

Concentrations of extracellular amino acid isotopologues were measured to determine the
origin of the amino acids. Low fractions of labelled aspartate, tyrosine, and threonine were
detected (< 1%). Only the alanine pool (mol L−1) was enriched with up to 50% 13C alanine
(fig. 8.6), which was mirrored by intracellular labelling patterns in both strains (figure S9 in
Supplementary Materials). This observation highlighted the relevance of de novo alanine
biosynthesis from (labelled) sugars. The strain-specific production and consumption rates
for 13C alanine were calculated (eq. (8.2)) using the process model (fig. 8.6A). Balancing
revealed that alanine was produced de novo by L. bulgaricus at a maximum rate of 5 µM
× h−1, whereas S. thermophilus mainly consumed the amino acids (fig. 8.6B).

Alanine Exchange Between the Compartments

The diffusion flux of 13C alanine across the membrane was calculated. Figure S10 in Sup-
plementary Materials shows a 13C alanine flux from the compartment containing L. bul-
garicus to the compartment containing S. thermophilus between 2 and 7 h. This indicated
that L. bulgaricus provided de novo-produced alanine to S. thermophilus because S. ther-
mophilus consumed alanine within this time range (fig. 8.6).

Calculation of Damkoehler Numbers

To further investigate the metabolite dynamics in the continuous experiments, Damkoehler
numbers were calculated for each amino acid (fig. 8.7). In essence, the terms for amino
acid consumption and washout were compared with trans-membrane amino acid transport
rates, leading to Daconsumption and Dadilution, respectively (table 8.1). Accordingly, Da <
1 indicated a faster amino acid supply than depletion, and this was the opposite for Da >
1, whereas Da = 1 represented an equilibrium between depletion and supply. The calcu-
lation of the Da terms Daconsumption and Dadilution (eq. (8.9)) illustrated their individual
importance for the total Da term.

The analysis of Datotal time courses for the compartment containing S. thermophilus re-
vealed that Datotal data were > 1 (fig. 8.8A) for all amino acids, irrespective of the time
interval. By trend, the highest Datotal values were observed after 5 h, with alanine being the
only exception. Consequently, most amino acids showed greater concentration decreases
than their supply from the compartment containing L. bulgaricus. This scenario was only
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Figure 8.6: Alanine production and consumption of Streptococcus thermophilus and Lacto-
bacillus delbrueckii subs. bulgaricus cultivated in the tube bioreactor system.
(A) Illustration of alanine pools in the tube bioreactor system. r1 and r3 are
the production and consumption rates of non-labelled alanine; r2 and r4 are
the production and consumption rates of 13C alanine; rdiff is the diffusion rate
of alanine in the membrane unit according to concentration differences; and D
is the dilution rate in compartment 1 or compartment 2. (B) Compartment
1 was filled with L. bulgaricus and synthetic medium (SM) with casein and
13C glucose. Compartment 2 was filled with S. thermophilus and SM with 13C
glucose. Concentrations of non-labelled (triangle) and 13C alanine (circle) were
measured via LC-MS. Strain-specific rates were calculated by balancing each
compartment. Positive rates: production; negative rates: consumption.
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Figure 8.7: Illustration of terms to estimate the Damkoehler number (Da) during the con-
tinuous mode. Trans-membrane transport provided amino acids; Streptococcus
thermophilus or Lactobacillus delbrueckii subs. bulgaricus consumed amino
acids; and the continuous mode provoked amino acid washout. The initial con-
centration for some amino acids was above zero at the start of the continuous
mode.
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Table 8.1: Comparison of mass balance terms for amino acids in the compartment contain-
ing Streptococcus thermophilus

mean amino acid consumption −Qi 3.0 ± 2.8 µM × h−1

mean amino acid dilution D × ci 11.4 ± 10.1 µM × h−1

mean trans-membrane amino acid influx ki × gi 5.5 ± 3.8 µM × h−1

mean change in amino acid concentration dci / dt 13.5 ± 13.6 µM × h−1

amino acid feed (feed medium without amino acids) D × ci,feed 0 µM × h−1

Damkoehler term for consumption Daconsumption 0.6 ± 0.4
Damkoehler term for dilution Dadilution 2.3 ± 2.1

Damkoehler number Datotal 2.9 ± 2.3
S. thermophilus was co-cultivated with Lactobacillus delbrueckii subs. bulgaricus in the tube bioreactor system
containing synthetic medium (SM) with glucose in the S. thermophilus compartment and SM with casein and
glucose in the L. bulgaricus compartment.

enabled by the already high concentrations of these amino acids within the compartments
at the start of the continuous experiment (fig. 8.3). In the case of alanine, sugar-derived
biosynthesis became more important as the experiment lasted longer. figure 8B discloses
the individual contributions of Dadilution and Daconsumption for the calculation of the total
Da number Datotal showcasing the compartment of S. thermophilus. Dadilution was larger
than Daconsumption, outlining that the decrease in amino acid concentrations was predomi-
nately caused by the washout of amino acids (D = 0.34 h−1) and not by their consumption
(kconsumption = 0.15 ± 0.16 h−1) (fig. 8.7).

8.5 Discussion

8.5.1 Process Characterisation

The fluid behaviour in the membrane unit can be described by Bo = 18 (figure S11 in
Supplementary Materials). This indicated that axial molecular diffusion and additional
backmixing effects were present [157]. Given that Bo represents the ratio between con-
vective flow and axial backmixing (dispersion), one may estimate that a non-optimum
plug-flow pattern exists inside the channels with approximately 5% backmixing. Backmix-
ing increased the average residence time of elements inside the membrane unit. However,
5% is far too low to create substrate gradients inside the compartment, as consumption
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Figure 8.8: Damkoehler numbers (DaI) of individual amino acids. (A) Datotal = Dadilution

+ Daconsumption in the compartment containing Streptococcus thermophilus. (B)
Dadilution + Daconsumption separated in the compartment containing S. ther-
mophilus. Strains were cultivated in the tube bioreactor system, and Da was
calculated for each hour of continuous cultivation. Da numbers were only cal-
culated if amino acid uptake was present within 1 h. The red line indicates Da
= 1.

rates are much lower than the sum of trans-membrane transport (table 8.1). To investigate
whether the diffusion process of metabolites in the membrane unit might result in limita-
tions, such as the supply of amino acids from L. bulgaricus to S. thermophilus, Damkoehler
numbers were estimated according to (crefeq:2cs9. As almost all Datotal values were > 1,
indicating stronger amino acid withdrawal than supply, cellular growth predominately re-
lied on the amino acids that were released at the beginning of the continuous experiment
or those that were already present before the start (fig. 8.3). However, the key readouts
regarding amino acid dependencies could be deduced. Nevertheless, future experimental
settings may reduce the dilution rate D as the key parameter for washout, which would
significantly reduce the available amino acid amount per compartment (fig. 8.7).

8.5.2 Difference Between Cultivation in the serum Bottle and in
the Tube Bioreactor System

The growth of the co-culture in the serum bottle and in the tube bioreactor system was
compared to study the potential impacts of hampered cell-to-cell interactions. Metabolic
interactions could be delayed because of diffusion-limited metabolite exchange, and miss-
ing cell-to-cell contact may create secondary responses [28]. Interestingly, 33% more cell
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events, that is, the proxy for cell growth, were found in the tube bioreactor system, which
might have been the result of delayed acidification (figure S6 in Supplementary Materials).
Like amino acids, lactate needs to cross the membrane unit via diffusion, which deceler-
ates acidification dynamics in the connected compartment while maintaining beneficial pH
conditions for growth.

8.5.3 Strain-Specific Amino Acid Release and Consumption In
the Tube Bioreactor System

Both strains released and consumed amino acids when cultivated in a tube bioreactor
system in continuous mode (fig. 8.4). During the first 3 h, both strains mainly released
amino acids. Subsequently, amino acids were released and consumed. Only methionine
was entirely consumed during the continuous mode. These findings quantified, for the
first time, to our knowledge, the amino acid production and consumption rates in an
interacting co-culture of L. bulgaricus and S. thermophilus and highlighted their dynamics.
Consequently, the amino acid transport demonstrated for both strains and their impact on
proton gradient and energy metabolism must be taken into account to fully understand the
cellular physiology in the co-culture [169]. The production and consumption of amino acids
by both strains fulfilled the requirements for bidirectional amino acid exchange between
the strains and allowed the manipulation of the co-culture by amino acid additions, such as
methionine [231]. The amino acid consumption and production rates for S. thermophilus
during co-cultivation with L. bulgaricus in the tube bioreactor system were compared
with those of previously published data [291] for S. thermophilus during mono-culture
growth (fig. 8.5). Basically, S. thermophilus released amino acids in co-culture to some
extent (fig. 8.5), although these amino acids were available (fig. 8.3), indicating the uptake
of peptides or amino acid synthesis (except glutamate, aspartate, and methionine). In
contrast, S. thermophilus grown under mono-culture conditions only consumed amino acids
(fig. 8.5). The dataset of this study confirmed the previously published simulated metabolic
activities [231] of different S. thermophilus strains grown on various amino acid sources.
The predicted amino acid fluxes were mostly within the same ranges as those presented
in fig. 8.5. The measurements revealed the dynamics in the amino acid production and
consumption of S. thermophilus, indicating the importance of extending the model when
used for co-culture simulations [98, 143, 230].

Generally, the mutual release of almost all amino acids in an L. bulgaricus–S. thermophilus
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co-culture specified, for the first time, that both strains contribute to increasing amino
acid concentrations in the medium and the enhanced current understanding of their
metabolic activity. L. bulgaricus provided not only peptides but also—equally to S. ther-
mophilus—amino acids to the co-culture, especially at the beginning of cultivation. At
the end of the cultivation period, amino acid consumption occurred, indicating a switch
between amino acid release and consumption.
Previous studies have revealed the upregulation of arginine biosynthesis genes in S. ther-
mophilus [116, 231, 264], although arginine deficiency did not occur [231]. Consequently,
here, it was hypothesised that arginine might serve as a precursor for ornithine or polyamine
[116, 231]. However, their low extracellular concentrations did not support the idea that
arginine biosynthesis might have additional functions as a precursor [231]. The measure-
ment of peptide-bound arginine in the compartment containing S. thermophilus revealed
low arginine content (fig. 8.3). Thus, arginine upregulation may be caused by limiting
arginine supply. In the compartment containing S. thermophilus, only 0.5% (after 8 h
of continuous experiment) of all the analysed peptide-bound amino acids were arginine
molecules (fig. 8.3). In contrast, the arginine fraction of casein represented 3% of the to-
tal casein-bound amino acids in a comparable experiment (figure S12 in Supplementary
Materials). This observation may indicate that either L. bulgaricus prefers the release
of peptides from casein with low arginine content or that S. thermophilus favours the
consumption of arginine-containing peptides. In either case, S. thermophilus likely faced
arginine limitations during co-cultivation with L. bulgaricus. This observation supports
the findings of previous studies [116, 264] where an upregulation of arginine biosynthesis
occurred in S. thermophilus.
Because 13C glucose was used as a substrate in the medium, it was possible to distinguish
between non-labelled amino acids hydrolysed from casein and 13C amino acids synthe-
sised from glucose. Measurements of the extracellular medium indicated that alanine,
aspartate, tyrosine, and threonine were produced de novo from glucose. However, only the
alanine pool was enriched with high amounts of 13C alanine (fig. 8.6). A higher 13C alanine
concentration was measured in the L. bulgaricus compartment than in the compartment
containing S. thermophilus. Metabolite balancing revealed that L. bulgaricus produced
13C alanine, while S. thermophilus consumed 13C alanine (fig. 8.6). This supported the hy-
pothesis that L. bulgaricus might have an alanine transaminase [162] providing alanine to
supply S. thermophilus or even serving as a signal molecule for S. thermophilus to indicate
the presence of L. bulgaricus.
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8.6 Conclusions

A new compartmentalised cultivation system was developed and established to unclose
strain-specific metabolomics and the subsequent calculation of the production and con-
sumption rates of strains grown in co-culture. This enabled the generation of experimental
data for sophisticated models that allow comprehensive insight into cellular processes in
co-cultures at a strain-specific level. Although the cultivation system was characterised by
the spatial separation of cells, the adequate exchange of molecules, such as peptides and
amino acids, was enabled. The experimental setting provided a sufficient volume for com-
prehensive sampling. The small size of the system reduced the preparation time and cost.
However, only anaerobic cultivations were installed, to date. It is noteworthy that fairly
similar growth characteristics were achieved in the compartmentalised approach compared
to the one-pot co-cultivation approach.
The functionality of the system was demonstrated using an S. thermophilus–L. bulgaricus
co-culture, indicating that both strains released and consumed amino acids. In addition,
cultivation was performed using 13C glucose to quantify amino acid production and con-
sumption rates, as well as the de novo biosynthesis of amino acids, indicating alanine
transaminase activity in L. bulgaricus and exchange with S. thermophilus.
This setup allowed the characterisation of interacting microorganisms and clarified the
interaction fluxes between them, allowing the rational design of co-cultures. Using the
compartmentalised system for the continuous cultivation of co-cultures opens the field for
advanced co-culturing; for example, by applying technology for targeted evolution studies.
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Chapter 9

Conclusion

This dissertation presents experimental (chapters 3 to 5, 7 and 8) and theoretical (chap-
ters 4 and 5) studies of the lactic acid bacteria S. thermophilus and L. bulgaricus. The
outcomes contribute to an advanced mechanistic understanding of mono- and co-cultures.
Strategies to quantify strain-specific flux distributions in co-cultures are also described
(chapters 6 to 8).

9.1 Exploring the metabolic potential of L. bulgaricus
and S. thermophilus in mono- and co-culture

A protocol for L. bulgaricus was developed to facilitate co-culture with S. thermophilus and
achieve reproducible experimental results (chapter 3). It presents conclusive instructions
for the timely preparation of both strains to render them ready for co-culture. A rapid
and simple method based on flow cytometry was established to trace biomass profiles in
cells co-cultured in medium containing casein that provokes high turbidity. This enabled
a trained Support Vector Machine (SVM) to calculate biomass weight in 100 µL samples
within 1 h. Correlations between flow cytometry data and biomass weight were established
(chapter 3) that coupled physical characteristics with physiological aspects and enabled
straightforward monitoring and control of cultivation [190, 222]. A (semi-) synthetic
medium also enabled analyses such as high-performance liquid chromatography (HPLC)
and mass spectrometry (MS), because the load of complex molecules was reduced, and the
viscosity of the medium minimally changed during acidification. The medium allowed the
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precise quantification of compounds produced or consumed by the strains and facilitated
metabolic activity modelling at the species level. The medium allowed the exchange,
omission, or further addition of compounds, enabling curation of an L. bulgaricus model
(chapter 4) and studies of the dependence of acidification profiles on the initial substrate
concentration (chapter 5).

The established medium and cultivation protocol for S. thermophilus–L. bulgaricus co-
cultures allowed biomass tracking, pH measurement, and amino acid, sugar, and organic
acid profiles during cultivation. The findings revealed that:

• Amino acids were released and consumed from co-cultured S. thermophilus and L. bul-
garicus.

• Some amino acids such as arginine became depleted.

• Alanine was exchanged.

• the kinetics of amino acid and biomass concentration profils in co-culture were not
the sum of the mono-culture kinetics for S. thermophilus and L. bulgaricus.

• The pH decreased faster in co-, than mono-cultures.

These results suggested that amino acid uptake and release should be considered in
physiological models, such as the pH-dependent kinetic model of L. bulgaricus (chapter 5).
The intracellular pH affecting the activity of most enzymes was dynamically implemented
in the model of L. bulgaricus (chapter 5) based on proton-dependent reactions such
as amino acid transport. Experimental data were used to parameterise and refine the
model, which enabled the prediction of intra- and extracellular pH as a function of
the metabolised substrate and the optimisation of fermentation processes. An initial
lactose concentration of 41 mM led to the lowest pH of 3.6 after 24 h. A simulation
revealed that changes in the initial lactose concentration increased the pH and altered the
remaining lactose. An extracellular pH < 5.5. obviously reduced cytosolic pH and enzyme
activities, thus changing metabolic activity. Hence, this kinetic model is a powerful tool
for knowledge-driven bioprocess optimisation and will contribute to the development of
advanced co-culture modelling approaches [230].

The experimental data allowed the curation of a genome-scale model of L. bulgaricus
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(chapter 4) that is useful in the dairy industry [286] to deepen understanding of the
gastrointestinal microbiota [211] and develop of L bulgaricus-S. thermophilus co-culture
models.

In summary, the (semi-) synthetic medium, reproducible cultivation protocols, and mod-
elling approaches to L. bulgaricus have enabled extensive studies and represent a significant
step in the rational design of co-cultures with S. thermophilus for food production. In a
wider context, the workflow will render co-cultures accessible for mechanistic studies and
reveal their potential for future applications.

9.2 Strategy 1: 13C-Metabolic flux analysis of
compartmentalized systems to calculate
compartment-specific flux distribution

Metabolic flux analysis using a 13C-labelled substrate was taken into consideration to
analyse intra- and intercellular processes in co-cultures qualitatively and quantitatively.
A 13C-MFA code was implemented in Matlab (chapter 6)[129]. The number of equations
was significantly reduced to simplify stoichiometric network implementation. Only one
equation was required for each molecule to compute all isotopomers. Like interacting
prokaryotic co-cultures, metabolites are exchanged between two compartments in eukary-
otic cells comprising cytosol and mitochondria. The results of the 13C-MFA based on
compartment-specific metabolome data were compared with total labelling information
that did not distinguish between the compartments. All fluxes were correctly identified
only when pool information was compartment-specific (chapter 6). Hence, revealing
flux distribution in co-cultured S. thermophilus–L. bulgaricus using 13C-MFA in one-pot
cultivation was not suitable because both strains had similar metabolic activities such
as the uptake of lactose as a substrate or amino acid release preventing strain-specific
metabolomics (chapter 3).

This strategy is relevant because it might enable the calculation of strain-specific fluxes
without disturbing specific co-cultures. It is a fast and simple method without additional
experimental setups that can characterise many different strain combinations using avail-
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able stoichiometric models [3, 268, 287]. Analysis of 13C-flux has potential in co-culture
systems that produce individual metabolites by straightforward monitoring exometabolome
profiles [309]. Determination of inter- and intracellular 12C/13C-ratios enable more precise
results, assuming that metabolite pools can be assigned to each strain (chapter 6) and
expand the scope of extant methods [85, 89].

9.3 Strategy 2: Inactivation, separation and
subsequent analysis of individual strains in
co-culture

Chapter 7 describes cell inactivation using heat which quickly stopped metabolic activity
and maintains cell membrane integrity. This is a first step towards strain-specific insight
into metabolic activities in co-cultures such as the rapid conversion of intracellular metabo-
lite pools. The cell inactivation might allow a subsequent separation step to fractionate
individual strains, enabling strain-specific analysis. A retention time in increments of 0.1
s to 160 ◦C was promising to halt metabolic activity of L. bulgaricus. This resulted in
> 80% inactivation of intracellular LDH activity while possibly suppressing intracellular
metabolite leakage (chapter 7). This method paved the way to metabolomic measure-
ments [198] in millisecond intervals for L. bulgaricus and eventually for S. thermophilus
in mono-cultures. Using casein as a crucial substrate to favour interactions in co-cultured
L. bulgaricus-S. thermophilus was incompatible with this setup, as casein in the medium
clogged the thin capillary.

Heat inactivation (chapter 7) is relevant because the determination of intracellular metabo-
lite conversion is key to gaining a deeper mechanistic understanding of product formation,
such as organic molecules or amino acids. In particular, the high turnover rates of gly-
colytic enzymes responsible for initial substrate degradation are challenging parameters
(chapter 5) [198]. Thus, heat inactivation will enable stopping and monitoring substrate
conversion within 0.1 s. Measuring enzyme activity, membrane integrity, and metabolite
pools seems promising for evaluating cell inactivation. Incrementally increasing tempera-
tures for inactivation might briefly increase enzyme activity and change metabolite pools.
Temperature profiles of inactivation units were calculated and rational adjustments of the
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applied temperature and retention time were enabled using a simulation. The presented
heat inactivation method is suitable for studies under anaerobic conditions. Compounds
in culture media such as casein that clog capillaries, are incompatible with the setup. A
wider capillary diameter requires further validation for successful metabolic inactivation.
Combining cell inactivation, separation, and 13C-MFA might lead to analyses of microbial
communities without disturbing cellular activity.

9.4 Strategy 3: A compartmentalized cultivation
system for co-cultures to quantify strain-specific
fluxes

A compartmentalized cultivation system was developed to quantify strain-specific fluxes
in a co-culture system (chapter 8). Performance was compared between mono- and
co-cultured S. thermophilus and differences in amino acid production and release of
S. thermophilus were clarified between axenic growth and co-culture with L. bulgaricus.
The amino acid production and consumption rates of co-cultured L. bulgaricus and
S. thermophilus were quantified for the first time using the compartmentalized system.
Both strains produced and released amino acids. Alanine was produced de novo from
glucose by a possible transaminase activity of L. bulgaricus and consumed by S. ther-
mophilus. Arginine availability in peptides was limited to S. thermophilus, indicating
active biosynthesis and dependence on the proteolytic activity of L. bulgaricus.

The relevance of the compartmentalized cultivation system is the ability to reveal strain-
specific metabolomics and subsequently calculate the production and consumption rates
of co-cultured strains. This enables the generation of experimental data for sophisticated
models that provide comprehensive insight into cellular processes in co-cultures at the
strain-specific level. The cultivation system was applicable because molecules such as
peptides and amino acids were adequately exchanged using a PES membrane. Techni-
cal characterisation using Damkoehler numbers indicated an appropriate metabolite sup-
ply between the compartments, thus clarifying adequate molecular exchange between the
strains. The experimental setting provided a sufficient volume for sampling and subse-
quent analytical approaches. The system is applicable to anaerobic cultivation and re-
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duces preparation time and costs. Growth characteristics were comparable between two-,
and one-compartment co-culture. The compartmentalised system facilitates continuous
co-culture and opens the field for beneficial co-culture fermentation and targeted evolution
studies.

9.5 Summary of strategies for co-culture analysis
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Table 9.1: Strategy 1: 13C-Metabolic flux analysis of compartmentalized systems
to calculate compartment-specific flux distribution (chapter 6)

Strengths
• Identification of individual fluxes without disturbing the co-

culture

• Fast characterization of various co-cultures testing numer-
ous combinations

• Minimal demand for fermentation techniques saving time
and costs

• Large number of existing stoichiometric models support this
strategy

Weaknesses
• Overlapping stoichiometric networks in the co-culture

weaken or prevent strain-specific quantification , for exam-
ple in L. bulgaricus - S. thermophilus co-cultures

• Network information comprising the intra- and intercellular
stoichiometry is required

• 13C-MFA in co-cultures neglects kinetic and regulatory in-
formation

• 13C-labelled substrate might be costly

• Construction of a stoichiometric model containing 13C-
labelling information is laborious

Opportunities
• Easy method to screen various co-cultures combinations for

individual metabolic activity

• Integration of existing methods based on labelling informa-
tion of amino acids [85] or peptides [89] might increase ac-
curacy

• Transfer of method to microbial communities might be pos-
sible
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Table 9.2: Strategy 2: Strain-specific characterisation of co-cultures after inac-
tivation and separation (chapter 7)

Strengths
• Cell inactivation within milliseconds enables determination

of fast enzyme activity

• Measurements of enzyme kinetics and metabolomic activity
in situ without disturbing co-culture

• Sophisticated prediction of inactivation processes by sim-
ulation enables rational adjustment of parameters such as
inactivation temperature or retention time

Weaknesses
• Cell separation demands individual protocol optimization

and prevent transferability to other strains

• Studying interaction in L. bulgaricus - S. thermophilus co-
cultures using casein was incompatible with this set-up as
casein clogged thin capillary

• Only anaerobic conditions possible

• Heat might briefly increase enzyme activity that changes
metabolite pools

Opportunities
• Transfer of method to microbial communities might be pos-

sible
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Table 9.3: Strategy 3: Quantification of strain-specific fluxes in two-
compartment system and subsequent mass balancing (chapter 8)

Strengths
• Straightforward measurement of strain-specific information

enables precise quantification of amino acid production and
consumption in co-cultured L. bulgaricus-S. thermophilus

• Simple cultivation (short preparation; inexpensive)

• Easy to adapt to other fermentation conditions and co-
cultures

Weaknesses
• Direct cell-cell contact is impeded by membrane

• Hampered diffusion of molecules between strains

• Anaerobic cultivation conditions of membrane unit

Opportunities
• Combinable with 13C-MFA

• Continuous co-cultivation

• Targeted evolution studies
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Chapter 10

Outlook

The methods and strategies, as well as the theoretical and experimental descriptions pro-
vided herein give deep insights into S. thermophilus, L. bulgaricus, their interactions and
present a toolbox for advanced co-culture technology. The results indicated that the ap-
plication of a (semi-) synthetic medium, two-compartment system, biomass determination
by flow cytometry, and quantitative 13C-flux analysis could reveal exchanged molecules in
other co-cultures. Furthermore, quantified interactions between microorganisms will enable
the support, recovery, and design of novel co-cultures, as well as microbial communities
involved in natural or biotechnological processes.

Further steps could merge the model approaches described in chapters 4 and 5 into a com-
prehensive mathematical representation of yogurt cultivation and use the data in chapters 3
to 5 and 8 to prioritise studies of exclusive co-cultures based on their strain-specific fea-
tures. Furthermore, non-mechanistic data-driven analysis using flow cytometry chapter 3
might refine predictive simulation by implementing additional data.

The experimental methods described in chapters 3 and 8 enable the characterisation and
classification of lactic acid bacteria accumulated in libraries, providing promising co-culture
combinations for improved dairy products or alternatives such as plant-based foods [183,
318].

Further steps using the two-compartment system (chapter 8) might enable the cultivation
of microorganisms in the presence of another strain while maintaining individual access,
which is of interest to single-strain characterisation or antibiotic discovery [24].

The three strategies described herein can serve as a starting point for the design of
favourable synthetic co-cultures [95, 151].
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In future:

• The modular assembly of co- and multi-strain cultures might be a powerful approach
[324] to increase the efficiency of processes such as the production of target com-
pounds. Techniques such as the two-compartment system described in chapter 8 will
contribute to the development of advantageous strain modules and reveal favourable
cultivation conditions.

