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Abstract
We propose a novel convex optimization problem for the reconstruction of
temporally moving nonnegative point sources or particles. As in previously
developed approaches from the literature, we base our reconstruction on a linear
motion model in which particles move at constant 𝑑-dimensional velocity. How-
ever, in contrast to existing approaches we allow a deviation from the exact linear
motion, thereby accounting for the modelling error inherent in that motion
model. The deviation is measured with the help of Wasserstein distances and is
constrained not to exceed a freely selectable bound which represents the model
inexactness. We show well-posedness and first numerical results for the model.

1 REVIEWOF POINT SOURCE RECONSTRUCTION

The reconstruction of point source configurations from finite precision measurements is a classical inverse or signal anal-
ysis problem that can be formulated as follows. The point source configuration is described as an element 𝑢 of the space
+(Ω) of nonnegative Radon measures on some domain Ω ⊂ ℝ𝑑, more precisely, as a finite linear combination

𝑢† =

𝑁∑
𝑖=1

𝑚𝑖𝛿𝑥𝑖

of 𝑁 ∈ ℕ Dirac measures at locations 𝑥1, … , 𝑥𝑁 ∈ Ω with positive linear coefficients 𝑚𝑖 ∈ (0,∞). The measurement is
represented by a (typically linear) operator Ob ∶ (Ω) → 𝐻 from the space (Ω) of Radon measures to some Hilbert
space𝐻, for instance by a convolution with a smoothing kernel (which is an instance of the more general setting in which
𝐻 is a reproducing kernel Hilbert space and Ob𝑢† yields the Riesz representation of 𝑢†, the latter being interpreted as an
element of the dual space𝐻∗). Given only the measurement

𝑓 = Ob𝑢†,

the task is now to reconstruct 𝑢†.
In applications, the point source configurationmay for instance represent themass distribution of fluorescentmolecules

in fluorescence microscopy or the distribution of radioactively marked leukocytes in a patient [1, 2] or the distribution of
ultrasonic reflectors in ultrasonography [3]. The measurement may be indirect as in positron emission tomography (in
which case Ob𝑢† would be the Radon transform of a smoothed version of 𝑢†) or direct as in fluorescence microscopy, but
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in any case they typically only have finite precision or resolution: For instance, a microscopy image is always bandlimited
due to the diffraction limit. The simplest model for such a finite precision measurement is if the domain Ω is taken to be
[−1, 1)𝑑 with periodic boundary conditions (the flat torus) andOb is taken as the ideal low-pass filter, which is the Fourier
series truncated at some cutoff frequency Φ ∈ ℕ,

Ob𝑢 =

(
∫
Ω

exp(−𝜋𝑖𝑥 ⋅ 𝜉) d𝑢(𝑥)

)
𝜉∈ℤ𝑑,‖𝜉‖∞≤Φ

.

For simplicity, we will in the following restrict to this setting, though everything also extends to other measurement
operators of similar type.
It turns out that despite the finite precision measurement one can often reconstruct the original point configuration 𝑢†

exactly from 𝑓, by solving the variational problem

min
𝑢∈+(Ω)

‖𝑢‖ such that Ob𝑢 = 𝑓,

where ‖ ⋅ ‖ denotes the total variation norm on the space of Radon measures. For instance, this is the case if the num-
ber 𝑁 of point sources in 𝑢† is (up to a sufficiently small constant) bounded by Φ𝑑 [4, 5]. Even if one allows complex
point masses𝑚𝑖 , one can obtain exact reconstruction, for instance if the locations 𝑥𝑖 have mutual distance larger than (a
sufficiently big constant times) 1

Φ
[6]. If the measurement data 𝑓 are noisy, the constraint Ob𝑢 = 𝑓 can be replaced by a

penalty, and one may also obtain error estimates for the reconstruction under slightly stronger assumptions on 𝑢†. Such
error estimates may come in norms dual to reproducing kernel Hilbert space norms [7], in unbalanced optimal transport
error measures [8, 9], or in error estimates directly for the locations 𝑥𝑖 and masses𝑚𝑖 [4].

