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Abstract

Mathematical models are a key enabler to understand com-
plex processes across all branches of research and development
since such models allow us to simulate the behavior of the pro-
cess without physically realizing it. However, detailed models
are computationally demanding and, thus, are frequently pro-
hibited from being evaluated (a) multiple times for different
parameters, (b) in real time or (c) on hardware with low com-
putational power. The field of model (order) reduction (MOR)
aims to approximate such detailed models with more efficient
surrogate models that are suitable for the tasks (a-c). In classi-
cal MOR, the solutions of the detailed model are approximated
in a problem-specific, low-dimensional subspace, which is why
we refer to it as MOR on subspaces. The subspace is character-
ized by a reduced basis that can be computed from given data
with a so-called basis generation technique.
The two key aspects in this thesis are: (i) structure-preserving
MOR techniques and (ii) MOR on manifolds. Preserving given
structures throughout the reduction is important to obtain
physically consistent reduced models. We demonstrate this
for Lagrangian and Hamiltonian systems, which are dynamical
systems that guarantee preservation of energy over time. MOR
on manifolds, on the other hand, broadens the applicability of
MOR to problems that cannot be treated efficiently with MOR
on subspaces.

Structure-Preserving
Model Reduction

on Subspaces and Manifolds

Patrick Buchfink





Structure-Preserving Model Reduction
on Subspaces and Manifolds

Von der Fakultät Mathematik und Physik und dem

Stuttgarter Zentrum für Simulationswissenschaft (SC SimTech)

der Universität Stuttgart zur Erlangung der Würde eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

vorgelegt von

Patrick Buchfink

aus Backnang

Hauptberichter: Prof. Dr. Bernard Haasdonk

Mitberichter: Prof. Dr. Tatjana Stykel

Prof. Dr. Boris Krämer

Tag der mündlichen Prüfung: 15. März 2024

Institut für Angewandte Analysis und Numerische Simulation,

Universität Stuttgart

2024



Acknowledgements
Surrogate modelling is a fascinating topic and I am very happy that my advisor, Bernard

Haasdonk, accepted me as a PhD student after my Master’s thesis. I want to thank him for

providing me with encouragement and financial support to contribute to the field of surrogate

models, and smoothly guiding me through my PhD thesis with valuable input, stimulating

questions and motivating feedback.

Delving in the world of Hamiltonian systems, I met Silke Glas, who I want to thank for

plenty in-depth discussions and a very pleasant stay abroad at the University of Twente.

I would also like to thank the administrative staff at the institute, especially Brit Steiner,

and network administrators, Jörg Hörner and Claus-Justus Heine, for helping me along.

Each cooperation partner helped me to reflect and improve my understanding of scientific

work. Thus, I want to thank Ashish Bhatt, Jörg Fehr, Rudy Geelen, Robin Herkert, Boris

Krämer, Raphael Leiteritz, Hongliang Mu, Dirk Pflüger, Stephan Rave, Johannes Rettberg,
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Abstract

Mathematical models are a key enabler to understand complex processes across all branches of

research and development since such models allow us to simulate the behavior of the process

without physically realizing it. However, detailed models are computationally demanding

and, thus, are frequently prohibited from being evaluated (a) multiple times for different

parameters, (b) in real time or (c) on hardware with low computational power. The field of

model (order) reduction (MOR) aims to approximate such detailed models with more efficient

surrogate models that are suitable for the tasks (a-c). In classical MOR, the solutions of the

detailed model are approximated in a problem-specific, low-dimensional subspace, which is

why we refer to it as MOR on subspaces. The subspace is characterized by a reduced basis

that can be computed from given data with a so-called basis generation technique.

The two key aspects in this thesis are: (i) structure-preserving MOR techniques and (ii)

MOR on manifolds. Preserving given structures throughout the reduction is important

to obtain physically consistent reduced models. We demonstrate this for Lagrangian and

Hamiltonian systems, which are dynamical systems that guarantee preservation of energy

over time. MOR on manifolds, on the other hand, broadens the applicability of MOR to

problems that cannot be treated efficiently with MOR on subspaces.

The first part of this thesis introduces and analyzes new basis generation techniques

for structure-preserving MOR of Hamiltonian systems. The introduced methods are able

to compute a non-orthogonal basis, which allows deriving more concise reduced models

compared to existing approaches. Moreover, we introduce a structure-preserving greedy

procedure and a provably optimal basis generation technique for a special case.

The second part of this thesis develops an expressive framework to formulate structure-

preserving MOR on manifolds with differential geometry. The structure of both Lagrangian

and Hamiltonian systems can be treated in this formalism and many existing nonlinear

dimension reduction techniques are reflected in our framework. Specifically for structure-

preserving MOR on manifolds for Hamiltonian systems, we prove preservation of energy

over time and preservation of Lyapunov-stable points. Moreover, we present an algorithm

for structure-preserving MOR on manifolds of Hamiltonian systems based on so-called

autoencoders. In the numerical experiment of this part, we consider a model that is hard to

treat with MOR on subspaces and show that both (i) structure-preservation and (ii) MOR on

manifolds improve the accuracy and robustness of the reduced models.
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Zusammenfassung

Mathematische Modelle sind in Forschung und Entwicklung unerlässlich, um komplexe Pro-

zesse zu verstehen, da solche Modelle das Systemverhalten vorhersagen können. Allerdings

benötigen detaillierte Modelle viele Rechenressourcen und können deshalb oft nicht (a) mehr-

fach für verschiedene Parameter ausgewertet werden, (b) in Echtzeit reagieren, oder (c) auf

Hardware mit geringer Rechenleistung operieren. Die Modell(-ordnungs-)reduktion (MOR)

hat zum Ziel, solche rechenintensive Modelle mit effizienteren Ersatzmodellen zu approxi-

mieren und somit die oben beschriebenen Aufgaben (a-c) zu ermöglichen. Die klassische

MOR approximiert dazu Lösungen des detaillierten Modells in einem niedrigdimensionalen,

problemspezifischen Unterraum, weshalb wir diese als MOR auf Unterräumen bezeichnen.

Der Unterraum kann durch eine reduzierte Basis charakterisiert werden, die wiederum mit

einem sogenannten Basisgenerierungsverfahren berechnet werden kann.

Die zwei Hauptaspekte dieser Arbeit sind: (i) Strukturerhaltung und (ii) Modellreduktion

auf Mannigfaltigkeiten. Strukturen während der Reduktion zu erhalten ist wichtig, um

konsistente reduzierte Modelle zu erhalten. Wir zeigen dies anhand von Lagrangeschen und

Hamiltonschen Systemen, welches dynamische Systeme sind, die die Erhaltung einer Energie

garantieren. MOR auf Mannigfaltigkeiten hingegen erweitern die Anwendbarkeit von MOR

auf Probleme, die mit MOR auf Unterräumen nicht effizient reduziert werden können.

Der erste Teil der Thesis führt neue Basisgenerierungsverfahren zur strukturerhaltenden

MOR für Hamiltonsche Systeme ein und analysiert diese. Das beinhaltet ein Verfahren zur

Generierung nicht-orthogonaler Basen, ein strukturerhaltendes Greedy-Verfahren und ein

beweisbar optimales Verfahren für einen Spezialfall.

Der zweite Teil dieser Thesis entwickelt ein umfassendes Framework, um strukturer-

haltende MOR auf Mannigfaltigkeiten mit Differentialgeometrie zu formulieren. Sowohl

Lagrangesche als auch Hamiltonsche Systeme sind mit dem Framework abgedeckt. Ferner

können vielseitige Methoden der nichtlinearen Dimensionsreduktion in dem Framework

verwendet werden. Anschließend vertiefen wir die strukturerhaltende MOR für Hamiltonsche

Systeme und führen dafür einen Algorithmus ein, der auf sogenannten Autoencodern basiert.

In den numerischen Experimenten betrachten wir ein Modell, das sich nicht sinnvoll mit

MOR auf Unterräumen reduzieren lässt und zeigen, dass beide Hauptaspekte dieser Thesis,

(i) Strukturerhaltung und (ii) MOR auf Mannigfaltigkeiten, die Genauigkeit und Robustheit

der reduzierten Modelle erhöht.



Introduction 1
1.1 Motivation

Model (order) reduction (MOR) is a research area in the field of surrogate modelling. The

challenge is to approximate the set of all solutions of a computationally demanding, high-

dimensional model with a more efficient replacement. In the scope of MOR, we call these

models the full(-order) model (FOM) and the reduced(-order) model (ROM) accordingly. Such

surrogate modelling techniques are essential in research and development as the demand

occurs naturally if (a) the FOM needs to be evaluated for many parameters (e.g. in parameter

studies or sampling-based uncertainty quantification), (b) the FOM is required to be evaluated

in real-time (e.g. in control problems or interactive simulations), or (c) the FOM is run on

devices with low computational power (e.g. simulations on embedded devices based on

microcontrollers). A subclass in MOR is projection-based MOR. The idea there is to project

the FOM on a low-dimensional, problem-specific (linear) subspace to obtain the ROM. This

subspace is typically characterized by a reduced(-order) basis (ROB) which is computed with

a basis generation technique. The two main aspects of MOR investigated in the present thesis

are (1.) structure-preserving MOR techniques and (2.) MOR on (sub-)manifolds:

1. In regard of the first aspect, a “structure” is any kind of mathematical property or

object (e.g. a specific bilinear form, linearity, or block-structure of certain matrices).

Assuming additional structures in the FOM allows guaranteeing desirable mathematical

and physical properties, e.g., that the FOM solutions conserve energy over time. In

this thesis, we are mostly interested in Hamiltonian systems, which are based on a

so-called symplectic structure and guarantee the mentioned conservation of energy. The
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goal of structure-preserving MOR is then to preserve these structures throughout the

reduction and, thus, guarantee the corresponding mathematical and physical properties

for the ROM. In that regard, structure-preserving MOR is physics-preserving, which is

important to obtain physically consistent surrogate models.

2. Classical MOR approximates a solution on a low-dimensional (linear) subspace. Thus,

we refer to it also as “MOR on subspaces”. In contrast, MOR on manifolds approxi-

mates the solution on a low-dimensional submanifold. This is advantageous since the

approximation quality of MOR on subspaces is known to be bounded from below by

the so-called Kolmogorov 𝑛-widths of the set of all solutions [92]. If these Kolmogorov

𝑛-widths decay slowly, MOR on subspaces can thus not obtain efficient ROMs. It has

been shown [44, 92] that especially for FOMs with transport-dominated solutions this is

the case and thus such FOMs are problematic for MOR on subspaces, while MOR on

manifolds does in general not suffer from this limitation (e.g. [91]). So the idea of MOR

on manifolds is to broaden the applicability of MOR in general.

1.2 Structure of the Thesis

The thesis is split in two parts. Part I investigates structure-preserving MOR on subspaces

for Hamiltonian system, which is typically referred to as symplectic MOR (on subspaces).

In particular, new symplectic basis generation techniques are presented and analyzed. The

goal is to compute smaller ROBs than existing techniques, which yields more efficient ROMs.

To understand our contributions, we formulate the fundamentals of MOR on subspaces

in Chapter 2 with slightly more emphasis on the underlying structures than usual. We

start presenting our work by introducing a non-orthonormal, symplectic basis generation

technique, the PSD SVD-like decomposition, in Chapter 3. Subsequently, we present in

Chapter 4 the PSD-greedy, a greedy procedure for symplectic basis generation. Lastly, we

demonstrate in Chapter 5 how to obtain a provably optimal symplectic ROB in the special

case of a canonizable Hamiltonian system with periodic solutions.

Part II concerns structure-preserving MOR on manifolds to strive for more general physics-

preserving surrogate models. We introduce an extensive framework for structure-preserving

MOR on manifolds based on differential geometry in Chapter 6. Moreover, we show that

structure-preserving MOR on subspaces and manifolds is reflected in this framework as

well as various existing approaches that rely on nonlinear dimension reduction techniques.
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Subsequently, we intensify the analysis for structure-preserving MOR on manifolds for

Hamiltonian systems in Chapter 7. We prove theoretical findings on preservation of energy

and stability as well as an error bound. Moreover, we modify autoencoders, a technique

from machine learning, to (approximately) preserve the symplectic structure. In a numerical

example, we show for a FOM with transport-dominated solution that both aspects of this

thesis, (i) structure-preservation and (ii) MOR on manifolds, improve the accuracy and

robustness of the surrogate models.

Remark 1.1 (Distinction to the Master’s thesis [18]): In previous work [18], we worked on
orthosymplectic basis generation techniques, which is related to the work presented in Chapter 3.
For a transparent separation of [18] with the present thesis, we briefly highlight the (i) similarities
and (ii) differences: (i) In the numerical example, both works use a similar two-dimensional linear
elasticity model of a cantilever beam and the same implementation for the FOM, orthosymplectic
basis generation techniques and evaluation framework of ROMs. (ii) All theoretical results
presented in Chapter 3 are disjoint from the Master’s thesis. Moreover, all numerical results
related to the newly developed PSD SVD-like decomposition are disjoint from [18].

1.3 Publications

During the course of this thesis several publications were authored in cooperation with

different coworkers. In the following all publications are listed chronologically together with

a small summary or a reference to a section within this thesis. The following publications

fall within the scope of this thesis:

[20] P. Buchfink, A. Bhatt, and B. Haasdonk. Symplectic model order reduction with non-
orthonormal bases. Mathematical and Computational Applications 24.2 (2019). doi:

10.3390/mca24020043

▷ see Chapter 3

[26] P. Buchfink, B. Haasdonk, and S. Rave. PSD-greedy basis generation for structure-
preserving model order reduction of Hamiltonian systems. Proceedings of the conference

Algoritmy 2020. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/

view/1577/829 (last accessed 5-Dec-2023). Vydavateľstvo SPEKTRUM, 2020, pp. 151–160

▷ see Chapter 4

https://doi.org/10.3390/mca24020043
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/1577/829
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/1577/829
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[21] P. Buchfink, S. Glas, and B. Haasdonk. Optimal bases for symplectic model order reduction
of canonizable linear Hamiltonian systems. Proceedings of MATHMOD 2022. Vol. 55. 20.

2022, pp. 463–468. doi: 10.1016/j.ifacol.2022.09.138

▷ see Chapter 5

[22] P. Buchfink, S. Glas, and B. Haasdonk. Symplectic model reduction of Hamiltonian systems
on nonlinear manifolds and approximation with weakly symplectic autoencoder. SIAM

Journal on Scientific Computing 45.2 (2023), A289–A311. doi: 10.1137/21M1466657

▷ see Chapter 7

[24] P. Buchfink, S. Glas, B. Haasdonk, and B. Unger. Model reduction on manifolds: A
differential geometric framework. Preprint. 2023. arXiv: 2312.01963 [math.NA]

▷ see Chapter 6

Outside the scope of the present thesis, the following publications were coauthored:

[25] P. Buchfink and B. Haasdonk. Experimental comparison of symplectic and non-symplectic
model order reduction on an uncertainty quantification problem. Numerical mathematics

and advanced applications ENUMATH 2019. Springer International Publishing, 2020.

doi: 10.1007/978-3-030-55874-1_19

▷ This paper compares different (non-)structure-preserving MOR techniques on sub-

spaces in a numerical experiment in the context of Uncertainty Quantification.

[77] R. Leiteritz, P. Buchfink, B. Haasdonk, and D. Pflüger. Surrogate-data-enriched physics-
aware neural networks. Proceedings of the northern lights deep learning workshop 2022.

Vol. 3. 2022. doi: 10.7557/18.6268

▷ This work investigates how physics-informed neural networks (PINNs) can be en-

riched with inexact data from other surrogate models like reduced-order models. The

novelty is how to transfer the error estimates from MOR to the training of PINNs such

that the inexact data is only trusted up to the error estimate.
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6 1 Introduction

1.4 Software

Within the scope of this thesis, different software frameworks have been implemented or

modified by the author. A chronological overview is given here:

• Symplectic MOR in RBmatlab: An add-on for the existing open-source MOR library

RBmatlab (v1.16.09) was implemented to provide symplectic MOR, which is used for the

experiments of Chapter 3. It is publicly available: https://doi.org/10.5281/zenodo.2578078

(last accessed 5-Dec-2023).

• Symplectic MOR & three-dimensional linear elasticity in pyMOR: Symplectic MOR was

implemented in the open-source library pyMOR [87] and a three-dimensional linear

elasticity model has been formulated via FEnics [71] for the experiments of Chapter 4.

The essential part of the code is included in pyMOR 2022.1. The contribution is docu-

mented in the release note: https://docs.pymor.org/2023-1-1/release_notes/all.html#

pymor-2022-1-july-21-2022 (last accessed 5-Dec-2023).

• Hamiltonian systems in python: For a supervised Bachelor’s thesis and the experiments

in Chapter 7, a collection of Hamiltonian systems was implemented in python. The

package is publicly available: https://github.com/pbuchfink/hamiltonian-models (last

accessed 5-Dec-2023).

• Structure-preserving MOR on manifolds in python: A software package for MOR on

manifolds was implemented in python using pyTorch [96]. It was used for the experi-

ments of Chapter 7. The package is publicly available: https://github.com/pbuchfink/

manifold-mor-wave (last accessed 5-Dec-2023).

https://doi.org/10.5281/zenodo.2578078
https://docs.pymor.org/2023-1-1/release_notes/all.html#pymor-2022-1-july-21-2022
https://docs.pymor.org/2023-1-1/release_notes/all.html#pymor-2022-1-july-21-2022
https://github.com/pbuchfink/hamiltonian-models
https://github.com/pbuchfink/manifold-mor-wave
https://github.com/pbuchfink/manifold-mor-wave
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In the following, we give a brief introduction to the fundamentals in order to understand our

contributions in the field of symplectic MOR on subspaces. The fundamentals include linear

algebra and calculus (Section 2.1), classical projection-based MOR (Section 2.2), symplectic

vector spaces and Hamiltonian systems (Section 2.3), and symplectic MOR (Section 2.4).

2.1 Linear Algebra and Calculus

We give a very brief introduction to our notation of linear algebra. For more details, we refer

to a basic algebra textbook like [65]. As the underlying field, we consider the real numbers ℝ.1

In the following, we distinguish between coordinate representations in ℝ𝑁 with bold letters

and general ℝ vector spaces. This is slightly repetitive. However, this helps to understand

the parallels to the formulation on manifolds in Part II.

Consider 𝑁 ∈ ℕ. An element 𝒗 ∈ ℝ𝑁 is called a vector and 𝑨 ∈ ℝ𝑀×𝑁 a matrix . Special
vectors are (a) the 𝑖-th unit vector 𝒆𝑖 = (0, … , 0, 1, 0, … 0)⊤ ∈ ℝ𝑁, for 1 ≤ 𝑖 ≤ 𝑁, and

(b) the vector of all zeros 𝟎𝑁×1 ∈ ℝ𝑁, while special matrices are (a) the matrix of all zeros
𝟎𝑀×𝑁 ∈ ℝ𝑀×𝑁 and (b), for 𝑀 = 𝑁, the identity matrix 𝑰𝑁 = [𝒆1, … , 𝒆𝑁] ∈ ℝ𝑁×𝑁. For

vectors 𝒗 ∈ ℝ𝑁 and matrices 𝑨 ∈ ℝ𝑀×𝑁, the components of 𝒗 and 𝑨 are denoted with

[𝒗]𝑖 ∈ ℝ for 1 ≤ 𝑖 ≤ 𝑁 and [𝑨]𝑖𝑗 ∈ ℝ for 1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 𝑁. Slightly abusing the

notation, we use the same brackets for the inverse operation, i.e. for 𝛼𝑖 ∈ ℝ with 1 ≤ 𝑖 ≤ 𝑁,

[𝛼𝑖]𝑁𝑖=1 ∈ ℝ𝑁 and for 𝐴𝑖𝑗 ∈ ℝ with 1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 𝑁, [𝐴𝑖𝑗]1≤𝑖≤𝑀
1≤𝑗≤𝑁

∈ ℝ𝑀×𝑁. Moreover,

we may stack vectors 𝒗1, … , 𝒗𝑘 ∈ ℝ𝑁 and matrices 𝑴𝑖 ∈ ℝ𝑁×𝑛𝑖 for 1 ≤ 𝑖 ≤ 𝑙 to obtain a

1Occasionally, vector spaces over the complex numbers ℂ occur. In this case i ∈ ℂ denotes the imaginary unit.
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matrix [𝒗1, … , 𝒗𝑘] = [𝒗𝑖]𝑘𝑖=1 ∈ ℝ𝑁×𝑘 or [𝑴1, … , 𝑴𝑙] = [𝑴𝑖]𝑙𝑖=1 ∈ ℝ𝑁×∑𝑙
𝑖=1 𝑛𝑖 , respectively.

For a vector 𝒗 ∈ ℝ𝑁 and a matrix 𝑨 ∈ ℝ𝑀×𝑁, the transposed is denoted with 𝒗⊤ ∈ ℝ1×𝑁

and 𝑨⊤ ∈ ℝ𝑁×𝑀. A matrix 𝑨 ∈ ℝ𝑁×𝑁 with 𝑨⊤ = 𝑨 is called symmetric. For vectors

𝒗 ∈ ℝ𝑁, we may use the two-norm ‖𝒗‖2 ∶=
√

𝒗⊤𝒗 and for matrices 𝑨 ∈ ℝ𝑀×𝑁 the Frobenius
norm ‖𝑨‖F ∶= √∑1≤𝑖≤𝑀

1≤𝑗≤𝑁
|[𝑨]𝑖𝑗|2 = √trace (𝑨⊤𝑨) with trace (𝑴 ) = ∑𝑁

𝑖=1 [𝑴 ]𝑖𝑖 for

𝑴 ∈ ℝ𝑁×𝑁. For matrices 𝑨 ∈ ℝ𝑀×𝑁, we may use the Python notation for slicing matrices
𝑨[∶, ∶ 𝑛] ∈ ℝ𝑀×𝑛 to select the first 𝑛 columns of 𝑨. For square matrices, we denote the

determinant with det (⋅) ∶ ℝ𝑀×𝑀 → ℝ.

In the scope of this thesis, we consider finite-dimensional vector spaces 𝕍 over ℝ, also

denoted as ℝ-vector-spaces. The dimension of the vector space is denoted with dim(𝕍). In
the following, we consider an ℝ-vector-space of dimension 𝑁 ∶= dim(𝕍). Each element

𝑣 ∈ 𝕍 is called a vector and elements of the underlying field 𝛼 ∈ ℝ are called scalars. For
a given (ordered) basis {𝑣𝑖}𝑁

𝑖=1 ⊂ 𝕍, the span is denoted with 𝕍 = span {𝑣𝑖}𝑁
𝑖=1. Moreover,

for a vector 𝑣 = ∑𝑁
𝑖=1 𝜆𝑖𝑣𝑖 the coordinates 𝜆𝑖 ∈ ℝ are collected in the coordinate vector

𝒗 ∶= [𝜆𝑖]𝑁𝑖=1 ∈ ℝ𝑁 which we denote in the corresponding bold symbol which we refer to as

bold notation. Choosing a basis is equivalent to choosing a coordinate mapping as a linear

bijective map 𝜑 ∶ 𝕍 → ℝ𝑁, which assigns a vector the corresponding coordinate vector, i.e.

basis formulation: 𝑣 =
𝑁

∑
𝑖=1

𝜆𝑖𝑣𝑖 ∈ 𝕍, 𝒗 = [𝜆𝑖]𝑁𝑖=1 ∈ ℝ𝑁,

coordinate mapping formulation: 𝑣 = 𝜑−1(𝒗) ∈ 𝕍, 𝒗 = 𝜑(𝑣) ∈ ℝ𝑁.
(2.1)

We use the two formulations synonymously depending on the context.

The space of linear maps between two vector spaces 𝕍, �̂� of dimensions 𝑁, ̂𝑁 is denoted

with 𝐿(𝕍; �̂�). For given coordinate mappings 𝜑 and �̂� of 𝕍 and �̂�, a linear map 𝐴 ∈ 𝐿(𝕍; �̂�)
is represented by its coordinate matrix 𝑨 ∈ ℝ�̂�×𝑁 with [𝑨]𝑖𝑗 = [(�̂� ∘ 𝐴 ∘ 𝜑−1) (𝒆𝑗)]𝑖 such

that for all 𝒗 ∈ ℝ𝑁: (�̂� ∘ 𝐴 ∘ 𝜑−1) (𝒗) = 𝑨𝒗. Special linear maps are (a) the identity map
id ∶ 𝕍 → 𝕍, 𝑣 ↦ 𝑣 with coefficient matrix 𝑰𝑁 ∈ ℝ𝑁×𝑁 if �̂� ≡ 𝜑, and (b) the zero map
zero ∶ 𝕍 → �̂�, 𝑣 ↦ 0 ∈ �̂� with coefficient matrix 𝟎𝑁×�̂� ∈ ℝ𝑁×�̂�. A linear map is called a

(linear) isomorphism, if it is bijective. For an isomorphism 𝐴 ∈ 𝐿(𝕍; �̂�), its inverse is a linear

map 𝐴−1 ∈ 𝐿(�̂�; 𝕍). For the special case of 𝕍 = �̂�, a bijective linear map is referred to as an

automorphism, which build the group of automorphisms of 𝕍 GL(𝕍) ⊂ 𝐿(𝕍; 𝕍). Bijectivity of

a linear map is equivalent to the coordinate matrix being invertible, which we denote with
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𝑨 ∈ GL(𝑁, ℝ). Since (⋅)⊤ and (⋅)−1 commute, we write 𝑨−⊤ ∶= (𝑨⊤)−1 = (𝑨−1)⊤.

A function 𝑎 ∶ 𝕍×𝕍 → ℝ is called a bilinear form if 𝑎 is linear in both arguments separately.

We denote the space of bilinear forms as Bil(𝕍). Its coordinate matrix is denoted as 𝒂 ∈ ℝ𝑁×𝑁

such that for all 𝑢, 𝑣 ∈ 𝕍: 𝑎(𝑢, 𝑣) = 𝑎(𝜑−1(𝒖), 𝜑−1(𝒗)) = 𝒖⊤𝒂𝒗 ∈ ℝ. A bilinear form is

called nondegenerate if

𝑎(𝑣, 𝑢) = 0 ∀𝑢 ∈ 𝕍 ⟹ 𝑣 = 0 (2.2)

or, equivalently, if the coordinate matrix 𝒂 is invertible. A bilinear form 𝑔 ∈ Bil(𝕍) is called

an inner product if it is symmetric (i.e. ∀𝑢, 𝑣 ∈ 𝕍 ∶ 𝑔(𝑢, 𝑣) = 𝑔(𝑣, 𝑢)) and positive-definite
(i.e. ∀𝑣 ∈ 𝕍 ∖ {0} ∶ 𝑔(𝑣, 𝑣) > 0). We call the tuple (𝕍, 𝑔) an inner product space. Moreover,

an inner product defines an induced norm ‖⋅‖𝑔 ∶ 𝕍 → ℝ≥0, 𝑣 ↦ √𝑔 (𝑣, 𝑣). The coordinate

matrix 𝒈 ∈ ℝ𝑁×𝑁 is called the inner product matrix , and it is symmetric (𝒈⊤ = 𝒈) and

positive-definite (∀𝒗 ∈ ℝ𝑁 ∖ {𝟎𝑁×1} ∶ 𝒗⊤𝒈𝒗 > 0). For an inner product matrix 𝒈 ∈ ℝ𝑁×𝑁,

its matrix square root 𝒈1/2 ∈ ℝ𝑁×𝑁 is well-defined such that 𝒈 = 𝒈1/2𝒈1/2. The matrix

square root of an inner product matrix and its inverse are again symmetric and can be chosen

to be positive-definite. Thus, (𝒈−1/2)⊤ = 𝒈−1/2.

For a vector space 𝕍 with basis {𝑣𝑖}𝑁
𝑖=1 and corresponding coordinate mapping 𝜑, a change

of basis can be performed to switch to another basis { ̂𝑣𝑖}𝑁
𝑖=1 or, alternatively, to choose

another coordinate mapping �̂�. The change-of-basis matrix 𝑩 ∈ GL(𝑁, ℝ) represents the

change of basis such that for all 𝒗 ∈ ℝ𝑁: (�̂� ∘ 𝜑−1)(𝒗) = 𝑩𝒗 = ̂𝒗. The coefficient matrix of

a linear map 𝐴 ∈ 𝐿(𝕍; 𝕍) transforms with 𝑨 = 𝑩−1 ̂𝑨𝑩 since

𝑨𝒖 = (𝜑 ∘ 𝐴 ∘ 𝜑−1)(𝒖) = ((𝜑 ∘ �̂�−1) ∘ (�̂� ∘ 𝐴 ∘ �̂�−1) ∘ (�̂� ∘ 𝜑−1)) (𝒖) = 𝑩−1 ̂𝑨𝑩𝒖,

the coefficient matrix of a bilinear form 𝑎 ∈ Bil(𝕍) transforms with 𝒂 = 𝑩⊤�̂�𝑩 since

𝒖⊤𝒂𝒗 = 𝑎(𝜑−1(𝒖), 𝜑−1(𝒗)) = 𝑎(�̂�−1 ((�̂� ∘ 𝜑−1)(𝒖)) , �̂�−1 ((�̂� ∘ 𝜑−1)(𝒗)))

= 𝒖⊤𝑩⊤�̂�𝑩𝒗,
(2.3)

which reflects the concepts typically referred to as matrix similarity and matrix congruence.

The dual space of 𝕍 is the set of all linear functionals 𝕍∗ ∶= 𝐿(𝕍; ℝ). It is a vector space

of dimension dim(𝕍∗) = dim(𝕍) = 𝑁 [65, Prop. 2.19]. As a linear function 𝑤 ∈ 𝐿(𝕍; ℝ),
the coordinate matrix 𝒘⊤ ∈ ℝ1×𝑁 is a row vector (which we indicate by transposing a
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column vector 𝒘 ∈ ℝ𝑁). For the sake of notation, we introduce the dual coordinate mapping
𝜓 ∶ 𝕍∗ → ℝ1×𝑁, 𝑤 ↦ [(𝑤 ∘ 𝜑−1) (𝒆𝑖)]

⊤
1≤𝑖≤𝑁 which assigns a linear functional its coordinate

vector. This coordinate mapping is invertible since 𝜑 is invertible. Then, the dual product in

coordinates is 𝑤(𝑣) = 𝒘⊤𝒗 ∈ ℝ.
If there is additional structure in the form of a nondegenerate bilinear form 𝑎 ∈ Bil(𝕍), it

is possible to define an isomorphism ♭𝑎 ∈ 𝐿(𝕍; 𝕍∗), 𝑣 ↦ 𝑎(⋅, 𝑣) [65, p. 115]. We denote the

inverse with ♯𝑎 ∶= ♭−1
𝑎 . In coordinates, it holds for all 𝑣 ∈ 𝕍 and 𝑤 ∈ 𝕍∗

♭𝒂(𝒗) ∶= (𝜓 ∘ ♭𝑎 ∘ 𝜑−1)(𝒗) = [𝑎(𝜑−1(𝒆𝑖), 𝜑−1(𝒗))]⊤
1≤𝑖≤𝑁 = 𝒗⊤𝒂⊤,

♯𝒂(𝒘⊤) ∶= ♭−1
𝒂 (𝒘⊤) = 𝒂−1𝒘.

A subset �̃� ⊂ 𝕍 is called a (linear) subspace, if it is a vector space. Consider ℝ-vector-spaces

𝕍 and �̌� of dimension 𝑁 and 𝑛 ≤ 𝑁. We call a linear map 𝑉 ∈ 𝐿(�̌�; 𝕍) an embedding, if it is
linear and injective, such that it is an isomorphism on its image 𝑉 (�̌�) ⊂ 𝕍. Every subspace

�̃� ⊂ 𝕍 can be characterized by (i) an embedding 𝑉 ∈ 𝐿(�̌�; 𝕍) with �̃� = 𝑉 (�̌�) or (ii) by

a reduced(-order) basis (ROB) { ̃𝑣𝑖}1≤𝑖≤𝑛 ⊂ 𝕍 with �̃� = span { ̃𝑣𝑖}1≤𝑖≤𝑛. For �̌� = ℝ𝑛, the

two characterizations relate by superposition 𝑉 (�̌�) = ∑𝑛
𝑖=1 [�̌�]𝑖 ̃𝑣𝑖. The coordinate matrix

𝑽 ∈ ℝ𝑁×𝑛 of 𝑉 is referred to as the ROB matrix , the space �̌� as reduced space, a coordinate

vector ̌𝒗 ∈ ℝ𝑛 as a reduced coordinate vector and 𝑉 ( ̌𝑣) ∈ �̃� a reconstructed vector . The reduced
space �̌� can inherit structure from the full space 𝕍. Firstly, the so-called pullback (of a linear
functional) 𝑉 ∗ ∶ 𝕍∗ → �̌�∗, 𝑤 ↦ 𝑤 ∘ 𝑉 defines a reduced linear functional �̌� ∶= 𝑤 ∘ 𝑉 ∈ �̌�∗

on �̌� which reads in coordinates �̌�⊤ = 𝒘⊤𝑽 ⊤ ∈ ℝ1×𝑛. Secondly, a bilinear form 𝑎 ∈ Bil(𝕍)
defines a reduced bilinear form ̌𝑎 ∶= 𝑎(𝑉 (⋅), 𝑉 (⋅)) ∈ Bil(�̌�), which reads in coordinates

�̌� = 𝑽 ⊤𝒂𝑽 ∈ ℝ𝑛×𝑛 such that ̌𝑎( ̌𝑣, �̌�) = 𝑎(𝑉 ( ̌𝑣), 𝑉 (�̌�)) = ̌𝒗⊤𝑽 ⊤𝒂𝑽 �̌� = ̌𝒗⊤�̌��̌�. For a

given nondegenerate bilinear form 𝑎 ∈ Bil(𝕍), we call a subspace �̃� compatible with 𝑎 if the

corresponding reduced bilinear form ̌𝑎 is again nondegenerate. If 𝑔 ∈ Bil(𝕍) is an inner

product, this property is fulfilled automatically.

A linear map 𝛱 ∈ 𝐿(𝕍; �̃�) with 𝛱 ∘ 𝛱 = 𝛱 is called a projection. Given an embedding

𝑉 ∈ 𝐿(�̌�; 𝕍), which characterizes the subspace �̃� = 𝑉 (�̌�) ⊂ 𝕍, and a nondegenerate bilinear

form 𝑎 ∈ Bil(𝕍) such that �̃� and 𝑎 are compatible (i.e. �̌� ∈ GL(𝑛, ℝ)), we define the 𝑎-based
projection

𝛱𝑎,�̃� ∶= 𝑉 ∘ ♯�̌� ∘ 𝑉 ∗ ∘ ♭𝑎 ∈ 𝐿(𝕍; �̃�) with 𝜫𝑎,�̃� = 𝑽 �̌�−1𝑽 ⊤𝒂, (2.4)
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𝕍ℝ𝑁 �̃� �̌� ℝ𝑛

𝕍∗ℝ𝑁 �̌�∗ ℝ𝑛

𝜑

𝜑−1

𝜓

𝜓−1

𝛱𝑎,�̃�

id 𝑉

𝑉 −1 �̌�

�̌�−1

♭𝑎

𝑉 ∗

♯�̌�♭�̌�

̌𝜓

̌𝜓−1

Figure 2.1: Projection to a subspace �̃� ⊂ 𝕍 via a nondegenerate bilinear form 𝑎 ∈ Bil(𝕍)
fulfilling the compatibility condition.

see Figure 2.1. In the following it will also be interesting to consider 𝑉 −1 ∘ 𝛱𝑎,�̃� ∶ 𝕍 → �̌�,
which projects a vector 𝑣 ∈ 𝕍 to a reduced vector (𝑉 −1 ∘ 𝛱𝑎,�̃�)(𝑣) ∈ �̌�. For a given norm

‖⋅‖ ∶ 𝕍 → ℝ≥0, we define the projection error 𝑒𝑎,�̃� ∶ 𝕍 → ℝ≥0, 𝑣 ↦ ∥𝑣 − 𝛱𝑎,�̃�(𝑣)∥.
For two given inner product spaces (𝕍, 𝑔) and (�̌�, ̌𝑔), an embedding 𝑉 ∈ 𝐿(�̌�; 𝕍) is called

orthogonal if 𝑔 (𝑉 (�̌�), 𝑉 ( ̌𝑣)) = ̌𝑔(�̌�, ̌𝑣) for all �̌�, ̌𝑣 ∈ �̌�. For the ROB matrix, this condition is

equivalent to 𝑽 ⊤𝒈𝑽 = ̌𝒈. The ROB matrix is said to have orthonormal columns if ̌𝒈 = 𝑰𝑛.

Moreover, for the case of 𝒈 = 𝑰𝑁, the set 𝑉𝑛(ℝ𝑁) ∶= {𝑽 ∈ ℝ𝑁×𝑛 ∣ 𝑽 ⊤𝑽 = 𝑰𝑛} of ROB

matrices with orthonormal columns is called the Stiefel manifold .
We consider twoℝ-vector-spaces𝕍, �̂�with dim(𝕍) = 𝑁 and dim(�̂�) = ̂𝑁. For open subsets

𝑈 ⊂ 𝕍, ̂𝑈 ⊂ �̂�, we denote a (potentially nonlinear) mapping 𝑓 ∶ 𝑈 → ̂𝑈 in coordinates
as a bold symbol 𝒇 ∶= �̂� ∘ 𝑓 ∘ 𝜑−1. Moreover, the space of 𝑘-times differentiable mappings
for 𝑘 ∈ ℕ ∪ {∞} is denoted with 𝐶𝑘(𝑈, �̂�). For scalar-valued functions, we abbreviate

𝐶𝑘(𝑈) ∶= 𝐶𝑘(𝑈, ℝ). For a mapping 𝑓 ∈ 𝐶𝑘(𝑈, �̂�), the derivative at 𝑢 ∈ 𝑈 d𝑓|𝑢 ∈ 𝐿(𝕍; �̂�) is

a linear map from 𝕍 to �̂�. The coefficient matrix D𝒇|𝒖 ∈ ℝ�̂�×𝑁 is called the Jacobian matrix .
The differential satisfies the chain rule, i.e., for three vector spaces 𝕍, �̂�, 𝕍, an open subset

𝑈 ⊂ 𝕍, and mappings 𝑓 ∈ 𝐶1(𝑈, �̂�), and 𝑔 ∈ 𝐶1(𝑓(𝑈), 𝕍), it holds for all 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝕍

d(𝑔 ∘ 𝑓)|𝑢 (𝑣) = d𝑔|𝑓(𝑢) (d𝑓|𝑢 (𝑣)) ∈ 𝕍. (2.5)

For a curve 𝛾 ∈ 𝐶1(𝐼𝑡, 𝕍) defined on an interval 𝐼𝑡 ⊂ ℝ, we denote its derivative with
d
d𝑡𝛾 (𝑡) ∶= d𝛾|𝑡 by custom. The derivative of a scalar-valued function 𝑓 ∈ 𝐶1(𝕍) is a linear

functional on 𝕍, i.e. d𝑓|𝑢 ∈ 𝐿(𝕍; ℝ). Thus, it can be understood as an element in the dual

space 𝕍∗. In that context, we refer to it as the gradient of 𝑓 ∇𝑓|𝑢 ∈ 𝕍∗ with ∇𝒇|𝒖 = D𝒇|⊤𝒖.
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2.2 (Classical) Model Order Reduction on Subspaces

Essentially, the idea of projection-based MOR (for dynamical systems) is to project a high-

dimensional dynamical system to a low-dimensional, problem-specific subspace. To this

end, we introduce the high-dimensional dynamical system (Section 2.2.1), the projection of

a dynamical system to a subspace (Section 2.2.2) and data-based methods to identify low-

dimensional problem-specific subspaces with a basis generation technique (Section 2.2.3).

2.2.1 Full-Order Model (FOM)

In the scope of this work, we consider a general high-dimensional initial value problem as

full-order model of interest. Such systems frequently appear when PDEs are semi-discretized

in space, as discussed later in the numerical examples. In the following, 𝑥 ∈ 𝕍 denotes a

point in 𝕍 and 𝑥(⋅) ∶ 𝐼𝑡 → 𝕍 is used to indicate a curve (or trajectory) in 𝕍.

Definition 2.1 (Full-Order Model (FOM)): Given an 𝑁-dimensional ℝ-vector-space 𝕍, a time
interval ∅ ≠ 𝐼𝑡 = [𝑡0, 𝑡end], a parameter domain 𝑃 ⊂ ℝ𝑛p , an arbitrary, but fixed, parameter
vector 𝝁 ∈ 𝑃, a right-hand side 𝑓(⋅, ⋅; 𝝁) ∶ 𝕍 × 𝐼𝑡 → 𝕍, which is Lipschitz continuous in the
first argument, and an initial value 𝑥0(𝝁) ∈ 𝕍, the solution of the full-order model (solution of
the FOM or FOM solution) 𝑥(⋅; 𝝁) ∈ 𝐶1(𝐼𝑡, 𝕍) satisfies the initial-value problem (IVP)

d
d𝑡𝑥(𝑡; 𝝁) = 𝑓(𝑥(𝑡; 𝝁), 𝑡; 𝝁) ∈ 𝕍 ∀𝑡 ∈ 𝐼𝑡, 𝑥(𝑡0; 𝝁) = 𝑥0(𝝁). (2.6)

We call 𝑁 the dimension of the FOM or the high dimension.

Remark 2.2 (Existence and uniqueness of FOM solution): We assume the right-hand side
to be Lipschitz in the first argument and the length of the time interval |𝑡end − 𝑡0| to be small
enough, such that there the exists a unique solution of the FOM (2.6), see e.g. [46, Sec. 3.3].

Remark 2.3 (Solution via time integration scheme): In practice, the FOM is solved numerically
with a time discretization scheme. In this thesis, we consider time stepping schemes with a fixed
time stepping width ∆𝑡 > 0 and (𝐾 + 1) ∈ ℕ time steps 𝑡𝑘 = 𝑡0 + 𝑘∆𝑡 ∈ 𝐼𝑡, 0 ≤ 𝑘 ≤ 𝐾,
𝑡end = 𝐾∆𝑡. The numerical solution is denoted with 𝑥𝑘(𝝁) ≈ 𝑥(𝑡𝑘; 𝝁) ∈ 𝕍.

Definition 2.4 (Linear (time-invariant) FOM): We call the FOM linear if the right-hand side
is affine in the first argument, i.e. there exists 𝐴 ∶ 𝐼𝑡 × 𝑃 → 𝐿(𝕍; 𝕍) and 𝑏 ∶ 𝐼𝑡 × 𝑃 → 𝕍
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such that 𝑓(𝑥, 𝑡; 𝝁) = (𝐴(𝑡; 𝝁)) (𝑥) + 𝑏(𝑡; 𝝁), where the coefficient matrix 𝑨(𝑡; 𝝁) ∈ ℝ𝑁×𝑁

is called the system matrix. We call the FOM linear and time-invariant if 𝐴(𝑡; 𝝁) ≡ 𝐴(𝝁) and
𝑏(𝑡; 𝝁) ≡ 𝑏(𝝁) are constant in time.

Definition 2.5 (Flow of an IVP): Assume there exists 𝑀 ⊂ 𝕍 such that all solutions 𝑥(𝑡; 𝝁; 𝑥0)
of the IVP (2.6) exist for 𝑥0 ∈ 𝑀. Then, the flow 𝜃𝑡(⋅; 𝝁) ∈ 𝐶1(𝑀, 𝕍) evolves the initial state
𝑥0 ∈ 𝑀 to the corresponding solution 𝑥(𝑡; 𝝁; 𝑥0) such that 𝜃𝑡(𝑥0; 𝝁) ∶= 𝑥(𝑡; 𝝁; 𝑥0).

Remark 2.6 (Other settings for FOMs): We note that the following techniques can also be
useful to solve other parametric, high-dimensional problems like systems of linear equations [48,
Ex. 2.8] as they may arise from the discretization of stationary PDEs. In the scope of this work,
however, we only consider high-dimensional initial value problems of the form (2.6).

Definition 2.7 (Set of all solutions): The set of all solutions is the set

𝑆 ∶= {𝑥(𝑡; 𝝁) ∈ 𝕍 ∣ (𝑡, 𝝁) ∈ 𝐼𝑡 × 𝑃, 𝑥(𝑡; 𝝁) is a FOM solution of (2.6)} ⊂ 𝕍 (2.7)

which consists of all solutions of (2.6) over 𝐼𝑡 × 𝑃.

Remark 2.8 (Solution “manifold”): The set of all solutions is frequently denoted as the so-
called solution manifold. However, the set of all solutions is not necessarily a manifold (i.e.
locally homeomorphic to some ℝ𝑁, see Part II). The solution 𝑥(𝑡; 𝝁) might actually be arbitrarily
complex in the parameter 𝝁. This can be seen by following the idea in [48, Ex. 2.9] from the
context of reduced basis methods. Assume to be given a mapping 𝑦 ∶ 𝐼𝑡 × 𝑃 → 𝕍 such that
𝑦(⋅; 𝝁) ∈ 𝐶1(𝐼𝑡, 𝕍) for all 𝝁 ∈ 𝑃. This allows the mapping 𝝁 ↦ 𝑦(⋅; 𝝁) to be arbitrarily
complex. Consider the FOM (2.6) with the right-hand side 𝑓(𝑥, 𝑡; 𝝁) = d

d𝑡𝑦(𝑡; 𝝁) and initial
value 𝑥0(𝝁) = 𝑦(𝑡0; 𝝁). Then, by definition, 𝑥 ≡ 𝑦 solves this FOM and the set of all solutions
for 𝑛p = 1 is not a manifold if we e.g. choose 𝑦(𝑡; 𝝁) ≡ 𝑐(𝝁) as a constant 𝑐(𝝁) ∈ ℝ for each
𝝁 ∈ 𝑃 such that 𝝁 ↦ 𝑦(⋅; 𝝁) describes a self-intersecting line.

2.2.2 Projection-based MOR and Reduced-Order Model (ROM)

We assume that there exists a low-dimensional subspace �̃� ⊂ 𝕍, dim(�̌�) = 𝑛 ≪ 𝑁, (charac-

terized by a reduced space �̌� and an embedding 𝑉 ∈ 𝐿(�̌�; 𝕍)) that approximates the set of all

solutions 𝑆 ⊂ 𝕍 well. The FOM solution 𝑥(⋅; 𝝁) ∈ 𝐶1(𝐼𝑡, 𝕍) is approximated with

𝑥(𝑡; 𝝁) ≈ ̃𝑥(𝑡; 𝝁) ∶= 𝑉 ( ̌𝑥(𝑡; 𝝁)), (2.8)
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where we refer to ̌𝑥(⋅; 𝝁) ∈ 𝐶1(𝐼𝑡, �̌�) as the reduced trajectory and to ̃𝑥(⋅; 𝝁) ∈ 𝐶1(𝐼𝑡, �̃�) as

the reconstructed solution. The reduced trajectory is determined from a dynamical system by

projecting the FOM dynamics on �̌�. To this end, we insert the approximation (2.8) into the

FOM (2.6), which defines the residual

𝑟 ∶ 𝐼𝑡 × 𝑃 → 𝕍, (𝑡; 𝝁) ↦ d
d𝑡𝑉 ( ̌𝑥(𝑡; 𝝁)) − 𝑓 (𝑉 ( ̌𝑥(𝑡; 𝝁)), 𝑡; 𝝁) ∈ 𝕍.

The reduced trajectory ̌𝑥(⋅; 𝝁) is chosen to make the 𝑎-based projection (2.4) of the residual

onto �̃� vanish for all (𝑡, 𝝁) ∈ 𝐼𝑡 × 𝑃, i.e.

�̌� ∋ 0 = (𝑉 −1 ∘ 𝛱𝑎,�̃�)(𝑟(𝑡; 𝝁)) = d
d𝑡 ̌𝑥(𝑡; 𝝁) − (𝑉 −1 ∘ 𝛱𝑎,�̃�) (𝑓 (𝑉 ( ̌𝑥(𝑡; 𝝁)), 𝑡; 𝝁)) (2.9)

This defines the following reduced model.

Definition 2.9 (𝑎-based Reduced-Order Model (𝑎-ROM)): Assume to be given a FOM (2.6), a
nondegenerate bilinear form 𝑎 ∈ Bil(𝕍), and an 𝑛-dimensional subspace �̃� ⊂ 𝕍 (characterized
by a reduced space �̌� and an embedding 𝑉 ∈ 𝐿(�̌�; 𝕍)) such that 𝑎 and �̃� are compatible. The
solution of the reduced-order model (solution of the ROM or ROM solution) ̌𝑥(⋅; 𝝁) ∈ 𝐶1(𝐼𝑡, �̌�)
satisfies the IVP

d
d𝑡 ̌𝑥(𝑡; 𝝁) = ̌𝑓( ̌𝑥(𝑡; 𝝁), 𝑡; 𝝁) ∈ �̌� ∀𝑡 ∈ 𝐼𝑡, ̌𝑥(𝑡0; 𝝁) = ̌𝑥0(𝝁), (2.10)

with the reduced right-hand side and the reduced initial value

̌𝑓( ̌𝑥, 𝑡; 𝝁) ∶= (𝑉 −1 ∘ 𝛱𝑎,�̃�)(𝑓(𝑉 ( ̌𝑥), 𝑡; 𝝁)) and ̌𝑥0(𝝁) ∶= (𝑉 −1 ∘ 𝛱𝑎,�̃�)(𝑥0(𝝁)). (2.11)

We refer to 𝑛 as the dimension of the ROM or the reduced dimension.

The most popular approach is the Galerkin ROM, which uses an inner product as bilinear

form.

Definition 2.10 (Galerkin ROM (𝑔-ROM), e.g. [115, Cha. 3]): Let (𝕍, 𝑔) be an inner product
space. The Galerkin ROM (𝑔-ROM) is a special case of the 𝑎-ROM (Definition 2.9) with 𝑎 = 𝑔.

For computational efficient evaluations of the ROM (2.10), it still lacks another ingredient.

Although the ROM is of low dimension 𝑛 ≪ 𝑁, it will in general still be computationally

expensive to evaluate the reduced right-hand side (2.11) since it requires to evaluate the



2.2 (Classical) Model Order Reduction on Subspaces 17

original right-hand side 𝑓 and to perform the projection with 𝑉 −1 ∘ 𝛱𝑎,�̃�. To obtain efficient

ROMs, the concept of an offline–online decomposition is introduced and it is briefly discussed

how to achieve it.

Definition 2.11 (Offline–online decomposition): We call a ROM offline–online decomposable
if the computation of the ROM can be decomposed in two sequential phases: (i) a (possibly
computationally expensive) offline phase, which includes operations scaling with the high
dimension 𝑁, and (ii) an online phase which allows to evaluate the ROM for arbitrary parameter
vectors 𝝁 ∈ 𝑃 while requiring only operations that scale with the reduced dimension 𝑛 (i.e. no
operations scaling with the high-dimension 𝑁).

Remark 2.12 (Offline–online decomp. for parameter-separable, linear FOMs, e.g. [50]): We
refer to a linear FOM (see Definition 2.4) as parameter-separable if

𝐴(𝑡; 𝝁) =
𝑛𝐴

∑
𝑞𝐴=1

𝜃𝐴,𝑞𝐴
(𝑡; 𝝁)𝐴𝑞𝐴

∈ 𝐿(𝕍; 𝕍) 𝑏(𝑡; 𝝁) =
𝑛𝑏

∑
𝑞𝑏=1

𝜃𝑏,𝑞𝑏
(𝑡; 𝝁)𝑏𝑞𝑏

∈ 𝕍

with the constant components of 𝐴 (and 𝑏) 𝐴𝑞𝐴
∈ 𝐿(𝕍; 𝕍) (and 𝑏𝑞𝑏

∈ 𝕍) and the coefficients
of 𝐴 (and 𝑏) 𝜃𝐴,𝑞𝐴

(𝑡; 𝝁) ∈ ℝ, (and 𝜃𝑏,𝑞𝑏
(𝑡; 𝝁) ∈ ℝ) for 1 ≤ 𝑞𝐴 ≤ 𝑛𝐴 (and 1 ≤ 𝑞𝑏 ≤ 𝑛𝑏,

respectively). This system is offline–online decomposable by computing and storing the reduced
components of 𝐴 (and 𝑏),

̌𝐴𝑞𝐴
∶= 𝑉 −1 ∘ 𝛱𝑎,�̃� ∘ 𝐴𝑞𝐴

∘ 𝑉 ∈ 𝐿(�̌�; �̌�), �̌�𝑞𝑏
∶= (𝑉 −1 ∘ 𝛱𝑎,�̃�)(𝑏𝑞𝑏

) ∈ �̌�,

for 1 ≤ 𝑞𝐴 ≤ 𝑛𝐴 (and 1 ≤ 𝑞𝑏 ≤ 𝑛𝑏) in the offline phase and assembling the reduced right-hand
side ̌𝑓( ̌𝑥, 𝑡; 𝝁) = ( ̌𝐴(𝑡; 𝝁)) ( ̌𝑥) + �̌�(𝑡; 𝝁) for a given parameter 𝝁 ∈ 𝑃 in the online phase

̌𝐴(𝑡; 𝝁) =
𝑛𝐴

∑
𝑞𝐴=1

𝜃𝐴,𝑞𝐴
(𝑡; 𝝁) ̌𝐴𝑞𝐴

, �̌�(𝑡; 𝝁) =
𝑛𝑏

∑
𝑞𝑏=1

𝜃𝑏,𝑞𝑏
(𝑡; 𝝁)�̌�𝑞𝑏

,

which is independent of the high-dimension 𝑁 if 𝑛𝐴, 𝑛𝑏 ≪ 𝑁.

Remark 2.13 (Hyperreduction): For (a) nonlinear or (b) affine but non-parameter-separable
contributions to the right-hand side, the (discrete) empirical interpolation method ((D)EIM) [7,
32] can be used to derive an approximation of the right-hand side, which is parameter-separable.
This, however, requires to be able to evaluate single components of the concerning terms efficiently.
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In the following two remarks, we briefly highlight two concepts important in MOR, which

are, however, outside the scope of this thesis.

Remark 2.14 (Intrusive and nonintrusive MOR): To assemble the reduced right-hand side
(2.11), access to the full right-hand side 𝑓 of the FOM is required. In general, this needs access to
the governing equations, discretization, and the solver, which may be unavailable, e.g., when
working with commercial software. This is called an intrusive MOR technique. In contrast,
non-intrusive methods avoid accessing such information. For more details see, e.g., [13, 97, 98].

Remark 2.15 (Discretize-then-reduce vs. reduce-then-discretize): The projection of the resid-
ual (2.9) does in general not commute with the time integration scheme. In that regard, it has to
be differentiated if the projection is applied before or after time discretization. An example for the
latter is the so-called Least-Squares Petrov–Galerkin method [29]. In the present work, however,
we focus on projection-based techniques applied before time integration (reduce-then-discretize).