• The two-compartment system (chapter 8) allows for the directed laboratory evolution
[256] of interacting co-cultures with improved capabilities [15, 16, 146, 324] such
as increased biomass or product formation, based on the principles described in
chapter 1. Recent experimental settings for adaptive coevolution [146, 244] require
the transfer of co-cultures to a new medium and might result in the overgrowth or
extinction of a strain. The two-compartment system enables long-term continuous
evolution by applying individual strain parameters, such as dilution rates, to each
strain.

• Traditional multi-strain cultures, such as those applied to wastewater remediation,
have low dynamics, as they are similar to natural multi-strain processes that require
low control [50, 331]. Phenotypic diversification [246] or a reduction in the number
of strains requires increased process control (fig. 1.2) [308]. Because analytical tools
to monitor and control phenotypically diverse co-cultures have rarely been reported
[246]. Chapter 3 describes flow cytometry analysis of co-cultures, and chapter 8
describes direct access to individual strains in co-cultures. Fast and precise measure-
ments of population composition and individual technical parameter settings enable
advanced process control of co-cultures or even individual strains in co-cultures [250].
Variables such as pH, temperature, biomass ratio, feed, and dilution rates can be
easily controlled and predicted, thus counteracting process fluctuations, increasing
process stability, and enhancing co-culture efficiency.

The analysis and application of microbial interactions might contribute to diverse fields.
For example, microorganisms in soil contribute to crop growth and remediate environmen-
tal contamination [132]. These microbial communities protect plants against disease and
supply them with nutrients [252]. Thus, harnessing the potential of bioactive microbes [75]
and understanding their interactions might help to stabilise soil microorganisms, contribute
to resilience against climate change, and sustain high yields [252].
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Wastewater remediation is supported by the removal of unwanted substances [58]. Mi-
croorganisms can more sustainably degrade such substances that could then be chemically
degraded, or target compounds such as hydrogen might be produced [159]. Studies of
these microbial communities might increase the efficiency of these degradative approaches
and identify stabilising additives that prevent process fluctuations caused by undefined
wastewater [213].

The human gastrointestinal system is colonised by many microbial communities [35]. A
stable and balanced gut microbiome is essential to human health [76]. A deeper un-
derstanding of microorganisms and their interactions is key [35] to opening the door to
health-promoting therapies [76] and evaluating changes in community composition due to
variations in diet or antibiotics [80].

10.1 Co-culture processes in bio-based industry

The development of new co-culture processes (chapter 1) is accompanied by the considera-
tion of alternatives, such as mono-culture fermentation [207]. Reducing the use of expensive
substrates [334] and minimising purification steps [243] in co-culture processes will lead to
a more sustainable and bio-based industry [266, 272, 324]. In addition to profitable process
conditions (chapter 3) and optimal control (chapter 8), co-culture fermentation can also
contribute to biotransformation [158].
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Abstract: The mechanistic understanding of the physiology and interactions of microorganisms in
starter cultures is critical for the targeted improvement of fermented milk products, such as yogurt,
which is produced by Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp.
bulgaricus. However, the use of complex growth media or milk is a major challenge for quantifying
metabolite production, consumption, and exchange in co-cultures. This study developed a synthetic
medium that enables the establishment of defined culturing conditions and the application of flow
cytometry for measuring species-specific biomass values. Time courses of amino acid concentrations
in mono-cultures and co-cultures of L. bulgaricus ATCC BAA-365 with the proteinase-deficient
S. thermophilus LMG 18311 and with a proteinase-positive S. thermophilus strain were determined.
The analysis revealed that amino acid release rates in co-culture were not equivalent to the sum
of amino acid release rates in mono-cultures. Data-driven and pH-dependent amino acid release
models were developed and applied for comparison. Histidine displayed higher concentrations in
co-cultures, whereas isoleucine and arginine were depleted. Amino acid measurements in co-cultures
also confirmed that some amino acids, such as lysine, are produced and then consumed, thus being
suitable candidates to investigate the inter-species interactions in the co-culture and contribute to the
required knowledge for targeted shaping of yogurt qualities.

Keywords: microbial interactions; co-culture; Lactobacillus bulgaricus; Streptococcus thermophilus; milk;
amino acid metabolism; metabolite exchange; flow cytometry; pH-dependent modeling; proteolytic
activity

1. Introduction

Dairy products have been a part of the human diet since ancient times [1]. Detailed
identification and analysis of fermented milk products began in the twentieth century [2].
Efforts are ongoing to develop tools to examine lactic acid bacteria [3–6]. Yogurt, which is
currently an important part of the cuisine of many cultures, will be a critical dietary compo-
nent in the future. Therefore, the identification and determination of novel co-culture com-
positions that impart improved technological and organoleptic properties are active areas
of research in the food industry [7]. Streptococcus thermophilus and Lactobacillus delbrueckii
subsp. bulgaricus are the key species that drive yogurt production [2].

To meet the changing market demands, there is a need to understand the interaction
between S. thermophilus and L. bulgaricus during milk fermentation and to make use of this
knowledge to design improved food products [8]. Despite significant progress in the past,
the current state of understanding still shows white spots [2].

Microorganisms 2022, 10, 1771. https://doi.org/10.3390/microorganisms10091771 https://www.mdpi.com/journal/microorganisms
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In the last 15 years, metabolomics [9,10] and transcriptomics [11–13] have been widely
applied to understand the physiology of S. thermophilus and L. bulgaricus in mono-culture
and co-culture. Previous studies provide insights into the metabolites exchanged between
the strains and elucidated the characteristic gene expression patterns. However, these
datasets have provided a limited scope to assign contextual functionalities to metabo-
lites [12–14].

Screening various combinations of S. thermophilus and L. bulgaricus strains in co-
cultures is a time-consuming and costly process. Thus, only a small subset of all possible
combinations and conditions has been investigated. To overcome this limitation, mathe-
matical modeling approaches, such as community flux balance analysis, have been used to
predict the performance of co-cultures [15]. Although the mathematical modeling approach
enables the estimation of flux distributions in underdetermined systems, a minimum num-
ber of experimental measurements is required to limit the solution space. Additionally,
the stoichiometry of interactions must be understood for the application of mathematical
approaches. Both constraints require reliable and representative experimental datasets as a
prerequisite for flux balance modeling [16].

Understanding of the complex metabolic interactions between S. thermophilus and
L. bulgaricus, including the exchange of peptides and amino acids, is currently limited [2].
One key feature is the strong proteolytic activity of L. bulgaricus, which enhances the pro-
duction of peptides and amino acids that become available for S. thermophilus, enabling
growth [13]. However, some S. thermophilus strains exhibit proteolytic activity. Conse-
quently, the question that arises is whether and what differences in this inter-species
interaction exist when proteolytic and non-proteolytic S. thermophilus are combined with
L. bulgaricus in co-cultures.

Acidification, a marker for lactic acid formation, may serve as an easy-to-follow
readout once mono-cultures and co-cultures can be cultured under comparable conditions.
Limited information is available on amino acid production and consumption [9] and
potential amino acid depletion, which may trigger amino acid biosynthesis [12,13].

Milk is traditionally used as a growth medium for S. thermophilus and L. bulgaricus
cultivations in the production of yogurt. S. thermophilus and L. bulgaricus produce lactic acid
from lactose, which imparts an acidic taste and inhibits the growth of microbes, including
S. thermophilus and L. bulgaricus [17,18]. However, milk composition is highly variable.
Furthermore, milk comprises several complex ingredients that interfere with the sensitivity
of analytical methods, such as high-performance liquid chromatography (HPLC) and mass
spectrometry. Additionally, the acidification of milk leads to an increase in viscosity, which
impairs the sensitivity of the analytical methods [19].

To overcome these intrinsic analytical barriers, this study developed a synthetic
medium supplemented with amino acids (SMaa) to allow the growth of S. thermophilus and
L. bulgaricus in mono-cultures, which enabled the analysis of individual growth characteris-
tics. The synthetic medium may be supplemented with casein (SMcas) instead of amino
acids to investigate the proteolytic abilities of S. thermophilus and L. bulgaricus in mono-
cultures. The medium allows for investigation of the interactions between S. thermophilus
and L. bulgaricus by excluding individual components that are likely to be exchanged. An
important effect of the symbiotic relationship between S. thermophilus and L. bulgaricus is
the faster acidification during milk fermentation [13]. Therefore, this study investigated
this feature by co-cultivating the strains in SMcas.

This study presents a new medium and comparable datasets of S. thermophilus and
L. bulgaricus in mono-culture and co-culture conditions, providing useful insights into
essential amino acid production and consumption. Our results demonstrate that the
patterns and levels of amino acid release and consumption in co-cultures are different from
those of mono-cultures. These findings are essential for data-driven modeling and testing
hypotheses on the induction of basic regulatory mechanisms in cells.
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2. Materials and Methods
2.1. Strains and Cultivation Conditions

Lactobacillus delbrueckii subsp. bulgaricus strains (LB.1 = ATCC BAA-365, LB.2, LB.3,
and LB.4) were provided by Chr. Hansen A/S and stored at −70 ◦C in Man–Rogosa–Sharpe
(MRS) (69966 MRS Broth, Sigma-Aldrich Chemie GmbH, Steinheim, Germany) containing
20% (v/v) glycerol. For cultivation, the total cell suspension in the cryotube (1 mL) was
transferred into 15 mL of MRS supplemented with 14.3 g L–1 lactose and incubated for
6–8 h at 40 ◦C [20–23]. After washing twice with 0.9% NaCl solution, the cell pellet was
resuspended in 200 µL of 0.9% NaCl to inoculate the preculture containing SMaa. The
preculture was cultured at 40 ◦C and gently stirred with a 10 mm magnetic bar at 400 rpm
for 14–18 h until the pH was between 5 and 6.

Streptococcus thermophilus strains (ST.1, ST.2, ST.3, and ST.4 = LMG 18311) were pro-
vided by the industrial partner (Chr. Hansen) and stored at −70 ◦C in M17 (56156 M-17
Broth, Sigma-Aldrich Chemie GmbH, Steinheim, DE, USA) containing 20% (v/v) glycerol.
The cells in the cryotube were washed twice with 0.9% NaCl solution. Then, the cell pellet
was resuspended in 200 µL of 0.9% NaCl to inoculate the preculture containing SMaa. The
preculture was cultured at 40 ◦C and gently stirred with a 10 mm magnetic bar at 400 rpm
for 2–6 h until the pH was between 5 and 6.

Calculated amounts of biomass from L. bulgaricus and S. thermophilus precultures were
washed twice with 0.9% NaCl solution and the cell pellets were resuspended in 200 µL 0.9%
NaCl to inoculate the main culture. The main culture was carried out in SMaa or SMcas as
indicated in Table 1.

Table 1. Composition of synthetic medium (SM).

Category Compound Concentration [g L−1] CAS Number

-

Di-potassium hydrogen phosphate 2.5 7758-11-4
Potassium dihydrogen phosphate 3 7778-77-0

Sodium acetate 1 127-09-3
Ammonium citrate tribasic 0.6 3458-72-8

Manganese sulfate monohydrate 0.02 10034-96-5
Iron(II) sulfate heptahydrate 0.00132 7782-63-0
Calcium chloride dihydrate 0.08745 10035-04-8

Tween 80 1 mL L−1 9005-65-6
D-Lactose monohydrate 15.75 10039-26-6

Magnesium sulfate heptahydrate 0.2 10034-99-8
Urea 0.12 57-13-6

nucleobases

Adenine 0.01 73-24-5
Guanine 0.01 73-40-5

Uracil 0.01 66-22-8
Xanthine 0.01 69-89-6

vitamins

Biotin 0.0002 58-85-5
Folic acid 0.0002 59-30-3

Pyridoxal hydrochloride 0.001 65-22-5
Riboflavin 0.0005 83-88-5

Thiamine chloride hydrochloride 0.0005 67-03-8
Nicotinamide 0.0005 98-92-0

Cyanocobalamin 0.0005 68-19-9
4-Aminobenzoic acid 0.0005 150-13-0

D-Pantothenic acid hemicalcium salt 0.004 137-08-6
DL-6,8-thioctic acid 0.0005 1077-28-7
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Table 1. Cont.

Category Compound Concentration [g L−1] CAS Number

trace elements

Ammonium molybdate tetrahydrate 0.0000037 12054-85-2
Cobalt(II) chloride hexahydrate 0.000007 7791-13-1

Boric acid 0.000025 10043-35-3
Copper(II) sulfate pentahydrate 0.0000025 7758-99-8

Zinc sulfate heptahydrate 0.0000029 7446-20-0

amino acids

L-Alanine 0.1 56-41-7
L-Arginine 0.317 74-79-3

L-Asparagine monohydrate 0.343 5794-13-8
L-Aspartic acid 0.499 56-84-8

L-Cysteine hydrochloride monohydrate 0.3 7048-04-6
L-Glutamic acid 0.331 56-86-0

L-Glutamine 0.29 56-85-9
Glycine 0.16 56-40-6

L-Histidine monohydrochloride
monohydrate 0.273 5934-29-2

L-Isoleucine 0.361 73-32-5
L-Leucine 0.6 61-90-5
L-Lysine 0.351 56-87-1

L-Methionine 0.119 63-68-3
L-Phenylalanine 0.34 63-91-2

L-Proline 0.921 147-85-3
L-Serine 0.359 56-45-1

L-Threonine 0.3 72-19-5
L-Tryptophan 0.102 73-22-3

L-Tyrosine 0.12 60-18-4
L-Valine 0.468 72-18-4

casein Casein 2 9005-46-3

The SM contains all listed compounds, except amino acids and casein. SM supplemented with amino acids
(SMaa) contains all listed compounds, except casein. SM supplemented with casein (SMcas) contains all listed
compounds, except amino acids.

The preculture (SMaa) and main culture (SMaa or SMcas) were cultured in crimp-top
serum bottles, which were pretreated by flushing with 80% N2 and 20% CO2 for 10 min at
400 rpm. Growth was monitored by measuring the optical density (OD) (λ = 600 nm) using
a photometer (Amersham Bioscience, Ultrospec 10 cell density meter) or flow cytometry.

2.2. Acidification Measurements

The pH was measured offline using a pH meter (SevenEasyTM, Mettler Toledo, Colum-
bus, OH, USA) connected to a pH electrode (InLab Semi-Micro, Mettler Toledo, Columbus,
OH, USA).

2.3. Medium Preparation
2.3.1. Complex Media

MRS (69966 MRS Broth, Sigma-Aldrich Chemie GmbH, Steinheim, Germany) was
dissolved in Milli-Q water and the pH of the medium was adjusted to 6.5 using 2 M
NaOH. Then, the medium was filtered using a 0.22-µm filter (ROTILABO®, PVD, Carl
Roth GmbH & Co. KG, Karlsruhe, Germany) and sterile polysorbate 80 (CAS-Nr.:
9005-65-6, Sigma-Aldrich Chemie GmbH, Steinheim, Germany) was added according
to the manufacturer’s instructions.

M17 (56156 M17 Broth, Sigma-Aldrich Chemie GmbH, Steinheim, DE, USA) was
prepared following the manufacturer’s instructions and autoclaved.
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2.3.2. Semi-Synthetic Medium

A sterile 5× basal solution containing di-potassium hydrogen phosphate, potassium
dihydrogen phosphate, sodium acetate, ammonium citrate, manganese sulfate, iron(II)
sulfate, and Tween 80 was prepared as indicated in Table 1. Sterile lactose, magnesium
sulfate, urea, nucleobases, and amino acids were added to the solution. After the pH was
set to 6.5 with 1 M HCl, trace elements, vitamins, calcium chloride, and casein were added.
The serum bottle was sealed, crimped, and flushed with sterile 80% N2 and 20% CO2 for
10 min at 400 rpm.

The casein stock solution was prepared in a beaker containing glass beads (3 mm in
diameter), which were covered with a thin layer of 200 µL of Tween 80. Next, 100 mL
of water containing 0.26 g L−1 CaCl2 was added, and the solution was stirred slowly
overnight, followed by autoclaving for 5 min at 121 ◦C.

2.4. Cell Dry Weight (DW)

A glass vial (1 mL, VWR) was dried at 105 ◦C for at least 36 h, cooled at 20 ◦C for at
least 1 h, and weighed. Aliquots of 1 mL of culture samples in SMaa were washed thrice
with Milli-Q water (40 ◦C) in a 1.5-mL reaction tube (Eppendorf), resuspended in 300 µL
of Milli-Q water, and transferred into a dried glass vial. The reaction tube was rinsed
with 200 µL of Milli-Q water, and the water was transferred to the glass vial. The glass
vial was dried at 105 ◦C for at least 36 h, cooled at 20 ◦C overnight in a desiccator, and
weighed to calculate the cell dry weight. The correlation between optical density, flow
cytometry data (events mL−1), and cell dry weight (gDW L−1) was as follows: for LB.1,
1 gDW L−1 = 0.17101671 × 10−7 * events mL−1 = 0.2527 × OD600 nm; for ST.1, 1 gDW L−1 =
0.01970622 × 10−7 * events mL−1 = 0.2075 × OD600 nm; for ST.4. 1 gDW L−1 = 0.043115 ×
10−7 * events mL−1 = 0.243 × OD600 nm.

2.5. Biomass Measurements Using Flow Cytometry

Samples for flow cytometry analysis were prepared as described previously [3]. The
cell suspension (100 µL) was diluted 10-fold with Tris-HCl (1.3 M) EDTA (0.13 M) buffer
(pH 8) and incubated for 10 min on a shaker (Eppendorf Thermomixer 5436, Hamburg,
Germany) at 1200 rpm and 50 ◦C. Next, the cell suspension was incubated with 1×
SYBR™Green I nucleic acid gel stain concentrate (Thermo Fisher Scientific, Waltham,
MA, USA) for at least 10 min at 20 ◦C in the dark. The sample was filtered through a
filter (Partec CellTrics® 30 µM mesh filter size, Sysmex, Germany) into a polystyrene tube
immediately before measurements and analyzed using a flow cytometer (BD Accuri™ C6;
BD Bioscience, Franklin Lakes, NJ, USA) equipped with four fluorescence detectors (FL1
533/30 nm, FL2 585/40 nm, FL3 > 670 nm, and FL4 675/25 nm), two scatter detectors, a
blue laser (488 nm), and a red laser (640 nm). Sterile Milli-Q water was used as the sheath
fluid. The instrument performance was monitored weekly with BDTM CS&T RUO Beads.
The threshold settings, FSC-H 500 and FL1-H 500, a limit of 25 µL, and the slow flow rate
of 14 µL/min were used for the analysis of the samples.

The log-transformed FL1-A and FSC-H signals were used to enumerate the total
number of events in a sample. The flow cytometry data of the first 10,000 events of the
pure medium sample were used for a one-class support vector machine (SVM) classifier
implemented in MATLAB® using the command ‘fitcsvm’ to identify and remove signal from
medium in samples. Additionally, the lower background data were removed using a linear
line as the gate, resulting in a cleaned dataset. Linear correlations between cleaned flow
cytometric data and the dry weight of cells cultured in SMaa were fitted to the measured
data from LB.1, ST1, and ST.4 cultures (Figure S8). To determine the transferability of the
linear correlation between flow cytometric data and cell dry weight from cells cultured
in SMaa to cells cultured in SMcas, a 1:1 mixture (v/v) of both samples was prepared and
measured using flow cytometry. Additionally, each sample was individually analyzed
using flow cytometry. The calculated sum of the number of cell events cultured in SMaa
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and the number of cell events cultured in SMcas resulted in the same number of cell events
in the measured mixture, indicating transferability (Figure S8).

Cell dry weight in co-cultures was calculated using the same method with determined
transferability (Figure S9). The strain-specific cell events of S. thermophilus and L. bulgaricus
in co-culture were estimated using manual classification or SVM classification depending
on the pH of the sample (Figure S10). Manual classification was achieved by separating the
flow cytometry data using a line (the log-transformed FSC-H signal was plotted against
the log-transformed FL1-A signal and separated by a linear line). The data points above
and below the line represent L. bulgaricus and S. thermophilus, respectively. Classification
of strains in co-culture using SVM was achieved using the log-transformed FSC-H and
FL1-A signals of mono-culture datasets. Background data were removed to optimize SVM
parameters in MATLAB® using the command ‘fitcsm’ (Figure S11).

2.6. Quantification of Fermentation Products

The culture sample (0.5 mL) was centrifuged for 3 min at 20,000× g and 4 ◦C. The
supernatant was stored at −70 ◦C.

Sugars (lactose, glucose, galactose) and organic acids (lactate, succinate, formate) were
quantified using the Agilent 1200 series HPLC system equipped with an RI detector [24].
Before analysis, the supernatant was incubated with 4 M NH3 and 1.2 M MgSO4 solutions,
followed by an incubation for 15 min with 0.1 M H2SO4 to precipitate phosphate. Isocratic
separation was achieved using a Rezex ROA organic acid H (8%) column (300 × 7.8 mm,
8 µm; Phenomenex) protected by a Phenomenex guard carbo-H column (4 × 3.0 mm)
at 50 ◦C. The HPLC conditions were as follows: mobile phase, 5 mM H2SO4 solution;
constant flow rate, 0.4 mL min−1. Absolute concentrations were obtained by standard-
based external calibration, and rhamnose was used as an internal standard (1 g L–1) to
correct measurement variability.

Amino acid concentrations were determined by an Agilent 1200 series instrument
(Agilent Technologies) [24]. Bicratic separation was achieved by an Agilent Zorbax Eclipse
Plus C18 column (250 by 4.6 mm, 5 µm), which was protected by an Agilent Zorbax Eclipse
Plus C18 guard column (12.5 by 4.6 mm, 5 µm). After automatic precolumn derivatization
with ortho-phthaldialdehyde, fluorometric detection (excitation at 230 nm and emission at
450 nm) was carried out. The elution buffer consisted of a polar phase (10 mM Na2HPO4,
10 mM Na2B4O7, 0.5 mM NaN3, pH 8.2) and a nonpolar phase (45% [v/v] acetonitrile,
45% [v/v] methanol). The quantification of amino acids was achieved by standard-based
external calibration, and 4-aminobutanoic acid was used as an internal standard at 100 µM
to correct for analyte variability.

2.7. Total Amino Acid Composition in the Supernatant

The culture sample (0.3 mL) was centrifuged for 3 min at 20,000× g and 4 ◦C. The
supernatant was stored at −70 ◦C. The supernatant (200 µL) was incubated with 300 µL of
32% HCl at 100 ◦C for 24 h, cooled at 20 ◦C for at least 1 h, slowly mixed with 490 µL of
6.23 M NaOH, and stored at −20 ◦C until quantification of amino acid concentrations by
HPLC analysis.

2.8. Calculation of Amino Acid Production Rates

Individual biomass-specific amino acid production rates qaa [mol gDW
−1 h−1] were

calculated for each amino acid in a differential manner at 1 h intervals. The average
biomass cx [gDW L−1] in the period ∆t [h], and the net amount of produced amino acids
∆caa [mol L−1] (Equation (1)) were considered.

qaa =
∆caa

cx1+cx2
2 ·∆t

(1)
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2.9. Fitting of Gaussian Models to pH-Dependent Amino Acid Production Rate

The release of amino acids strongly relies on enzymatic proteolysis. As the proteolytic
activity depends on various enzymes with each contributing to an individual optimum
pH [25,26], integral activities may be described by the superposition of Gaussian activity
distributions. However, exact values for pH optima were not available. Additionally,
de novo biosynthesis may occur, albeit to a minor extent. Consequently, the Gaussian
model was considered a suitable proxy for the observed amino acid ‘production’ profiles.
Parameter regression was achieved by fitting the pH-dependent qaa of the L. bulgaricus LB.1
mono-culture (Figure S13) using Equation (2) [27].

qaa =
n

∑
i=1

aie
[−(

pH−bi
ci

)
2
] (2)

where qaa is the amino acid production rate [mol gDW
−1 h−1]; n is the number of pH optima

to fit; and a, b, and c are regression parameters coding for the shape of the curve. MATLAB ®

was used for fitting. The consideration of a single pH dependency is not always sufficient.
Then, overlaying Gaussian models considering two pH optima were used to improve the
model prediction quality (Figure S13).

2.10. Simulation of Amino Acid Concentrations

Changes of biomass, substrate, and product concentrations were described in a process
model assuming batch operation modes by balancing biomass (Equation (3)), substrate
(Equation (4)), and product (Equation (5)) within the system boundary.

dcx

dt
= µ·cx (3)

dcs

dt
= −qs·cx (4)

dcp

dt
= qp·cx (5)

The amino acid production kinetics were integrated into the process model to predict
caa(t). The simulation time steps ∆t considered the mean pH and biomass values as
indicated in Equation (6).

caa = qaa·cx·∆t =
n

∑
i=1

aie
[−(

pH1+pH2
2 −bi

ci
)

2

]· cx1 + cx2

2
·∆t (6)

The feasibility of this approach was demonstrated for the mono-culture of L. bulgaricus
LB.1 (Figure S12).

2.11. Uncertainty Analysis

Metabolite concentrations, pH, OD, flow cytometric data, and dry weight values
were analyzed using Microsoft® Excel. Mean and standard deviation were calculated
using duplicates and triplicates (STABW.S) in Microsoft® Excel. All experimental results
are expressed as the mean of three biological replicates with experimental errors unless
otherwise stated.

3. Results
3.1. Medium Development

The main objectives for preparing the SMcas were as follows: (a) enabling the growth
of both species in mono-culture, (b) enabling the growth of both species in co-culture,
and (c) potential metabolites that may be exchanged [2,3,6,10,12–14,28,29] were excluded
if growth was not affected. To obtain this medium, previously reported defined growth
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medium compositions of S. thermophilus [30,31] and L. bulgaricus [21,32] were compiled,
resulting in a long list of constituents. This list was further reduced to achieve a lean growth
medium to fulfil the demands (a–c). Medium acidification, which mirrors growth-coupled
lactate formation, was used as a readout to verify the ability of the strains to grow with
different modifications in the medium. Oleic acid, pyruvic acid, formic acid, orotic acid,
niacin, spermine, ascorbic acid, thioglycolate, and 2’-deoxyguanosine, which were used in
the growth medium by Chervaux et al. [32] but not by Grobben et al. [21], were excluded
from the medium because they are not essential for the growth of L. bulgaricus. Additionally,
we evaluated whether the addition of orotic acid is essential since it was considered to be
an important component of the growth medium by Otto et al. [30] and Letort et al. [31].
Growth analysis of L. bulgaricus and S. thermophilus in the medium lacking orotic acid
revealed culture acidification. The omission of biotin, thiamine, aminobenzoic acid, and
thioctic acid did not result in the acidification in S. thermophilus culture but promoted
the acidification in L. bulgaricus culture. Furthermore, urea was not excluded from the
medium because it has previously been established that it increases the buffer capacity of
the medium [31] and provides carbon dioxide and ammonia [3].