2 REVIEWOF RECONSTRUCTINGMOVING POINT SOURCES

In several applications, the point masses to be reconstructed are not static, but move over time, so we have a different
point configuration 𝑢†𝑡 ∈ +(Ω) at each time 𝑡 ∈ ℝ, a so-called snapshot. One then has measurements

𝑓𝑡 = Ob𝑢†𝑡 , 𝑡 ∈  ,
at a finite number of time points  ⊂ ℝ. In principle, also themeasurement operatorObmight depend on time, in particu-
lar if the physicalmeasurement comprises several components that are consecutively acquired, as is typical in tomographic
imaging, but for notational simplicity we take the samemeasurement operator at all times. The reason to give this dynamic
setting a special treatment (instead of separately reconstructing all snapshots 𝑢†𝑡 on their own) is twofold:

1. One is not only interested in the location and mass of the point sources at the different time points, thus in the recon-
struction of the 𝑢†𝑡 for 𝑡 ∈  , but also in some information on the particle velocities (and potentially even in the particle
configurations at intermediate times 𝑡 ∉  ).

2. Moreover, itmay happen that the snapshot𝑢†𝑡 cannot be reconstructed from the knowledge of𝑓𝑡 alone, but that actually
the information from all other time points is required, combined with some knowledge of the temporal regularity of
the particle motion. This is of particular relevance if the observation operator Ob depends on time as well.

Such a reconstruction of dynamically evolving point configurations can be performed based on different (relatively
generic) motion models. For example, one can simply penalize (too high) velocities, resulting in optimal transport regu-
larizations for the temporal evolution of 𝑢†𝑡 [2]. A much stronger, but also much more restrictive regularization confines
the possible motions to an explicit, small set of possible motions such as linear motions: In [3] (which our method will be
based on), each particle is represented by a (weighted) Dirac mass 𝛿(𝑥𝑖,𝑣𝑖) in the 2d-dimensional position velocity space,
where 𝑥𝑖 ∈ Ω and 𝑣𝑖 ∈ ℝ𝑑 represent the initial particle position and its (constant) velocity, respectively. The temporally
evolving particle configuration is thus described by a measure

𝜆† =

𝑁∑
𝑖=1

𝑚𝑖𝛿(𝑥𝑖 ,𝑣𝑖) ∈ +(Ω × ℝ𝑑),
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where the particle configuration at time 𝑡 is given by

𝑢†𝑡 =

𝑁∑
𝑖=1

𝑚𝑖𝛿𝑥𝑖+𝑡𝑣𝑖 ∈ +(Ω).

The latter can equivalently be expressed as a linearmove operatorMv𝑑𝑡 ∶ (ℝ2𝑑) → (ℝ𝑑) applied to 𝜆†, which simply
forms the pushforward of 𝜆† under the map (𝑥, 𝑣) ↦ 𝑥 + 𝑡𝑣,

𝑢†𝑡 = Mv𝑑𝑡 𝜆
† = [(𝑥, 𝑣) ↦ 𝑥 + 𝑡𝑣]#𝜆

†

(the pushforward 𝜙#𝜌 of a measure 𝜌 under a measurable map 𝜙 is defined by 𝜙#𝜌(𝐴) = 𝜌(𝜙−1(𝐴))). In [3], the authors
then suggest to solve the following convex variational problem to reconstruct the particle configuration 𝜆†,

min
𝜆∈+(Ω×ℝ

𝑑)
(𝑢𝑡)𝑡∈ ⊂+(Ω)

‖𝜆‖ such that 𝑢𝑡 = Mv𝑑𝜆 and Ob𝑢𝑡 = 𝑓𝑡 for all 𝑡 ∈  .