To conclude this subsection, we want to briefly discuss the fundamental assumption of

projection-based MOR that the set of all solutions (2.7) can be approximated sufficiently

accurate with a low-dimensional subspace �̃� ⊂ 𝕍, dim (�̃�) = 𝑛 ≪ 𝑁. A quantity to measure

this property are the Kolmogorov 𝑛-widths:

Definition 2.16 (Kolmogorov 𝑛-width [66]): Let (𝕍, 𝑔) be an inner product space with the
induced norm ‖⋅‖𝑔 ∶ 𝕍 → ℝ≥0 and let 𝑀 ⊂ 𝕍 be a subset. For a subspace �̃� ⊂ 𝕍, we denote
the worst best-approximation error of 𝑀 in �̃� with 𝑑(𝑀, �̃�) ∶= sup𝑥∈𝑀 inf𝑢∈�̃� ‖𝑥 − 𝑢‖𝑔. Then,
the Kolmogorov 𝑛-width

𝑑𝑛 (𝑀) ∶= inf
�̃�⊂𝕍 subspace
dim(�̃�)≤𝑛

𝑑(𝑀, �̃�) (2.12)

measures the theoretically optimal worst best-approximation error of 𝑀 achievable by some
subspace �̃� of 𝕍 with dimension dim(�̃�) ≤ 𝑛.

The decay of the Kolmogorov 𝑛-widths is important for MOR, as it quantifies how well the

approximation based on an 𝑛-dimensional subspace �̃� ⊂ 𝕍 can be in the best case. Speaking

in mathematical terms, the maximal reduction error

𝑒red,max ∶= sup
(𝑡;𝝁)∈𝐼𝑡×𝑃

‖𝑥(𝑡; 𝝁) − ̃𝑥(𝑡; 𝝁)‖𝑔 , 𝑒red,max

(i)
≥ 𝑑(𝑆, �̃�)

(ii)
≥ 𝑑𝑛 (𝑆) ,
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for the FOM solution 𝑥(𝑡; 𝝁) ∈ 𝑆 and a reconstructed ROM solution ̃𝑥(𝑡; 𝜇) = 𝑉 ( ̌𝑥(𝑡; 𝜇)) ∈ �̃�
is bounded from below by the Kolmogorov 𝑛-width as (i) the worst best-approximation

error 𝑑(𝑆, �̃�) minimizes over all elements in �̃� and (ii) the Kolmogorov 𝑛-width 𝑑𝑛 (𝑆)
minimizes over all possible 𝑛-dimensional subspaces of 𝕍. In this chapter, we assume that

the Kolmogorov 𝑛-widths decay sufficiently fast, so efficient MOR on subspaces is possible.

More details on this assumption are discussed in Section 6.1.

2.2.3 Snapshot-based Basis Generation

It is yet left open, how to choose the ROB. One class of basis generation techniques are

data-based basis generation techniques, which determine the reduced basis from given data.

A data-based approach for basis generation are snapshot-based techniques. Remember that

the central object of interest is the set of all solutions (2.7). The idea of snapshot-based basis

generation is to (approximately) sample the set of all solutions. Typically, a training dataset
𝑃train ⊂ 𝑃 with |𝑃train| < ∞ is selected and the according numerical solutions 𝑥𝑘(𝝁) (see

Remark 2.3) are computed to construct the (training-)set of snapshots

𝑋s ∶= {𝑥𝑘(𝝁) ∈ 𝕍 ∣ 𝝁 ∈ 𝑃train, 0 ≤ 𝑘 ≤ 𝐾} ≈ 𝑆, (2.13)

where each element 𝑥s
𝑖 ∈ 𝑋s for 1 ≤ 𝑖 ≤ 𝑛s ∶= |𝑋s| is called a snapshot . For computations, it

is helpful to define the snapshot matrix 𝑿s ∶= [𝒙s
𝑖]

𝑛s
𝑖=1 ∈ ℝ𝑁×𝑛s , which stacks the coordinate

vectors of the snapshots in its columns.

2.2.3.1 (Time-Discrete) Proper Orthogonal Decomposition

The most prominent snapshot-based basis generation technique for a Galerkin ROM is the

Proper Orthogonal Decomposition (POD). It goes back to works analyzing structures in

turbulent flows [79, 111] and can nowadays be found in many textbooks on MOR, e.g. [11, 115].

In other fields the underlying principle of themethod is also referred to as principal component

analysis [61], Karhunen–Loeve decomposition [63, 78], or Hotelling transformation [57].

We consider an inner-product space (𝕍, 𝑔) with the induced norm ‖𝑣‖2
𝑔 = ‖𝒗‖2

𝒈 = 𝒗⊤𝒈𝒗.
The idea of POD is to choose an optimal subspace which reduces the 𝑔-based projection error

in the mean over all snapshots.
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Definition 2.17 (Proper Orthogonal Decomposion (POD), e.g. [115]): Given an inner product
space (𝕍, 𝑔) and a snapshot set 𝑋s ⊂ 𝕍, the Proper Orthogonal Decomposition (POD) com-
putes a subspace �̃�POD ∶= span{ ̃𝑣POD𝑖 }𝑛

𝑖=1 by identifying an orthonormal basis via the POD
(optimization) problem

�̃�POD ∶= span{ ̃𝑣POD𝑖 }𝑛
𝑖=1 = argmin

�̃�=span { ̃𝑣𝑖}𝑛
𝑖=1⊂𝕍,

𝑔( ̃𝑣𝑖, ̃𝑣𝑗)=𝛿𝑖𝑗 for 1≤𝑖,𝑗≤𝑛

𝑛s

∑
𝑖=1

∥𝑥s
𝑖 − 𝛱𝑔,�̃�(𝑥s

𝑖)∥
2
𝑔

. (2.14)

For the ROB matrix 𝑽 POD = [ ̃𝒗POD
𝑖 ]𝑛

𝑖=1 ∈ ℝ𝑁×𝑛, the POD problem in coordinates reads

𝑽 POD = argmin
𝑽 ∈ℝ𝑁×𝑛

𝑽 ⊤𝒈𝑽 =𝑰𝑛

𝑛s

∑
𝑖=1

∥(𝑰𝑁 − 𝑽 𝑽 ⊤𝒈)𝒙s
𝑖∥

2
𝒈 . (2.15)

As discussed in the following lemma, each POD problem (2.14) with an inner product

matrix 𝒈 ≠ 𝑰𝑁 can be transformed with a change of basis to obtain a transformed inner

product matrix ̂𝒈 = 𝑰𝑁.

Lemma 2.18 (POD problem in canonical coordinates): Consider a POD problem (2.14) with
an inner product matrix 𝒈 ≠ 𝑰𝑁. A coordinate transformation with the change-of-basis matrix
𝒈1/2 such that �̂� = 𝒈1/2𝒙 yields by the transformation formula for bilinear forms (2.3) that

̂𝒈 = (𝒈−1/2)⊤ 𝒈𝒈−1/2 = 𝑰𝑁. Then, the POD problem in canonical coordinates reads

̂𝑽 POD = argmin
̂𝑽 ∈ℝ𝑁×𝑛

̂𝑽 ⊤ ̂𝑽 =𝑰𝑛

𝑛s

∑
𝑖=1

∥(𝑰𝑁 − ̂𝑽 ̂𝑽 ⊤)�̂�s
𝑖∥

2
2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∥(𝑰𝑁− ̂𝑽 ̂𝑽 ⊤)�̂�s∥2
F

(2.16)

with the snapshot matrix in canonical coordinates �̂�s = 𝒈1/2𝑿s. Solving (2.16) is equivalent to
solving (2.15) with ̂𝑽 POD = 𝒈1/2𝑽 POD.

Proof. The equivalence of the POD problems (2.15) and (2.16) follows from transforming all

quantities with the coordinate transformation and using ‖𝒙‖2 = ∥𝒈−1/2𝒙∥
𝒈

∥(𝑰𝑁 − ̂𝑽 ̂𝑽 ⊤)�̂�s
𝑖∥2

= ∥𝒈−1/2(𝑰𝑁 − 𝒈1/2𝑽 𝑽 ⊤𝒈1/2)𝒈1/2𝒙s
𝑖∥𝒈

= ∥(𝑰𝑁 − 𝑽 𝑽 ⊤𝒈)𝒙s
𝑖∥𝒈 ,

𝑰𝑛 = ̂𝑽 ⊤ ̂𝑽 = 𝑽 ⊤𝒈𝑽 .
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Remark 2.19 (POD naming convention in literature): In literature, a slightly different naming
convention for the POD problems (2.15) and (2.16) is often used. What we refer to as “POD
problem in canonical coordinates” (2.16) is sometimes called “the POD (problem)” and the “POD
problem in coordinates” (2.15) is called the “weighted POD (problem)” (e.g. [115]).

The POD problem in canonical coordinates (2.16) can be solved with the so-called truncated

singular value decomposition (truncated SVD) of the snapshot matrix in canonical coordinates.

Theorem 2.20 (Solution to POD, e.g. [115]): Consider a singular value decomposition (SVD) of
the snapshot matrix in canonical coordinates

�̂�s = 𝑼�̂�s𝜮�̂�s𝑽 ⊤
�̂�s

with
𝑼⊤

�̂�s
𝑼�̂�s = 𝑰𝑁,

𝑽 ⊤
�̂�s

𝑽�̂�s = 𝑰𝑛s
,

[𝜮�̂�s]𝑖𝑗 =
⎧{
⎨{⎩

𝜎𝑖, 𝑖 = 𝑗

0, else

with the matrices 𝑼�̂�s ∈ ℝ𝑁×𝑁, 𝑽�̂�s ∈ ℝ𝑛s×𝑛s stacking the left- and right-singular vectors in
their columns and the matrix 𝜮�̂�s ∈ ℝ𝑁×𝑛s with the singular values 𝜎1 ≥ ⋯ ≥ 𝜎min(𝑁,𝑛s) ≥ 0
in descending order on its diagonal. A solution of the POD problems (2.16) and (2.15) can be
derived by truncating the first 𝑛 left-singular vectors of an SVD, i.e.

̂𝑽 POD ∶= 𝑽�̂�s[∶, ∶ 𝑛] and thus 𝑽 POD = 𝒈−1/2 ̂𝑽 POD = 𝒈−1/2𝑽�̂�s[∶, ∶ 𝑛].

Proof. See e.g. [115, Rem. 3.2.4].

Remark 2.21 (POD functional in terms of singular values): Consider a snapshot matrix in
canonical coordinates �̂�s ∈ ℝ𝑁×𝑛s with an SVD �̂�s = 𝑽�̂�s𝜮�̂�s𝑼⊤

�̂�s
. From Theorem 2.20,

we know that ̂𝑽 POD ∶= 𝑽�̂�s[∶, ∶ 𝑛] is an optimal solution to the POD problem in canonical
coordinates. In this case, the POD functional can be expressed in terms of the singular values
with

∥(𝑰𝑁 − ̂𝑽 POD ( ̂𝑽 POD)⊤) �̂�s∥
2

F
=

min(𝑁,𝑛s)

∑
𝑖=𝑛+1

𝜎2
𝑖

as the sum over the squared neglected singular values.

Remark 2.22 (Greedy basis generation): Yet, we did not discuss how to choose the training
parameters 𝑃train to define the snapshot set (2.13). The straightforward approach would be
sampling the parameter domain 𝑃 ⊂ ℝ𝑛p equidistantly. For high-dimensional parameter spaces,
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however, this leads typically to a computationally expensive offline phase, as the number of
total sampling points grows exponentially with the dimension of the parameter space 𝑛p if each
dimension of the parameter space is sampled with the same number of points. The state-of-the-art
solution for this problem is the use of so-called greedy basis generation procedures (see e.g. [35,
36]). These techniques build the ROB iteratively and adapt the snapshot set in each iteration
based on a given error measure or error indicator. Most prominent for time-dependent problems
is the POD-greedy algorithm [49], which uses the POD in each greedy iteration to compress a
trajectory and to extend the ROB. It can be shown that an algebraic (or exponential) decay in the
Kolmogorov 𝑛-widths induces an algebraic (or exponential) decay of the approximation error in
the POD-greedy procedure [47]. We will discuss a greedy procedure in Chapter 4.

2.2.3.2 Time-Continuous Proper Orthogonal Decomposition

Later in this work, it will be helpful for a theoretical analysis to consider a time-continuous

formulation of the POD. We reproduce the method from [115, Sec. 3.2] in a non-parametric

setting.

Definition 2.23 (Time-continuous POD, e.g. [115, Sec. 3.2]): Given an inner product space
(𝕍, 𝑔) and a solution trajectory 𝑥(⋅) ∈ 𝐶1(𝐼𝑡, 𝕍) to the FOM (2.6), the time-continuous POD
computes a subspace �̃�tcPOD ∶= span{ ̃𝑣tcPOD𝑖 }𝑛

𝑖=1 by identifying an orthonormal basis via the
time-continuous POD (optimization) problem

�̃�tcPOD ∶= span{ ̃𝑣tcPOD𝑖 }𝑛
𝑖=1 = argmin

�̃�=span { ̃𝑣𝑖}𝑛
𝑖=1⊂𝕍,

𝑔( ̃𝑣𝑖, ̃𝑣𝑗)=𝛿𝑖𝑗 for 1≤𝑖,𝑗≤𝑛

∫
𝑇POD

𝑡0
∥𝑥(𝑡) − 𝛱𝑔,�̃�(𝑥(𝑡))∥2

𝑔
d𝑡 (2.17)

with an integration time 𝑇POD ∈ (𝑡0, 𝑡end]. For the ROB matrix 𝑽 tcPOD ∈ ℝ𝑁×𝑛, the time-
continuous POD problem in coordinates reads

𝑽 tcPOD = argmin
𝑽 ∈ℝ𝑁×𝑛

𝑽 ⊤𝒈𝑽 =𝑰𝑛

∫
𝑇POD

𝑡0
‖(𝑰𝑁 − 𝑽 𝑽 ⊤𝒈)𝒙(𝑡)‖2

𝒈 d𝑡
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶ℱPOD(𝑽 ;𝑇POD)

. (2.18)

Similarly to the time-discrete POD, an optimal basis can be derived via an eigenvalue

problem. To this end, we recall the following theorem, which is formulated in [115] for

semi-linear initial value problems with 𝑡0 = 0.
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Theorem 2.24 (Solution of the time-Continuous POD, [115, Thm. 1.4.3]): Consider the unique
FOM solution 𝑥(⋅) ∈ 𝐶1(𝐼𝑡, 𝕍) of (2.6). Then a time-continuous POD basis of rank 𝑛 solving
the time-continuous POD problem (2.17) is given by the eigenvectors of the operator

ℛ ∶ 𝕍 → 𝕍, 𝑣 ↦ ∫
𝑇POD

𝑡0
𝑥(𝑡)𝑔 (𝑥(𝑡), 𝑣) d𝑡, (2.19)

corresponding to the 𝑛 largest eigenvalues 𝜆1 ≥ ⋯ ≥ 𝜆𝑛.

2.3 Hamiltonian Models

In the following, we want to consider FOMs (2.6) where the right-hand side has more structure

and describes a so-called Hamiltonian system. To this end, we give a brief introduction in

symplectic spaces and Hamiltonian systems (Section 2.3.1) and symplectic time integration

(Section 2.3.2).

2.3.1 Symplecticity and Hamiltonian Systems

In the scope of this work, we restrict to autonomous, canonical Hamiltonian systems. More

general cases are briefly discussed in Remark 2.31 and Remark 2.32. We introduce the concept

of a symplectic vector space and parametric Hamiltonian systems in the following.

Definition 2.25 (Symplectic form and symplectic vector space, e.g. [28]): Let 𝕍 be a finite-
dimensional vector space over ℝ. A symplectic form (on 𝕍) 𝜔 ∈ Bil(𝕍) is a nondegenerate
bilinear form (see (2.2)) which is skew-symmetric (∀𝑢, 𝑣 ∈ 𝕍 ∶ 𝜔(𝑢, 𝑣) = −𝜔(𝑣, 𝑢)). The tuple
(𝕍, 𝜔) is then called a symplectic vector space.

It can be shown that a symplectic vector space is necessarily even-dimensional [28] and

thus dim(𝕍) = 𝑁 = 2 ̄𝑁 for some ̄𝑁 ∈ ℕ. The coefficient matrix 𝝎 ∈ ℝ2�̄�×2�̄� of the bilinear

form 𝜔 is typically called a Poisson matrix . This matrix is skew-symmetric (−𝝎⊤ = 𝝎) and

invertible (𝝎 ∈ GL(2 ̄𝑁, ℝ)).

Theorem 2.26 (Canonical basis, e.g. [28, Sec. 1.1]): For each 2 ̄𝑁-dimensional symplectic vector
space (𝕍, 𝜔), we can find a canonical basis {𝑒𝑖, 𝑓𝑖}�̄�

𝑖=1 such that for all 1 ≤ 𝑖, 𝑗 ≤ ̄𝑁

𝜔(𝑒𝑖, 𝑓𝑗) = −𝛿𝑖𝑗, 0 = 𝜔(𝑒𝑖, 𝑒𝑗) = 𝜔(𝑓𝑖, 𝑓𝑗).
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For the canonical basis, the Poisson matrix is the canonical Poisson matrix2 𝝎 = 𝕁⊤
2�̄� with

𝕁2�̄� ∶= [
𝟎�̄�×�̄� 𝑰�̄�

−𝑰�̄� 𝟎�̄�×�̄�
] ∈ ℝ2�̄�×2�̄� with

𝕁⊤
2�̄�𝕁2�̄� = 𝑰2�̄�,

𝕁2�̄�𝕁2�̄� = − 𝑰2�̄�.
(2.20)

Proof. See [28, Thm. 1.1].

As described in Section 2.1, a linear map which conserves the inner products of the source

and target space is called orthogonal. Similarly, we call a function which conserves the

symplectic forms a symplectic mapping (or symplectomorphism) as described by the following

definition.

Definition 2.27 (Symplectic map and symplectic matrix): We consider two symplectic vector
spaces (𝕍, 𝜔) and (�̌�, �̌�) of dimension 2 ̄𝑁 and 2�̄� with 2�̄� ≤ 2 ̄𝑁 and with Poisson matrices
𝝎 ∈ ℝ2�̄�×2�̄� and �̌� ∈ ℝ2�̄�×2�̄�, respectively. Let 𝐴 ∈ 𝐿(�̌�; 𝕍) be a linear map. The map 𝐴 is
called a symplectic map and the coordinate matrix 𝑨 ∈ ℝ2�̄�×2�̄� is called a symplectic matrix if
the symplectic structure is preserved, i.e.,

∀�̌�, ̌𝑣 ∈ �̌� ∶ �̌�(�̌�, ̌𝑣) = 𝜔(𝐴(�̌�), 𝐴( ̌𝑣)), or equivalently 𝑨⊤𝝎𝑨 = �̌�. (2.21)

A differentiable map 𝑓 ∈ 𝐶1( ̌𝑈, 𝕍) on an open subset ̌𝑈 ⊂ �̌� is called symplectic if the Jacobian
matrix D𝝋|�̌� ∈ ℝ2�̄�×2�̄� is a symplectic matrix for every �̌� ∈ ̌𝑈.

Definition 2.28 (Hamiltonian FOM): Given a symplectic vector space (𝕍, 𝜔), a parameter
domain 𝑃 ⊂ ℝ𝑛p , a time interval ∅ ≠ 𝐼𝑡 ∶= [𝑡0, 𝑡end] ⊂ ℝ and a functionℋ(⋅; 𝝁) ∈ 𝐶1(𝐼𝑡).
The task of a (possibly parametric) Hamiltonian FOM is: for an arbitrary, but fixed, parameter
vector 𝝁 ∈ 𝑃 and a given initial value 𝑥0(𝝁) ∈ 𝕍, find 𝑥(⋅; 𝝁) ∈ 𝐶1(𝐼𝑡, 𝕍) such that

d
d𝑡𝑥(𝑡; 𝝁) = ♯𝜔 (∇ℋ|(𝑥(𝑡;𝝁);𝝁)) ∈ 𝕍 ∀𝑡 ∈ 𝐼𝑡, 𝑥(𝑡0; 𝝁) = 𝑥0(𝝁). (2.22)

We refer to 𝕍 as the phase space, toℋ(⋅; 𝝁) as the Hamiltonian (function), to the right-hand side
𝑋ℋ(𝑥; 𝝁) ∶= ♯𝜔(∇ℋ|(𝑥;𝝁)) as the Hamiltonian vector field and to the IVP (2.22) as Hamiltonian
system, which we denote as the triple (𝕍, 𝜔,ℋ).

2Contrary to existing works in structure-preserving MOR of Hamiltonian systems, we speak of the symplectic
form 𝝎 = 𝕁⊤

2�̄� instead of 𝕁2�̄�. In the following, this yields the same FOM and ROM as in the existing works,
but it helps to understand the more general case of noncanonical coordinates 𝝎 ≠ 𝕁⊤

2�̄�.
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The Hamiltonian vector field in coordinates is 𝑿ℋ(𝒙; 𝝁) ∶= 𝝎−1∇𝓗|𝒙;𝝁, which reads

in the special case of a canonical basis (see Theorem 2.26) 𝑿ℋ(𝒙; 𝝁) ∶= 𝕁2�̄�∇𝓗|𝒙;𝝁. In

the context of classical mechanics, the phase space 𝕍 = 𝒬 × 𝒫 consists of position states

𝑞 ∈ 𝒬 of the configuration space and momentum states 𝑝 ∈ 𝒫 which form together the

state 𝑥 = (𝑞, 𝑝) ∈ 𝒬 × 𝒫. In the following, we may perform this splitting without explicitly

referring to it.

Lemma 2.29 (Important properties of a Hamiltonian FOM): For a Hamiltonian FOM, it holds:

1. the solution preserves the Hamiltonian over time, i.e.

ℋ(𝑥(𝑡; 𝝁); 𝝁) = ℋ(𝑥0(𝝁); 𝝁) for all (𝑡, 𝝁) ∈ 𝐼𝑡 × 𝑃,

2. the flow of a Hamiltonian system is a symplectic map.

Proof. See e.g. [51, Thm. VI.2.4].

Typically, the Hamiltonian ℋ(⋅; 𝝁) is the energy of the system. Since this function is

preserved with Lemma 2.29, the class of Hamiltonian systems is favorable to model energy-

preserving systems. Such systems are present e.g. in classical mechanics [1, Sec. 3.8] or

quantum dynamics. Similarly, action principles might give rise to partial differential equations

which includes the wave equation, the Schrödinger equation, the Korteweg–de Vries equation,

the Euler equations, Maxwell’s equations [1, Sec. 5.5], the Vlasov–Poisson equations and

Vlasov–Maxwell equations [88]. With structure-preserving discretization methods like [17],

such systems can turn into a Hamiltonian FOM (2.22).

Definition 2.30 (Special Hamiltonian systems): We call the Hamiltonian

1. quadratic if it is defined via a symmetric bilinear form 𝐻(⋅, ⋅; 𝝁) ∈ Bil(𝕍) and a vector
ℎ(𝝁) ∈ 𝕍 with

ℋ (𝑥; 𝝁) = 1
2

𝐻(𝑥, 𝑥; 𝝁) + ℎ(𝝁), 𝓗 (𝒙; 𝝁) = 1
2

𝒙⊤𝑯(𝝁)𝒙 + 𝒉(𝝁) (2.23)

and the resulting Hamiltonian system will be linear,
2. separable if the phase space is 𝕍 = 𝒬 × 𝒫 and the Hamiltonian can be split in two terms
ℋ𝑞(⋅, 𝝁) ∈ 𝐶1(𝒬),ℋ𝑝(⋅, 𝝁) ∈ 𝐶1(𝒫) with

ℋ ((𝑞, 𝑝); 𝝁) = ℋ𝑞 (𝑞; 𝝁) +ℋ𝑝 (𝑝; 𝝁) ,
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where the functions ℋ𝑞(⋅, 𝝁),ℋ𝑝(⋅, 𝝁) are typically referred to as the potential energy
and the kinetic energy.

For a quadratic and separable Hamiltonian in coordinates (2.23), it holds

𝑯(𝝁) = blkdiag(𝑯𝑞(𝝁), 𝑯𝑝(𝝁)) ∈ ℝ2�̄�×2�̄� 𝑯𝑞(𝝁), 𝑯𝑝(𝝁) ∈ ℝ�̄�×�̄� symmetric.

We consider autonomous Hamiltonian systems in canonical coordinates. The following

two remarks discuss how more general cases can be treated.

Remark 2.31 (Non-canonical systems): By Theorem 2.26, we can find a canonical basis for
every symplectic space, i.e., for a symplectic space (𝕍, 𝜔) with a basis for which �̂� ≠ 𝕁⊤

2�̄�, we can
find a change of basis such that 𝝎 = 𝕁⊤

2�̄�. Thus, the Hamiltonian system (2.22) is in literature
often w.l.o.g. considered only for 𝝎 = 𝕁⊤

2�̄�, 𝑿ℋ(𝒙; 𝝁) = 𝕁2�̄�∇𝓗|𝒙;𝝁. A corresponding
change-of-basis matrix can be derived via the real Schur form, see e.g. [99, Rem. 3.8].

Remark 2.32 (Non-autonomous Hamiltonian systems, e.g. [82, Sec. 4.3]): The Hamiltonian
FOM (2.22) is autonomous since the Hamiltonian vector field does not depend on time. In a more
general setting of a time-dependent Hamiltonianℋ(⋅, ⋅; 𝝁) ∶ 𝐼𝑡 × 𝕍 → ℝ, the corresponding IVP
is called a non-autonomous Hamiltonian system. If the dependence on the time is continuously
differentiable, this case can be redirected to an autonomous Hamiltonian system (2.22) by
considering an extended phase space [70, Cha. VI, Sec. 10]. The construction in the framework of
structure-preserving MOR is discussed in [20, Sec. 2.4 and 2.5].

2.3.2 Symplectic Time Integration

As discussed in Remark 2.3, IVPs are solved with numerical time integration schemes in

practice. In order to preserve some of the special properties from Lemma 2.29 during the

time discretization, so-called symplectic time integration schemes can be used. A monograph

on this topic is the book [51]. We reproduce in the following a small excerpt on symplectic

one-step methods and in specific the symplectic Runge–Kutta methods. For the sake of

brevity, we suppress the parameter-dependence of the FOM (2.22).

Definition 2.33 ((Symplectic) one-step method): A one-step method (formulated for the
autonomous Hamiltonian systems (2.22)) is a numerical time integration scheme, which is based
on a one-step map 𝜃∆𝑡 ∈ 𝐶1(𝕍, 𝕍) such that 𝑥𝑘 = 𝜃∆𝑡 (𝑥𝑘−1). A one-step method is called
symplectic if the one-step map is a symplectic mapping in the sense of Definition 2.27.
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Definition 2.34 (𝑠-stage Runge–Kutta method): An 𝑠-stage Runge–Kutta method with 𝑠 ∈ ℕ
(formulated for the autonomous Hamiltonian system (2.22)) is a one-step method given by the
coefficients 𝛽𝑖, 𝛼𝑖𝑗 ∈ ℝ, 1 ≤ 𝑖, 𝑗 ≤ 𝑠, with the one-step map for 𝑥 ∈ 𝕍

𝜃∆𝑡,RK(𝑥) ∶= 𝑥 + ∆𝑡
𝑠

∑
𝑖=1

𝛽𝑖𝑤𝑖 (2.24)

where 𝑤𝑖 ∈ 𝕍 solve the system of nonlinear equations for each 𝑖 ∈ {1, … , 𝑠}

0 = 𝑤𝑖 − 𝑋ℋ (𝑥 + ∆𝑡
𝑠

∑
𝑗=1

𝛼𝑖𝑗𝑤𝑗) ∈ 𝕍.

Definition 2.35 (Symplectic Runge–Kutte method, e.g. [51, Thm. VI.4.3]): An 𝑠-state Runge–
Kutta method is symplectic if the coefficients satisfy

𝛽𝑖𝛼𝑖𝑗 + 𝛽𝑗𝛼𝑗𝑖 = 𝛽𝑖𝛽𝑗, for all 1 ≤ 𝑖, 𝑗 ≤ 𝑠.

Example 2.36 (Implicit midpoint): A classical example for an implicit symplectic Runge–Kutta
method is the implicit midpoint rule with 𝑠 = 1 and coefficients 𝛼11 = 1/2, 𝛽1 = 1 such that

𝜃∆𝑡,RK(𝑥) = 𝑥 + ∆𝑡𝑤1, 0 = 𝑤1 − 𝑋ℋ (𝑥 + ∆𝑡
2

𝑤1) . (2.25)

Remark 2.37 (Modified Hamiltonian): Although symplectic integrators preserve the symplectic
structure, the Hamiltonian in the time-discrete model might be modified compared to the original
Hamiltonian. For a quadratic Hamiltonian in combination with a symplectic Runge–Kutta inte-
grator, however, it can be shown that the modified Hamiltonian equals the original Hamiltonian.
Further details can be found in [76, Sec. 5.1.2 and 5.2] or [51, Cha. IX.].

2.4 Symplectic Model Order Reduction on Subspaces

Applying a classical 𝑔-ROM to a Hamiltonian system (2.22) will in general not yield a Hamil-

tonian system of reduced order (which is sometimes referred to as “losing the Hamiltonian

structure”). Consequently, this ROM will in general lose all interesting properties of Hamilto-

nian systems from Lemma 2.29. In [81, 99], symplectic MOR is introduced which is a reduction

technique that does yield a reduced Hamiltonian system. In this section, we briefly discuss
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special subspaces of symplectic vector spaces (Section 2.4.1), introduce the reduced Hamilto-

nian system (Section 2.4.2) and review symplectic basis generation techniques existing in the

literature (Section 2.4.3).

2.4.1 Special Subspaces

For inner product spaces (𝕍, 𝑔), every subspace �̃� ⊂ 𝕍 is compatible with 𝑔. For a symplectic

space (𝕍, 𝜔), however, not every subspace is compatible with 𝜔. Thus, we will discuss

different subspaces of a symplectic space in the following.

Definition 2.38 (Symplectic complement, e.g. [28, Sec. 1.3]): Let (𝕍, 𝜔) be a symplectic vector
space. For an 𝑛-dimensional subspace �̃� ⊂ 𝕍, its symplectic complement is

�̃�𝜔 ∶= {𝑢 ∈ 𝕍 ∣ 𝜔(𝑢, 𝑣) = 0 ∀𝑣 ∈ �̃�}.

Remark 2.39 (Comparison of orthogonal and symplectic complement): Note that the def-
inition of the symplectic complement is reminiscent of the classical orthogonal complement.
However, the two objects behave differently. For orthogonal complements, we know �̃�⟂ ∩�̃� = {0}.
For the symplectic complement, however, this may not be case as we will see in the following.

Definition 2.40 (Special subspaces, e.g. [28, Sec. 1.3]): Let (𝕍, 𝜔) be a symplectic vector space
with an 𝑛-dimensional subspace �̃� ⊂ 𝕍 (characterized by a reduced space �̌� and an embedding
𝑉 ∈ 𝐿(�̌�; 𝕍)). We refer to the subspace

• as a symplectic subspace, if �̃�𝜔 ∩ �̃� = {0} or, equivalently, if 𝜔(𝑉 (⋅), 𝑉 (⋅)) ∈ Bil(�̌�) is
nondegenerate, which is exactly our definition of 𝜔 being compatible with �̃�,

• as an isotropic subspace, if �̃� ⊂ �̃�𝜔 or, equivalently, if 𝜔(𝑉 (⋅), 𝑉 (⋅)) ∈ Bil(�̌�) ≡ 0,

• as a coisotropic subspace, if �̃�𝜔 ⊂ �̃� or, equivalently, if �̃�𝜔 is an isotropic subspace.

Example 2.41 (Special subspaces from canonical basis, e.g. [28, Sec. 1.3]): Let (𝕍, 𝜔) be a
2 ̄𝑁-dimensional symplectic vector space with a canonical basis {𝑒𝑖, 𝑓𝑖}�̄�

𝑖=1. Then,

• span {𝑒𝑖, 𝑓𝑖}�̄�
𝑖=1 is a symplectic subspace for all 1 ≤ �̄� ≤ ̄𝑁,

• span {𝑒𝑖}�̄�
𝑖=1 is an isotropic subspace for all 1 ≤ �̄� ≤ ̄𝑁,

• span {𝑒𝑖}�̄�
𝑖=1 ⊕ span {𝑓1} is a coisotropic subspace.
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Proposition 2.42: Consider a 2 ̄𝑁-dimensional symplectic vector space (𝕍, 𝜔) and a subspace
�̃� ⊂ 𝕍 (characterized by a reduced space �̌� and an embedding 𝑉 ∈ 𝐿(�̌�; 𝕍)). If �̃� is a
symplectic subspace, then (�̌�, �̌�) is a symplectic vector space with the reduced symplectic form
�̌� ∶= 𝜔(𝑉 (⋅), 𝑉 (⋅)) ∈ Bil(�̌�). It holds dim(�̃�) = dim(�̌�) = 2�̄� for some �̄�.

Proof. Skew-symmetry of �̌� = 𝜔(𝑉 (⋅), 𝑉 (⋅)) ∈ Bil(�̌�) is inherited from 𝜔. Nondegeneracy

of �̌� is the definition of the symplectic subspace.

(Co)isotropic subspaces are examples for subspaces of 𝕍 for which the symplectic form 𝜔 is

not compatible with �̃�. The compatibility has to be assumed during the basis generation. In

coordinates, the compatibility condition “𝜔(𝑉 (⋅), 𝑉 (⋅)) ∈ Bil(�̌�) nondegenerate” is equiva-

lent to the condition that the representing matrix is invertible, i.e., 𝑽 ⊤𝝎𝑽 ∈ GL(𝑛, ℝ). Since
there exists a canonical basis for every symplectic basis, this is equivalent to find a basis such

that 𝑽 ⊤𝝎𝑽 = 𝕁⊤
2�̄�. We will see this condition later on in the basis generation. For 𝝎 = 𝕁⊤

2�̄�,

the symplectic Stiefel manifold Sp(2�̄�, ℝ2�̄�) ∶= {𝑽 ∈ ℝ2�̄�×2�̄� ∣ 𝑽 ⊤𝕁⊤
2�̄�𝑽 = 𝕁⊤

2�̄�} is defined

in parallel to the Stiefel manifold from Section 2.1.

2.4.2 Symplectic MOR

By Section 2.4.1, a symplectic subspace �̃� ⊂ 𝕍 is compatible with 𝜔. This allows us to use the

𝑎-based projection (2.4) for 𝑎 = 𝜔 and define the corresponding projection error and ROM.

Definition 2.43 (Symplectic projection (error)): Let (𝕍, 𝜔) be a symplectic vector space of
dimension 2 ̄𝑁 and �̃� ⊂ 𝕍 a symplectic subspace of dimension 2�̄� with the reduced symplectic
form �̌�. The 𝑎-based projection (2.4) with 𝑎 = 𝜔 defines the symplectic projection

𝛱𝜔,�̃� = 𝑉 ∘ ♯�̌� ∘ 𝑉 ∗ ∘ ♭𝜔 ∈ 𝐿(𝕍; �̃�) with 𝜫𝜔,�̃� = 𝑽 �̌�−1𝑽 ⊤𝝎 ∈ ℝ2�̄�×2�̄�.

We refer to the 𝑎-based projection error with 𝑎 = 𝜔 as the symplectic projection error.

Theorem 2.44 (Symplectic Galerkin ROM (𝜔-ROM), [81, 99]): Consider a 2 ̄𝑁-dimensional
symplectic vector space (𝕍, 𝜔) with a 2�̄�-dimensional symplectic subspace �̃� ⊂ 𝕍 (characterized
by a reduced space �̌� and an embedding 𝑉 ∈ 𝐿(�̌�; 𝕍)). By Proposition 2.42, �̃� and 𝜔 are
compatible. An 𝑎-ROM (see Definition 2.9) with the nondegenerate bilinear form chosen as 𝑎 = 𝜔
applied to a Hamiltonian FOM (2.22), results in a reduced Hamiltonian system (�̃�, �̌�, ̌ℋ) with
the reduced Hamiltonian ̌ℋ(⋅; 𝝁) ∶= ℋ(𝑉 (⋅); 𝝁) or in coordinates ̌𝓗(�̌�; 𝝁) = 𝓗(𝑽 �̌�; 𝝁). If
the basis of �̃� is canonical then 𝑽 ⊤𝝎𝑽 = 𝕁⊤

2�̄�. We refer to this as the symplectic Galerkin ROM.
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Proof. For the sake of a better overview, we skip the parameter-dependence in this proof.

Since �̃� is a symplectic vector space, 𝜔 is compatible with �̃� (and thus �̌� is nondegenerate,

and we can use ♭�̌� and ♯�̌�). Due to linearity of the embedding 𝑉 ∈ 𝐿(�̌�; 𝕍), it holds for its
derivative d𝑉 |�̌�( ̌𝑣) = 𝑉 ( ̌𝑣). Then, it holds with the chain rule (2.5) for all �̌�, ̌𝑣 ∈ �̌�

∇ ̌ℋ∣
�̌�

( ̌𝑣) = d(ℋ ∘ 𝑉 )|�̌�( ̌𝑣) (2.5)= dℋ|𝑉 (�̌�)⏟
=∇ℋ|𝑉 (�̌�)

( d𝑉 |�̌� ( ̌𝑣)⏟
=𝑉 ( ̌𝑣)

) = (𝑉 ∗ (∇ℋ|𝑉 (�̌�))) ( ̌𝑣) (2.26)

Thus, the reduced right-hand side

̌𝑓( ̌𝑥) (2.10)= (♯�̌� ∘ 𝑉 ∗)(♭𝜔 (𝑋ℋ(𝑉 ( ̌𝑥)))⏟⏟⏟⏟⏟⏟⏟
=∇ℋ|𝑉 (�̌�)

) = ♯�̌� (𝑉 ∗ (∇ℋ|𝑉 (�̌�))) (2.26)= ♯�̌� (∇ ̌ℋ∣
�̌�
)

is the Hamiltonian vector field 𝑋 ̌ℋ of the reduced Hamiltonian system (�̌�, �̌�, ̌ℋ).

The 𝜔-ROM uses 𝑉 −1 ∘ 𝛱𝜔,�̃� ∶ 𝕍 → �̌� to project the right-hand side to the reduced space �̌�
(see Definition 2.9). In coordinates, this operation is �̌�−1𝑽 ⊤𝝎, which is for �̌� = 𝕁⊤

2�̄� and

𝝎 = 𝕁⊤
2�̄� known as the symplectic inverse 𝑽 + ∶= 𝕁2�̄�𝑽 ⊤𝕁⊤

2�̄�.3

Remark 2.45 (𝜔-ROM for noncanonical Hamiltonian system): The original formulation
of symplectic MOR [81, 99] is formulated in canonical coordinates for both the FOM and the
ROM. The presented formalism directly extends this idea to noncanonical coordinates. A similar
approach has been discussed in [80]. However, our formulation directly relates to the idea of
the POD in canonical coordinates from Lemma 2.18 that the canonical coordinates are just a
coordinate transformation as we will see in the subsequent section.

Remark 2.46 (Preservation of stability): An 𝜔-ROM preserves stability in the following sense:

• In [99, Sec. 3.9], the authors prove that if the initial value 𝑥0 ∈ 𝕍 is contained within a
neighborhood 𝑈 ⊂ 𝕍 for which for all points 𝑥 ∈ 𝜕𝑈 on the boundary the energy is strictly
lowerℋ (𝑥) < ℋ (𝑥0) or strictly higherℋ (𝑥) > ℋ (𝑥0) than the energy of the initial
value, then the FOM and ROM are both uniformly bounded for all times 𝑡.

• In [99, Thm. 3.10] and [81, Thm. 7], it is proven that Lyapunov stable points 𝑥e ∈ 𝕍 are
preserved, if these are included in the reduced space 𝑥e ∈ �̃�. We comment on such stability
result in Section 7.1 in the more general case of MOR on manifolds.

3Note however that the symplectic inverse (⋅)+ should not be confused with the Moore–Penrose pseudo inverse
which we will later denote with (⋅)†.
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Remark 2.47 (Non-intrusive symplectic MOR via Hamiltonian operator inference): An
approach for non-intrusive (see Remark 2.14) symplectic MOR has been introduced in [109]. In
that work, the additional structure of a Hamiltonian system helps (a) to give the equations more
interpretability, and (b) to guarantee stability (especially for long-time prediction).

2.4.3 Snapshot-based Symplectic Basis Generation

As discussed in Section 2.2.3 with the classical MOR, we use a snapshot-based basis generation

technique to determine a basis spanning the subspace �̃� ⊂ 𝕍. Symplectic MOR, however,

requires a symplectic subspace for the compatibility of �̃� and 𝜔. Thus, the POD can in general

not be used for basis generation and an alternative approach is required.

2.4.3.1 (Time-Discrete) Proper Symplectic Decomposition

For the generation of a symplectic basis, the Proper Symplectic Decomposition (PSD) was

proposed in [99]. The PSD chooses the basis to minimize the symplectic projection error (see

Definition 2.43) in the mean over all snapshots.

Definition 2.48 (Proper Symplectic Decomposition (PSD)): Consider a symplectic space (𝕍, 𝜔)
with an inner product 𝑔 ∈ Bil(𝕍) and an induced norm ‖⋅‖𝑔 ∶ 𝕍 → ℝ≥0. Given a snapshot
set 𝑋s ⊂ 𝕍, the Proper Symplectic Decomposition (PSD) computes a symplectic subspace
�̃�PSD ∶= span{ ̃𝑒PSD𝑖 , ̃𝑓PSD

𝑖 }�̄�
𝑖=1

by identifying a canonical basis via the PSD (optimization)
problem

�̃�PSD ∶= span{ ̃𝑒PSD𝑖 , ̃𝑓PSD
𝑖 }�̄�

𝑖=1
= argmin

�̃�∶=span{ ̃𝑒𝑖, ̃𝑓𝑖}�̄�
𝑖=1

⊂𝕍,

for 1≤𝑖,𝑗≤�̄�∶ 𝜔( ̃𝑒𝑖, ̃𝑓𝑗)=−𝛿𝑖𝑗 and

𝜔( ̃𝑒𝑖, ̃𝑒𝑗)=𝜔( ̃𝑓𝑖, ̃𝑓𝑗)=0

𝑛s

∑
𝑖=1

∥𝑥s
𝑖 − 𝛱𝜔,�̃�(𝑥s

𝑖)∥
2
𝑔

. (2.27)

For the ROB matrix 𝑽 PSD = [[ ̃𝒆PSD
𝑖 ]�̄�𝑖=1, [ ̃𝒇PSD

𝑖 ]�̄�𝑖=1] ∈ ℝ2�̄�×2�̄�, the reduced symplectic form in
coordinates is �̌� = 𝕁⊤

2�̄� due to the construction of a canonical basis and thus the PSD problem in
coordinates reads

𝑽 PSD = argmin
𝑽 ∈ℝ2�̄�×2�̄�

𝑽 ⊤𝝎𝑽 =𝕁⊤
2�̄�

𝑛s

∑
𝑖=1

∥(𝑰𝑁 − 𝑽 𝕁2�̄�𝑽 ⊤𝝎)𝒙s
𝑖∥

2
𝒈 . (2.28)
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As indicated in Theorem 2.26, a canonical basis may be chosen for all symplectic vector

spaces. The next lemma shows how the PSD problem looks in canonical coordinates.

Lemma 2.49 (PSD problem in canonical coordinates): Consider a PSD problem (2.27) for a
symplectic vector space (𝕍, 𝜔) with a noncanonical Poisson matrix 𝝎 ≠ 𝕁⊤

2�̄�. A coordinate
transformation with the change-of-basis matrix 𝑸 exists by Theorem 2.26 with �̂� = 𝑸𝒙 such
that the Poisson matrix �̂� (2.3)= 𝑸−⊤𝝎𝑸−1 = 𝕁⊤

2�̄� in the new coordinates is canonical. In the
transformed coordinates the PSD (problem) in canonical coordinates, reads

̂𝑽 PSD = argmin
̂𝑽 ∈ℝ𝑁×𝑛

̂𝑽 ⊤𝕁⊤
2�̄�

̂𝑽 =𝕁⊤
2�̄�

𝑛s

∑
𝑖=1

∥(𝑰𝑁 − ̂𝑽 𝕁2�̄�
̂𝑽 ⊤𝕁⊤

2�̄�⏟⏟⏟⏟⏟
= ̂𝑽 +

)�̂�s
𝑖∥

2

̂𝒈
(2.29)

with the snapshots in canonical coordinates �̂�s
𝑖 = 𝑸𝒙s

𝑖 for 1 ≤ 𝑖 ≤ 𝑛s and the inner product
matrix ̂𝒈 = 𝑸−⊤𝒈𝑸−1. Solving (2.29) is equivalent to solving (2.28) with ̂𝑽 PSD = 𝑸𝑽 PSD.

Proof. The equivalence of the PSD problems (2.28) and (2.29) follows from transforming all

quantities with the coordinate transformation and using ‖𝒙‖ ̂𝒈 = ∥𝑸−1𝒙∥𝒈

∥(𝑰2�̄� − ̂𝑽 𝕁2�̄�
̂𝑽 ⊤𝕁⊤

2�̄�)�̂�s
𝑖∥ ̂𝒈

= ∥𝑸−1(𝑰2�̄� − 𝑸𝑽 𝕁2�̄�𝑽 ⊤𝑸⊤𝕁⊤
2�̄�)𝑸𝒙s

𝑖∥𝒈

= ∥(𝑰2�̄� − 𝑽 𝕁2�̄�𝑽 ⊤𝝎)𝒙s
𝑖∥𝒈

𝕁⊤
2�̄� = ̂𝑽 ⊤𝕁⊤

2�̄�
̂𝑽 = 𝑽 ⊤𝑸⊤𝕁⊤

2�̄�𝑸𝑽 = 𝑽 ⊤𝝎𝑽 .

Remark 2.50 (Standard formulation of PSD): Both, Definition 2.48 and Lemma 2.49, are
already extended formulations compared to the approaches presented in literature. The standard
formulation of the PSD is formulated in canonical coordinates (2.29), while it is additionally
assumed ̂𝒈 = 𝑰2�̄�. This case is also considered in the remainder of the thesis.

In contrast to the POD problem, however, no general solution procedure is known to the

PSD problem. In the following, we present symplectic basis generation techniques known in

literature.

Definition 2.51 (Solving PSD in canonical coordinates in restricted sets, [99]): Alongside
the PSD (in canonical coordinates for ̂𝒈 = 𝑰2�̄�), [99] introduces two symplectic basis generation
techniques, which optimize the PSD problem on restricted sets:
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• PSD cotangent lift (PSD CL)

ℳCL ∶= {[
𝜱 𝟎�̄�×�̄�

𝟎�̄�×�̄� 𝜱
] ∈ ℝ2�̄�×2�̄� ∣ 𝜱 ∈ ℝ�̄�×�̄�, 𝜱⊤𝜱 = 𝑰�̄�} ,

• PSD complex SVD (PSD cSVD)

ℳcSVD ∶= { [
𝜱 −𝜳
𝜳 𝜱

] ∈ ℝ2�̄�×2�̄� ∣ 𝜱, 𝜳 ∈ ℝ�̄�×�̄�,
𝜱⊤𝜳 = 𝜳⊤𝜱,

𝜱⊤𝜱 + 𝜳⊤𝜳 = 𝑰�̄�
}.

Optimal bases for PSD CL and PSD cSVD can be derived with the (complex) SVD of modified

snapshot matrices [99]. Concluding this section, the following two remarks each introduces

a further strategy for symplectic basis generation.

Remark 2.52 (Greedy procedure based on symplectic Gram–Schmidt, [81]): A greedy sym-
plectic basis generation procedure was introduced in [81]. It chooses in each greedy iteration
the vector with maximal projection error and applies a symplectic Gram–Schmidt procedure
to obtain a pair 𝒛𝑖, 𝕁⊤

2�̄�𝒛𝑖 ∈ ℝ2�̄� to enrich the ROB. After �̄� greedy iterations, this results in
the symplectic ROB matrix 𝑽 = [[𝒛𝑖]�̄�𝑖=1, [𝕁⊤

2�̄�𝒛𝑖]�̄�𝑖=1]. We discuss more details on symplectic
greedy basis generation in Chapter 4.

Remark 2.53 (Basis generation via optimization on manifolds): A series of work [8, 9, 38–
40] considers generating a symplectic ROB by optimizing the PSD functional (with ̂𝒈 = 𝑰2�̄�)
iteratively with techniques from optimization on manifolds with gradient-descent methods. The
advantage of these techniques is (i) that the constrained optimization problem (2.29) on ℝ2�̄�×2�̄�

becomes an unconstrained optimization problem by confining the solution to the symplectic Stiefel
manifold Sp(2�̄�, ℝ2�̄�), and (ii) that they do not restrict to a subset of Sp(2�̄�, ℝ2�̄�), which enables
them to potentially find a global optimum. All these methods are based on geometric formulations
that determine an optimization algorithm based on different metrics and different retractions.
Roughly speaking, the metric determines how elements are projected, while the retraction updates
the iterates with a computed search direction. The work [39] lays the foundation by analyzing
the geometry of the symplectic Stiefel manifold and uses the so-called canonical like metric. In
contrast, [38] uses the standard Euclidean metric (which is the Frobenius inner product ⟨⋅, ⋅⟩F on
the ambient space ℝ2�̄�×2�̄�). With this choice, the underlying optimization problem is naturally
linked to the nearest symplectic matrix problem: Given 𝑨 ∈ ℝ2�̄�×2�̄�, find 𝑿 ∈ Sp(2�̄�, ℝ2�̄�)
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such that ‖𝑿 − 𝑨‖F is minimized. In [9], the optimization is carried out on the so-called
symplectic Grassmann manifold (based on work in [8, 39]), which respects that different ROBs
might yield the same symplectic subspace. Lastly, in [40], the authors use a modified retraction
that is based on the so-called SR-decomposition.



Non-Orthonormal,
Symplectic Bases

Generation 3
We investigate a new symplectic basis generation technique. Firstly, we identify the classical

symplectic basis generation techniques from Definition 2.51 and Remark 2.52 to generate a

symplectic orthonormal basis. Secondly, we introduce the PSD SVD-like decomposition, a

basis generation technique which, in general, generates a symplectic, non-orthonormal basis.

In numerical experiments, we compare the basis generation techniques and show that the

newly introduced method produces more accurate ROMs. This is an adaptation of [20].

3.1 Orthosymplectic Basis Generation

In this section, we characterize orthosymplectic basis generation techniques and show that

the techniques from Definition 2.51 and Remark 2.52 are of this type.

Definition 3.1 (Orthosymplectic ROB (matrix), [81]): An ROB and the respective ROB matrix
𝑽 ∈ ℝ2�̄�×2�̄� are called orthosymplectic if the ROB is symplectic and orthonormal, i.e. the ROB
matrix 𝑽 is (i) symplectic and (ii) has orthonormal columns

(i) 𝑽 ⊤𝕁2�̄�𝑽 = 𝕁2�̄� and (ii) 𝑽 ⊤𝑽 = 𝑰2�̄�.

In order to get a better understanding of orthosymplectic ROB matrices, we give the

following characterization. It shows that orthosymplectic ROB matrices are of a special

structure and that orthosymplectic ROB matrices are exactly the ROB matrices for which the

symplectic inverse equals the transposed. This characterization extends the results given e.g.

in [95] for square matrices 𝑸 ∈ ℝ2�̄�×2�̄� to the case of rectangular matrices 𝑽 ∈ ℝ2�̄�×2�̄�.

Partially, this was also addressed in [99, Lem. 4.3.].
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Lemma 3.2 (Characterization of a symplectic matrix with orthonormal columns): The
following statements are equivalent for any matrix 𝑽 ∈ ℝ2�̄�×2�̄�

(i) 𝑽 is orthosymplectic,

(ii) there exists 𝑬 ∈ ℝ2�̄�×�̄� such that

𝑽 = [𝑬 𝕁⊤
2�̄�𝑬] =∶ 𝑽𝑬 ∈ ℝ2�̄�×2�̄�, 𝑬⊤𝑬 = 𝑰�̄�, 𝑬⊤𝕁2�̄�𝑬 = 𝟎�̄�×�̄�, (3.1)

(iii) 𝑽 is symplectic, and it holds 𝑽 ⊤ = 𝑽 +.

Proof. “(i) ⟹ (ii)”: Let 𝑽 ∈ ℝ2�̄�×2�̄� be an orthosymplectic matrix, which we split in two

blocks 𝑬, 𝑭 ∈ ℝ2�̄�×�̄� with 𝑬 = [𝒆1, … , 𝒆�̄�] and 𝑭 = [𝒇1, … , 𝒇�̄�] such that 𝑽 = [𝑬 𝑭 ].
The condition of symplecticity of the matrix reads in terms of 𝑬 and 𝑭 and their columns for

all 1 ≤ 𝑖, 𝑗 ≤ �̄�

𝑽 ⊤𝕁2�̄�𝑽 = [
𝑬⊤𝕁2�̄�𝑬 𝑬⊤𝕁2�̄�𝑭
𝑭 ⊤𝕁2�̄�𝑬 𝑭 ⊤𝕁2�̄�𝑭

] = 𝕁2�̄� ⟺
𝒆⊤

𝑖 𝕁2�̄�𝒆𝑗 = 𝒇⊤
𝑖 𝕁2�̄�𝒇𝑗 = 0,

−𝒇⊤
𝑖 𝕁2�̄�𝒆𝑗 = 𝒆⊤

𝑖 𝕁2�̄�𝒇𝑗 = 𝛿𝑖𝑗.
(3.2)

The orthonormality of the columns of 𝑽 is characterized by

𝒆⊤
𝑖 𝒆𝑗 = 𝛿𝑖𝑗, 𝒇⊤

𝑖 𝒇𝑗 = 𝛿𝑖𝑗.

For a fixed 𝑖 ∈ {1, … , �̄�}, we can show with 𝕁⊤
2�̄�𝕁2�̄� = 𝑰2�̄� that 𝕁2�̄�𝒇𝑖 is of unit length

1 = 𝛿𝑖𝑖 = 𝒇⊤
𝑖 𝒇𝑖 = 𝒇⊤

𝑖 𝕁⊤
2�̄�𝕁2�̄�𝒇𝑖 = ‖𝕁2�̄�𝒇𝑖‖2

2 .

Both vectors 𝒆𝑖 and 𝕁2�̄�𝒇𝑖 are of unit length while 1 (3.2)= 𝒆⊤
𝑖 𝕁2�̄�𝒇𝑖. In the Cauchy–

Bunyakovsky–Schwarz inequality holds as an equality, 𝒆⊤
𝑖 𝕁2�̄�𝒇𝑖 = ‖𝒆𝑖‖2 ‖𝕁2�̄�𝒇𝑖‖2, if and

only if the vectors are parallel or one vector is zero. With 𝒆⊤
𝑖 𝕁2�̄�𝒇𝑖 = 1, we thus infer

𝒆𝑖 = 𝕁2�̄�𝒇𝑖, which is equivalent to 𝒇𝑖 = 𝕁⊤
2�̄�𝒆𝑖. Since this holds for all 𝑖 ∈ {1, … , �̄�}, we

conclude that 𝑭 = 𝕁⊤
2�̄�𝑬 and thus 𝑽 is of the form proposed in (3.1).

“(ii) ⟹ (iii)”: Let 𝑽 be of the form (3.1). Direct calculation shows that 𝑽 is symplectic

𝑽 ⊤𝕁2�̄�𝑽 = [
𝑬⊤𝕁2�̄�𝑬 𝑬⊤𝑬
−𝑬⊤𝑬 𝑬⊤𝕁2�̄�𝑬

] (3.1)= [
𝟎�̄�×�̄� 𝑰�̄�

−𝑰�̄� 𝟎�̄�×�̄�
] = 𝕁2�̄�.
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Thus, the symplectic inverse 𝑽 + exists. Moreover, direct calculation shows that it equals the

transposed 𝑽 ⊤

𝑽 + = 𝕁⊤
2�̄�𝑽 ⊤𝕁2�̄� = 𝕁⊤

2�̄� [
𝑬⊤

𝑬⊤𝕁2�̄�
] 𝕁2�̄� = [

−𝑬⊤𝕁2�̄�𝕁2�̄�

𝑬⊤𝕁2�̄�
] = [

𝑬⊤

𝑬⊤𝕁2�̄�
] = 𝑽 ⊤.