Studies using SMcas revealed the ability of three proteinase-positive S. thermophilus
(ST.1, ST.2, and ST.3) strains and the four L. bulgaricus strains to acidify the medium. The
proteinase-negative S. thermophilus ST.4 was not able to acidify SMcas and required access
to free amino acids provided in SMaa (Figure S1).

Protocooperation between L. bulgaricus and S. thermophilus in co-culture has industrial
relevance [2]. Co-culture benefits from the rapid exchange of metabolites, leading to
accelerated acidification [13]. The effect of this protocooperation in the co-culture was
observed in SMcas in the form of a faster acidification rate and a lower final pH (Figure S2).

3.2. Growth and Amino Acid Release in L. bulgaricus Mono-Culture

L. bulgaricus hydrolyzes amino acids from casein through its cell wall proteinase PrtB,
which is complemented by other intracellular and extracellular peptidase activities [12,13,33,34].
Therefore, peptides and free amino acids can be utilized by S. thermophilus. Furthermore,
amino acid depletion may upregulate amino acid biosynthesis in co-cultures [12,13]. Hence,
a key step in understanding cellular responses to extracellular amino acid depletion is to
monitor amino acid release and uptake.

L. bulgaricus LB.1 was cultured in SMcas as a mono-culture. The biomass of the culture
increased from 0.05 to 0.6 gDW L–1, whereas the pH decreased from 6.4 to 4.3 (Figure 1).
Lactose was consumed, glucose was initially secreted (up to 1.4 mM) and then consumed,
and galactose, lactate, formate, and succinate were produced (Figure S7) in the culture,
indicating metabolic activity.

The following two patterns of amino acid release were observed (Figure 1): accu-
mulation of alanine, serine, lysine, tyrosine, and valine from the beginning of culturing;
other amino acids began to increase after 2 h. A previous study suggested that this lag
time indicates cellular adaptation to casein through upregulation of proteolytic activity [9].
The initial release of tyrosine, arginine, serine, leucine, and valine indicates active prote-
olytic activity from the beginning of culturing as they might not be produced de novo from
L. bulgaricus [13,35].

3.3. Growth and Amino Acid Release in Proteinase-Positive S. thermophilus Mono-Culture

The dynamics of amino acid release and uptake in the proteinase-positive S. ther-
mophilus ST.1, amino acid concentrations were measured over a culturing period of 14 h
(Figure 2). The following three distinct phases were identified: 0–5 h, increase of some
amino acid concentrations but no change in biomass and pH; 5–10 h, acidification, biomass
increase, and decrease of some amino acid concentrations while others kept increasing;
10–15 h, acidification, biomass decrease, and uptake and release of amino acids. The
concentration of all analyzed amino acids increased at some time point. Additionally,
the pH decreased from 6.6 to 4.7, whereas the biomass increased from 0.03 gDW L−1 to
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0.1 gDW L−1 (Figure 2). Furthermore, 12 out of the 15 amino acids were consumed at some
points in time. Moreover, the concentrations of some amino acids exhibited an oscillating
release-consumption-release profile (e.g., serine and leucine). After 12 h, almost all lactose
was consumed (30 mM), which was accompanied by the production of large amounts of
glucose (22 mM) and lactate (30 mM) (Figure S3).

Figure 1. Amino acid concentrations were measured in Lactobacillus bulgaricus LB.1 culture in synthetic
medium supplemented with casein (SMcas). The line indicates a change in increasing amino acid
concentration profiles after 2 h. Downright: biomass (triangle) and pH (rhomb) measurements.

3.4. Growth and Amino Acid Release in the Co-Culture of Proteinase-Positive S. thermophilus and
L. bulgaricus

Next, the amino acid concentrations in an L. bulgaricus LB.1—proteinase-positive
S. thermophilus ST.1 co-culture were examined. The strains could grow in both SMcas
(Figures 1 and 2) and SMaa (Figures S4 and S6), indicating their ability to utilize casein
and free amino acids. As shown in Figure 3, the concentration of all amino acids increased
during cultivation at some point. The concentrations of aspartate, arginine, lysine, alanine,
and isoleucine began to decrease after approximately 2 h. Meanwhile, the decrease in
glycine concentration was delayed until 4 h. The following two phases were observed in
amino acid release (Figure 3), growth, and acidification (Figure 4): 0–4 h, pH decreased
from 6.4 to 4.7 while the growth of both strains was weak (Figure 4); 4–7 h, the biomass of
L. bulgaricus increased from 0.05 gDW L−1 to 0.22 gDW L−1. Additionally, the consumption
of 30 mM lactose, the production of 57 mM lactate, and the secretion (up to 10 mM) and
uptake of glucose were observed (Figure S5).
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Figure 2. Amino acid concentrations were measured in proteinase-positive S. thermophilus ST.1 culture
in synthetic medium supplemented with casein (SMcas). The lines indicate three phases according to
the growth. Downright: biomass (triangle) and pH (rhomb) measurements.

3.5. Growth and Amino Acid Release in the Co-Culture of Proteinase-Negative S. thermophilus and
L. bulgaricus

Next, the effects of replacement of proteinase-positive S. thermophiles ST.1 with proteinase-
negative S. thermophilus ST.4 on the amino acid availability and the nutrient needs in the
co-culture with L. bulgaricus LB.1 were examined. ST.4 could not grow in SMcas but could
grow in SMaa (Figures S4 and S6). Therefore, a higher biomass fraction of S. thermophilus
ST.4 was inoculated to avoid the anticipated overgrow of L. bulgaricus.

Figure 4B shows the following three phases: 0–2.5 h, increased biomass of S. thermophilus
ST.4; 2.5–4 h, dominant growth of L. bulgaricus LB.1; 4–7 h, decreased biomass of S. thermophilus
ST.4 even as L. bulgaricus LB.1 continued to grow. Hence, the presence of L. bulgaricus LB.1
enables the growth of S. thermophilus ST.4 in SMcas, which is consistent with previous
findings [12]. Additionally, 25 mM of lactose was consumed and 58 mM of lactate was
produced (Figure S5). Interestingly, lactose consumption severely slowed down after the
growth stop of ST.4, while lactate formation continued. Furthermore, the concentrations of
arginine (0–5 h), isoleucine (0–3 h), and lysine (0–7 h) decreased. Overall, the amino acid
concentration in the proteinase-negative S. thermophilus ST.4—L. bulgaricus co-culture was
lower than that in the proteinase-positive S. thermophilus ST.1—L. bulgaricus LB.1 co-culture.
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Figure 3. Amino acid concentrations in different co-cultures. (filled) Lactobacillus bulgaricus LB.1 co-
cultured with proteinase-positive Streptococcus thermophilus ST.1 in synthetic medium supplemented
with casein (SMcas). (non-filled) L. bulgaricus LB.1 co-cultured with proteinase-negative S. thermophilus
ST.4 in SMcas. (line) Simulated amino acid concentration released from L. bulgaricus LB.1 in LB.1–ST.1
co-culture. (dashed line) Simulated amino acid concentration released from L. bulgaricus LB.1 in
LB.1–ST.4 co-culture.

Figure 4. Strain-specific biomass profiles measured by flow cytometry and pH measurements in
(A) LB.1–ST.1 (initial biomass fraction of 1:2 (LB:ST)) and (B) LB.1–ST.4 (initial biomass fraction 1:10
(LB:ST)) co-cultures in synthetic medium supplemented with casein (SMcas).

3.6. Simulation of Amino Acid Concentrations to Compare Mono- and Co-Culture Cultivations

To indicate the changes in the amino acid profile when S. thermophilus was added to
the L. bulgaricus culture, a Gaussian model of amino acid release dependent on pH and
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biomass was generated (see Methods). This model enables the simulation of the amount of
amino acids released solely from L. bulgaricus in co-culture, which could not be identified
in the mixed culture. Hence, the comparison between the simulation and measured data
will indicate if the amino acid release activity differs between mono-culture and co-culture.

Amino acid profiles of L. bulgaricus mono-culture (Figure 1) were used to fit the
Gaussian qaa models. Figure 3 compares the simulated amino acid profiles of L. bulgaricus
with the measured amino acid profiles of the co-cultures, reflecting the results of the mixed
culture interaction.

Generally, the amino acid concentrations in the proteinase-positive S. thermophilus
ST.1—L. bulgaricus co-culture were higher than those in the simulated amino acid time
courses of L. bulgaricus in mono-culture, with the exception of glycine and leucine.

By way of analogy, Figure 3 shows the difference between the measured amino
acid concentrations in the S. thermophilus ST.4—L. bulgaricus co-culture and the simulated
amino acid concentrations released from L. bulgaricus. Here, most of the measured amino
acid profiles, except for alanine, tryptophan, and histidine, were lower than those of the
simulated courses. This indicates increased uptake of amino acids, likely via the proteinase-
negative S. thermophilus ST.4, which can only feed on amino acids and peptides released
from L. bulgaricus but not from casein.

4. Discussion
4.1. Amino Acids Are Consumed by L. bulgaricus and S. thermophilus

In this study, amino acids were consumed by L. bulgaricus and S. thermophilus cultured
in SMcas in both mono-culture (Figures 1 and 2) and co-culture (Figure 3). This is in
accordance with [22]. Amino acids were consumed even in the presence of peptide-bound
amino acids (Table S1). For example, lysine was consumed in the S. thermophilus ST.1—
L. bulgaricus LB.1 co-culture after 4 h (Figure 3), although at least 230 µM of lysine bound to
proteins and peptides was available (Table S1).

This indicates that amino acid transporters are active and enable the strains to exchange
amino acids that are produced through casein hydrolysis or biosynthesis [36,37]. Hence, it
allows interaction [29,38,39]. Additionally, this enables the manipulation of S. thermophilus
and L. bulgaricus cultivations in biotechnological processes by adding amino acids, such as
lysine [40].

4.2. Amino Acids Can Accumulate in Cultivations with L. bulgaricus and S. thermophilus

L. bulgaricus LB.1 could accumulate all analyzed amino acids (Figure 1). Some of these
amino acids accumulated from the beginning of culturing, indicating basal proteolytic
activity although the strain was precultured under SMaa conditions. This suggests that
L. bulgaricus LB.1 releases more amino acids from casein or/and produces amino acids than
it is needed for growth and that amino acids become available for other strains [41]. The
accumulation of amino acids indicates that extracellular peptidases are highly active [42],
unusable amino acids are separated from peptides to gain posteriorly required amino
acids, or proton-coupled amino acid secretion supports the maintenance of intracellular
pH during acidification [43]. The poor release of amino acids in a S. thermophilus ST.1
cultivation reflects its low activity of peptidases [26,44].

4.3. Differences between Co-Cultures with Different S. thermophilus Strains

The proteinase-negative S. thermophilus ST.4—L. bulgaricus LB.1 co-culture yielded lower
amino acid concentrations than the proteinase-positive S. thermophilus ST.1—L. bulgaricus LB.1
co-culture. This phenotype can be attributed to the increased growth of S. thermophilus ST.4
(Figure 4), which results in an enhanced demand for amino acids [45]. In addition, this
observation is consistent with the lack of protease activity of S. thermophilus ST.4 (Figure 3).
The depletion of arginine, lysine, and isoleucine observed in this study can upregulate
peptidases or amino acid biosynthesis, which is consistent with the hypothesis of previous
studies [9,12,13].
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4.4. Co-Culture Is Not the Sum of Mono-Cultures

The proteinase-positive S. thermophilus ST.1—L. bulgaricus LB.1 co-culture yielded
higher amino acid concentrations than the simulated concentration of amino acids released
from only L. bulgaricus LB.1 (Figure 3). In particular, histidine was rarely released in the
presumably histidine auxotroph S. thermophilus ST.1 mono-culture (Figure 2) [46] but was
detected in high amounts in the S. thermophilus ST.1—L. bulgaricus LB.1 co-culture. The
interaction between the two species may trigger metabolic changes in the strains, resulting
in the rearrangement of metabolic fluxes [6,35,47]. Future studies must identify these
co-culture triggers that serve as stimuli for basic metabolic adjustments.

The amount of amino acid released from the co-culture was higher than the individual
sums of the amounts of amino acid released from the mono-cultures. This might be a
consequence of an upregulated proteolytic system in L. bulgaricus LB.1 and S. thermophilus
ST.1. Alternatively, individual biosynthetic pathways might be stimulated in co-culture but
not in mono-culture [46,48]. Previous studies have alluded to the upregulation of histidine
biosynthesis [12,13].

4.5. Stimulatory Effects of Branched-Chain Amino Acid (BCAA) Depletion

Previous studies have hypothesized that BCAA availability is limited in the
S. thermophilus—L. bulgaricus co-cultures due to the upregulation of BCAA permease in
L. bulgaricus [13] and BCAA biosynthesis in S. thermophilus [12,13,49]. In this study, the
levels of isoleucine, but not those of valine or leucine, were temporarily depleted in the co-
cultures (Figure 3). Furthermore, the release of BCAA in the L. bulgaricus LB.1 mono-culture
was similar to that reported in a previous study [9], which revealed that the proteolytic
activity of L. bulgaricus promotes the excess release of BCAA from casein. In the LB.1
mono-culture, the final concentration of isoleucine (200 µM) was lower than that of va-
line (417 µM) and leucine (746 µM). This indicated isoleucine as a potential candidate
for depletion. Additionally, low concentrations of isoleucine (up to 5 µM), leucine (up to
15 µM), and valine (up to 16 µM) were observed in the protease-positive S. thermophilus
ST.1 mono-culture, indicating its ability to release BCAA from casein or biosynthesize
BCAA [36,46]. However, the levels of isoleucine, leucine, and valine were lower than those
in L. bulgaricus. Hence, isoleucine depletion is plausible and may result in the upregulation
of BCAA permease in L. bulgaricus and BCAA biosynthesis in S. thermophilus, respectively.

4.6. Arginine and Lysine Depletion in Co-Cultures

Arginine and lysine concentrations were limited in the proteinase-negative S. thermophilus
ST.4—L. bulgaricus LB.1 co-culture and oscillated in the proteinase-positive S. thermophilus
ST.1—L. bulgaricus LB.1 co-culture (Figure 3). Previous studies [12,13] have reported the
upregulation of arginine biosynthesis in S. thermophilus co-cultured with L. bulgaricus.
Hence, our results support the hypothesis that low arginine concentrations might influ-
ence physiological responses [50], such as the upregulation of arginine biosynthesis in
S. thermophilus.

5. Conclusions

In this work, we developed a synthetic medium that supports the growth of the
dairy organisms S. thermophilus and L. bulgaricus in mono- and co-culture, which enables
the quantitative monitoring of growth as well as substrate consumption and metabolite
production dynamics. Amino acid release profiles in co-culture were not the sum of amino
acid release profiles in mono-cultures. Additionally, the amino acid release profiles were
not similar in co-cultures with different strain combinations. Amino acid depletion was
observed in S. thermophilus—L. bulgaricus co-cultures, which may provide an explanation
for the induced expression of proteolytic enzymes.

The uptake of several amino acids was observed during growth. Knowledge of co-
culture-specific consumption rates for peptide and amino acid uptake along with release
rates of amino acids provides a tool for determining yogurt quality and useful insights
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into cellular fitness for further strain and process optimization. Understanding cellular
amino acid needs may enable a quantitative and detailed understanding of interactions in
yogurt cultures.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/microorganisms10091771/s1: Table S1: Concentrations of amino acids
bound to extracellular peptides; Figure S1: Acidification of medium; Figure S2: Acidification of syn-
thetic medium supplemented with casein (SMcas); Figure S3: Extracellular metabolite concentrations
in ST.1 culture; Figure S4: Biomass and pH; Figure S5: Extracellular metabolite concentrations in
co-cultures; Figure S6: Amino acid concentration in co-cultures; Figure S7: Extracellular metabolite
concentrations in LB.1 culture; Figure S8: Correlations between flow cytometric data and cell dry
weight; Figure S9: Enumeration of total cell events; Figure S10: Classification of flow cytometric data;
Figure S11: Code for support vector machine (SVM) training; Figure S12: Amino acid concentrations
in LB.1 culture; Figure S13: Fitted Gaussian model for aspartate; Figure S14: Fitted Gaussian model
for glutamate; Figure S15: Fitted Gaussian model for serine; Figure S16: Fitted Gaussian model
for histidine; Figure S17: Fitted Gaussian model for glycine; Figure S18: Fitted Gaussian model
for threonine; Figure S19: Fitted Gaussian model for arginine; Figure S20: Fitted Gaussian model
for alanine; Figure S21: Fitted Gaussian model for tyrosine; Figure S22: Fitted Gaussian model for
valine; Figure S23: Fitted Gaussian model for tryptophan; Figure S24: Fitted Gaussian model for
phenylalanine; Figure S25: Fitted Gaussian model for isoleucine; Figure S26: Fitted Gaussian model
for leucine; Figure S27: Fitted Gaussian model for lysine.
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Abstract: To fulfil the growing interest in investigating microbial interactions in co-cultures, a novel
two-compartment bioreactor system was developed, characterised, and implemented. The system
allowed for the exchange of amino acids and peptides via a polyethersulfone membrane that retained
biomass. Further system characterisation revealed a Bodenstein number of 18, which hints at
backmixing. Together with other physical settings, the existence of unwanted inner-compartment
substrate gradients could be ruled out. Furthermore, the study of Damkoehler numbers indicated that
a proper metabolite supply between compartments was enabled. Implementing the two-compartment
system (2cs) for growing Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus, which
are microorganisms commonly used in yogurt starter cultures, revealed only a small variance between
the one-compartment and two-compartment approaches. The 2cs enabled the quantification of the
strain-specific production and consumption rates of amino acids in an interacting S. thermophilus–L.
bulgaricus co-culture. Therefore, comparisons between mono- and co-culture performance could be
achieved. Both species produce and release amino acids. Only alanine was produced de novo from
glucose through potential transaminase activity by L. bulgaricus and consumed by S. thermophilus.
Arginine availability in peptides was limited to S. thermophilus’ growth, indicating active biosynthesis
and dependency on the proteolytic activity of L. bulgaricus. The application of the 2cs not only opens
the door for the quantification of exchange fluxes between microbes but also enables continuous
production modes, for example, for targeted evolution studies.

Keywords: microbial consortia; metabolomics; lactic acid bacteria; Streptococcus thermophilus;
Lactobacillus bulgaricus; bioprocess engineering

1. Introduction

Interactions between bacteria are common in ecology [1,2] and involve complex mech-
anisms that are not yet fully understood [3]. Analysing these natural consortia is important
because it improves our understanding of fundamental processes, such as bacterial commu-
nication [4]; enables community reshaping to gain health and environmental benefits [5];
and opens the door for the application of (synthetic) microbial consortia in biotechnological
applications [6]. Consequently, thorough studies have been performed to investigate the
application potential of interacting microbes [7,8], leading to the development of natural
and synthetic co-cultures for industrial use [9–12].

Microbial interactions allow for a reduction in individual metabolic burden and are
considered beneficial for metabolic productivity. For instance, one strain may provide
essential nutritional components to another strain and vice versa [13]. Furthermore, the
advantages of cofactor and precursor availability may be created for one microorganism
if biosynthetic pathways are shared between two strains [14]. In some cases, increased
enzyme activity is also observed [15]. Pande et al. [16] provided experimental evidence
for the anticipated benefits and studied the growth performance of a synthetic co-culture
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that relied on the exchange of essential amino acids. Indeed, the growth of the co-culture
outperformed that of the mono-culture in the 24 h experiment. Furthermore, the co-culture
was stable despite the presence of non-cooperating cells. Smartly sharing metabolic activity
between mutually dependent strains yields improvements in biomass production [17–20].

Driven by the promising potential of microbial consortia for biotechnological applica-
tions, here, whether the toolbox for experimental analyses is already complete or should
be complemented with novel devices to elucidate strain interactions inside consortia was
evaluated. In particular, the following research trends are anticipated to benefit strongly
from knowledge of quantitative exchange fluxes among interacting bacteria, which may be
measurable in dedicated devices:

• Computational approaches are being steadily extended to unravel and predict in-
teractions between bacteria [21–23]. To improve the simulation results, data from
quantitative experiments providing strain-specific information—in particular, strain-
specific growth rates, metabolite production, and consumption rates—are essential to
validate model qualities, as indicated previously [24–28].

• Synthetic co-cultures should be rationally assembled to achieve the desired targets.
This demands knowledge of individual uptake and production rates inside co-cultures
for fine-tuning the metabolite exchange rates to prevent bottlenecks in supply and the
accumulation of intermediates [29,30].

• Adaptive evolution experiments have been used to improve the performance of
strains [31,32] and have been adapted for co-culture systems [33–35]. However, to
select them for the jointly increased growth of co-cultures, individual adjustments
may be necessary, such as the implementation of individual dilution rates to prevent
overgrowth and washout scenarios.

Consequently, to meet the demands for strain-specific quantification in co-cultures
and to extend co-culture cultivation techniques, several approaches have been developed
in recent years:

One approach to obtaining strain-specific rates in co-cultures without disturbing
metabolic activities is 13-C metabolic flux analysis [36]. To increase the accuracy of esti-
mated fluxes in co-cultures, elegant methods have already been presented by Gebreselassie
et al. [37] based on 13-C-labelled amino acids, and Ghosh et al. [38] used labelled peptides.
These methods are restricted to specific metabolic networks or require specific experimen-
tal conditions. Interestingly, even higher flux-resolution patterns may be obtained when
applying compartment-specific metabolomics [39]. These observations have shed some
light on the potential to unravel exchange fluxes between interacting compartments, each
hosting different species of a bacterial consortium.

Alternatively, strain-specific information may be obtained by separating the cells of a
co-culture after harvesting. If the cell morphology differs significantly, centrifugation may
be an appropriate separation approach [40]. However, this is a time-consuming procedure
and is, consequently, prone to changes in intracellular states because of ongoing enzymatic
activities [41]. The latter may be prevented by the application of proper cell inactivation
technologies, which thus far are still missing. Furthermore, related approaches call for the
individual development and optimisation of protocols, making them difficult to transfer to
other co-cultures.

Other approaches utilise the spatial separation of interacting strains, as reviewed pre-
viously [42]. Often, such experimental settings are miniaturised, allowing the verification
of multiple synthetic constructs in a parallel manner, thereby restricting sampling volumes.
Examples include microfluidic systems [43–45] and cell culture plates [46]. Our own stud-
ies have indicated that a culture sample of approximately 100 µL is the minimal amount
required to quantify the biomass correctly. An additional 100 µL of the supernatant is likely
necessary to quantify the metabolites. Hence, the sophisticated and quantitative analysis
of interacting cells requires larger reaction volumes than those provided by microfluidic
and well-plate approaches. Alternatively, dialysis bioreactors [47] may be applied to culti-
vate co-cultures in two compartments. However, they incur rather high operational and
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investment costs and may appear somewhat oversized for studying multiple co-cultures
in parallel.

To address these limitations, this study aimed to develop a device for co-culture
analysis that provides strain-specific information independent of metabolic activity and
phenotype. Systematic strain evaluation was enabled by offering a sufficient sampling
volume for extensive analysis, and the device was designed to allow quick assembly.

To this end, a compartmentalised fluid system that allowed the growth of
two metabolite-exchanging strains was developed and applied. A strain-specific anal-
ysis of growth, production, consumption rates, and intracellular metabolite pools was
undertaken. Reflecting the importance of co-cultures in yogurt production, the usability of
the system was showcased by investigating the anaerobic interaction between Streptococcus
thermophilus and Lactobacillus delbrueckii subs. bulgaricus.

The metabolic activities of the strains are linked to each other: the proteolytic system
of L. bulgaricus comprises the extracellular proteinase PrtB [48] and intracellular pepti-
dases [49], enabling the strain to gain amino acids from casein, which is likely the reason
why the strain loses de novo biosynthetic capacities for many amino acids from sugar [50].
The proteinase-negative strain S. thermophilus benefits from this relationship as it consumes
peptides and amino acids from L. bulgaricus [51,52]. The proteolytic system of S. ther-
mophilus consists of intracellular and extracellular peptidases [53–55], which hydrolyse
the peptides supplied by L. bulgaricus. Peptide and amino acid transporters have been
predicted [53,56] and belong to the ABC binding cassette family [55]. Consequently, amino
acids are released from S. thermophilus, as measured here [57–59]. These lactic acid bacteria
are used in industrial processes, such as yogurt and bulk chemical production [60,61], but
their interactions are not yet fully understood [54].

2. Materials and Methods
2.1. Medium Conditions

The synthetic medium (SM) for cultivation (Table S1 in Supplementary Materials) was
chosen from a previous study [62]. SM containing lactose is indicated as SM + lactose, and
SM containing glucose is indicated as SM + glucose. SM containing casein is denoted as
SMcas, and SM containing amino acids is denoted as SMaa.

2.2. Strain Cultivation

L. delbrueckii subsp. bulgaricus ATCC BAA-365 and S. thermophilus LMG 18311 were
received from Chr. Hansen A/S (Hørsholm, Denmark). Precultures and cultivations were
performed in crimp-top serum bottles, as described previously [62]. If predefined dilutions
were to be installed in cultivations using crimp-top serum bottles, the related medium was
removed and replaced with fresh medium every hour.

For cultivations in two-compartment systems (2cs), precultures were prepared as
previously described [62]. Calculated amounts of biomass from one or several precultures
were washed twice with 0.9% NaCl solution, and the cell pellets were resuspended in the
medium to inoculate each compartment.

2.3. Biomass Quantification via the Optical Density Method

Biomass was monitored by optical density (λ = 600 nm) using a photometer (Amer-
sham Bioscience, Ultrospec 10 cell density meter) by applying the biomass/optical density
correlation from a previous study [62]. The pH was measured off-line with a pH meter
(SevenEasyTM; Mettler Toledo, Columbus, OH, USA) connected to a pH electrode (InLab
Semi-Micro; Mettler Toledo, Columbus, OH, USA).