They prove that as long as there are no coincidences (which are essentially particle collisions) and no ghost particles
(imaginary particles that collide with a different particle at every time 𝑡 ∈  ) and the particles have sufficient mutual
distance, then this minimization problem reconstructs the true particle configuration 𝜆†. In a simplified and discretized
setting, they also prove error bounds if the measurements are noisy and thus the measurement constraint is replaced by
a penalty.
We will build on a model variant that reduces the dimension of the problem. In more detail, since the sought particle

configuration 𝜆† is a measure in a 2d-dimensional and thus very high-dimensional space, a dimension-reduced version
of the approach was introduced in [9]: One keeps the unknowns (𝑢𝑡)𝑡∈ , but instead of the full measure 𝜆 ∈ +(ℝ

2𝑑)

one only considers measures (𝛾𝜃)𝜃∈Θ ⊂ +(ℝ
2) for a finite set of directionsΘ ⊂ 𝑆𝑑−1. The measure 𝛾𝜃 shall describe the

same linear motions as 𝜆, only projected onto the one-dimensional line spanned by 𝜃, thus

𝛾𝜃 = [(𝑥, 𝑣) ↦ (𝑥 ⋅ 𝜃, 𝑣 ⋅ 𝜃)]#𝜆 or equivalently 𝛾𝜃 =

𝑁∑
𝑖=1

𝑚𝑖𝛿(𝑥𝑖⋅𝜃,𝑣𝑖 ⋅𝜃) if 𝜆 =

𝑁∑
𝑖=1

𝑚𝑖𝛿(𝑥𝑖 ,𝑣𝑖).

Since both the snapshots 𝑢𝑡 as well as the one-dimensional dynamic particle configurations 𝛾𝜃 derive from the same
measure 𝜆, they necessarily satisfy the consistency condition

Mv1𝑡 𝛾𝜃 = Rd𝜃𝑢𝑡 for all 𝑡 ∈  , 𝜃 ∈ Θ,

where Rd𝜃 denotes the Radon transform in direction 𝜃, thus

Rd𝜃𝑢 = [𝑥 ↦ 𝜃 ⋅ 𝑥]#𝑢.

The dimension-reduced convex variational problem for reconstructing the snapshots and the one-dimensional dynamic
particle configurations then reads

min
(𝑢𝑡)𝑡∈ ⊂+(Ω)

(𝛾𝜃)𝜃∈Θ⊂+(ℝ
2)

∑
𝑡∈

‖𝑢𝑡‖ +
∑
𝜃∈Θ

‖𝛾𝜃‖ such thatMv1𝑡 𝛾𝜃 = Rd𝜃𝑢𝑡 and Ob𝑢𝑡 = 𝑓𝑡 for all 𝑡 ∈  , 𝜃 ∈ Θ. (1)

Under essentially the same conditions as for the original model, one obtains exact reconstruction of the true particle
configuration and error estimates in case of noisy measurements [9].

3 A NEWMODEL FOR RECONSTRUCTINGMOVING POINT SOURCESWITH
INEXACT LINEARMOTION

In real applications, the previous model assumption of a strictly linear particle motion is too restrictive: Maybe over suf-
ficiently short time intervals, the particle motion could be viewed as approximately linear, but typical particles such as
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leukocytes or ultrasonic reflectors in the blood stream deviate too much from this linear motion to apply the model as is.
One way out would be to parameterize the allowed motions by more parameters, for instance not only by the initial par-
ticle location and velocity, but additionally by an acceleration. However, this would increase the dimension of the sought
variables (in particular of the 𝛾𝜃), and also it is unclear whether this additional degree of freedom suffices to capture the
actually occurring point source motions. An alternative, which we would like to follow here, is to accept the inexactness
of the linear motion model and therefore to allow some discrepancy in those constraints that describe the motion: In
particular, we suggest to replace the constraintMv1𝑡 𝛾𝜃 = Rd𝜃𝑢𝑡 by the convex inequality constraint