“(iii) ⟹ (i)”: Let 𝑽 be symplectic with 𝑽 + = 𝑽 ⊤. Then, we can show that 𝑽 has

orthonormal columns with

𝑰�̄� = 𝑽 +𝑽 = 𝑽 ⊤𝑽 .

We proceed by showing that the classical symplectic basis generation techniques from

Definition 2.51 and Remark 2.52 exclusively restrict to the class of orthosymplectic ROBs.

Lemma 3.3 (Orthosymplectic basis generation): The Cotangent Lift (CT), Complex SVD
(cSVD) and the symplectic greedy procedure all determine an orthosymplectic ROB matrix since
the ROB matrices of those methods can be rewritten as 𝑽𝑬 = [𝑬 𝕁⊤

2�̄�𝑬], with different choices
for 𝑬:

𝑬CT = [
𝜱CT

𝟎�̄�×�̄�
] 𝑬cSVD = [

𝜱cSVD

𝜳cSVD

] , 𝑬greedy = [𝒛1, … , 𝒛�̄�],

where

(i) 𝜱CT, 𝜱cSVD, 𝜳cSVD ∈ ℝ�̄�×�̄� are matrices that fulfil

𝜱⊤
CT𝜱CT = 𝑰�̄�, 𝜱⊤

cSVD𝜱cSVD + 𝜳⊤
cSVD𝜳cSVD = 𝑰�̄�, 𝜱⊤

cSVD𝜳cSVD = 𝜳⊤
cSVD𝜱cSVD,

which is equivalent to 𝑬⊤𝑬 = 𝑰�̄� and 𝑬⊤𝕁2�̄�𝑬 = 𝟎�̄�×�̄� for 𝑬CT and 𝑬cSVD,

(ii) 𝒛1, … , 𝒛�̄� ∈ ℝ2�̄� are the basis vectors selected by the greedy algorithm.

Proof. All the listed methods determine a symplectic ROB of the form 𝑽𝑬 = [𝑬 𝕁⊤
2�̄�𝑬]

which satisfies (3.1) with the respective 𝑬 from the list above. By Lemma 3.2, these ROBs are

all orthosymplectic.

Remark 3.4 (Optimal orthosymplectic ROB): It can be shown that the PSD complex SVD
computes an optimal solution of the PSD in the set of orthosympletic ROBs (see [20, 99]).
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From the perspective of classical MOR, the restriction to an orthonormal basis is not

restricting since we can find an orthonormal basis for every subspace �̃� ⊂ 𝕍. For a symplectic

subspace however this is not true as the following lemma shows.

Lemma 3.5 (Orthonormalizing a symplectic basis): Consider the symplectic vector space
(𝕍, 𝜔) and inner product 𝑔. For a symplectic subspace �̃� ⊂ 𝕍 (characterized by a reduced space �̌�
and a symplectic embedding 𝑉 ∈ 𝐿(�̌�; 𝕍)) with a canonical basis {𝑒𝑖, 𝑓𝑖}�̄�

𝑖=1, we can in general
not find a change of basis for �̌� to obtain an orthosymplectic basis.

Proof. It holds 𝑽 ⊤𝕁⊤
2�̄�𝑽 = 𝕁⊤

2�̄� due to canonical symplecticity of the basis. Assume there

exists a change-of-basis matrix 𝑩 ∈ ℝ2�̄�×2�̄� such that ̂𝑽 = 𝑽 𝑩 is orthosymplectic, i.e.

𝕁⊤
2�̄� = ̂𝑽 ⊤𝕁⊤

2�̄�
̂𝑽 = 𝑩⊤ 𝑽 ⊤𝕁⊤

2�̄�𝑽⏟
=𝕁⊤

2�̄�

𝑩 = 𝑩⊤𝕁⊤
2�̄�𝑩, (3.3)

𝑰2�̄� = ̂𝑽 ⊤𝒈 ̂𝑽 = 𝑩⊤𝑽 ⊤𝒈𝑽 𝑩. (3.4)

The first equation shows that the change-of-basis matrix 𝑩 is necessarily symplectic. With

det (𝕁⊤
2�̄�) = 1, we conclude

1 = det (𝕁⊤
2�̄�) (3.3)= det (𝑩⊤𝕁⊤

2�̄�𝑩) = det (𝑩⊤) det (𝕁⊤
2�̄�)⏟⏟⏟⏟⏟

=1

det (𝑩) = det (𝑩⊤) det (𝑩)

and thus

1 = det(𝑰2�̄�) (3.4)= det(𝑩⊤𝑽 ⊤𝒈𝑽 𝑩) = det(𝑩⊤) det(𝑩)⏟⏟⏟⏟⏟⏟⏟
=1

det(𝑽 ⊤𝒈𝑽 ) = det(𝑽 ⊤𝒈𝑽 ).

However, we can find a symplectic basis with det(𝑽 ⊤𝒈𝑽 ) ≠ 1, e.g. for 𝒈 = 𝑰2�̄�, 𝛾 ∈ ℝ ∖ 0

𝑽 =
⎡
⎢
⎢
⎢
⎣

1 0
0 0
0 1
0 𝛾

⎤
⎥
⎥
⎥
⎦

, 𝑽 ⊤𝑽 = [
1 0
0 1 + 𝛾2] , det (𝑽 ⊤𝑽) = 1 + 𝛾2 ≠ 1.

This is a contradiction and thus not every symplectic basis is orthonormalizable.
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3.2 Symplectic, Non-Orthonormal Basis Generation

Essentially, Lemma 3.2 limits an orthosymplectic ROB matrix 𝑽 to be of the form (3.1) which

leaves only half of the basis for optimization in the PSD functional. This sparks the research

question, if there are basis generation techniques which are able to generate symplectic,

non-orthonormal ROBs. We refer to such techniques as a symplectic, non-orthonormal basis
generation technique. In the present section, we present a new non-orthonormal basis genera-

tion technique that is based on the SVD-like decomposition from [117]. Firstly, we reproduce

this decomposition from [117]. Secondly, we present theoretical results which link the value

of the PSD functional with the “singular values” of the SVD-like decomposition, which we

call symplectic singular values.

Theorem 3.6 (SVD-like decomposition [117]): Each real matrix𝑩 ∈ ℝ2�̄�×𝑙 can be decomposed
as the product 𝑩 = 𝑺𝑫𝑸 of a symplectic matrix 𝑺 ∈ ℝ2�̄�×2�̄�, a sparse (potentially non-
diagonal) matrix 𝑫 ∈ ℝ2�̄�×𝑙 and an orthogonal matrix 𝑸 ∈ ℝ𝑙×𝑙 with

𝑫 =

𝑝 𝑞 𝑝 𝑙−2𝑝−𝑞

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝜮s 𝟎 𝟎 𝟎 𝑝

𝟎 𝑰 𝟎 𝟎 𝑞

𝟎 𝟎 𝟎 𝟎 �̄�−𝑝−𝑞

𝟎 𝟎 𝜮s 𝟎 𝑝

𝟎 𝟎 𝟎 𝟎 𝑞

𝟎 𝟎 𝟎 𝟎 �̄�−𝑝−𝑞

,
𝜮s = diag(𝜎s

1, … , 𝜎s
𝑝) ∈ ℝ𝑝×𝑝,

𝜎s
𝑖 > 0 for 1 ≤ 𝑖 ≤ 𝑝,

(3.5)

with 𝑝, 𝑞 ∈ ℕ and rank(𝑩) = 2𝑝 + 𝑞, where the dimensions of the blocks in 𝑫 are denoted by
small letters. This decomposition is referred to as SVD-like decomposition. We call the diagonal
entries 𝜎s

𝑖, 1 ≤ 𝑖 ≤ 𝑝, of the matrix 𝜮s symplectic singular values.

The idea is to define a symplectic basis generation technique based on the SVD-like

decomposition of the snapshot matrix by selecting �̄� ∈ ℕ pairs of columns of 𝑺 to obtain a

symplectic ROB matrix 𝑽 ∈ ℝ2�̄�×2�̄�. In order to decide which columns should be selected,

the following lemma links so-called weighted symplectic singular values to the Frobenius

norm of a matrix.
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Proposition 3.7: Let 𝑩 ∈ ℝ2�̄�×𝑙 with an SVD-like decomposition 𝑩 = 𝑺𝑫𝑸 with 𝑝, 𝑞 ∈ ℕ
from Theorem 3.6. The Frobenius norm of 𝑩 can be rewritten as

‖𝑩‖2
F =

𝑝+𝑞

∑
𝑖=1

(𝑤s
𝑖)

2, 𝑤s
𝑖 ∶=

⎧{
⎨{⎩

𝜎s
𝑖√‖𝒔𝑖‖2

2 + ‖𝒔�̄�+𝑖‖2
2, 1 ≤ 𝑖 ≤ 𝑝,

‖𝒔𝑖‖2 , 𝑝 + 1 ≤ 𝑖 ≤ 𝑝 + 𝑞,
(3.6)

where 𝒔𝑖 ∈ ℝ2�̄� is the 𝑖-th column of 𝑺 for 1 ≤ 𝑖 ≤ 2 ̄𝑁. In the following, we refer to
{𝑤s

𝑖}1≤𝑖≤𝑝+𝑞 as the weighted symplectic singular values.

Proof. With the SVD-like decomposition 𝑩 = 𝑺𝑫𝑸, the Frobenius norm reads

‖𝑩‖2
F = ‖𝑺𝑫𝑸‖2

F = ‖𝑺𝑫‖2
F = trace(𝑫⊤𝑺⊤𝑺𝑫)

=
𝑝

∑
𝑖=1

(𝜎s
𝑖)

2𝒔⊤
𝑖 𝒔𝑖 +

𝑞

∑
𝑖=1

𝒔⊤
𝑝+𝑖𝒔𝑝+𝑖 +

𝑝

∑
𝑖=1

(𝜎s
𝑖)

2𝒔⊤
�̄�+𝑖𝒔�̄�+𝑖

=
𝑝

∑
𝑖=1

(𝜎s
𝑖)

2 (‖𝒔𝑖‖2
2 + ‖𝒔�̄�+𝑖‖2

2) +
𝑞

∑
𝑖=1

∥𝒔𝑝+𝑖∥
2
2 ,

where we use that 𝑸 is orthogonal.

Definition 3.8 (PSD SVD-like decomposition): For a given snapshot matrix 𝑿s ∈ ℝ2�̄�×𝑛s ,
consider an SVD-like decomposition 𝑿s = 𝑺𝑫𝑸 with 𝑝, 𝑞 ∈ ℕ as in Theorem 3.6. The PSD
SVD-like decomposition chooses the ROB matrix

𝑽 = [𝒔𝑖1
, … , 𝒔𝑖�̄�

, 𝒔�̄�+𝑖1
, … , 𝒔�̄�+𝑖�̄�

] ∈ ℝ2�̄�×2�̄�

to stack the �̄� pairs of columns of 𝑺 = [𝒔1, … 𝒔2�̄�] based on �̄� indices

ℐPSD ∶= {𝑖1, … , 𝑖�̄�} ∶= argmax
ℐ⊂{1,…,𝑝+𝑞}

|ℐ|=�̄�

(∑
𝑖∈ℐ

(𝑤s
𝑖)

2) (3.7)

with the largest weighted symplectic singular values 𝑤s
𝑖 from (3.6).

The specific choice of the ROB matrix in the PSD SVD-like decomposition is motivated

by the following lemma which is very analogous to the result in Remark 2.21 known for the

classical POD in the framework of orthogonal projections.
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Theorem 3.9 (PSD functional): Let 𝑽 ∈ ℝ2�̄�×2�̄� be an ROB matrix constructed with the PSD
SVD-like decomposition with the index set ℐPSD ⊂ {1, … , 𝑝 + 𝑞}. Then, the PSD functional

∥(𝑰2�̄� − 𝑽 𝑽 +)𝑿s∥
2
F = ∑

𝑖∈{1,…,𝑝+𝑞}∖ℐPSD

(𝑤s
𝑖)

2 , (3.8)

equals the cumulative sum of the squares of the neglected weighted symplectic singular values.

Proof. For a snapshot matrix 𝑿s ∈ ℝ2�̄�×𝑛s with an SVD-like decomposition 𝑿s = 𝑺𝑫𝑸,

let 𝑽 ∈ ℝ2�̄�×2�̄� be an ROB matrix from the PSD SVD-like decomposition with the index

set ℐPSD = {𝑖1, … , 𝑖�̄�} ⊂ {1, … , 𝑝 + 𝑞} from (3.7). For a cleaner notation, we define two

selection matrices 𝑰ℐPSD
∈ ℝ2�̄�×�̄�, 𝑰ℐ2�̄�

PSD
∈ ℝ2�̄�×2�̄� such that for 1 ≤ 𝛼 ≤ 2 ̄𝑁, 1 ≤ 𝛽 ≤ �̄�,

(𝑰ℐPSD
)

𝛼,𝛽
∶=

⎧{
⎨{⎩

1, 𝛼 = 𝑖𝛽 ∈ ℐPSD,

0, else,
𝑰ℐ2�̄�

PSD
∶= [𝑰ℐPSD

, 𝕁⊤
2�̄�𝑰ℐPSD

],

which allows writing the ROB matrix with 𝑽 = 𝑺𝑰ℐ2�̄�
PSD

. Moreover, it holds

𝑰+
ℐ2�̄�
PSD

= 𝕁⊤
2�̄�𝑰⊤

ℐ2�̄�
PSD

𝕁2�̄� = 𝕁⊤
2�̄� [

𝑰⊤
ℐPSD

𝑰⊤
ℐPSD

𝕁2�̄�
] 𝕁2�̄� = [

𝟎�̄�×�̄� −𝑰�̄�

𝑰�̄� 𝟎�̄�×�̄�
] [

𝑰⊤
ℐPSD

𝕁2�̄�

−𝑰⊤
ℐPSD

] = 𝑰⊤
ℐ2�̄�
PSD

.

Using the orthogonality of 𝑸, symplecticity of 𝑺, the weighted symplectic singular values 𝑤s
𝑖

from (3.6), and, in the last step, that the term in the braces sets all rows of 𝑫 with indices 𝑖
and ̄𝑁 + 𝑖 to zero for all 𝑖 ∈ ℐPSD, the PSD functional reads

∥(𝑰2�̄� − 𝑽 𝑽 +)𝑿s∥
2
F = ∥(𝑰2�̄� − 𝑺𝑰ℐ2�̄�

PSD
𝕁⊤

2�̄�𝑰⊤
ℐ2�̄�
PSD

𝑺⊤𝕁2�̄�)𝑺𝑫𝑸∥
2

F

= ∥𝑺(𝑰2�̄� − 𝑰ℐ2�̄�
PSD

𝕁⊤
2�̄�𝑰⊤

ℐ2�̄�
PSD

=𝕁2�̄�

⏞𝑺⊤𝕁2�̄�𝑺
⏟⏟⏟⏟⏟⏟⏟

=𝑰+
ℐ2�̄�
PSD

=𝑰⊤
ℐ2�̄�
PSD

)𝑫∥
2

F

= ∥𝑺 (𝑰2�̄� − 𝑰ℐ2�̄�
PSD

𝑰⊤
ℐ2�̄�
PSD

) 𝑫∥
2

F
= ∑

𝑖∈{1,…,𝑝+𝑞}∖ℐPSD

(𝑤s
𝑖)

2 .

The computational steps of the new method are concluded in Algorithm 3.1, which is in

the notation of MATLAB®. The function [𝑺, 𝑫, 𝑸, 𝑝, 𝑞] =SVD_like_decomp(𝑿s) computes

an SVD-like decomposition (3.5), while the unused matrix 𝑸 is replaced with ∼.
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Algorithm 3.1: PSD SVD-like decomposition in MATLAB® notation.1

Input: Snapshot matrix 𝑿s ∈ ℝ2�̄�×𝑛s , size 2�̄� of the ROB

Output: Symplectic ROB matrix 𝑽 ∈ ℝ2�̄�×2�̄�

1 [𝑺, 𝑫, ∼, 𝑝, 𝑞] ← SVD_like_decomp(𝑿s) ▷ compute SVD-like decomposition

2 𝝈s ← diag(𝑫(1 ∶ 𝑝, 1 ∶ 𝑝)) ▷ extract symplectic singular values

3 𝒓 ← sum(power(𝑺, 2), 1) ▷ squares of the 2-norm of each column of 𝑺

4 𝒘s ← times(𝝈s, sqrt(𝒓(1 ∶ 𝑝) + 𝒓( ̄𝑁 + (1 ∶ 𝑝)))) ▷ 𝑤s
1, … , 𝑤s

𝑝

5 𝒘s ← [𝒘s, 𝒓(𝑝 + (1 ∶ 𝑞))] ▷ append w. sympl. sing. val. 𝑤s
𝑝+1, … , 𝑤s

𝑝+𝑞

6 [∼, ℐPSD] ← maxk(𝒘s, �̄�) ▷ find indices of �̄� highest w. sympl. sing. val.

7 𝑽 ← 𝑺(∶, [ℐPSD, ̄𝑁 + ℐPSD]) ▷ select columns with indices ℐPSD and ̄𝑁 + ℐPSD

Remark 3.10 (Computation of SVD-like decomposition): The literature offers multiple meth-
ods to compute an SVD-like decomposition of 𝑩: In [117], a factorization of 𝑩⊤𝕁2�̄�𝑩 is used, in
[116] an implicit version is formulated which avoids the computation of the full product𝑩⊤𝕁2�̄�𝑩,
and [2] is based on a block-power iterative method. Here, we use the implicit approach [116].

3.2.1 Interplay of Non-Orthonormal and Orthonormal ROBs

To compare the PSD SVD-like decomposition with the orthosymplectic basis generation

techniques, we present two bounds on the respective PSD functional. In both cases, we

require the basis size to satisfy �̄� ≤ ̄𝑁 or 2�̄� ≤ ̄𝑁, respectively. This restriction is not limiting

in the context of symplectic MOR as in all application cases �̄� ≪ ̄𝑁. The fundamental

theorem in these bounds is the Orthogonal SR decomposition, which is introduced first.

Theorem 3.11 (Orthogonal SR decomposition e.g. [27, 117]): For each matrix 𝑩 ∈ ℝ2�̄�×𝑙

with 𝑙 ≤ ̄𝑁, there exists an orthosymplectic matrix 𝑺SR ∈ ℝ2�̄�×2�̄�, an upper triangular matrix
𝑹11 ∈ ℝ𝑙×𝑙 and a strictly upper triangular matrix𝑹21 ∈ ℝ𝑙×𝑙 which characterize the orthogonal
SR decomposition

𝑩 = 𝑺SR

⎡
⎢
⎢
⎢
⎣

𝑹11

𝟎(�̄�−𝑙)×𝑙

𝑹21

𝟎(�̄�−𝑙)×𝑙

⎤
⎥
⎥
⎥
⎦

= [𝑺𝑙 𝕁⊤
2�̄�𝑺𝑙] [

𝑹11

𝑹21
] ,

𝑺SR = [𝒔1, … , 𝒔�̄�, 𝕁⊤
2�̄�𝒔1, … , 𝕁⊤

2�̄�𝒔�̄�],

𝑺𝑙 = [𝒔1, … , 𝒔𝑙].

1The algorithm is adapted from [20].
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The first bound relates an orthosymplectic basis with the POD by proving that there exists

an orthosymplectic basis which requires at most twice the number of basis vectors to obtain

an orthogonal projection error smaller or equal to the classical POD. A similar result has been

presented in [100, Prop. 3.11]. In comparison, we are able to improve it by a factor of 1/2.

Proposition 3.12 (Estimate PODwith orthosymplectic PSD): Let 𝑽 ∈ ℝ2�̄�×�̄� be a minimizer
of POD with �̄� ≤ ̄𝑁 basis vectors and let 𝑽𝑬 ∈ ℝ2�̄�×2�̄� be a minimizer of the PSD in the class
of orthosymplectic ROBs with 2�̄� basis vectors, i.e. twice as many basis vectors as 𝑽. Then, the
orthogonal projection errors of 𝑽𝑬 and 𝑽 satisfy

∥(𝑰2�̄� − 𝑽𝑬𝑽 ⊤
𝑬 )𝑿s∥

2
F ≤ ∥(𝑰2�̄� − 𝑽 𝑽 ⊤) 𝑿s∥

2
F .

Proof. Let 𝑽 ∈ ℝ2�̄�×�̄� be a minimizer of POD and 𝑽 = 𝑺SR,�̄�𝑹SR an SR decomposition of

it with 𝑺SR,�̄� ∶= [𝑺�̄�, 𝕁⊤
2�̄�𝑺�̄�] ∈ ℝ2�̄�×2�̄� and 𝑹SR ∶= ([𝑹⊤

11, 𝑹⊤
21])⊤ ∈ ℝ2�̄�×�̄�. Since both

matrices 𝑽 and 𝑺SR,�̄� have orthonormal columns and colspan(𝑽 ) ⊂ colspan(𝑺SR,�̄�), we can

show that 𝑺SR,�̄� yields a lower orthogonal projection error than 𝑽 with

∥(𝑰2�̄� − 𝑺SR,�̄�𝑺⊤
SR,�̄�) 𝑿s∥

2
F

= ∥(𝑰2�̄� − 𝑺SR,�̄�𝑺⊤
SR,�̄�) (𝑰2�̄� − 𝑽 𝑽 ⊤) 𝑿s∥

2
F

≤ ∥𝑰2�̄� − 𝑺SR,�̄�𝑺⊤
SR,�̄�∥2

2⏟⏟⏟⏟⏟⏟⏟⏟⏟
≤1

∥(𝑰2�̄� − 𝑽 𝑽 ⊤) 𝑿s∥
2
F

≤ ∥(𝑰2�̄� − 𝑽 𝑽 ⊤) 𝑿s∥
2
F .

Let 𝑽𝑬 ∈ ℝ2�̄�×2�̄� be a minimizer of the PSD in the class of orthosymplectic ROBs. Since

both ROBs are orthosymplectic and 𝑽𝑬 is assumed to be optimal, it yields a lower projection

error than 𝑺SR,�̄� and thus

∥(𝑰2�̄� − 𝑽 𝑽 ⊤) 𝑿s∥
2
F ≥ ∥(𝑰2�̄� − 𝑺SR,�̄�𝑺⊤

SR,�̄�) 𝑿s∥
2
F

≥ ∥(𝑰2�̄� − 𝑽𝑬𝑽 ⊤
𝑬 ) 𝑿s∥

2
F .

The second bound shows that for a given (potentially non-orthonormal) minimizer of PSD,

an orthosymplectic ROB requires at most twice the number of basis vectors to achieve the

same or lower symplectic projection error.

Proposition 3.13 (Estimate PSD with orthosymplectic PSD): We assume that there exists a
minimizer 𝑽 ∈ ℝ2�̄�×2�̄� of the PSD for a basis size 2�̄� ≤ ̄𝑁 with potentially non-orthonormal
columns. Let 𝑽𝑬 ∈ ℝ2�̄�×4�̄� be a minimizer of the PSD in the class of orthosymplectic bases of
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size 4�̄�, i.e. twice as many basis vectors as 𝑽. Then, we know that the symplectic projection error
of 𝑽𝑬 is less than or equal to the one of 𝑽, i.e.

∥(𝑰2�̄� − 𝑽𝑬𝑽 +
𝑬 )𝑿s∥

2
F ≤ ∥(𝑰2�̄� − 𝑽 𝑽 +)𝑿s∥

2
F .

Proof. The proof works analogously to Proposition 3.12.

3.3 Numerical Experiments

The numerical experiment investigates the performance of different (structure-preserving)

MOR techniques for a parametric Hamiltonian equation obtained from semi-discretization of

a PDE for linear elastodynamics.

3.3.1 Full-Order Model

Linear elasticity, in general, can be described by a Lamé–Navier equation (sometimes also

described as Navier–Cauchy equation)

𝜌0
𝜕2

𝜕2𝑡2 𝑞(𝜉, 𝑡, 𝝁) − 𝜇L 𝛥𝜉𝑞(𝜉, 𝑡, 𝝁) + (𝜆L + 𝜇L)∇𝜉 (div𝜉 (𝑞(𝜉, 𝑡, 𝝁))) = 𝜌0 𝑔(𝜉, 𝑡)

complemented by appropriate boundary conditions, where 𝜉 ∈ Ω denotes the spatial variable

in the domain Ω ⊂ ℝ2, 𝑡 ∈ [𝑡0, 𝑡end] the time, 𝜌0 ∈ ℝ>0 the density, 𝝁 = (𝜆L, 𝜇L) ∈ ℝ2
>0

the so-called Lamé parameters, ∇𝜉 the gradient, 𝛥𝜉 the Laplacian, div𝜉 the divergence, and

𝑔 ∶ Ω × [𝑡0, 𝑡end] → ℝ2 an external body force. We use non-dimensionalization (see e.g. [72,

Cha. 4.1], [18, Sec. 2.2 and 5.1.3]) to obtain a dimensionless formulation. Without external

body forces, i.e. 𝑔(𝜉, 𝑡) = 𝟎2×1, the system can be understood as a parametric Hamiltonian

PDE [85, Ex. 3.2] with

𝜕𝑡𝑞(𝑡, 𝜉; 𝜇) = (
𝛿ℋPDE

𝛿𝑝
[𝑞, 𝑝; 𝜇]) (𝑡, 𝜉; 𝜇),

𝜕𝑡𝑝(𝑡, 𝜉; 𝜇) = − (
𝛿ℋPDE

𝛿𝑞
[𝑞, 𝑝; 𝜇]) (𝑡, 𝜉; 𝜇),

ℋPDE[𝑞, 𝑝; 𝝁] = 1
2

∫
Ω

𝜌0 ‖𝑝‖2
2 + ⟨𝜎[𝑞; 𝝁], 𝜀[𝑞]⟩F d𝜉,
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Figure 3.1: The beam model with exaggerated displacements at the time with maximum dis-
placement (gray) and at the final time 𝑡end (blue). This figure is taken from [20].

with the stress and the strain tensor

𝜎[𝑞; 𝝁] = 𝜆L trace (𝜀[𝑞]) 𝑰2 + 2𝜇L𝜀[𝑞] ∈ ℝ2×2, 𝜀[𝑞] = 1
2

(∇𝜉𝑞 + (∇𝜉𝑞)⊤) ∈ ℝ2×2.

In particular, we model a cantilever beam clamped on the left side with a time-dependent

force applied to the right boundary (see Figure 3.1) by choosing a rectangular domain Ω

together with zero Dirichlet boundary conditions on the left boundary, forced Neumann

condition on the right boundary, and otherwise zero Neumann conditions. We inspect the

model for different material parameters

𝝁 = (𝜆L, 𝜇L) ∈ 𝑃 = [35 ⋅ 109, 125 ⋅ 109] N/m2 × [35 ⋅ 109, 83 ⋅ 109] N/m2,

which vary between cast iron and steel with approx. 12% chromium ([90], App. E 1 Table 1).

Fixed model parameters are 𝜌0 = 7856 kg/m3, 𝑡0 = 0 s, 𝑡end = 7.2 ⋅ 10−2 s.
For discretization in space, we use a triangular mesh and the Finite Element Method

(FEM) with piecewise linear Lagrangian ansatz functions (see e.g. [37]). This results in a

non-autonomous Hamiltonian system with a quadratic separable Hamiltonian (2.23)

𝒙(𝑡, 𝝁) = [
𝒒(𝑡, 𝝁)
𝒑(𝑡, 𝝁)

] , 𝑯(𝝁) = [
𝑲(𝝁) 𝟎�̄�×�̄�

𝟎�̄�×�̄� 𝑴−1 ] , 𝒉(𝑡, 𝝁) = [
−𝒇(𝑡, 𝝁)

𝟎�̄�×1
] , (3.9)

with the displacements 𝒒(𝑡, 𝝁) ∈ ℝ�̄�, the conjugated momenta 𝒑(𝑡, 𝝁) ∈ ℝ�̄�, the stiffness

and mass matrix 𝑲(𝝁), 𝑴 ∈ ℝ�̄�×�̄�, and the vector of external forces 𝒇(𝑡, 𝝁) ∈ ℝ�̄�. For

time integration, we use the implicit midpoint rule with 𝑛𝑡 = 151 time steps.
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method reduced-order basis (ROB) matrix orthonorm. sympl.

POD full 𝑽 = 𝑼(∶, 1 ∶ 2�̄�) 3 7

𝑼 = left-SVD(𝑿s)

POD separate 𝑽 = [
𝑼𝒒(∶, 1 ∶ �̄�) 𝟎�̄�×�̄�

𝟎�̄�×�̄� 𝑼𝒑(∶, 1 ∶ �̄�)
] 3 7

𝑼𝒒 = left-SVD ([𝒒1, … , 𝒒𝑛s
])

𝑼𝒑 = left-SVD ([𝒑1, … , 𝒑𝑛s
])

PSD cSVD 𝑽 = [𝑬(∶, 1 ∶ �̄�) 𝕁⊤
2�̄�𝑬(∶, 1 ∶ �̄�)] 3 3

𝑬 = [
𝜱
𝜳

] , 𝜱 + i𝜳 = left-cSVD (𝑪s)

𝑪s = [𝒒1 + i𝒑1, … , 𝒒𝑛s
+ i𝒑𝑛s

]
sympl. greedy 𝑽 = [𝑬(∶, 1 ∶ �̄�) 𝕁⊤

2�̄�𝑬(∶, 1 ∶ �̄�)] 3 3

𝑬 from greedy algorithm (Remark 2.52)

PSD SVD-like 𝑽 = [𝒔𝑖1
, … , 𝒔𝑖�̄�

, 𝒔�̄�+𝑖1
, … , 𝒔�̄�+𝑖�̄�

] 7 3

𝑺 = [𝒔1, … , 𝒔2�̄�] from (3.5)

ℐPSD = {𝑖1, … , 𝑖�̄�} from (3.7)

Table 3.1: Basis generation techniques relevant in the numerical experiments of Chapter 3,
where MATLAB® notation is used to denote the selection of columns and left-SVD(⋅) and
left-cSVD(⋅) denote obtaining the left-singular-vectors from SVD and the complex SVD,
respectively. This table is adapted from [20].

3.3.2 Experiments

In four experiments, we investigate (i) the preservation of the Hamiltonian (Section 3.3.2.1),

(ii) the ROB quality on the training data (Section 3.3.2.2), (iii) the symplecticity and orthonor-

mality of the ROB (Section 3.3.2.3), and (iv) the ROM quality on test data (Section 3.3.2.4).

The considered MOR techniques are summarized in Table 3.1. Two different POD methods

are considered: POD full state applies the POD applied to the full state 𝒙(𝑡, 𝝁), while POD
separate states builds a POD basis for the displacement 𝒒(𝑡, 𝝁) and linear momentum states

𝒑(𝑡, 𝝁) separately. The symplectic greedy uses the modified symplectic Gram–Schmidt

procedure with re-orthogonalization [3] to obtain an orthosymplectic ROB in each iteration.

In order to compute snapshots for the basis generation, we choose nine different training

parameter vectors 𝝁 ∈ 𝑃train ⊂ 𝑃 on a regular grid. Thus, the number of snapshots is

𝑛s = 9 ⋅ 151 = 1359. The resultant ROMs are evaluated for 16 random parameter vectors
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Figure 3.2: Evolution of the reduced Hamiltonian for POD separate states for a selected parame-
ter vector (𝜆, 𝜇) ∈ 𝑃. This figure is adapted from [20].

that are distinct from the nine training parameter vectors as a generalization experiment. The

size 2�̄� of the ROB 𝑽 is varied in steps of 20 with 2�̄� ∈ {20, 40, … , 280, 300}. In total, this

results in 15 different basis sizes, which are investigated for each of the 16 random parameter

vectors 𝝁 ∈ 𝑃test ⊂ 𝑃, which results in 240 reduced simulations for each MOR technique.

The numerical experiments are implemented in RBmatlab1, which is an open-source library

based on the proprietary software package MATLAB®. The experiments can be reproduced

with the add-on for RBmatlab 1.16.09 provided in [19].

3.3.2.1 Preservation of Hamiltonian over Time

The ROMs obtained from symplectic MOR are Hamiltonian systems and thus preserve the

quadratic Hamiltonian over time (see Lemma 2.29 and Remark 2.37), which is one big advan-

tage of this MOR technique. In the present experiment, we briefly validate this preservation

of the Hamiltonian numerically for a beam model with external forces 𝒇(𝑡; 𝝁), which are

constant in time. We observe that all PSD methods from Table 3.1 preserve the Hamiltonian

over time, while the POD methods show a non-constant Hamiltonian. We exemplify this

non-constant evolution in Figure 3.2 for one selected test parameter vector (𝜆, 𝜇) ∈ 𝑃 and

three selected basis sizes 2�̄� with a basis generated with POD separate states. This shows

that PSD methods are energy-preserving while the POD methods not necessarily do so.

In what follows, we consider a more complex systemwith a time-dependent forcing 𝒇(𝑡, 𝝁),
which results in a non-autonomous beam model.

1https://www.morepas.org/software/rbmatlab/

https://www.morepas.org/software/rbmatlab/
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Figure 3.3: Left: Projection error (3.10). Right: Decay of the (symplectic) singular values (2.20),
(3.5), and (3.6). This figure is adapted from [20].

3.3.2.2 ROB Quality Based on Training Data

In order to quantify the approximation quality based on the training data, we compare the

projection error and the respective singular values. As projection error, we consider the error

on the training data collected in the snapshot matrix 𝑿s, i.e.

𝑒𝑙2
(2�̄�) = ∥(𝑰2�̄� − 𝑽 𝑾 ⊤)𝑿s∥

2
F ,

POD ∶ 𝑾 ⊤ = 𝑽 ⊤,

PSD ∶ 𝑾 ⊤ = 𝑽 +(= 𝑽 ⊤for orthosympl.).
(3.10)

Figure 3.3 (left) shows the projection error (3.10). For all basis generation techniques, we

observe an exponential decay of the projection error for an increasing ROB size, which is

an indicator that MOR can be applied to this model. As expected from theory, POD full

state yields the lowest projection error. The newly introduced PSD SVD-like shows a lower

projection error than the other symplectic methods for 2�̄� ≥ 80 and yields a similar projection

error for 2�̄� ≤ 60. This supports the assumption that the PSD SVD-like has more freedom

to adapt to the data than the other symplectic basis generation techniques. Based on the

projection error solely, the full-state POD is expected to yield the best approximation of the

FOM data. Figure 3.3 (right) displays the difference between the singular values 𝜎𝑖 from

(2.20), the symplectic singular values 𝜎s
𝑖 from (3.5), and the weighted symplectic singular

values 𝑤s
𝑖 from (3.6). The weighted symplectic singular values are sorted by the magnitude

of the non-weighted symplectic singular values. The non-monotonic, zigzagging behavior of

𝑤s
𝑖 shows that the weighting, indeed, influences the order in which the modes are selected.
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Figure 3.4: The orthonormality (left) and the symplecticity (right) from (3.11). This figure is
adapted from [20].

3.3.2.3 ROB Quality in Terms of Structure

Next, we investigate the structural properties of the ROBs. We check the orthonormality and

the symplecticity of the respective ROBs numerically with

𝑜𝑽 (2�̄�) = ∥𝑽 ⊤𝑽 − 𝑰2�̄�∥F , 𝑠𝑽 (2�̄�) = ∥𝕁⊤
2�̄�𝑽 ⊤𝕁2�̄�𝑽 − 𝑰2�̄�∥F . (3.11)

In Figure 3.4, we show both these values for the considered basis generation techniques and

sizes 2�̄� of the ROB. The orthonormality of the ROBs (Figure 3.4, left) is as expected from

theory: All MOR techniques compute an orthonormal ROB except for the PSD SVD-like.

For the symplectic greedy, a minor loss in the orthonormality is observed for an increasing

ROB size which, however, is known as an issue of the modified symplectic Gram–Schmidt

procedure with re-orthogonalization [3]. The results for the symplecticity of the ROBs

(Figure 3.4, right) are also in accordance with the theory. All PSD methods generate a

symplectic ROB, while the POD methods do not. The symplecticity slightly degenerates

for PSD SVD-like with higher reduced dimensions 2�̄�, which is assumed to stem from

the algorithm used to compute an SVD-like decomposition. However, in the following

experiments, no major impact on the reduction quality is observed.

3.3.2.4 ROM Quality

Finally, we investigate how the different ROMs perform on test data by examining 16 test

parameter vectors 𝝁 ∈ 𝑃test, which are distinct from the training parameter vectors (general-
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Figure 3.5: Statistics of the reduction error (3.12) over 16 test parameter vectors 𝝁 ∈ 𝑃test for
different sizes 2�̄� of the ROB and different MOR techniques.

ization experiment). We investigate the relative reduction error

𝑒rel(2�̄�, 𝝁) ∶=
√√√
⎷

∑𝑛𝑡
𝑘=1 ‖𝒙𝑘(𝝁) − 𝑽 �̌�𝑘(𝝁)‖2

2

∑𝑛𝑡
𝑘=1 ‖𝒙𝑘(𝝁)‖2

2

(3.12)

with the FOM solution 𝒙𝑘(𝝁) ∈ ℝ2�̄�, the ROM solution �̌�𝑘(𝝁) ∈ ℝ2�̄�, and a test parameter

vector 𝝁 ∈ 𝑃train. The statistics of the relative reduction error 𝑒rel over all 16 test parameter

vectors are displayed in Figure 3.5 with box plots. The visual elements of a box plot are: The

box (25%- and 75%-quantile), a dash in the box (median), whiskers (denoting the range of

data points which lay within 1.5 times the interquartile range (IQR)), and crosses (outliers

that are outside the IQR). Errors above 100 = 100% are truncated. Figure 3.5 (left) shows that

the non-symplectic MOR techniques yield high errors and strongly non-monotonic behavior.

For nearly each basis size 2�̄�, one of the 16 test parameter vectors produces a ROM with a

relative error above 100%. Overall, none of these methods is able to produce a reliable ROM.

Figure 3.5 (right) displays the same error for the symplectic MOR techniques. In contrast

to the non-symplectic methods, all symplectic methods show an exponentially decreasing

error. Moreover, the IQR of the box plots is remarkably small, which indicates that these

methods generalize very well to unseen parameters and yield a reliable ROM. The highest

error observed for the orthosymplectic methods is 1.11% and for PSD SVD-like 0.11%. The

PSD SVD-like shows a reduction error approximately one order lower consistently for all

considered ROB sizes. This again supports the claim that the PSD SVD-like adapts better to

the data than the orthosymplectic methods.



PSD-Greedy Symplectic
Basis Generation 4

As discussed in Remark 2.22, greedy basis generation methods are standard for parametric,

time-dependent problems with high-dimensional parameter spaces. This motivates to derive

a symplectic greedy technique, which is the subject of this chapter. We call the new method

the PSD-greedy. It is based on the ideas of the POD-greedy algorithm (Remark 2.22) and

complements the existing symplectic greedy approach (Remark 2.52): Like the POD-greedy,

we compress whole trajectories in each iteration of the greedy algorithm. In order to preserve

the symplectic structure, however, we use a symplectic instead of an orthogonal projection.

The advantages of our formulation in comparison to the existing symplectic greedy approach

[81] are twofold: (i) It is known for the non-structure-preserving case [45, 49] that stagnation

issues may appear if single snapshots of maximum projection error are selected in each greedy

iteration (as in the existing symplectic greedy) instead of consideringwhole trajectories in each

greedy iteration (as in our formulation). Moreover, (ii) our approach works in combination

with any symplectic basis generation technique, while the existing symplectic greedy relies

on an orthosymplectic basis generation. Thus, we are able to use the PSD SVD-like from the

previous chapter with the new PSD-greedy formulation, which leads to improved accuracy

in the numerical experiments. The following is adapted from [26].

4.1 Formulation of PSD-Greedy

In this section, we introduce the new PSD-greedy. The PSD-greedy is an iterative algorithm.

In each iteration 𝑖 of the algorithm, the current ROB matrix 𝑽𝑖 is extended greedily with

basis vectors from the worst-approximated parameter. As a first step, we characterize how to

extend a symplectic basis with additional basis vectors in a structure-preserving way.
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Lemma 4.1 (Symplectic extension): For two given symplectic matrices 𝑽 ∈ ℝ2�̄�×2�̄�𝑽 and
𝑾 ∈ ℝ2�̄�×2�̄�𝑾 , the matrix stacking the 2�̄�𝑼 ∶= 2�̄�𝑽 + 2�̄�𝑾 columns of 𝑽 and 𝑾 with

𝑼 ∶= [𝑽 , 𝑾 ]𝑷 ∈ ℝ2�̄�×2�̄�𝑼, 𝑷 =
⎡
⎢
⎢
⎢
⎣

𝑰�̄�𝑽
𝟎 𝟎 𝟎

𝟎 𝟎 𝑰�̄�𝑽
𝟎

𝟎 𝑰�̄�𝑾
𝟎 𝟎

𝟎 𝟎 𝟎 𝑰�̄�𝑾

⎤
⎥
⎥
⎥
⎦

∈ ℝ2�̄�𝑼×2�̄�𝑼, (4.1)

is a symplectic matrix if and only if the symplectic projection of 𝑽 on 𝑾 vanishes or vice versa,

𝑾 +𝑽 = 𝟎2�̄�𝑾×2�̄�𝑽
or 𝑽 +𝑾 = 𝟎2�̄�𝑽×2�̄�𝑾

. (4.2)

Proof. Since 𝑷 is of full rank, symplecticity of 𝑼 is equivalent to

𝑷 𝑼⊤𝕁2�̄�𝑼𝑷 ⊤ = 𝑷 𝕁2�̄�𝑼
𝑷 ⊤

by multiplying with 𝑷 and 𝑷 ⊤ from left and right. Both of these terms can be rewritten to

𝑷 𝑼⊤𝕁2�̄�𝑼𝑷 ⊤ = [
𝑽 ⊤

𝑾 ⊤] 𝕁2�̄� [𝑽 𝑾] = [
𝑽 ⊤𝕁2�̄�𝑽 𝑽 ⊤𝕁2�̄�𝑾
𝑾 ⊤𝕁2�̄�𝑽 𝑾 ⊤𝕁2�̄�𝑾

]

𝑷 𝕁2�̄�𝑼
𝑷 ⊤ = [

𝕁2�̄�𝑽
𝟎2�̄�𝑽×2�̄�𝑾

𝟎2�̄�𝑾×2�̄�𝑽
𝕁2�̄�𝑾

]
(4.3)

If symplecticity of 𝑽 and 𝑾 is assumed, then the terms for the two parts in (4.3) on the

diagonal are equal. Thus, symplecticity of 𝑼 is equivalent to

𝑾 ⊤𝕁2�̄�𝑽 = 𝟎2�̄�𝑾×2�̄�𝑽
. (4.4)

Multiplying (4.4) (or the transposed of it) with 𝕁⊤
2�̄� from the left is equivalent to the symplectic

projections (4.2).

Note that the construction of 𝑼 in Lemma 4.1 relies on gluing two matrices 𝑽 and 𝑾. In

general, linearly dependent columns may occur in this step. However, under the assumptions

of Lemma 4.1, the resulting matrix 𝑼 is guaranteed to be symplectic and thus the columns of

the glued matrix 𝑼 are linearly independent.
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We continue to introduce the new symplectic basis generation technique, the PSD-greedy.

We assume to be given the following building blocks (BB):

(BB1): An error indicator 𝛥 (⋅, ⋅) ∶ ℝ2�̄�×2�̄� × 𝑃, (𝑽 , 𝝁) ↦ 𝛥 (𝑽 , 𝝁) that estimates the

approximation quality of a given ROB matrix 𝑽 and a given parameter vector 𝝁.

Possible choices are the projection error of the snapshots, the actual reduction error

(which requires running ROMs during the greedy procedure), or an error estimator.

(BB2): A symplectic basis generation technique 𝑽 = PSD (𝑹) which generates ROB matrices

from 𝑹 ∈ ℝ2�̄�×𝑛s such that

a) 𝑽 is a symplectic matrix,

b) colspan (𝑽 ) ⊂ colspan (𝑹), i.e. 𝑽 is in the range of the given data matrix 𝑹.

(BB3): The permutation matrix 𝑷 ∈ ℝ2�̄�𝑼×2�̄�𝑼 from Lemma 4.1 for different sizes 2�̄�𝑼,

which is why we denote the different sizes as a subscript with 𝑷2�̄�𝑼
.

Based on these building blocks, the PSD-greedy is presented in Algorithm 4.1 as Python

pseudocode. The goal of the algorithm is to compute a symplectic ROB matrix 𝑽𝑖max
with a

maximum of 𝑖max greedy iterations. The inputs are (a) a finite parameter set 𝑀 ⊂ 𝑃, (b) a

target error tolerance 𝑟tol > 0 and (c) a snapshot generation algorithm 𝑿s ∶ 𝑀 → ℝ2�̄�×𝑛s(𝝁),

which generates a snapshot matrix 𝑿s(𝝁) for a given parameter 𝝁 where the number of

snapshots 𝑛s(𝝁) might vary with 𝝁. In each greedy iteration 𝑖, the PSD-greedy determines

“greedily” the parameter vector 𝝁𝑖 ∈ 𝑀 with maximum error via the error indicator from

(BB1). The symplectic basis generation technique from (BB2) is then applied to the residual

𝑹𝑖 from Line 5, which projects the snapshot matrix 𝑿s(𝝁𝑖) such that contributions from the

previous ROB matrix 𝑽𝑖−1 are eliminated. Finally, the output of the PSD is then concatenated

with the basis of the previous iteration with the symplectic extension matrix from (BB3). In
the first iteration of the algorithm, the ROB matrix 𝑽0 ∈ ℝ2�̄�×0 is empty. All terms linked to

𝑽0 are neglected, i.e. set to zero, when the error indicator in Lines 2 and 4 is evaluated and the

residual in Line 5 is computed. We do not restrict how many basis vectors are added in each

iteration. The simplest choice is to add a fixed number 𝛥�̄�1 = ⋯ = 𝛥�̄�𝑖max
, 𝛥�̄�𝑖 ∶= �̄�𝑖 −�̄�𝑖−1,

of basis vectors in each iteration. More adaptivity is obtained if the module PSD (⋅) chooses

the number of basis vectors in each iteration based on the given residual.
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Algorithm 4.1: PSD-greedy1

Input: Finite parameter set 𝑀 ⊂ 𝑃, error tolerance 𝑟tol > 0, snapshot-generation
algorithm 𝑿s ∶ 𝑀 → ℝ2�̄�×𝑛s

Output: Symplectic ROB matrix 𝑽𝑖max
∈ ℝ2�̄�×2�̄�𝑖max , number of iterations 𝑖max

1 𝑽0 ← [ ]; 𝑖 ← 0; �̄�0 = 0 ▷ start with empty ROB matrix

2 while ∃𝝁 ∈ 𝑀 ∶ 𝛥 (𝑽𝑖, 𝝁) > 𝑟tol do
3 𝑖 ← 𝑖 + 1
4 𝝁𝑖 ← argmax𝝁∈𝑀 𝛥 (𝑽𝑖−1, 𝝁)
5 𝑹𝑖 ← (𝑰2�̄� − 𝑽𝑖−1𝑽 +

𝑖−1)𝑿s(𝝁𝑖) ▷ compute residual w.r.t. previous basis

6 𝑽 ext
𝑖 ← PSD (𝑹𝑖) ▷ compute extension

7 �̄�𝑖 ← �̄�𝑖−1 + size(𝑽 ext
𝑖 , −1)/2 ▷ update basis size

8 𝑽𝑖 ← [𝑽𝑖−1 𝑽 ext
𝑖 ]𝑷2�̄�𝑖

▷ extend ROB matrix 'symplectically', see (4.1)

9 end
10 𝑖max ← 𝑖

In the remainder of this section, we prove that Algorithm 4.1 indeed computes a symplectic

ROB matrix.

Lemma 4.2 (Symplecticity of one iteration): For a given matrix 𝑿 ∈ ℝ2�̄�×𝑛𝑿 and a given
symplectic matrix 𝑾 ∈ ℝ2�̄�×2�̄�𝑾 , the extended matrix

𝑼 ∶= [𝑾 𝑽 ext]𝑷 with 𝑽 ext = PSD (𝑹) ∈ ℝ2�̄�×2�̄�𝑽 ext , 𝑹 = (𝑰2�̄� − 𝑾 𝑾 +)𝑿,

is a symplectic matrix.

Proof. With Lemma 4.1, it is sufficient to show 𝑾 ⊤𝕁2�̄�𝑽 ext = 𝟎2�̄�𝑾×2�̄�𝑽 ext since 𝑾 and

𝑽 ext are symplectic matrices by assumption. Due to assumption (b) from (BB2), there exists

a matrix 𝑪 ∈ ℝ𝑛𝑿×2�̄�𝑽 ext such that we can express 𝑽 ext = 𝑹𝑪. With the identity

𝑾 ⊤𝕁2�̄�𝑾 𝑾 + = 𝑾 ⊤𝕁2�̄�𝑾 𝕁⊤
2�̄�𝑾

𝑾 ⊤𝕁2�̄�
(2.21)= 𝕁2�̄�𝑾

𝕁⊤
2�̄�𝑾

𝑾 ⊤𝕁2�̄�
(2.20)= 𝑾 ⊤𝕁2�̄�,

it indeed holds

𝑾 ⊤𝕁2�̄�𝑽 ext = 𝑾 ⊤𝕁2�̄�(𝑰2�̄� − 𝑾 𝑾 +)𝑿𝑪 = 𝟎2�̄�𝑾×2�̄�𝑽 ext .
1The algorithm is adapted from [26].
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Figure 4.1: Discretized fusiform-muscle-shaped domain Ω in blue and boundary traction

(Neumann values) as dark red arrows. This figure is taken from [26].

Theorem 4.3 (Symplecticity of ROB matrix generated by PSD-greedy): The ROB matrix
computed by the PSD-greedy (Algorithm 4.1) is a symplectic ROB matrix.

Proof. We prove the statement by induction over the greedy iteration 𝑖. The induction basis

holds for 𝑖 = 1 since the ROBmatrix 𝑽1 = 𝑽 ext
1 is symplectic by assumption (a) of (BB2). The

induction step is proven by Lemma 4.2: It shows that all ROB matrices 𝑽𝑖 in Algorithm 4.1 are

symplectic matrices (with 𝑿 = 𝑿s(𝝁𝑖), 𝑾 = 𝑽𝑖−1, 𝑽 ext = 𝑽 ext
𝑖 , 𝑷 = 𝑷2�̄�𝑖

, 𝑼 = 𝑽𝑖).

4.2 Numerical Experiments

4.2.1 Full-Order Model

As FOM, we consider linear elasticity (see Section 3.3.1) with a three-dimensional physical

domain Ω ⊂ ℝ3 that is shaped like a so-called fusiform muscle (see Figure 4.1). An external

force is applied in axial direction on the right boundary of the muscle. The parameter

vector 𝝁 ∶= [𝜆L, 𝜇L, 𝐹max] ∈ ℝ3
>0 varies the Lamé parameters (𝜆L, 𝜇L) and a parameter

for external forces 𝐹max, while the parameter domain is based on the parameters given in

[62] with 𝜆L ∈ [6e4, 1.2e5] N/m2, 𝜇L ∈ [6e3, 1.22e4] N/m2, 𝐹max ∈ [0.49, 5.89] N. The

density 𝜌0 = 1059.7 kg/m3 is fixed and the considered time interval is 𝐼𝑡 ∶= [0, 0.5]𝑠. For
spatial discretization, we use FEM with 1920 first-order Lagrangian elements, which results

in a non-autonomous Hamiltonian system of the same structure as (3.9). For symplectic

integration, we use the implicit midpoint rule (see Section 2.3.2) with 𝑛𝑡 = 1000 time steps.

The experiments are implemented in the MOR framework pyMOR [87] in combination with

the FEM library FEnics [71].
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Greedy MOR technique abbreviation ortho. sympl. ref.

POD-greedy with PODG 3 7 [49]
𝑯fix as inner product matrix

Based on symplectic Gram–Schmidt sGSG 3 3 [81]

PSD-greedy with PSD (⋅) submodule:
PSD Complex SVD PSDG cSVD 3 3 [99]
PSD SVD-like decomposition PSDG SVD-like 7 3 [20]

Table 4.1: Greedy MOR techniques used in the experiments classified by orthogonality and
symplecticity. This table is taken from [26].

4.2.2 Experiments

The approximation quality of four different greedy basis generation techniques is compared:

• the POD-greedy (PODG) with 𝑯fix as inner product matrix,

• the newly introduced PSD-greedy from Algorithm 4.1 based on two different symplectic

basis generation techniques as (BB2):

– the PSD Complex SVD (PSDG cSVD) from Definition 2.51 and

– the PSD SVD-like decomposition (PSDG SVD-like) from Definition 3.8

• the existing symplectic greedy approach (sGSG) from [81] (see Table 4.1 for a summary).

A 4 × 4 × 4 Cartesian grid on 𝑃 is used as training set 𝑀 ⊂ 𝑃. In each greedy iteration

2𝛥�̄�𝑖 = 2 vectors are added. The termination condition is set to leave the greedy algorithm

after 𝑖max = 30 greedy iterations, which results in a maximal ROB dimension of 2�̄�𝑖max
= 60.

In order to compare the approximation quality of these four techniques, we use the

𝐿2(𝐼𝑡, ℝ2�̄�) norm with a 𝑯fix-weighted norm in space

‖𝒙(⋅)‖2
𝐿2,𝑯fix

∶= ∫
𝐼𝑡

‖𝒙(𝑡)‖2
𝑯fix

d𝑡, ‖𝒙(𝑡)‖2
𝑯fix

∶= (𝒙(𝑡))⊤ 𝑯fix𝒙(𝑡),

where the integral over time is approximated with the composite trapezoidal rule and the

weighting matrix 𝑯fix ∶= 𝑯(𝝁fix) is fixed with 𝝁fix ∶= (80 690, 8 966, 3.83) ∈ 𝑃.
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Figure 4.2: Maximum absolute reduction error over 64 parameter vectors in 𝑀 used for the
greedy training in dependence on the greedy iteration 𝑖. This figure is taken from [26].

We compare the absolute and the relative reduction error

𝑒abs,𝑖(𝝁) ∶= ‖𝒙(⋅, 𝝁) − 𝑽𝑖�̌�𝑖(⋅, 𝝁)‖𝐿2,𝑯fix
, 𝑒rel,𝑖(𝝁) ∶=

𝑒abs,𝑖(𝝁)
‖𝒙(⋅, 𝝁)‖𝐿2,𝑯fix

, (4.5)

with the FOM solution 𝒙(𝑡, 𝝁) ∈ ℝ2�̄�, the ROB matrix 𝑽𝑖 ∈ ℝ2�̄�×2�̄�𝑖 , and the ROM solution

�̌�𝑖(𝑡, 𝝁) ∈ ℝ2�̄�𝑖 at the 𝑖-th greedy iteration. As error indicator (required in (BB1)), the absolute
reduction error ∆(𝝁, 𝑽𝑖) = 𝑒abs,𝑖(𝝁) is used for all investigated greedy basis generation

methods. We present two experiments which investigate (a) the training and (b) how well

the trained models generalize to parameter vectors that are not included in the training set.