2.4. Biomass Quantification via Flow Cytometry

Samples were processed with Tris-HCl (1.3 M) EDTA (0.13 M) pH 8 buffer; stained with
1× SYBR™ Green I nucleic acid gel stain concentrate (Thermo Fisher Scientific, Waltham,
MA, USA); analysed with the flow cytometer BD Accuri™ C6 (BD Biosciences-US) equipped
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with four fluorescence detectors (FL1 533/30 nm, FL2 585/40 nm, FL3 > 670 nm, and FL4
675/25 nm), two scatter detectors, a blue laser (488 nm), and a red laser (640 nm); and
correlated to biomass concentration cx (gDW L−1), as described previously [62].

2.5. Membrane Unit

A membrane unit with two layers was built from polycarbonate to allow the integra-
tion of a polyethersulfone (PES; poly(oxy-1,4-phenylsulphonyl-1,4-phenyl)) membrane
(pore size 0.2 µm, 15407-47-MIN; Sartorius, Goettingen, Germany) or a polyamide (PA)
membrane (pore size 0.2 µm, 25007-47-N, Sartorius, Goettingen, Germany).

2.6. Vessel Bioreactor System

Two vessels (50 mL, 101116; Glasgeraetebau Ochs Laborfachhandel e.K., Bovenden,
Germany) were connected to the membrane unit using Teflon tubes (inner diameter, 3 mm)
and stirred. Each side was equipped with a mixing pump (Watson-Marlow 101U/R) to
circulate the cultivation broth between the vessels and the membrane unit. The vessels
and membrane units were maintained at 40 ◦C. The vessels and tubes were sterilised via
autoclaving, and the membrane unit was sterilised via immersion in 70% (v/v) ethanol
for 1 h. The sterile assembled vessel bioreactor system was filled with sterile medium as
indicated and warmed up to the cultivation temperature. The biomass was then introduced,
and samples were collected using a sterile needle and syringe at the vessel openings.

2.7. Tube Bioreactor System

The inlets and outlets of the membrane unit were connected to tubes equipped with a
feed and harvest unit. The mixing pump (Watson-Marlow 101U/R) was equipped with
a PharMed®-tube (Saint-Gobain, Courbevoie, France) with an outer diameter of 4.8 mm,
inner diameter of 1.6 mm, and a length of 18 cm, resulting in a volume of 0.4 mL.

An additional connecting tube (Rotilo-silicon tube; Carl Roth GmbH + Co. KG,
Karlsruhe, Germany) between the inlet and outlet had an inner diameter of 1.5 mm and
a length of 31 cm, which resulted in a volume of 0.5 mL. The feed and harvest tubes had
inner diameters of 1 mm.

The particles in the membrane unit were removed using 70% (v/v) ethanol followed
by washing with sterile MilliQ water. The tubes and membranes were sterilised via
autoclaving. After connecting the tubes and the membrane unit, the cells were seeded
into the system by flushing the cell suspension through the feed until the air was removed.
Subsequently, the membrane unit and tubes (without the tubes in the mixing pump) were
immersed in water at 40 ◦C to ensure optimal cultivation conditions.

2.8. Continuous Cultivation in the Tube Bioreactor System

Each compartment in the tube bioreactor system was equipped with a feed inlet and an
outlet to harvest the cultivation suspension for installing individual dilution rates. Syringe
pumps (LA100; Landgraf Laborsysteme, Langenhagen, Germany) were used to ensure
feeding to each compartment. To enable accurate harvesting, one outlet was equipped
with a drawing syringe pump (LA100; Landgraf Laborsysteme, Langenhagen, Germany),
whereas the other outlet allowed the free outflow of the cultivation medium. The harvest
was collected for 1 h in an ice-cooled syringe or bottle. A new syringe and bottle were then
connected to the harvest for the next sampling. The samples were analysed for biomass via
flow cytometry or centrifuged (3 min, 14,000 rpm, 4 ◦C), and the supernatant was stored at
−70 ◦C for further analysis.

2.9. Metabolite Balancing

Equation (1) depicts the mass balance for metabolite i which may enter one compart-
ment via diffusion and feed (see Section 3.1.1.), may be produced (or consumed) in the
reaction volume VR, and leaves the compartment via efflux-indexed production. Consider-
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ing equal reaction volumes in each compartment, Equation (2) (process model) was derived
as follows:

dmi
dt

=
.

mi, f eed −
.

mi,out +
.

mi,Di f f usion +
.

mi,production (1)

dci
dt

= D·(ci, f eed − ci) + ki·
(

ci,connected compartment − ci

)
+ Qi (2)

where mi (kg) denotes the mass of metabolite I; t (h) denotes the time; ci (mol L−1) denotes
the concentration of metabolite i in the balanced compartment; ci,connected compartment (mol
L−1) denotes the concentration of metabolite i in the connected compartment; D (h−1)
denotes the dilution rate; ci,feed (mol L−1) denotes the concentration of metabolite i in the
feed; ki (h−1) denotes the transport coefficient for diffusion in the membrane unit; and Qi
(mol L−1 h−1) denotes the metabolic productivities (i.e., the production or consumption of
metabolite i). As indicated, ki denotes the trans-membrane transport coefficient resulting
from the driving concentration profile between connected compartments.

To exploit the experimental data, Equation (2) was discretised for the time intervals
t2−t1. The metabolic productivity Qi,1 in compartment 1 was calculated by Equation (3),
and the metabolic productivity Qi,2 in compartment 2 was calculated by Equation (4).
Indexes 1, 2, t1, and t2 code for the compartments and time points (h), respectively.

Qi,1 =

(
ci,1,t2 − ci,1,t1

)

t2 − t1
− D1·ci,1, f eed + D1·

(
ci,1,t1 + ci,1,t2

)

2
− ki·

((
ci,2,t1 + ci,2,t2

)

2
−
(
ci,1,t1 + ci,1,t2

)

2

)
(3)

Qi,2 =

(
ci,2,t2 − ci,2,t1

)

t2 − t1
− D2·ci,2, f eed + D2·

(
ci,2,t1 + ci,2,t2

)

2
− ki·

((
ci,1,t1 + ci,1,t2

)

2
−
(
ci,2,t1 + ci,2,t2

)

2

)
(4)

Hence, the biomass-specific activity qi (mol L−1 h−1 gDW
−1) for amino acid i was

calculated by dividing the metabolic productivity Qi by the biomass cx.
If 13-C-labelled amino acids were used, the related production and consumption terms

Qi
13 were estimated as follows:

dc13
i,1

dt
= D1·

(
c13

i,1, f eed − c13
i,1

)
+ ki· f rac13·

(
ctotal

i,2 − ctotal
i,1

)
+ Q13

i,1 (5)

where c13 denotes the concentration (mol L−1) of the fully 13-C-labelled isotopologues;
ctotal denotes the total concentration of an amino acid irrelevant to its labelling pattern.
For non-labelled amino acids, the sum of m + 0 plus the natural m + 1 background of
isotopologues was considered. frac13 (molar 13-C concentration divided by total molar
concentration) denotes the fully 13-C-labeled isotopologue fraction of an amino acid pool
either in compartment 1 (if ci,1 > ci,2) or compartment 2 (if ci,2 > ci,1).

2.10. Reaction Rate Constant of Metabolite Productivity

The consumption rate constant kconsumption,i (h−1) for amino acids was derived from
the productivity Qi for each amino acid concentration ci according to Equation (6).

kconsumption,i =
Qi
ci

(6)

2.11. Determination of Amino Acid Transport Coefficients in the Membrane Unit

To determine the transport coefficient ki, the feed and harvest flows were disconnected,
and compartment 1 was filled with 65 mL of various concentrations of amino acids (pH 6.5),
whereas compartment 2 was filled with 65 mL of MilliQ water. A constant mixing pump
rate of rpump = 10 mL × min−1 was installed in each compartment. Samples (0.5 mL) were
taken from each bioreactor after 0, 5, 10, 15, 20, 25, and 30 min or 0, 5, 15, and 30 min, and
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amino acid concentrations were quantified using HPLC. The process model of Equation (2)
is simplified to Equation (7) for compartment 1, and ki was identified as the least-square
estimate in MATLAB ® (R2020a) (Code S1 in Supplementary Materials).

dci,1

dt
= −dci,2

dt
= ki·(ci,2 − ci,1) (7)

2.12. Determination of the Bodenstein Number

To determine the Bodenstein number (Bo) in the membrane unit, bromothymol blue
solution with a pH of 7.5 (KK19.3; Carl Roth GmbH & Co. KG, Karlsruhe, Germany) was
pumped through each side of the membrane unit at a typical cultivation mixing pump rate
of 3.7 mL × min−1. Subsequently, 15 µL of 2 M HCl tracer was pulsed into one side of the
membrane unit, leading to a colour change.

The experiment was recorded using video. Then, one image of the outlet was decom-
posed into squares for colour analysis using “imread” from MATLAB ®. As the red r-values
showed maximum variability, related intensities were applied for the mixing studies.

The average residence time (τ) and its variance (σ2) were calculated after the pulse
perturbation, as defined by a previous study [63]. To characterise the degree of mixing in
the membrane unit, the Bo was extracted from τ and σ2 (Equation (8)):

σ2

τ2 =
2

Bo
+

8
Bo2 (8)

2.13. Calculation of the Damkoehler Number

The Damkoehler number (Da) is a dimensionless mass balance that was adapted to
indicate whether amino acid consumption in a compartment encountered limitations due to
low amino acid supply by membrane transport [64]. DaI (dimensionless) was calculated for
each amino acid I in a compartment between two subsequent data points (t1 and t2) when
amino acid consumption and transport in the membrane unit into the compartment were
present. A homogeneous distribution of amino acids in the compartment was assumed.
Da considered amino acid decrease by consumption (Qi) and washout by dilution (D). An
increase in amino acid concentration in a compartment was expected from transport across
the membrane (see Section 3.6.6.). Da depicts the quotient between Qi, D for washout, and
the transport rate in the membrane unit for an amino acid i as follows:

Dai,t1−t2 = Daconsumption + Dadilution =
−Qi,t

ki·gi,t1−t2
+

D·ci,t1−t2

ki·gi,t1−t2
(9)

Trans-compartment concentration gradients gi (mol L−1) were estimated by consider-
ing the arithmetic mean (∆c) of the concentrations between time points (t1 and t2) according
to Equation (10).

gi = ∆ci,connected compartment,t1−t2 − ∆ci,t1−t2 (10)

The pool turnover rate (kmembrane unit (h−1)) of metabolite pools in the membrane unit
with the volume Vmembrane unit (L) imposed by the circulation of the fermentation broth with
a mixing pump adjusted to the rate rmixing pump (L min−1) was calculated as follows:

kmembrane unit =
rmixing pump

Vmembrane unit
(11)

2.14. Quantification of Extracellular Metabolites

Sugar and lactate concentrations were measured with an isocratic Agilent 1200 series
HPLC system (Agilent Technologies, Santa Clara, CA, USA) equipped with a Phenomenex
guard carbo-H column (4 × 3.0 mm) and a Rezex ROA organic acid H (8%) column
(300 × 7.8 mm, 8 µm; Phenomenex) maintained at 50 ◦C [62]. Separation was achieved
with 5 mM H2SO4 with a constant flow rate of 0.4 mL min−1. Samples were pretreated for
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the precipitation of abundant phosphate by the addition of 4 M NH3 and 1.2 M MgSO4
solution followed by incubation with 0.1 M H2SO4. Absolute concentrations were ob-
tained by standard-based external calibration and normalisation with L-rhamnose as the
internal standard.

The amino acid concentrations were determined using an Agilent 1200 series instru-
ment (Agilent Technologies, Santa Clara, CA, USA) [62]. Separation was achieved with an
Agilent Zorbax Eclipse Plus C18 column (250 by 4.6 mm, 5 µm), which was protected by
an Agilent Zorbax Eclipse Plus C18 guard column (12.5 by 4.6 mm, 5 µm), according to a
previously established method [65]. After automatic pre-column derivatisation with ortho-
phthaldialdehyde, fluorometric detection (excitation at 230 nm and emission at 450 nm)
was performed. The elution buffer consisted of a polar phase (10 mM Na2HPO4, 10 mM
Na2B4O7, 0.5 mM NaN3, and pH 8.2) and a non-polar phase (45% (v/v) acetonitrile and
45% (v/v) methanol). The quantification of amino acids was achieved via standard-based
external calibration and using 4-aminobutanoic acid as an internal standard at 100 µM to
correct for analyte variability.

2.15. Quantification of Extracellular and Intracellular Metabolites

For extracellular metabolite quantification via LC-MS/MS, the samples were cen-
trifuged at 20,000× g for 3 min at 4 ◦C, and the supernatant was stored at −70 ◦C. The
samples were then filtered (Centrifugation Units ROTI®Spin, MINI-3; Carl Roth GmbH
& Co. KG, Karlsruhe, Germany) and mixed (1:1 v/v) with methanol to precipitate the
remaining particles.

Biomass samples for intracellular metabolome analysis via LC-MS/MS were cen-
trifuged at 4500× g for 3 min and 4 ◦C, washed with 0.9% (w/v) sodium chloride solution,
centrifuged at 20,000× g for 3 min at 4 ◦C, and the pellet was stored at −70 ◦C. For metabo-
lite extraction, the pellets were supplemented with 120 µL of 100 µM norvalin to correct
for analyte variability, boiled at 95 ◦C for 4 min, and immediately centrifuged for 20 min
at 20,000× g and 4 ◦C. The supernatants were filtered (Centrifugation Units ROTI®Spin,
MINI-3; Carl Roth GmbH & Co. KG, Karlsruhe, Germany) and stored at −70 ◦C. The
metabolite concentrations in the samples were measured using an Agilent 1200 HPLC
system coupled with an Agilent 6410 B triple quadrupole mass spectrometer using an
electrospray ion source. Chromatographic separation was achieved according to a previ-
ously described method [66]. The metabolite pool concentration was quantified by adding
defined amounts of analyte standard to the reaction mixture. Data analysis was performed
using MassHunter B.05.00 software (Agilent Technologies), and peaks of isotopologues
containing 13-C were checked for interference by comparing samples of cultivation from
12-C and 13-C substrates.

2.16. Determination of Amino Acid Composition in Casein

First, 32% HCl (200 µL) was slowly added to casein solution (200 µL), vortexed, and
incubated at 100 ◦C for 24 h. After cooling at 18 ◦C (1 h), 490 µL of 6.23 mM NaOH was
slowly added. The samples were stored at −20 ◦C until HPLC was used to quantify the
amino acid concentrations.

2.17. Uncertainty Analysis

The measured data were analysed using Microsoft Excel. The mean and standard
deviation were calculated using duplicates and triplicates (STABW.S) using Microsoft Excel.

3. Results
3.1. Design of the Membrane Unit
3.1.1. Membrane Unit Characteristics

The channels in the membrane unit (see Materials) were located next to each other
and were separated by the membrane (Figure 1). This setting enabled the diffusion of
metabolites, such as amino acids, but retained the cells. The channel in the membrane unit
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had a length of approximately 166 mm and volume of approximately 2.7 mL. The inserted
membrane area was approximately 6.7 × 10−4 m2.
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Figure 1. (left) Image of the membrane unit. The inlet and outlet of the channel were connected to
vessels or tubes to allow the circulation of cells. Two polycarbonate elements were used to clamp
a semi-permeable membrane that was aligned and fixed. (right) Mass balance of a compartment
with inflow (feed), outflow (harvest), and diffusion flows in the membrane unit. The mixing pump
allowed the circulation of the cultivation broth within the compartment.

3.1.2. Amino Acid Transport in the Membrane Unit

A PES or PA membrane was used to determine the amino acid transport coefficient
(ki) between the two vessels connected by the membrane unit. Three independent ex-
periments were performed. Each experiment contained all of the amino acids. For each
experiment, another initial amino acid concentration was set between 150 and 3200 µM
(Table S2 in Supplementary Materials). The ki for amino acid i was estimated based on
all three experiments (for example, see kalanine in Figure S1 in Supplementary Materials).
The membrane unit equipped with a PES membrane showed a higher mean transport
coefficient (k = 0.36 ± 0.03 h−1) compared to a membrane unit equipped with a PA mem-
brane (k = 0.09 ± 0.01 h−1) (Figure S2 in Supplementary Materials). Therefore, PES mem-
branes were used in this study. Whether the power input by the mixing pump may
bias ki values by affecting the supply or removal of molecules in the membrane unit
was considered. Given a mixing pump rate of rpump = 10 mL × min−1, the average pool
turnover rate in the membrane unit was approximately kmembrane unit = 222 h−1 on one side
of the membrane unit. Considering that the maximum transport coefficients were approx-
imately k = 0.4 h−1, the fraction of molecules exchanged by diffusion in the membrane
unit was fdiffusion = k/kmembrane unit = 0.02%. In other words, 99.98% of all the molecules in
one compartment of the membrane unit was exchanged via pumping. Reducing rpump to
3.7 mL × min−1 increased fdiffusion to 0.05%, which was still considered to be a low value.
Hence, the ki was barely affected by the pumping rates used in this study.

3.2. Design of the 2cs

The presented 2cs was designed to investigate metabolic interactions in a co-culture.
This system enabled the characterisation of individual strains by calculating strain-specific
rates and quantifying intracellular metabolite pools. As shown in Figure 2, the experimental
setup comprised a central membrane unit separating compartments 1 and 2 that may or
may not embed an additional vessel section.
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Figure 2. (A) Diagram of a vessel bioreactor system. The vessels were connected to the membrane
unit, and circulation of medium in each compartment was achieved by mixing pumps. (B) Diagram
of a tube bioreactor system. The inlets and outlets of the membrane unit were connected by tubes,
and circulation of medium in each compartment was achieved by mixing pumps. Additionally,
attached tubes for feeds and harvests allowed sampling and continuous cultivation by using feed
pumps for each compartment. (C) Technical parameters and results of co-cultivations in respective
two-compartment systems (2cs) with Lactobacillus delbrueckii subs. bulgaricus in synthetic medium
(SM) containing casein and lactose and Streptococcus thermophilus in SM containing lactose. Strains
were cultivated in co-culture in the 2cs, enabling exchange of metabolites, and strain-specific growth
rates were determined from biomass measurements (Figures S4 and S5 in Supplementary Materials).
V, volume.

3.3. Vessel Bioreactor System: Set-Up and Growth Experiment

The vessel bioreactor system comprised two vessels connected by a membrane unit.
Each compartment was filled with 61.9 mL of cultivation broth (Figure 2A). To evaluate
growth behaviour, compartment 1 was filled with SM + lactose and inoculated with S.
thermophilus, whereas compartment 2 contained L. bulgaricus in SMcas + lactose. The
biomass ratio in the 2cs at inoculation was 1:2.75 (gDW

LB:gDW
ST). This experimental

setting was chosen to investigate whether the non-proteolytic S. thermophilus cultivated
in compartment 1 benefited from metabolite exchange with the proteinase-positive L.
bulgaricus cultivated in compartment 2. Notably, proteinase-negative S. thermophilus was
not able to grow in SMcas + lactose as a pure culture (Figure S3 in Supplementary Materials).
Consequently, the strain crucially relied on L. bulgaricus, which released amino acids
and peptides from casein that further diffused through the membrane. Considering the
geometries and mixing pump rate of 10 mL × min−1 in each compartment, the estimated
cellular residence time was 355 s in the vessel and 16 s in the membrane unit.

Cultivation studies revealed a growth rate of µ = 0.39 h−1 for L. bulgaricus and µ = 0.06
h−1 for S. thermophilus (Figure S4 in Supplementary Materials). This observation is the first
evidence that amino acids and peptides are released from L. bulgaricus and that they diffuse
into compartments containing S. thermophilus. However, the growth of S. thermophilus is
nutrient-limited.
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3.4. Tube Bioreactor System

To increase the growth rate of S. thermophilus, the vessels were removed from the
vessel bioreactor system, leading to a simplified tube bioreactor system design (Figure 2B).
Accordingly, the compartment volume reduced from 61.9 to 3.6 mL, increasing the volume
fraction in the membrane unit to 74% (instead of 4% in the vessel bioreactor system).
By analogy, the membrane-to-compartment ratio improved from 11 m−1 in the vessel
bioreactor system to 186 m−1 in the tube bioreactor system. In other words, the residence
time of amino acids and peptides inside the membrane unit increased from 4% to 74% of
the total cycling time.

Again, similar experimental conditions were chosen for the first vessel bioreactor
system tests; namely, the cultivation of S. thermophilus in compartment 1 with SM + lactose
and of L. bulgaricus in compartment 2 with SMcas + lactose. The mixing pump rate
was reduced to 3.7 mL × min−1. Dilution rates of D = 0.14 h−1 were installed in each
compartment, resulting in mean residence times of 7.1 h per compartment. The feed
medium was equivalent to the medium in the compartments (SM + lactose for feeding into
compartment 1 and SMcas + lactose for feeding into compartment 2). The biomass ratio in
the 2cs at inoculation was 1:0.7 (gDW

LB:gDW
ST). As expected, the growth of L. bulgaricus and

S. thermophiles was µ = 0.91 h−1 and µ = 0.27 h−1, respectively (Figure S5 in Supplementary
Materials). For both strains, the growth rates were higher than those in the studies using
the vessel bioreactor system.

3.5. Comparison between Bacterial Growth in Serum Bottles and in the Tube Bioreactor System

To further characterise the growth of a co-culture in the tube bioreactor system
(two-compartments), a crimp-top serum bottle (one-compartment) was additionally inoc-
ulated in parallel to the experiment described in Section 3.4. The crimp-top serum bottle
contained SMcas + lactose (50 mL) inoculated with the same biomass concentrations of S.
thermophilus and L. bulgaricus and was diluted at the same dilution rate of D = 0.14 h−1. A
defined volume was removed each hour and replaced with new SMcas + lactose medium,
imitating the continuous process conditions in the tube bioreactor system described in
Section 3.4.

Biomass was determined via flow cytometry at each harvest of the tube bioreactor
system and in the crimp-top serum bottle. Then, the cell events of both compartments of
the tube bioreactor system were summed up. It was not possible to measure the strain-
specific biomass in a one-compartment bottle. As depicted in Figure S6 in Supplementary
Materials, the growth of the co-culture in the one-compartment bottle approach was fairly
similar to the added-up biomass course in the tube bioreactor system for the first 2 h. Then,
exponential growth continued in the tube bioreactor system while the growth rate slowed
down in the one-compartment system, finally leading to 3.2 × 107 cell events × mL−1

compared to 4.1 × 107 cell events × mL−1 in the tube bioreactor system. Apparently, the
tube bioreactor system approach was beneficial for the growth of the co-culture.

3.6. Determination of Strain-Specific Rates in Co-Culture

To demonstrate the applicability of the tube bioreactor system for identifying exchange
rates of metabolites, proteinase-negative S. thermophilus and proteinase-positive L. bulgaricus
were cultivated using medium containing 13-C glucose in the tube bioreactor system. The
goal of the experiments was to determine the strain-specific release and consumption of
amino acids in the interacting co-culture. Furthermore, experiments were performed to
determine whether the released amino acids originated from casein or were synthesised de
novo from sugar.

3.6.1. Dynamic Cultivation Tests in the Tube Bioreactor System

L. bulgaricus was cultivated in one compartment of the tube bioreactor system con-
taining SMcas + 13-C glucose. In the connected compartment, proteinase-negative S.
thermophilus was cultivated in SM + 13-C glucose. The experiments were designed such
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that dynamic growth conditions were set, which were individually adapted to the kinet-
ics of each strain. The biomass ratio in the 2cs at inoculation was 1:4.4 (gDW

LB:gDW
ST).

After 2 h of cultivation in the tube bioreactor system, the operational mode switched to
continuous fermentation. Pumps feeding the medium with the same composition as the
related compartment were started, together with the harvest pump. For the compartment
with S. thermophilus, a dilution rate of D = 0.34 h−1 was set to avoid the anticipated over-
growth of the said strain with respect to L. bulgaricus. For the latter, a dilution rate of D
= 0.07 h−1 was set to prevent fast washout. After 8 h, that is, 24 h after the start of the
experiments, the biomass of each compartment was collected for intracellular metabolite
analysis. During the continuous mode period, a mean growth rate of µ = 0.05 h−1 for
S. thermophilus and an intermediary maximum of µ = 0.1 h−1 between 1 and 3 h were
observed (Figure S7 in Supplementary Materials). This indicated the growth of S. ther-
mophilus, which is only possible in the presence of amino acids or peptides supplied by L.
bulgaricus (Figure S3 in Supplementary Materials). Therefore, amino acids and peptides
must have diffused between the compartments and enriched the medium of S. thermophilus
(Figure 3). Additionally, the pH dropped in the S. thermophilus compartment from 6.5 to 5.5,
and lactate production was measured, which revealed the metabolic activity of S. ther-
mophilus, L. bulgaricus, or both (Figure S8 in Supplementary Materials). Growth and pH
were not measured in compartments containing L. bulgaricus. Throughout the continuous
mode (8 h), S. thermophilus and L. bulgaricus were replaced 2.7- and 0.6-fold, respectively.
In other words, the system did not run under a hydrodynamic steady state. Accordingly,
the derived kinetics may serve as operational conditions, demonstrating the feasibility of
this approach.
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Figure 3. Amino acid profiles in the compartment containing Streptococcus thermophilus during
co-cultivation with Lactobacillus delbrueckii subs. bulgaricus in the tube bioreactor system. (rhomb)
Extracellular amino acid concentrations (µM) in the compartment containing S. thermophilus during
the continuous mode. (bars) Extracellular peptide-bound amino acid concentrations (µM) in the
compartment containing S. thermophilus during the continuous mode. S. thermophilus was cultivated
in co-culture with L. bulgaricus in the tube bioreactor system containing synthetic medium (SM)
with casein and glucose in the L. bulgaricus compartment and SM with glucose in the S. thermophilus
compartment. * Profile data for these peptide-bound amino acids not measured.
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3.6.2. Calculation of Strain-Specific Rates

In co-culture, proteinase-negative S. thermophilus consumed peptides and amino acids
provided by L. bulgaricus to satisfy its nitrogen demand. A previous study using similar
strains and experimental conditions [62] demonstrated that co-cultures of L. bulgaricus and
S. thermophilus released and consumed amino acids (as aspartate, arginine, alanine, lysine,
isoleucine, and glycine). Consequently, tracking these components may open the door for
the identification of strain-specific dynamics and to gain further insight into the interactions
of the strains.