𝑊𝑝(Mv1𝑡 𝛾𝜃, Rd𝜃𝑢𝑡)
𝑝 ≤ 𝑀𝑑(𝑡)𝑝, (𝐶𝑝(𝑡, 𝜃))

where 𝑊𝑝(𝜇, 𝜈) denotes the Wasserstein-𝑝 distance between two nonnegative measures 𝜇 and 𝜈 for 𝑝 ≥ 1, 𝑀 > 0 is
an estimate of the total particle mass

∑𝑁

𝑖=1
𝑚𝑖 (which may also be replaced by 𝑢𝑡(Ω) or 𝛾𝜃(ℝ2) without compromising

convexity) and 𝑑(𝑡) describes the distance by which a particle is allowed to deviate at time 𝑡 from the linear motion path.
The Wasserstein-𝑝 distance is a metric on the space of nonnegative Radon measures of fixed mass on some domain 𝐷,
defined by

𝑊𝑝(𝜇, 𝜈)
𝑝 = inf

𝜋∈+(𝐷×𝐷)∫𝐷×𝐷 |𝑥 − 𝑦|𝑝 d𝜋(𝑥, 𝑦) such that pr1#𝜋 = 𝜇, pr2#𝜋 = 𝜈,

where pr1(𝑥, 𝑦) = 𝑥 and pr2(𝑥, 𝑦) = 𝑦 denote the projection onto the first and second variable, respectively. It measures
the cost for transporting the mass of 𝜇 onto 𝜈, where 𝜋(𝐴, 𝐵) has the interpretation of how much mass of 𝜇 will be
transported from𝐴 to 𝐵 and the constraints ensure that indeed 𝜇 is transported onto 𝜈. If 𝜇 =

∑𝑁

𝑖=1
𝑚𝑖𝛿𝑥𝑖 and 𝜈

∑𝑁

𝑖=1
𝑚𝑖𝛿�̃�𝑖

represent discrete measures with �̃�𝑖 sufficiently close to 𝑥𝑖 , then it evaluates to

𝑊𝑝

(
𝑁∑
𝑖=1

𝑚𝑖𝛿𝑥𝑖 ,

𝑁∑
𝑖=1

𝑚𝑖𝛿�̃�𝑖

)𝑝

=

𝑁∑
𝑖=1

𝑚𝑖|𝑥𝑖 − �̃�𝑖|𝑝,
for which the so-called coupling measure is given by 𝜋 =

∑𝑁

𝑖=1
𝑚𝑖𝛿(𝑥𝑖 ,�̃�𝑖 ). The new constraint ensures that, at least on

average, a particle visible in 𝑢𝑡 never deviates from the linear motion encoded in 𝛾𝜃 by more than distance 𝑑(𝑡). Note that
taking the formal limit 𝑝 → ∞ one can define

𝑊∞(𝜇, 𝜈) = min
𝜋∈+(𝐷×𝐷)

sup
(𝑥,𝑦∈supp𝜋)

|𝑥 − 𝑦| such that pr1#𝜋 = 𝜇, pr2#𝜋 = 𝜈,

and therefore would formulate the inequality constraint in this case rather as

𝑊∞(Mv1𝑡 𝛾𝜃, Rd𝜃𝑢𝑡) ≤ 𝑑(𝑡). (𝐶∞(𝑡, 𝜃))

Summarizing, we propose to reconstruct the dynamic particle configuration by solving the convex variational program

min
(𝑢𝑡)𝑡∈ ⊂+(Ω)

(𝛾𝜃)𝜃∈Θ⊂+(ℝ
2)

∑
𝑡∈

‖𝑢𝑡‖ +
∑
𝜃∈Θ

‖𝛾𝜃‖ such that (𝐶𝑝(𝑡, 𝜃)) and Ob𝑢𝑡 = 𝑓𝑡 hold for all 𝑡 ∈  , 𝜃 ∈ Θ (2)

with 1 ≤ 𝑝 ≤ ∞. The well-posedness of this minimization problem is straightforward if the constraints can be satisfied,
that is, if the measurements 𝑓𝑡 really come frommasses that move approximately linearly with a deviation of at most 𝑑(𝑡).