4.2.2.1 ROB Quality Based on Training Data

The results of the training are shown in Figure 4.2 with the maximum absolute reduction error

(4.5) over all 64 training parameter vectors 𝝁 ∈ 𝑀 in dependence on the greedy iteration 𝑖.
This is exactly the error that is computed in Line 4 of Algorithm 4.1 (and comparably for the

other greedy methods) to decide which parameter is used to enrich the basis. Note that this is

an error which uses ROMs with the current ROB matrix 𝑽𝑖 already during the training phase.

We observe for the PODG that it is not able to produce meaningful ROMs and thus the absolute

reduction error does not decay. The symplectic greedy methods all construct ROMs for which

the absolute reduction error decreases below 10−3. The PSDG cSVD seems to stagnate at

10−3. The best method is the PSDG SVD-like, which yields errors below 10−4. This matches

the observations from the previous sections that the PSD SVD-like decomposition does not

constrain the basis to be orthogonal which allows it to adapt to the data faster.
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Figure 4.3: Statistics of the relative error over 100 random test parameter vectors for different
ROB sizes 2�̄�𝑖. This figure is taken from [26].

4.2.2.2 ROM Quality

Now, we investigate how well the ROBs constructed by the greedy algorithms generalize to

100 random parameter vectors 𝝁 ∈ 𝑃 ∖ 𝑀 that are not included in the training set. Figure 4.3

visualizes for each considered MOR technique the statistics of the relative reduction error

(4.5) of ROBs trained with 𝑖max ∈ {2, 4, … , 30} greedy iterations resulting in an ROB size

2�̄�𝑖 = 2𝑖max ∈ {4, 8, … , 60}. Box plots are used for the visualization, where the whiskers

indicate the minimum and maximum relative error. The results are as expected from training:

Firstly, the POD does not produce meaningful ROMs and yields high errors. Secondly, the

symplectic methods are able to reduce the error below 100%, where the PSDG cSVD stagnates

between a relative reduction error of 10% and 1% and the PSDG SVD-like yields the best

models. Especially for low ROM sizes 2�̄�𝑖 ∈ {8, 12, 16}, the PSDG SVD-like has a notable

advantage over the other methods. For example with ROB sizes 2�̄�𝑖 ≥ 12, the median of the

relative error of PSDG SVD-like is always below 1% relative error which occurs for sGSG

with 2�̄�𝑖 ≥ 32. This means, the new PSDG SVD-like is able to reduce the ROB size by a factor

of 2.6 compared to sGSG while achieving the same relative error. This supports the claim

that the PSD SVD-like decomposition produces ROBs which can better adapt to the data.
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As a last symplectic basis generation technique, we discuss a provably optimal basis in the

special case of a so-called canonizable linear Hamiltonian system with a periodic solution.

To this end, we derive for this specific case the eigenvectors of the time-continuous POD

from Section 2.2.3.2 and show that these build automatically a symplectic basis for a specific

choice of the integration time 𝑇POD. With this result, we are able to show that this basis is

also an optimal solution of a time-continuous PSD functional. A numerical experiment for

the linear wave equation validates the theoretical findings numerically by investigating the

symplecticity of the constructed basis. The following is adapted from [21].

5.1 Canonizable Linear Hamiltonian Systems

In this section, we introduce canonizable (linear Hamiltonian) systems. Furthermore, we

present a transformation from linear Hamiltonian systems to a canonizable system which we

refer to as energy coordinates. For the sake of brevity, we consider a parameter-independent

formulation.

Definition 5.1 (Hamiltonian(-positive) matrix [10]): A matrix 𝑨 ∈ ℝ2�̄�×2�̄� is called Hamil-
tonian, if there exists a symmetric matrix 𝑮 ∈ ℝ2�̄�×2�̄� with 𝑨 = 𝕁2�̄�𝑮. The matrix is called
Hamiltonian-positive, if additionally 𝑮 is positive-definite.

Definition 5.2 (Canonizable matrix): We call a matrix 𝑨 ∈ ℝ2�̄�×2�̄� that is Hamiltonian-
positive and skew-symmetric a canonizable matrix.

Definition 5.3 (Canonizable system): We call a Hamiltonian system (𝕍, 𝜔,ℋ) with quadratic
Hamiltonian (2.23) a linear Hamiltonian system in canonizable coordinates (or canonizable
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system in short) if there exists a canonizable matrix 𝑨 = 𝕁2�̄�𝑮 ∈ ℝ2�̄�×2�̄� which defines the
Hamiltonian vector field in coordinates with 𝑿ℋ(𝒙) = 𝝎−1∇𝓗|𝒙 = 𝑨𝒙. The dynamical
system of a canonizable system thus reads

d
d𝑡𝒙(𝑡) = 𝑨𝒙(𝑡) = 𝕁2�̄�𝑮𝒙(𝑡), 𝒙(0) = 𝒙0. (5.1)

Theorem 5.4 (Energy coordinates): We assume to be given a Hamiltonian system (𝕍, 𝜔,ℋ)
with a quadratic Hamiltonian (2.23) with 𝒉 = 𝟎2�̄�×1 and 𝑯 = 𝑪⊤𝑪 for an invertible matrix
𝑪 ∈ ℝ2�̄�×2�̄� such that

�̂�−1 ∶= 𝑪𝝎−1𝑪⊤ is Hamiltonian-positive. (5.2)

Then, the linear Hamiltonian system can be transformed to a canonizable system with the
coordinate transformation �̂�(𝑡) = 𝑪𝒙(𝑡) which we call energy coordinates.

One possible choice for 𝑪 in Theorem 5.4 is 𝑪 = 𝑯1/2 if 𝑯 is positive-definite, which we

will consider in the remainder of this chapter.

Proof. Applying the proposed state transformation �̂�(𝑡) = 𝑪𝒙(𝑡) and using the Hamiltonian

system (2.22) with quadratic Hamiltonian (2.23) yields

d
d𝑡�̂�(𝑡) = 𝑪 d

d𝑡𝒙(𝑡) (2.22)= 𝑪𝝎−1 𝑯⏟
=𝑪⊤𝑪

𝒙(𝑡) = �̂�−1�̂�(𝑡).

The matrix �̂�−1 is by construction skew-symmetric and by assumption (5.2), this matrix is

Hamiltonian-positive, which makes the transformed system a canonizable system.

We give a characterization of the assumption (5.2) for systems with a separable, quadratic

Hamiltonian with positive-definite blocks.

Lemma 5.5 (Transformation to energy coordinates for a separable, quadratic Hamiltonian

in canonical coordinates): Consider a linear canonical Hamiltonian system with a separable,
quadratic Hamiltonian (see Definition 2.30) and positive define blocks 𝑯𝑞 and 𝑯𝑝 in canonical
coordinates (i.e. 𝝎 = 𝕁⊤

2�̄�). Then, assumption (5.2) is fulfilled for 𝑪 = 𝑯1/2 if and only if the
two matrices 𝑯𝑞, 𝑯𝑝 ∈ ℝ�̄�×�̄� commute.

Proof. By assumption, the blocks 𝑯𝑞 and 𝑯𝑝 are symmetric and positive-definite and thus,

so are 𝑯1/2
𝑞 and 𝑯1/2

𝑝 . Then, 𝑯 = blkdiag(𝑯𝑞, 𝑯𝑝) is also symmetric and positive-definite
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and 𝑪 = 𝑯1/2 is well-defined. We need to show that �̂�−1 = 𝑪𝕁2�̄�𝑪⊤ is Hamiltonian-

positive if and only if 𝑯𝑞 and 𝑯𝑝 commute. By Definition 5.1, “�̂�−1 Hamiltonian-positive” is

equivalent to “𝕁⊤
2�̄��̂�−1 symmetric and positive-definite”. Moreover, it holds for this matrix

𝕁⊤
2�̄��̂�−1 = [

𝟎�̄�×�̄� −𝑰�̄�

𝑰�̄� 𝟎�̄�×�̄�
] [

𝑯1/2
𝑞 𝟎�̄�×�̄�

𝟎�̄�×�̄� 𝑯1/2
𝑝

] [
𝟎�̄�×�̄� 𝑰�̄�

−𝑰�̄� 𝟎�̄�×�̄�
] [

𝑯1/2
𝑞 𝟎�̄�×�̄�

𝟎�̄�×�̄� 𝑯1/2
𝑝

]

= [
𝑯1/2

𝑝 𝑯1/2
𝑞 𝟎�̄�×�̄�

𝟎�̄�×�̄� 𝑯1/2
𝑞 𝑯1/2

𝑝
] .

Due to the block-diagonal structure, 𝕁⊤
2�̄��̂�−1 is symmetric and positive-definite if and only

if 𝑯1/2
𝑝 𝑯1/2

𝑞 and 𝑯1/2
𝑞 𝑯1/2

𝑝 are symmetric and positive-definite. We prove that this is

equivalent to the fact “𝑯𝑝 and 𝑯𝑝 commute” separately for each direction:

“ ⟹ ”: By assumption 𝑯1/2
𝑞 , 𝑯1/2

𝑝 , 𝑯1/2
𝑝 𝑯1/2

𝑞 , and 𝑯1/2
𝑞 𝑯1/2

𝑝 are symmetric. Then, 𝑯𝑞

and 𝑯𝑝 commute since

𝑯1/2
𝑝 𝑯1/2

𝑞 = (𝑯1/2
𝑝 𝑯1/2

𝑞 )
⊤

= (𝑯1/2
𝑞 )

⊤
(𝑯1/2

𝑝 )
⊤

= 𝑯1/2
𝑞 𝑯1/2

𝑝 ,

𝑯𝑝𝑯𝑞 = 𝑯1/2
𝑝 𝑯1/2

𝑝 𝑯1/2
𝑞 𝑯1/2

𝑞 = 𝑯1/2
𝑞 𝑯1/2

𝑞 𝑯1/2
𝑝 𝑯1/2

𝑝 = 𝑯𝑞𝑯𝑝.

“ ⟸ ”: By assumption 𝑯𝑝 and 𝑯𝑞 are symmetric, positive-definite and commute. The

same holds for the respective matrix square roots. Then (a) the products 𝑯1/2
𝑝 𝑯1/2

𝑞 and

𝑯1/2
𝑞 𝑯1/2

𝑝 are symmetric, and, thus, (b) those products are positive-definite (see e.g. [56,

p. 469]).

A notable property of a canonizable matrix 𝑨 = 𝕁2�̄�𝑮 is that 𝕁2�̄� commutes with 𝑮.

Lemma 5.6: Consider a canonizable matrix 𝑨 = 𝕁2�̄�𝑮 ∈ ℝ2�̄�×2�̄�. Then, 𝕁2�̄� commutes
with 𝑨.

Proof. Since 𝑨 is skew-symmetric, 𝑮 is symmetric and 𝕁2�̄� skew-symmetric, it holds

𝟎2�̄�×2�̄� = 𝑨 + (𝑨)⊤ = 𝕁2�̄�𝑮 + 𝑮⊤𝕁⊤
2�̄� = 𝕁2�̄�𝑮 − 𝑮𝕁2�̄�.
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5.2 Optimal Bases for Symplectic MOR

We show in the time-continuous setting of basis generation (see Section 2.2.3.2) with 𝒈 = 𝑰2�̄�

that the POD computes an optimal basis for the time-continuous analogue of the PSD under

the assumptions that: (i) the solution is from a canonizable system (5.1), (ii) the solution

is periodic with period 𝑇 > 0, and (iii) the integration time in the time-continuous POD

𝑇POD is an 𝑙-multiple, 𝑙 ∈ ℕ, of 𝑇 /2, i.e. 𝑇POD = 𝑙𝑇 /2. The workflow is the following: (a)

we introduce the time-continuous PSD (below), (b) characterize solutions of a canonizable

system via the solution formula for autonomous linear systems (Section 5.2.1), (c) compute

the eigenpairs of the time-continuous POD operator (Section 5.2.2), (d) show that the time-

continuous POD admits a symplectic basis that is optimal in the sense of the time-continuous

PSD (Section 5.2.3).

Definition 5.7 (Time-continuous PSD): Given a solution 𝑥(⋅) ∈ 𝐶1(𝐼𝑡, 𝕍) to a Hamiltonian
FOM (2.22), the time-continuous PSD computes a subspace �̃�tcPSD ∶= span{ ̃𝑒tcPSD𝑖 , ̃𝑓 tcPSD

𝑖 }�̄�
𝑖=1

by identifying a canonical basis via the time-continuous PSD problem

�̃�tcPSD ∶= span{ ̃𝑒tcPSD𝑖 , ̃𝑓 tcPSD
𝑖 }�̄�

𝑖=1
= argmin

�̃�=span{ ̃𝑒𝑖, ̃𝑓𝑖}�̄�
𝑖=1

⊂𝕍,

𝜔( ̃𝑒𝑖, ̃𝑓𝑗)=−𝛿𝑖𝑗 for 1≤𝑖,𝑗≤�̄�

∫
𝑇PSD

𝑡0
∥𝑥(𝑡) − 𝛱𝜔,�̃�(𝑥(𝑡))∥2

𝑔
d𝑡

(5.3)

with an integration time 𝑇PSD ∈ (𝑡0, 𝑡end]. For the ROB matrix 𝑽 tcPSD, the time-continuous PSD
problem in coordinates reads

𝑽 tcPSD = argmin
𝑽 ∈ℝ2�̄�×2�̄�

𝑽 ⊤𝝎𝑽 =𝕁⊤
2�̄�

∫
𝑇PSD

𝑡0
‖(𝑰2�̄� − 𝑽 𝕁2�̄�𝑽 ⊤𝝎)𝒙(𝑡)‖2

𝒈 d𝑡
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶ℱPSD(𝑽 ;𝑇PSD)

. (5.4)

5.2.1 Solutions of a Canonizable System

In the following, we consider a canonizable matrix 𝑨 = 𝕁2�̄�𝑮 ∈ ℝ2�̄�×2�̄� (see Definition 5.3).

We characterize its eigendecomposition to formulate the solutions of a canonizable system

via the solution formula for autonomous linear systems.

Assumption 5.8: In order to simplify the analysis, we assume that the pairs of eigenvalues of
𝑮 are pairwise distinct, i.e. 𝛾𝑖 ≠ 𝛾𝑗 for 𝑖 ≠ 𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ ̄𝑁.
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Lemma 5.9 (Eigendecomposition of 𝑮): If (𝛾, 𝒗) is an eigenpair of 𝑮, then (𝛾, 𝕁2�̄�𝒗) is
another eigenpair of 𝑮. Thus,

𝑮 = 𝒁 [
𝜞

𝜞
] 𝒁⊤ (5.5)

is an eigendecomposition of 𝑮 with the diagonal matrix of eigenvalues 𝜞 ∶= diag (𝛾1, … , 𝛾�̄�),
𝛾𝑖 > 0 for 1 ≤ 𝑖 ≤ ̄𝑁 and an orthosymplectic matrix 𝒁 ∶= [𝑸, 𝕁⊤

2�̄�𝑸] ∈ ℝ2�̄�×2�̄� of
eigenvectors with 𝑸 ∈ ℝ2�̄�×�̄�.

Proof. 𝑮 has eigenpairs (𝛾𝑖, 𝒒𝑖) with real eigenvalues 𝛾𝑖 > 0 and real eigenvectors 𝒒𝑖 ∈ ℝ2�̄�

since it is symmetric and positive-definite. By Lemma 5.6, 𝑮 commutes with 𝕁2�̄�. Thus,

(𝛾𝑖, 𝕁2�̄�𝒒𝑖) is another eigenpair of 𝑮 with 𝒒𝑖 ⟂ 𝕁2�̄�𝒒𝑖 and (5.5) is an eigendecomposition

of 𝑮 with 𝑸 ∶= [𝒒𝑖]�̄�𝑖=1. By construction of 𝑸, it holds 𝑸⊤𝑸 = 𝑰�̄� and 𝑸⊤𝕁2�̄�𝑸 = 𝟎�̄�×�̄�,

which is why 𝒁 is an orthosymplectic matrix by Lemma 3.2 point (ii).

Lemma 5.10 (Decomposition of 𝑨): With 𝒁 and 𝜞 from Lemma 5.9, it holds

𝑨 = 𝒁 [
𝜞

−𝜞
] 𝒁⊤. (5.6)

Proof. Left-multiply (5.5) with 𝕁2�̄� and use that 𝒁 commutes with 𝕁2�̄� since, by Lemma 5.9,

𝒁 = [𝑸, 𝕁⊤
2�̄�𝑸] and thus 𝕁2�̄�𝒁 = [𝕁2�̄�𝑸, 𝑸] = [𝑸, −𝕁2�̄�𝑸] 𝕁2�̄� = 𝒁𝕁2�̄�.

In the following, we use the 2-by-2 rotation matrix and a few selected properties.

Lemma 5.11: For the 2-by-2 rotation matrix

𝑹2(𝜃) ∶= [
cos(𝜃) sin(𝜃)

− sin(𝜃) cos(𝜃)
] ∈ ℝ2×2,

it holds with the notation 𝜎 (⋅) for the spectrum of a matrix that for all 𝜃 ∈ ℝ

1. 𝑹2(𝜃) = exp(𝕁2𝜃),

2. d
d𝜃𝑹2∣

𝜃
= 𝑹2(𝜃 + 𝜋/2),

3. ∫ 𝑹2(𝜃)d𝜃 = 𝑹2(𝜃 − 𝜋/2),

4. 𝑹2(𝜃 + 𝜋) = −𝑹2(𝜃),

5. (𝑹2(𝜑))⊤ 𝑹2(𝜃) = 𝑹2(𝜃 − 𝜑),

6. 𝜎 (𝑹2(𝜃)) = {exp(i𝜃), exp(−i𝜃)}.
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Proposition 5.12 (Solution of canonizable system and important properties): The solution
of a canonizable system (5.1) can be written as

𝒙(𝑡) = 𝒁𝑹(𝜸𝑡)𝒚0, 𝒚0 ∶= 𝒁⊤𝒙0, 𝑹(𝜸𝑡) ∶=
�̄�

∑
𝑗=1

𝑷𝑗𝑹2(𝛾𝑗𝑡)𝑷 ⊤
𝑗 , (5.7)

with 𝜸 ∶= (𝛾1, … , 𝛾�̄�) ∈ ℝ�̄�, 𝑷𝑖 ∶= [𝒆𝑖, 𝒆�̄�+𝑖] ∈ ℝ2�̄�×2, and 𝒆𝑖 ∈ ℝ2�̄� the 𝑖-th standard
basis vector. For a periodic solution 𝒙(𝑇 + 𝑡) = 𝒙(𝑡) of (5.1) with period 𝑇 > 0, either of the
two cases holds true for each 1 ≤ 𝑖 ≤ ̄𝑁:

1. 𝑷 ⊤
𝑖 𝒚0 = [𝒛𝑖, 𝕁2�̄�𝒛𝑖]⊤𝒙0 = 𝟎2×1 (i.e. the 𝒙0 is orthogonal to 𝒛𝑖 and 𝕁2�̄�𝒛𝑖),

2. there exists an 𝑙𝑖 ∈ ℕ such that 𝑇 = 𝑙𝑖𝑇𝑖 for 𝑇𝑖 ∶= 2𝜋/𝛾𝑖 (i.e. the 𝑙𝑖-multiple of the period
𝑇𝑖 is contained within the whole period 𝑇).

Proof. According to the solution formula for autonomous linear systems, the solution 𝒙(𝑡) of

a canonizable system (5.1) can be expressed with the matrix exponential as 𝒙(𝑡) = exp(𝑨𝑡)𝒙0.

We define 𝑷 ∶= [𝑷𝑖]�̄�𝑖=1 ∈ ℝ2�̄�×2�̄� to stack all 𝑷𝑖 in its columns. Due to 𝑷 ⊤
𝑖 𝑷𝑗 = 𝛿𝑖𝑗𝑰2, it

holds 𝑷 ⊤𝑷 = 𝑰2�̄�. With 𝒁, 𝜞 from Lemma 5.10, it holds

[
𝜞 𝑡

−𝜞 𝑡
] =

�̄�

∑
𝑖=1

𝑷𝑖𝕁2𝛾𝑖𝑡𝑷 ⊤
𝑖 = 𝑷 blkdiag (𝕁2𝛾1𝑡, … , 𝕁2𝛾�̄�𝑡)𝑷 ⊤

and with properties of the matrix exponential due to 𝒁⊤𝒁 = 𝑰2�̄�, 𝑷 ⊤𝑷 = 𝑰2�̄�, and with

Lemma 5.11 item 1

exp(𝑨𝑡) = 𝒁 exp([
𝜞

−𝜞
] 𝑡) 𝒁⊤

= 𝒁𝑷 exp(blkdiag (𝕁2𝛾1𝑡, … , 𝕁2𝛾�̄�𝑡))𝑷 ⊤𝒁⊤

= 𝒁𝑷 blkdiag (exp(𝕁2𝛾1𝑡), … , exp(𝕁2𝛾�̄�𝑡))𝑷 ⊤𝒁⊤

= 𝒁𝑷 blkdiag (𝑹2(𝛾1𝑡), … , 𝑹2(𝕁2𝛾�̄�𝑡))𝑷 ⊤𝒁⊤

= 𝒁
�̄�

∑
𝑖=1

𝑷𝑖𝑹2(𝛾𝑖𝑡)𝑷 ⊤
𝑖 𝒁⊤

from which (5.7) follows. In the case of a periodic solution 𝒙(𝑡) with period 𝑇 > 0, it holds
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with 𝑷 ⊤
𝑖 𝑷𝑗 = 𝛿𝑖𝑗𝑰2 for each 1 ≤ 𝑖 ≤ ̄𝑁,

𝑷 ⊤
𝑖 𝒁⊤𝒙(𝑡) = 𝑹2(𝛾𝑖𝑡)𝑷 ⊤

𝑖 𝒚0
!= 𝑹2(𝛾𝑖(𝑡 + 𝑇 ))𝑷 ⊤

𝑖 𝒚0 = 𝑷 ⊤
𝑖 𝒁⊤𝒙(𝑡 + 𝑇 ).

Multiplication with (𝑹2(𝛾𝑖𝑡))⊤ from the left implies with Lemma 5.11 item 5

𝑷 ⊤
𝑖 𝒚0

!= (𝑹2(𝛾𝑖𝑡))⊤ 𝑹2(𝛾𝑖(𝑡 + 𝑇 ))𝑷 ⊤
𝑖 𝒚0 = 𝑹2(𝛾𝑖𝑇 )𝑷 ⊤

𝑖 𝒚0.

So necessarily either 𝑷 ⊤
𝑖 𝒚0 = 𝟎�̄�×1 or 𝑷 ⊤

𝑖 𝒚0 is an eigenvector with eigenvalue 1 of 𝑹2(𝛾𝑖𝑇 ),
where the latter is by Lemma 5.11 item 6 only possible for 𝛾𝑖𝑇 = 2𝜋𝑙𝑖 for some 𝑙𝑖 ∈ ℕ.

5.2.2 Eigenpairs of Time-Continuous POD Operator

In the remainder, we assume that 𝒙(𝑡) is a periodic solution. To evaluate the time-continuous

POD functional, we have to analyze integrals over products 𝒙(𝑡) (𝒙(𝑡))⊤ of the solution. The

following lemma computes the relevant integrals by hand.

Lemma 5.13 (Relevant integrals of quadratic products of the solution): Consider 𝑇, 𝑷𝑖,
𝑹2(𝑡), 𝒚0 and 𝛾𝑖 from Proposition 5.12, 𝑙 ∈ ℕ, and 1 ≤ 𝑖, 𝑗 ≤ ̄𝑁 with 𝑖 ≠ 𝑗. Then

𝑴𝑖𝑗(𝑙) ∶= ∫
𝑙𝑇 /2

0
𝑹2(𝛾𝑖𝑡)𝑷 ⊤

𝑖 𝒚0 (𝑹2(𝛾𝑗𝑡)𝑷 ⊤
𝑗 𝒚0)⊤

d𝑡 = 𝟎2×2,

𝑴𝑖𝑖(𝑙) ∶= ∫
𝑙𝑇 /2

0
𝑹2(𝛾𝑖𝑡)𝑷 ⊤

𝑖 𝒚0 (𝑹2(𝛾𝑖𝑡)𝑷 ⊤
𝑖 𝒚0)⊤ d𝑡 = 𝜆𝑖(𝑙)𝑰2

(5.8)

with 𝜆𝑖(𝑙) = 𝑙𝑇 /4 ∥𝑷 ⊤
𝑖 𝒚0∥2

2.

Proof. If 𝑷 ⊤
𝑖 𝒚0 = 𝟎2×1 (or 𝑷 ⊤

𝑗 𝒚0 = 𝟎2×1), the identity for 𝑴𝑖𝑖(𝑙) (for 𝑴𝑖𝑗(𝑙), respectively)
is fulfilled trivially. Thus, we consider the case 𝑷 ⊤

𝑖 𝒚0 ≠ 𝟎2×1, 𝑷 ⊤
𝑗 𝒚0 ≠ 𝟎2×1 for the rest of

the proof. In this case, it holds by Proposition 5.12 𝛾𝑖𝑇 = 2𝜋𝑙𝑖 and 𝛾𝑗𝑇 = 2𝜋𝑙𝑗. Moreover,

we start with the case 𝑙 = 1. Applying partial integration in 𝑴𝑖𝑗(1) twice leads with the

properties from Lemma 5.11 for 𝑹2(𝜃) to

𝑴𝑖𝑗(1) = 1
𝛾𝑖

𝑹2(𝛾𝑖𝑡 − 𝜋/2)𝑷 ⊤
𝑖 𝒚0 (𝑹2(𝛾𝑗𝑡)𝑷 ⊤

𝑗 𝒚0)⊤ ∣
𝑇 /2

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝟎2×2

−
𝛾𝑗

𝛾𝑖
∫

𝑇 /2

0
𝑹2(𝛾𝑖𝑡 − 𝜋/2)𝑷 ⊤

𝑖 𝒚0 (𝑹2(𝛾𝑗𝑡 + 𝜋/2)𝑷 ⊤
𝑗 𝒚0)⊤

d𝑡
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= −
𝛾𝑗

𝛾2
𝑖

𝑹2(𝛾𝑖𝑡 − 𝜋/2)𝑷 ⊤
𝑖 𝒚0 (𝑹2(𝛾𝑗𝑡)𝑷 ⊤

𝑗 𝒚0)⊤ ∣
𝑇 /2

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝟎2×2

+
𝛾2

𝑗

𝛾2
𝑖

∫
𝑇 /2

0
𝑹2(𝛾𝑖𝑡 − 𝜋)⏟⏟⏟⏟⏟

=−𝑹2(𝛾𝑖𝑡)

𝑷 ⊤
𝑖 𝒚0( 𝑹2(𝛾𝑗𝑡 + 𝜋)⏟⏟⏟⏟⏟

=−𝑹2(𝛾𝑗𝑡)

𝑷 ⊤
𝑗 𝒚0)⊤d𝑡 =

𝛾2
𝑗

𝛾2
𝑖

𝑴𝑖𝑗(1),

where the terms for 𝑡 = 0 and 𝑡 = 𝑇 /2 cancel out each other in both boundary terms

since 𝛾𝑖𝑇 /2 = 𝜋𝑙𝑖 and 𝛾𝑗𝑇 /2 = 𝜋𝑙𝑗, and using Lemma 5.11 item 4. Thus, it holds that

(1 − (𝛾𝑗/𝛾𝑖)2)𝑴𝑖𝑗(1) = 𝟎2×2, which shows with Assumption 5.8 that 𝑴𝑖𝑗(1) = 𝟎2×2 if

𝑖 ≠ 𝑗. For 𝑴𝑖𝑖(1), direct computation shows 𝑴𝑖𝑖(1) = 𝜆𝑖(1)𝑰2 with 𝜆𝑖(1) = 𝑇 /4 ∥𝑷 ⊤
𝑖 𝒚0∥2

2
due to the identities

∫
𝑇 /2

0
sin2(𝛾𝑖𝑡)d𝑡 = ∫

𝑇 /2

0
cos2(𝛾𝑖𝑡)d𝑡 = 𝑇 /4, ∫

𝑇 /2

0
cos(𝛾𝑖𝑡) sin(𝛾𝑖𝑡)d𝑡 = 0.

The case 𝑙 > 1 can be redirected to 𝑙 = 1 (exemplified for 𝑙 = 2): The integral in 𝑴𝑖𝑗(2)
can be split in (a) 𝑡 ∈ [0, 𝑇 /2] and (b) 𝑡 ∈ [𝑇 /2, 𝑇 ]. The integral (a) is treated as above,

while for (b), we use that 𝛾𝑖𝑇 /2 = 𝜋𝑙𝑖 and 𝛾𝑗𝑇 /2 = 𝜋𝑙𝑗, from which it follows with

Lemma 5.11 item 4 that 𝑹2(𝛾𝑖(𝑡 + 𝑇 /2)) = ±𝑹2(𝛾𝑖𝑡) and 𝑹2(𝛾𝑗(𝑡 + 𝑇 /2)) = ±𝑹2(𝛾𝑗𝑡).
Thus, 𝑴𝑖𝑗(2) = 𝑴𝑖𝑗(1) ± 𝑴𝑖𝑗(1) = 𝟎2×2 and, in general, 𝑴𝑖𝑗(𝑙) = 𝟎2×2. Similarly, it

holds 𝑴𝑖𝑖(𝑙) = 𝑙𝑴𝑖𝑖(1).

Proposition 5.14 (Eigenpairs of time-continuous POD operator): Consider a periodic solution
of a canonizable system (5.1) with 𝒙(𝑡) = 𝒁𝑹(𝜸𝑡)𝒚0 in the notation of Proposition 5.12.
Then, the columns 𝒛𝑖 and 𝒛�̄�+1 of 𝒁 are eigenvectors of the POD operator ℛ from (2.19) for
𝑇POD = 𝑙𝑇 /2 with eigenvalue 𝜆𝑖(𝑙) = 𝑇 /4 ∥𝑷 ⊤

𝑖 𝒚0∥2
2 for all 1 ≤ 𝑖 ≤ ̄𝑁.

Proof. Consider an arbitrary but fixed 𝑖 ∈ {1, … , ̄𝑁} and a pair [𝒛𝑖, 𝒛�̄�+𝑖] = 𝒁𝑷𝑖 of columns

of 𝒁. It holds with Proposition 5.12

(𝒙(𝑡))⊤ 𝒁𝑷𝑖 = 𝒚⊤
0 (𝑹(𝜸𝑡))⊤ 𝒁⊤𝒁𝑷𝑖 = 𝒚⊤

0 (𝑹(𝜸𝑡))⊤ 𝑷𝑖.

Due to the pairwise orthogonality 𝑷 ⊤
𝑗 𝑷𝑖 = 𝛿𝑖𝑗𝑰2 with the Kronecker delta 𝛿𝑖𝑗, it holds

(𝒙(𝑡))⊤ 𝒁𝑷𝑖 = 𝒚⊤
0 (

�̄�

∑
𝑗=1

𝑷𝑗 (𝑹2(𝛾𝑗𝑡))
⊤ 𝑷 ⊤

𝑗 ) 𝑷𝑖 = 𝒚⊤
0 𝑷𝑖 (𝑹2(𝛾𝑖𝑡))⊤ . (5.9)
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Applying ℛ to 𝒛𝑖 and 𝒛�̄�+1 yields with 𝒁𝑷𝑖 = [𝒛𝑖, 𝒛�̄�+𝑖]

[ℛ(𝒛𝑖), ℛ(𝒛�̄�+𝑖)] = ∫
𝑙𝑇 /2

0
𝒙(𝑡) (𝒙(𝑡))⊤ 𝒁𝑷𝑖⏟⏟⏟⏟⏟

(5.9)= 𝒚⊤
0𝑷𝑖(𝑹2(𝛾𝑖𝑡))⊤

d𝑡 = 𝒁∫
𝑙𝑇 /2

0
𝑹(𝜸𝑡)𝒚0 (𝑹2(𝛾𝑖𝑡)𝑷 ⊤

𝑖 𝒚0)⊤ d𝑡.

Inserting the definition of 𝑹(𝜸𝑡) from (5.7) yields

[ℛ(𝒛𝑖), ℛ(𝒛�̄�+𝑖)] = 𝒁
�̄�

∑
𝑗=1

𝑷𝑗 ∫
𝑙𝑇 /2

0
𝑹2(𝛾𝑗𝑡)𝑷 ⊤

𝑗 𝒚0 (𝑹2(𝛾𝑖𝑡)𝑷 ⊤
𝑖 𝒚0)⊤ d𝑡

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝑴𝑖𝑗(𝑙)(5.8)= 𝛿𝑖𝑗𝜆𝑖(𝑙)𝑰2

= 𝜆𝑖(𝑙)𝒁𝑷𝑖,

which shows that 𝒛𝑖 and 𝒛�̄�+1 are eigenvectors of ℛ with eigenvalue 𝜆𝑖(𝑙).

5.2.3 Optimal Solution of the Time-Continuous PSD

Based on the previous lemmas, the following theorem shows that the POD computes an

orthosymplectic ROB for 𝑇PSD = 𝑇POD = 𝑙𝑇 /2 with 𝑙 ∈ ℕ and moreover that this is an

optimal ROB for the PSD functional.

Theorem 5.15 (Optimality of PSD): Consider a canonizable Hamiltonian system (5.1) for
which 𝑮 fulfills Assumption 5.8 and which has a periodic solution 𝒙(𝑡) = 𝒙(𝑡 + 𝑇 ). Then,
an optimal solution of the time-continuous PSD with 𝑇PSD = 𝑙𝑇 /2 can be computed with the
time-continuous POD with 𝑇POD = 𝑙𝑇 /2 for 𝑙 ∈ ℕ.

Proof. Assume �̃�tcPSD is an optimal subspace resulting from the time-continuous PSD (2.27)

with ROB matrix 𝑽 tcPSD ∈ ℝ2�̄�×2�̄�. Our goal is to construct an orthosymplectic ROB matrix

from the time-continuous POD 𝑽 tcPOD ∈ ℝ2�̄�×2�̄� such that this basis is optimal in the PSD

functional, i.e. ℱPSD(𝑽 tcPSD; 𝑙𝑇 /2) = ℱPSD(𝑽 tcPOD; 𝑙𝑇 /2).
Consider 𝒙(𝑡) = 𝒁𝑹(𝜸𝑡)𝒚0 in the notation of Proposition 5.12. The matrix 𝒁 is or-

thosymplectic by Lemma 5.9. The columns of this matrix are eigenvectors of the time-

continuous POD operator ℛ (2.19) with 𝑇POD = 𝑙𝑇 /2 by Proposition 5.14. With Theo-

rem 2.24, we conclude that these eigenvectors build an optimal basis in the time-continuous

POD 𝑽 tcPOD ∶= [𝒛1, … , 𝒛�̄�, 𝕁⊤
2�̄�𝒛1, … , 𝕁⊤

2�̄�𝒛�̄�], which is orthosymplectic. From Lemma 3.2

point (iii), we know that (𝑽 tcPOD)⊤ = (𝑽 tcPOD)+ since the ROB matrix is orthosymplectic.

This allows us to replace the symplectic projection 𝑽 tcPOD(𝑽 tcPOD)+ with the orthogonal pro-

jection 𝑽 tcPOD(𝑽 tcPOD)⊤ and thus ℱPSD(𝑽 tcPOD; 𝑙𝑇 /2) = ℱPOD(𝑽 tcPOD; 𝑙𝑇 /2). Since ℱPSD
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optimizes over all possible symplectic matrices and 𝑽 tcPSD is an optimal solution, we know

ℱPSD(𝑽 tcPSD; 𝑙𝑇 /2) ≤ ℱPSD(𝑽 tcPOD; 𝑙𝑇 /2) and, thus,

ℱPSD(𝑽 tcPSD; 𝑙𝑇 /2) ≤ ℱPSD(𝑽 tcPOD; 𝑙𝑇 /2) = ℱPOD(𝑽 tcPOD; 𝑙𝑇 /2). (5.10)

Moreover, there exists an ROB matrix 𝑼 tcPSD ∈ ℝ2�̄�×2�̄� for �̃�tcPSD, which has pairwise

orthogonal columns (but is not necessarily symplectic). We deduce for all 𝒙 ∈ ℝ2�̄�

∥(𝑰2�̄� − 𝑽 tcPSD(𝑽 tcPSD)+)𝒙∥2 ≥ ∥(𝑰2�̄� − 𝑼 tcPSD(𝑼 tcPSD)⊤)𝒙∥2

since 𝑼 tcPSD(𝑼 tcPSD)⊤𝒙 is the best approximation in �̃�tcPSD by orthogonal projection. Using

(a) the previous inequality and (b) the optimality of the POD basis 𝑽 tcPOD, it holds

ℱPSD(𝑽 tcPSD; 𝑙𝑇 /2)
(𝑎)
≥ ℱPOD(𝑼 tcPSD; 𝑙𝑇 /2)

(𝑏)
≥ ℱPOD(𝑽 tcPOD; 𝑙𝑇 /2). (5.11)

Combining (5.10) and (5.11), we conclude ℱPSD(𝑽 tcPSD; 𝑙𝑇 /2) = ℱPOD(𝑽 tcPOD; 𝑙𝑇 /2).

5.3 Numerical Experiments

We validate our theoretical findings numerically with a FOM from a discretized linear wave

equation. The main focus is to verify Theorem 5.15, i.e. that the POD of a canonizable system

with 𝑇POD = 𝑙𝑇 /2 for a periodic solution yields a symplectic ROB.

5.3.1 Full-Order Model

The FOM considered here is adapted from [99] and is based on the linear wave equation with

homogeneous Dirichlet boundary conditions and zero initial velocity

𝜕2
𝑡𝑡𝑢(𝑡, 𝜉) = 𝑐2𝜕2

𝜉𝜉𝑢(𝑡, 𝜉), for (𝑡, 𝜉) ∈ 𝐼 × Ω,

𝑢(0, 𝜉) = 𝑢0(𝜉), 𝜕𝑡𝑢(0, 𝜉) = 0, for 𝜉 ∈ Ω,

𝑢(𝑡, 𝜉) = 0, for 𝑡 ∈ 𝐼, 𝜉 ∈ 𝜕𝛺,
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with a physical domain Ω = (−0.5, 0.5), time interval 𝐼 = (0, 50), wave speed 𝑐 = 0.1,
initial value 𝑢0(𝜉) ∶= ℎ (10 |𝜉|) for 𝜉 ∈ 𝛺 and the spline function

ℎ(𝑠) ∶=

⎧{{
⎨{{⎩

1 − 3/2𝑠2 + 3/4𝑠3, 0 ≤ 𝑠 ≤ 1,

(2 − 𝑠)3/4, 1 < 𝑠 ≤ 2,

0, otherwise.

The solution of this initial-boundary-value problem is a periodic solution 𝑢(𝑡) = 𝑢(𝑡 + 𝑇 )
with period 𝑇 = 20 that resembles two waves that travel in opposite directions and which

are reflected at the boundary. Finite differences are used to discretize the PDE in space with

a spatial step width ∆𝜉 = 1/499 resulting in ̄𝑁 = 500 equidistant discretization points

𝜉𝑖 = −1/2 + (𝑖 − 1)∆𝜉, 1 ≤ 𝑖 ≤ ̄𝑁. This yields a canonical Hamiltonian system with a

separable, quadratic Hamiltonian (2.23) with

𝑯 ∶= [
−𝑐2𝑫𝜉𝜉 𝟎�̄�×�̄�

𝟎�̄�×�̄� 𝑰�̄�
] ,

𝒒(𝑡) ∶= [𝑢(𝑡, 𝜉𝑖)]�̄�𝑖=1,

𝒑(𝑡) ∶= [𝜕𝑢(𝑡, 𝜉𝑖)]�̄�𝑖=1,
𝒙(𝑡) ∶= [

𝒒(𝑡)
𝒑(𝑡)

] ,

where 𝑫𝜉𝜉 ∈ ℝ�̄�×�̄� is an approximation of the second-order derivative. For time integration,

the implicit midpoint rule (2.25) is used with 𝐾 = 5000 steps and ∆𝑡 = 0.01. To obtain a

canonizable system, the transformation via energy coordinates (Theorem 5.4) is used with

𝑪 = 𝑯1/2. This transformation can be implicitly carried out by using a MOR technique

with an inner-product matrix 𝒈 = 𝑯. Note that this also changes the norm ‖⋅‖𝒈, which is

why the following results are presented for ‖⋅‖2 (for 𝒈 = 𝑰2�̄�) and ‖⋅‖𝑯 (for 𝒈 = 𝑯).

5.3.2 Experiments

We compare the performance of four different MOR techniques (see Table 5.1) for the re-

production of the solution. The investigated methods are the (time-discrete) POD, the PSD

complex SVD (PSD cSVD) for a non-canonizable system (𝒈 = 𝑰2�̄�) and as a canonizable sys-

tem (𝒈 = 𝑯). Different basis sizes 2�̄� ∈ {10, 20, … , 80} are considered. The ROB matrices

are computed with all 𝐾 = 5000 time steps as snapshots such that exactly 2.5 periods of the

system are included in the basis generation.
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MOR technique ROB matrix

POD (𝒈 = 𝑰2�̄�) 𝑽 = left-SVD(𝑿s)[∶, ∶ 2�̄�] 𝑾 = 𝑽
POD (𝒈 = 𝑯) 𝑽 = 𝑯−1/2left-SVD(𝑯1/2𝑿s)[∶, ∶ 2�̄�] 𝑾 = 𝑯𝑽
PSD cSVD (𝒈 = 𝑰2�̄�) 𝑽 = [𝑬, 𝕁⊤

2�̄�𝑬], 𝑬 = [𝜱⊤, 𝜳⊤]⊤ 𝑾 = 𝑽
𝜱 + i𝜳 = left-cSVD(𝑸s + i𝑷s)[∶, ∶ �̄�]

PSD cSVD (𝒈 = 𝑯) 𝑽 = 𝑯−1/2[𝑬, 𝕁⊤
2�̄�𝑬], 𝑬 = [𝜱⊤, 𝜳⊤]⊤ 𝑾 = 𝑯𝑽

𝜱 + i𝜳 = left-cSVD(𝑯1/2
𝑞 𝑸s + i𝑯1/2

𝑝 𝑷s)[∶, ∶ �̄�]

Table 5.1: Summary of MOR techniques used in this section. Python notation is used to select
columns. 𝑿s = [𝑸⊤

s , 𝑷 ⊤
s ]⊤ denotes the snapshot matrix which is separated in parts for 𝒒

and 𝒑. left-SVD(⋅) and left-cSVD(⋅) denote obtaining the left-singular-vectors from SVD
and the complex SVD. This table is adapted from [21].

5.3.2.1 ROB and ROM Quality

The considered error measures to evaluate the quality of the reduction are (a) the relative

projection error 𝑒proj and (b) the relative reduction error 𝑒red,

𝑒proj ∶=
√√√

⎷

∑𝐾
𝑘=0 ‖(𝑰2�̄� − 𝑽 𝑾 ⊤)𝒙𝑘‖2

𝒈

∑𝐾
𝑘=0 ‖𝒙𝑘‖2

𝒈
and 𝑒red ∶=

√√√

⎷

∑𝐾
𝑘=0 ‖𝑽 �̌�𝑘 − 𝒙𝑘‖2

𝒈

∑𝐾
𝑘=0 ‖𝒙𝑘‖2

𝒈
, (5.12)

where 𝒙𝑘 ∈ ℝ2�̄� is the FOM solution and �̌�𝑘 ∈ ℝ2�̄� the ROM solution for all time instances

0 ≤ 𝑘 ≤ 𝐾 and 𝑾 ∈ ℝ2�̄�×2�̄� is the respective matrix from Table 5.1 for the different MOR

techniques.

Both error measures from (5.12) are displayed in Figure 5.1 for two different norms with

inner-product matrix 𝒈 = 𝑰2�̄� and 𝒈 = 𝑯. Similarly to the numerical examples from the

previous chapters, we observe that the structure-preserving methods (PSD cSVD (𝒈 = 𝑰2�̄�),
PSD cSVD (𝒈 = 𝑯) and POD (𝒈 = 𝑯)) give a reduction error comparable to what is

promised by the projection error. In contrast, the POD (𝒈 = 𝑰2�̄�) yields the best projection

error for 𝒈 = 𝑰2�̄�, but fails to reproduce the same level of quality in the reduction error (up

to two orders).
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Figure 5.1: Comparison of MOR techniques from Table 5.1 for different reduced dimensions
2�̄� ∈ {10, 20, … , 80}. Top: relative projection error (5.12); bottom: relative reduction error
(5.12); left: two-norm ‖⋅‖2; right: ‖⋅‖𝑯. This figure is adapted from [21].

5.3.2.2 ROB Quality in Terms of Structure

In order to validate numerically that the POD computes a symplectic ROB matrix for a

canonizable system with a periodic solution and 𝑇POD = 𝑙𝑇 /2 with 𝑙 ∈ ℕ, we investigate the

error in symplecticity1

𝑒sympl ∶= ∥𝑽 ⊤𝕁2�̄�𝑽 − 𝕁2�̄�∥F . (5.13)

The error is analyzed for the POD (𝒈 = 𝑯) with a fixed ROB size 2�̄� = 10 varying the

number of (consecutive) snapshots that are used to generate the basis

𝑽 = 𝑯−1/2svd(𝑯1/2𝑿s[∶, ∶ 𝑘])

with 𝑘 ∈ {250, 500, … , 5000}, which relates to increasing the integration time 𝑇POD in the

time-continuous formulation of the POD.

1As a technical remark: In order to group pairs of vectors for the symplecticity, we pair the singular vector with
the highest singular value iteratively with the singular vector with the closest singular value while respecting
that basis vectors are not selected twice.
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Figure 5.2: Error in symplecticity (5.13) for POD (𝒈 = 𝑯) of size 2�̄� = 10 generated from a
varying number of snapshots 𝑘. This figure is taken from [21].

The results for 𝑒sympl are shown in Figure 5.2. One period of the solution corresponds to

2000 time steps. We see that 𝑒sympl drops to zero for multiples of 𝑘 = 1000 time steps which

relates to multiples of the half period 𝑇 /2. This strongly indicates that the symplecticity of

the POD (𝒈 = 𝑯) for 𝑇POD = 𝑙𝑇 /2 proven in Theorem 5.15 for the time-continuous POD

also holds for the time-discrete counterpart. Secondly, this figure supports the assumption

that the requirement of 𝑇POD = 𝑙𝑇 /2 is indeed necessary as the error in symplecticity is

non-zero for 𝑘 ≠ 1000𝑙. Thus, it suggests that Theorem 5.15 can in general not be further

generalized over the current case 𝑇POD = 𝑙𝑇 /2. However, judging from the decreasing trend

from 𝑘 = 250 to 𝑘 = 5000, the error in the symplecticity decreases if multiple periods are

included in the snapshots which suggests that the theorem holds in the limit 𝑇POD → ∞.
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Model Reduction
on Manifolds:
A Differential

Geometric Framework 6
In this chapter, we build a framework based on differential geometry to generalize the

projection-based MOR introduced in Section 2.2.2 for (linear) subspaces to MOR on manifolds.

The chapter is subdivided in the following steps: We

• motivate MOR on manifolds by revisiting Kolmogorov 𝑛-widths (Section 6.1),

• establish a general framework for MOR on manifolds by

– giving a brief introduction to differential geometry (Section 6.2),

– and establishing the framework and introducing themanifold Petrov–Galerkin (MPG)
as a special reduction map (Section 6.3),

• extend the framework to structure-preserving MOR on manifolds by

– revisiting differential geometry to introduce tensor fields as relevant structures on
manifolds and Lagrangian and Hamiltonian systems (Section 6.4),

– and introducing the generalizedmanifold Galerkin (GMG) as an alternative reduction

map, which is then used for structure-preserving MOR on manifolds for Lagrangian
and Hamiltonian systems (Section 6.4),

• and, finally, discuss how to generate nonlinear embeddings from snapshot data and relate

the framework to different MOR techniques existing in the literature (Section 6.6).

Note that some concepts may feel repetitive to Chapter 2. However, in the present chapter,

the more general case of a manifold (instead of an ℝ-vector-space) is discussed. The following

is adapted from [24].
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6.1 Limitations of MOR on Subspaces

As discussed in Section 2.2.2, the accuracy of MOR on subspaces is limited by the Kolmogorov

𝑛-widths 𝑑𝑛 (𝑆) of the set of all solutions 𝑆. Let us emphasize at this point that MOR on

subspaces has proven valuable in practice. We refer to [14, Sec. 1.1] for a comprehensive

overview of applications in design, control, optimization, and uncertainty quantification.

Moreover, in the case of linear coercive elliptic PDEs, it can be shown that the Kolmogorov

𝑛-widths of the set of all solutions decay (a) exponentially for problems with one parameter

𝑑𝑛 (𝑆) ≤ 𝐶 exp−𝛾𝑛 for 𝐶, 𝛾 > 0 [83, 84], or (b) for multiple parameters, at least with a rate

𝑑𝑛 (𝑆) ≤ 𝐶 exp−𝑐𝑛𝛾
for 𝐶, 𝑐, 𝛾 > 0 if the problem is affinely decomposable [4, 92]. Theoreti-

cal insight for the decay of the Kolmogorov 𝑛-widths has also been found in combination

with the so-called Hankel singular values [113].

However, it has been shown that the Kolmogorov 𝑛-widths decay slowly for FOMs with

transport-dominated solutions like the advection equation (𝑑𝑛 (𝑆) ≥ 1/2 ⋅ 𝑛−1/2, [92])

or wave equation (𝑑𝑛 (𝑆) ≥ 1/4 ⋅ 𝑛−1/2, [44]) with special initial values. In such cases,

MOR on subspaces cannot determine an efficient ROM, as the maximum reduction error is

bounded from below by the Kolmogorov 𝑛-widths (see Section 2.2.2). In order to broaden the

applicability of MOR to such problems, nonlinear embeddings are recently considered. In the

scope of the present thesis, we refer to such techniques as MOR on manifolds.

6.2 A Primer on Differential Geometry

In this section, we recall several important definitions and results from the theory of smooth

manifolds to render this manuscript self-contained. Our presentation is largely based on

the monograph [74]. In particular, all material within this section that is not explicitly

referenced is adopted from [74]. To motivate the forthcoming definitions, we briefly discuss

the tools required (i) to formulate a differential equation on a manifold, and (ii) to define a

submanifold. We start by fixing some notation (Section 6.2.1). For the differential geometric

formulation of the FOM, we stepwise introduce the structure of a smooth manifold starting

from topological spaces. The topology allows us to characterize continuous functions and

smooth manifolds (Section 6.2.2). We continue to define continuously differentiable functions
on smooth manifolds (Section 6.2.3). Subsequently, we introduce the tangent space at a

point on the manifold (Section 6.2.4) to be able to formulate the differential of a function
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IVP on a vector space IVP on a manifold

𝕍 𝑁-dim. ℝ-vector-space ℳ 𝑁-dim. smooth manifold
𝑇𝑚ℳ, 𝑇ℳ tangent space, tangent bundle

𝑓∶ 𝕍 → 𝕍 right-hand side 𝑋∶ ℳ → 𝑇ℳ vector field
𝑥∶ ℐ → 𝕍 solution curve 𝛾∶ ℐ → ℳ solution curve
d
d𝑡𝑥(𝑡) ∈ 𝕍 time-derivative d

d𝑡𝛾∣
𝑡

∈ 𝑇𝛾(𝑡)ℳ velocity

{
d
d𝑡𝑥(𝑡) = 𝑓(𝑥(𝑡)) ∈ 𝕍
𝑥(𝑡0) = 𝑥0 ∈ 𝕍

{
d
d𝑡𝛾∣

𝑡
= 𝑋|𝛾(𝑡) ∈ 𝑇𝛾(𝑡)ℳ

𝛾 (𝑡0) = 𝛾0 ∈ ℳ

Table 6.1: Formulation of an initial value problem (IVP) with time interval ℐ on a vector space
(left) and on a manifold (right). This table is adapted from [24].

(Section 6.2.5), which is used to generalize the time-derivative of the state to the manifold

setting. In order to describe the evolution of an initial value problem, we set the right-hand

side to be a vector field (Section 6.2.6). With these preparations, an initial value problem on

a manifold can be formulated (Section 6.2.7). We refer to Table 6.1 for a comparison of a

dynamical system on a vector space and on a smooth manifold. Furthermore, for the model

reduction framework, we discuss embedded submanifolds (Section 6.2.9).

6.2.1 Notation

The notation of this part will be guided by the notation which is common in the differential

geometric community. Thus, the notation will only be partially compatible with the notation

of the first part of this thesis. A translation between Part I and Part II is offered in Table 6.1.

Moreover, we use the index notation, which differentiates between upper indices 𝑣𝑖 and lower

indices 𝜆𝑖. Let us emphasize that indices that concern the index notation are underlined.

The position of the index indicates the type of the geometric object. Furthermore, we utilize

the Einstein summation convention, which implies the summation over an index if the index

appears twice (once as a lower index and once as an upper index). For an 𝑁-dimensional vector

space 𝕍, this notation is used to abbreviate (i) the linear combination of a basis {𝐸𝑖}𝑁
𝑖=1 ⊂ 𝕍

with coefficients {𝑣𝑖}𝑁
𝑖=1 ⊂ ℝ, (ii) the linear combination of a dual basis {𝐹 𝑖}𝑁

𝑖=1 ⊂ 𝕍∗ with

coefficients {𝜆𝑖}𝑁
𝑖=1 ⊂ ℝ, or (iii) the dual product of the respective coefficients,

(i) 𝑣𝑖𝐸𝑖 ∶=
𝑁

∑
𝑖=1

𝑣𝑖𝐸𝑖 ∈ 𝕍, (ii) 𝜆𝑖𝐹 𝑖 ∶=
𝑁

∑
𝑖=1

𝜆𝑖𝐹 𝑖 ∈ 𝕍∗, (iii) 𝑣𝑖 𝜆𝑖 ∶=
𝑁

∑
𝑖=1

𝑣𝑖 𝜆𝑖 ∈ ℝ. (6.1)
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Moreover, we use [𝑣𝑖]1≤𝑖≤𝑁 ∈ ℝ𝑁 to stack scalars 𝑣𝑖 ∈ ℝ as a vector in ℝ𝑁. Further notation

is introduced in Section 6.2.8.

6.2.2 Chart and Smooth Manifold

For two topological spaces ℳ and 𝒬 (Appendix A.1.1), a map 𝐹∶ ℳ → 𝒬 is called a homeo-
morphism if (i) it is bijective (and thus the inverse 𝐹 −1 ∶ 𝒬 → ℳ exists) and (ii) both 𝐹 and

𝐹 −1 are continuous. Moreover, ℳ is called locally homeomorphic to ℝ𝑁 for 𝑁 ∈ ℕ if for

every point 𝑚 ∈ ℳ there exists an open set 𝑈 ⊂ ℳ with 𝑚 ∈ 𝑈 and a homeomorphism

𝐹∶ 𝑈 → 𝐹 (𝑈) ⊂ ℝ𝑁. A topological space ℳ is called a topological manifold of dimension 𝑁
if it is locally homeomorphic to ℝ𝑁 (and additionally Hausdorff and second-countable, see

e.g. [74, Cha. 1 and App. A]). We denote the dimension with dim(ℳ) = 𝑁.