The strength of the 2cs is that it allows the calculation of strain-specific amino acid
rates by the individual analysis of sample concentrations (Table S3 in Supplementary
Materials). As shown in Figure 4, positive values indicate amino acid release regardless of
the precursor origin, that is, casein or glucose, whereas negative numbers correlate with
amino acid consumption. By trend, both strains released amino acids during the first 3 h
before metabolic productivity declined or even before consumption occurred. In particular,
L. bulgaricus released amino acids (Table S3 in Supplementary Materials) based on its high
proteolytic activity. Glutamate, aspartate, and alanine were only produced by L. bulgaricus
and consumed by S. thermophilus during the first 3 h. Another exception was methionine,
which was consumed by both strains in the continuous mode.
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Figure 4. Metabolic productivity of Lactobacillus delbrueckii subs. bulgaricus (rhomb) and Streptococcus
thermophilus (triangle) cultivated in the tube bioreactor system as a co-culture. Positive values indicate
the release or production of amino acids; negative values indicate the uptake of amino acids. Strains
were cultivated in a tube bioreactor system containing synthetic medium (SM) with casein and
glucose in the L. bulgaricus compartment and SM with glucose in the S. thermophilus compartment.
Amino acids were sorted in rows according to the mol-fraction in casein, except tyrosine, proline,
tryptophan, and methionine.
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3.6.3. Biomass-Specific Activity of S. thermophilus in Mono- and Co-Cultures

To gain a deeper understanding of amino acid metabolism in S. thermophilus, amino
acid productivity has often been studied and modelled [52,67]. However, only strain-
and biomass-specific measurements may enable detailed metabolic flux distributions in
co-cultures [28], thereby linking mono- and co-culture models [68,69]. Figure 5 compares
the amino acid productivity of S. thermophilus in a mono-culture grown on SMaa + lactose
with the performance when co-cultivated with L. bulgaricus in the tube bioreactor system on
SMcas + glucose (as shown in Figure 4). Most amino acids were released by S. thermophilus
in the co-culture, indicating the uptake of peptides as well as intracellular and extracellular
peptidase activity [56] compared to the mono-culture condition, where amino acids were
almost entirely consumed. Similar to the mono-culture activities, glutamate and aspartate
were consumed by S. thermophilus in the co-culture. This is remarkable, as peptide-bound
glutamate and aspartate are available (Figure 3) but are not preferred. Apparently, S.
thermophilus prefers consumption rather than replenishing its demand via the hydrolysis of
peptides or interconversion through transaminases [70,71]. Methionine was consumed by
S. thermophilus in the co-culture, but uptake was limited by low methionine concentrations
(Figure 3), which might indicate an insufficient supply [67].
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Figure 5. Biomass-specific activity of Streptococcus thermophilus. Amino acid production or con-
sumption rates of S. thermophilus bridging amino acid productivity in mono-culture and co-culture.
(Filled) S. thermophilus grown in co-culture with Lactobacillus delbrueckii subs. bulgaricus. Strains
were cultivated in a tube bioreactor system containing synthetic medium (SM) with casein and
glucose in the L. bulgaricus compartment and SM with glucose in the S. thermophilus compartment.
(Non-filled) S. thermophilus grown in a crimp-top serum bottle containing SM with amino acids and
lactose (modified from [62]). Amino acids were sorted in rows according to mol-fraction in casein,
except tyrosine, proline, tryptophan, and methionine.
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3.6.4. Analysis of Extracellular 13-C Alanine Enrichment

Concentrations of extracellular amino acid isotopologues were measured to determine
the origin of the amino acids. Low fractions of labelled aspartate, tyrosine, and threonine
were detected (< 1%). Only the alanine pool (mol L−1) was enriched with up to 50% 13-C
alanine (Figure 6), which was mirrored by intracellular labelling patterns in both strains
(Figure S9 in Supplementary Materials). This observation highlighted the relevance of
de novo alanine biosynthesis from (labelled) sugars. The strain-specific production and
consumption rates for 13-C alanine were calculated (Equation (2)) using the process model
(Figure 6A). Balancing revealed that alanine was produced de novo by L. bulgaricus at a
maximum rate of 5 µM × h−1, whereas S. thermophilus mainly consumed the amino acids
(Figure 6B).
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Figure 6. Alanine production and consumption of Streptococcus thermophilus and Lactobacillus del-
brueckii subs. bulgaricus cultivated in the tube bioreactor system. (A) Illustration of alanine pools
in the tube bioreactor system. r1 and r3 are the production and consumption rates of non-labelled
alanine; r2 and r4 are the production and consumption rates of 13-C alanine; rdiff is the diffusion rate
of alanine in the membrane unit according to concentration differences; and D is the dilution rate
in compartment 1 or compartment 2. (B) Compartment 1 was filled with L. bulgaricus and synthetic
medium (SM) with casein and 13-C glucose. Compartment 2 was filled with S. thermophilus and SM
with 13-C glucose. Concentrations of non-labelled (triangle) and 13-C alanine (circle) were measured
via LC-MS. Strain-specific rates were calculated by balancing each compartment. Positive rates:
production; negative rates: consumption.
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3.6.5. Alanine Exchange between the Compartments

The diffusion flux of 13-C alanine across the membrane was calculated. Figure S10
in Supplementary Materials shows a 13-C alanine flux from the compartment containing
L. bulgaricus to the compartment containing S. thermophilus between 2 and 7 h. This
indicated that L. bulgaricus provided de novo-produced alanine to S. thermophilus because S.
thermophilus consumed alanine within this time range (Figure 6).

3.6.6. Calculation of Damkoehler Numbers

To further investigate the metabolite dynamics in the continuous experiments, Damkoehler
numbers were calculated for each amino acid (Figure 7). In essence, the terms for amino acid
consumption and washout were compared with trans-membrane amino acid transport rates,
leading to Daconsumption and Dadilution, respectively (Table 1). Accordingly, Da < 1 indicated a
faster amino acid supply than depletion, and this was the opposite for Da > 1, whereas Da
= 1 represented an equilibrium between depletion and supply. The calculation of the Da
terms Daconsumption and Dadilution (Equation (9)) illustrated their individual importance for
the total Da term.
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Figure 7. Illustration of terms to estimate the Damkoehler number (Da) during the continuous mode.
Trans-membrane transport provided amino acids; Streptococcus thermophilus or Lactobacillus delbrueckii
subs. bulgaricus consumed amino acids; and the continuous mode provoked amino acid washout.
The initial concentration for some amino acids was above zero at the start of the continuous mode.

Table 1. Comparison of mass balance terms for amino acids in the compartment containing
Streptococcus thermophilus.

mean amino acid consumption −Qi 3.0 ± 2.8 µM × h−1

mean amino acid dilution D× ci 11.4 ± 10.1 µM × h−1

mean trans-membrane amino acid influx ki × gi 5.5 ± 3.8 µM × h−1

mean change in amino acid concentration dci/dt 13.5 ± 13.6 µM × h−1

amino acid feed D × ci,feed
0 µM × h−1

(feed medium without amino acids)

Damkoehler term for consumption Daconsumption 0.6 ± 0.4

Damkoehler term for dilution Dadilution 2.3 ± 2.1

Damkoehler number Datotal 2.9 ± 2.3

S. thermophilus was co-cultivated with Lactobacillus delbrueckii subs. bulgaricus in the tube bioreactor system
containing synthetic medium (SM) with glucose in the S. thermophilus compartment and SM with casein and
glucose in the L. bulgaricus compartment.
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The analysis of Datotal time courses for the compartment containing S. thermophilus
revealed that Datotal data were > 1 (Figure 8A) for all amino acids, irrespective of the time
interval. By trend, the highest Datotal values were observed after 5 h, with alanine being the
only exception. Consequently, most amino acids showed greater concentration decreases
than their supply from the compartment containing L. bulgaricus. This scenario was only
enabled by the already high concentrations of these amino acids within the compartments
at the start of the continuous experiment (Figure 3). In the case of alanine, sugar-derived
biosynthesis became more important as the experiment lasted longer. Figure 8B discloses
the individual contributions of Dadilution and Daconsumption for the calculation of the total Da
number Datotal showcasing the compartment of S. thermophilus. Dadilution was larger than
Daconsumption, outlining that the decrease in amino acid concentrations was predominately
caused by the washout of amino acids (D = 0.34 h−1) and not by their consumption
(kconsumption = 0.15 ± 0.16 h−1) (Figure 7).
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Figure 8. Damkoehler numbers (DaI) of individual amino acids. (A) Datotal = Dadilution + Daconsumption

in the compartment containing Streptococcus thermophilus. (B) Dadilution + Daconsumption separated in
the compartment containing S. thermophilus. Strains were cultivated in the tube bioreactor system,
and Da was calculated for each hour of continuous cultivation. Da numbers were only calculated if
amino acid uptake was present within 1 h. The red line indicates Da = 1.

4. Discussion
4.1. Process Characterisation

The fluid behaviour in the membrane unit can be described by Bo = 18 (Figure S11 in
Supplementary Materials). This indicated that axial molecular diffusion and additional
backmixing effects were present [63]. Given that Bo represents the ratio between convective
flow and axial backmixing (dispersion), one may estimate that a non-optimum plug-
flow pattern exists inside the channels with approximately 5% backmixing. Backmixing
increased the average residence time of elements inside the membrane unit. However, 5%
is far too low to create substrate gradients inside the compartment, as consumption rates
are much lower than the sum of trans-membrane transport (Table 1).

To investigate whether the diffusion process of metabolites in the membrane unit might
result in limitations, such as the supply of amino acids from L. bulgaricus to S. thermophilus,
Damkoehler numbers were estimated according to Equation (9). As almost all Datotal values
were > 1, indicating stronger amino acid withdrawal than supply, cellular growth predom-
inately relied on the amino acids that were released at the beginning of the continuous
experiment or those that were already present before the start (Figure 3). However, the key
readouts regarding amino acid dependencies could be deduced. Nevertheless, future exper-
imental settings may reduce the dilution rate D as the key parameter for washout, which
would significantly reduce the available amino acid amount per compartment (Figure 7).
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4.2. Difference between Cultivation in the Serum Bottle and in the Tube Bioreactor System

The growth of the co-culture in the serum bottle and in the tube bioreactor system was
compared to study the potential impacts of hampered cell-to-cell interactions. Metabolic
interactions could be delayed because of diffusion-limited metabolite exchange, and miss-
ing cell-to-cell contact may create secondary responses [72]. Interestingly, 33% more cell
events, that is, the proxy for cell growth, were found in the tube bioreactor system, which
might have been the result of delayed acidification (Figure S6 in Supplementary Materials).
Like amino acids, lactate needs to cross the membrane unit via diffusion, which decelerates
acidification dynamics in the connected compartment while maintaining beneficial pH
conditions for growth.

4.3. Strain-Specific Amino Acid Release and Consumption in the Tube Bioreactor System

Both strains released and consumed amino acids when cultivated in a tube bioreactor
system in continuous mode (Figure 4). During the first 3 h, both strains mainly released
amino acids. Subsequently, amino acids were released and consumed. Only methionine
was entirely consumed during the continuous mode. These findings quantified, for the
first time, to our knowledge, the amino acid production and consumption rates in an
interacting co-culture of L. bulgaricus and S. thermophilus and highlighted their dynamics.
Consequently, the amino acid transport demonstrated for both strains and their impact on
proton gradient and energy metabolism must be taken into account to fully understand the
cellular physiology in the co-culture [73]. The production and consumption of amino acids
by both strains fulfilled the requirements for bidirectional amino acid exchange between
the strains and allowed the manipulation of the co-culture by amino acid additions, such
as methionine [67]. The amino acid consumption and production rates for S. thermophilus
during co-cultivation with L. bulgaricus in the tube bioreactor system were compared with
those of previously published data [62] for S. thermophilus during mono-culture growth
(Figure 5). Basically, S. thermophilus released amino acids in co-culture to some extent
(Figure 5), although these amino acids were available (Figure 3), indicating the uptake
of peptides or amino acid synthesis (except glutamate, aspartate, and methionine). In
contrast, S. thermophilus grown under mono-culture conditions only consumed amino
acids (Figure 5). The dataset of this study confirmed the previously published simulated
metabolic activities [67] of different S. thermophilus strains grown on various amino acid
sources. The predicted amino acid fluxes were mostly within the same ranges as those
presented in Figure 5. The measurements revealed the dynamics in the amino acid produc-
tion and consumption of S. thermophilus, indicating the importance of extending the model
when used for co-culture simulations [68,69,74].

Generally, the mutual release of almost all amino acids in an L. bulgaricus–S. ther-
mophilus co-culture specified, for the first time, that both strains contribute to increasing
amino acid concentrations in the medium and the enhanced current understanding of
their metabolic activity. L. bulgaricus provided not only peptides but also—equally to S.
thermophilus—amino acids to the co-culture, especially at the beginning of cultivation. At
the end of the cultivation period, amino acid consumption occurred, indicating a switch
between amino acid release and consumption.

Previous studies have revealed the upregulation of arginine biosynthesis genes in S.
thermophilus [51,67,75], although arginine deficiency did not occur [67]. Consequently, here, it
was hypothesised that arginine might serve as a precursor for ornithine or polyamine [67,75].
However, their low extracellular concentrations did not support the idea that arginine
biosynthesis might have additional functions as a precursor [67]. The measurement of
peptide-bound arginine in the compartment containing S. thermophilus revealed low argi-
nine content (Figure 3). Thus, arginine upregulation may be caused by limiting arginine
supply. In the compartment containing S. thermophilus, only 0.5% (after 8 h of continu-
ous experiment) of all the analysed peptide-bound amino acids were arginine molecules
(Figure 3). In contrast, the arginine fraction of casein represented 3% of the total casein-
bound amino acids in a comparable experiment (Figure S12 in Supplementary Materials).
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This observation may indicate that either L. bulgaricus prefers the release of peptides
from casein with low arginine content or that S. thermophilus favours the consumption of
arginine-containing peptides. In either case, S. thermophilus likely faced arginine limitations
during co-cultivation with L. bulgaricus. This observation supports the findings of previous
studies [51,75] where an upregulation of arginine biosynthesis occurred in S. thermophilus.

Because 13-C glucose was used as a substrate in the medium, it was possible to
distinguish between non-labelled amino acids hydrolysed from casein and 13-C amino
acids synthesised from glucose. Measurements of the extracellular medium indicated that
alanine, aspartate, tyrosine, and threonine were produced de novo from glucose. However,
only the alanine pool was enriched with high amounts of 13-C alanine (Figure 6). A
higher 13-C alanine concentration was measured in the L. bulgaricus compartment than
in the compartment containing S. thermophilus. Metabolite balancing revealed that L.
bulgaricus produced 13-C alanine, while S. thermophilus consumed 13-C alanine (Figure 6).
This supported the hypothesis that L. bulgaricus might have an alanine transaminase [49]
providing alanine to supply S. thermophilus or even serving as a signal molecule for S.
thermophilus to indicate the presence of L. bulgaricus.

5. Conclusions

A new compartmentalised cultivation system was developed and established to un-
close strain-specific metabolomics and the subsequent calculation of the production and
consumption rates of strains grown in co-culture. This enabled the generation of experimen-
tal data for sophisticated models that allow comprehensive insight into cellular processes
in co-cultures at a strain-specific level. Although the cultivation system was characterised
by the spatial separation of cells, the adequate exchange of molecules, such as peptides
and amino acids, was enabled. The experimental setting provided a sufficient volume for
comprehensive sampling. The small size of the system reduced the preparation time and
cost. However, only anaerobic cultivations were installed, to date. It is noteworthy that
fairly similar growth characteristics were achieved in the compartmentalised approach
compared to the one-pot co-cultivation approach.

The functionality of the system was demonstrated using an S. thermophilus–L. bulgaricus
co-culture, indicating that both strains released and consumed amino acids. In addition,
cultivation was performed using 13-C glucose to quantify amino acid production and
consumption rates, as well as the de novo biosynthesis of amino acids, indicating alanine
transaminase activity in L. bulgaricus and exchange with S. thermophilus.

This setup allowed the characterisation of interacting microorganisms and clarified
the interaction fluxes between them, allowing the rational design of co-cultures. Using the
compartmentalised system for the continuous cultivation of co-cultures opens the field for
advanced co-culturing; for example, by applying technology for targeted evolution studies.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bioengineering10010103/s1, Figure S1: Alanine concentra-
tions measured to determine the transport coefficient; Figure S2: Amino acid transport coefficients
k; Figure S3: Cultivation of Streptococcus thermophilus containing synthetic medium with casein and
lactose in a crimp-top serum bottle; Figure S4: Growth of Lactobacillus delbrueckii subs. Bulgaricus
(A) and Streptococcus thermophilus (B) in the vessel bioreactor system; Figure S5: Growth rate of
Lactobacillus delbrueckii subs. Bulgaricus (A) and Streptococcus thermophilus (B) in the tube bioreactor
system; Figure S6: Cell events of a co-culture grown in a crimp-top serum bottle; Figure S7: Biomass
and growth rate of Streptococcus thermophilus in the tube bioreactor system; Figure S8: Glucose and
lactate concentrations in the compartment containing Streptococcus thermophilus; Figure S9: Fractions
of alanine isotopologues; Figure S10: Diffusion rate of 13-C alanine across the membrane in the
tube bioreactor system; Figure S11: r-values at the outlet of the membrane unit; Figure S12: Amino
acid composition of casein; Table S1: Composition of the synthetic medium; Table S2: Amino acid
concentrations to determine the transport coefficient (k); Table S3: Amino acid concentrations in
the Streptococcus thermophilus compartment and the Lactobacillus delbrueckii subs. bulgaricus compart-
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ment cultivated in the tube bioreactor system; Code S1: Determination of the amino acid transport
coefficient by the least-square estimate in MATLAB ®.
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Abstract
13C labeling data are used to calculate quantitative intracellular flux patterns reflecting in vivo conditions. Given that 
approaches for compartment-specific metabolomics exist, the benefits they offer compared to conventional non-compart-
mented 13C flux studies remain to be determined. Using compartment-specific labeling information of IgG1-producing Chi-
nese hamster ovary cells, this study investigated differences of flux patterns exploiting and ignoring metabolic labeling data 
of cytosol and mitochondria. Although cellular analysis provided good estimates for the majority of intracellular fluxes, half 
of the mitochondrial transporters, and NADH and ATP balances, severe differences were found for some reactions. Accurate 
flux estimations of almost all iso-enzymes heavily depended on the sub-cellular labeling information. Furthermore, key dis-
crepancies were found for the mitochondrial carriers vAGC1 (Aspartate/Glutamate antiporter), vDIC (Malate/H+ symporter), 
and vOGC (α-ketoglutarate/malate antiporter). Special emphasis is given to the flux of cytosolic malic enzyme (vME): it could 
not be estimated without the compartment-specific malate labeling information. Interesting enough, cytosolic malic enzyme 
is an important metabolic engineering target for improving cell-specific IgG1 productivity. Hence, compartment-specific 
13C labeling analysis serves as prerequisite for related metabolic engineering studies.

Keywords Compartment-specific · Metabolomics · 13C Metabolic flux analysis · Chinese hamster ovary cells · Eukaryotes · 
Multi-compartments

Abbreviations
13C MFA  13C metabolic flux analysis
CHO  Chinese hamster ovary
VCD  Viable cell density
PPP  Pentose phosphate pathway
CAC   Citric acid cycle
MID  Mass isotopomer distribution
MPC1/2  Mitochondrial pyruvate carrier
ME  Malic enzyme

Symbols
ci  pmol  L−1 Concentration of metabolite i
cx  cell  L−1 Viable cell density
dof  [-] Degree of freedom

E  [-] Expected MID measurement data
fi  [-] Cytosolic fraction of metabolite i
I  [-] Isotopomer distribution vector
IMM  [-] Isotopomer mapping matrices
MID  [-] Mass isotopomer distribution
n  [-] Number of measurement data
O  [-] Observed MID simulation
p  pmol  cell−1  h−1 Vector containing estimated 

fluxes using mass-isotopomers data
p  [-] Number of fitted parameter
Qi  pmol  L−1  h−1 Feed-rate of metabolite i
qi  pmol  cell−1  h−1 Cell-specific rate of exo-

metabolite i
qm  pmol  cell−1  h−1 Vector containing measured 

extracellular rates
S  [-] Stoichiometric matrix of biochemical 

network
M  [-] Measurement information matrix
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vj  pmol  cell−1  h−1 Intracellular flux of biochemi-
cal reaction j

v  pmol  cell−1  h−1 Vector containing intracellular 
metabolic fluxes

Greek symbols
α  [-] Statistical confidence interval
β  [-] Reversibility constant
σ  [-] Measurement standard deviation of MID
Θ  [-] Parameter

Indices
ex  [-] Compartment indication
feed  [-] Feed
in  [-] Compartment indication
i  [-] Compound/metabolite i
j  [-] Biochemical reactions j
meas  [-] Indication for measurement vector
net  [-] Indication for net fluxes
X  [-] Cells/biomass

Introduction

13C metabolic flux analysis (13C MFA) is a key tool for 
quantitative analysis in systems metabolic engineering. 
First, applications dealt with prokaryotic cells [1] but the 
technique was also applied for eukaryotes, such as yeast [2, 
3], fungi [4], mammalian [5–8], and plant [9] cells. Among 
others, prokaryotes and eukaryotes differ in cellular com-
partmentation, which is particularly important when using 
13C MFA. In eukaryotes, compartmentation is essential since 
each cellular compartment fulfils different functions [10]. 
Even multi-compartment isozymes exist that serve different 
purposes. For example, Chinese hamster ovary (CHO) cells 
comprise cytosolic and mitochondrial malic enzymes (MEs) 
with different  NAD+ and  NADP+ regeneration capacities, 
thereby fulfilling diverse catabolic and anabolic needs [8].

Metabolic compartmentation must be considered when 
performing 13C MFA [10]. There are two levels of complex-
ity; on the one hand, subcellular metabolic models should 
be used to enable proper in silico predictions. On the other 
hand, in vivo compartment-specific metabolome data should 
be available to allow data-driven studies. Nicolae et al. and 
Pfizenmaier & Takors provided evidence for the importance 
of subcellular stoichiometric models for estimating fluxes in 
CHO cells [11, 12]. Regarding the latter,  Matuszczyk et al. 
[13] applied compartment-specific metabolomics in CHO 
outlining that cytosolic ATP pools are considerably larger 
than their mitochondrial counterparts. Later, Junghans et al. 
[8] continued investigating mitochondrial and cytosolic met-
abolic patterns under different cultivation conditions. They 

found that pool sizes differed between cytosol and mitochon-
dria for all conditions.

Given that subcellular metabolomics are very laborious 
[8, 13] the question arises what differences may occur if 13C 
flux analysis is based on whole-cell metabolomics instead 
of compartment-specific measurements. In other words, 
whether the additional lab-efforts justify the information 
gain of subcellular studies.

Alternative approaches such as superimposing the pat-
terns of two independent 13C experiments using labeled 
glucose and labeled glutamine also aim to decipher subcel-
lular flux distributions [6]. However, they rely on glutamine 
synthase deficient cells whereas the suggested subcellular 
metabolomics approach may be universally applicable.

Given that labeling dynamics in metabolite pools 
expressed by the 13C labeling turn-over (τ13C) are a key 
information for quantifying fluxes, influencing factors may 
be considered. Two factors, pool size of metabolite i and 
net labeling flux j through this pool exist [14]. Either factor 
may change when a system’s analysis shifts from simplifying 
single to realistic multi-compartment analysis. Differences 
in τ13C may occur originating from individual pool sizes and 
fluxes inside the compartments. In theory, the same metabo-
lite in different compartment might present a different labe-
ling dynamic providing that the metabolite turn-over time 
is different. Thus, resulting on a different labeling dynamics 
(τ13C).

Exploiting the unique subcellular labeling dataset of 
Junghans et al. [8] this study investigated whether subcel-
lular labeling information is crucial to obtain the correct 
compartment-specific flux patterns. Flux distributions con-
sidering and ignoring subcellular metabolite labeling were 
performed using CHO as the showcase. This study investi-
gated whether significant differences exist using whole-cell 
and compartment-specific metabolic information.

Materials and methods

This study was based on published metabolome and 13C iso-
topologue data [8]. In particular, the 13C dataset covering the 
first 24 h was used to focus on the exponential growth phase.

Cell culture and experimental set‑up

The CHO DP-12 cell line (ATCC ® CRL-1445TM) was cul-
tivated in a suspension with TC-42 medium (Xell AG, Biele-
feld, Germany) supplemented with 42 mM d-glucose, 6 mM 
ʟ-glutamine, and 200 mM methotrexate. Precultures were 
cultivated in pre-sterilized disposable shake flasks (Corning 
Inc., NY, USA) with culture volume ranging from 125 mL to 
1 L at an initial viable cell density (VCD) of 0.4 ×  106 cells/
mL in a humidified shaking incubator (Infors HT Minitron, 
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Infors GmbH, Einsbach, Germany) at 37 °C, 150 rpm, and 
5% saturated  CO2.

Bioreactor cultivations were performed in a two-fold 
parallel CellFerm Pro bioreactor system (DASGIP, Eppen-
dorf, Germany) equipped with pitched blade impellers and a 
process control system. Bioreactor cultivations were started 
with a VCD of about 0.4 ×  106 cells/mL, temperature was 
set to 37 °C and agitation to 150 rpm. In addition, the dis-
solved oxygen content was controlled using an amperomet-
ric electrode (Mettler-Toledo Inc., Columbus, OH, USA) at 
40%. The pH was measured with a conventional pH probe 
(Mettler-Toledo Inc., Columbus, OH, USA) and maintained 
at 7.1 using 1 M  Na2CO3 or  CO2 gassing. Carbon labe-
ling experiments were performed in the same setup using 
[U-13C6]-d-glucose as a carbon tracer with an average iso-
topic ratio of 25% [U-12C6]- and 75% [U-13C6]-d-glucose. 
Experiments were performed as biological duplicates. In 
addition to carbon labeling experiments, bioreactor culti-
vations with [U-12C6]-d-glucose were performed using the 
same conditions for metabolome profiling.

Extracellular and intracellular analytics

VCD was monitored with a 12 h interval with Cedex XS, 
an offline cell counting system (Innovatis AG, Bielefeld, 
Germany). Extracellular d-glucose and ʟ-lactate were moni-
tored offline with LaboTRACE, an amperometric biosensor 
system (Trace Analytics GmbH, Braunschweig, Germany). 
Extracellular antibody (IgG1) concentrations were meas-
ured using ELISA as reported previously [15]. Extracellular 
amino acid concentrations were quantified with reversed-
phase chromatography (Agilent 1200 Series, Agilent Tech-
nologies, Waldbronn, Germany) [8].