Theorem 3.1 (Existence of minimizers). If there exist (𝑢𝑛𝑡 )𝑡∈ , (𝛾𝑛𝜃 )𝜃∈Θ such that the constraints can be satisfied, problem
(2) has a solution.

Proof. Consider a minimizing sequence (𝑢𝑛𝑡 )𝑡∈ , (𝛾𝑛𝜃 )𝜃∈Θ for 𝑛 = 1, 2, …. Due to the boundedness of the energy along
this sequence, we have boundedness of ‖𝑢𝑛𝑡 ‖ and ‖𝛾𝑛

𝜃
‖ for all 𝑡 ∈  and 𝜃 ∈ Θ. By Banach–Alaoglu, there exists a

subsequence, still indexed by 𝑛, such that 𝑢𝑛𝑡
∗
⇀ 𝑢𝑡 and 𝛾𝑛𝜃

∗
⇀ 𝛾𝜃 weakly-∗ as 𝑛 → ∞ for all 𝑡 ∈  and 𝜃 ∈ Θ and some

(𝑢𝑡)𝑡∈ ⊂ +(Ω), (𝛾𝜃)𝜃∈Θ ⊂ +(ℝ
2). Since the ideal low-pass filter Ob is continuous with respect to weak-∗ conver-

gence, the measurement constraints stay satisfied in the limit. Similarly, Mv1𝑡 𝛾
𝑛
𝜃

∗
⇀ Mv1𝑡 𝛾𝜃 and Rd𝜃𝑢

𝑛
𝑡

∗
⇀ Rd𝜃𝑢𝑡 due to
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the linearity and boundedness ofMv1𝑡 and Rd𝜃. Furthermore, the Wasserstein-𝑝 distance is lower semicontinuous under
weak-∗ convergence (for𝑝 < ∞ it is even known tometrizeweak-∗ convergence) so that the constraint (𝐶𝑝(𝑡, 𝜃)) also stays
satisfied in the limit, thus (𝑢𝑡)𝑡∈ ⊂ +(Ω), (𝛾𝜃)𝜃∈Θ ⊂ +(ℝ

2) is admissible. Finally, the total variation norm ‖ ⋅ ‖ is
weakly-∗ lower semicontinuous so that (𝑢𝑡)𝑡∈ ⊂ +(Ω), (𝛾𝜃)𝜃∈Θ ⊂ +(ℝ

2) has lower energy than the minimizing
sequence and thus is a minimizer. □

Due to convexity, any local minimizer is also a global one, though it might not be unique due to the lack of
strict convexity.

4 OPTIMAL TRANSPORT CONSTRAINTS FOR 𝒑 ∈ {𝟏,∞}

Inserting the definition of 𝑊𝑝 in (𝐶𝑝(𝑡, 𝜃)) obviously adds the coupling measures (𝜋𝑡,𝜃)𝑡∈ ,𝜃∈Θ ⊂ +(ℝ
2) as a further

auxiliary variable in (2) and the equality constraints of𝑊𝑝 as further auxiliary constraints, resulting in the overall linear
program

min
(𝑢𝑡)𝑡∈ ⊂+(Ω)

(𝛾𝜃)𝜃∈Θ⊂+(ℝ
2)

(𝜋𝑡,𝜃)𝑡∈ ,𝜃∈Θ⊂+(ℝ
2)

∑
𝑡∈

‖𝑢𝑡‖ +
∑
𝜃∈Θ

‖𝛾𝜃‖ such that for all 𝑡 ∈  , 𝜃 ∈ Θ it holds

∫
ℝ2

(|𝑥 − 𝑦|
𝑑(𝑡)