Let ℳ be a topological manifold of dimension 𝑁. A chart is a tuple (𝑈, 𝑥) where the

chart domain 𝑈 ⊂ ℳ is an open set and the chart mapping 𝑥∶ 𝑈 → 𝑥 (𝑈) ⊂ ℝ𝑁 is a

homeomorphism. For two charts (𝑈, 𝑥) and (𝑉 , 𝑦) with 𝑈 ∩ 𝑉 ≠ ∅, we can define the

transition mappings

𝑥 ∘ 𝑦−1 ∶ 𝑦 (𝑈 ∩ 𝑉 ) → 𝑥 (𝑈 ∩ 𝑉 ) and 𝑦 ∘ 𝑥−1 ∶ 𝑥 (𝑈 ∩ 𝑉 ) → 𝑦 (𝑈 ∩ 𝑉 ) ,

which are homeomorphisms as composition of homeomorphisms (Figure 6.1). The charts

(𝑈, 𝑥) and (𝑉 , 𝑦) are called 𝐶𝑘-compatible for 𝑘 ∈ ℕ or 𝑘 = ∞ if either 𝑈 ∩ 𝑉 = ∅ or

𝑥 ∘ 𝑦−1 ∈ 𝐶𝑘(𝑦 (𝑈 ∩ 𝑉 ) , 𝑥 (𝑈 ∩ 𝑉 )) and 𝑦 ∘ 𝑥−1 ∈ 𝐶𝑘(𝑥 (𝑈 ∩ 𝑉 ) , 𝑦 (𝑈 ∩ 𝑉 )),

where differentiability is defined in the classical sense since 𝑥 (𝑈 ∩ 𝑉 ) , 𝑦 (𝑈 ∩ 𝑉 ) ⊂ ℝ𝑁. A

collection of charts 𝒜 = {(𝑈𝑖, 𝑥𝑖) ∣ 𝑖 ∈ 𝐼} with some index set 𝐼 is called an atlas for ℳ if

ℳ = ⋃𝑖∈𝐼 𝑈𝑖. The atlas is called of class 𝐶𝑘 (or a 𝐶𝑘-atlas) if all charts in 𝒜 are mutually

𝐶𝑘-compatible. We call a 𝐶𝑘-atlas 𝒜 maximal if all charts that are 𝐶𝑘-compatible with any

chart in 𝒜 are already elements of 𝒜. If 𝒜 is a maximal 𝐶𝑘-atlas for ℳ, then the tuple

(ℳ, 𝒜) is called a 𝐶𝑘-manifold and, in particular, a smooth manifold if 𝑘 = ∞. As common

in the literature, we omit the explicit mentioning of the maximal atlas whenever possible and

say that ℳ is a 𝐶𝑘-manifold, implicitly assuming a maximal 𝐶𝑘-atlas to be available.
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ℳ
𝑈

𝑉

𝑈 ∩ 𝑉

𝑦−1

𝑦
ℝ𝑁ℝ𝑁

𝑦(𝑉 )

𝑦 ∘ 𝑥−1

𝑥 ∘ 𝑦−1

𝑥(𝑈)

𝑥 𝑥−1

𝑦(𝑚)

𝑚

𝑥(𝑚)

Figure 6.1: Two intersecting chart domains 𝑈, 𝑉 ⊂ ℳ with respective chart mappings 𝑥, 𝑦 and
transitions 𝑥 ∘ 𝑦−1, 𝑦 ∘ 𝑥−1 on 𝑥 (𝑈 ∩ 𝑉 ) , 𝑦 (𝑈 ∩ 𝑉 ) ⊂ ℝ𝑁. This figure is taken from [24].

6.2.3 Diffeomorphism and Partial Derivative

Assume now that we have smooth manifolds ℳ and 𝒬 of dimension 𝑁 and 𝑄. A mapping

𝐹∶ ℳ → 𝒬 is called of class 𝐶𝑘, or in short notation 𝐹 ∈ 𝐶𝑘(ℳ, 𝒬), if for every 𝑚 ∈ ℳ,

there exist charts (𝑈, 𝑥) and (𝑉 , 𝑦) for ℳ and 𝒬 with 𝑚 ∈ 𝑈 and 𝐹 (𝑚) ∈ 𝑉 such that

𝑦 ∘ 𝐹 ∘ 𝑥−1 ∈ 𝐶𝑘(𝑥 (𝑈) , 𝑦 (𝑉 )) in the classical sense since 𝑥 (𝑈) ⊂ ℝ𝑁 and 𝑦 (𝑉 ) ⊂ ℝ𝑄.

Note that due to the 𝐶𝑘-compatibility of the charts, this definition of differentiability does

not depend on the choice of the chart. Throughout the document, a smooth mapping is

synonymous with mappings of the class 𝐶∞. We restrict ourselves in this work to smooth

manifolds and smooth mappings to simplify the presentation. A smooth diffeomorphism (from
ℳ to 𝒬) is a smooth bijective map 𝐹 ∈ 𝐶∞(ℳ, 𝒬) which has a smooth inverse.

For calculations, we formulate the derivative in the index notation (Section 6.2.1). In

more detail, we denote for 1 ≤ 𝑖 ≤ 𝑄 the 𝑖-th component function of the chart mapping
as 𝑥𝑖 ∶ 𝑈 → ℝ and the 𝑖-th component function (of 𝐹) with 𝐹 𝑖 ∶= 𝑦𝑖 ∘ 𝐹∶ 𝑈 → ℝ. Then,

the 𝑖-th partial derivative of the 𝑗-th component of 𝐹 ∈ 𝐶1(ℳ, 𝒬) at 𝑚 ∈ ℳ (in (𝑈, 𝑥)
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and (𝑉 , 𝑦)) is defined by

𝜕𝐹 𝑗

𝜕𝑥𝑖 ∣
𝑚

∶= (𝜕𝑖(𝐹
𝑗 ∘ 𝑥−1))(𝑥 (𝑚)) for 1 ≤ 𝑖 ≤ 𝑁, (6.2)

where 𝜕𝑖(⋅) describes the 𝑖-th partial derivative of functions mapping between Euclidean

vector spaces. For scalar-valued functions 𝑓 ∈ 𝐶1(ℳ, ℝ), we omit the index, i.e., 𝑓1 ≡ 𝑓 and

thus 𝜕𝑓1

𝜕𝑥𝑖 ∣
𝑚

= 𝜕𝑓
𝜕𝑥𝑖 ∣

𝑚
. For the derivative of the chart mapping, we obtain

𝑥 ∈ 𝐶∞(ℳ, ℝ𝑁) with 𝜕𝑥𝑗

𝜕𝑥𝑖 ∣
𝑚

= 𝜕𝑖(𝑥
𝑗 ∘ 𝑥−1) (𝑥 (𝑚)) = 𝛿

𝑗
𝑖 ∶=

⎧{
⎨{⎩

1, 𝑖 = 𝑗,

0, 𝑖 ≠ 𝑗,
(6.3)

due to (𝑥𝑗 ∘ 𝑥−1) = (𝑥 ∘ 𝑥−1)𝑗 = (idℝ𝑁)𝑗. The function 𝛿
𝑗
𝑖 is known as the Kronecker delta.

6.2.4 Tangent and Tangent Space

Consider a smooth manifold ℳ of dimension 𝑁. The tangent space of ℳ can be defined in

multiple alternative ways (see, e.g., [1, Sec. 1.6] for an overview). In the present work, we

present the derivation approach and closely follow [15, Sec. 1.7]. For an arbitrary but fixed

point 𝑚 ∈ ℳ, we consider the set

𝐹 ∞
𝑚 ∶= {𝑓 ∈ 𝐶∞(𝑈, ℝ) | 𝑈 ⊂ ℳ open with 𝑚 ∈ 𝑈}.

Then, a tangent at 𝑚 ∈ ℳ is a function on this set 𝑣∶ 𝐹 ∞
𝑚 → ℝ which is (i) linear and

(ii) fulfills the product rule, i.e., for every 𝑓, 𝑔 ∈ 𝐹 ∞
𝑚 and 𝑎, 𝑏 ∈ ℝ, it holds1

(i) 𝑣 (𝑎𝑓 + 𝑏𝑔) = 𝑎𝑣 (𝑓) + 𝑏𝑣 (𝑔) ∈ ℝ, (ii) 𝑣 (𝑓 ⋅ 𝑔) = 𝑣 (𝑓) ⋅ 𝑔 (𝑚) + 𝑓 (𝑚) ⋅ 𝑣 (𝑔) ∈ ℝ.

In a broader context, the properties (i) and (ii) define a derivation. The set of all tangents at

𝑚 ∈ ℳ

𝑇𝑚ℳ ∶= {𝑣∶ 𝐹 ∞
𝑚 → ℝ | 𝑣 is a tangent at 𝑚} (6.4)

1Note that for the sum/product of functions 𝑓 ∶ 𝑈𝑓 → ℝ and 𝑔 ∶ 𝑈𝑔 → 𝑅 from 𝐹 ∞
𝑚 , the domain of the

products/sums is shrinked to the intersection 𝑈𝑓 ∩ 𝑈𝑔, which is still open and 𝑚 ∈ 𝑈𝑓 ∩ 𝑈𝑔 and thus
(𝑓 + 𝑔), (𝑓 ⋅ 𝑔) ∈ 𝐹 ∞

𝑚 .
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defines the tangent space at 𝑚, which can be shown to be an 𝑁-dimensional vector space.

Thus, we also refer to elements 𝑣 ∈ 𝑇𝑚ℳ as tangent vectors at 𝑚. The 𝑖-th partial derivative

(6.2) of a scalar-valued function 𝑓 ∈ 𝐹 ∞
𝑚 can be used to define elements in 𝑇𝑚ℳ,

𝜕
𝜕𝑥𝑖 ∣

𝑚
∈ 𝑇𝑚ℳ with 𝜕

𝜕𝑥𝑖 ∣
𝑚

∶ 𝐹 ∞
𝑚 → ℝ, 𝑓 ↦ 𝜕𝑓

𝜕𝑥𝑖 ∣
𝑚

.

Moreover, ( 𝜕
𝜕𝑥1 ∣

𝑚
, … , 𝜕

𝜕𝑥𝑁 ∣
𝑚

) is an ordered basis of 𝑇𝑚ℳ, and, thus, we can represent each

tangent vector

𝑣 ∈ 𝑇𝑚ℳ with 𝑣 = 𝑣𝑖 𝜕
𝜕𝑥𝑖 ∣

𝑚
,

where we refer to 𝑣𝑖 ∈ ℝ, 1 ≤ 𝑖 ≤ 𝑁, as the components (of 𝑣) and where we implicitly sum

over 1 ≤ 𝑖 ≤ 𝑁 by the Einstein summation convention (6.1). Note that for this formalism

to work, the index 𝑖 in the denominator of 𝜕
𝜕𝑥𝑖 ∣

𝑚
counts as a lower index. In the case of a

vector space 𝕍, the tangent space 𝑇𝑚𝕍 can be identified with the vector space 𝑇𝑚𝕍 ≅ 𝕍 for

all 𝑚 ∈ 𝕍 [74, p. 59], in particular 𝑇𝑚ℝ𝑘 ≅ ℝ𝑘 for 𝑘 ∈ ℕ.

6.2.5 Differential and Chain Rule

Consider smooth manifolds ℳ, 𝒬, and ℒ of dimension 𝑁, 𝑄, and 𝐿 with charts (𝑈, 𝑥), (𝑉 , 𝑦),
and (𝑊, 𝑧) and a point 𝑚 ∈ 𝑈. The differential of a smooth map 𝐹 ∈ 𝐶∞(ℳ, 𝒬) at 𝑚 is a

linear map

d𝐹 |𝑚 ∈ 𝐶∞(𝑇𝑚ℳ, 𝑇𝐹(𝑚)𝒬), 𝑣𝑖 𝜕
𝜕𝑥𝑖 ∣

𝑚
↦ 𝑣𝑖 𝜕𝐹 𝑗

𝜕𝑥𝑖 ∣
𝑚

𝜕
𝜕𝑦𝑗 ∣

𝐹(𝑚)
, (6.5)

which maps between the respective tangent spaces using the 𝑖-th partial derivative (6.2) of

the 𝑗-th component function 𝐹 𝑗 of 𝐹, where we sum over 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑄 by

the Einstein summation convention (6.1). The chain rule is an important property of the

differential: For two smooth mappings 𝐹 ∈ 𝐶∞(ℳ, 𝒬), 𝐺 ∈ 𝐶∞(𝒬, ℒ), it holds

d(𝐺 ∘ 𝐹)|𝑚 = d𝐺|𝐹(𝑚) ∘ d𝐹 |𝑚 ∶ 𝑇𝑚ℳ → 𝑇(𝐺∘𝐹)(𝑚)ℒ. (6.6)
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In respective charts (𝑈, 𝑥), (𝑉 , 𝑦), (𝑊, 𝑧) with 𝑚 ∈ 𝑈, 𝐹 (𝑚) ∈ 𝑉 and (𝐺 ∘ 𝐹) (𝑚) ∈ 𝑊,

the chain rule reads

𝜕(𝐺∘𝐹)𝑖

𝜕𝑥𝑗 ∣
𝑚

= 𝜕𝐺𝑖

𝜕𝑦𝑘 ∣
𝐹(𝑚)

𝜕𝐹 𝑘

𝜕𝑥𝑗 ∣
𝑚

for all
⎧{
⎨{⎩

1 ≤ 𝑗 ≤ 𝑁,

1 ≤ 𝑖 ≤ 𝐿,

where the right-hand side sums over 1 ≤ 𝑘 ≤ 𝑄 by the Einstein summation convention (6.1).

6.2.6 Tangent Bundle and Vector Field

The tangent bundle is the disjoint union of all tangent spaces

𝑇ℳ ∶= ⋃̇
𝑚∈ℳ

𝑇𝑚ℳ ∶= {(𝑚, 𝑣) ∣ 𝑚 ∈ ℳ, 𝑣 ∈ 𝑇𝑚ℳ}, (6.7)

which bundles all points 𝑚 ∈ ℳ and corresponding tangent vectors 𝑣 ∈ 𝑇𝑚ℳ in one

set. The tangent bundle itself is a smooth manifold of dimension 2𝑁. We typically use

(𝑚, 𝑣) ∈ 𝑇ℳ to denote elements in 𝑇ℳ. Whenever we have a mapping into a tangent

bundle, then we use the notation (⋅)∣𝑚 to denote the second part of the mapping. For a given

smooth mapping 𝐹 ∈ 𝐶∞(ℳ, 𝒬), the differential (on the tangent bundle)

d𝐹 ∈ 𝐶∞(𝑇ℳ, 𝑇𝒬), (𝑚, 𝑣) ↦ (𝐹 (𝑚) , d𝐹 |𝑚(𝑣)) (6.8)

collects the differentials d𝐹 |𝑚 ∈ 𝐶∞(𝑇𝑚ℳ, 𝑇𝐹(𝑚)𝒬) at 𝑚 for all points 𝑚 ∈ ℳ. For a

given chart (𝑈, 𝑥) of ℳ, the differential of the chart mapping d𝑥 ∈ 𝐶∞(𝑇 𝑈, 𝑇 ℝ𝑁) defines

a natural chart of 𝑇 𝑈 by identifying 𝑇 ℝ𝑁 with ℝ2𝑁. It maps

d𝑥 ((𝑚, 𝑣𝑖 𝜕
𝜕𝑥𝑖 ∣

𝑚
)) = (𝑥 (𝑚) , [𝑣𝑖]1≤𝑖≤𝑁) ∈ ℝ2𝑁 (6.9)

since for a chart mapping2 𝑦 ∈ 𝐶∞(ℝ𝑁, ℝ𝑁) of ℝ𝑁, it holds with (6.3) and (6.5) that

d𝑥|𝑚 (𝑣𝑖 𝜕
𝜕𝑥𝑖 ∣

𝑚
) = 𝑣𝑖 𝜕𝑥𝑗

𝜕𝑥𝑖 ∣
𝑚

𝜕
𝜕𝑦𝑗 ∣

𝑥(𝑚)
= 𝑣𝑖 𝛿

𝑗
𝑖

𝜕
𝜕𝑦𝑗 ∣

𝑥(𝑚)
= 𝑣𝑖 𝜕

𝜕𝑦𝑖 ∣
𝑥(𝑚)

∈ 𝑇𝑥(𝑚)ℝ𝑁,

which we identify with [𝑣𝑖]1≤𝑖≤𝑁 ∈ ℝ𝑁.

2This chart mapping may seem redundant as 𝑦 ≡ idℝ𝑁 . However, we use it to illustrate how 𝑇𝑥(𝑚)ℝ𝑁 is

identified with ℝ𝑁 by using 𝑦 to denote the basis vectors 𝜕
𝜕𝑦𝑗 ∣

𝑥(𝑚)
∈ 𝑇𝑥(𝑚)ℝ𝑁.



6.2 A Primer on Differential Geometry 83

Since ℳ and 𝑇ℳ are both smooth manifolds, we are able to define smooth mappings from

ℳ to 𝑇ℳ based on Section 6.2.3. A smooth vector field is a mapping 𝑋 ∈ 𝐶∞(ℳ, 𝑇ℳ)
with 𝜋 ∘ 𝑋 = idℳ with 𝜋∶ 𝑇ℳ → ℳ, (𝑚, 𝑣) ↦ 𝑚. It assigns each point 𝑚 ∈ ℳ an

element 𝑋 (𝑚) ∶= (𝑚, 𝑋|𝑚) ∈ 𝑇ℳ in the tangent bundle, where we denote the vector field
at 𝑚 ∈ ℳ with 𝑋|𝑚 ∈ 𝑇𝑚ℳ. The set of all smooth vector fields on ℳ is denoted with 𝔛ℳ.

6.2.7 Curve and Initial Value Problem

For a given smooth manifold ℳ and an interval ℐ ∶= (𝑡0, 𝑡f) with 𝑡0 < 𝑡f < ∞, we call

𝛾 ∈ 𝐶∞(ℐ, ℳ) a smooth curve. We refer to elements 𝑡 ∈ ℐ as time points. By custom, we

use for the derivative w.r.t. time the notation d
d𝑡(⋅). The velocity of a curve 𝛾 at 𝑡 ∈ ℐ is

d
d𝑡𝛾∣

𝑡
∶= ( d

d𝑡𝛾
𝑖∣

𝑡
) 𝜕

𝜕𝑥𝑖 ∣
𝛾(𝑡)

∈ 𝑇𝛾(𝑡)ℳ,

i.e., an element in the tangent space based on the (classical) derivative of the component

functions 𝛾𝑖 ∶ ℝ ⊃ ℐ → ℝ of the curve.3 For a smooth vector field 𝑋 ∈ 𝔛ℳ, we call

𝛾 ∈ 𝐶∞(ℐ, ℳ) an integral curve of 𝑋 with initial value 𝛾0 ∈ ℳ, if

⎧{
⎨{⎩

d
d𝑡𝛾∣

𝑡
= 𝑋|𝛾(𝑡) ∈ 𝑇𝛾(𝑡)ℳ, 𝑡 ∈ ℐ

𝛾 (𝑡0) = 𝛾0 ∈ ℳ.
(6.10)

We refer to (6.10) as an initial value problem (on ℳ). For a given chart (𝑈, 𝑥), the system (6.10)

can be solved via an 𝑁-dimensional initial value problem on ℝ𝑁

d
d𝑡𝛾

𝑖∣
𝑡

= (𝑋|𝛾(𝑡))
𝑖 ∈ ℝ for 1 ≤ 𝑖 ≤ 𝑁, 𝛾𝑖 (𝑡0) = 𝑥𝑖 (𝛾0) ∈ ℝ. (6.11)

Due to the assumption of a smooth vector field, there exists a unique integral curve by

the fundamental theorem on flows [74, Thm. 9.12], if the time interval |𝑡f − 𝑡0| is small

enough. If we assume that there exists a time interval such that all integral curves exist

for a set 𝑀0 ⊂ ℳ with the starting points 𝛾0 ∈ 𝑀0, the flow of 𝑋 can be defined as

𝜃𝑡 ∶ 𝑀0 → ℳ, 𝛾0 ↦ 𝛾 (𝑡; 𝛾0).

3Alternatively, the velocity of a curve can be understood in terms of the derivative introduced in Section 6.2.5
with d

d𝑡𝛾∣
𝑡

= d𝛾|𝑡. In the presented notation, this would require understanding ℐ as a smooth manifold with
the chart (ℐ, 𝑥ℐ), chart mapping 𝑥ℐ ≡ idℐ ∶ ℐ → ℝ and the derivative d

d𝑡𝛾𝑖∣
𝑡

= 𝜕𝛾𝑖

𝜕𝑥ℐ
1 ∣

𝑡
.
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type element bold notation

point 𝑚 ∈ 𝑈 ⊂ ℳ 𝒎 ∶= 𝑥 (𝑚) ∈ ℝ𝑁

mapping 𝐹 ∈ 𝐶∞(𝑈, 𝑉 ) 𝑭 ∶= 𝑦 ∘ 𝐹 ∘ 𝑥−1 ∶ ℝ𝑁 ⊃ 𝑥(𝑈) → 𝑦(𝑉 ) ⊂ ℝ𝑄

tangent
vector

𝑣 = 𝑣𝑖 𝜕
𝜕𝑥𝑖 ∣

𝑚
∈ 𝑇𝑚𝑈 𝒗 ∶= [𝑣𝑖]1≤𝑖≤𝑁 ∈ ℝ𝑁

Jacobian
matrix

d𝐹 |𝑚 ∈ 𝐶∞(𝑇𝑚𝑈, 𝑇𝐹(𝑚)𝑉 ) 𝑫𝑭|𝒎 ∶= [𝜕𝐹 𝑖

𝜕𝑥𝑗 ∣
𝑚

]1≤𝑖≤𝑄,
1≤𝑗≤𝑁

∈ ℝ𝑄×𝑁

dynamical
system

{
d
d𝑡𝛾∣

𝑡
= 𝑋|𝛾(𝑡) ∈ 𝑇𝛾(𝑡)𝑈,

𝛾(𝑡0) = 𝛾0 ∈ ℳ
{

d
d𝑡𝜸∣

𝑡
= 𝑿|𝜸(𝑡) ∈ ℝ𝑁,

𝜸(𝑡0) = 𝜸0 ∈ ℝ𝑁

Table 6.2: Bold notation for two smooth manifolds ℳ, 𝒬 of dimension 𝑁, 𝑄 with charts
(𝑈, 𝑥), (𝑉 , 𝑦). This table is taken from [24].

6.2.8 Bold Notation

We introduce a notation that collects all previously introduced types of differential geometric

objects (like points, functions, tangent vectors) in a fixed chart and thereby reduces to

computations in ℝ-vector-spaces. We refer to this notation as the bold notation.4 For a given

smooth manifold ℳ with a chart (𝑈, 𝑥), we use

𝑥 ∈ 𝐶∞(𝑈, ℝ𝑁), d𝑥|𝑚 ∈ 𝐶∞(𝑇𝑚𝑈, ℝ𝑁) with 𝑚 ∈ 𝑈, d𝑥 ∈ 𝐶∞(𝑇 𝑈, ℝ2𝑁)

to map the different types of objects accordingly, where we identify 𝑇𝑥(𝑚)ℝ𝑁 with ℝ𝑁 for

d𝑥|𝑚 and 𝑇 ℝ𝑁 with ℝ2𝑁 for d𝑥. Let us state clearly that (i) this formulation loses geometrical

information (as it treats different types of objects as a vector in ℝ𝑁) and (ii) it only works

for one fixed chart (since the explicit dependence on the chart is neglected). However, this

formulation can be helpful for readers new to the field of differential geometry with more

background in classical numerical analysis and engineering. The notation for the different

types of differential geometric objects (points, mappings, tangent vectors, differentials (via

the Jacobian matrix5), and dynamical systems) for two smooth manifolds ℳ, 𝒬 with charts

(𝑈, 𝑥), (𝑉 , 𝑦), respectively, are summarized in Table 6.2.

4Be aware that bold symbols may be used for other purposes in other scripts on differential geometry.
5The Jacobian matrix is the coordinate matrix of the linear mapping described by the differential in coordinates
d𝑦|𝐹(𝑚) ∘ d𝐹 |𝑚 ∘ d𝑥|−1

𝑚 ∶ ℝ𝑁 → ℝ𝑄.
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6.2.9 Embedding and Embedded Submanifold

Consider two smooth manifolds ℳ̌ and ℳ of dimension 𝑛 and 𝑁, respectively. A smooth

mapping𝐹 ∈ 𝐶∞(ℳ̌, ℳ) is called an immersion if the differential d𝐹 |�̌� ∶ 𝑇�̌�ℳ̌ → 𝑇𝐹(�̌�)ℳ
is injective at each point �̌� ∈ ℳ̌. Moreover, 𝐹 is called a smooth embedding if it is a

smooth immersion and a homeomorphism onto its image 𝐹 (ℳ̌) ⊂ ℳ. For a given smooth

embedding 𝜑 ∈ 𝐶∞(ℳ̌, ℳ), the image 𝜑(ℳ̌) is an 𝑛-dimensional smooth manifold, which

is called an embedded (or regular) submanifold of ℳ. We denote the tangent space of 𝜑(ℳ̌) at
𝜑 (�̌�) with 𝑇𝜑(�̌�)(𝜑(ℳ̌)) ∶= d𝜑|�̌� (𝑇�̌�ℳ̌). From the assumptions, it follows automatically

that the embedding 𝜑 is a smooth diffeomorphism onto its image [74, Prop. 5.2].

Lemma 6.1: Consider smooth manifolds ℳ̌, ℳ and smooth mappings 𝜑 ∈ 𝐶∞(ℳ̌, ℳ) and
𝜚 ∈ 𝐶∞(ℳ, ℳ̌) with 𝜚 ∘ 𝜑 ≡ idℳ̌. Then, 𝜑 is a smooth embedding and 𝜑(ℳ̌) ⊂ ℳ is an
embedded submanifold.

Proof. (Appendix A.1.2).

6.3 Model Order Reduction on Manifolds

With the geometric fundamentals at hand, we can now introduce model order reduction on
manifolds. We start with the general framework for model order reduction (Section 6.3.1).

Then, we detail conditions such that exact reproduction can be achieved (Section 6.3.2).

Finally, we present the so-called manifold Petrov–Galerkin as a reduction map (Section 6.3.3).

6.3.1 General Framework

This section sits at the heart of this paper and introduces the general framework upon which

the remainder is built. We start this section by defining the FOM on manifolds (Section 6.3.1.1).

We then focus on the goal that MOR strives to achieve and what assumptions are required to

reach this goal (Section 6.3.1.2). Subsequently, we define the reduction map and the reduced-

order model (Section 6.3.1.3). We conclude the general framework with a workflow for MOR

on manifolds (Section 6.3.1.4).
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6.3.1.1 Full-Order Model

In the scope of the present work, we consider high-dimensional parametric initial value

problems. More precisely, assume that we are given a time interval ℐ ∶= (𝑡0, 𝑡f) with initial

time 𝑡0 and final time 𝑡f > 𝑡0, a parameter set 𝑃 ⊂ ℝ𝑝, an 𝑁-dimensional smooth manifold

ℳ with large 𝑁, a (possibly parametric) smooth vector field 𝑋∶ 𝑃 → 𝔛ℳ, and a (possibly

parametric) initial value 𝛾0 ∶ 𝑃 → ℳ. We consider for 𝜇 ∈ 𝑃 the initial value problem

⎧{
⎨{⎩

d
d𝑡𝛾∣

𝑡;𝜇
= 𝑋(𝜇)|𝛾(𝑡;𝜇) ∈ 𝑇𝛾(𝑡;𝜇)ℳ, 𝑡 ∈ ℐ

𝛾 (𝑡0; 𝜇) = 𝛾0(𝜇) ∈ ℳ,
(6.12)

which we want to solve for the integral curve 𝛾 (⋅; 𝜇) ∈ 𝐶∞(ℐ, ℳ). We refer to (6.12) as the

FOM and to 𝑋 (𝜇) as the FOM vector field .

Remark 6.2 (Parameter dependency): In the following, we may suppress the explicit notation
of the parameter dependence for the sake of brevity. This is possible since the parameter is fixed
for each FOM evaluation. We indicate the parameter dependence only if it is relevant in a specific
context.

6.3.1.2 Goal of Model Order Reduction

The goal of MOR can be formulated as to be able to well-approximate the set of all solutions

𝑆 ∶= {𝛾 (𝑡; 𝜇) ∈ ℳ ∣ (𝑡, 𝜇) ∈ ℐ × 𝑃} ⊂ ℳ (6.13)

computationally efficiently. As discussed in Remark 2.8, the set of all solutions is sometimes

referred to as the solution manifold , which may be misleading since 𝑆 is in general not a

manifold. The crucial assumption for MOR to be reasonable is the following.

Assumption 6.3: Given a metric 𝑑ℳ ∶ ℳ × ℳ → ℝ≥0, we assume that there exists a low-
dimensional embedded submanifold 𝜑(ℳ̌) ⊂ ℳ defined by an 𝑛-dimensional manifold ℳ̌
and a smooth embedding 𝜑 ∈ 𝐶∞(ℳ̌, ℳ) with dim(ℳ̌) = 𝑛 ≪ 𝑁 = dim(ℳ) such that
the set of solutions 𝑆 can be approximated well, i.e., the worst best-approximation error of 𝑆 in
𝜑(ℳ̌)

𝑑ℳ(𝑆, 𝜑(ℳ̌)) ∶= sup
𝑚∈𝑆

inf
�̌�∈ℳ̌

𝑑ℳ(𝑚, 𝜑(�̌�))

is small.
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𝜑(ℳ̌)

ℳ

𝑆

Figure 6.2: Schematic illustration of the full manifold ℳ (dark blue), the set of all solutions
𝑆 (black), and the approximating embedded submanifold 𝜑(ℳ̌) (red). The set of solutions
is schematically depicted as three separate trajectories that may occur due to a possible
discontinuous behavior in the parameter 𝜇. This figure is taken from [24].

We refer to ℳ as the full(-order) manifold and to ℳ̌ as the reduced(-order) manifold . Let
us emphasize that the goal is to approximate the set 𝑆 ⊂ ℳ, not the full manifold ℳ. We

refer to Figure 6.2 for a schematic illustration of the relation between the full manifold ℳ,

the set of all solutions 𝑆, and the approximating embedded submanifold 𝜑(ℳ̌).

6.3.1.3 Reduction Map and Reduced-Order Model

Assume that we have identified an 𝑛-dimensional embedded submanifold 𝜑(ℳ̌) ⊂ ℳ
with smooth embedding 𝜑 ∈ 𝐶∞(ℳ̌, ℳ) and that Assumption 6.3 is satisfied. To find an

ROM, we want to replace 𝛾 (𝑡) in (6.12) with the approximation 𝜑 ( ̌𝛾 (𝑡)) based on a reduced

integral curve ̌𝛾 ∈ 𝐶∞(ℐ, ℳ̌). Note that, even if we would have an exact reproduction, i.e.,

𝛾 (𝑡) = 𝜑 ( ̌𝛾 (𝑡)) for all 𝑡 ∈ ℐ, the initial value problem (6.12) in the reduced integral curve

̌𝛾 would be overdetermined, in the sense that we have (locally in each chart) 𝑁 equations

for 𝑛 unknowns. Thus, we must also reduce the initial value problem and give the following

definition.

Definition 6.4 (Reduction map): A map 𝑅 ∈ 𝐶∞(𝑇ℳ, 𝑇ℳ̌) is called reduction map for a
smooth embedding 𝜑 ∈ 𝐶∞(ℳ̌, ℳ) if it satisfies the projection property

𝑅 ∘ d𝜑 = id𝑇ℳ̌ . (6.14)

As in Section 6.2.6, we split the reduction map

𝑅 ∈ 𝐶∞(𝑇ℳ, 𝑇ℳ̌), (𝑚, 𝑣) ↦ (𝜚 (𝑚) , 𝑅|𝑚 (𝑣))

with 𝜚 ∈ 𝐶∞(ℳ, ℳ̌) and 𝑅|𝑚 ∈ 𝐶∞(𝑇𝑚ℳ, 𝑇𝜚(𝑚)ℳ̌) for 𝑚 ∈ ℳ. We refer to 𝜚 as a point
reduction for 𝜑 and to 𝑅|𝑚 as a tangent reduction for 𝜑.
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𝜑 (�̌�) ∈ 𝜑(ℳ̌)

ℳ
�̌� ∈ ℳ̌

𝜑

𝜑−1

𝜚

ℳ

(a) Schematic illustration of the relation of the embedding 𝜑 and the point reduction 𝜚.

𝜑 (�̌�)

�̌� ∈ ℳ̌

d𝜑|�̌�

d𝜑−1∣𝜑(�̌�)

𝑅|𝜑(�̌�)

𝑇𝜑(�̌�)(𝜑(ℳ̌)) 𝑇�̌�ℳ̌

𝑇𝜑(�̌�)ℳ

(b) Schematic illustration of the relation of the tangent spaces involved in MOR on manifolds. The
reduced tangent space 𝑇�̌�ℳ̌ is displayed orthogonally to ℳ̌ for a better visualization.

Figure 6.3: Schematic illustration of the relation between the embedding 𝜑 and the reduction
map 𝑅 (𝑚, 𝑣) = (𝜚 (𝑚) , 𝑅|𝑚 (𝑣)) with 𝑚 ∈ ℳ. This figure is taken from [24].

Note that (6.14) immediately implies that d𝜑 ∘ 𝑅 ∈ 𝐶∞(𝑇ℳ, 𝑇𝜑(ℳ̌)) is idempotent and

thus a projection. Moreover, (6.14) implies that a point reduction and a tangent reduction for

𝜑 satisfy

𝜚 ∘ 𝜑 = idℳ̌, (6.15a)

𝑅|𝜑(�̌�) ∘ d𝜑|�̌� = id𝑇�̌�ℳ̌ for all �̌� ∈ ℳ̌, (6.15b)

which we refer to as the point projection property and the tangent projection property, re-
spectively. The relation between the embedding 𝜑 and the reduction map 𝑅 is illustrated in

Figure 6.3.

Example 6.5 (MOR on subspaces): Projection-based MOR on subspaces from Section 2.2.2
is included in MOR on manifolds as a special case: For an 𝑁-dimensional ℝ-vector-space 𝕍
with a coordinate mapping 𝜑𝕍 ∶ 𝕍 → ℝ𝑁 with a 𝑛-dimensional subspace �̃� ⊂ 𝕍 characterized
by an 𝑛-dimensional reduced space �̌� and an embedding 𝑉 ∈ 𝐿(�̌�; 𝕍), the two approaches
relate with ℳ = 𝑈 = 𝕍, 𝑥 = 𝜑𝕍, and ℳ̌ = ̌𝑈 = �̌�, ̌𝑥 = �̌��̌� (where �̌��̌� ∶ �̌� → ℝ𝑛 denotes
a coordinate mapping of �̌�). The embedding is 𝜑 ≡ 𝑉. The point reduction was not clearly
labelled in Chapter 2. In the most general case, it can be characterized by a projection matrix
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𝑾 ∈ ℝ𝑁×𝑛 such that

𝝔 (𝒎) ∶= 𝑾 ⊤𝒎, 𝑹|𝒎(𝒗) ∶= 𝑾 ⊤𝒗, 𝝋 (�̌�) ∶= 𝑽 �̌�.

This exactly covers the case where 𝝋 and 𝝔 are linear. The projection property (6.14) then relates
to the biorthogonality of 𝑾 and 𝑽

𝝔 ∘ 𝝋 ≡ idℝ𝑛 ⟺ 𝑾 ⊤𝑽 = 𝑰𝑛 ∈ ℝ𝑛×𝑛,

𝑹|𝝋(�̌�) ∘ d𝝋|�̌� ≡ idℝ𝑛 ⟺ 𝑾 ⊤𝑽 = 𝑰𝑛 ∈ ℝ𝑛×𝑛,

which is often assumed in MOR on subspaces.

Definition 6.6 (Reduced-order model): Assume to be given a FOM (6.12), a smooth embedding
𝜑 ∈ 𝐶∞(ℳ̌, ℳ), and a reduction map 𝑅 ∈ 𝐶∞(𝑇ℳ, 𝑇ℳ̌) for 𝜑 with point and tangent
reduction given by 𝑅 (𝑚, 𝑣) = (𝜚 (𝑚) , 𝑅|𝑚 (𝑣)). We define the ROM vector field �̌� ∶ 𝑃 → 𝔛ℳ̌

with

�̌�(𝜇)∣
�̌�

∶= 𝑅|𝜑(�̌�) (𝑋(𝜇)|𝜑(�̌�)) ∈ 𝑇�̌�ℳ̌.

Then, for 𝜇 ∈ 𝑃, we call the initial value problem on ℳ̌

⎧{
⎨{⎩

d
d𝑡 ̌𝛾∣

𝑡;𝜇
= �̌�(𝜇)∣

�̌�(𝑡;𝜇)
∈ 𝑇�̌�(𝑡;𝜇)ℳ̌

̌𝛾 (𝑡0; 𝜇) = ̌𝛾0(𝜇) ∶= 𝜚 (𝛾0 (𝜇)) ∈ ℳ̌
(6.16)

the ROM for (6.12) under the reduction map 𝑅 with solution ̌𝛾(⋅; 𝜇) ∈ 𝐶∞(ℐ, ℳ̌).

We emphasize that both the point and the tangent reduction are relevant for the ROM,

since the point reduction is used to map the initial value 𝛾0, while the tangent reduction maps

the FOM vector field to the tangent space of the reduced manifold ℳ̌. Moreover, we see

that it is not sufficient to define 𝜚 and 𝑅|𝜑(�̌�) only in the image of 𝜑 and d𝜑|�̌�, respectively,

since the initial value and the evaluated FOM vector field may be elements of ℳ ∖ 𝜑 (ℳ̌)
and 𝑇𝜑(�̌�)ℳ ∖ 𝑇𝜑(�̌�)(𝜑(ℳ̌)), respectively.
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6.3.1.4 MOR Workflow

With Assumption 6.3 at hand, MOR (in the scope of this work) can be summarized in three

steps:

1. Approximation: Given the FOM (6.12), find a reduced manifold ℳ̌ and a smooth

embedding 𝜑 ∈ 𝐶∞(ℳ̌, ℳ) such that 𝑑ℳ(𝑆, 𝜑(ℳ̌)) is small.

2. Reduction: Identify a reduction map 𝑅 ∈ 𝐶∞(𝑇ℳ, 𝑇ℳ̌) for 𝜑 and construct the

ROM (6.16).

3. Reconstruction: Solve the ROM (6.16) for ̌𝛾 and approximate the FOM solution curve

𝛾 with

𝛾 (𝑡; 𝜇) ≈ 𝜑 ( ̌𝛾 (𝑡; 𝜇)) for (𝑡, 𝜇) ∈ ℐ × 𝑃. (6.17)

In the remainder of the manuscript, we discuss all three steps, starting with the Re-

construction step in the subsequent subsection. Possible constructions of the reduction

map in the Reduction step are discussed in Sections 6.3.3 and 6.5. The construction of

the embedding 𝜑 in the Approximation step is analyzed in a data-driven framework in

Section 6.6.

6.3.2 Exact Reproduction

A desirable property in the Reconstruction step is to answer the question when the

approximation in (6.17) is exact, which we refer to as exact reproduction. Clearly, if for a given

parameter 𝜇 ∈ 𝑃, the FOM solution 𝛾 evolves on 𝜑(ℳ̌), i.e., 𝛾 (𝑡; 𝜇) ∈ 𝜑(ℳ̌) for all 𝑡 ∈ ℐ,
then we can define the smooth curve

̌𝛽 ∶= 𝜑−1(𝛾 (⋅; 𝜇)) ∈ 𝐶∞(ℐ, ℳ̌), (6.18)

since, by assumption, 𝜑 is a diffeomorphism onto its image. With this choice, we immediately

obtain

𝑋(𝜇)|𝜑( ̌𝛽(𝑡;𝜇)) = 𝑋(𝜇)|𝛾(𝑡;𝜇) = d
d𝑡𝛾∣

𝑡;𝜇
= d

d𝑡(𝜑 ∘ ̌𝛽)∣
𝑡;𝜇

= d𝜑| ̌𝛽(𝑡;𝜇) ( d
d𝑡

̌𝛽∣
𝑡;𝜇

) , (6.19)

where the last equality follows from the chain rule (6.6). It remains to prove that the ROM (6.16)

is able to recover the reduced curve ̌𝛽, which we show in the following.
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Theorem 6.7 (Exact reproduction of a solution): Assume that the FOM (6.12) is uniquely
solvable for a parameter 𝜇 ∈ 𝑃 and consider a smooth embedding 𝜑 ∈ 𝐶∞(ℳ̌, ℳ) with
reduction map 𝑅 ∈ 𝐶∞(𝑇ℳ, 𝑇ℳ̌). Assume that the ROM (6.16) is uniquely solvable and
𝛾 (𝑡; 𝜇) ∈ 𝜑(ℳ̌) for all 𝑡 ∈ ℐ. Then the ROM solution ̌𝛾 (⋅; 𝜇) exactly recovers the FOM solution
𝛾 (⋅; 𝜇) for this parameter, i.e.,

𝜑 ( ̌𝛾 (𝑡; 𝜇)) = 𝛾 (𝑡; 𝜇) for all 𝑡 ∈ ℐ. (6.20)

Proof. Since 𝛾 (𝑡; 𝜇) ∈ 𝜑(ℳ̌) for all 𝑡 ∈ ℐ, we can construct ̌𝛽 as in (6.18). It remains to show

that ̌𝛽 satisfies the ROM (6.16). First, we obtain

̌𝛾0(𝜇) = 𝜚 (𝛾0(𝜇)) = 𝜚 (𝛾 (𝑡0; 𝜇)) = (𝜚 ∘ 𝜑) ( ̌𝛽 (𝑡0; 𝜇)) = ̌𝛽 (𝑡0; 𝜇) ,

where the last equality is due to the projection property (6.15) for the point reduction. Second,
̌𝛽 satisfies the initial value problem of the ROM since the tangent projection property (6.15b)

implies with (6.19)

𝑅|𝜑( ̌𝛽(𝑡;𝜇)) (𝑋(𝜇)|𝜑( ̌𝛽(𝑡;𝜇))) = (𝑅|𝜑( ̌𝛽(𝑡;𝜇)) ∘ d𝜑| ̌𝛽(𝑡;𝜇)) ( d
d𝑡

̌𝛽∣
𝑡;𝜇

) = d
d𝑡

̌𝛽∣
𝑡;𝜇

.

In the following, we give an example for which the exact reproduction can be achieved for

a specific choice of ℳ̌ and 𝜑.

Corollary 6.8 (Special case 𝜑 ≡ 𝛾): For a given FOM (6.12) on ℳ, assume that ℳ̌ ∶= ℐ × 𝑃
is an (𝑛𝑝 + 1)-dimensional smooth manifold, that the FOM is uniquely solvable, that the FOM
solution 𝛾∶ ℐ × 𝑃 = ℳ̌ → ℳ is a smooth embedding, and that there exists a respective
reduction map 𝑅 ∈ 𝐶∞(𝑇ℳ, 𝑇ℳ̌) for the smooth embedding 𝜑 ≡ 𝛾. Then, the ROM (6.16)

reproduces the FOM solution exactly with the reduced integral curve ̌𝛾 (𝑡; 𝜇) = (𝑡, 𝜇) such that
the flow of the ROM is ̌𝜃𝑠(𝑡, 𝜇) = (𝑡 + 𝑠, 𝜇). Moreover, the ROM in bold notation reads

d
d𝑡 �̌�∣

𝑡;𝜇
= 𝒆1 ∈ ℝ𝑛𝑝+1, �̌�0(𝜇) = (𝑡0, 𝜇),

where 𝒆1 ∈ ℝ𝑛𝑝+1 denotes the first unit vector.

Proof. With the assumptions of Corollary 6.8, the choice 𝜑 ≡ 𝛾 guarantees that the assump-

tions of Theorem 6.7 are fulfilled and that ̌𝛽 (𝑡; 𝜇) = (𝑡, 𝜇) is a valid choice for the curve

in (6.18), which was used in the proof of Theorem 6.7 as the ROM solution candidate. For the
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remaining statement, we observe

d
d𝑡

̌𝛽1∣
𝑡;𝜇

= 1, d
d𝑡

̌𝛽𝑖∣
𝑡;𝜇

= 0 for 1 < 𝑖 ≤ 𝑛𝑝 + 1,

and ̌𝛾0(𝜇) = ̌𝛽 (𝑡0; 𝜇) = (𝑡0, 𝜇), which completes the proof.

6.3.3 Manifold Petrov–Galerkin (MPG)

Nowwe want to address one example of how to construct a reduction map (Definition 6.4), i.e.,

how to do the Reduction step from the general MOR workflow described in Section 6.3.1.4.

Note that this specific choice of reduction map has been independently developed in [93].

Moreover, we emphasize that the specific choice of the reduction map is crucial for the

approximation quality of the ROM; see, for instance, [94]. Nevertheless, our goal here is not

to present an optimal choice but rather an example of leveraging the point reduction 𝜚 to

construct a reduction map using the previously introduced framework in Section 6.3.1.

Assume that we have completed the Approximation step from the general MORworkflow,

i.e., we have already identified a reduced manifold ℳ̌ together with a smooth embedding

𝜑. Since 𝜑 is a homeomorphism onto its image, we know that 𝜑−1 ∶ 𝜑(ℳ̌) → ℳ̌ exists.

Under for MOR reasonable assumptions, the extension lemma for smooth functions (see for

instance [74, Lem. 2.26]) guarantees that we can find a smooth extension 𝜚 of 𝜑−1, which

by construction satisfies the point projection property (6.15a). We refer to Figure 6.3a for an

illustration of the relation between 𝜑−1 and 𝜚. Differentiating the point projection property

(6.15a) with the chain rule (6.6) implies

d𝜚|𝜑(�̌�) ∘ d𝜑|�̌� = d(idℳ̌)|�̌� = id𝑇�̌�ℳ̌ ∶ 𝑇�̌�ℳ̌ → 𝑇�̌�ℳ̌, (6.21)

i.e., d𝜚|𝜑(�̌�) is a left-inverse to d𝜑|�̌�. In particular, we have proven the following result.

Theorem 6.9 (MPG reduction map): Consider a smooth embedding 𝜑 and a point reduction
𝜚 for 𝜑. Then, the differential of the point reduction 𝜚 is a left inverse to the differential of the
embedding 𝜑. Consequently,

𝑅MPG ∶ 𝑇ℳ → 𝑇ℳ̌ (𝑚, 𝑣) ↦ (𝜚 (𝑚) , d𝜚|𝑚 (𝑣)) (6.22)

is a smooth reduction map for 𝜑, which we call the MPG reduction map for (𝜚, 𝜑).
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We refer to the ROM (6.16) obtained with the MPG reduction map from Theorem 6.9 as

the MPG-ROM for (𝜚, 𝜑). In index and bold notation, the tangent projection property (6.21)

reads

𝜕𝜚𝑖

𝜕𝑥𝑘 ∣
𝜑(�̌�)

𝜕𝜑𝑘

𝜕�̌�𝑗 ∣
�̌�

= 𝛿𝑖
𝑗, 𝑫𝝔|𝝋(�̌�)𝑫𝝋|�̌� = 𝑰𝑛 ∈ ℝ𝑛×𝑛. (6.23)

It can be interpreted as that the columns of 𝑫𝝋|�̌� span an 𝑛-dimensional reduced vector

space that changes with the reduced coordinates �̌� ∈ ℝ𝑛, whereas the rows of 𝑫𝝔|𝝋(�̌�)

span an 𝑛-dimensional vector space dual to the reduced vector space.

Example 6.10 (MOR on subspaces): If 𝜑 and 𝜚 are linear as in Example 6.5, then theMPG-
ROM (6.16) with the MPG reduction map from Theorem 6.9 is the ROM obtained in classical
MOR on subspaces via Petrov–Galerkin projection

𝑹MPG|𝝋(�̌�) = 𝑫𝝔|𝝋(�̌�) = 𝑾 ⊤, d
d𝑡 �̌�∣

𝑡
= 𝑾 ⊤𝑿|�̌�(𝑡),

which is the motivation for the terminology MPG.

6.4 Manifolds with Structure

As a next step, we want to discuss structure-preserving MOR on manifolds (Section 6.5).

Beforehand, we specify the relevant structures on the FOM level in the present section. The

idea is to equip the underlying full manifold ℳ with additional structure to formulate a FOM

vector field 𝑋, which guarantees physical properties, e.g., that the FOM solutions preserve

energy over time. We introduce additional structure on ℳ (Section 6.4.1), which allows us

to formulate Lagrangian systems (Section 6.4.2) and Hamiltonian systems (Section 6.4.3) on

manifolds. Both systems admit a FOM vector field, which guarantees that the FOM solutions

preserve the corresponding energy over time.

6.4.1 Additional Structure on 𝓜

To keep this work self-contained, we proceed by detailing more concepts of differential geom-

etry. We discuss the cotangent space and covectors (Section 6.4.1.1), tensors (Section 6.4.1.2),

tensor fields (Section 6.4.1.3), structured tensor fields (Section 6.4.1.4), and pullbacks of covec-

tors, tensor fields, and functions (Section 6.4.1.5).
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6.4.1.1 Cotangent Space, Covectors, and Cotangent Bundle

The dual of the tangent space at 𝑚 ∈ ℳ (6.4) is the cotangent space at 𝑚 ∈ ℳ

𝑇 ∗
𝑚ℳ ∶= {𝜆 ∣ 𝜆∶ 𝑇𝑚ℳ → ℝ linear},

which is again an 𝑁-dimensional vector space. Elements in the cotangent space are called

cotangent vectors or simply covectors. Covectors can be constructed from scalar-valued

functions 𝑓 ∈ 𝐶∞(ℳ, ℝ), as its differential at 𝑚, d𝑓|𝑚 ∈ 𝐶∞(𝑇𝑚ℳ, 𝑇𝑓(𝑚)ℝ), defines a

linear functional on 𝑇𝑚ℳ if we identify 𝑇𝑓(𝑚)ℝ with ℝ. Thus, the differential at 𝑚 of a scalar-

valued function is a covector d𝑓|𝑚 ∈ 𝑇 ∗
𝑚ℳ. For a given chart (𝑈, 𝑥) of ℳ, this construction

can be used to define a basis of 𝑇 ∗
𝑚ℳ: For each 𝑖 ∈ {1, … , 𝑁}, the 𝑖-th component function

of the chart mapping 𝑥𝑖 ∈ 𝐶∞(𝑈, ℝ) is a scalar-valued function and thus d𝑥𝑖∣𝑚 ∈ 𝑇 ∗
𝑚ℳ.

Moreover, with (6.3), (6.5), and identifying 𝑇𝑥(𝑚)ℝ ≅ ℝ, it holds for all basis vectors of the

tangent space 𝜕
𝜕𝑥𝑗 ∣

𝑚
∈ 𝑇𝑚ℳ, 1 ≤ 𝑗 ≤ 𝑁 the dual relationship

d𝑥𝑖∣𝑚 ( 𝜕
𝜕𝑥𝑗 ∣

𝑚
) = 𝜕𝑥𝑖

𝜕𝑥𝑗 ∣
𝑚

= 𝛿𝑖
𝑗 ∈ ℝ ≅ 𝑇𝑥(𝑚)ℝ.

The differentials {d𝑥𝑖∣𝑚}1≤𝑖≤𝑁 define a basis of 𝑇 ∗
𝑚ℳ and we can represent each covector

𝜆 ∈ 𝑇 ∗
𝑚ℳ as

𝜆 = 𝜆𝑖 d𝑥𝑖∣𝑚 ∈ 𝑇 ∗
𝑚ℳ,

with (covector) components 𝜆𝑖 ∈ ℝ, where the right-hand side sums over 1 ≤ 𝑖 ≤ 𝑁 by

Einstein summation convention (6.1). By the duality of the bases of 𝑇𝑚ℳ and 𝑇 ∗
𝑚ℳ, it holds

for each covector 𝜆 ∈ 𝑇 ∗
𝑚ℳ and vector 𝑣 ∈ 𝑇𝑚ℳ that

𝜆 (𝑣) = (𝜆𝑗 d𝑥𝑗) (𝑣𝑖 𝜕
𝜕𝑥𝑖 ∣

𝑚
) = 𝜆𝑗 𝑣𝑖 d𝑥𝑗∣

𝑚
( 𝜕

𝜕𝑥𝑖 ∣
𝑚

) = 𝜆𝑖 𝑣𝑖 ∈ ℝ.

Analogously to the tangent bundle (6.7), a cotangent bundle 𝑇 ∗ℳ can be formulated as the

disjoint union of 𝑇 ∗
𝑚ℳ, which can be shown to be a smooth manifold of dimension 2𝑁.



6.4 Manifolds with Structure 95

6.4.1.2 Tensors

A generalization of vectors and covectors are the so-called tensors. For a vector space 𝕍 and

its dual 𝕍∗, the space of (𝑟, 𝑠)-tensors given by

𝑇 (𝑟,𝑠)(𝕍) ∶= 𝕍 ⊗ ⋯ ⊗ 𝕍⏟⏟⏟⏟⏟
𝑟 times

⊗ 𝕍∗ ⊗ ⋯ ⊗ 𝕍∗⏟⏟⏟⏟⏟
𝑠 times

.

In the present work we consider tensors on the tangent and cotangent space, i.e., 𝕍 = 𝑇𝑚ℳ
and 𝕍∗ = 𝑇 ∗

𝑚ℳ. Special cases are 𝑇 (1,0)(𝑇𝑚ℳ) = 𝑇𝑚ℳ and 𝑇 (0,1)(𝑇𝑚ℳ) = 𝑇 ∗
𝑚ℳ. An

element 𝜎 ∈ 𝑇 (𝑟,𝑠)(𝑇𝑚ℳ) of a general (𝑟, 𝑠)-tensor space is called an 𝑟-times contravariant
𝑠-times covariant tensor . This element can be represented by

𝜎 = 𝜎
𝑖1…𝑖𝑟

𝑗1…𝑗𝑠

𝜕
𝜕𝑥𝑖1 ∣

𝑚
⊗ ⋯ ⊗ 𝜕

𝜕𝑥𝑖𝑟 ∣
𝑚

⊗ d𝑥𝑗1∣
𝑚

⊗ ⋯ ⊗ d𝑥𝑗𝑠∣
𝑚

with components 𝜎
𝑖1…𝑖𝑟

𝑗1…𝑗𝑠
∈ ℝ for 1 ≤ 𝑖1, … , 𝑖𝑟, 𝑗1, … , 𝑗𝑠 ≤ 𝑁, where the right-hand side sums

over each index 1 ≤ 𝑖1, … , 𝑖𝑟, 𝑗1, … , 𝑗𝑠 ≤ 𝑁 by the Einstein summation convention (6.1).

The position of the index (upper or lower index) indicates which type (co- or contravariant)

the respective index belongs to. To extend the bold notation from Section 6.2.8 for tensors,

we stack the components with

𝝈 ∶= [𝜎
𝑖1…𝑖𝑟

𝑗1…𝑗𝑠
]

1≤𝑖1,…,𝑖𝑟,𝑗1,…,𝑗𝑠≤𝑁
∈ ℝ

𝑁×𝑁×⋯×𝑁⏟⏟⏟⏟⏟⏟⏟
𝑟+𝑠 times .