Sampling for metabolomics was performed using differ-
ential fast filtration [8, 13]. Then, processed samples were 
analyzed regarding metabolome quantification using an 
Agilent 1200 HPLC system coupled with an Agilent 6410B 
(Agilent Technologies, Waldbronn, Germany) triple quad-
rupole mass spectrometer equipped with an electrospray 
ion source. Analytical sample preparation and methodology 
were conducted as reported previously [8, 16].

13C metabolic flux analysis

Isotopic non-stationary 13C MFA was performed in MAT-
LAB 2018a (The MathWorks, Inc., MA, USA). Before 
performing 13C MFA, measured 13C labeling distributions 
were corrected for natural stable isotope abundances [17]. 
Parameter optimization was conducted using MATLAB 
least square optimization fmincon function in combination 
with GlobalSearch and MultiStart algorithm in a multi-core 

computing machine [18]. The first derivative of each isoto-
pomer balance was solved using MATLAB Ordinary Differ-
ential Equations ode15s solver. The study used the metabolic 
and carbon-atom transition model in the previous study [8]. 
Details of the model are indicated in Table S1 (Supplemen-
tary Material S1) and are displayed in Fig. 1.

Metabolite balancing

The two-compartment CHO-cell model comprises the stoi-
chiometric matrix S (Supplementary Material S1, Table S1) 
consisting of m metabolites and n reactions (m × n). The fol-
lowing cell-specific rates [pmol  cell−1  h−1] were defined: q 
for cellular uptake and secretion rates, k as inter-compart-
ment transport, and v as compartment-specific reaction. The 
balance of metabolite i participating in reaction j localized 
externally, in cytosol, or in mitochondria was described by 
Eqs. 1 and 2:

where ci denotes the concentration of metabolite i [mol  L−1], 
cx denotes VCD [cell  L−1], t denotes time [h], and Qi,feed 
denotes the feed-rate of metabolite i [pmol  L−1  h−1].

The process model describing the batch cultivation is 
given in Eq. 1 and allows the estimation of q for metabolite 
i by time-series analysis of extracellular concentrations ci. 
Therefore, the metabolic steady-state was defined as mir-
rored in the constraint dc,intracellular

dt
= 0 , which is a prerequisite 

for 13C flux analysis. Both stationary and non-stationary 
labeling patterns were analyzed, originating from the meta-
bolic steady-state condition.

Metabolic flux analysis

MFA was performed using the metabolic network S con-
sidering the following constraints: (i) pool sizes of cyto-
solic and mitochondrial metabolites were in a steady-state 
and (ii) the entire system was (over)-determined because of 
the ample 13C labeling information. Fluxes were estimated 
according to:

where M is the measurement matrix containing the stoi-
chiometric coefficients of qmeas (measured rates [pmol 
 cell−1  h−1]) and p contains the estimated fluxes using mass-
isotopomer data [pmol  cell−1  h−1]).

(1)
dCi,ex

dt
= Qi,feed + qicX ,

(2)
dci,in

dt
=

(
−qi − ki +

n∑
j=1

vj

)
⋅ cx = 0,

(3)v =

(
S

M

)−1(
0[

qmeas p
]
)
,
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Fig. 1  Metabolic model of CHO cells used in this study (modified 
figure from Junghans et al. [8]). Arrow coloring indicates the locali-
zation of biochemical reactions as follows: black encodes single 

compartment; red encodes multi-compartments; and blue encodes 
inter-compartment transporters. In addition, multi-compartment 
metabolites are indicated in red (color figure online)
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Isotopomer balancing and bidirectional reactions

Isotopomer balancing was applied to mathematically 
describe the incorporation of 13C tracers into intracellular 
metabolite carbon skeletons [19, 20]. Isotopomer balances 
for intracellular metabolites are according to Eq. 4:

where the isotopomer transition from reactant k to product 
m is described by IMMk→m.

Furthermore, Eq. 5 was used to describe labeling dilution 
by extracellular pools (ʟ-lactate, ʟ-glutamate, ʟ-aspartate, 
and ʟ-alanine):

Exchange fluxes were defined for each reversible bio-
chemical reaction [21, 22] according to Eq. 6:

Parameter estimation and uncertainty

Parameter (flux) estimation was achieved by fitting the simu-
lated mass isotopomer distribution (MID) to the measured 
in vivo MID as presented in Eq. 7:

Cytosolic and mitochondrial MIDs were defined for sub-
cellular studies. Non-compartmented analysis considered 
that no subcellular measurements were available. Instead, 
only entire cell labeling patterns should exist. Consequently, 
compartment-specific information was merged again, apply-
ing Eq. 8:

(4)

d
�
�i��

�
dt

=

N�
j=1

⎡
⎢⎢⎣
𝛼
⎛
⎜⎜⎝

0

⊗
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�
n�

m=1

���k→m

�
�k

⎞
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�
virj�i
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𝛼 =

�
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0, else
,

(5)

d
(
�i,ex

)
dt

=
1

ci,ex

[
cX

(
⇀

qi,ex ⋅ �i,in −
↼

qi,ex ⋅ �i,ex
)
−

dci,ex

dt
�i,ex

]

with

⇀

qi,ex = �i ⋅ q
net
i,ex

↼

qi,ex =
⇀

qi,ex − qnet
i,ex

.

(6)

⇀

vj = �j ⋅ v
net
j

↼

vj =
⇀

vj − vnet
j
.

(7)min f (Φ) =
∑(

MIDsim
i

−MID
exp

i

�i

)2

.

where f denotes the molar fraction of metabolite i in the 
cytosol. During simulations, f was treated as an optimization 
parameter for those metabolites presented in both compart-
ments; pyruvate, citrate, α-ketoglutarate, malate, alanine, 
aspartate, asparagine, and glutamine. Accordingly, f serves 
as an alternate indicator for the importance of considering 
compartments properly. Furthermore, flux estimation was 
achieved by fitting the measured non-compartment metabo-
lome data with calculated MID using Eq. 9:

A χ2 statistical test was used to assess goodness of fit as 
described in Eq. 10:

Parameter uncertainty is essential to evaluate the flux dif-
ferences including versus excluding compartment-specific 
data. Conventional parameter uncertainty estimates make 
use of the local calculation of the Jacobian matrix as a lin-
earized proxy for variance. However, this approach only 
shows poor performance if a complex and non-linear set 
of equations should be analyzed, as it is the case in this 13C 
MFA study. Thus, confidence intervals of each parameter 
(fluxes) were estimated using the Chi-squared (χ2) statistics, 
which works best for non-linear equations as demonstrated 
by Antoniewicz et al. [23]. The method relies on the assump-
tion that the minimized variance-weighted sum of squared 
residuals is χ2 distributed. Thus, the residual difference 
evaluating the global optimum and fixing one parameter is 
χ2 distributed with one degree of freedom.

Statistical analysis

The significant differences between the two analyses were 
assessed using Welch’s t-test for unequal variances [24].

Results

Prior to the 13C MFA studies, a metabolic network model 
was formulated (Supplementary Material S1). First the 
structural identifiability and calculability of the network was 
assessed applying well established methodologies (Supple-
mentary Material S4). Next, the identifiability of distinct 

(8)MIDcomb
i

= MID
cyt

i
⋅ f +MIDmit

i
⋅ (1 − f ),

(9)min f (Φ) =
∑(

MIDcomb
i

−MID
exp

i

�i

)2

.

(10)
�2 =

∑ (
xsim − xexp

)2
�2

dof = (n − p)

�2 ≤ �2
(1−�),dof .
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fluxes was checked by simulating intracellular 13C labeling 
patterns assuming pool sizes measured by Junghans et al. 
[8]. Results presented in the Supplementary Material S4 
indicate the good identifiability of intracellular fluxes which 
motivated us to continue the study by analyzing real labeling 
patterns and flux distributions.

In the study by Junghans et al. [8] CHO-DP12 cells 
were cultivated in a bioreactor to investigate three dis-
tinct growth scenarios; (I) exponential growth with no 
(carbon and nitrogen) limitation; (II) moderate growth 
with ʟ-glutamine depletion and ʟ-asparagine saturation; 
and (III) stationary phase with severe nitrogen limitation. 
However, the current study regarding the impact of subcel-
lular 13C data only covers the exponential growth phase 
during the first 24 h. This period is typically investigated 
in vitro because labeling and cultivation conditions can 
be controlled easily, giving accurate results regarding flux 
distributions and cell-specific productivities [5, 7]. Fur-
thermore, additional cultivation study data investigating 
the same cell line and process conditions was used for 
broadening the data set of subcellular versus cellular 13C 
metabolomics for flux analysis (see Supplementary Mate-
rial S6). The summary of all estimated intracellular fluxes 
is provided in Supplementary Material S2.

Cell growth and carbon labeling studies

During the exponential growth phase, cells grew with 
0.025 ± 0.001  h−1. Carbon and nitrogen sources were con-
stantly consumed, and metabolic byproducts were steadily 
released with constant specific rates (Supplementary Mate-
rial S1, Table S2). d-Glucose was consumed as a major car-
bon source while ʟ-glutamine and ʟ-asparagine served as 
primary nitrogen sources. In addition, the Warburg effect 
[25] was observed, showing a glucose-to-lactate ratio of 0.93 
 mold-glucose/moll-lactate. 13C carbon labeling was introduced 
by the addition of 75% [U-13C6]-d-glucose after 2.5 days, 
revealing no phenotypic changes, i.e., no alterations of cel-
lular metabolism.

13C metabolic flux analysis using 
compartment‑specific metabolome data

13C MFA was performed using compartment-specific 
metabolome data reflecting subcellular pools of cytosol and 
mitochondria together with isotopomer profiles of the said 
compartments. Flux estimations were performed at least 100 
times with randomized input values and rational boundary 
values for each parameter (Supplementary Material S2). 
Finally, the chi-square tests achieved 228.87, which served 
the statistical constraint of 232.92 on a 95% significance 
level.

Glycolysis and PPP

High glycolytic (0.112 ± 0.017 pmol  cell−1  h−1 of hexoki-
nase) and extremely low PPP fluxes (0.008 ± 0.001 pmol 
 cell−1   h−1 of G6P dehydrogenase) were found. The lat-
ter accounted for 6.68% of the d-glucose consumed. 
These observations are in agreement with the findings 
of Ahn & Antoniewicz [5], who performed 13C MFA in 
adherent CHO-K1 cells. In addition, approximately 15% 
(0.016 ± 0.002 pmol  cell−1  h−1) of intracellular G6P was 
continuously in exchange with endogenous glycogen.

In vivo mitochondrial shuttle

Glycolytic carbon fueled into mitochondria via two transport 
mechanisms; 77% entered via the mitochondrial pyruvate 
carrier (MPC1/2) and 23% via a putative l-alanine trans-
porter. MPC1/2 showed the highest mitochondrial transport 
activities while other transporters exchanged compounds for 
different purposes; (i) mitochondrial citrate carrier (citrate/
malate antiporter; 0.049 ± 0.002 pmol  cell−1  h−1) served as 
a citrate exporter to provide cytosolic acetyl-CoA for the de 
novo lipid biosynthesis pathway; (ii) the malate-aspartate 
shuttle comprising 2-oxoglutarate carrier (α-ketoglutarate/
mal antiporter) and aspartate-glutamate carrier (aspartate/
glutamate antiporter), which is often described as an indi-
rect NADH shuttle because imported malate is oxidized to 
oxaloacetate, releasing NADH, fulfilled a different function; 
malate was net exported from mitochondria to fuel cytosolic 
ME.

Cytosolic malic enzyme and NADPH production

NADPH is a key electron donator for anabolic pathways 
and is essential for monoclonal antibody biosynthesis. Ahn 
& Antoniewicz, Templeton et al. [5, 7] suggested MEs as 
key NADPH producers in CHO cells. This hypothesis was 
further confirmed via compartment-specific flux analysis by 
Junghans et al. [8]. Cytosolic ME  (MEcyt) was identified as 

Fig. 2  A Intracellular flux distribution estimated using compartment-
specific (left) and non-compartmented data (right); B fluxes of bio-
chemical reactions involving single-compartment metabolites; C 
fluxes of biochemical reactions involving multi-compartment metab-
olites; and D mitochondrial carrier fluxes estimated with compart-
ment-specific and non-compartmented data (* indicates significance 
p < 0.05)

◂
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the primary provider serving NADPH needs. Compartment-
specific 13C MFA estimated that about 86% of the NADPH 
requirement was fulfilled by  MEcyt (0.09 ± 0.01  pmol 
 cell−1  h−1).

13C Metabolic flux analysis using 
non‑compartmented metabolome data

An additional 13C MFA was performed to investigate the 
importance of distinct sub-cellular information to eluci-
date proper in vivo subcellular flux patterns. Analyzing the 
merged data (Eq. 6) via 13C MFA yielded a Chi-squared 
value of 140.12 on the 95% confidence level, which was 
accepted as a good fit (with 154.30 as the χ2 statistical 
threshold on 95% confidence interval).

This study was performed using the same model con-
sisting of 42 intracellular biochemical reactions. Figure 2A 
provides the comparison of intracellular flux distributions 
estimated with (left) and without (right) sub-cellular infor-
mation (Fig. 2A). The related single-compartment key fluxes 
and iso-enzymatic rates are depicted as bar plots in Fig. 2B, 
C. Notably, the term ‘iso enzymes’ encodes fluxes connect-
ing the same substrates and products but localized in differ-
ent compartments.

Biochemical reactions localized in a single compartment

Figure 2B, C left shows fluxes of biochemical reactions that 
exist in one compartment (cytosol or mitochondria) only. 
Most of them revealed similar results irrespective of whether 
compartment-specific information was used (black) or not 
(gray). Figure 2B demonstrates the case the metabolome 
pools and the respective fluxes were the same for both stud-
ies, yielding a similar τ13C. This is also true for citrate syn-
thase vCS, although identifiability was poor. Similar results 
were observed for cytosolic-based reactions: pyruvate car-
boxylase (vpc) and PEP carboxykinase (vpepck) (Fig. 2C). 
These single-compartment reactions possessed the particu-
larity of utilizing the same metabolites but in different com-
partments (Fig. 1). In this particular case, no statistically 
sound difference between vpc and vpepck was found, most 
likely because compartment-specific OAA values lacked.

Iso‑enzymatic reactions localized in different 
compartments

Special emphasis is laid on the so-called iso-enzymatic reac-
tions of Fig. 2C right that catalyze similar conversions in 
different compartments. The fluxes of malate dehydroge-
nase (vmdh), ME (vme), aspartate amino-transferases (vast), 
and alanine amino-transferases (valt) are localized in cytosol 

and mitochondria, respectively. Of the eight iso-enzymes 
analyzed, seven conversion rates were significantly different. 
The only exception is the mitochondrial malate dehydroge-
nase (vmdh,mit) which revealed statistical similarity although 
fluxes even reversed. On contrary, the cytosolic malate dehy-
drogenase (vmdh,cyt) also disclosed flux reversion but with a 
sound statistical identifiability.

Non-compartmented data were not able to properly reflect 
real fluxes of the amino-transferases (vast), namely alanine 
amino-transferases (valt) and aspartate amino transferases 
(vast). The analysis of whole-cell data resulted in flux over-
estimation compared to compartment-specific analysis. 
Notably, the substrate aspartate occurred in cytosol and 
mitochondria and is a key player of the aspartate-malate 
shuttle. Moreover, alanine was involved in the co-transport 
of glycolytic carbon into mitochondria with the MPC1/2. In 
this case, proper localization and labeling information of the 
compound is key to estimate fluxes correctly.

In addition, severe bias was observed for fluxes of both 
malic enzymes (vme) as displayed in Fig. 2C right. By trend, 
13C flux estimations using non-compartmented data identi-
fied significantly lower (about 30%) cytosolic vme,cyt than 
the non-compartmented data. Regarding mitochondria, the 
opposite was found. The finding for vme using non-compart-
mented data is consistent with the observations of Ahn & 
Antoniewicz, Templeton et al. [5, 7] who also performed 13C 
MFA with cellular data. Importantly, cytosolic ME activ-
ity via vme,cyt was identified as a key supplier for NADPH 
needed for IgG production in CHO cells (Junghans et al. 
[8]).

Mitochondrial metabolite carriers

Comparing shuttle activities using sub-cellular and cel-
lular labeling information reveals significant differences 
for half of the inter-compartment transporters, namely the 
aspartate/glutamate antiporter (vAGC1), malate carrier (vDIC), 
α-ketoglutarate/malate antiporter (vOGC), and the putative 
alanine carrier (vmAla) (Fig. 2D). Similar to the identification 
of aspartate amino-transferases, the proper identification of 
vAGC1 depends on the labeling turnover τ13C of Asp in both 
compartments. Missing compartment-specific measurements 
lead to the different shuttle fluxes, which are also reflected in 
the biased flux vast. The same scenario also holds true for the 
putative alanine carrier (vmAla) and the corresponding reac-
tions (alanine amino-transferases; valt). Shuttle estimations 
regarding vDIC and vOGC using non-compartment-specific 
data contradict flux calculations using compartment-specific 
information estimation. The sub-cellular labeling informa-
tion of malate is essential to get accurate flux estimates. 
Interestingly, the flux estimation of putative asparagine car-
rier (vmAsn) was not biased by the use of whole-cell labeling 
data only. This may reflect that vmAsn heavily depends on the 
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measured ʟ-asparagine uptake rate (qAsn) irrespective of the 
existence of additional subcellular information.

Estimated cytosol–mitochondrial fraction (f factor)

Using Eq. 8, f factors were estimated for each metabolite 
and compared with the measurements of Junghans et al. [8] 
(Table 1). As indicated, all estimated cytosolic fractions (f) 
were poorly identified with pyruvate showing the smallest 
difference of 8.59% only. On average, 59.71% difference 
was found compared to the real labeling fraction. Notably, 
the best estimates of pyruvate and asparagine also enabled 
improved flux values for the corresponding biochemical 
reactions, e.g. vMPC1/2, vpdh for pyruvate, and vasns, vmAsn for 
asparagine.

Cellular NADH and NADPH production

Table 2 shows a comparison of NADH and NADPH pro-
duction via compartment-specific analysis and neglection 
of sub-cellular data.

Neglecting sub-cellular data, NADPH production is 
underestimated by approximately 25%. This reflects the 
30% underestimation of cytosolic vME when cellular and not 
subcellular data are used. In the case of NADH and ATP, 
the utilization of different datasets disclosed only minor 

differences. NADH and ATP fluxes were overestimated by 
9% and 14% for non-compartmented data, respectively.

Challenging the key statements by an additional data set

To investigate whether or not the observed flux characteris-
tics may be specific for the data sets used, additional data of 
cultivations with the same cell line, cultivation conditions, 
and analytical tools was used. Figure S6-1:S6-3 (Supple-
mentary Material S6) outlines that very similar key mes-
sages are obtained analyzing the new data set: Glycolytic 
fluxes are fairly similar irrespective whether subcellular or 
cellular 13C metabolomics is used. On contrary, fluxes for 
cytosolic malate dehydrogenase and malic enzyme differ sta-
tistically significant depending on the granularity of meta-
bolic labeling resolution. The same holds true for shuttle 
activities such as DIC, GC1, and OGC which is in agreement 
with the results derived from the other data sets.

Discussion

This study challenges the information gain when perform-
ing 13C MFA with compartment-specific metabolome data 
compared to exploiting cellular labeling information not 
distinguishing between cytosol and mitochondria.

Figure 2 outlines the complexity of the interactions. A 
group of fluxes (vpgi, vGAPdh vG6Pdh, and vphdgh) located in 
a single compartment (here: cytosol) disclose equal values 
irrespective of the analytical approach selected. Interest-
ingly, this also holds true for vcs, located in mitochondria, 
primarily due to poor flux identifiability. Furthermore, vpepck 
and vpc revealed such high flux variances that no distinc-
tion could be found whether cellular or subcellular 13C data 
were used. Apparently, both reactions depend on cytosolic 
 (OAAcyt) and mitochondrial oxaloacetate  (OAAmit). They 
act at the interphase of the two compartments and rely on 
proper sub-cellular measurement information (τ13C) for cor-
rect identification. Distinct OAA measurements were not 
available in the current study due to challenging analytical 
access to the compound. Accordingly, flux estimations might 
be biased by the quality of OAA pool estimations.

In addition, some other fluxes should be interpreted with 
great care, too. This holds particularly true for mitochondrial 
malate dehydrogenase (vmdh,mit) and the pyruvate carrier 
vMPC1. Both disclose large error bars rendering a discrimi-
nation between cellular versus subcellular approaches hardly 
possible (Fig. 2C, D). Flux imprecisions reflect the lack of 
reliable  CO2 evolution rates ( qCO2

 ) and  CO2 labeling profiles.
The whole-cell (cellular) flux estimation failed to esti-

mate the mitochondrial and cytosolic fluxes of the amino-
transferases valt and vast. This may reflect that those fluxes 

Table 2  Comparison of NADH, ATP, and NADPH net production 
rates in compartment-specific analysis and whole-cell analysis (values 
presented in pmol  cell−1  h−1)

NADH ATP NADPH

Compartment-specific 0.55692 0.22752 0.10577
Non-compartmented 0.60815 0.25914 0.07924

Table 1  Complete list of estimated and measured cytosolic fractions 
of subcellular metabolites used for 13C MFA

Metabolites Cytosolic fraction (f)

Estimated Measurement 
(Junghans et al. 
[8])

% difference (meas-
urement as the refer-
ence value)

Mal 0.100 0.829 87.9
Pyr 0.910 0.838 8.59
aKG 0.100 0.714 85.99
Cit 0.995 0.489 103.48
Glu 0.373 0.827 54.90
Ala 0.100 0.840 88.1
Asn 0.717 0.805 10.48
Asp 0.500 0.809 38.20
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heavily depend on the compartment-specific labeling infor-
mation of alanine and aspartate. Not providing this infor-
mation by using whole-cell labeling data leads to the large 
discrepancies given in Fig. 2C.

Almost all mitochondrial carrier fluxes were poorly esti-
mated when using non-compartmented data. Inaccurate esti-
mations of vAGC1 and vmAla are also reflected by the results 
of vast and valt. In addition, the poor estimation of the malate 
carriers vDIC and vOGC depended on vme. In general, fluxes of 
transporters and bioreactions heavily relied on the labeling 
dynamics measured in the related metabolites. Regarding 
vMPC1, the reduced shuttle activity based on non-compart-
mented data reflects the missing malate exported into cyto-
sol (Fig. 2D).

To check whether the additional use of labeled glu-
tamine [6] might have achieved similar subcellular flux 
resolutions as the compartment-specific analysis, simula-
tions were performed using [U-13C5]-ʟ-glutamine (Sup-
plementary Material S3). Interestingly, without informa-
tion about compartment-specific metabolomics, cytosolic 
13C signals obtained from simulations are pretty similar to 
those of the whole-cell. This is mainly due to the relatively 
low information gain with respect to the key mitochondrial 
metabolites malate and aspartate. Compartment-specific 
labeling information and turnover of the latter are decisive 
to resolve activities of mitochondrial transporters.

In general, most of the flux estimations using either 
non-compartmented or compartmented data led to similar 
values. Even global cell qualifications, such as rates of 
total ATP formation and NADH production, were similar. 
However, two main findings should be considered:

1. Often, cellular analysis achieved similar flux estimations 
as subcellular studies by fitting measured cytosolic labe-
ling fractions for the sake of estimating pool sizes prop-
erly (Table 1). In other words, flux optimization algo-
rithms adapted cytosolic and mitochondrial pool sizes to 
complement missing labeling information. However, the 
simulated pool size readouts were strongly misleading.

2. Among the fluxes with the largest discrepancies is the 
cytosolic ME vme. Remarkably, this flux was found to be 
a promising metabolic engineering target to maximize 
the formation of heterologous proteins by improved 
NADPH supply [8]. Accordingly, exact estimation is 
a prerequisite for proper strain engineering. Figure 3 
illustrates that even the result of non-compartment data 
analysis still fits to the subcellular kinetics published in 
Junghans et al. [8]. Whether or not experimentalists may 
have identified this enzyme as a metabolic engineering 
target remains open and is a matter of qualitative discus-
sion rather than quantitative target identification [8].

To date, the compartment-specific analytical approach 
has shown its suitability for multiple metabolomic studies 

Fig. 3  Cell-specific produc-
tion of monoclonal antibodies 
in CHO cells (modified from 
Junghans et al. [8])
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investigating CHO cells under in vivo-like conditions [8, 
15, 24–30]. The latter is enabled by fast and standardized 
metabolism inactivation. Furthermore, data quality essen-
tially relies on the quantitative access to internal standards, 
such as G6P/F6P (in cytosolic space) and cis-aconitate (in 
mitochondrion) to correct for mitochondrial leakage. In 
general, fast metabolic inactivation, standardized sample 
processing and use of internal standards are prerequisites 
for any compartment-specific metabolomics approach that 
might be used in future applications.

Conclusions

Investigating the need for using subcellular 13C labeling 
data, the study revealed that non-compartmented data 
enabled to identify most fluxes involving single compart-
ment metabolites. Besides, half of the mitochondrial shut-
tle fluxes and global properties, such as ATP and NADH 
formation, were fairly well estimated without requiring 
further subcellular labeling information. However, there is 
a number of sensitive fluxes that could only be identified 
properly if compartment-specific pool information was 
used. Among those were mitochondrial shuttles that rely 
on alanine, aspartate and malate. Furthermore, key meta-
bolic engineering targets, such as the cytosolic ME flux for 
NADPH formation, were severely underestimated using 
(total) cellular data. This may disguise their role as prom-
ising metabolic engineering target if non-compartmented 
pool analysis is performed, only. The finding underlines 
the necessity to apply subcellular data for flux estimation, 
not only to quantify cytosolic/mitochondrial shuttle activi-
ties but also to identify metabolic engineering targets and 
obtain valid values for real pool sizes.
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A B S T R A C T   

The fermentation process of milk to yoghurt using Lactobacillus delbrueckii subsp. bulgaricus in co-culture with 
Streptococcus thermophilus is hallmarked by the breakdown of lactose to organic acids such as lactate. This leads 
to a substantial decrease in pH - both in the medium, as well as cytosolic. The latter impairs metabolic activities 
due to the pH-dependence of enzymes, which compromises microbial growth. To quantitatively elucidate the 
impact of the acidification on metabolism of L. bulgaricus in an integrated way, we have developed a proton- 
dependent computational model of lactose metabolism and casein degradation based on experimental data. 
The model accounts for the influence of pH on enzyme activities as well as cellular growth and proliferation of 
the bacterial population. We used a machine learning approach to quantify the cell volume throughout 
fermentation. Simulation results show a decrease in metabolic flux with acidification of the cytosol. Additionally, 
the validated model predicts a similar metabolic behaviour within a wide range of non-limiting substrate con-
centrations. This computational model provides a deeper understanding of the intricate relationships between 
metabolic activity and acidification and paves the way for further optimization of yoghurt production under 
industrial settings.   