)𝑝

d𝜋𝑡,𝜃(𝑥, 𝑦) ≤ 𝑀, pr1#𝜋𝑡,𝜃 = Mv1𝑡 𝛾𝜃, pr2#𝜋𝑡,𝜃 = Rd𝜃𝑢𝑡, Ob𝑢𝑡 = 𝑓𝑡,

where for 𝑝 = ∞, we shall use the notational convention that 𝑟𝑝 = ∞ for 𝑟 > 1, 1∞ = 1, and 𝑟𝑝 = 0 for 0 ≤ 𝑟 < 1.
Note that the feasibility of the optimal transport subproblems strongly depends on the dimension-reduced setting, since

we only need to compare the one-dimensional measuresMv1𝑡 𝛾𝜃 and Rd𝜃𝑢𝑡 via optimal transport. In the full-dimensional
version from [3], wewould have optimal transport subproblems between the 𝑑-dimensionalmeasuresMv𝑑𝑡 𝜆 and 𝑢𝑡, which
are known to be computationally highly demanding (one would have to use dynamic or entropically regularized opti-
mal transport versions to approximate such optimal transport problems). In particular, our new additional constraints
pr1#𝜋𝑡,𝜃 = Mv1𝑡 𝛾𝜃 and pr2#𝜋𝑡,𝜃 = Rd𝜃𝑢𝑡 have the same complexity as the constraintMv1𝑡 𝛾𝜃 = Rd𝜃𝑢𝑡 in the originalmodel
(1) with exact linear motion: In both settings, those are just equalities in+(ℝ).
In the special case of 𝑝 ∈ {1,∞}, the new model is particularly efficient to implement, since one can strongly reduce

the complexity of the auxiliary variable (𝜋𝑡,𝜃)𝑡∈ ,𝜃∈Θ. Indeed, for 𝑝 = ∞, the integrand ( |𝑥−𝑦|
𝑑(𝑡)

)𝑝 is infinite outside

𝐷(𝑡) = {(𝑥, 𝑦) ∈ ℝ2 | |𝑥 − 𝑦| ≤ 𝑑(𝑡)}

so that one may consider 𝜋𝑡,𝜃 ∈ +(𝐷(𝑡)) instead of 𝜋𝑡,𝜃 ∈ +(ℝ
2). If 𝑑(𝑡) is of the order of few pixels or voxels (after

discretization), then the collection of these 𝜋𝑡,𝜃 is actually smaller in size than the collection of the variables 𝑢𝑡 and 𝛾𝜃.
For 𝑝 = 1 there exists an alternative, so-called Beckmann formulation of the Wasserstein distance,

𝑊1(𝜇, 𝜈) = min
𝑣∈(ℝ𝑑)𝑑

‖𝑣‖ such that div𝑣 = 𝜇 − 𝜈 (in the distributional sense).

Inserting this in (𝐶𝑝(𝑡, 𝜃)) turns the model (2) into the linear program

min
(𝑢𝑡)𝑡∈ ⊂+(Ω)

(𝛾𝜃)𝜃∈Θ⊂+(ℝ
2)

(𝑣𝑡,𝜃)𝑡∈ ,𝜃∈Θ,(𝑉𝑡,𝜃)𝑡∈ ,𝜃∈Θ⊂(ℝ)

∑
𝑡∈

‖𝑢𝑡‖ +
∑
𝜃∈Θ

‖𝛾𝜃‖ such that for all 𝑡 ∈  , 𝜃 ∈ Θ it holds

div𝑣𝑡,𝜃 = Mv1𝑡 𝛾𝜃 − Rd𝜃𝑢𝑡, 𝑣𝑡,𝜃 ≤ 𝑉𝑡,𝜃, −𝑣𝑡,𝜃 ≤ 𝑉𝑡,𝜃, 𝑉𝑡,𝜃(ℝ
2) ≤ 𝑀𝑑(𝑡), Ob𝑢𝑡 = 𝑓𝑡.