6.4.1.3 Tensor Field and Bundle of (𝑟, 𝑠)-Tensors

A so-called tensor field is a mapping which assigns each point 𝑚 ∈ ℳ a tensor in the corre-

sponding (𝑟, 𝑠)-tensor space 𝑇 (𝑟,𝑠)(𝑇𝑚ℳ) analogous to the smooth vector field introduced

in Section 6.2.6. To this end we define the bundle of (𝑟, 𝑠)-tensors as the disjoint union of all

(𝑟, 𝑠)-tensor spaces

𝑇 (𝑟,𝑠)(𝑇ℳ) ∶= ⋃̇
𝑚∈ℳ

𝑇 (𝑟,𝑠)(𝑇𝑚ℳ) ∶= {(𝑚, 𝜎) ∣ 𝑚 ∈ ℳ, 𝜎 ∈ 𝑇 (𝑟,𝑠)(𝑇𝑚ℳ)}.

Similarly as before, we obtain the special cases 𝑇 (1,0)(𝑇ℳ) = 𝑇ℳ and 𝑇 (0,1)(𝑇ℳ) = 𝑇 ∗ℳ.

An (𝑟, 𝑠)-tensor field is defined as a map

𝜏 ∶ ℳ → 𝑇 (𝑟,𝑠)(𝑇ℳ), 𝑚 ↦ (𝑚, 𝜏|𝑚) such that 𝜏|𝑚 ∈ 𝑇 (𝑟,𝑠)(𝑇𝑚ℳ).
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For a given chart (𝑈, 𝑥) of ℳ, we denote the ((𝑟 + 𝑠) ⋅ 𝑁) functions 𝜏
𝑖1…𝑖𝑟

𝑗1…𝑗𝑠
∶ 𝑈 → ℝ for

1 ≤ 𝑖1, … , 𝑖𝑟, 𝑗1, … , 𝑗𝑠 ≤ 𝑁 with 𝜏
𝑖1…𝑖𝑟

𝑗1…𝑗𝑠
(𝑚) ∶= (𝜏|𝑚)

𝑖1…𝑖𝑟

𝑗1…𝑗𝑠
as the component functions to

stress the dependence on the point 𝑚. To extend the bold notation from Section 6.2.8 for

tensor fields, we stack the component functions with

𝝉 ∶= [𝜏
𝑖1…𝑖𝑟

𝑗1…𝑗𝑠
∘ 𝑥−1]

1≤𝑖1,…,𝑖𝑟,𝑗1,…,𝑗𝑠≤𝑁
∶ ℝ𝑁 ⊃ 𝑥 (𝑈) → ℝ

𝑁×𝑁×⋯×𝑁⏟⏟⏟⏟⏟⏟⏟
𝑟+𝑠 times .

An (𝑟, 𝑠)-tensor field 𝜏 is called smooth if all of its component functions are smooth,

i.e., 𝜏
𝑖1…𝑖𝑟

𝑗1…𝑗𝑠
∈ 𝐶∞(𝑈, ℝ). The set of all smooth (𝑟, 𝑠)-tensor fields is the so-called smooth

section of the (𝑟, 𝑠)-tensor bundle 𝛤 (𝑇 (𝑟,𝑠)(𝑇ℳ)). A special case are the smooth vector fields

𝔛ℳ = 𝛤 (𝑇 (1,0)(𝑇ℳ)).

6.4.1.4 Structured Tensor Fields and Musical Isomorphisms

Tensor fields may possess additional properties, which we refer to as structure. In the

following, we introduce two important examples of tensor fields with special structures,

namely Riemannian metrics and symplectic forms.

Consider a smooth manifold ℳ with a chart (𝑈, 𝑥). Then, the smooth (0, 2)-tensor field
𝜏 ∈ 𝛤 (𝑇 (0,2)(𝑇ℳ)) with its component functions 𝜏𝑖𝑗 ∈ 𝐶∞(𝑈, ℝ), 1 ≤ 𝑖, 𝑗 ≤ 𝑁, is called

• symmetric, if (𝜏|𝑚)𝑖𝑗 = (𝜏|𝑚)𝑗𝑖 for each 𝑚 ∈ 𝑈 and for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁;

• skew-symmetric or 2-form, if (𝜏|𝑚)𝑖𝑗 = −(𝜏|𝑚)𝑗𝑖 for each 𝑚 ∈ 𝑈 and all 1 ≤ 𝑖, 𝑗 ≤ 𝑁;

• nondegenerate, if [(𝜏|𝑚)𝑖𝑗]1≤𝑖,𝑗≤𝑁 ∈ ℝ𝑁×𝑁 is nondegenerate for each 𝑚 ∈ 𝑈;

• positive definite, if [(𝜏|𝑚)𝑖𝑗]1≤𝑖,𝑗≤𝑁 ∈ ℝ𝑁×𝑁 is positive definite for all 𝑚 ∈ 𝑈;

• a closed 2-form, if 𝜏 is a 2-form and for each 𝑚 ∈ 𝑈

𝜕𝜏𝑗𝑘

𝜕𝑥𝑖 ∣
𝑚

+
𝜕𝜏𝑘𝑖

𝜕𝑥𝑗 ∣
𝑚

+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑘 ∣
𝑚

= 0 for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑁. (6.24)

Combining some of the previous properties, we obtain the following concepts. A smooth

(0, 2)-tensor field 𝜏 ∈ 𝛤 (𝑇 (0,2)(𝑇ℳ)) on ℳ is called

• a Riemannian metric on ℳ if 𝜏 is symmetric and positive definite;

• a symplectic form on ℳ if 𝜏 is skew-symmetric, nondegenerate, and closed.
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If 𝜏, 𝜔 ∈ 𝛤 (𝑇 (0,2)(𝑇ℳ)) are a Riemannian metric and a symplectic form on ℳ, respectively,

then we call (ℳ, 𝜏) and (ℳ, 𝜔) a Riemannian manifold and symplectic manifold , respectively.
Note that the nondegeneracy of a symplectic form implies that a symplectic manifold has

even dimension, i.e., dim(ℳ) = 𝑁 =∶ 2 ̄𝑁.

Both the Riemannian metric and the symplectic form are nondegenerate tensor fields.

This allows to formulate the inverse (2, 0)-tensor field 𝜏−1 ∈ 𝛤 (𝑇 (2,0)(𝑇ℳ)) such that

(𝜏|−1
𝑚 )𝑖𝑘(𝜏|𝑚)𝑘𝑗 = 𝛿𝑖

𝑗, where, for the sake of brevity, the components of the inverse tensor

are typically denoted with (𝜏|𝑚)𝑖𝑘 ∶= (𝜏|−1
𝑚 )𝑖𝑘, i.e., the classical notation of the inverse (⋅)−1

is not explicitly denoted since this is clear from the position of the indices. Moreover, the

nondegeneracy allows to formulate an isomorphism between the tangent and the cotangent

bundle. Loosely speaking, this means that the indices in the index notation can be switched

from covariant (superindices) to contravariant (subindices) and vice versa. This is typically

referred to as musical isomorphisms

♭𝜏 ∈ 𝐶∞(𝑇ℳ, 𝑇 ∗ℳ), (𝑚, 𝑣𝑖 𝜕
𝜕𝑥𝑖 ∣

𝑚
) ↦ (𝑚, (𝜏|𝑚)𝑖𝑗 𝑣𝑗 d𝑥𝑖∣𝑚) , (6.25)

♯𝜏 ∈ 𝐶∞(𝑇 ∗ℳ, 𝑇ℳ), (𝑚, 𝜆𝑖 d𝑥𝑖∣𝑚) ↦ (𝑚, (𝜏|𝑚)𝑖𝑗 𝜆𝑗
𝜕

𝜕𝑥𝑖 ∣
𝑚

) . (6.26)

Due to the nondegeneracy of 𝜏, the two mappings are inverses of each other, i.e.,

♯𝜏 ∘ ♭𝜏 ≡ id𝑇ℳ . (6.27)

By a slight abuse of notation, we use the same symbols from (6.25) and (6.26) also to map

between (co)tangent spaces ♭𝜏 ∶ 𝑇𝑚ℳ → 𝑇 ∗
𝑚ℳ and ♯𝜏 ∶ 𝑇 ∗

𝑚ℳ → 𝑇𝑚ℳ (instead of the

respective bundles).

6.4.1.5 Pullback of Covectors, Tensor Fields, and Functions

Consider two smooth manifolds ℳ, 𝒬 and a smooth map 𝐹 ∈ 𝐶∞(ℳ, 𝒬). Let (𝑈, 𝑥) and

(𝑉 , 𝑦) be charts of ℳ and 𝒬 respectively such that 𝑚 ∈ 𝑈 and 𝐹 (𝑚) ∈ 𝑉. The differential

(6.5) of 𝐹 can be used to define the pointwise pullback (of covectors) by 𝐹 at 𝑚 via

d𝐹 ∗|𝑚 ∈ 𝐶∞ (𝑇 ∗
𝐹(𝑚)𝒬, 𝑇 ∗

𝑚ℳ) , 𝜆𝑖 d𝑦𝑖∣𝐹(𝑚) ↦ 𝜕𝐹 𝑖

𝜕𝑥𝑗 ∣
𝑚

𝜆𝑖 d𝑥𝑗∣
𝑚

. (6.28)

For a smooth (0, 𝑠)-tensor field 𝜏 ∈ 𝛤 (𝑇 (0,𝑠)(𝑇𝒬)), the pullback of 𝜏 by 𝐹, denoted by
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𝐹 ∗𝜏 ∈ 𝛤 (𝑇 (0,𝑠)(𝑇ℳ)), is a smooth tensor field (see [74, Prop. 11.26]) with component

functions6

(𝐹 ∗𝜏|𝑚)𝑗1…𝑗𝑠
∶= (𝜏|𝐹(𝑚))ℓ1…ℓ𝑠

⋅ 𝜕𝐹 ℓ1

𝜕𝑥𝑗1
∣
𝑚

⋯ 𝜕𝐹 ℓ𝑠

𝜕𝑥𝑗𝑠
∣
𝑚

. (6.29)

A scalar-valued smooth function ℎ ∈ 𝐶∞(𝒬, ℝ) can be interpreted as a (0, 0)-tensor field.
Then, as a special case of (6.29), the pullback of (a function) ℎ by 𝐹 is a smooth function

𝐹 ∗ℎ ∈ 𝐶∞(ℳ, ℝ) with

(𝐹 ∗ℎ) (𝑚) = ℎ (𝐹 (𝑚)) = (ℎ ∘ 𝐹) (𝑚) . (6.30)

By Section 6.4.1.1, the differential of a smooth scalar-valued function 𝐺 ∈ 𝐶∞(𝒬, ℝ) defines
a covector d𝐺|𝐹(𝑚) ∈ 𝑇 ∗

𝑚𝒬. Then an analogue to the chain rule (6.6) is

d(𝐹 ∗𝐺)|𝑚 = d𝐹 ∗|𝑚d𝐺|𝐹(𝑚) ∈ 𝑇 ∗
𝑚ℳ, (6.31)

which uses the pullback of a function (6.30) on the left-hand side and applies the pointwise

pullback d𝐹 ∗|𝑚 ∈ 𝐶∞(𝑇 ∗
𝑚𝒬, 𝑇 ∗

𝑚ℳ) to the covector d𝐺|𝐹(𝑚) ∈ 𝑇 ∗
𝑚𝒬 on the right-hand side

of the equation.

6.4.2 Lagrangian Systems

This subsection defines Lagrangian systems formulated on a manifold and additionally intro-

duces further structure required for the MOR part discussed in the forthcoming Section 6.5.2.

Consider a 𝑄-dimensional smooth manifold 𝒬 with chart (𝑉 , 𝑦). As mentioned in Sec-

tion 6.2.6, the tangent bundle 𝑇𝒬 is a 2𝑄-dimensional smooth manifold and the differential

d𝑦 ∈ 𝐶∞(𝑇 𝑉 , ℝ2𝑄) defines a natural chart (6.9). We abbreviate this chart with 𝜉 ∶= d𝑦 for

brevity. By (6.9), it holds

𝜉 ∶ 𝑇 𝑉 → ℝ2𝑄, (𝑞, 𝑣𝑖 𝜕
𝜕𝑦𝑖 ∣

𝑞
) ↦ (𝑦 (𝑞) , [𝑣𝑖]1≤𝑖≤𝑄) .

6The pullbacks from (6.28) and (6.29) can be related in the case of smooth covector fields 𝛼 ∈ 𝛤 (𝑇 (0,1)(𝑇𝒬)),
i.e., 𝑠 = 1, with (𝐹 ∗𝛼)|𝑚 = d𝐹 ∗|𝑚𝛼|𝐹(𝑚) ∈ 𝑇 ∗

𝑚ℳ.
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It will be relevant to differentiate between the first 𝑄 and the latter 𝑄 entries of 𝜉 for a point

𝑌𝒬 = (𝑞, 𝑣) ∈ 𝑇𝒬, which will be denoted with

𝜉𝑖 (𝑌𝒬) = 𝑦𝑖 (𝑞) , 𝜉𝑄+𝑖 (𝑌𝒬) = 𝑣𝑖, for 1 ≤ 𝑖 ≤ 𝑄.

To lift a smooth curve 𝛾𝒬 ∈ 𝐶∞(ℐ, 𝒬) to its tangent bundle, we define

𝛤𝛾𝒬
∈ 𝒞∞(ℐ, 𝑇𝒬), 𝑡 ↦ (𝛾𝒬 (𝑡) , d

d𝑡𝛾𝒬∣
𝑡
) .

We denote a Lagrangian system as the tuple (𝒬,ℒ) of a smooth manifold 𝒬 and a smooth

function ℒ ∈ 𝐶∞(𝑇𝒬, ℝ), which we refer to as the Lagrangian function. The associated

second-order differential equation on the manifold is given by the Euler–Lagrange equation

𝜕ℒ
𝜕𝜉𝑖 ∣

𝛤𝛾𝒬(𝑡)
− d

d𝑡 ( 𝜕ℒ
𝜕𝜉𝑄+𝑖 ∣

𝛤𝛾𝒬(⋅)
)∣

𝑡

= 0 for 1 ≤ 𝑖 ≤ 𝑄, 𝛤𝛾𝒬
(𝑡0) = [

𝑞0

𝑣0
] , (6.32)

with initial value (𝑞0, 𝑣0) ∈ 𝑇𝒬, which has to be solved for 𝛾𝒬 ∈ 𝐶∞(ℐ, 𝒬). In bold notation,

the equation reads for the Lagrangian𝓛 ∶= ℒ ∘ 𝜉−1 ∶ ℝ2𝑄 ⊃ 𝜉(𝑇 𝑉 ) → ℝ, (𝒒, 𝒗) ↦ 𝓛(𝒒, 𝒗)

𝑫𝒒𝓛∣
(𝜸𝒬(𝑡),

d
d𝑡𝜸𝒬(𝑡))

− d
d𝑡(𝑫𝒗𝓛|

(𝜸𝒬(⋅),
d
d𝑡𝜸𝒬(⋅))

)∣
𝑡

= 𝟎𝑄×1 ∈ ℝ𝑄,

where 𝑫𝒒(⋅) denotes the derivative with respect to the first 𝑄 coordinates (named 𝒒 here)

and 𝑫𝒗(⋅) the derivative for the last 𝑄 coordinates (named 𝒗 here).

Since the Euler–Lagrange equations are obtained from a variation of an action functional,

it is well-known that the solution curve is guaranteed to conserve a scalar-valued function

(see, e.g., [1, Sec. 3.5] and [85, Prop. 7.3.1]):

Theorem 6.11 (Preservation of energy): The energy

ℰ ∶ 𝑇𝒬 → ℝ, 𝑌𝒬 = (𝑞, 𝑣𝑖 𝜕
𝜕𝑦𝑖 ∣

𝑞
) ↦ 𝑣𝑗 𝜕ℒ

𝜕𝜉𝑄+𝑗 ∣
𝑌𝒬

−ℒ (𝑌𝒬)

is conserved along the lift of the solution curve 𝛾𝒬 of the Euler–Lagrange equations, i.e.,

d
d𝑡ℰ (𝛤𝛾𝒬

(⋅))∣
𝑡

= 0 for all 𝑡 ∈ ℐ.
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The Lagrangian is called regular if the smooth (0, 2)-tensor field defined by the second-

order derivative of the Lagrangian w.r.t. the velocity

𝜏𝑣|𝑌𝒬
∶= 𝜕2ℒ

𝜕𝜉𝑄+𝑗 𝜕𝜉𝑄+𝑖 ∣
𝑌𝒬

d𝜉𝑄+𝑖∣
𝑌𝒬

⊗ d𝜉𝑄+𝑗∣
𝑌𝒬

(6.33)

at each point 𝑌𝒬 ∈ 𝑇𝒬 is nondegenerate (Section 6.4.1.4). In this case, we can formulate the

Euler–Lagrangian vector field 𝑋ℒ ∈ 𝔛𝑇𝒬 such that at a point 𝑌𝒬 = (𝑞, 𝑣𝑖 𝜕
𝜕𝑥𝑖 ∣

𝑞
) ∈ 𝑇𝒬, it

holds

𝑋ℒ|𝑌𝒬
∶= 𝑣𝑖 𝜕

𝜕𝜉𝑖 ∣
𝑌𝒬

+ (𝜏𝑣|𝑌𝒬
)(𝑄+𝑖)(𝑄+𝑗) ( 𝜕ℒ

𝜕𝜉𝑗 ∣
𝑌𝒬

− 𝜕2ℒ
𝜕𝜉𝑘 𝜕𝜉𝑄+𝑗 ∣

𝑌𝒬

𝑣𝑘) 𝜕
𝜕𝜉𝑄+𝑖 ∣

𝑌𝒬

, (6.34)

where we use the convention from Section 6.4.1.4 to use upper indices to denote the cor-

responding inverse tensor field. This vector field can be used to formulate the Lagrangian

system: Let 𝛾 ∈ 𝐶∞(ℐ, 𝑇𝒬) be an integral curve of 𝑋ℒ with starting point (𝑞0, 𝑣0) ∈ 𝑇𝒬.

Then, solving the Euler–Lagrange equations (6.32) for 𝛾𝒬 is equivalent to finding the integral

curve 𝛾 of 𝑋ℒ with 𝛾 (𝑡) = 𝛤𝛾𝒬
(𝑡). In bold notation, the system for 𝛾 reads

d
d𝑡𝜸∣

𝑡
= [

𝜸𝑣 (𝑡)
𝝉𝑣|−1

𝜸(𝑡) (𝑫𝒒𝓛∣𝜸(𝑡) − 𝑫2
𝒗𝒒𝓛∣𝜸(𝑡)𝜸𝑣 (𝑡))

] ∈ 𝜉 (𝑇 𝑉) ⊂ ℝ2𝑄. (6.35)

Here we denote by 𝑫2
𝒗𝒒𝓛∣𝒀𝒬

∈ ℝ𝑄×𝑄 the mixed derivative w.r.t. 𝒗 and 𝒒 and the solution

curve is split 𝜸 (𝑡) = (𝜸𝑞 (𝑡) , 𝜸𝑣 (𝑡)) ∈ 𝜉 (𝑇 𝑉) ⊂ ℝ2𝑄 in a part for 𝒒 and a part for 𝒗. The
system (6.35) is typically referred to as the first-order formulation for the Lagrangian system.

6.4.3 Hamiltonian Systems

In this subsection, we derive a formulation of Hamiltonian systems on a manifold,7 providing

the structure to performMOR in the forthcoming Section 6.5.3. Let us recall from Section 6.4.1.1

that the differential of a smooth function𝐺 ∈ 𝐶∞(ℳ, ℝ) at a point𝑚 ∈ ℳ defines a covector

d𝐺|𝑚 ∈ 𝑇 ∗
𝑚ℳ. Extending this idea, the differential d𝐺 ∈ 𝐶∞(𝑇ℳ, 𝑇 ℝ) defines a smooth

covector field d𝐺 ∈ 𝛤 (𝑇 (0,1)(𝑇ℳ)) with component functions (d𝐺|𝑚)𝑖 = 𝜕𝐺
𝜕𝑥𝑖 ∣

𝑚
.

7Hamiltonian systems may result from Lagrangian systems via a Legendre transformation, but this is not the
subject of the current work, so we refer to [1, Sec. 3.6].
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For a given symplectic manifold (ℳ, 𝜔) and a smooth functionℋ ∈ 𝐶∞(ℳ, ℝ) referred

to as the Hamiltonian (function), the Hamiltonian vector field

𝑋ℋ ∶= ♯𝜔 (dℋ) ∈ 𝛤 (𝑇 (1,0)(𝑇ℳ)) , or in index notation: (𝑋ℋ|𝑚)𝑖 = (𝜔|𝑚)𝑖𝑗 (dℋ|𝑚)𝑗

is uniquely defined due to the nondegeneracy of 𝜔. A Hamiltonian system (ℳ, 𝜔,ℋ) is an

initial value problem (6.10) with an integral curve 𝛾 ∈ 𝐶∞(ℐ, ℳ) of 𝑋ℋ with starting point

𝛾0 ∈ ℳ, i.e.,

d
d𝑡𝛾∣

𝑡
= 𝑋ℋ|𝛾(𝑡) ∈ 𝑇𝛾(𝑡)ℳ and 𝛾 (𝑡0) = 𝛾0 ∈ ℳ. (6.36)

We denote a Hamiltonian system in bold notation8 with

d
d𝑡𝜸∣

𝑡
= (𝝎|𝜸(𝑡))

−1 𝑫𝓗|⊤𝜸(𝑡) ∈ ℝ2�̄�, 𝜸 (𝑡0) = 𝜸0 ∈ ℝ2�̄�. (6.37)

This special construction of the vector field guarantees that the Hamiltonian is conserved

along the solution curve, since

d
d𝑡(ℋ ∘ 𝛾)∣

𝑡

(6.6)= (dℋ|𝛾(𝑡))𝑖
( d
d𝑡𝛾∣

𝑡
)𝑖 (6.36)= (dℋ|𝛾(𝑡))𝑖

(𝜔|𝛾(𝑡))
𝑖𝑗(dℋ|𝛾(𝑡))𝑗

= 0,

where the last step uses that for skew-symmetric tensors 𝜎 ∈ 𝑇 (2,0)(𝑇𝑚ℳ), it holds

𝜆𝑖 𝜎𝑖𝑗 𝜆𝑗 = −𝜆𝑖 𝜎𝑖𝑗 𝜆𝑗 = 0 for all covectors 𝜆 ∈ 𝑇 ∗
𝑚ℳ.

For two given symplectic manifolds (ℳ, 𝜔) and (𝒬, 𝜂), we call a smooth diffeomorphism

𝐹 ∈ 𝐶∞(𝒬, ℳ) a symplectomorphism if 𝐹 ∗𝜔 = 𝜂. It can be shown that the flow of a

Hamiltonian system 𝜃𝑡 ∶ ℳ ⊃ 𝑀 → ℳ is a symplectomorphism.

The theorem of Darboux (see e.g. [1, Thm. 3.2.2]) guarantees that for each point 𝑚 ∈ ℳ,

there exists a chart (𝑈, 𝑥) with 𝑚 ∈ 𝑈 which is canonical, i.e., the symplectic form in these

coordinates can be represented with 𝝎|𝒎 ≡ 𝕁⊤
2�̄� by the canonical Poisson tensor

𝕁2�̄� = [
𝟎�̄�×�̄� 𝑰�̄�

−𝑰�̄� 𝟎�̄�×�̄�
] ∈ ℝ2�̄�×2�̄� for which 𝕁⊤

2�̄� = −𝕁2�̄� = 𝕁−1
2�̄�, (6.38)

8As the Jacobian 𝑫𝓗|𝒎 ∈ ℝ1×2�̄� is a row vector, we need to transpose it for the multiplication to match
dimensions.
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In the case of ℳ = ℝ2�̄� with 𝝎|𝒎 = 𝕁⊤
2�̄� for all 𝑚 ∈ ℳ, we call (ℝ2�̄�, 𝕁⊤

2�̄�,𝓗) a canonical
Hamiltonian system.

6.5 Structure-preserving MOR on Manifolds

With the general model reduction framework presented in Section 6.3 at hand, we now

discuss how the general framework can be specialized to preserve important features of

the initial value problem on the manifold. In more detail, we first introduce the generalized
manifold Galerkin (GMG) reduction map in Section 6.5.1 and then use it to discuss the

structure-preserving MOR of

• Lagrangian systems in Section 6.5.2, and

• Hamiltonian systems in Section 6.5.3.

6.5.1 Generalized Manifold Galerkin

Assume that the manifold ℳ of dimension 𝑁 is endowed with a nondegenerate (0, 2)-tensor
field 𝜏 ∈ 𝛤 (𝑇 (0,2)(𝑇ℳ)), as defined in Section 6.4.1.4. As in Section 6.3.3, we assume that

we have already constructed an embedded submanifold 𝜑(ℳ̌) ⊂ ℳ defined by a smooth

embedding 𝜑 ∈ 𝐶∞(ℳ̌, ℳ), i.e., we have completed the Approximation step from the

general MOR workflow in Section 6.3.1.4. The straightforward way to define a reduced tensor

field is to use the pullback from Section 6.4.1.5. Hence, we make the following assumption.

Assumption 6.12: Given the nondegenerate (0, 2)-tensor field 𝜏 ∈ 𝛤 (𝑇 (0,2)(𝑇ℳ)), the smooth
embedding 𝜑 ∈ 𝐶∞(ℳ̌, ℳ) is such that the reduced tensor field

̌𝜏 ∶= 𝜑∗𝜏 ∈ 𝛤 (𝑇 (0,2)(𝑇ℳ̌)) ,

is nondegenerate.

Note that the reduced tensor field in bold notation reads

̌𝝉 |�̌� = 𝑫𝝋|⊤�̌� 𝝉|𝝋(�̌�)𝑫𝝋|�̌� ∈ ℝ𝑛×𝑛. (6.39)

which immediately illustrates that Assumption 6.12 may not be satisfied, in general. For

instance, if we take ℳ = ℝ2 and ℳ̌ = ℝ, the tensor field to be a constant skew-symmetric
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matrix and a linear embedding, then Assumption 6.12 is violated. See also the forthcoming

Example 6.26. On the other hand, if the tensor field is a Riemannian metric on ℳ, i.e.,

symmetric and positive definite, then the reduced tensor field is also a Riemannian metric.

We immediately obtain the following relation between the full and reduced musical iso-

morphisms discussed in Section 6.4.1.4.

Lemma 6.13: Under Assumption 6.12, it holds

d𝜑∗|�̌� ∘ ♭𝜏 ∘ d𝜑|�̌� = ♭ ̌𝜏 ∈ 𝐶∞(𝑇�̌�ℳ̌, 𝑇 ∗
�̌�ℳ̌). (6.40)

Proof. We prove the statement in index notation. Using (6.25), (6.29), (6.5), and (6.28), we

obtain for all �̌� ∈ ℳ̌, all ̌𝑣 ∈ 𝑇�̌�ℳ̌ and all 1 ≤ 𝑖 ≤ 𝑛

(♭ ̌𝜏 ( ̌𝑣))𝑖 = ( ̌𝜏 |�̌�)𝑖𝑗 ̌𝑣𝑗 = (𝜏|𝜑(�̌�))ℓ1ℓ2

𝜕𝜑ℓ1

𝜕𝑥𝑖 ∣
�̌�

𝜕𝜑ℓ2

𝜕𝑥𝑗 ∣
�̌�

̌𝑣𝑗

=
𝜕𝜑ℓ1

𝜕𝑥𝑖 ∣
�̌�

(𝜏|𝜑(�̌�))ℓ1ℓ2

𝜕𝜑ℓ2

𝜕𝑥𝑗 ∣
�̌�

̌𝑣𝑗 = ((d𝜑∗|�̌� ∘ ♭𝜏 ∘ d𝜑|�̌�) ( ̌𝑣))𝑖.

The additional structure allows us to construct an alternative reduction mapping to the

MPG reduction map (6.22), which we refer to as the generalized manifold Galerkin (GMG)

𝑅GMG ∶ 𝑇ℳ ⊇ 𝐸𝜑(ℳ̌) → 𝑇ℳ̌, (𝑚, 𝑣) ↦ (𝜚(𝑚), (♯ ̌𝜏 ∘ d𝜑∗|𝜚(𝑚) ∘ ♭𝜏) (𝑣)) , (6.41)

which is defined on the vector bundle

𝐸𝜑(ℳ̌) ∶= ⋃̇
𝑚∈𝜑(ℳ̌)

𝑇𝑚ℳ.

The domain 𝐸𝜑(ℳ̌) ⊆ 𝑇ℳ of the GMG reduction map is in general smaller than in the

original definition of a reduction map (Definition 6.4). Nevertheless, all previous results

are valid for reduction maps 𝑅 ∶ 𝐸𝜑(ℳ̌) → 𝑇ℳ̌ as the reduction map is only used in the

ROM to project 𝑋|𝜑(�̌�) ∈ 𝑇𝜑(�̌�)ℳ which is part of 𝐸𝜑(ℳ̌). We avoided introducing 𝐸𝜑(ℳ̌)

earlier for a better readability. The restriction of the domain for the GMG is necessary as

d𝜑∗|�̌� ∶ 𝑇 ∗
𝜑(�̌�)ℳ → 𝑇 ∗

�̌�ℳ̌ is defined on 𝑇 ∗
𝜑(�̌�)ℳ only.
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By construction, (6.15a), Lemma 6.13, and (6.27), we obtain

𝑅GMG|𝜑(�̌�) ∘ d𝜑|�̌� = ♯ ̌𝜏 ∘ d𝜑∗|(𝜚∘𝜑)(�̌�) ∘ ♭𝜏 ∘ d𝜑|�̌� = ♯ ̌𝜏 ∘ ♭ ̌𝜏 = id𝑇�̌�ℳ̌,

which proves the following result.

Theorem 6.14: The GMG reduction (6.41) is a reduction map for 𝜑.

The corresponding ROM (6.16) obtained with the GMG reduction map is called GMG-ROM .

In bold notation, the associated reduced vector field for the FOM vector field 𝑋 ∈ 𝔛ℳ reads

with (6.15a)

𝑹GMG|𝝋(�̌�)(𝑿|𝝋(�̌�)) = (𝑫𝝋|⊤(𝝔∘𝝋)(�̌�)𝝉|𝝋(�̌�)𝑫𝝋|(𝝔∘𝝋)(�̌�))
−1

𝑫𝝋|⊤(𝝔∘𝝋)(�̌�)𝝉|𝝋(�̌�)𝑿|𝝋(�̌�)

= (𝑫𝝋|⊤�̌�𝝉|𝝋(�̌�)𝑫𝝋|�̌�)−1 𝑫𝝋|⊤�̌�𝝉|𝝋(�̌�)𝑿|𝝋(�̌�) ∈ ℝ𝑛. (6.42)

To motivate the name GMG, we consider the special case that ℳ = ℝ𝑁, ℳ̌ = ℝ𝑛 are

vector spaces over ℝ (with identity charts 𝑥 ≡ idℝ𝑁 , ̌𝑥 ≡ idℝ𝑛) and the nondegenerate tensor

field 𝜏 is a Riemannian metric that is constant in coordinates, i.e., 𝝉|𝒎 = 𝝉 = const. We then

obtain with (6.42)

𝑹GMG|𝝋(�̌�) (𝑿|𝝋(�̌�)) = ((𝑫𝝋|⊤�̌�𝝉1/2) (𝝉1/2𝑫𝝋|�̌�))−1 (𝑫𝝋|⊤�̌�𝝉1/2) 𝝉1/2𝑿|𝝋(�̌�)

= (𝝉1/2𝑫𝝋|�̌�)† 𝝉1/2𝑿|𝝋(�̌�),

where (⋅)† denotes the Moore–Penrose pseudoinverse. In particular, we recover the manifold
Galerkin projection introduced in [75, Rem 3.4], which allows interpreting the reduced vector

field as the optimal projection w.r.t. the Riemannian metric 𝜏 ; see [75, Sec. 3.2].

Example 6.15 (Special case: MOR on subspaces): In the case of 𝜚, 𝜑 being linear as in
Example 6.5 with 𝝉 ≡ const, the GMG reduction

𝑹GMG|𝝋(�̌�)(𝒗) = (𝑽 ⊤𝝉𝑽 )−1 𝑽 ⊤𝝉𝒗, d
d𝑡 �̌�∣

𝑡
= (𝑽 ⊤𝝉𝑽 )−1 𝑽 ⊤𝝉𝑿|�̌�(𝑡)

is exactly the ROM obtained in Part I via the 𝑎-based projection (2.4), where Assumption 6.12 is
exactly the compatibility condition.

As discussed in Section 6.4, the FOM vector field may possess additional structure in specific

applications, such as Lagrangian or Hamiltonian dynamics. In the following, we show that
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the GMG reduction can be used to formulate structure-preserving MOR (on manifolds) for

Lagrangian and Hamiltonian systems by choosing a specific nondegenerate tensor field.

6.5.2 MOR on Manifolds for Lagrangian Systems

As in Section 6.4.2, consider a 𝑄-dimensional smooth manifold 𝒬 with a chart (𝑉 , 𝑦) and

the corresponding natural chart (𝑇 𝑉 , 𝜉) of the tangent bundle 𝑇𝒬 (Section 6.4.2). The

manifold to be reduced in the context of Lagrangian systems is the tangent bundle 𝑇𝒬. To be

consistent with the notation introduced before, we thus set ℳ ∶= 𝑇𝒬 with even dimension

𝑁 ∶= dim(ℳ) ∶= 2𝑄. Instead of working directly on ℳ, we still aim for a construction on

𝒬 by employing that the differential of a smooth map (Section 6.2.6) is a mapping between

the associated tangent spaces.

Definition 6.16 (Lifted embedding and lifted point reduction): Consider an embedded sub-
manifold 𝜑𝒬(�̌�) ⊂ 𝒬 defined by a �̌�-dimensional manifold �̌� and a smooth embedding
𝜑𝒬 ∶ �̌� → 𝜑𝒬(�̌�). Then, we call

𝜑 ∶= d𝜑𝒬 ∶ 𝑇�̌� → 𝑇(𝜑𝒬(�̌�)), ( ̌𝑞, ̌𝑣) ↦ (𝜑𝒬 ( ̌𝑞) , d𝜑𝒬∣ ̌𝑞 ( ̌𝑣))

the lifted embedding for 𝜑𝒬. Analogously, for a point reduction 𝜚𝒬 ∶ 𝒬 → �̌�, we define the lifted
point reduction

𝜚 ∶= d𝜚𝒬 ∶ 𝑇𝒬 → 𝑇�̌�, (𝑞, 𝑣) ↦ (𝜚𝒬 (𝑞) , d𝜚𝒬∣𝑞(𝑣)) .

Let us emphasize that 𝜚 is indeed a point reduction on ℳ = 𝑇𝒬 for the lifted embedding 𝜑,

which is a straightforward consequence of Theorem 6.9. For ( ̌𝑞, ̌𝑣𝑘 𝜕
𝜕 ̌𝑦𝑘 ∣

̌𝑞
) ∈ 𝑇�̌� with a chart

( ̌𝑉 , ̌𝑦) for �̌� and (𝑇 ̌𝑉 , ̌𝜉) for 𝑇�̌�, we immediately obtain

𝜕𝜑𝑖

𝜕 ̌𝜉𝑗 ∣
( ̌𝑞, ̌𝑣𝑘 𝜕

𝜕 ̌𝑦𝑘 ∣
̌𝑞
)

=

⎧{{{{
⎨{{{{⎩

𝜕𝜑𝒬
𝑖

𝜕 ̌𝑦𝑗 ∣
̌𝑞
, 1 ≤ 𝑖 ≤ 𝑄, 1 ≤ 𝑗 ≤ �̌�,

0, 1 ≤ 𝑖 ≤ 𝑄, 1 ≤ 𝑗 − �̌� ≤ �̌�,
𝜕2𝜑𝒬

𝑖−𝑄

𝜕 ̌𝑦𝑗 𝜕 ̌𝑦𝑘 ∣
̌𝑞
̌𝑣𝑘, 1 ≤ 𝑖 − 𝑄 ≤ 𝑄, 1 ≤ 𝑗 ≤ �̌�,

𝜕𝜑𝒬
𝑖−𝑄

𝜕 ̌𝑦𝑗−�̌� ∣
̌𝑞
, 1 ≤ 𝑖 − 𝑄 ≤ 𝑄, 1 ≤ 𝑗 − �̌� ≤ �̌�,
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which reads in bold notation

𝝋 ( ̌𝒒, ̌𝒗) = [
𝝋𝒬 ( ̌𝒒)

𝑫𝝋𝒬∣ ̌𝒒 ̌𝒗
] ∈ ℝ2𝑄, 𝑫𝝋|( ̌𝒒,�̌�) = ⎡⎢

⎣

𝑫𝝋𝒬∣ ̌𝒒 𝟎𝑄×�̌�

𝑫 (𝑫𝝋𝒬∣(⋅) ̌𝒗)∣
̌𝒒

𝑫𝝋𝒬∣ ̌𝒒

⎤⎥
⎦

∈ ℝ2𝑄×2�̌�.

Example 6.17: For a linear embedding 𝝋𝒬 ( ̌𝒒) = 𝑽 ̌𝒒 as in Example 6.5, the lifted embedding
from Definition 6.16 is described by a block-diagonal basis matrix

𝝋 ( ̌𝒒, ̌𝒗) = [
𝑽 𝟎𝑄×�̌�

𝟎𝑄×�̌� 𝑽
] [

̌𝒒
̌𝒗
] ,

which is frequently used in MOR for second-order systems (see, e.g., [106]).

With these preparations, let us now assume that we have a Lagrangian system (𝒬,ℒ)
with initial value (𝑞0, 𝑣0) ∈ 𝑇𝒬 together with embedded submanifold 𝜑𝒬(�̌�) ⊂ 𝒬 with the

embedding 𝜑𝒬 and a point reduction 𝜚𝒬 available. Let 𝜑 and 𝜚 denote the corresponding lifted

embedding and lifted point reduction as in Definition 6.16. To preserve the Lagrangian system

structure in the ROM, we do not aim for a projection of the Euler–Lagrange equations (6.32)

but rather start by constructing a reduced Lagrangian via

̌ℒ ∶= 𝜑∗ℒ = ℒ ∘ 𝜑 ∈ 𝐶∞(𝑇�̌�, ℝ) (6.43)

and immediately obtain the reduced Lagrangian system (�̌�, ̌ℒ) with the reduced initial

value ( ̌𝑞0, ̌𝑣0) ∶= 𝜚 (𝑞0, 𝑣0) ∈ 𝑇�̌� =∶ ℳ̌. Note that with this strategy, we immediately obtain

the ROM that itself is a Lagrangian system, which is not automatically guaranteed if we

reduce the vector field (6.34). Straightforward calculations (see Appendix A.2.1) show that

the Euler-Lagrange equations of the reduced Lagrangian system read

0 = 𝜕𝜑𝒬
𝑗

𝜕 ̌𝑦𝑖 ∣
�̌�(𝑡)

( 𝜕ℒ
𝜕𝜉𝑗 ∣

𝜑(𝛤�̌�(𝑡))
− 𝜕2ℒ

𝜕𝜉𝑘 𝜕𝜉𝑄+𝑗 ∣
𝜑(𝛤�̌�𝒬(𝑡))

𝜕𝜑𝒬
𝑘

𝜕 ̌𝑦ℓ ∣
�̌�𝒬(𝑡)

d
d𝑡 ̌𝛾𝒬

ℓ∣
𝑡

− 𝜕2ℒ
𝜕𝜉𝑄+𝑘 𝜕𝜉𝑄+𝑗 ∣

𝜑(𝛤�̌�𝒬(𝑡))

𝜕2𝜑𝒬
𝑘

𝜕 ̌𝑦ℓ 𝜕 ̌𝑦𝑝 ∣
�̌�𝒬∣𝑡

d
d𝑡 ̌𝛾𝒬

𝑝∣
𝑡
d
d𝑡 ̌𝛾𝒬

ℓ∣
𝑡

− 𝜕2ℒ
𝜕𝜉𝑄+𝑘 𝜕𝜉𝑄+𝑗 ∣

𝜑(𝛤�̌�𝒬(𝑡))

𝜕𝜑𝒬
𝑘

𝜕 ̌𝑦ℓ ∣
�̌�𝒬(𝑡)

d2

d𝑡2 ̌𝛾𝒬
ℓ∣

𝑡
)

(6.44)
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for 1 ≤ 𝑖 ≤ 𝑛 where the right-hand side sums over 1 ≤ 𝑗, 𝑘 ≤ 𝑄 and 1 ≤ ℓ, 𝑝 ≤ �̌� by the

Einstein summation convention (6.1). In bold notation, the reduced Euler–Lagrange equations

read

𝟎�̌�×1 = 𝑫𝝋𝒬∣⊤�̌�𝒬(𝑡)(𝑫𝒒𝓛∣
𝝋(�̌�𝒬(𝑡), d

d𝑡 �̌�𝒬∣
𝑡
)

− 𝑫2
𝒗𝒒𝓛∣

𝝋(�̌�𝒬(𝑡), d
d𝑡 �̌�𝒬∣

𝑡
)
𝑫𝝋𝒬∣�̌�𝒬(𝑡)

d
d𝑡 �̌�𝒬∣

𝑡

− 𝑫2
𝒗𝒗𝓛∣

𝝋(�̌�𝒬(𝑡),
d
d𝑡 �̌�𝒬∣

𝑡
)
𝑫2𝝋𝒬∣�̌�𝒬(𝑡) ( d

d𝑡 �̌�𝒬∣
𝑡

⊗ d
d𝑡 �̌�𝒬∣

𝑡
)

− 𝑫2
𝒗𝒗𝓛∣

𝝋(�̌�𝒬(𝑡),
d
d𝑡 �̌�𝒬∣

𝑡
)
𝑫𝝋𝒬∣�̌�𝒬(𝑡)

d2

d𝑡2 �̌�𝒬∣
𝑡
) ∈ ℝ�̌�.

(6.45)

By construction, the reduced Lagrangian system fulfills the Euler–Lagrange equations for

the reduced Lagrangian ̌ℒ. Thus, Theorem 6.11 guarantees that along the lift of the solution

curve ̌𝛾𝒬, the reduced energy

̌ℰ ∶ 𝑇�̌� → ℝ, ̌𝑌𝒬 = ( ̌𝑞, ̌𝑣𝑖 𝜕
𝜕 ̌𝑦𝑖 ∣

̌𝑞
) ↦ ̌𝑣𝑗 𝜕 ̌ℒ

𝜕 ̌𝜉�̌�+𝑗 ∣
̌𝑌𝒬

− ̌ℒ ( ̌𝑌𝒬)

is preserved. Moreover, it holds ̌ℰ ≡ ℰ ∘ 𝜑.

Following the construction in Section 6.4.2 and assuming that the reduced Lagrangian ̌ℒ
is regular, we can formulate a reduced vector field �̌� ̌ℒ ∈ 𝛤 (𝑇 (1,0)(𝑇ℳ̌)) for the reduced

Euler–Lagrange equations (6.45). Indeed, we obtain for a point ̌𝑌𝒬 = ( ̌𝑞, ̌𝑣𝑖 𝜕
𝜕 ̌𝑦𝑖 ∣

̌𝑞
) ∈ 𝑇�̌� as

�̌� ̌ℒ∣ ̌𝑌𝒬
=∶ ̌𝑣𝑖 𝜕

𝜕 ̌𝜉𝑖 ∣
̌𝑌𝒬

+ (𝜎| ̌𝑌𝒬
)𝑖

ℓ((𝑋ℒ|𝜑( ̌𝑌𝒬))
𝑄+ℓ

− 𝜕2𝜑𝒬
ℓ

𝜕 ̌𝑦𝑝 𝜕 ̌𝑦𝑟 ∣
̌𝑞
̌𝑣𝑝 ̌𝑣𝑟) 𝜕

𝜕 ̌𝜉�̌�+𝑖 ∣
̌𝑌𝒬

(6.46)

with indices 1 ≤ 𝑘, ℓ ≤ 𝑄 and 1 ≤ 𝑖, 𝑗, 𝑝, 𝑟 ≤ �̌� and

(𝜎| ̌𝑌𝒬
)𝑖

ℓ ∶= ( ̌𝜏𝑣| ̌𝑌𝒬
)𝑖𝑗 𝜕𝜑𝒬

𝑘

𝜕 ̌𝑦𝑗 ∣
̌𝑞
(𝜏𝑣|𝜑( ̌𝑌𝒬))

𝑘ℓ
.

In order to relate this reduction to our framework, we show in the following that the

reduced Euler–Lagrangian vector field (6.46) can be interpreted as a GMG reduction (6.41) of

the Euler–Lagrangian vector field (6.34) if an appropriate tensor field is selected. We refer

to this as the Lagrangian manifold Galerkin (LMG). With the nondegenerate tensor field 𝜏𝑣
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from (6.33), we define a tensor field 𝜏LMG ∈ 𝛤 (𝑇 (0,2)(𝑇ℳ)) on ℳ = 𝑇𝒬 with

𝜏LMG|𝑌𝒬
∶= (𝜏𝑞∣𝑌𝒬

)
𝑖𝑗
d𝜉𝑄+𝑖∣

𝑌𝒬
⊗ d𝜉𝑗∣

𝑌𝒬
+ (𝜏𝑣|𝑌𝒬

)
𝑖𝑗
d𝜉𝑖∣𝑌𝒬

⊗ d𝜉𝑄+𝑗∣
𝑌𝒬

, (6.47)

where (𝜏𝑞∣𝑌𝒬
)
𝑖𝑗

are additional components. A typical choice could be (𝜏𝑞∣𝑌𝒬
)
𝑖𝑗

= (𝜏𝑣|𝑌𝒬
)
𝑖𝑗
.

In bold notation, the tensor field reads

𝝉LMG|𝒀𝒬
= [

𝟎𝑄×𝑄 𝝉𝑣|𝒀𝒬

𝝉𝑞∣𝒀𝒬
𝟎𝑄×𝑄

] . (6.48)

The associated reduced tensor field is denoted with ̌𝜏LMG (as in Section 6.5.1). Assuming

that ̌𝜏LMG is nondegenerate, we define the LMG reduction map

𝑅LMG ∶ 𝑇ℳ ⊇ 𝐸𝜑(ℳ̌) → 𝑇ℳ̌, (𝑚, 𝑣) ↦ (𝜚(𝑚), (♯ ̌𝜏LMG
∘ d𝜑∗|𝜚(𝑚) ∘ ♭𝜏LMG

) (𝑣)) . (6.49)

The LMG reduction map (6.49) is a particular case of a GMG reduction map, and thus, we im-

mediately obtain from Theorem 6.14 that 𝑅LMG is a reduction map for the lifted embedding 𝜑.

Theorem 6.18: Consider the ROM obtained by reducing the Euler–Lagrange vector field with
𝑅LMG. Then solving this ROM for ̌𝛾 is equivalent to solving the reduced Euler–Lagrange equations
(6.44) for ̌𝛾𝒬 with ̌𝛾 (𝑡) = 𝛤�̌�𝒬

(𝑡).

Proof. (Appendix A.2.2).

We conclude this section with four remarks.

Remark 6.19: In the special case of classical MOR 𝒬 = ℝ𝑄, �̌� = ℝ�̌� with a linear embedding
𝝋𝒬( ̌𝒒) = 𝑽 ̌𝒒 as in Example 6.17, a linear point reduction map 𝝔𝒬(𝒒) = 𝑽 ⊤ 𝒒, and a quadratic
Lagrangian 𝓛, the reduced Euler–Lagrange equations (6.45) recover the ROM from [69]. In
our framework that relates to the choice ℳ = ℝ2𝑄, ℳ̌ = ℝ2�̌�, 𝜑 as in Example 6.17, and
𝑹LMG(𝒗𝒒, 𝒗𝒗) = [𝒗⊤

𝒒 𝑽 ⊤, 𝒗⊤
𝒗 𝑽 ⊤]⊤.

Remark 6.20: In [69], the authors argue that the reduced Euler–Lagrange equations cannot be
obtained from a projection with the embedding 𝜑𝒬 of the first-order system (which is formulated
with the Euler–Lagrange vector field (6.34) in the scope of our work). This is no contradiction to
our work (where we project the first-order system) since we suggest a projection based on the
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lifted embedding 𝜑 from Definition 6.16 to obtain the reduced Euler–Lagrange equations via a
reduction of the Euler–Lagrange vector field.

Remark 6.21 (Second-order derivatives of 𝜑𝒬): The reduced Euler–Lagrange equations require
the computation of second-order derivatives of 𝜑𝒬, which might be computationally intensive.
Notably, the formulation of structure-preserving MOR for Hamiltonian systems presented in the
following subsection is independent of second-order derivatives of the embedding 𝜑𝒬.

Remark 6.22 (Nonintrusive MOR): A nonintrusive technique for structure-preserving MOR of
Lagrangian systems on subspaces was presented in [107]. It learns a Lagrangian function from
snapshot data using knowledge about the governing equations (but not its discretization). So, it
does not require access to the FOM operators and is nonintrusive by means of Remark 2.14.

6.5.3 MOR on Manifolds for Hamiltonian Systems

Lastly, we assume to be given a Hamiltonian system (ℳ, 𝜔,ℋ) as FOM and demonstrate how

structure-preserving MOR onmanifolds can be formulated. The procedure works analogously

to the GMG from Section 6.5.1, while choosing the symplectic form 𝜔 as the nondegenerate

tensor field 𝜏 = 𝜔. First, we assume that the Approximation step is completed and

we are given a reduced manifold ℳ̌ and a smooth embedding 𝜑 ∈ 𝐶∞(ℳ̌, ℳ) fulfilling

Assumption 6.12, i.e., 𝜑∗𝜔 is nondegenerate. We show at the end of this section (Lemma 6.25)

that this assumption is sufficient for �̌� ∶= 𝜑∗𝜔 being a symplectic form and (ℳ̌, �̌�) being

a symplectic manifold. In this case, the embedding 𝜑∶ (ℳ̌, �̌�) → (𝜑(ℳ̌), 𝜔|𝜑(ℳ̌)) is a

symplectomorphism. Second, we use the reduction map

𝑅SMG ∶ 𝑇ℳ ⊇ 𝐸𝜑(ℳ̌) → 𝑇ℳ̌, (𝑚, 𝑣) ↦ (𝜚(𝑚), (♯�̌� ∘ d𝜑∗|𝜚(𝑚) ∘ ♭𝜔) (𝑣)) , (6.50)

which we refer to as the symplectic manifold Galerkin (SMG) reduction map. The SMG

reduction map is a special case of the GMG reduction map (6.41) with 𝜏 = 𝜔 and ̌𝜏 = �̌�, and,

thus, we obtain from Theorem 6.14 that 𝑅SMG is a reduction map for 𝜑. Hence, the SMG

reduction fits in our MOR framework from Section 6.3.1 and it defines a ROM by (6.16), which

we refer to as the SMG-ROM. It remains to show that the SMG-ROM indeed is a Hamiltonian

system, which was the motivation for preserving the underlying structure.

Theorem 6.23: The SMG-ROM is a Hamiltonian system (ℳ̌, �̌�, ̌ℋ) with the reduced Hamilto-
nian ̌ℋ ∶= 𝜑∗ℋ = ℋ ∘ 𝜑.
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Proof. The ROM vector field with the SMG reduction (6.50) reads with (a) equations (6.15a)

and (6.27), and (b) equation (6.31)

𝑅SMG|𝜑(�̌�)(𝑋ℋ|𝜑(�̌�)) = (♯�̌� ∘ d𝜑∗|(𝜚∘𝜑)(�̌�) ∘ ♭𝜔) (♯𝜔 (dℋ|𝜑(�̌�)))
(a)= ♯�̌� (d𝜑∗|�̌� (dℋ|𝜑(�̌�))) (b)= ♯�̌� (d ̌ℋ∣

�̌�
) ,

(6.51)

which is exactly the Hamiltonian vector field of the Hamiltonian system (ℳ̌, �̌�, ̌ℋ).

Using (6.42), the reduced vector field in the SMG-ROM in bold notation reads

𝑹SMG|𝝋(�̌�)(𝑿ℋ|𝝋(�̌�)) = (𝑫𝝋|⊤�̌�𝝎|𝝋(�̌�)𝑫𝝋|�̌�)−1 𝑫𝝋|⊤�̌�𝝎|𝝋(�̌�)𝑿ℋ|𝝋(�̌�)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝑫𝝋|⊤�̌�𝑫𝓗|⊤𝝋(�̌�)=𝑫 ̌𝓗∣⊤

�̌�

. (6.52)

For a canonical Hamiltonian system, our generalization of the SMG-ROM is consistent

with the definitions existing in the literature, which is shown by the following lemma.

Lemma 6.24: For a canonical Hamiltonian system (ℝ2�̄�, 𝕁⊤
2�̄�,𝓗) and reduced symplectic

manifold (ℳ̌, �̌�) = (ℝ2�̄�, 𝕁⊤
2�̄�), it holds that

1. the SMG reduction evaluated at the base point 𝝋 (�̌�) equals the symplectic inverse

𝑹SMG|𝝋(�̌�) (𝒗) = 𝑫𝝋|+�̌�𝒗 ∶= 𝕁2�̄� 𝑫𝝋|⊤�̌� 𝕁⊤
2�̄�𝒗 for all 𝒗 ∈ ℝ2�̄�,

2. the SMG-ROM is consistent with [22], and
3. if, moreover, the embedding 𝝋 is linear, the SMG-ROM equals the symplectic Galerkin ROM

introduced in [81, 99] and Section 2.4.

Proof. By assumption, it holds ℳ = ℝ2�̄�, 𝝎 = 𝕁⊤
2�̄�, ℳ̌ = ℝ2�̄�, �̌� = 𝕁⊤

2�̄�. (i) Inserting

the quantities in (6.52) yields the statement. (ii) For 𝝋 to be a symplectomorphism, i.e.,

(𝜑∗𝜔)|�̌� = �̌�|�̌� for all �̌� ∈ ℳ̌, is with (6.39) equivalent to

𝑫𝝋|⊤�̌� 𝕁⊤
2�̄�𝑫𝝋|�̌� = 𝕁⊤

2�̄� for all �̌� ∈ ℝ2�̄�. (6.53)

Considering 𝕁⊤
2�̄� = −𝕁2�̄� and 𝕁⊤

2�̄� = −𝕁2�̄� and multiplying the previous equation on both

sides with (−1), gives exactly the definition of a symplectic embedding from [22, Def. 2].

Thus, the assumptions on the embedding are equivalent (up to smoothness requirements).

Moreover, the SMG-ROM in [22] is projected with the symplectic inverse which (by point (i))



6.5 Structure-preserving MOR on Manifolds 111

is equivalent to the SMG reductionmap for the case assumed in the present lemma (ℳ = ℝ2�̄�,

𝝎 = 𝕁⊤
2�̄�, ℳ̌ = ℝ2�̄�, �̌� = 𝕁⊤

2�̄�).

(iii) If the embedding is linear, then there exists 𝑽 ∈ ℝ2�̄�×2�̄� such that 𝝋 (�̌�) = 𝑽 �̌�.

Then, the requirement of 𝜑 to be a symplectomorphism is equivalent to 𝑽 ⊤𝕁2�̄�𝑽 = 𝕁2�̄�,

which is in [99, Eq. 3.2] formulated as the condition that 𝑽 is a symplectic matrix. Moreover,

the symplectic inverse of 𝑽 is used to obtain the ROM, which is, again, by point (i), equivalent

to our approach in this particular case.