1. Introduction 

Lactobacillus delbrueckii subsp. bulgaricus is a homofermentative lac-
tic acid bacterium (LAB) widely used in co-culture with Streptococcus 
thermophilus in the dairy industry. LAB catabolize carbohydrates such as 
lactose and glucose to mainly produce lactic acid as an end product of 
fermentation. The production of lactic acid leads to a remarkable pH 
drop in the medium (Russell and Diez-Gonzalez, 1997), while achieving 
the desired characteristics of yoghurt such as acidity, taste, and texture 
(Chen et al., 2017; Cheng, 2010; Gentès et al., 2013). Further, the 
resulting acidification inhibits the growth of competing bacteria, pre-
vents spoilage, and prolongs the product shelf-life (Gaggia et al., 2011). 
However, bacteria vary in their ability to maintain growth under acidic 
stress. Coping with low pH is an essential aspect for survival and pro-
ductivity, and consequently for the industrial use such as for the choice 

of starter cultures or probiotics Hutkins and Nannen (1993). As a 
strategy to cope with low pH, L. bulgaricus reduces the cytosolic pH (pHc) 
as a function of the extracellular pH (pHe) (Siegumfeldt et al., 1999; 
Shabala et al., 2006; Rault et al., 2008). However, the reduction in pH 
causes a decreased catabolic flux and increased rates for energy con-
sumption, resulting in energy limiting growth conditions Mercade et al. 
(2003). In addition, an acidic pHe can lead to membrane damage Ala-
komi et al. (2000), affects growth rates (Chen et al., 2020; Mercade 
et al., 2000), viability, and reduces metabolic activities. In vitro studies 
of enzyme kinetics in L. lactis indicate that a reduction of one pH unit to 
5 reduces the activity of glycolytic enzymes by around 50% Even et al. 
(2003). Regarding enzymes, the pH does not only alter the protonation 
state of the functional groups of enzymes, it also affects the equilibrium 
and kinetics for reactions including protons. For these reasons, it is 
essential to consider the pH dynamics when investigating the reaction 
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velocities and thermodynamics of metabolism in LAB. While pH is a key 
factor in metabolism, especially in environments which can reach a pH 
of 4 or lower De Brabandere and De Baerdemaeker (1999), it is often 
overlooked in models. To the authors’ current knowledge, no prior 
computational models exist describing the lactose metabolism of 
L. bulgaricus using pH-dependent kinetics and suitable data is scarce. 
Some data exists, such as the change of pHc in L. bulgaricus upon the 
impact of an abrupt decrease in extracellular pHe (e.g., Siegumfeldt 
et al., 2000; Kudo and Sasaki, 2019). However, no study could be found 
explaining the development of pHc throughout fermentation and espe-
cially not continuously between lag phase and stationary phase and in 
growing cells. Further, measuring pHc during batch fermentation and in 
a changing pH environment experimentally pose challenges difficult to 
tackle with the available technology. Experimental methods require 
high cell densities Neves et al. (2002), staining Siegumfeldt et al. (2000) 
or the expression of genetic modified pH sensors Mahon (2011), which 
are not always compatible with the experimental design or even food 
industry regulations. Only a few models consider the effect of inherent 
acidification and metabolic processes in LAB (e.g., Åkerberg et al., , 
1998; Andersen et al., 2009; Even et al., 2002), however, pHc as a dy-
namic value impacting the activities of individual glycolytic enzymes 
has not been incorporated in such models. While pHc-dependent enzyme 
kinetics are rarely considered in models of other organisms (Vinnakota 
et al., 2006; Luzia et al., 2022; Millat et al., 2013), such models highlight 
the importance of pHc in metabolic regulation. Consequently, the in-
fluence of pH on glycolytic flux and its impact on growth behaviour is 
not fully elucidated yet. Understanding pHc dynamics will contribute to 
strengthen our knowledge about lactose metabolism and the underlying 
reason for the incomplete lactose catabolism. Further, such models can 
be used to stir the fermentation product outcome in terms of acidity and 
residual lactose concentration. Systems biology approaches to model 
lactose fermentation with protons as species can help to shed light upon 
the processes behind lactic acid bacteria metabolism and its interde-
pendence with pH dynamics. 

In this work, we investigated the lactose metabolism of L. bulgaricus 
using a proton-dependent computational model. Protons were incorpo-
rated as a species in relevant reactions and thus, flux through glycolysis 
and the lactate dehydrogenase caused acidification and consequently 
decreasing values in pHc and pHe. We implemented pHc into the enzyme 
kinetics of glycolytic reactions to simulate the impact of lower pHc on 
the rate of the central carbon metabolism. In addition to the carbon 
metabolism, we added a simplified proteolytic system to the model, 
allowing to degrade casein into peptides and consequently amino acids. 
Amino acids can be metabolized to generate more metabolic energy and 
thus help to control pHc Fernández and Zúñiga (2006). To implement 
the impact of growth changes throughout batch fermentation, we inte-
grated a volume growth function into the kinetic model. Taken together, 
we present a proton dependent computational model with predictive 
power to provide new insights into the central carbon metabolism of 
L. bulgaricus and its intricate dependency with pH levels. 

2. Results 

In this work, we developed a model of L. bulgaricus, which links the 
extracellular pH (pHe) with the cytosolic pH (pHc) and its impact on 
glycolytic activity. The model can predict acidification profiles and re-
sidual amounts of lactose for various cultivation conditions. To accom-
modate the impact of pH on enzymatic activity, we constructed a kinetic 
model that includes the lactose metabolism of L. bulgaricus, as described 
in section 2.1. In section 2.1, we depict the measured substrate con-
version of glycolytic enzymes across multiple pHs to couple pHc and 
enzyme activities. We additionally developed a machine learning based 
image analysis approach to estimate cytosolic volume from flow 
cytometry measurements. The influence of pH on the enzyme kinetics 
and the increase in total cytosolic volume was integrated into the model 
in section 2.3. Section 2.4 describes further parameterization processes 

and model validation with additional data sets not used for parameter-
ization. Lastly, we used the model to predict the final pH of cultures at 
various lactose concentrations. 

2.1. Setup of L. bulgaricus model reactions 

The stoichiometric reactions required for the metabolism of lactose 
were selected based on literature. Our model consists of import reactions 
for the uptake of carbohydrates, the respective anaerobic catabolism and 
export of lactic acid, the degradation of casein to peptides and amino 
acids to generate energy and finally, a cytosolic buffer system to control 
cytosolic acidity. We grouped protonated and deprotonated species 
except for the buffer systems (eq. (2)). 

Carbohydrate uptake. Our model includes two import systems for 
lactose (lcts_e): an antiporter with galactose (gal) and a symporter with 
protons (h_e) via the lactose permease LacS (LACS, TC: 2.A.2.2.1) 
(Welman and Maddox, 2003; Foucaud and Poolman, 1992; Hutkins, 
2007). The symport reaction accounts for the kick start of lactose uptake 
while the antiport reaction is used predominantly to sustain the majority 
of lactose uptake in later stages Poolman et al. (1989). No functional 
phosphoenolpyruvate:lactose phosphotransferase system (PTS) for the 
lactose uptake was reported Hickey et al. (1986), therefore we omitted a 
phosphoenolpyruvate:lactose PTS. We integrated a reversible glucose 
uptake reaction with the phosphoenolpyruvate:glucose (pep:glu) PTS 
(GLUpts) Hickey et al. (1986) and two symport reactions exporting and 
importing equimolar amounts of glucose called GLUe and GLUi, 
respectively. 

Lactose catabolism. The uptaken lactose is irreversibly split into 
glucose (glu) and galactose (gal) by the β-galactosidase LacZ (LACZ, EC: 
3.2.1.23). This hydrolysis is non-competitively inhibited by glucose and 
galactose Nguyen et al. (2012), however, the competitive effect of 
glucose is rather negligible. Therefore, we did not implement the 
inhibitory effect of glucose and considered only the impact of galactose. 
The majority of galactose is extruded by LacS and the glucose moiety is 
further metabolized to pyruvate (pyr) by glycolytic enzymes and even-
tually reduced to lactate (de Vos and Vaughan, 1994; El Kafsi et al., 
2014; Hickey et al., 1986). 

Regarding glycolysis, glucose is degraded to lactate through eleven 
reactions, all modelled as pHc-dependent. Further, we account for the 
regulatory mechanisms acting upon phosphofructokinase (EC: 2.7.1.11) 
and pyruvate kinase (EC: 2.7.1.40). Phosphofructokinase is inhibited by 
ADP and phosphoenolpyruvate (pep) Paricharttanakul et al. (2005). 
Pyruvate kinase is inhibited by fructose 1,6-bisphosphate (fdp) and 
activated by glucose 6-phosphate (g6p) and fructose 6-phosphate (f6p) 
Bras and Garel (1993) (see reaction PYK in Fig. 1). In the lower branch of 
glycolysis, pyruvate is oxidized to lactate (lac), which is excreted by a 
lactate-proton symporter LACt and a leak reaction, as the membrane is 
permeable to undissociated lactic acid Cássio et al. (1987). 
Undissociated lactic acid is present to a small extent at pH values 
between 5.5 and 6.5. NADP-dependent non-phosphorylating 
glyceraldehyde-3-phosphate dehydrogenase (EC: 1.2.1.9) was neglected 
in our model, as we could not observe any activity under our experi-
mental setting (Fig. A.15). To include side branches of glycolysis related 
with catabolism, two sink reactions were implemented: one for 
fructose-1,6-diphosphate (fdp) and one for pyruvate (pyr). 

Casein degradation and amino acid catabolism. L. bulgaricus 
BAA-365 possesses a powerful proteolytic system to degrade casein into 
peptides and eventually amino acids (Liu et al., 2012, 2014). Albeit 
L. bulgaricus BAA-365 has lost the arginine deiminase pathway and 
glutamate decarboxylase El Kafsi et al. (2014), some amino acids can be 
decarboxylated or catabolized and used in the carbon cycle, thus sup-
plying additional ATP Pessione et al. (2010). For example, aspartate can 
be converted in two reactions to phosphoenolpyruvate, which can be 
used in glycolysis. Aspartate can be synthesized from other amino acids 
such as asparagine or glutamine (Zheng et al., 2012; Hao et al., 2011), 
making other amino acids available for ATP production as well. To 
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ensure that amino acids are available in our model, we implemented a 
simplified version of proteolysis, where casein is degraded into peptides 
followed by cytosolic breakdown into amino acids. At the end of the 
proteolytic pathway, the amino acids are catabolized in an irreversible 
reaction that generates ATP, as exemplarily shown in eq. (1). 

aa + adp + h+⟶atp (1) 

We lumped the amino acids into two groups based on the transport 
mechanisms described by Zheng et al. (2012): reversible transport via a 
permease or irreversible export by an ATP-binding cassette (ABC) 
transporter. Arginine, asparagine, aspartate, glutamate, glutamine, and 
glycine were included in the second group, and thus grouped as abc. 
Alanine, histidine, isoleucine, leucine, lysine, phenylalanine, serine, 
threonine, tryptophan, tyrosine, and valine were allowed to diffuse via 
permeases and were grouped as per. In this model, we did not include 
cysteine, serine and threonine. The stoichiometric coefficients for all 
reactions were calculated based on previously published data Ulmer 
et al. (2023) and a genome-scale metabolic reconstruction of 
L. bulgaricus. For each amino acid, we determined the experimental and 

the predicted secretion rate. Then, we calculated experimental and 
predicted amino acid yields using the secretion rates and the specific 
growth rate predicted by the model (pFBA). The algorithm uses an 
iterative process to adjust the amino acid stoichiometry until the 
experimental and predicted yield match. 

Cytosolic acidity control and buffer system. Weak organic acids, 
such as lactic acid, as well as other compounds are acting as an internal 
buffer system, which contribute to pH buffering. We generically 
consider this contribution by an estimated buffer capacity in the model. 
This lumped buffer capacity is modelled in a similar way as in the model 
of Andersen et al. (2009) and consists of a buffer system for the cytosolic 
and extracellular compartment, respectively. Each buffer system con-
tains three stepwise distributed protonation reactions with different pKs. 
Every reaction is modelled using reversible mass action and consists of a 
buffer (bh), which can be depronated to the deprotonated buffer b and 
the proton h (eq. (2)). Additionally, a leak flux for protons was included 
in the model Maloney (1979), and implemented as a reversible flux of 
protons between the extracellular and cytosolic compartments. 

Fig. 1. Illustration of the reactions in the 
kinetic model. The model represents the rele-
vant reactions for the glucose metabolism of 
L. bulgaricus ATCC BAA-365. The green arrows 
indicate an activating effect, and the red arrows 
represent an inhibitory impact of the com-
pound. The cytosolic compartment is growing. 
The reactions to correct the concentrations of 
the three cytosolic buffers b, adenosine phos-
phates (ATP and ADP) and nicotinamide 
adenine dinucleotides (NAD+ and NADH) by 
the growth rate were not implemented in the 
figure. The buffer system is depicted as one 
reaction in this figure, while it was modelled 
with three identical reactions with different 
pKs.   
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b + h+⇌bh (2)  

2.2. pH-dependent enzyme activity and total cytosolic volume 

pH-dependency of enzymes. In our model, the activities of every 
glycolytic enzyme with the addition of LACZ and LDH are modulated by 
pHc. To achieve this, we fitted pH-dependent activity values we obtained 
from literature and experiments (Table. A.2) to a bell-shaped algebraic 
function (eq. (6)). The values determined in this work were obtained by 
measuring the substrate conversion rates of enzymes using cell lysate in 
in vivo-like buffer at pH 5.25, 5.5, 6.0, and 6.5. Although this pH range 
only allowed an extrapolation of the relative activity for pHs beyond this 
range, existing literature confirmed our work for PFK Le Bras et al. 
(1991) and PYK Bras and Garel (1993) in L. bulgaricus and for GAPD in 
L. lactis Even et al. (2003). 

All enzymes showed the highest activity at a neutral pH around 7, 
and we consistently observed a substantial decrease in enzyme activity 
at lower pH values. The enzyme activity of most enzymes decreased at 
pH 6 by approximately 50% relative to activity at pH 7 (Fig. 2). It can be 
assumed that pHc is maintained above 6 if the pHe is higher than 5 
Siegumfeldt et al. (2000). 

Increase of cytosolic volume. As L. bulgaricus proliferates during 
the process of fermentation, the total volume in which lactose can be 
metabolized increases. For this reason, our model comprises a volume 
growth function describing the time-dependent volume changes of 
cytosol derived from biomass measurements. The cytosolic volume was 
fitted to eq. (3). The extracellular volume was assumed by subtracting 
the cytosolic volume from the total fermentation volume of 0.05 L (eq. 
(4)). 

Vt,c =
b⋅tn

tn + kn (3)  

Vt,e = 0.05 − Vt,c (4)  

2.3. Model construction 

The metabolic network given in section 2.1 is translated into a ki-
netic model based on ordinary differential equations (ODEs). The reac-
tion rates of enzymatically catalyzed reactions were predominantly 
described using convenience kinetics Liebermeister and Klipp (2006), as 
exemplarily shown in eq. (5) for a reversible reaction with one substrate 
S and one product P. Non-enzymatic reactions are implemented using 
mass action as rate law. The rate laws for all reactions can be found in 
Table A.5. The changes in apparent enzyme activity caused by pH were 
included by the pH-dependent algebraic function FE,pH (eq. (6)). A 
schematic overview of the model is given in Fig. 1. 

S ⇌
k1

k− 1
P, υ = FE,pHc ⋅

(Vmax⋅kM,P)⋅([S]⋅keq − [P])
keq⋅(kM,S⋅kM,P + [S]⋅kM,P + [P]⋅kM,S)

(5)  

with FE,pHc =

(
kopt

1 + 10k1-pHc + 10pHc - k2

)n

(6)  

2.4. Measurement and simulation of glycolytic metabolites 

Parameter estimation. We cultivated L. bulgaricus in synthetic 
medium (SM) with casein to obtain time-dependent data for pHe, 
lactose, glucose, galactose, lactate, and amino acids, as well as biomass 
measurements. This dataset, excluding biomass, was added to the 
parameter estimation task in COPASI Hoops et al. (2006) to estimate 

Fig. 2. Enzyme activities of the glycolytic enzymes report different pH dependencies. The activities of the respective enzymes in (D), (G), (K) and (L) were 
measured in in vivo-like assay buffer at pH 5.25, 5.5, 6.0, and 6.5. The other profiles were retrieved from literature. The black part of the curve lies within the range of 
measurements. The dotted grey lines are extrapolated based on the measured values fitted to an algebraic function. The activity of each pH profile was normalized to 
the highest value within the dataset. (A) β-galactosidase LACZ Nguyen et al. (2012), (B) Glucokinase GLUK Goward et al. (1986), (C) Glucose-6-phosphate isomerase 
PGI Even et al. (2003), (D) Phosphofructokinase PFK, (E) Fructose-1,6-bisphosphate aldolase FBA Even et al. (2003), (F) Triosephosphate isomerase TPI Even et al. 
(2003), (G) Glyceraldehyde-3-phosphate dehydrogenase GAPD, (H) Phosphoglycerate kinase PGK Bourniquel and Mollet (2002), (I) Phosphoglycerate mutase PGM 
Even et al. (2003), (J) Enolase ENO Even et al. (2003), (K) Pyruvate kinase PYK, (L) Lactate dehydrogenase LDH. 
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parameter values in our model. Having a well-parameterized model, we 
can estimate the dynamics of pHc. The simulations with the parame-
terized model are in good agreement with the experimental data for 
lactose, lactate, galactose, and pHe (Fig. 3A, B, D, E) and fall within the 
experimental error. However, as indicated by the calculated error of the 
parameter estimation (see Table A.3), the data points of glucose are less 
well reproduced. The experimental data show an accumulation of 
glucose (Fig. 3C) to 1 mM within 2.5 h, followed by its consumption and 
decline to 0 mM. Within the next 20 h, the concentration increases again 
to 0.22 mM. While the simulated concentrations of glucose after 24 and 
26 h are in agreement with the experimental data, the glucose accu-
mulation within the first 2.5 h could not be reproduced by the model nor 
the ensemble of models (Fig. A.13 C). Instead of a single peak, the model 
displays oscillatory dynamics with peaks up to 0.5 mM glucose - less 
than half the concentration of the data. In general, we frequently 
observed oscillations as part of the resulting fits. Since oscillatory dy-
namics in the core metabolism of diverse organism is a common phe-
nomenon (as reviewed e.g. in Hauser, 2022) and almost expected with 
the numbers of feedbacks involved, we did not select against such so-
lutions and only used the goodness of the fit as criterion. 

The model shows a continuous metabolization of lactose with an 
increase in the concentrations of lactate and galactose. The decrease of 
lactose can be divided into four stages (Fig. 3A). During the lag phase 
and the early exponential phase, lactose is consumed very slowly. Then, 
in the exponential phase, lactose is consumed with a high but oscillating 
rate, followed by a slightly lower rate with a linear consumption of 
extracellular lactose in the transition and early stationary phase. After 
approximately 10 h, a sudden stagnation in the concentrations of 
lactose, lactate, galactose, and in pHe becomes apparent. By the end of 
the time course, 30 mM of lactose were approximately consumed. 

Glycolytic flux and cytosolic pH. This model incorporates dynamic 
changes in pHc. Therefore, we measured substrate conversion rates in 
vitro in different pH environments (Fig. 2) and implemented pH- 
dependent kinetic equations (eq. (5) and (6)). The resulting parame-
terized model allows to gain a better understanding of the changes in 
pHc during cultivation and interdependence between pHc, glycolytic 
flux, and carbohydrate metabolism. Hereafter, we will use the flux 
through the PYK as representative for the glycolytic flux because it is the 

last step to pyruvate followed by lactate production. 
Fig. 4A shows the change of pHc and glycolytic flux for PYK during a 

batch fermentation in SM with initially 45 mM lactose and casein. We 
identified four phases according to the growth curve (Fig. 4B): a lag 
phase (Fig. 4A, red) from 0 h to 1.3 h with almost no cytosolic acidifi-
cation and no conversion of lactose, the exponential phase (Fig. 4A and 
B, white), accompanied with the majority of growth and the highest 
metatabolic flux shown by PYK up until 3.5 h, a transition phase 
(Fig. 4A, green) with a steady consumption of lactose until 9 h and a 
stationary phase until the end of the time course (Fig. 4A, blue). The 
time course of our model showed oscillations in metabolite concentra-
tions and fluxes during exponential phase with increasing peaks reach-
ing up to 0.2 mmol ⋅ min− 1 for PYK. This increased metabolic activity 
causes a decreasing pHc from 7.6 and 6.3. The exponential phase also 
harbours the highest extracellular acidification rate (Fig. 3E) and 
biomass increase (Fig. 4B). With the end of the exponential phase, the 
oscillations disappear and the pHc further declines to 5.6 at 10 h, while 
the glycolytic flux regresses from 0.03 to 0.01 mmol ⋅ min− 1 within 
5.5 h. Interestingly, enzymes of the upper branch of glycolysis are 
strongly affected in their activity by the reduction in pH occurring 
during the exponential phase and demonstrated activity levels close to 
the lower points of the oscillations at the beginning of the transition 
phase. Enyzmes of the lower branch such as PGK, PGM, PYK, and LDH 
are less affected and began the transition phase with activity levels 
around the upper extremes. This has the consequence that those en-
zymes could potentially maintain longer a higher activity albeit a further 
decline in pHc during the transition phase (Fig. A.7). Within the sta-
tionary phase, approx. 10 h after the start of fermentation, pHc sharply 
declines from pH 5.5–3.8 within 1.5 h (Fig. 4A), eventually matching 
pHe. This decline in pHc inactivates all glycolytic enzymes (Fig. A.7) and 
thus ceases the glycolytic flux and the depletion of lactose stops. 
Concisely, Fig. 4A indicates three states for glycolytic activity: a high 
glycolytic flux at pHc above 6.5 during the exponential phase, a reduced 
glycolytic flux until pH 5.5 during the transition and early stationary 
phase, or no flux after pHc fell below pH 5.5 and converged to pHe in the 
later stationary phase. 

Quantification of predictive power. To determine the predictive 
power of the model, the batch fermentation experiments were repeated 

Fig. 3. Metabolic profiles of extracellular metabolites and pH. Shown are the experimental values (squares) of a batch fermentation in synthetic medium (SM) 
with an initial concentration of 45 mM lactose and 2 g/L casein measured in triplicate. The standard deviation is shown as a transparent error band. The calculated 
concentrations after the model was fit to the experimental data (solid line) of (A) extracellular lactose, (B) lactic acid, (C) glucose, (D) galactose, and (E) extracellular 
pH. Growth phases are color-coded in the background. Red: lag-phase, white: exponential phase, green: transition phase, blue: stationary phase. 
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with altered concentrations of initial lactose. We increased the initial 
lactose concentration to 60 mM to investigate any effects of high lactose 
concentrations on lactate production and we decreased it to 30 mM to 
achieve complete consumption of lactose. Then, we used the parameter 
set of the previously parameterized model and adjusted only the initial 
values for lactose to the respective initial concentration of the experi-
ments and compared the simulation outcomes to the experimental data 
as shown by the blue, black, and red curves in Fig. 5. The simulations 
predict a similar behavior in terms of dynamics for lactose, lactate, 
glucose, galactose, and pHe as well as substrate limitation at less than 
30 mM lactose. The model correctly predicts the final concentrations of 
lactose, lactate, galactose, and pHe, however, the pHe is slightly over-
estimated by 0.2 pH units for 30 mM initial lactose concentration. Dif-
ferences between the simulated and the measured data set are only 
found for glucose (Fig. 5C), particularly the last two data points in the 
simulation with a high initial lactose concentration (60 mM). Overall, 
the model can simulate the correct acidification and metabolite profiles 
for all initial lactose concentrations, which supports its predictive 
power. 

Prediction of pH as a results of various lactose concentrations. 
Our aim was to predict the final pHe of cultivations with L. bulgaricus. 
Therefore, we developed and parameterized a model which could 
reproduce three experiments and used this model with a wide range of 
initial lactose concentrations to predict pHe after 24 h. Fig. 6A shows the 
pH value after 24 h from simulations with initial lactose concentration 
from 0 to 80 mM. We found that an initial lactose concentrations above 
40 mM result in final pHe values between 4.0 and 3.8. A lower initial 
lactose concentration results in a higher pH as less lactose depletion 
occurs. As expected, to gain an excess of lactose above 1 mM after 24 h, 
the initial lactose concentration must be higher then 30 mM. If the initial 
lactose concentration is higher, lactose is not metabolized, causing a 
plateau in the final lactate concentrations at around 68 mM (Fig. 6B). 

3. Discussion 

In contrast to most other bacteria, LAB thrive in acidic environments. 
Fermentation processes by LAB can cause a dramatic drop in pHe leading 
to outcompeting other microbes and preservation of foods. Although 

Fig. 4. Glycolytic flux in dependence of cytosolic pH. (A) Simulated time course for the glycolytic flux, represented by the flux of PYK (blue), pHc (red) and 
extracellular lactose (green). (B) Total intracellular volume in Litre (L) in dependence of model time. The solid line gives the model value while the dots represent the 
mean of three experimentally determined values. Growth phases are color-coded in the background. Red: lag-phase, white: exponential phase, green: transition 
phase, blue: stationary phase. 