Again, the auxiliary variables (𝑣𝑡,𝜃)𝑡∈ ,𝜃∈Θ and (𝑉𝑡,𝜃)𝑡∈ ,𝜃∈Θ are smaller in size than the collection of (𝑢𝑡)𝑡∈ and (𝛾𝜃)𝜃∈Θ.
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F IGURE 1 Reconstruction results for five moving particles. Top: Ground truth configuration, showing the particle paths (left), a
snapshot (middle), and projection of the dynamic particle configuration onto a one-dimensional position-average velocity space (right).
Bottom: Reconstruction of the snapshot based solely on the measurement at a single time point (left), reconstruction of the snapshot by our
method (middle), and reconstruction of the one-dimensional position-velocity space by our method (right). In both 𝑢−2∕5 and 𝛾𝜋∕5, all
particles can be seen near their correct locations (the gray values are strongly reduced due to the blur in the solution, which is induced by
discretization artifacts and the nonuniqueness of the solution); note that the smallest particle is hardly visible. The single time point
reconstruction in the bottom left however cannot separate the particles properly.

5 NUMERICAL PROOF OF CONCEPT IN TWO SPACE DIMENSIONS

For a numerical proof of concept in two space dimensions, we consider the weakest constraint of the family (𝐶𝑝(𝑡, 𝜃)) for
𝑝 ∈ [1,∞]; that is, we set 𝑝 = 1. Higher values of 𝑝 (in particular the efficient alternative 𝑝 = ∞) constrain the admissible
set further and may thereby single out better solutions (any solution for 𝑝 > 1 is also a solution for 𝑝 = 1). As cutoff
frequency, we choose Φ = 2, and we pick  as 11 equispaced time points between −1 and 1 as well as Θ = {0,

𝜋

5
, … ,

4𝜋

5
}.

(Note that the total mass 𝑓0 of all particles belongs to the measurement so that, in this particular simulation, the value of
the cost functional in (2) is already fixed by the measurement.) We discretize the 𝑢𝑡 via a regular rectangular 65 × 65 grid
on [−1, 1]2 and the 𝛾𝜃 via a regular rectangular 65 × 65 grid on [−

√
2,
√
2]2. Consequently, the 𝑣𝑡,𝜃 and𝑉𝑡,𝜃 are discretized

by a regular grid of 65 nodes on [−
√
2,
√
2]. For the allowed deviation from linear motion we choose 𝑑(𝑡) = 0.2𝑡2. The

code is available at https://github.com/CRC-DIP/inexact-linear-tracking.
Figure 1 shows the reconstruction result for a configuration of five nonlinearly moving particles. We compare our

method to the reconstruction of snapshots based solely on the measurement at a single time point. For most time points,
this single time point reconstruction yields results almost as good as provided by our method, but there are a few times,
such as the one displayed, where it does not manage to properly separate all particles. Our method however reconstructs
all particles near their correct locations. From the reconstructed 𝛾𝜃, one can see that also the particle velocities are appro-

https://github.com/CRC-DIP/inexact-linear-tracking
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priately estimated. Nevertheless, the reconstruction exhibits substantial blur which probably is due to two effects: The
discretization does not allow to position the particles in their exact ground truth positions, and also due to our inexact
motion model there is a little bit of ambiguity in the particle positioning. As a consequence, the smallest particle is only
faintly visible in our visualization of the reconstruction.
Obvious questions to be addressed in future work include the following:

∙ Can one consider some notion of exact reconstruction even in this setting with inexact motion model?
∙ Does exact reconstruction hold in a certain sense?
∙ Can one prove stability of the reconstruction with respect to measurement noise, despite the potential nonuniqueness?
∙ Can one adapt the model for reconstruction under measurement noise and prove corresponding convergence rates?
∙ What discretizations or model variations can lead to reduced blur in the reconstructions?
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