However, our approach extends the existing methods, as it also works (i) on general

smooth manifolds (not just ℳ = ℝ2�̄�) and (ii), as in Section 2.4, in the case ℳ = ℝ2�̄� for

noncanonical symplectic forms 𝝎 ≠ 𝕁⊤
2�̄�.

It remains to show that assuming nondegeneracy of 𝜑∗𝜔 is sufficient for 𝜑∗𝜔 being a

symplectic form, which we show in the following.

Lemma 6.25: Consider a symplectic manifold (ℳ, 𝜔), a smooth manifold ℳ̌, and a smooth
embedding 𝜑 ∈ 𝐶∞(ℳ̌, ℳ) such that �̌� ∶= 𝜑∗𝜔 is nondegenerate. Then �̌� is a symplectic
form, (ℳ̌, �̌�) is a symplectic manifold, and 𝜑 is a symplectomorphism.

Proof. It is sufficient to show that �̌� = 𝜑∗𝜔 is a symplectic form, which in this case results in

showing that �̌� is skew-symmetric and closed. The skew-symmetry is inherited pointwise

for all points �̌� ∈ ℳ̌. Closedness is inherited as the pullback of a closed form is closed [74,

proof of Prop. 17.2].

Note that this is a central difference to reduced Riemannianmetrics, which are automatically

nondegenerate due to positive definiteness. The following example shows that the reduced

tensor field can degenerate if arbitrary embeddings 𝜑 are considered for symplectic forms.

Example 6.26 (Degenerate 𝜑∗𝜔): For an arbitrary �̄� with 2�̄� ≤ 𝑁, consider ℳ = ℝ2�̄�,
𝝎 = 𝕁⊤

2�̄�, ℳ̌ = ℝ2�̄�, and the embedding

𝝋 (�̌�) = 𝑬�̌� with 𝑬 ∶= [
𝑰2�̄�

𝟎(2�̄�−2�̄�)×2�̄�
] ∈ ℝ2�̄�×2�̄�.

In this case, 𝜑(ℳ̌) ⊂ ℝ2�̄� is an isotropic subspace (see Section 2.4.1) and, thus, it holds with
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name ref. details

QPROM [5, 41, 59] MPG 𝝔 linear, 𝝋 quadratic
Galerkin-BQ [108] MPG 𝝔 linear, 𝝋 blockwise-quadratic

EncROM [93] MPG 𝝔, 𝝋 autoencoders

qmf [12] GMG 𝝉 ≡ 𝑰𝑁, 𝝔 linear, 𝝋 quadratic
manifold Galerkin [75] GMG 𝝉 independent of 𝒎, symmetric, pos. def.

[31, 69] LMG 𝝉 as in (6.48), 𝝔, 𝝋 linear

symplectic Galerkin [81, 99] SMG 𝝉 ≡ 𝕁⊤
2�̄�, 𝝔, 𝝋 linear

SMG-QMCL [108] SMG 𝝉 ≡ 𝕁⊤
2�̄�, 𝝔 linear, 𝝋 from manifold cotangent lift

SMG [22] SMG 𝝉 ≡ 𝕁⊤
2�̄�, 𝝔, 𝝋 autoencoders

Table 6.3: MOR techniques from different works that are covered by MPG (6.22), GMG (6.41),
LMG (6.49), and SMG (6.50) introduced in our work. This table is adapted from [24].

𝑫𝝋|�̌� = 𝑬 that

�̌�|�̌� = 𝑫𝝋|⊤�̌� 𝝎|𝝋(�̌�)𝑫𝝋|�̌� = [𝑰2�̄� 𝟎2�̄�×(2�̄�−2�̄�)] [
𝟎𝑁×𝑁 𝑰𝑁

−𝑰𝑁 𝟎𝑁×𝑁
] [

𝑰2�̄�

𝟎(2�̄�−2�̄�)×2�̄�
]

= 𝟎2�̄�×2�̄�,

which is clearly degenerate.

6.6 Snapshot-based Generation of Embedding and Point
Reduction

Another key task in MOR is the choice of a particular embedding 𝜑 (the Approximation step

in Section 6.3.1.4). In this section, we thus consider the construction of the embedding in a

data-driven setting, which is directly combined with the construction of a point reduction 𝜚.
We first introduce the data-driven setting (Section 6.6.1) and then detail four techniques to

generate an embedding and a corresponding point reduction. In Table 6.3, we present an

overview of selected methods discussed in the literature and how they fit into our general

framework. Throughout the section, we assume to be given the 𝑁-dimensional smooth

manifold ℳ and a metric 𝑑ℳ ∶ ℳ × ℳ → ℝ≥0.
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6.6.1 Snapshot-based Generation

In the scope of the present work, we focus on snapshot-based generation of an embedding and
a point reduction. Consider a finite subset 𝑆train ⊂ 𝑆 of the set of all solutions 𝑆 ⊂ ℳ from

(6.13), which is referred to as the (training-)set of snapshots and its elements 𝑚train ∈ 𝑆train as

snapshots. Typically, the embedding and the point reduction are determined by searching in

a given family of functions

ℱ𝜑,𝜚 ∶= {(𝜑, 𝜚) ∈ 𝐶∞(ℳ̌, ℳ) × 𝐶∞(ℳ, ℳ̌) ∣ 𝜚 is a point reduction for 𝜑 (6.15a)}

by optimizing over a functional 𝐿∶ ℱ𝜑,𝜚 → ℝ≥0 that measures the quality of approximation

based on the snapshots 𝑚train ∈ 𝑆train, i.e.,

(𝜑⋆, 𝜚⋆) ∶= argmin
(𝜑,𝜚)∈ℱ𝜑,𝜚

𝐿 (𝜑, 𝜚) . (6.54)

We emphasize that Lemma 6.1 guarantees that searching within ℱ𝜑,𝜚 automatically yields

that 𝜑 is a smooth embedding and 𝜑(ℳ̌) is an embedded submanifold. Note that for prac-

tical purposes, which we do not further consider, one might want to relax the smoothness

assumptions in ℱ𝜑,𝜚.

One well-established functional is the mean squared error (MSE)

𝐿MSE (𝜑, 𝜚) ∶= 1
|𝑆train|

∑
𝑚train∈𝑆train

(𝑑ℳ (𝑚train, (𝜑 ∘ 𝜚) (𝑚train)) )2 ∈ ℝ≥0. (6.55)

The motivation of minimizing the MSE is that if 𝐿MSE (𝜑, 𝜚) = 0, it is guaranteed that all

snapshots 𝑚train ∈ 𝑆train are in the image of the embedding 𝜑 and thus directly lay on the

embedded submanifold, i.e., 𝑆train ⊂ 𝜑(ℳ̌). In general, however, the MSE is not equal to

zero. Nevertheless, then we know that for each addend of (6.55) it holds that

(𝑑ℳ (𝑚train, (𝜑 ∘ 𝜚) (𝑚train)) )2 ≤ |𝑆train| ⋅ 𝐿MSE (𝜑, 𝜚) (6.56)

for all snapshots 𝑚train ∈ 𝑆train due to non-negativity of the respective addends.

In the following we present four examples for snapshot-based generation for the case

where ℳ = ℝ𝑁, ℳ̌ = ℝ𝑛, 𝑇𝑚ℳ = ℝ𝑁, 𝑇�̌�ℳ̌ = ℝ𝑛 are Euclidean vector spaces with chart

mappings 𝑥 ≡ idℝ𝑁 , ̌𝑥 ≡ idℝ𝑛 and the metric 𝑑ℳ is defined by a symmetric, positive-definite
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matrix 𝒈 ∈ ℝ𝑁×𝑁 with

‖𝒎‖𝒈 ∶= √𝒎⊤𝒈𝒎, 𝒅ℳ (𝒎, 𝒘) = ‖𝒎 − 𝒘‖𝒈 , for 𝒎, 𝒘 ∈ ℝ𝑁.

With this choice, the MSE (6.55) in coordinates reads

𝑳MSE (𝝋, 𝝔) = 1
|𝑆train|

∑
𝒎train∈𝑆train

‖𝒎train − (𝝋 ∘ 𝝔) (𝒎train)‖2
𝒈 . (6.57)

For each of the four presented approaches, we

1. formulate the respective family of functions as a subset of ℱ𝜑,𝜚,

2. describe how the MSE functional (6.55) is optimized,

3. refer to existing work that uses the respective technique.

6.6.2 Linear Subspaces

As discussed in Example 6.5, MOR on subspaces from Part I is included in our framework if

the embedding 𝝋 and the point reduction 𝝔 are linear maps

𝝋lin (�̌�) ∶= 𝑽 �̌�, 𝝔lin (𝒎) ∶= 𝑾 ⊤𝒎, (6.58)

based on the matrices 𝑽 , 𝑾 ∈ ℝ𝑁×𝑛 with 𝑛 ≪ 𝑁. We formulate the respective family of

functions by

ℱ𝜑,𝜚,lin ∶= {(𝝋lin, 𝝔lin) from (6.58) ∣ 𝑽 , 𝑾 ∈ ℝ𝑁×𝑛 such that 𝑾 ⊤𝑽 = 𝑰𝑛} .

Proposition 6.27: The family of functions ℱ𝜑,𝜚,lin is a subset of ℱ𝜑,𝜚.

Proof. The assumption 𝑾 ⊤𝑽 = 𝑰𝑛 implies the point projection property (6.15a) with

(𝝔lin ∘ 𝝋lin) (�̌�) = 𝑾 ⊤𝑽 �̌� = �̌�.

In the case of a Galerkin projection, i.e., 𝑾 ⊤ = 𝑽 ⊤𝒈 with 𝑽 ⊤𝒈𝑽 = 𝑰𝑛, solving (6.54)

for ℱ𝜑,𝜚,lin simplifies to the POD in coordinates (2.15), which is recited here for the sake of
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completeness

𝑽 ∗ = argmin
𝑽 ∈ℝ𝑁×𝑛

𝑽 ⊤𝒈𝑽 =𝑰𝑛

∑
𝒎train∈𝑆train

∥(𝑰𝑁 − 𝑽 𝑽 ⊤𝒈)𝒎train∥
2
𝒈 . (6.59)

For structure-preservingMOR on subspaces techniques, ℱ𝜑,𝜚,lin may have to be restricted to

a class that preserves the respective structure. For structure-preserving MOR for Hamiltonian

systems, this structure is the assumption that the ROB matrix 𝑽 is a symplectic matrix (see

Section 2.4) and the projection matrix is the symplectic inverse 𝑾 = 𝕁2�̄�𝑽 𝕁⊤
2�̄�.

6.6.3 Quadratic Manifolds

Recently, so-called MOR on quadratic manifolds has become an active field of research [5, 12,

41, 59, 108]. In our terms, the embedding and point reduction are set to

𝝋quad (�̌�) ∶= 𝑨2�̌�⊗s2 + 𝑨1�̌� + 𝑨0, 𝝔quad(𝒎) ∶= 𝑨⊤
1 (𝒎 − 𝑨0) , (6.60)

with matrices 𝑨2 ∈ ℝ𝑁×𝑛(𝑛+1)/2, 𝑨1 ∈ ℝ𝑁×𝑛, 𝑨0 ∈ ℝ𝑁 and where we denote by

(⋅)⊗s2 ∶ ℝ𝑛 → ℝ𝑛(𝑛+1)/2, �̌� ↦ �̌�⊗s2 the symmetric Kronecker product which produces all

pairwise products of components [�̌�]𝑖 ∈ ℝ of �̌� for 1 ≤ 𝑖 ≤ 𝑛 while neglecting redundant

entries, i.e.,

�̌�⊗s2 = [[�̌�]1 ⋅ [�̌�]1 , [�̌�]1 ⋅ [�̌�]2 , [�̌�]2 ⋅ [�̌�]2 , … , [�̌�]𝑛 ⋅ [�̌�]𝑛]⊤ ∈ ℝ𝑛(𝑛+1)/2.

The respective family of functions is

ℱ𝜑,𝜚,quad ∶= {(𝝋quad, 𝝔quad) from (6.60) ∣ 𝑨⊤
1 𝑨1 = 𝑰𝑛 and 𝑨⊤

1 𝑨2 = 𝟎𝑛×𝑛(𝑛+1)/2} . (6.61)

Proposition 6.28: The family ℱ𝜑,𝜚,quad is a subset of ℱ𝜑,𝜚.

Proof. The assumptions (6.61) on 𝑨2 and 𝑨1 imply the point projection property (6.15a),

(𝝔quad ∘ 𝝋quad) (�̌�) = 𝑨⊤
1 (𝑨2�̌�⊗s2 + 𝑨1�̌� + 𝑨0 − 𝑨0) (6.61)= �̌�.

The matrices 𝑨1 and 𝑨2 are obtained in [5, 12, 41, 59, 108] from the MSE functional (6.57).

In this setting, the assumptions in (6.61) allow to determine the matrices 𝑨0, 𝑨1 and 𝑨2
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sequentially: First, 𝑨0 is chosen, e.g., as the mean of 𝑆train. Then, (6.57) is optimized for 𝑨1

(similarly to (6.59)). Finally, (6.57) is optimized for 𝑨2, which results in a (regularized) linear

least squares problem. The preceding papers use different tangent reductions to derive the

ROM, which can be classified with the framework introduced in the present paper: [5, 41, 59]

use the MPG reduction map (6.22), while [12] relies on the GMG reduction map (6.41) (but

neglects a few higher order terms). The major difference between using MPG or GMG in

that context is that the MPG projects the FOM vector field with the tangent reduction

𝑹MPG|𝝋quad(�̌�) = 𝑫𝝔quad∣𝝋quad(�̌�) = 𝑨⊤
1

which is constant, while the GMG uses the tangent reduction from (6.42) with 𝝉|𝒎 = 𝑰𝑁 for

all 𝒎 ∈ ℝ𝑁 and 𝑫𝝋|�̌� = 𝑨2𝑩2(�̌�) + 𝑨1 with a linear function 𝑩2 ∶ ℝ𝑛 → ℝ𝑛(𝑛+1)/2×𝑛

describing the derivative of (⋅)⊗s2, resulting in

𝑹GMG|𝝋quad(�̌�) = (𝑫𝝋|⊤�̌� 𝝉|𝝋quad(�̌�)𝑫𝝋|�̌�)
−1

𝑫𝝋|⊤�̌� 𝝉|𝝋quad(�̌�)

= (𝑰𝑛 + (𝑩2(�̌�))⊤ 𝑨⊤
2 𝑨2𝑩2(�̌�))−1 (𝑨2𝑩2(�̌�) + 𝑨1)⊤ ,

which is typically nonlinear in �̌�, and, thus, so is the reduced vector field in general.

In [108], structure-preserving MOR of Hamiltonian systems on quadratic manifolds is

investigated. Two approaches are presented and compared: (i) The blockwise quadratic
approach uses an embedding of a comparable structure as (6.60) in combination with the

MPG tangent reduction. In contrast, (ii) the quadratic manifold cotangent lift uses the SMG-

ROM. In order to construct a symplectomorphism from a quadratic embedding, the PSD

cotangent lift from Definition 2.51 (which generates a linear embedding 𝝋) is generalized

to the case of nonlinear embeddings 𝝋 by introducing the so-called manifold cotangent lift .

Based on this idea, the authors construct an embedding 𝝋 ∶ ℝ2�̄� → ℝ2�̄�, where the first
̄𝑁 component functions are of the structure (6.60) and the last ̄𝑁 component functions are

rational functions. The SMG is then used for a structure-preserving tangent reduction of the

Hamiltonian vector field.
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6.6.4 Nonlinear Compressive Approximation

Following the idea of the previous subsection, the embedding and the point reduction can be

defined more generally with

𝝋NCA (�̌�) ∶= 𝑨2𝒇 (�̌�) + 𝑨1�̌� + 𝑨0, 𝝔NCA (𝒎) ∶= 𝑩⊤ (𝒎 − 𝑨0) , (6.62)

where 𝑨2 ∈ ℝ𝑁×�̃�, 𝑨1 ∈ ℝ𝑁×𝑛, 𝑨0 ∈ ℝ𝑁, 𝑩 ∈ ℝ𝑁×𝑛 are matrices, and 𝒇 ∈ 𝐶∞(ℝ𝑛, ℝ�̃�)
is a smooth nonlinear mapping for a given �̃� ∈ ℕ. Following [33], we refer to this approach

as nonlinear compressive approximation (NCA). The respective family of functions is

ℱ𝜑,𝜚,NCA ∶= {(𝝋NCA, 𝝔NCA) from (6.62) ∣ 𝑩⊤𝑨1 = 𝑰𝑛, 𝑩⊤𝑨2 = 𝟎𝑛×�̃�} . (6.63)

Proposition 6.29: The family ℱ𝜑,𝜚,NCA is a subset of ℱ𝜑,𝜚.

Proof. The assumptions on 𝑨1, 𝑨2, and 𝑩 in (6.63) imply the point projection property (6.15a)

with

(𝝔NCA ∘ 𝝋NCA) (�̌�) = 𝑩⊤ (𝑨2𝒇 (�̌�) + 𝑨1�̌� + 𝑨0 − 𝑨0) = �̌�.

The MSE for this approach may be optimized sequentially as in the MOR on quadratic

manifolds discussed in the previous section using 𝑩 = 𝑨1. This method is, e.g., used in [6],

where 𝒇 is a neural network.

Multiple works investigate NCA: First, the quadratic embedding (6.60) discussed in the

previous subsection is a special case of the NCA when choosing 𝒇 (�̌�) = �̌�⊗s2. Similarly, 𝒇
can be chosen as a higher-order polynomial in �̌� to obtain a more general approximation.

Second, in [6], 𝒇 is learned with an artificial neural network, while a time-discrete setting

is considered for the reduction, which is not covered by our methods. Third, [33] analyzes

the approximation of a set of traveling wave solutions with (and without) varying support

on the PDE level using decision trees and random forests in their numerical experiments.

Interestingly, the authors show that a linear point reduction is enough to reproduce the set of

traveling wave solutions. Fourth, in [23], it is shown that the NCA has its limitations in terms

of the Kolmogorov (�̃� + 𝑛)-width since the solution is contained in an (�̃� + 𝑛)-dimensional

linear subspace of ℝ𝑁.
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6.6.5 Autoencoders

Autoencoders are a well-known technique in nonlinear dimension reduction (see, e.g., [43,

Cha. 14]). In the understanding of the present work, MOR with autoencoders chooses

𝝋AE ∈ 𝐶∞(ℝ𝑛, ℝ𝑁), 𝝔AE ∈ 𝐶∞(ℝ𝑁, ℝ𝑛), (6.64)

where both functions are artificial neural networks (ANNs) with network parameters 𝜽 ∈ ℝ𝑛𝜽

(like weights and biases). Since 𝝔AE ∶ ℝ𝑁 → ℝ𝑛 and 𝝋AE ∶ ℝ𝑛 → ℝ𝑁, the concatenation

𝝋AE ∘ 𝝔AE maps from ℝ𝑁 over ℝ𝑛 back to ℝ𝑁. The in-between compression to ℝ𝑛 is typically

referred to as the bottleneck, 𝝔AE as the encoder , 𝝋AE as the decoder , and the concatenation

𝝋AE ∘ 𝝔AE as an autoencoder . The respective family is

ℱ𝜑,𝜚,AE ∶= {(𝝋AE, 𝝔AE) from (6.64) ∣ 𝜽 ∈ ℝ𝑛𝜽 network parameters} .

Without special assumptions about the architecture of the ANNs, it is generally impossible

to show the point projection property (6.15a). However, whenever the minimum of the cost

functional (6.54) is small, and the domain of interest is sampled well, then we show in the

following that the point projection property (6.15a) holds approximately. We assume to be

given a norm ‖⋅‖ ̌𝒈 ∶ ℝ𝑛 → ℝ≥0 such that 𝝋AE and 𝝔AE are Lipschitz continuous, i.e., there
exists a constant 𝐶𝜑 ≥ 0 such that for all points �̌�, �̌� ∈ ℝ𝑛

‖𝝋AE (�̌�) − 𝝋AE (�̌�)‖𝒈 ≤ 𝐶𝜑 ‖�̌� − �̌�‖ ̌𝒈 (6.65)

and a constant 𝐶𝜚 ≥ 0 such that for all points 𝒎, 𝒘 ∈ ℝ𝑁

‖𝝔AE (𝒎) − 𝝔AE (𝒘)‖ ̌𝒈 ≤ 𝐶𝜚 ‖𝒎 − 𝒘‖𝒈 . (6.66)

Theorem 6.30: For a given tuple (𝝋AE, 𝝔AE) ∈ ℱ𝜑,𝜚,AE from the family of functions for MOR
with autoencoders with an MSE value of 𝐿MSE (𝝋AE, 𝝔AE) ≥ 0, the point projection property
(6.15a) is fulfilled approximately in the sense that for each �̌� ∈ ℝ𝑛

‖(𝝔AE ∘ 𝝋AE) (�̌�) − �̌�‖ ̌𝒈 ≤ 𝐶𝜚√|𝑆train|𝐿MSE (𝝋AE, 𝝔AE)

+ (𝐶𝜚𝐶𝜑 + 1) min
𝒘train∈𝑆train

‖�̌� − 𝝔AE (𝒘train)‖ ̌𝒈 .
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Thus, for a bounded set �̌� ⊂ ℝ𝑛, a fine sampling in 𝑆train of �̌� and small values of the MSE

functional such that the term |𝑆train|𝐿MSE (𝝋AE, 𝝔AE) is small, the point projection property

(6.15a) holds approximately on �̌�, i.e., 𝝔AE ∘ 𝝋AE|�̌� ≈ id�̌�.

Proof. The proof is split in two parts. In the first part, we show that the inequality holds in

the encoded training points �̌�train ∶= 𝝔AE (𝒘train) with 𝒘train ∈ 𝑆train. Then, we show that

the inequality holds for general �̌� ∈ ℝ𝑛 by applying Lipschitz continuity.

Consider a fixed but arbitrary training point 𝒘train ∈ 𝑆train. Using (6.66) and (6.56), it holds

‖(𝝔AE ∘ 𝝋AE) (�̌�train) − �̌�train‖ ̌𝒈 = ‖(𝝔AE ∘ 𝝋AE ∘ 𝝔AE) (𝒘train) − 𝝔AE (𝒘train)‖ ̌𝒈

≤ 𝐶𝜚 ‖(𝝋AE ∘ 𝝔AE) (𝒘train) − 𝒘train‖𝒈

≤ 𝐶𝜚√|𝑆train|𝐿MSE (𝝋AE, 𝝔AE).

This property can be generalized to points �̌� ∈ ℝ𝑛 ∖ 𝝔AE (𝑆train). The idea is that for a

general Lipschitz continuous function 𝒇 ∶ ℝ𝑛 → ℝ𝑛 with Lipschitz constant 𝐶 ≥ 0 and

‖𝒇 (�̌�train)‖ ̌𝒈 ≤ 𝐶𝐵 for some 𝐶𝐵 ≥ 0, it holds for all �̌� ∈ ℝ𝑛 by adding a zero, triangle

inequality, and Lipschitz continuity

‖𝒇 (�̌�)‖ ̌𝒈 ≤ ‖𝒇 (�̌�train)‖ ̌𝒈 + ‖𝒇 (�̌�) − 𝒇 (�̌�train)‖ ̌𝒈 ≤ 𝐶𝐵 + 𝐶 ‖�̌� − �̌�train‖ ̌𝒈 .

For our case, we use 𝒇 (�̌�) = (𝝔AE ∘ 𝝋AE) (�̌�) − �̌� with Lipschitz constant 𝐶 = 𝐶𝜚𝐶𝜑 + 1,
bound 𝐶𝐵 = 𝐶𝜚√|𝑆train|𝐿MSE (𝝋AE, 𝝔AE), and points �̌�train = 𝝔AE (𝒘train). Thus, it holds

‖(𝝔AE ∘ 𝝋AE) (�̌�) − �̌�‖ ̌𝒈 ≤ 𝐶𝜚√|𝑆train|𝐿MSE (𝝋AE, 𝝔AE)

+ (𝐶𝜚𝐶𝜑 + 1) ‖�̌� − 𝝔AE (𝒘train)‖ ̌𝒈 .

Taking the minimum over all 𝒘train ∈ 𝑆train on the right-hand side yields the result.

Remark 6.31 (Constrained autoencoders): In [93], the authors introduce a novel autoencoder
architecture, which aims at fulfilling the point projection property (6.15a) exactly. The archi-
tecture of the encoder is chosen to invert the decoder layer-wise based on the assumption that
the linear layers of the decoder and encoder are pairwise biorthogonal. This biorthogonality is
penalized in the loss functional with an additional term.

One of the first works to combine autoencoders with projection-based MOR is [75]. As



120 6 Model Reduction on Manifolds: A Differential Geometric Framework

discussed in Section 6.5.1, the time-continuous formulation in that work considers the GMG

reduction for a state-independent Riemannian metric. A structure-preserving formulation

for Hamiltonian systems in combination with autoencoders is discussed in [22]. As shown in

Lemma 6.24, this work is based on the SMG reduction. In the subsequent chapter, we will

investigate this case more closely.
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In this final chapter, we intensify our study of structure-preserving MOR on manifolds for

Hamiltonian systems, which we refer to as symplectic MOR on manifolds. Firstly, we present

theoretical findings on preservation of energy and stability during the reduction and an error

bound for the reduction error (Section 7.1). Secondly, we present the weakly symplectic
autoencoder , a method to compute an approximately symplectic embedding from snapshot

data (Section 7.2). A numerical example compares the newly introduced weakly symplectic

autoencoder to classical symplectic MOR on subspaces and a nonlinear but non-symplectic

embedding from literature for the challenging case of a thin moving pulse (Section 7.3). In this

section, we assume that the reader is familiar with the basics of ANNs. For a more detailed

introduction to ANNs, we refer, e.g., to [75]. The following is adapted from [22].

In relation to Chapter 6, we assume to be given two symplectic manifolds (ℳ, 𝜔), (ℳ̌, �̌�)
which are even-dimensional dim(ℳ) = 2 ̄𝑁, dim(ℳ̌) = 2�̄� and can both be described with

one fixed chart (𝑈, 𝑥), ( ̌𝑈, ̌𝑥) with 𝑈 = ℝ2�̄�, ̌𝑈 = ℝ2�̄�. Moreover, we work in the bold

notation and consider 𝐶1 mappings instead of 𝐶∞. For the sake of brevity, we omit the

dependency on the parameter vector 𝜇 whenever possible. Then, an autonomous Hamiltonian

FOM (6.37) and the SMG-ROM (Section 6.5.3) read

⎧{
⎨{⎩

d
d𝑡𝜸∣

𝑡
= 𝑿ℋ|𝜸(𝑡) = 𝝎|−1

𝜸(𝑡)𝑫𝓗|⊤𝜸(𝑡) ∈ ℝ2�̄�,

𝜸 (𝑡0) = 𝜸0,
(7.1)

⎧{
⎨{⎩

d
d𝑡 �̌�∣

𝑡
= �̌�ℋ∣

𝜸(𝑡)
= �̌�|−1

�̌�(𝑡)𝑫 ̌𝓗∣⊤
�̌�(𝑡)

∈ ℝ2�̄�,

�̌� (𝑡0) = �̌�0 = 𝝔(𝜸0)
(7.2)
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with the Hamiltonian 𝓗 ∈ 𝐶1(ℝ2�̄�, ℝ), the symplectic form 𝜔 ∈ 𝛤 (𝑇 (0,2)(𝑇 ℝ2�̄�)), the
embedding 𝝋 ∈ 𝐶1(ℝ2�̄�, ℝ2�̄�), the reduced symplectic form �̌� = 𝜑∗𝜔 ∈ 𝛤 (𝑇 (0,2)(𝑇 ℝ2�̄�)),
and the reduced Hamiltonian ̌𝓗 ≡ 𝓗 ∘ 𝝋.

7.1 Theoretical Findings

We present theoretical findings on energy preservation (Section 7.1.1), stability preservation

(Section 7.1.2) and error estimation (Section 7.1.3).

7.1.1 Energy Preservation

Proposition 7.1: Let 𝜸 ∈ 𝐶1(ℐ, ℝ2�̄�) be the solution of the Hamiltonian FOM (7.1) at time 𝑡
and let �̌� ∈ 𝐶1(ℐ, ℝ2�̄�) be the solution obtained from solving an SMG-ROM (7.2). Then, the
error in the Hamiltonian

∆𝓗(𝑡) ∶= |𝓗(𝜸(𝑡)) − ̌𝓗(�̌�(𝑡))| = |𝓗(𝜸0) − ̌𝓗(�̌�0)| (7.3)

is constant for all 𝑡 ∈ ℐ.

Proof. In both models FOM and ROM the Hamiltonian evaluated the solution is constant over

time. But then the difference of both is also constant over time.

Remark 7.2 (Exact preservation): If the initial value is included in the image of the embedding
𝝋 ∈ 𝐶1(ℝ2�̄�, ℝ2�̄�) (i.e., there exists a �̌�0 ∈ ℝ2�̄� with 𝜸0 = 𝝋(�̌�0)), it follows from Proposi-
tion 7.1 that with the SMG projection, the Hamiltonian is exactly reproduced, ∆𝓗 ≡ 0. We
discuss in Section 7.2.3, how an embedding can be constructed that is guaranteed to exactly
reproduce the initial value.

7.1.2 Stability Preservation

Under mild assumptions, it can be shown that symplectic MOR on manifolds preserves

stability in the sense of Lyapunov. In the present subsection, we assume𝓗 ∈ 𝐶2(ℝ2�̄�, ℝ)
and 𝝋 ∈ 𝐶2(ℝ2�̄�, ℝ2�̄�) such that ̌𝓗 = 𝓗 ∘ 𝝋 ∈ 𝐶2(ℝ2�̄�, ℝ).

For an open set 𝑉 ⊂ ℝ2�̄� and a vector field 𝑿 ∈ 𝐶1(𝑉 , 𝑇 𝑉 ), consider the system of ODEs

d
d𝑡𝜸∣

𝑡
= 𝑿|𝜸(𝑡) ∈ ℝ2�̄� for 𝑡 ∈ ℐ. (7.4)
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We call a point 𝒎e ∈ 𝑉 an equilibrium point if 𝑿|𝒎e
= 𝟎2�̄�×1. Lyapunov stability of the

point 𝒎e is defined as follows.

Definition 7.3 (Lyapunov stability [86, Sec. 12]): An equilibrium point 𝒎e ∈ 𝑉 of (7.4) is
Lyapunov stable if for every 𝜖 > 0, there exists 𝛿 > 0 such that ‖𝒎e − 𝜸 (𝑡; 𝜸0)‖2 < 𝜖 for all
𝑡 ∈ ℐ whenever ‖𝒎e − 𝜸0‖2 < 𝛿.

In order to state sufficient conditions for an equilibrium point to be Lyapunov stable, we

recall Lyapunov’s stability theorem.

Theorem 7.4 (Lyapunov’s stability theorem [86, Thm. 12.1.1]): Assume that 𝒎e ∈ 𝑉 is an
equilibrium point of (7.4). If there exists 𝒉 ∈ 𝐶2(𝑉 , ℝ) such that (i) 𝑫𝒉|𝒎e

= 𝟎1×2�̄�, (ii) the
Hessian 𝑫2𝒉∣𝒎e

of 𝒉 is positive-definite, and (iii) 𝑫𝒉|𝒎𝑿|𝒎 ≤ 0, for all 𝒎 ∈ 𝑉 ⊂ ℝ2�̄�,
then 𝒎e is a Lyapunov stable point.

The function 𝒉 in Theorem 7.4 is called the Lyapunov function. For Hamiltonian systems, a

suitable candidate for 𝒉 is the Hamiltonian itself. In the case of an autonomous Hamiltonian

considered in this paper, a point 𝒎 ∈ ℝ2�̄� is an equilibrium point of (7.1) if and only if 𝒎
is a critical point of 𝓗, i.e., a point s.t. 𝑫𝓗(𝒎) = 𝟎1×2�̄� [1, Prop. 3.4.16]. Following the

well-known Dirichlet’s stability theorem for Hamiltonian systems [86, Cor. 12.1.1], it suffices

that the equilibrium point is a strict local maximum or minimum in order to be a Lyapunov

stable point. Condition (iii) from Theorem 7.4 is automatically fulfilled for autonomous

Hamiltonian systems which can be easily seen by

𝑫𝓗|𝒎𝑿ℋ|𝒎 = 𝑫𝓗|𝒎𝝎|−1
𝒎 𝑫𝓗|⊤𝒎 = 0 ∀𝒎 ∈ 𝑉 ,

due to the skew-symmetry of 𝝎|−1
𝒎 . Similar to [81, Thm. 18] in the special case of a linear

embedding 𝝋, we are now able to show that, if 𝓗 (or −𝓗) is a Lyapunov function in an

environment of the equilibrium point, then these equilibrium points for the FOM and ROM are

Lyapunov stable. In the following we extend this theorem to hold for nonlinear embeddings

𝝋.

Theorem 7.5 (Preservation of Lyapunov stability): Assume that 𝒎e ∈ 𝑉 is an equilibrium
point of (7.1) and there exists �̌�e ∈ ℝ2�̄� such that 𝒎e = 𝝋(�̌�e). If𝓗 (or −𝓗) is a Lyapunov
function as defined in Theorem 7.4, then 𝒎e and �̌�e are Lyapunov stable equilibrium points for
the FOM (7.1) and the SMG-ROM (7.2), respectively.
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Proof. As 𝒎e is an equilibrium point and 𝓗 is a Lyapunov function, Theorem 7.4 implies

that 𝒎e is Lyapunov stable. Evaluating the chain rule 𝑫 ̌𝓗∣
�̌�

= 𝑫𝓗|𝝋(�̌�)𝑫𝝋|�̌� at �̌�e

yields

𝑫 ̌𝓗∣
�̌�e

= 𝑫𝓗|𝝋(�̌�e)𝑫𝝋|�̌�e
= 𝑫𝓗|𝒎e

𝑫𝝋|�̌�e
= 𝟎1×2�̄�,

where the last equivalence follows as 𝒎e is a critical point for 𝓗, i.e., 𝑫𝓗|𝒎e
= 𝟎1×2�̄�.

Thus, �̌�e is an equilibrium point for (7.2). In order to show that �̌�e is a strict local minimum,

we consider the Hessian matrix. Again, considering the chain rule, we get

𝑫2 ̌𝓗∣
�̌�e

= 𝑫𝝋|⊤�̌�e
𝑫2𝓗|𝝋(�̌�e)𝑫𝝋|�̌�e

.

Therefore, for any 𝝃 ∈ ℝ2�̄� ∖ {𝟎2�̄�×1}, we obtain that 𝑫2 ̌𝓗∣
�̌�e

is positive-definite

𝝃⊤𝑫2 ̌𝓗∣
�̌�e

𝝃 = (𝑫𝝋|�̌�e
𝝃)⊤ 𝑫2𝓗∣𝝋(�̌�e)

(𝑫𝝋|�̌�e
𝝃) > 0,

due to the positive definiteness of 𝑫2𝓗∣𝒎e
. With Dirichlet’s stability theorem, we conclude

that �̌�e is a Lyapunov stable point for (7.2).

7.1.3 Error Estimation

In this section, we deduce a rigorous a posteriori error bound for Runge–Kutta (RK) time

integration schemes (see Section 2.3.2). For a linear embedding 𝝋, bounds have been derived

in [30, Thm. 6.19], which we extend in the following to error bounds for nonlinear embeddings

𝝋. In the notation of the present chapter, the RK scheme for the FOM is for each time step

1 ≤ 𝑘 ≤ 𝐾 based on the FOM RK residuals 𝒓𝑘,𝑖(𝒘1, … , 𝒘𝑠) ∶= 𝒘𝑖 − 𝑿ℋ|𝜸𝑘−1+∆𝑡 ∑𝑠
𝑗=1 𝑎𝑖𝑗𝒘𝑗

for 1 ≤ 𝑖 ≤ 𝑠 and solves

𝒓𝑘,𝑖(𝒘𝑘,1, … , 𝒘𝑘,𝑠) = 𝟎2�̄�×1, ∀𝑖 ∈ {1, … , 𝑠},

𝜸𝑘 = 𝜸𝑘−1 + ∆𝑡
𝑠

∑
𝑖=1

𝑏𝑖𝒘𝑘,𝑖.
(7.5)
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Analogously, the ROM RK residuals ̌𝒓𝑘,𝑖(�̌�1, … , �̌�𝑠) ∶= �̌�𝑖 − �̌�ℋ∣
�̌�𝑘−1+∆𝑡 ∑𝑠

𝑗=1 𝑎𝑖𝑗�̌�𝑗
are de-

fined for 1 ≤ 𝑖 ≤ 𝑠 and the RK scheme solves

̌𝒓𝑘,𝑖(�̌�𝑘,1, … , �̌�𝑘,𝑠) = 𝟎2�̄�×1, ∀𝑖 ∈ {1, … , 𝑠},

�̌�𝑘 = �̌�𝑘−1 + ∆𝑡
𝑠

∑
𝑖=1

𝑏𝑖�̌�𝑘,𝑖.
(7.6)

Theorem 7.6 (Error bound): Given a norm ‖⋅‖ ∶ ℝ2�̄� → ℝ≥0, assume that 𝑿ℋ is Lipschitz
continuous, i.e., there exists a constant 𝜅 > 0 such that

∥𝑿ℋ|𝒎1
− 𝑿ℋ|𝒎2

∥ ≤ 𝜅 ‖𝒎1 − 𝒎2‖ , ∀𝒎1, 𝒎2 ∈ ℝ2�̄�,

and that ∆𝑡 is chosen sufficiently small such that

(𝑎1) the matrix 𝑪 ∈ ℝ𝑠×𝑠 with entries [𝑪]𝑖𝑗 ∶= 𝛿𝑖𝑗 − 𝜅∆𝑡|𝑎𝑖𝑗| is invertible and

(𝑎2) for every 𝒙𝑠, 𝒚𝑠 ∈ ℝ𝑠
≥0 with 𝑪𝒙𝑠 ≤ 𝒚𝑠, it holds 𝒙𝑠 ≤ 𝑪−1𝒚𝑠.

1

For 1 ≤ 𝑘 ≤ 𝐾, consider the discrete FOM 𝜸𝑘 and ROM solution �̌�𝑘 of the RK schemes from (7.5)

and (7.6). Then, it holds the error bound

‖𝜸𝑘 − �̃�𝑘‖ ≤ (𝑐1)𝑘 ‖𝜸0 − �̃�0‖ +
𝑘−1

∑
ℓ=0

(𝑐1)ℓ (∆𝑡
𝑠

∑
𝑚=1

|𝑏𝑚|
𝑠

∑
𝑖=1

[𝑪−1]𝑚𝑖 ∥ ̃𝒓𝒘
𝑘−ℓ,𝑖∥ + ∥ ̃𝒓𝜸

𝑘−ℓ∥) ,

with the reconstructed state �̃�𝑘 ∶= 𝝋(�̌�𝑘), the reconstructed velocities �̃�𝑘,𝑖 ∶= 𝑫𝝋|�̌�𝑘−1
�̌�𝑘,𝑖,

for 𝑖 = 1, … , 𝑠, the residual of the reconstructed state and the residuals of the reconstructed
velocities

̃𝒓𝜸
𝑘 ∶= �̃�𝑘 − �̃�𝑘−1 − ∆𝑡

𝑠

∑
𝑖=1

𝑏𝑖�̃�𝑘,𝑖, (7.7a)

̃𝒓𝒘
𝑘,𝑖 ∶= �̃�𝑘,𝑖 − 𝑿ℋ|�̃�𝑘−1+∆𝑡 ∑𝑠

𝑗=1 𝑎𝑖𝑗�̃�𝑘,𝑗
, 𝑖 = 1, … , 𝑠, (7.7b)

and the constant 𝑐1 ∶= (1 + 𝜅∆𝑡 ∑𝑠
𝑚=1 |𝑏𝑚| ∑𝑠

𝑖=1[𝑪−1]𝑚𝑖).

1For the implicit midpoint rule (𝑠 = 1), this condition holds if 𝐶 = 1 − (𝜅∆𝑡)/2 ∈ ℝ>0, which can be ensured
by choosing ∆𝑡 < 2/𝜅. The condition can be verified for other (symplectic) RK methods, see Appendix A.3.
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Proof. Subtracting ̃𝒓𝒘
𝑘,𝑖 from 𝒓𝑘,𝑖(𝒘𝑘,1, … , 𝒘𝑘,𝑠) yields

𝒓𝑘,𝑖(𝒘𝑘,1, … , 𝒘𝑘,𝑠) − ̃𝒓𝒘
𝑘,𝑖 = 𝒘𝑘,𝑖 − �̃�𝑘,𝑖

− (𝑿ℋ|𝜸𝑘−1+∆𝑡 ∑𝑠
𝑗=1 𝑎𝑖𝑗𝒘𝑘,𝑗

− 𝑿ℋ|�̃�𝑘−1+∆𝑡 ∑𝑠
𝑗=1 𝑎𝑖𝑗�̃�𝑘,𝑗

) .

Noting that 𝒓𝑘,𝑖(𝒘𝑘,1, … , 𝒘𝑘,𝑠) = 𝟎2�̄�×1 for all 𝑖 = 1, … , 𝑠 due to (7.5), we arrive at

𝒘𝑘,𝑖 − �̃�𝑘,𝑖 = − ̃𝒓𝒘
𝑘,𝑖 + (𝑿ℋ|𝜸𝑘−1+∆𝑡 ∑𝑠

𝑗=1 𝑎𝑖𝑗𝒘𝑘,𝑗
− 𝑿ℋ|�̃�𝑘−1+∆𝑡 ∑𝑠

𝑗=1 𝑎𝑖𝑗�̃�𝑘,𝑗
) .

Applying the norm on both sides, using Lipschitz continuity and the triangle inequality yields

∥𝒘𝑘,𝑖 − �̃�𝑘,𝑖∥ ≤ ∥ ̃𝒓𝒘
𝑘,𝑖∥ + 𝜅 ‖𝜸𝑘−1 − �̃�𝑘−1‖ + 𝜅∆𝑡

𝑠

∑
𝑗=1

|𝑎𝑖𝑗| ∥𝒘𝑘,𝑗 − �̃�𝑘,𝑗∥ .

Rearranging both sides leads to

𝑠

∑
𝑗=1

(𝛿𝑖𝑗 − 𝜅∆𝑡|𝑎𝑖𝑗|) ∥𝒘𝑘,𝑗 − �̃�𝑘,𝑗∥ ≤ ∥ ̃𝒓𝒘
𝑘,𝑖∥ + 𝜅 ‖𝜸𝑘−1 − �̃�𝑘−1‖ .

As ∆𝑡 is small enough such that both assumptions (a1), (a2) hold, it holds for 𝑚 = 1, … , 𝑠

∥𝒘𝑘,𝑚 − �̃�𝑘,𝑚∥ ≤
𝑠

∑
𝑖=1

[𝑪−1]𝑚𝑖 (∥ ̃𝒓𝒘
𝑘,𝑖∥ + 𝜅 ‖𝜸𝑘−1 − �̃�𝑘−1‖) . (7.8)

Evaluating the residual (7.7a) at �̃�𝑘 and adding a zero by reformulating (7.5) yields

‖𝜸𝑘 − �̃�𝑘‖ ≤ ‖𝜸𝑘−1 − �̃�𝑘−1‖ + ∆𝑡
𝑠

∑
𝑚=1

|𝑏𝑚| ∥𝒘𝑘,𝑚 − �̃�𝑘,𝑚∥ + ∥ ̃𝒓𝜸
𝑘∥ .

By inserting (7.8), it follows

‖𝜸𝑘 − �̃�𝑘‖ ≤ (1 + 𝜅∆𝑡
𝑠

∑
𝑚=1

|𝑏𝑚|
𝑠

∑
𝑖=1

[𝑪−1]𝑚𝑖) ‖𝜸𝑘−1 − �̃�𝑘−1‖

+ ∆𝑡
𝑠

∑
𝑚=1

|𝑏𝑚|
𝑠

∑
𝑖=1

[𝑪−1]𝑚𝑖 ∥ ̃𝒓𝒘
𝑘,𝑖∥ + ∥ ̃𝒓𝜸

𝑘∥ .

Finally, an induction argument concludes the proof.
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Note, that the Lipschitz condition on 𝑿ℋ does not pose a severely limiting additional

requirement, as it is a typical condition for the well-posedness of (7.1). Moreover, the quantities

of the error bound are all computable and can be split into different categories, i.e., we have

quantities from the underlying dynamical system such as the Lipschitz constant 𝜅 whereas

other quantities depend on the chosen time-discretization such as 𝑏𝑚, 𝑎𝑖𝑗, 𝛥𝑡. The embedding

𝝋 only enters the residual norm in form of the reconstructed state and velocity.

7.2 Data-based Generation of an Approximately
Symplectic Embedding

As described in Section 6.6.5, autoencoders can be used to define an embedding 𝝋 and a point

reduction map 𝝔. After revisiting autoencoders (Section 7.2.1), we discuss deep convolutional

autoencoders (Section 7.2.2), explain how to exactly reproduce initial values (Section 7.2.3),

and introduce our novel weakly symplectic deep convolutional autoencoder (Section 7.2.4).

7.2.1 Autoencoders

In this chapter, an autoencoder 𝒜 ∶= (𝒆(⋅; 𝜽), 𝒅(⋅; 𝜽)) is a tuple of two parametric functions,

the encoder 𝒆(⋅; 𝜽) ∈ 𝐶1(ℝ2�̄�, ℝ2�̄�) and the decoder 𝒅(⋅; 𝜽) ∈ 𝐶1(ℝ2�̄�, ℝ2�̄�), with network

parameters 𝜽 ∈ ℝ𝑛𝜽 . The autoencoder is used to learn a low-dimensional representation of a

given, finite dataset 𝒳train ⊂ ℝ2�̄�, |𝒳train| < ∞ by optimizing the mean squared loss (MSE)2

𝐿data(𝜽) ∶= 1
2 ̄𝑁|𝒳train|

∑
𝒎∈𝒳train

‖𝒎 − 𝒅(𝒆(𝒎; 𝜽); 𝜽)‖2 . (7.9)

The embedding and the point reduction map are chosen as 𝝋 ≡ 𝒅(⋅; 𝜽∗) and 𝝔 ≡ 𝒆(⋅; 𝜽∗)
for a (locally) optimal network parameter vector 𝜽∗. In our case, the training data set are

snapshots of the FOM, i.e.

𝒳train = 𝑆train ∶= {𝜸𝑘(𝜇) ∣ 0 ≤ 𝑘 ≤ 𝐾, 𝜇 ∈ 𝒫train}, (7.10)

where 𝜸𝑘(𝜇) is the solution of the RK scheme (7.5) and 𝒫train ⊂ 𝒫, |𝒫train| < ∞, is a finite

training parameter set.

2In comparison to Chapter 6, the normalization factor in the MSE includes 2 ̄𝑁 to be consistent with [22].
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7.2.2 Deep Convolutional Autoencoders

For high-dimensional data, 2 ̄𝑁 ≫ 1, autoencoders purely based on fully-connected ANNs

(FNNs) might be too expensive to be trained since 𝑛𝜽 ∼ 2 ̄𝑁 or even 𝑛𝜽 ∼ (2 ̄𝑁)2. Moreover,

FNNs do in general not make use of spatial correlation in the data. For such problems, the

use of convolutional ANNs (CNNs) [73, 43, Cha. 9] is advantageous. These networks are

based on the so-called cross-correlation which applies a filter matrix similarly to the discrete

convolution. The dimension of the filter matrix is independent of the dimension of the input

which makes it suitable for high-dimensional inputs. Moreover, this operation is invariant

with respect to translations due to its convolutional structure. A combination of CNNs and

autoencoders is introduced in [75] as so-called deep convolutional autoencoders (DCAs). For
details on DCA-based architectures we refer to [75, Sec. 5] and Section 7.3.2.

7.2.3 Exact Reproduction of Initial Value

Similarly to [75], we construct an embedding 𝝋 which exactly reproduces the initial value.

To this end, we assume that the FOM has zero initial value 𝜸0(𝜇) ≡ 𝟎2�̄�×1 which can be

achieved with a coordinate transformation 𝒎new = 𝒎−𝜸0(𝜇) for any system with non-zero

initial value. Furthermore, the decoder is set to

𝒅(�̌�; 𝜽) = 𝒈(�̌�; 𝜽) − 𝒈(𝒆(𝟎2�̄�×1; 𝜽); 𝜽) (7.11)

based on a trainable mapping 𝒈(⋅, 𝜽) ∈ 𝐶1(ℝ2�̄�, ℝ2�̄�). With 𝝋 ≡ 𝒅(⋅; 𝜽∗) and 𝝔 ≡ 𝒆(⋅; 𝜽∗),
the initial value of the ROM is by definition �̌�0 = 𝝔(𝜸0(𝜇)) = 𝒆(𝟎2�̄�×1; 𝜽∗) and the initial

value is reconstructed exactly as

�̃�0 = 𝒅(�̌�0; 𝜽∗) = 𝒈(𝒆(𝟎2�̄�×1; 𝜽∗); 𝜽∗) − 𝒈(𝒆(𝟎2�̄�×1; 𝜽∗); 𝜽∗) = 𝟎2�̄�×1 = 𝜸0.

In the original formulation from [75], the term 𝒈(𝒆(𝟎2�̄�×1; 𝜽); 𝜽) in (7.11) is neglected during

training. In contrast, we respect this term in the training in order to train the decoder in the

same way it is used in the evaluation afterwards.
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7.2.4 Weakly Symplectic Deep Convolutional Autoencoders

In general, the decoder 𝒅 of the autoencoder learned with the DCA method will not be a

symplectic map which is required for the SMG-ROM. Thus, we extend the DCAs to weakly

symplectic DCAs by adding this constraint additionally to our loss function

𝐿(𝜽) ∶= 𝛼𝐿data(𝜽) + (1 − 𝛼)𝐿sympl(𝜽), (7.12a)

𝐿sympl(𝜽) ∶= 1
(2�̄�)2|𝒳train|

∑
𝒎∈𝒳train

∥𝑫𝒅|⊤(𝒆(𝒎;𝜽);𝜽)𝝎|𝒎𝑫𝒅|(𝒆(𝒎;𝜽);𝜽) − 𝕁⊤
2�̄�∥

2

F
, (7.12b)

where 0 < 𝛼 < 1 is a hyperparameter, ‖⋅‖F is the Frobenius norm, (2�̄�)2|𝒳train| is again a

normalizing constant, and 𝑫𝒅|(𝒆(𝒎;𝜽);𝜽) ∈ ℝ2�̄�×2�̄� denotes the evaluation of the Jacobian of

𝒅(⋅; 𝜽) at 𝒆(𝒎; 𝜽). The loss function 𝐿sympl penalizes network parameters 𝜽 for which 𝒅(⋅; 𝜽)
violates the canonical symplecticity (6.39) at the encoded data points 𝒆(𝒎; 𝜽) for 𝒎 ∈ 𝒳train.

Note that the symplecticity loss (7.12b) is more expensive to compute than the data loss (7.9)

as it requires to compute the Jacobian of 𝒅. In our framework, we use the Jacobian–vector

product in pyTorch [96] to compute the Jacobian. For now, we ignore this additional cost as

it is part of the training phase and it does not influence the computational cost to evaluate the

encoder and its Jacobian after the training. Future work might investigate how to reduce the

cost in (7.12b), e.g., by introducing another stochastic approximation such as Hutchinson’s

Trace Estimator [58].

7.3 Numerical Results

In this section, we perform numerical simulations of a linear wave equation that models the

challenging transport of a thin pulse. First, we detail the Hamiltonian FOM. Then, we describe

the training of the autoencoders and the construction of the reduced models. Subsequently,

we compare our reduced model on the nonlinear (approximately) symplectic trial manifold

to classical (non-)symplectic model reduction and to non-symplectic model reduction on

manifolds in terms of the accuracy on training and test data. Moreover, we compare for all

these MOR techniques the preservation of energy and symplecticity of the reduced model.
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7.3.1 Full-Order Model

We consider a parametrized initial-boundary-value problem (IBVP) for the one-dimensional

linear wave equation with homogeneous Dirichlet boundary conditions

𝜕2
𝑡𝑡𝑢(𝑡, 𝜉; 𝜇) = 𝜇2𝜕2

𝜉𝜉𝑢(𝑡, 𝜉; 𝜇), for (𝑡, 𝜉) ∈ ℐ × Ω,

𝑢(0, 𝜉; 𝜇) = 𝑢0(𝜉; 𝜇), for 𝜉 ∈ Ω,

𝜕𝑡𝑢(0, 𝜉; 𝜇) = − 𝜇 𝜕𝜉𝑢0(𝜉; 𝜇), for 𝜉 ∈ Ω,

𝑢(𝑡, 𝜉; 𝜇) = 0, for 𝑡 ∈ ℐ, 𝜉 ∈ {−1/2, 1/2},

(7.13)

with the spatial domain Ω = (−1/2, 1/2) and time interval ℐ = (0, 1). The parameter

𝜇 ∈ 𝒫 ∶= [5/12, 5/6] ⊂ ℝ is chosen to be the wave speed. The spline function

ℎ(𝑠) ∶=

⎧{{
⎨{{⎩

1 − 3/2 ⋅ 𝑠2 + 3/4 ⋅ 𝑠3, 0 ≤ 𝑠 ≤ 1,

(2 − 𝑠)3/4, 1 < 𝑠 ≤ 2,

0, otherwise,

is used to formulate the parameter-dependent initial value with 𝑢0(𝜉; 𝜇) ∶= ℎ (𝑠(𝜉; 𝜇)) and

𝑠(𝜉; 𝜇) ∶= 20/𝜇 ⋅ |𝜉 + 1/2 − 𝜇/10|. The unique solution of this IBVP is a traveling wave

solution 𝑢(𝑡, 𝜉; 𝜇) = 𝑢0(𝜉 − 𝜇𝑡; 𝜇). This model problem is similar to [81, 99] and the FOM

from Section 5.3.1. Here, however, the problem is parametric, has nonzero initial velocity, and

the support of the initial value compared to the domain length is much smaller. Thus, the

system is very challenging for MOR on subspaces as it describes the transport of a thin pulse.

With the variables 𝑞(𝑡, 𝜉; 𝜇) ∶= 𝑢(𝑡, 𝜉; 𝜇) and 𝑝(𝑡, 𝜉; 𝜇) ∶= 𝜕𝑡𝑞(𝑡, 𝜉; 𝜇) = 𝜕𝑡𝑢(𝑡, 𝜉; 𝜇), the
PDE in (7.13) can be rewritten as a parametric Hamiltonian PDE [17]

𝜕𝑡𝑞(𝑡, 𝜉; 𝜇) = (
𝛿ℋPDE

𝛿𝑝
[𝑞, 𝑝; 𝜇]) (𝑡, 𝜉; 𝜇) = 𝑝(𝑡, 𝜉; 𝜇),

𝜕𝑡𝑝(𝑡, 𝜉; 𝜇) = − (
𝛿ℋPDE

𝛿𝑞
[𝑞, 𝑝; 𝜇]) (𝑡, 𝜉; 𝜇) = −𝜇2𝜕𝜉𝜉𝑞(𝑡, 𝜉; 𝜇),

ℋPDE[𝑞, 𝑝; 𝜇] ∶= 1
2

∫
Ω

𝜇2(𝜕𝜉𝑞)2 + 𝑝2d𝜉,

(7.14)

where 𝛿(⋅)
𝛿(⋅) denotes the variational derivative. We discretize the interior of Ω into ̄𝑁 = 2048

equidistantly spaced points which results for 𝑖 = 1, … , ̄𝑁 in 𝜉𝑖 ∶= 𝑖∆𝜉 − 1/2 with step size
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∆𝜉 ∶= 1/( ̄𝑁 + 1) and the two states 𝒒(𝑡; 𝜇) ∶= [𝑞(𝑡, 𝜉𝑖; 𝜇)]�̄�𝑖=1 and 𝒑(𝑡; 𝜇) ∶= [𝑝(𝑡, 𝜉𝑖; 𝜇)]�̄�𝑖=1.