Fig. 5. Prediction of metabolic behavior with different initial concentrations of lactose at pH 6.3. The concentration of (A) extracellular lactose, (B) lactic 
acid, (C) glucose, (D) galactose, and (E) pHe was measured at pH 6.3 with 30 mM (blue), 45 mM (red) and 60 mM (black) initial lactose concentration. The dots with 
the standard deviation shown as a transparent error band are the experimentally determined concentrations measured in biological triplicates. The lines are model 
predictions based on the parameterized model shown in Fig. 3. 
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L. bulgaricus maintains a more alkaline cytosolic environment in com-
parison to the medium, its pHc is decreasing in co-dependence to the 
environmental pHe and can potentially reach values below 6 as the pH of 
the medium declines (Siegumfeldt et al., 1999; Shabala et al., 2006; 
Rault et al., 2008). As enzyme activities are pH-dependent, changes in 
pHc affect the catabolic flux. The resulting impact is often neglected in 
metabolic models and including pHc is a step towards more physiolog-
ically accurate approach to the study of metabolism and eventually the 
production of high-quality fermented dairy products. 

General methodology In this study we introduced an approach to 
account for changes in cellular volume during batch cultivation. Since 
the total volume changes at least 10-fold, this drastically changes the 
uptake and release of metabolites and protons in the culture. To our 
knowledge, this is the first time that a mechanistic biochemical model of 
intracellular processes in microbial batch culture has been integrated 
with volume growth. Only in the context of vertebrate cells - human 
brain cells - we found one example integrating volume changes and 
intracellular behaviour Ramos et al. (2020). In addition, we included 
protons as an independent species in our model - something that has 
been done in the context of LABs before (e.g., Andersen et al., 2009), 
albeit rarely. Another new insight is further offered, as we took 
measured pH dependent enzyme activities into account, which hasn’t 
been done before for studying batch cultures and LABs. Generally, we 
know of only one study on skeletal muscle metabolism Vinnakota et al. 
(2006) that takes measured pH dependencies of enzyme activities into 
account and one study that used simplified forms of computed pH de-
pendency in a model of Clostridium acetobutylicum Millat et al. (2013). 
The drastic changes in pH during fermentation of LAB, and especially 
L. bulgaricus, emphasize the importance of considering pH and its impact 
on metabolism. 

Modeling pH and its impact on metabolism During fermentation, 
protons are intrinsically produced in metabolic reactions e.g., upon the 
usage of ATP, while other reactions such as e.g., the pyruvate kinase 
consume protons. In our model, those protons are considered as an in-
dependent species, which can further impact enzyme activities due to 
pH-dependent Vmax values. The pH-activity profiles shown in Fig. 2 
which are affecting the Vmax-values of glycolytic enzymes (eq. (6)), 
demonstrate, that the resulting changes in pHc affect the activities of the 
different glycolytic enzymes in distinct ways. According to our data, 
enzymes in L. bulgaricus which are less sensitive to pH variation in terms 
of their activity are e.g., PGK, PGM, and especially TPI. TPI and PGM 
maintain around 10% of their activity even at pH 4.2 compared to pH 
6.5, while the other enzymes function at approximately 2% (Fig. 2). 
Consequently, TPI and PGM are still potentially capable to maintain a 
high metabolic flux. In contrast, enzymes which catalyze the often flux 
controlling reactions are more affected by pH, such as PYK, GLUK, FBA, 
halting glycolysis at a lower pHc. When pHc reached values lower than 

5.5, the glycolytic flux diminishes and even converges to 0 mmol ⋅ 
min− 1, if pHc becomes lower than 5, as depict in Fig. 4A. The structure of 
the rate laws in our model is limited for pH-mediated changes in activity, 
however, neglecting effects of changing enzyme concentrations, since 
these are kept constant throughout simulation. The results of Even et al. 
(2003) suggest an increase in enzyme synthesis for many glycolytic 
enzymes at lower pH values for L. lactis in steady-state, indicating a 
compensation mechanism. So far, it is unclear in which manner 
L. bulgaricus changes enzyme concentrations during batch cultivation. 
Including the changes in enzyme concentration during acidification 
could help to increase the predictive power of the model further. 
Another way to improve the model to generate more realistic simula-
tions and to increase its accuracy and predictive power is the integration 
of our kinetic model in the genome-scale model of L. bulgaricus - an 
approach which is currently under development. 

pH c and growth phases Maintaining glycolytic flux is necessary for 
bacterial growth and, ultimately, the survival of the population. Our 
model showed that L. bulgaricus can maintain a low glycolytic flux at 
acidic pHc down to 5.5 and that the pHc needs to be above 5.5 to enable 
enzyme activity and therefore, glycolytic flux. According to our model, 
the glycolytic flux was reduced from maximally 0.2 mmol ⋅ min− 1 at the 
exponential phase to 0.03 mmol ⋅ min− 1 at pHc 6.3 and 0.01 mmol ⋅ 
min− 1 pHc 5.6 during the transition phase (Fig. 4A). pHc values around 
5.5 occurred at the stationary phase (Fig. 4A), before it finally converged 
to the level of pHe. Those predictions are consistent with existing 
research indicating that lactic acid production diminishes rapidly at pH 
values below 6 in permeabilized cells Arioli et al. (2017) and pHe 4.7 as 
the limit for growth Mercade et al. (2000). Fig. 4A revealed a drop in pHc 
after 10 h, which stops the activity of all enzymes and explains the 
incomplete lactose depletion, while the 10-fold lower glycolytic flux 
during the transition phase can explain the diminishing lactose deple-
tion rates and, lastly, growth arrest. However, the model predictions 
about the drop in pHc at 10 h and the abruptness may be inaccurate, as 
we have a gap in data between 6 and 24 h due to the lack of such data 
reported in literature. Nevertheless, the model findings depict the 
observation that L. bulgaricus starts to fail maintaining the gradient be-
tween pHc and pHe shortly after the beginning of the stationary phase 
Rault et al. (2009). Our model could demonstrate how the continuous 
metabolic acidification leads to lower glycolytic flux and finally to the 
collapse of the pH gradient as well as the inactivation of cytosolic en-
zymes. Accurate predictions of this behaviour require time-course data 
of cytosolic metabolites and could further give insights into the impact 
of organic acid accumulation, which is also suspected to cause growth 
arrest (Carpenter and Broadbent, 2009; Sańchez et al., 2008). 

Different lactose concentrations and their impact on metabolic 
behavior Another industrially relevant aspect in yoghurt making is the 
effect of substrate concentration on the product outcome, such as 

Fig. 6. Prediction of final pH, lactose concentration and lactate concentrations after 24 h with different initial concentrations of lactose. pHe (A); 
extracellular lactose and extracellular lactic acid (B). The lines are model predictions based on the parameterized model shown in Fig. 3. The circles are the mean of 
three independent experiments with the respective standard deviation shown in Fig. 5. The results from a fourth experiment (grey or light red triangle) were added 
with a different experimental set-up (synthetic medium (SM) with 5 g/L casein instead of 2 g/L). 
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product yield and acidity. To validate our model, we cultivated 
L. bulgaricus with different substrate concentrations and measured the 
pHe, carbohydrates, and biomass. As shown in Fig. 5, the metabolic 
behaviour with different initial concentrations of lactose followed 
similar dynamics - in our model and in the experimental data. Regardless 
of the non-limiting substrate concentration, metabolic inhibition 
occurred, which suggests an internal effect. This internal effect can be 
explained by the diminishing pHc depicted by our model. As our model 
reproduced the experimental data well without changing parameter 
values, we applied our model to a parameter scan with a range of initial 
lactose concentrations to simulate pHe and remaining lactose concen-
tration after 24 h of batch fermentation. The results in Fig. 6 point out 
that maximally 68 mM lactate were produced, independent of the initial 
lactose concentration. If more than 34 mM lactose were consumed, 
glycolytic intermediates accumulated inside the cell without being fully 
metabolized to lactate. This effect can also be seen in the predictions 
made by an ensemble of models (Fig. A.14B), showing that lactose is 
metabolized incompletely after 24 h for initial lactose concentrations 
higher than approximately 35 mM, without a further decrease in pHe for 
most models within the ensemble. As the acidity of yoghurt is an 
essential parameter for taste and consumer acceptance, this model can 
be applied to optimize the fermentation condition to achieve a desired 
product outcome. 

Conclusion In summary, our model allows the simulation of pHc and 
the computation of biotechnologically relevant parameters such as 
external pH and residual lactose as a function of the initial lactose 
concentration. Moreover, this study provides valuable insights into how 
activity of enzymes and their inactivation by the internal pHc changes 
the metabolic activity of the cell population. The model simulation 
illustrated that metabolic activity continuously acidifies the cytosol. 
Once a threshold of a pHc below 5.5 is reached, the metabolic activity 
regressed rapidly, with the consequence of metabolic inactivation and 
growth arrest. Thus, the model can be used for the optimization of batch 
cultures of Lactobacillus delbrueckii subsp. bulgaricus and as starting point 
for more complex questions such as modeling a co-culture with Strep-
tococcus thermophilus during yoghurt cultivation. This can lead to a deep 
understanding of growth inhibition under non-limiting substrate con-
ditions and e.g., to obtain a milder yoghurt with a higher pHe or less 
residual lactose for lactose intolerant customers. 

4. Materials and methods 

Strain and culture conditions. All experiments were conducted 
with Lactobacillus delbrueckii subsp. bulgaricus ATCC®BAA-365 in SM 
(Appendix A.1) under microaerophilic conditions (80% vol/vol N2 and 
20% vol/vol CO2) as previously described in Ulmer et al. (2022) with 
deviations in the concentration of lactose monohydrate or substitution 
of the amino acids by casein as indicated in the respective experimental 
setup. The fermentation to measure extracellular metabolites was per-
formed without pH control, using an initial pH of 6.3 and synthetic 
medium (SM) containing 2 g/L casein (Sigma-Aldrich Chemie GmbH, 
#9005–46–3, Steinheim, Germany) as a substitute for the amino acids, 
43.85 mM lactose, a constant fermentation temperature of 40∘C and 
stirring with 500 rpm. 

Biomass and dry weight quantification The biomass was quanti-
fied using flow cytometry as described in Ulmer et al. (2022). 

Optical density and correlation to total cellular volume. Growth 
was determined spectrophotometrically in SM containing amino acids 
and 15 g/L lactose by measuring the optical density at 600 nm in bio-
logical triplicates. To evaluate the cytosolic volume, ten images of the 
cell suspension per time point were captured in two biological replicates 
during the time course using a bright-field light microscope with a 400- 
fold magnification in Bürker-Türk counting chambers. The area occu-
pied by cells per image was determined in Fiji (Version 1.52p, Schin-
delin et al., 2012; Schneider et al., 2012). Cell segmentation was 
performed using the machine learning tool Trainable Weka 

Segmentation Arganda-Carreras et al. (2017) with default settings and 
the Particle Analyser implemented in Fiji. Only particles smaller than 
10− 7 mm2 and a circularity lower than 0.7 were considered. The volume 
of all cells within the culture was calculated using eq. (7) assuming a 
cylindrical cell shape. The volume of each particle n was calculated as 
the product of the respective area An of particle n, π and the respective 
secondary axis of a fitted ellipse, depicting the width of the particle Mn. 
The volumes of all particles were summed up for each image k, repre-
senting the cellular volume in 2.5 × 10− 4 mm3 medium. 
∑n

k=1
Vk = An⋅π⋅

Mn

4
(7) 

The mean of two samples per time point with the 10 technical rep-
licates per sample was used to calculate the volume. The linear rela-
tionship between OD600 and the total cytosolic volume shown in A.9 was 
used to convert OD600 values to cytosolic volume. 

Quantification of metabolites. The concentrations of extracellular 
metabolites were measured using high-performance liquid chromatog-
raphy (HPLC). The concentration of carbohydrates (lactose, glucose, 
galactose, lactate) was measured in cell-free supernatants using the 
Agilent 1200 series HPLC system with a RI detector. The isocratic sep-
aration was achieved by a Rezex ROA organic acid H (8%) column (300 
by 7.8 mm, 8 μm; Phenomenex) protected by a Phenomenex guard 
carbo-H column (4 × 3.0 mm) maintained at 50∘C. 5 mM H2SO4 was 
used as mobile phase with a constant flow rate of 0.4 mL min− 1. To 
precipitate phosphate, the supernatants were treated with 4 M NH3 and 
1.2 M MgSO4 solutions and incubated with 0.1 M H2SO4 before the 
experiment. Rhamnose was used as internal standard at 1 g/L to correct 
for measurement variability. The quantification of amino acids was 
conducted with an Agilent 1200 series instrument (Agilent Technolo-
gies, Santa Clara, USA). Separation was achieved by an Agilent Zorbax 
Eclipse Plus C18 column (250 × 4.6 mm, 5 μm) which was protected by 
an Agilent Zorbax Eclipse Plus C18 guard column (12.5 × 4.6 mm, 5 μm). 
After automatic precolumn derivatization with ortho-phthaldialdehyde, 
fluorometric detection (excitation at 230 nm and emission at 450 nm) 
was carried out. The elution buffer consisted of a polar phase (10 mM 
Na2HPO4, 10 mM Na2B4O7, 0.5 mM NaN3, pH 8.2) and a nonpolar phase 
(45% vol/vol acetonitrile, 45% vol/vol methanol). Quantification of 
amino acids was achieved by using 4-aminobutanoic acid as internal 
standard at 100 μM to correct for analyte variability. 

Preparation of cell extracts. The enzyme activity was assayed using 
a modified protocol by Goel et al. (2012) with cell pellets harvested in 
prior at mid-log phase and stored at − 80∘C until further use. The frozen 
pellet was resuspended in cell lysis buffer (50 mM HEPES (Sigma), pH 
7.5, 2 mM MgCl2 (Sigma) and 1x Halt™ Protease Inhibitor-Cocktail 
(Sigma) and disrupted with the the FastPrep-24™ 5 G cell homogeniz-
er (MP Biomedicals) immediately according to Goel et al. (2012). Then, 
the cell extract was diluted with the same amount of cell lysis buffer and 
diluted with a serial dilution (1:2, 1:4, 1:8, 1:16, 1:32). The protein 
concentration was measured in three diluted cell extract samples using 
the bicinchoninic acid assay (Pierce™ BCA, Protein Assay Kit, Thermo 
Scientific, #23225) according to the manufacturer’s instructions. 

Evaluation of enzyme activity. The enzyme activity was measured 
by following spectrophotometrically changes in concentration of NAD 
(P)H at 340 nm. The method to determine the enzymatic activity was 
based on the protocols of Goel et al. (2012) with modifications. The 
enzyme activity was measured in in vivo-like assay buffer containing: 
0.1 M MES (Applichem), 0.4 M glutamic acid potassium salt (Fluka), 
0.05 M sodium chloride (Merck), 0.001 M K3PO4 (Fluka), 1:10-diluted 
metals given in Appendix A.1 and the respective reaction specific 
compounds stated in Table 1. The pH of each solution was adjusted to 
5.25, 5.5, 6.0, and 6.5, respectively, at 30∘C. The activities were 
measured in triplicates using excess amounts of substrate, co-substrate 
and, if required, coupling enzymes. To ensure non-rate-limiting condi-
tions and to capture dilution rate where the enzyme activity scaled 
linearly with the enzyme concentration, the assay was performed using 
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six different dilutions. The NAD(P)H formation or consumption as 
monitored at 340 nm using a Multiskan™ FC Microplate-Photometer 
(Thermo Scientific, #11590685). The data was evaluated in Python 
3.7.1. The script determined the slope of the linear part of the progress 
curve over time and determined the range where the enzyme velocity 
scaled linear with the used amount of cell extract using the random 
sample consensus (RANSAC) algorithm Pedregosa et al. (2011) with a 
threshold of 20% of the median absolute deviation to determine outliers. 
The slope of the inliers was corrected by the base activity by subtracting 
the slope of the control without cell extract. The corrected slope was 
divided by the respective dilution and the mean of all corrected slopes of 
inliers was used as final value. 

Computational approaches for model construction. The compu-
tational model was constructed using a system of ODEs. The model was 
build using COPASI 4.40 (Build 278) Hoops et al. (2006). The rate laws 
were formulated in accordance with Liebermeister and Klipp’s conve-
nience kinetics Liebermeister and Klipp (2006) and mass action. The 
reaction stoichiometries were taken from literature or KEGG (Kanehisa, 
2019; Kanehisa et al., 2019; Kanehisa and Goto, 2000). The model was 
parameterized using parameter ranges for the parameter estimation task 
in COPASI corresponding to the minimum and maximum value of the 
respective glycolytic enzyme occurring in the class of bacteria in 
SABIO-RK Wittig et al. (2011) or from Bar-Even et al. (2011), if 
SABIO-RK had only a few listed values. Parameters were estimated with 
the Parameter Estimation Task in COPASI, using Particle Swarm (swarm 
size 50, standard deviation for an alternative ending of 10− 6), based on 
the experimental data. Equilibrium constants Keq were estimated in a 
range between 0.5 and 100. The parameter ranges for transport re-
actions were divided by the initial cytosolic volume to allow for the 
scaling of the reactions to the smaller volume. Some parameter ranges 
were adjusted iteratively to fit the experimental data. The effect of the 
pH on the enzyme activities was included by adding a pH-dependent 
scaling factor to the respective rate laws by multiplying the Vmax by 
the respective pHc-dependent factor FE,pHc in eq. (6) as a Global Quan-
tity. To ensure that the concentrations of ATP, ADP, NAD, NADH and the 
internal buffers b1, b2, b3 are not reduced by the growing internal 
volume, we added synthesis reactions, in which we multiplied the 
transient concentrations with the derivative of the volume growth 
function. 

Determination of the buffer capacity. The parameters of the 

cytosolic buffer system were estimated by the parameter estimation 
function in COPASI. The buffer system was modeled employing the 
equations of Andersen et al. (2009), with the deviation that only three 
buffers for the cytosol and medium, respectively, were used. The initial 
values for all buffer systems were implemented with initial conditions 
for the protonated buffer bh to assure an equilibrium of the buffer 
compounds at time point 0 (eq. (8)). 

[bh0] =
k1⋅[h0]⋅[btotal,0]

k2 + k1⋅[h0]
(8) 

Retrieving pH profiles. In order to implement the effect of pHc, the 
enzyme activity of every glycolytic enzyme is adjusted by pHc using eq. 
(6) with pH as a function of the cytosolic concentration of protons (eq. 
(9)). The values for the pH profile was retrieved by experimental mea-
surements as stated above or taken from literature. The reference of the 
pH profiles is given in Table A.2. All values were normalized to the 
maximal value in the respective data set. As the model was in mmol/L, 
the pH was calculated by eq. (9), respectively for the cytosolic and pHe. 
The parameters of eq. (6) for every enzyme were estimated using the 
Parameter Estimation function in COPASI. Only literature pH profiles 
from enzymes with a sequence similarity in terms of chemical similarity 
of > 65 % was used. The sequence similarity was calculated by the 
alignment function of UniProt Bateman et al. (2020). 

pH = − (log10)
[h]

1000
(9)  
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Table 1 
Reaction specific compounds for the in vivo-like assay buffer.  

Enzyme EC Reaction Specific 
Compounds 

Based on 

PFK  2.7.1.11 ATP: 5 mM, NADH: 
0.3 mM; MgSO4: 7 mM; 
Phosphocreatine: 80 mM; 
Creatine Kinase (EC: 
2.7.3.2): 30 μg/mL, 
Aldolase (EC: 4.1.2.13): 
2 U/mL; G3PDH (EC: 
1.1.1.8): 4 U/mL, TPI (EC: 
5.3.1.1): 5 U/mL. Start: 
F6P: 20 mM  

Paricharttanakul et al. (2005) 

GAPD  1.2.1.12 ADP: 3 mM; NAD+: 5 mM; 
KH3PO4: 50 mM; PGK (EC: 
2.7.2.3): 14.5 U/mL; 
MgSO4: 5 mM, Cysteine: 
5 mM. Start: G3P: 10 mM  

Goel et al. (2012) 

PYK  2.7.1.40 ADP: 3 mM; NADH: 
0.3 mM; MgSO4: 5 mM; 
F1,6BP: 5 mM; LDH (EC: 
1.1.1.27): 10 U/mL. Start: 
PEP: 6 mM  

Goel et al. (2012) 

LDH  1.1.1.27 NADH: 0.3 mM; F1,6BP: 
3 mM; MgSO4: 2 mM. 
Start: PYR: 20 mM  

Goel et al. (2012) 

The given concentrations refer to the final concentrations in the assay. 
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the kinetic model reactions is created with BioRender.com. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.jbiotec.2023.08.001. 
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Alakomi, H.L., Skyttä, E., Saarela, M., Mattila-Sandholm, T., Latva-Kala, K., Helander, I. 
M., 2000. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer 
membrane. Appl. Environ. Microbiol. 66 (5), 2001–2005. https://doi.org/10.1128/ 
aem.66.5.2001-2005.2000. 

Andersen, A.Z., Carvalho, A.L., Neves, A.R., Santos, H., Kummer, U., Olsen, L.F., 2009. 
The metabolic ph response in lactococcus lactis: an integrative experimental and 
modelling approach. Comput. Biol. Chem. 33 (1), 71–83. https://doi.org/10.1016/j. 
compbiolchem.2008.08.001. 〈http://www.sciencedirect.com/science/article/pii/ 
S1476927108001096〉. 

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K.W., Schindelin, J., Cardona, A., 
Sebastian Seung, H., 2017. Trainable weka segmentation: a machine learning tool for 
microscopy pixel classification. Bioinforma. (Oxf., Engl. ) 33, 2424–2426. https:// 
doi.org/10.1093/bioinformatics/btx180. 

S. Arioli, G. DellaScala, M.C. Remagni, M. Stuknyte, S. Colombo, S. Guglielmetti, I. De 
Noni, E. Ragg, D. Mora, Streptococcus thermophilus urease activity boosts 
lactobacillus delbrueckii subsp. bulgaricus homolactic fermentation, International 
Journal of Food Microbiology 247 (2017)55–64.special Issue: CBL 20th edition: New 
challenges for research and industry.10.1016/j.ijfoodmicro.2016.01.006, 〈htt 
ps://www.sciencedirect.com/science/article/pii/S0168160516300071〉. 

Bar-Even, A., Noor, E., Savir, Y., Liebermeister, W., Davidi, D., Tawfik, D.S., Milo, R., 
2011. The moderately efficient enzyme: evolutionary and physicochemical trends 
shaping enzyme parameters. Biochemistry 50 (21), 4402–4410. https://doi.org/ 
10.1021/bi2002289. 

Bateman, Alex, Martin, M.-J., Orchard, S., Magrane, M., Agivetova, R., Ahmad, S., 
Alpi, E., Bowler-Barnett, E.H., Britto, R., Bursteinas, B., Bye-A-Jee, H., Coetzee, R., 
Cukura, A., Silva, A.D., Denny, P., Dogan, T., Ebenezer, T., Fan, J., Castro, L.G., 
Garmiri, P., Georghiou, G., Gonzales, L., Hatton-Ellis, E., Hussein, A., 
Ignatchenko, A., Insana, G., Ishtiaq, R., Jokinen, P., Joshi, V., Jyothi, D., Lock, A., 
Lopez, R., Luciani, A., Luo, J., Lussi, Y., MacDougall, A., Madeira, F., Mahmoudy, M., 
Menchi, M., Mishra, A., Moulang, K., Nightingale, A., Oliveira, C.S., Pundir, S., 
Qi, G., Raj, S., Rice, D., Lopez, M.R., Saidi, R., Sampson, J., Sawford, T., Speretta, E., 
Turner, E., Tyagi, N., Vasudev, P., Volynkin, V., Warner, K., Watkins, X., Zaru, R., 
Zellner, H., Bridge, A., Poux, S., Redaschi, N., Aimo, L., Argoud-Puy, G., 
Auchincloss, A., Axelsen, K., Bansal, P., Baratin, D., Blatter, M.-C., Bolleman, J., 
Boutet, E., Breuza, L., Casals-Casas, C., de Castro, E., Echioukh, K.C., Coudert, E., 
Cuche, B., Doche, M., Dornevil, D., Estreicher, A., Famiglietti, M.L., Feuermann, M., 
Gasteiger, E., Gehant, S., Gerritsen, V., Gos, A., Gruaz-Gumowski, N., Hinz, U., 
Hulo, C., Hyka-Nouspikel, N., Jungo, F., Keller, G., Kerhornou, A., Lara, V., 
Mercier, P.L., Lieberherr, D., Lombardot, T., Martin, X., Masson, P., Morgat, A., 
Neto, T.B., Paesano, S., Pedruzzi, I., Pilbout, S., Pourcel, L., Pozzato, M., Pruess, M., 
Rivoire, C., Sigrist, C., Sonesson, K., Stutz, A., Sundaram, S., Tognolli, M., 
Verbregue, L., Wu, C.H., Arighi, C.N., Arminski, L., Chen, C., Chen, Y., Garavelli, J.S., 
Huang, H., Laiho, K., McGarvey, P., Natale, D.A., Ross, K., Vinayaka, C.R., Wang, Q., 
Wang, Y., Yeh, L.-S., Zhang, J., Ruch, P., Teodoro, D., 2020. UniProt: the universal 
protein knowledgebase in 2021. Nucleic Acids Res. 49 (D1), D480–D489. https:// 
doi.org/10.1093/nar/gkaa1100. 

Bourniquel, A.A., Mollet, B., 2002. Purification and characterization of the 3-phospho-
glycerate kinase from the thermophile lactobacillus delbrueckii subsp. lactis. Int. 
Dairy J. 12 (9), 723–728. https://doi.org/10.1016/S0958-6946(02)00069-9. 
〈http://www.sciencedirect.com/science/article/pii/S0958694602000699〉. 

Bras, G.L., Garel, J., 1993. Pyruvate kinase from lactobacillus bulgaricus: possible 
regulation by competition between strong and weak effectors. Biochimie 75 (9), 
797–802. https://doi.org/10.1016/0300-9084(93)90130-k. 

Carpenter, C., Broadbent, J., 2009. External concentration of organic acid anions and ph: 
Key independent variables for studying how organic acids inhibit growth of bacteria 
in mildly acidic foods. J. Food Sci. 74, R12–R15. https://doi.org/10.1111/j.1750- 
3841.2008.00994.x. 
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Figure E.1: Supplementary Material S1: Escher map for the entire GEM of L. bulgaricus
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Figure E.2: Supplementary Figure S2. Concentration of metabolites plotted against
biomass concentration, for L. bulgaricus growing on amino acids

Figure E.3: Supplementary Figure S3. Concentration of metabolites plotted against
biomass concentration, for L. bulgaricus growing on casein.
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