Discretizing (7.14) with a finite difference method, yields a 2 ̄𝑁-dimensional Hamiltonian FOM

(7.1) with a canonical symplectic form 𝝎 ≡ 𝕁⊤
2�̄� and 𝜸(𝑡; 𝜇) ∶= [𝒒(𝑡; 𝜇)⊤, 𝒑(𝑡; 𝜇)⊤]⊤ ∈ ℝ2�̄�

and the separable, quadratic Hamiltonian

𝓗(𝒎; 𝜇) ∶= 1
2

𝒎⊤ [
−𝜇2𝑫𝜉𝜉 𝟎�̄�×�̄�

𝟎�̄�×�̄� 𝑰�̄�
] 𝒎,

where 𝑫𝜉𝜉 is the central finite difference approximation for the second-order derivative 𝜕𝜉𝜉.

For symplectic time integration, we use the implicit midpoint rule (2.25) with 𝐾 = 4000
steps. The training set 𝒫train is chosen as 8 equidistant points in the parameter space 𝒫 which

results in |𝒫train| ⋅ 𝐾 = 32000 snapshots.

7.3.2 Training of Deep Convolutional Autoencoders

In this subsection, we discuss all details on the architecture and training of the DCAs used

in the numerical experiment. The settings specific for the different DCAs are listed in

Table 7.1. For the training, the snapshot data is randomly split into two disjoint sets, (i)

80% training data 𝒳train and (ii) 20% validation data 𝒳val. The network architectures are

(weakly symplectic) DCAs as described in Section 7.2. For nine different reduced sizes

2�̄� ∈ {2, 4, … , 12, 18, 24, 30} =∶ 𝒟𝑟, we train three different types of DCAs separately. The

three investigated DCA types are (i) a weakly symplectic DCA 𝒜2�̄�
𝑠,0, (ii) a non-symplectic

DCA 𝒜2�̄�
0 with the same hyperparameter configuration as (i) but symplecticity is not included

in the loss function (7.12a), i.e., 𝛼 = 1, and (iii) a completely different non-symplectic DCA

architecture 𝒜2�̄�
1 . In this context, we refer to a DCA as non-symplectic if symplecticity is

not included in the loss function (7.12a), i.e., 𝛼 = 1. The hyperparameter configuration for

𝒜2�̄�
𝑠,0 was decided by hyperparameter optimization with 250 candidates (with 𝛼 < 1) by

minimizing the loss (7.12a) on the validation set 𝒳val. The hyperparameter configuration

for the DCAs of type 𝒜2�̄�
1 was determined analogously in a separate run with 𝛼 = 1 over

400 candidates. In this setting, we provide a good baseline as we compare our approach

to the same DCA without symplecticity in the loss function (𝒜2�̄�
0 ) and a non-symplectic

DCA optimized on its own (𝒜2�̄�
1 ). For all different reduced dimensions 2�̄�, the optimized

hyperparameter configurations result in DCAs with a number of network parameters 𝑛𝜽

between 93, 000 and 101, 000 for 𝒜2�̄�
𝑠,0, 𝒜2�̄�

0 and between 248, 000 and 257, 000 for 𝒜2�̄�
1 .
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setting 𝒜2�̄�
𝑠,0 𝒜2�̄�

0 𝒜2�̄�
1

weight 𝛼 in (7.12a) 0.9 1. (non-symplectic)

num. conv. layer 𝑛conv 6 5

conv. channels 𝒄 [2, 2, 4, 8, 16, 32, 64] [2, 4, 8, 16, 32, 64]
lengths, conv. layer 𝒍conv [2048, 512, 256, 128, 64, 16, 2] [2048, 1024, 512, 256, 128, 4]
stride 𝒔 [4, 2, 2, 2, 4, 8] [2, 2, 2, 2, 32]
num. full layer 𝑛full 1 2

lengths, full layer 𝒍full [128, 2�̄�] [256, 132, 2�̄�]
learning rate 4.43e-4 1.05e-4

batch size 15 25

weight initialization Kaiming normal [52] Xavier uniform [42]

Table 7.1: Autoencoder-specific settings for the weakly symplectic DCAs 𝒜2�̄�
𝑠,0 and the non-

symplectic DCAs 𝒜2�̄�
0 , 𝒜2�̄�

1 . Note, that the DCAs 𝒜2�̄�
𝑠,0 and 𝒜2�̄�

0 share all parameters except
for the weight 𝛼. We only report the layout of the encoder part as the decoder uses a mir-
rored layout. The table is adapted from [22].

Both, encoder and decoder, are composed of multiple, sequential layers, see Figure 7.1.

The sizes of the intermediate results are indicated in the upper part. Sizes with a ×-symbol

indicate that the result is a second-order tensor. For such results, we call the first dimension

the channels and the second dimension the length. The outermost layers (split, flat,

dotted boundary around layers) convert the state [𝒒; 𝒑] ∈ ℝ2�̄� to a second-order tensor

[𝒒, 𝒑]⊤ ∈ ℝ2×�̄� (or ℝ2×�̄� → ℝ2�̄�, respectively) such that both physical quantities, the

configuration variables 𝒒 and the conjugated momenta 𝒑, occupy one separate channel. The

next part is framed by a scaling operation and its inverse (scale, scale−1, dashed boundary

around layers). The scaling is chosen to scale each channel in the input data separately to the

interval [0, 1]. This operation is typically applied directly to the data. In our approach, this

operation is adopted in the network in order to ensure that this operation is respected in the

symplecticity loss (7.12b). The other layers in Figure 7.1 are, in order, a block of convolutional

layers (convblock), a flatten operation, a block of fully-connected layers (fullblock𝑒) in the

encoder, a block of fully-connected layers (fullblock𝑑) in the decoder, a splitting operation

and a block of transposed convolutions (convTblock). Each block consists of alternating

(transposed) convolutional layers (or fully-connected layers, respectively) and nonlinear
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Figure 7.1: Schematic description of the network architecture of general DCAs composed of
an encoder (blue) and a decoder part (orange). The sizes of the intermediate results (light
gray) are indicated in the upper part. Sizes with a ×-symbol indicate that the result is a
second-order tensor. This figure is adapted from [22].

activation layers. The activation function in all examples is the Exponential Linear Unit (ELU)

𝜎(𝑥) ∶=
⎧{
⎨{⎩

𝑥, 𝑥 ≥ 0,

exp(𝑥) − 1, 𝑥 < 0.

The hyperparameters for a (transposed) convolutional layer are the kernel size, the stride

value 𝑠𝑖, the number of output channels 𝑐𝑖 and the padding. The length of the output 𝑙conv𝑖+1 ∈ ℕ
of a (transposed) convolutional layer depends on all those hyperparameters and the length

of the input 𝑙conv𝑖 . The hyperparameters for the fully-connected layers are the number of

neurons described by the lengths 𝑙full𝑖 . We give an overview of the hyperparameters and

the resulting lengths for each autoencoder in Table 7.1. Layer-specific hyperparameters are

denoted as a vector 𝒗 = [𝑣0, … , 𝑣𝑛𝒗
].

We use mini-batching in combination with the optimizer ADAM [64] with standard param-

eters except for the learning rate, which is given together with the batch size in Table 7.1 for

each DCA type. The batches are reshuffled in every epoch. The DCAs are trained for 1000
epochs where one epoch is a full iteration over all training batches. The final parameter 𝜽∗ is

chosen as the minimizer of the total loss (7.12a) over the validation data set 𝒳val within those

1000 epochs. All biases are initialized with zeros. The weights are initialized with the method

and corresponding distribution listed in Table 7.1. The DCAs are implemented with the

pyTorch [96] framework. Moreover, the floating point precision is set to double-precision,

as the FOM and ROM work with this precision.
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reduction method 𝝋 lin. sympl. approx. ref.

Symplectic Manifold Galerkin (SMG) no yes 𝒜2�̄�
𝑠,0 Section 6.5.3, [22]

Manifold Galerkin (MG) no no
𝒜2�̄�

0 , 𝒜2�̄�
1

Section 6.5.1, [75]

Manifold LSPG (M-LSPG) no no [75]

Symplectic Galerkin (SG) yes yes 𝑉 2�̄�
CL Section 2.4.2, [99]

Galerkin (G) yes no
𝑉 2�̄�
POD

Section 2.2.2, [68]

least-squares Petrov–Galerkin (LSPG) yes no [29]

Table 7.2: Summary of investigated reduction techniques. The table is adapted from [22].

7.3.3 Accuracy Based on Test Data

The DCAs described in the previous section are compared for three fixed parameter instances

𝒫test ∶= {𝜇1, 𝜇2, 𝜇3} with 𝜇1 ∶= 0.51, 𝜇2 = 0.625, 𝜇3 = 0.74 that are all distinct from the

training set 𝒫train, i.e., we investigate how well the DCAs generalize to unseen data. For the

weakly symplectic DCAs 𝒜2�̄�
𝑠,0, we use the SMG reduction technique recited in Section 6.5.3.

For the non-symplectic DCAs, we use the manifold Galerkin (MG) and the manifold LSPG (M-

LSPG) both introduced in [75]. Additionally, we display the results for a classical symplectic

MOR method, the cotangent lift (CL) with symplectic Galerkin (SG) projection, which was

observed to be the best reduction technique in the experiments for the linear wave equation

in [99]. Moreover, we present results for the proper orthogonal decomposition (POD) in

combination with the Galerkin (G) and least-squares Petrov–Galerkin (LSPG) projection,

which are classical (non-symplectic) MOR techniques. The different reduction techniques are

summarized in Table 7.2. We quantify the quality of the reduced models on the test data with

the (mean relative) projection error

𝑒proj ∶= 1
|𝒫test|

∑
𝜇∈𝒫test

√√√
⎷

∑𝐾
𝑘=0 ‖(𝝋 ∘ 𝝔)(𝜸𝑘(𝜇)) − 𝜸𝑘(𝜇)‖2

∑𝐾
𝑘=0 ‖𝜸𝑘(𝜇)‖2

(7.15)

and the (mean relative) reduction error

𝑒red ∶= 1
|𝒫test|

∑
𝜇∈𝒫test

√√√
⎷

∑𝐾
𝑘=0 ‖𝝋(�̌�𝑘(𝜇)) − 𝜸𝑘(𝜇)‖2

∑𝐾
𝑘=0 ‖𝜸𝑘(𝜇)‖2

, (7.16)
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where 𝜸𝑘(𝜇) ∈ ℝ2�̄� is the FOM solution and �̌�𝑘(𝜇) ∈ ℝ2�̄� is the corresponding ROM solution

at time 𝑡𝑘. The projection error is a measure how well a solution can be approximated by the

respective DCA whereas the reduction error shows the error of the corresponding ROM.

Figure 7.2 illustrates both errors for all techniques from Table 7.2 for different reduced

dimensions 2�̄� ∈ 𝒟𝑟. The errors are displayed separately for projection techniques based

on symplectic (manifold) Galerkin (Figure 7.2, left), (manifold) Galerkin (Figure 7.2, center)

and (manifold) LSPG (Figure 7.2, right). Errors are not depicted, (a) if the error is above

400% or (b) if the corresponding ROM simulation run did not reach the absolute tolerance

of 1e-8 within the maximum number of 15 quasi-Newton iterations for some time step 𝑡𝑘,

0 ≤ 𝑘 ≤ 𝐾.

First, we comment on the classical MOR methods on subspaces, i.e., 𝑉 2�̄�
CL with SG and

𝑉 2�̄�
POD with G and LSPG (depicted by pentagon-symbols in each plot; left, middle, right). As

expected from theory, the reduction error 𝑒red of all these methods is always bounded from

below by the projection error 𝑒proj of the POD basis (black dash-dotted line). Moreover, all

classical reduction methods show poor results in the reduction error, which is around or

above 100% for most 2�̄� ∈ 𝒟𝑟. Overall, no reduction error is achieved below 39.5% with

classical methods for 2�̄� ∈ 𝒟𝑟. Therefore, for the considered case of a thin moving pulse,

classical MOR techniques on subspaces are not able to beneficially reduce the model for the

investigated reduced dimensions.
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0.1%
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100%

0 10 20 30
red. dim. 2�̄�

0 10 20 30

S(M)G (M)G (M-)LSPG

𝒜2�̄�
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𝒜2�̄�
0

𝒜2�̄�
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𝑉 2�̄�
CL

𝑉 2�̄�
POD

Figure 7.2: Reduction error 𝑒red (7.16) (circles and pentagon-symbols) and projection error
𝑒proj from (7.15) (plus-symbols and dash-dotted line) for different DCAs (see Table 7.1), and
reduction techniques (see Table 7.2). We consider symplectic (manifold) Galerkin (left),
(manifold) Galerkin (center) and (manifold) LSPG methods (right) separately. This figure is
adapted from [22].
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In contrast to that, all nonlinear projections based on the DCAs 𝒜2�̄�
𝑠,0, 𝒜2�̄�

0 , 𝒜2�̄�
1 attain

lower projection errors 𝑒proj (plus-symbols) than the projection error 𝑒proj for the POD basis,

and a lower reduction error 𝑒red (circles) for at least one reduced dimension. The reduction

errors provide results below and above the POD projection error, which aligns with previous

experiments for model reduction on manifolds using autoencoders, see [75]. Furthermore,

we observe that M-LSPG yields lower reduction errors than MG in average, which is in

accordance with the results for Burgers’ equation in [75]. Moreover, the architecture 𝒜2�̄�
1

hyperparameter-optimized for the non-symplectic setting (orange) yields in general better

results than 𝒜2�̄�
0 (red) which is expected from the design of the two DCAs. In terms of

numbers, the weakly symplectic DCAs 𝒜2�̄�
1 with SMG produce reduction errors below 11%

for all reduced dimensions 2�̄� ∈ 𝒟𝑟. For the non-symplectic methods, however, only 2�̄� = 12
is able to produce a reduction error lower than 11% for both reduction methods MG and

M-LSPG. Especially for reduced dimensions 2�̄� ≥ 18, reduction errors above 90% render the

non-symplectic DCAs impractical. In that sense, the non-symplectic DCAs yield less reliable

results than 𝒜2�̄�
𝑠,0 with SMG. Overall, the best reduction error is given by 𝒜2�̄�

𝑠,0 with SMG

with 2�̄� = 12 with 3.3%.

In comparison to the results from [75] for the Burgers’ equation, it is, however, surprising

that the discrepancy between the reduction error and the projection error is very high for

M-LSPG. This indicates that the lack of structure might impact M-LSPG which leads to higher

reduction errors.3
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𝒜2�̄�

0
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1
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Figure 7.3: Number of successful (blue) compared to failed (red) reduced simulation runs for
𝒜2�̄�

𝑠,0, 𝒜2�̄�
0 , 𝒜2�̄�

1 with respective reduction technique, for 𝜇𝑖, 𝑖 = 1, 2, 3 and 2�̄� ∈ 𝒟𝑟. This
figure is adapted from [22].

3The MG and M-LSPG in our implementation have been validated with the Burgers’ example from [75] which
leads to this conclusion.
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Since Figure 7.2 excludes runs for which the Newton solver did not converge, we display the

number of successful and failed runs in Figure 7.3. For the non-symplectic DCAs, we observe

that non-converging reduced simulations occur, whereas all runs with the weakly symplectic

DCAs converge. For 𝒜2�̄�
1 , out of 27 simulations (9 reduced dimensions, 3 parameters) 8/27

runs converged for MG and 15/27 runs converged for M-LSPG. For 𝒜2�̄�
0 , 14/27 simulations

converged for MG and 13/27 simulations converged for M-LSPG. This means that, even in

the best case, one third of the runs did not converge for the non-symplectic DCAs. This

emphasizes the importance of structure-preservation in model reduction.

7.3.4 Quality in Terms of Structure

To showcase the quality in terms of structure, we investigate the error in the symplecticity of

𝒜2�̄�
𝑠,0 with

𝑒symp(𝑡𝑘; 𝜇) ∶= 1
(2�̄�)2 ∥𝑫𝝋|⊤�̌�𝑘(𝜇)𝕁

⊤
2�̄�𝑫𝝋|�̌�𝑘(𝜇) − 𝕁⊤

2�̄�∥
F
, (7.17)

where �̌�𝑘(𝜇) ∈ ℝ2�̄� denotes the solution of the SMG-ROM (7.2). Figure 7.4a depicts this

error over time for different reduced dimensions 2�̄� ∈ 𝒟𝑟. It shows that the error in the

symplecticity is comparable for 2�̄� > 4, whereas for 2�̄� ≤ 4 higher errors might occur. In the

latter case the reduced dimension may be too low in order to capture the essential properties

of the set of all solutions. The following remark briefly comments on a possibility to enhance

symplecticity in DCAs.

Remark 7.7 ((Strictly) symplectic embeddings): In the present work, we determined approx-
imately symplectic embeddings by penalizing symplecticity in the loss. This is advantageous
in the scope of our work because it allows to compare the SMG-ROM with the MG-ROM on
comparable architectures (which only differ in the penalization factor 𝛼).
Future work might investigate (strictly) symplectic embeddings. To this end, the concept of

DCAs could be paired with symplectic mappings such as the SympNets introduced in [60] (which
has been proposed in a different context earlier in [34]). Moreover, the manifold cotangent lift
introduced in [108] can be used to generate (strictly) symplectic mappings.

To numerically verify the preservation of the energy over time from Section 7.1.1, we plot

in Figure 7.4b the evolution of the error in the Hamiltonian ∆𝓗(𝑡; 𝜇1) (7.3) for the DCAs

𝒜2�̄�
𝑠,0, 𝒜2�̄�

0 and 𝒜2�̄�
1 (with SMG, MG, M-LSPG, whenever applicable). We illustrate the range
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(a) Error in symplecticity 𝑒symp(𝑡; 𝜇1) (7.17).
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(b) Error in Hamiltonian ∆𝓗(𝑡; 𝜇1) (7.3).

Figure 7.4: Error in the symplecticity 𝑒symp(𝑡; 𝜇1) (7.17) over time 𝑡 ∈ [0, 1] for the DCAs
𝒜2�̄�

𝑠,0 with 2�̄� ∈ 𝒟𝑟 (left) and the minimum and maximum of the error in the Hamiltonian
∆𝓗(𝑡; 𝜇1) (7.3) over time 𝑡 ∈ [0, 1] for the DCAs 𝒜2�̄�

𝑠,0, 𝒜2�̄�
0 , 𝒜2�̄�

1 with different reduced
dimensions 2�̄� ∈ 𝒟𝑟 (right). Both figures are taken from [22].

of ∆𝓗(𝑡; 𝜇1) over different reduced dimensions 2�̄� ∈ 𝒟𝑟 for each time step 𝑡𝑘, 0 ≤ 𝑘 ≤ 𝐾.

The minimum and maximum is plotted as solid lines and the area between both is shaded in

the same color. Non-converging runs (red in Figure 7.3) are excluded, which is in favor of

the non-symplectic DCAs 𝒜2�̄�
0 , 𝒜2�̄�

1 . We observe that the error in the Hamiltonian for small

times 𝑡 ≈ 0 is very low in all cases. This is due to the exact reproduction of the initial value

discussed in Section 7.2.3 which makes the DCAs match the Hamiltonian at 𝑡 = 0, exactly
with the idea from Remark 7.2. All runs of the weakly symplectic DCAs 𝒜2�̄�

𝑠,0 are able to retain

a low error in the Hamiltonian (∆𝓗(𝑡; 𝜇1) < 4.2e-3). The error is not exactly zero which we

assume to stem from the fact that the symplectic midpoint rule conserves invariants exactly

only up to quadratic order while the reduced Hamiltonian is of higher order than quadratic

due to the nonlinearity of the embedding 𝝋. However, the error is much lower than with

the non-symplectic DCAs 𝒜2�̄�
0 , 𝒜2�̄�

1 . In the best case (for the non-symplectic DCAs), the

minimum error in the Hamiltonian at the final time 𝑡 = 1 is about 58 which is approximately

four orders of magnitude higher than the maximal error of the symplectic method. In that

sense, the additional constraint of weak symplecticity in (7.12b) in combination with the

SMG projection shows its impact in this experiment with an improved preservation of the

Hamiltonian compared to the non-symplectic DCAs.
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Perspectives 8

8.1 Summary and Conclusion

In this thesis, we developed structure-preserving formulations and new algorithms for MOR

on subspaces (Part I) and manifolds (Part II).

Part I focused on basis generation techniques for symplectic MOR. We introduced the PSD

SVD-like decomposition as a powerful tool, that computes a non-orthogonal, symplectic

basis. Furthermore, the PSD-greedy was formulated as a greedy method that is guaranteed

to provide a symplectic basis in combination with a suitable basis generation technique.

Lastly, we proved for the special case of canonizable systems with a periodic solution that an

optimal symplectic basis in the time-continuous setting can be computed with the POD if

the integration time is chosen accordingly. For each of these advancements, we deducted

numerical experiments. We conclude from Part I that orthonormality of the basis is not

required in symplectic MOR. All numerical experiments suggest that a non-orthogonal,

symplectic basis allows to obtain the same accuracy as the orthogonal counterparts with less

basis vectors. The resulting ROMs are smaller and thus more efficient.

Part II introduced a framework for structure-preserving MOR techniques based on differ-

ential geometry. Starting from a formulation of the FOM on manifolds, we introduced two

MOR concepts (generalized manifold Galerkin and manifold Petrov–Galerkin). Adding more

structure in the form of tensor fields allowed us to investigate Lagrangian and Hamiltonian

systems together with structure-preserving MOR for such systems jointly in this framework.

As a second step, we examined structure-preserving MOR for Hamiltonian systems on mani-

folds more closely. In terms of theoretical findings, we proved preservation of energy and

stability and an error bound. As a practical algorithm, we introduced a technique to learn
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an approximately symplectic embedding from snapshot data with the weakly symplectic

autoencoders. Inspecting this new algorithm numerically for the challenging example of a

moving thin pulse showed that both aspects of this thesis (structure-preservation and MOR

on manifolds) are essential to obtain an accurate and robust ROM. We conclude from Part II

that the differential geometric formulation is substantial to understand and preserve the

structures present in the FOM. The main tool for structure-preservation is the pullback of

covariant objects that transfers structure from the FOM to the ROM naturally. Moreover,

a key insight from Part II is that many techniques existing in literature are included in the

formalism of the presented framework. The differentiation between the generalized manifold

Galerkin and the manifold Petrov–Galerkin helps to categorize these approaches.

8.2 Perspectives

Regarding the contents of this thesis, we see the following perspectives for future work:

The methods developed in Part I for symplectic basis generation may be transferred to

related fields such as MOR for port-Hamiltonian systems [114], which are a generalization of

Hamiltonian systems. Current work [103] shows that the PSD SVD-like decomposition can

also be beneficial in this case. However, the highest potential to inspire future work lies in

the framework for structure-preserving MOR on manifolds from Part II. It provides a fertile

basis to formulate and investigate structure-preserving MOR techniques for other structures

as in port-Hamiltonian [114] or (port-)metriplectic [55, 89] systems. In terms of data-based

embeddings, the framework should be extended to lifting [67, 101] and shifting [16, 59, 91, 102,

105, 112] operations, which are established approaches in MOR with nonlinear projections.

For the future of MOR and surrogate modelling in general, we anticipate further advances in

both main aspects of this thesis, (i) structure-preservation methods and (ii) MOR on manifolds.

The first aspect, (i) structure preservation, can be driven by the mathematical community

that uses algebraic and geometric structures to formulate numerical techniques on the FOM

level. The MOR community will closely follow this development and provide appropriate

surrogate modelling techniques for the newly emerging structured models. The demand to

improve the second aspect, (ii) MOR on manifolds, naturally emerges from the underlying

assumption of MOR on subspaces that the Kolmogorov 𝑛-widths decay fast enough, which

limits its applicability especially in FOMs with transport-dominated solutions.
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Proofs A
A.1 Topological Spaces and Topological Manifolds

A.1.1 Fundamentals

Consider a set ℳ. A topology on ℳ is a collection 𝒯 of subsets of ℳ (which are called open
subsets of ℳ) that satisfy that (i) both the empty set ∅ and the set itself ℳ are open, (ii) each

union of open subsets is open, (iii) each intersection of finitely many open subsets is open.

The pair (ℳ, 𝒯 ) is called a topological space. If the specific topology is clear from the context

or not particularly relevant for the discussion, then we simply write ℳ instead of (ℳ, 𝒯 ).
For two topological spaces ℳ and 𝒬, a map 𝐹∶ ℳ → 𝒬 is called continuous, if for

every open subset 𝑉 ⊂ 𝒬, the preimage {𝑚 ∈ ℳ ∣ 𝐹 (𝑚) ∈ 𝑉 } is open in ℳ. We call 𝐹
a homeomorphism, if (i) it is bijective (and thus the inverse 𝐹 −1 ∶ 𝒬 → ℳ exists) and (ii)

both 𝐹 and 𝐹 −1 are continuous. Correspondingly, two topological spaces ℳ and 𝒬 are

called homeomorphic if there exists a homeomorphism from ℳ to 𝒬. Moreover, ℳ is called

locally homeomorphic to ℝ𝑁 for 𝑁 ∈ ℕ if for every point 𝑚 ∈ ℳ there exists an open set

𝑈 ⊂ ℳ with 𝑚 ∈ 𝑈, which is homeomorphic to an open subset of ℝ𝑁. A topological space

ℳ is called a topological manifold of dimension 𝑁 if it is locally homeomorphic to ℝ𝑁 (and

additionally Hausdorff and second-countable, see e.g. [74, Cha. 1 and App. A]).

A.1.2 Proof of Lemma 6.1

By assumption, 𝜑 ∈ 𝐶∞(ℳ̌, ℳ) and 𝜚 ∈ 𝐶∞(ℳ, ℳ̌) are smooth maps. Then, the restric-

tions to 𝜑(ℳ̌) ⊂ ℳ are smooth maps 𝜑 ∈ 𝐶∞(ℳ, 𝜑(ℳ̌)) and 𝜚|𝜑(ℳ̌) ∈ 𝐶∞(𝜑(ℳ̌), ℳ̌)
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in the subspace topology. Thus, 𝜑 is a smooth diffeomorphism onto its image in the subspace

topology. By [74, Prop. 4.8. (a)], 𝜑 is a smooth immersion and thus a smooth embedding.

A.2 Proofs for Lagrangian Systems

A.2.1 Derivation of the Reduced Euler-Lagrange Equations

In the following, we derive for the reduced Lagrangian system (�̌�, ̌ℒ) the reduced Euler-

Lagrange equations presented in (6.44). To begin with, we compute the derivatives of ̌ℒ for
̌𝑌𝒬 = ( ̌𝑞, ̌𝑣𝑖 𝜕

𝜕 ̌𝑦𝑖 ∣
̌𝑞
) ∈ 𝑇�̌� with 1 ≤ 𝑗 ≤ 𝑄 and 1 ≤ 𝑖, 𝑘 ≤ �̌� as

𝜕 ̌ℒ
𝜕 ̌𝜉𝑖 ∣

̌𝑌𝒬

= 𝜕ℒ
𝜕𝜉𝑗 ∣

𝜑( ̌𝑌𝒬)

𝜕𝜑𝑗

𝜕 ̌𝜉𝑖 ∣
̌𝑌𝒬

+ 𝜕ℒ
𝜕𝜉𝑄+𝑗 ∣

𝜑( ̌𝑌𝒬)

𝜕𝜑𝑄+𝑗

𝜕 ̌𝜉𝑖 ∣
̌𝑌𝒬

= 𝜕ℒ
𝜕𝜉𝑗 ∣

𝜑( ̌𝑌𝒬)

𝜕𝜑𝒬
𝑗

𝜕 ̌𝑦𝑖 ∣
̌𝑞
+ 𝜕ℒ

𝜕𝜉𝑄+𝑗 ∣
𝜑( ̌𝑌𝒬)

𝜕2𝜑𝒬
𝑗

𝜕 ̌𝑦𝑖 𝜕 ̌𝑦𝑘 ∣
̌𝑞
̌𝑣𝑘

𝜕 ̌ℒ
𝜕 ̌𝜉�̌�+𝑖 ∣

̌𝑌𝒬

= 𝜕ℒ
𝜕𝜉𝑗 ∣

𝜑( ̌𝑌𝒬)

𝜕𝜑𝑗

𝜕 ̌𝜉�̌�+𝑖 ∣
̌𝑌𝒬

+ 𝜕ℒ
𝜕𝜉𝑄+𝑗 ∣

𝜑( ̌𝑌𝒬)

𝜕𝜑𝑄+𝑗

𝜕 ̌𝜉�̌�+𝑖 ∣
̌𝑌𝒬

= 𝜕ℒ
𝜕𝜉𝑄+𝑗 ∣

𝜑( ̌𝑌𝒬)

𝜕𝜑𝒬
𝑗

𝜕 ̌𝑦𝑖 ∣
̌𝑞
.

Evaluation for the lifted curve 𝛤�̌�𝒬
∈ 𝐶∞(ℐ, 𝑇�̌�) and derivation with respect to the time,

yields for 1 ≤ 𝑗, 𝑘 ≤ 𝑄 and 1 ≤ 𝑖, ℓ, 𝑝 ≤ �̌�

d
d𝑡 ( 𝜕 ̌ℒ

𝜕 ̌𝜉�̌�+𝑖 ∣
𝛤�̌�𝒬(⋅)

)∣
𝑡

= d
d𝑡 ( 𝜕ℒ

𝜕𝜉𝑄+𝑗 ∣
𝜑(𝛤�̌�𝒬(⋅))

𝜕𝜑𝒬
𝑗

𝜕 ̌𝑦𝑖 ∣
�̌�𝒬(⋅)

)∣
𝑡

= 𝜕2ℒ
𝜕𝜉𝑘 𝜕𝜉𝑄+𝑗 ∣

𝜑(𝛤�̌�𝒬(𝑡))

𝜕𝜑𝒬
𝑗

𝜕 ̌𝑦𝑖 ∣
�̌�𝒬(𝑡)

𝜕𝜑𝑘

𝜕 ̌𝜉ℓ ∣
𝛤�̌�𝒬(𝑡)

d
d𝑡 (𝛤�̌�𝒬(⋅)

ℓ)∣
𝑡

+ 𝜕2ℒ
𝜕𝜉𝑘 𝜕𝜉𝑄+𝑗 ∣

𝜑(𝛤�̌�𝒬(𝑡))

𝜕𝜑𝒬
𝑗

𝜕 ̌𝑦𝑖 ∣
�̌�𝒬(𝑡)

𝜕𝜑𝑘

𝜕 ̌𝜉�̌�+ℓ ∣
𝛤�̌�𝒬(𝑡)

d
d𝑡 (𝛤�̌�𝒬(⋅)

�̌�+ℓ)∣
𝑡

+ 𝜕2ℒ
𝜕𝜉𝑄+𝑘 𝜕𝜉𝑄+𝑗 ∣

𝜑(𝛤�̌�𝒬(𝑡))

𝜕𝜑𝒬
𝑗

𝜕 ̌𝑦𝑖 ∣
�̌�𝒬(𝑡)

𝜕𝜑𝑄+𝑘

𝜕 ̌𝜉ℓ ∣
𝛤�̌�𝒬(𝑡)

d
d𝑡 (𝛤�̌�𝒬(⋅)

ℓ)∣
𝑡

+ 𝜕2ℒ
𝜕𝜉𝑄+𝑘 𝜕𝜉𝑄+𝑗 ∣

𝜑(𝛤�̌�𝒬(𝑡))

𝜕𝜑𝒬
𝑗

𝜕 ̌𝑦𝑖 ∣
�̌�𝒬(𝑡)

𝜕𝜑𝑄+𝑘
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d
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�̌�+ℓ)∣
𝑡

+ 𝜕ℒ
𝜕𝜉𝑄+𝑗 ∣

𝜑(𝛤�̌�𝒬(𝑡))

𝜕2𝜑𝒬
𝑗

𝜕 ̌𝑦𝑘 𝜕 ̌𝑦𝑖 ∣
�̌�𝒬(𝑡)

d
d𝑡 (𝛤�̌�𝒬(⋅)

𝑘)∣
𝑡
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= 𝜕2ℒ
𝜕𝜉𝑘 𝜕𝜉𝑄+𝑗 ∣

𝜑(𝛤�̌�𝒬(𝑡))
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𝜕 ̌𝑦𝑖 ∣
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𝜕𝜑𝒬
𝑗

𝜕 ̌𝑦𝑖 ∣
�̌�𝒬(𝑡)

𝜕𝜑𝒬
𝑘

𝜕 ̌𝑦ℓ ∣
�̌�𝒬(𝑡)

d2

d𝑡2 ̌𝛾𝒬
ℓ∣

𝑡

+ 𝜕ℒ
𝜕𝜉𝑄+𝑗 ∣

𝜑(𝛤�̌�𝒬(𝑡))

𝜕2𝜑𝒬
𝑗

𝜕 ̌𝑦ℓ 𝜕 ̌𝑦𝑖 ∣
�̌�𝒬(𝑡)

d
d𝑡 ̌𝛾𝒬

ℓ∣
𝑡
.

In total, it holds for 1 ≤ 𝑗, 𝑘 ≤ 𝑄 and 1 ≤ 𝑖, ℓ, 𝑝 ≤ �̌�

0 = 𝜕 ̌ℒ
𝜕 ̌𝜉𝑖 ∣

𝛤�̌�𝒬(𝑡)

− d
d𝑡 ( 𝜕 ̌ℒ

𝜕 ̌𝜉�̌�+𝑖 ∣
𝛤�̌�𝒬(⋅)

)∣
𝑡

= 𝜕𝜑𝒬
𝑗

𝜕 ̌𝑦𝑖 ∣
�̌�𝒬(𝑡)

( 𝜕ℒ
𝜕𝜉𝑗 ∣

𝜑(𝛤�̌�𝒬(𝑡))
− 𝜕2ℒ

𝜕𝜉𝑘 𝜕𝜉𝑄+𝑗 ∣
𝜑(𝛤�̌�𝒬(𝑡))

𝜕𝜑𝒬
𝑘

𝜕 ̌𝑦ℓ ∣
�̌�𝒬(𝑡)

d
d𝑡 ̌𝛾𝒬

ℓ∣
𝑡

− 𝜕2ℒ
𝜕𝜉𝑄+𝑘 𝜕𝜉𝑄+𝑗 ∣

𝜑(𝛤�̌�𝒬(𝑡))

𝜕2𝜑𝒬
𝑘

𝜕 ̌𝑦ℓ 𝜕 ̌𝑦𝑝 ∣
�̌�𝒬∣𝑡

d
d𝑡 ̌𝛾𝒬

𝑝∣
𝑡
d
d𝑡 ̌𝛾𝒬

ℓ∣
𝑡

− 𝜕2ℒ
𝜕𝜉𝑄+𝑘 𝜕𝜉𝑄+𝑗 ∣

𝜑𝒬(𝛤�̌�𝒬(𝑡))

𝜕𝜑𝒬
𝑘

𝜕 ̌𝑦ℓ ∣
�̌�𝒬(𝑡)

d2

d𝑡2 ̌𝛾𝒬
ℓ∣

𝑡
).

A.2.2 Proof of Theorem 6.18

In the following, we prove Theorem 6.18. In order to show that the systems are equivalent, we

show that the underlying vector fields are identical, i.e., we show that the LMG reduction (6.49)

of the Euler–Lagrange vector field (6.34) results in the reduced Euler–Lagrangian vector

field (6.46). To simplify the notation, we use 𝜏 = 𝜏LMG and ̌𝜏 = ̌𝜏LMG in the following, with

𝜏LMG as in (6.47). Let ̌𝑌𝒬 = ( ̌𝑞, ̌𝑣) = ( ̌𝑞, ̌𝑣𝑖 𝜕
𝜕 ̌𝑦𝑖 ∣

̌𝑞
) ∈ 𝑇�̌�. The reduced tensor field ̌𝜏 = d𝜑∗𝜏

reads for 1 ≤ 𝛼, 𝛽 ≤ 2𝑄 and 1 ≤ 𝑘, ℓ ≤ 𝑄 and 1 ≤ 𝑖, 𝑗, 𝑝 ≤ �̌�

̌𝜏 | ̌𝑌𝒬
= 𝜕𝜑𝛾

𝜕𝜉𝛼 ∣
̌𝑌𝒬

(𝜏|𝜑( ̌𝑌𝒬))
𝛾𝛿

𝜕𝜑𝛿

𝜕𝜉𝛽 ∣
̌𝑌𝒬

d𝜉𝛼| ̌𝑌𝒬
⊗ d𝜉𝛽∣ ̌𝑌𝒬

= (𝜏𝑞∣𝜑( ̌𝑌𝒬))
𝑘ℓ

( 𝜕2𝜑𝒬
𝑘

𝜕 ̌𝑦𝑝 𝜕 ̌𝑦𝑖 ∣
̌𝑌𝒬

̌𝑣𝑝 d ̌𝜉𝑖∣ ̌𝑌𝒬
+ 𝜕𝜑𝒬

𝑘

𝜕 ̌𝑦𝑖 ∣
̌𝑌𝒬

d ̌𝜉�̌�+𝑖∣
̌𝑌𝒬

) ⊗ (𝜕𝜑𝒬
ℓ

𝜕 ̌𝑦𝑗 ∣
̌𝑌𝒬

d ̌𝜉𝑗∣ ̌𝑌𝒬
)

+ (𝜏𝑣|𝜑( ̌𝑌𝒬))
𝑘ℓ

(𝜕𝜑𝒬
𝑘

𝜕 ̌𝑦𝑖 ∣
̌𝑌𝒬

d ̌𝜉𝑖∣ ̌𝑌𝒬
) ⊗ ( 𝜕2𝜑𝒬

ℓ

𝜕 ̌𝑦𝑝 𝜕 ̌𝑦𝑗 ∣
̌𝑌𝒬

̌𝑣𝑝 d ̌𝜉𝑗∣ ̌𝑌𝒬
+ 𝜕𝜑𝒬

ℓ

𝜕 ̌𝑦𝑗 ∣
̌𝑌𝒬

d ̌𝜉�̌�+𝑗∣
̌𝑌𝒬

)
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= ( ̌𝜏𝑞∣ ̌𝑌𝒬
)

𝑖𝑗
d ̌𝜉�̌�+𝑖∣

̌𝑌𝒬

⊗ d ̌𝜉𝑗∣ ̌𝑌𝒬
+ ( ̌𝜏𝑞𝑣∣ ̌𝑌𝒬

)
𝑖𝑗
d ̌𝜉𝑖∣ ̌𝑌𝒬

⊗ d ̌𝜉𝑗∣ ̌𝑌𝒬

+ ( ̌𝜏𝑣| ̌𝑌𝒬
)

𝑖𝑗
d ̌𝜉𝑖∣ ̌𝑌𝒬

⊗ d ̌𝜉�̌�+𝑗∣
̌𝑌𝒬

with the abbreviations

( ̌𝜏𝑞∣ ̌𝑌𝒬
)

𝑖𝑗
∶= 𝜕𝜑𝒬

𝑘

𝜕 ̌𝑦𝑖 ∣
̌𝑌𝒬

(𝜏𝑞∣𝜑( ̌𝑌𝒬))
𝑘ℓ

𝜕𝜑𝒬
ℓ

𝜕 ̌𝑦𝑗 ∣
̌𝑌𝒬

,

( ̌𝜏𝑣| ̌𝑌𝒬
)

𝑖𝑗
∶= 𝜕𝜑𝒬

𝑘

𝜕 ̌𝑦𝑖 ∣
̌𝑌𝒬

(𝜏𝑣|𝜑( ̌𝑌𝒬))
𝑘ℓ

𝜕𝜑𝒬
ℓ

𝜕 ̌𝑦𝑗 ∣
̌𝑌𝒬

,

( ̌𝜏𝑞𝑣∣ ̌𝑌𝒬
)

𝑖𝑗
∶= 𝜕2𝜑𝒬

𝑘

𝜕 ̌𝑦𝑝 𝜕 ̌𝑦𝑖 ∣
̌𝑌𝒬

̌𝑣𝑝 (𝜏𝑞∣𝜑( ̌𝑌𝒬))
𝑘ℓ

𝜕𝜑𝒬
ℓ

𝜕 ̌𝑦𝑗 ∣
̌𝑌𝒬

+ 𝜕𝜑𝒬
𝑘

𝜕 ̌𝑦𝑖 ∣
̌𝑌𝒬

(𝜏𝑣|𝜑( ̌𝑌𝒬))
𝑘ℓ

𝜕2𝜑𝒬
ℓ

𝜕 ̌𝑦𝑝 𝜕 ̌𝑦𝑗 ∣
̌𝑌𝒬

̌𝑣𝑝.

It is easy to verify that the inverse of ̌𝜏 is given by

̌𝜏 |−1
̌𝑌𝒬

= ( ̌𝜏𝑞∣ ̌𝑌𝒬
)𝑖𝑗 𝜕

𝜕 ̌𝜉𝑖 ∣
̌𝑌𝒬

⊗ 𝜕
𝜕 ̌𝜉�̌�+𝑗 ∣

̌𝑌𝒬

− ( ̌𝜏𝑣| ̌𝑌𝒬
)𝑖𝑘 ( ̌𝜏𝑞𝑣∣ ̌𝑌𝒬

)
𝑘ℓ

( ̌𝜏𝑞∣ ̌𝑌𝒬
)ℓ𝑗 𝜕

𝜕 ̌𝜉�̌�+𝑖 ∣
̌𝑌𝒬

⊗ 𝜕
𝜕 ̌𝜉�̌�+𝑗 ∣

̌𝑌𝒬

+ ( ̌𝜏𝑣| ̌𝑌𝒬
)𝑖𝑗 𝜕

𝜕 ̌𝜉�̌�+𝑖 ∣
̌𝑌𝒬

⊗ 𝜕
𝜕 ̌𝜉𝑗 ∣

̌𝑌𝒬

(A.1)

with 1 ≤ 𝑖, 𝑗, 𝑘, ℓ ≤ �̌�, which in bold notation reads

̌𝝉 | ̌𝒀𝒬
= ⎡⎢

⎣

̌𝝉𝑞𝑣∣ ̌𝒀𝒬
̌𝝉𝑣| ̌𝒀𝒬

̌𝝉𝑞∣ ̌𝒀𝒬
𝟎�̌�×�̌�

⎤⎥
⎦

and ̌𝝉 |−1
̌𝒀𝒬

= ⎡⎢
⎣

𝟎�̌�×�̌� ̌𝝉𝑞∣−1
̌𝒀𝒬

̌𝝉𝑣|−1
̌𝒀𝒬

− ̌𝝉𝑣|−1
̌𝒀𝒬

̌𝝉𝑞𝑣∣ ̌𝒀𝒬
̌𝝉𝑞∣−1

̌𝒀𝒬

⎤⎥
⎦

.
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Moreover, we obtain for the indices 1 ≤ 𝛽, 𝛾 ≤ 2𝑄 and 1 ≤ 𝛼 ≤ 2�̌� and 1 ≤ 𝑗, 𝑘 ≤ 𝑄 and

1 ≤ ℓ, 𝑝, 𝑟 ≤ �̌�

♭ ̌𝜏 (𝑅LMG(𝑋ℒ))| ̌𝑌𝒬
= (d𝜑∗| ̌𝑌𝒬

(♭𝜏 (𝑋ℒ|𝜑( ̌𝑌𝒬))))
𝛼
d ̌𝜉𝛼∣ ̌𝑌𝒬

= 𝜕𝜑𝛽

𝜕 ̌𝜉𝛼 ∣
̌𝑌𝒬

(𝜏|𝜑( ̌𝑌𝒬))
𝛽𝛾

(𝑋ℒ|𝜑( ̌𝑌𝒬))
𝛾
d ̌𝜉𝛼∣ ̌𝑌𝒬

= (𝜕𝜑𝑗

𝜕 ̌𝜉𝛼 ∣
̌𝑌𝒬

(𝜏𝑣|𝜑( ̌𝑌𝒬))
𝑗𝑘

(𝑋ℒ|𝜑( ̌𝑌𝒬))
𝑄+𝑘

+ 𝜕𝜑�̌�+𝑗

𝜕 ̌𝜉𝛼 ∣
̌𝑌𝒬

(𝜏|𝜑( ̌𝑌𝒬))
𝑗𝑘

𝜕𝜑𝒬
𝑘

𝜕 ̌𝑦ℓ ∣
̌𝑞
̌𝑣ℓ)d ̌𝜉𝛼∣ ̌𝑌𝒬

= (𝜕𝜑𝒬
𝑗

𝜕 ̌𝑦𝑟 ∣
̌𝑞
(𝜏𝑣|𝜑( ̌𝑌𝒬))

𝑗𝑘
(𝑋ℒ|𝜑( ̌𝑌𝒬))

𝑄+𝑘

+ 𝜕2𝜑𝒬
𝑗

𝜕 ̌𝑦𝑟 𝜕 ̌𝑦𝑝 ∣
̌𝑞
̌𝑣𝑝 (𝜏𝑞∣𝜑( ̌𝑌𝒬))

𝑗𝑘

𝜕𝜑𝒬
𝑘

𝜕 ̌𝑦ℓ ∣
̌𝑞
̌𝑣ℓ)d ̌𝜉𝑟∣ ̌𝑌𝒬

+ 𝜕𝜑𝒬
𝑗

𝜕 ̌𝑦𝑟 ∣
̌𝑞
(𝜏𝑞∣𝜑( ̌𝑌𝒬))

𝑗𝑘

𝜕𝜑𝒬
𝑘

𝜕 ̌𝑦ℓ ∣
̌𝑞
̌𝑣ℓ d ̌𝜉�̌�+𝑟∣

̌𝑌𝒬

(A.2)

and observe that the last term equals ( ̌𝜏𝑞∣ ̌𝑌𝒬
)

𝑟ℓ
̌𝑣ℓ. Combining (A.2) with (A.1), the LMG

reduction (6.49) of the Euler–Lagrange vector field (6.34) can be written (with the indices

1 ≤ 𝛼 ≤ 2�̌� and 1 ≤ 𝑗, 𝑘 ≤ 𝑄 and 1 ≤ 𝑖, ℓ, 𝑝, 𝑟, 𝑠 ≤ �̌�) as

𝑅LMG(𝑋ℒ)| ̌𝑌𝒬
= ((♯ ̌𝜏 ∘ d𝜑∗| ̌𝑌𝒬

∘ ♭𝜏) (𝑋ℒ|𝜑( ̌𝑌𝒬)))
𝛼 𝜕

𝜕 ̌𝜉𝛼 ∣
̌𝑌𝒬

= ( ̌𝜏𝑞∣ ̌𝑌𝒬
)

𝑖𝑟
( ̌𝜏𝑞∣ ̌𝑌𝒬

)
𝑟ℓ

̌𝑣ℓ 𝜕
𝜕 ̌𝜉𝑖 ∣

̌𝑌𝒬

+ ( ̌𝜏𝑣| ̌𝑌𝒬
)𝑖𝑟(𝜕𝜑𝒬

𝑗

𝜕 ̌𝑦𝑟 ∣
̌𝑞
(𝜏𝑣|𝜑( ̌𝑌𝒬))

𝑗𝑘
(𝑋ℒ|𝜑( ̌𝑌𝒬))

𝑄+𝑘

+ 𝜕2𝜑𝒬
𝑗

𝜕 ̌𝑦𝑟 𝜕 ̌𝑦𝑝 ∣
̌𝑞
̌𝑣𝑝 (𝜏𝑞∣𝜑( ̌𝑌𝒬))

𝑗𝑘

𝜕𝜑𝒬
𝑘

𝜕 ̌𝑦ℓ ∣
̌𝑞
̌𝑣ℓ

− ( ̌𝜏𝑞𝑣∣ ̌𝑌𝒬
)

𝑟ℓ
( ̌𝜏𝑞∣ ̌𝑌𝒬

)
ℓ𝑝

( ̌𝜏𝑞∣ ̌𝑌𝒬
)

𝑝𝑠
̌𝑣𝑠) 𝜕

𝜕 ̌𝜉�̌�+𝑖 ∣
̌𝑌𝒬

= ̌𝑣𝑖 𝜕
𝜕 ̌𝜉𝑖 ∣

̌𝑌𝒬

+ ( ̌𝜏𝑣| ̌𝑌𝒬
)𝑖𝑟(𝜕𝜑𝒬

𝑗

𝜕 ̌𝑦𝑟 ∣
̌𝑞
(𝜏𝑣|𝜑( ̌𝑌𝒬))

𝑗𝑘
(𝑋ℒ|𝜑( ̌𝑌𝒬))

𝑄+𝑘

+ 𝜕2𝜑𝒬
𝑗

𝜕 ̌𝑦𝑟 𝜕 ̌𝑦𝑝 ∣
̌𝑞
̌𝑣𝑝 (𝜏𝑞∣𝜑( ̌𝑌𝒬))

𝑗𝑘

𝜕𝜑𝒬
𝑘

𝜕 ̌𝑦ℓ ∣
̌𝑞
̌𝑣ℓ
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− 𝜕2𝜑𝒬
𝑗

𝜕 ̌𝑦𝑝 𝜕 ̌𝑦𝑟 ∣
̌𝑞
̌𝑣𝑝 (𝜏𝑞∣𝜑( ̌𝑌𝒬))

𝑗𝑘

𝜕𝜑𝒬
𝑘

𝜕 ̌𝑦ℓ ∣
̌𝑞
̌𝑣ℓ

− 𝜕𝜑𝒬
𝑗

𝜕 ̌𝑦𝑟 ∣
̌𝑞
(𝜏𝑣|𝜑( ̌𝑌𝒬))

𝑗𝑘

𝜕2𝜑𝒬
𝑘

𝜕�̌�ℓ 𝜕 ̌𝑦𝑝 ∣
̌𝑞
̌𝑣ℓ ̌𝑣𝑝) 𝜕

𝜕 ̌𝜉�̌�+𝑖 ∣
̌𝑌𝒬

= �̌� ̌ℒ∣ ̌𝑌𝒬
.

Thus, the vector field obtained with the LMG reduction (6.49) with the LMG tensor field 𝜏LMG

from (6.47) results in the reduced Euler–Lagrange vector field (6.46), which is equivalent to

solving the reduced Euler–Lagrange equations (6.44) by construction.

A.3 Existence of ∆𝑡 for Assumption (a2) in Theorem 7.6

Theorem A.1: For all 𝑪 ∈ ℝ𝑠×𝑠 with entries [𝑪]𝑖𝑗 ∶= 𝛿𝑖𝑗 − 𝜅∆𝑡|𝑎𝑖𝑗| for 1 ≤ 𝑖, 𝑗 ≤ 𝑠, there
exists ∆𝑡 > 0 such that for every 𝒙𝑠, 𝒚𝑠 ∈ ℝ𝑠

≥0 with 𝑪𝒙𝑠 ≤ 𝒚𝑠, it holds 𝒙𝑠 ≤ 𝑪−1𝒚𝑠, i.e.
assumption (a2) in Theorem 7.6 is fulfilled.

Proof. We denote 𝑪(∆𝑡) ∶= 𝑰𝑠 − 𝑻 (∆𝑡) with 𝑻 (∆𝑡) ∶= 𝜅∆𝑡𝑨 ∈ ℝ𝑠×𝑠
≥0 , where the entries

of 𝑨 are given by |𝑎𝑖𝑗|, 1 ≤ 𝑖, 𝑗 ≤ 𝑠. We consider the inverse of 𝑪(∆𝑡) in terms of the

Neumann series. If the series converges, it holds

𝑪−1(∆𝑡) = (𝑰𝑠 − 𝑻 (∆𝑡))−1 =
∞

∑
𝑘=0

(𝑻 (∆𝑡))𝑘 .

Let ‖⋅‖2 be the two-norm on ℝ𝑠 and the (induced) spectral norm on ℝ𝑠×𝑠. The Neumann

series converges on the Banach space (ℝ𝑠×𝑠, ‖⋅‖2), if ‖𝑻 (∆𝑡)‖2 < 1 which is equivalent to

∆𝑡 < 1
𝜅 ‖𝑨‖2

due to absolute homogeneity of the norm and 𝜅,∆𝑡 > 0. Since both 𝜅 and ‖𝑨‖2 are

independent of ∆𝑡, we can always choose ∆𝑡 small enough such that the Neumann series

converges. For, e.g., the implicit midpoint rule (𝑠 = 1, 𝑎11 = 1/2), this results in the condition

∆𝑡 < 2/𝜅.
We now assume that ∆𝑡 is small enough such that the Neumann series converges and

drop the dependency on ∆𝑡 in the notation for the sake of brevity, i.e. we assume that

𝑪−1 = ∑∞
𝑘=0 𝑻 𝑘. Since the partial sums ∑𝑝

𝑘=0 𝑻 𝑘 ∈ ℝ𝑠×𝑠
≥0 for all 𝑝 ∈ ℕ have non-negative
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entries and ℝ𝑠×𝑠
≥0 is a closed subset of a metric space, we know that the limit 𝑪−1 ∈ ℝ𝑠×𝑠

≥0
also has non-negative entries.

But then, if for some 𝒙𝑠, 𝒚𝑠 ∈ ℝ𝑠
≥0, the inequality 𝑪𝒙𝑠 ≤ 𝒚𝑠 holds, multiplication of the

inequality with 𝑪−1 does not disrupt the inequality as for all 1 ≤ 𝑖 ≤ 𝑠

[𝒙𝑠]𝑖 = [𝑪−1𝑪𝒙𝑠]𝑖 =
𝑠

∑
𝑗=1

[𝑪−1]𝑖𝑗⏟
≥0

[𝑪𝒙𝑠]𝑗⏟
≤[𝒚𝑠]𝑗

≤
𝑠

∑
𝑗=1

[𝑪−1]𝑖𝑗[𝒚𝑠]𝑗 = [𝑪−1𝒚𝑠]𝑖,

which is exactly the definition of 𝒙𝑠 ≤ 𝑪−1𝒚𝑠.
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Abstract

Mathematical models are a key enabler to understand com-
plex processes across all branches of research and development
since such models allow us to simulate the behavior of the pro-
cess without physically realizing it. However, detailed models
are computationally demanding and, thus, are frequently pro-
hibited from being evaluated (a) multiple times for different
parameters, (b) in real time or (c) on hardware with low com-
putational power. The field of model (order) reduction (MOR)
aims to approximate such detailed models with more efficient
surrogate models that are suitable for the tasks (a-c). In classi-
cal MOR, the solutions of the detailed model are approximated
in a problem-specific, low-dimensional subspace, which is why
we refer to it as MOR on subspaces. The subspace is character-
ized by a reduced basis that can be computed from given data
with a so-called basis generation technique.
The two key aspects in this thesis are: (i) structure-preserving
MOR techniques and (ii) MOR on manifolds. Preserving given
structures throughout the reduction is important to obtain
physically consistent reduced models. We demonstrate this
for Lagrangian and Hamiltonian systems, which are dynamical
systems that guarantee preservation of energy over time. MOR
on manifolds, on the other hand, broadens the applicability of
MOR to problems that cannot be treated efficiently with MOR
on subspaces.
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