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Abstract

Despite recent successes in many fields of machine intelligence, there are still some important
aspects of learning where a Deep Neural Network (DNN) lacks in capability when compared
with humans. One of these is the ability to learn on a sequence of tasks while retaining
previously learned knowledge and transferring it to new unseen ones. Humans excel at this
and learn in a continual way throughout most of their life, which not only enables them to learn
fast but also efficient. Currently used DNNs on the other hand suffer from the phenomenon
of catastrophic forgetting, a rapid decrease in performance on a previously learned task almost
instantly after training of a new task begins. Overcoming this limitation and enabling continual
learning with DNNs is therefore of great interest and would not only make their training
potentially faster and more efficient. It would also enable applications where they can be
trained incrementally whenever new training data is available without requiring to store all
previously learned data.

The focus of this thesis are rehearsal-based methods for continual learning with DNNs on
resource constrained systems where it is not possible to store large amounts of training data.
Despite their simplicity these methods show strong baseline performance and can be applied to
all types of continual learning problems. Image classification on publicly available benchmark
datasets is used as an exemplary problem type throughout the remainder of this work due to
its popularity in the literature and a therefore simplified comparison with related work.

A summary of the applicability to different continual learning scenarios forms the basis of
a comprehensive overview for continual learning methods. It is complemented by a more
detailed presentation of canonical examples from every type of approach to continual learning,
metrics, commonly used datasets and neural architectures.

A novel method for analyzing catastrophic forgetting by attributing a change in loss to indi-
vidual parameters of a DNN is introduced. In contrast to the common practice of measuring
catastrophic forgetting using scalar metrics, this method allows for identifying which parts of
a DNN suffer to what extend from forgetting. Using this approach, three different continual
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learning scenarios are studied on several datasets. The experimental results align with related
literature and establish a deeper understanding of the continual learning scenarios and the most
vulnerable parts in the architecture of a DNN.

Deciding which data to add and which to potentially replace is an important step in the context
of rehearsal-based methods. It is especially challenging in the online continual learning setup
where data arrives in a stream or small batches without knowledge about task boundaries. A
novel method for sample selection based on an information theoretic perspective on sampling
from a rehearsal memory is presented. Experimental results show that it outperforms direct
competitors and is competitive with the latest related work.

The use of synthetically generated data for rehearsal-based continual learning shows great
potential as it allows for generating data that maximizes the rehearsal performance. But
synthesizing examples individually entails the risk of generating and storing redundant in-
formation since it prevents sharing components between them. In order to avoid this and
improve storage efficiency, a novel method that learns data in a form that allows for sharing
common components between them is introduced. The increased memory efficiency and the
accompanying performance increase through being able to store more data in the same sized
memory is demonstrated on commonly used benchmark datasets and compared with related
methods.

Despite its simplicity rehearsal shows a strong baseline performance in continual learning but
is still sensitive to the exact implementation of the rehearsing process itself. Depending on
how rehearsal and new data are combined in a mini batch, vastly different continual learning
performance and computational efficiencies are achieved. Based on a formal study of the
underlying effects, a novel method that incorporates the prior knowledge about the rehearsal
mechanism into the prediction of a DNN is introduced. This reduces the sensitivity with
respect to the underlying implementation of the rehearsal mechanism and ultimately allows
for using a more computationally efficient implementation while maintaining a performance
similar to the most demanding rehearsal scheme.

Finally, the main contributions of this thesis to analyzing catastrophic forgetting, rehearsal
memory management for online continual learning, efficient generation and storage of synthetic
data and the incorporation of prior knowledge about the rehearsal mechanism itself into the
prediction of a DNN are summarized and an outlook is discussed.



Kurzfassung

Trotz der jüngsten Erfolge in vielen Bereichen der maschinellen Intelligenz gibt es immer
noch einige wichtige Aspekte des Lernens, bei denen ein DNN im Vergleich zum Menschen
Defizite aufweist. Einer davon ist die Fähigkeit, eine Reihe von Aufgaben zu erlernen und dabei
bereits gelerntes Wissen beizubehalten sowie auf neue, ungesehene Aufgaben zu übertragen.
Der Mensch ist darin besonders gut und lernt fast sein ganzes Leben lang kontinuierlich, was
ihm nicht nur ein schnelles, sondern auch ein effizientes Lernen ermöglicht. Die derzeit ver-
wendeten DNNs leiden hingegen unter dem Phänomen des katastrophalen Vergessens, d. h.
einem rapiden Leistungsabfall bei zuvor gelernten Aufgaben fast unmittelbar nach Beginn des
Trainings einer neuen Aufgabe. Die Überwindung dieser Beeinträchtigung und die Ermögli-
chung kontinuierlichen Lernens mit DNNs ist daher von großem Interesse und würde nicht
nur ihr Training potenziell schneller und effizienter machen. Es würde auch Anwendungen
ermöglichen, bei denen sie inkrementell trainiert werden können, sobald neue Trainingsdaten
verfügbar sind, ohne dass alle zuvor eingelernten Daten aufbewahrt werden müssen.

Der Schwerpunkt dieser Arbeit liegt auf Rehearsal-basierten Methoden des kontinuierlichen
Lernens mit DNNs für Systeme auf denen es nicht möglich ist große Mengen an Trainings-
daten zu speichern. Trotz ihrer Einfachheit bieten diese Methoden eine solide Basisleistung
und können auf alle Arten von kontinuierlichen Lernproblemen angewendet werden. Die Bild-
klassifikation auf öffentlich zugänglichen Referenzdatensätzen wird im weiteren Verlauf dieser
Arbeit als exemplarischer Problemtyp verwendet, da sie in der Literatur weit verbreitet ist und
daher einen vereinfachten Vergleich mit verwandten Arbeiten ermöglicht.

Eine Zusammenfassung der Anwendbarkeit auf verschiedene Szenarien bildet die Grundla-
ge für einen umfassenden Überblick über die Methoden des kontinuierlichen Lernens. Sie
wird ergänzt durch eine detailliertere Darstellung von kanonischen Beispielen für alle Arten
von Ansätzen zum kontinuierlichen Lernen, Metriken, häufig verwendeten Datensätzen und
neuronalen Architekturen.
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Eine neuartige Methode zur Analyse des katastrophalen Vergessens durch die Zuordnung ei-
ner Verluständerung zu einzelnen Parametern eines DNN wird vorgestellt. Im Gegensatz zu
der üblichen Praxis, katastrophales Vergessen mit Hilfe von skalaren Metriken zu messen,
ermöglicht diese Methode die Bestimmung, welche Teile eines DNN in welchem Ausmaß
unter dem Vergessen leiden. Mit diesem Ansatz werden drei verschiedene Szenarien des kon-
tinuierlichen Lernens auf mehreren Datensätzen untersucht. Die experimentellen Ergebnisse
stimmen mit der einschlägigen Literatur überein und tragen zu einem tieferen Verständnis der
kontinuierlichen Lernszenarien und der am stärksten gefährdeten Teile der Architektur eines
DNNs bei.

Die Entscheidung, welche Daten dem Rehearsal-Speicher hinzuzufügen und welche mögli-
cherweise zu ersetzen sind, ist ein wichtiger Schritt bei Rehearsal-basierten Methoden. Dies
ist eine besondere Herausforderung beim kontinuierlichen Online-Lernen, bei dem die Daten
in einem Strom von Einzeldaten oder kleinen Gruppen eingehen, ohne dass die Grenzen der
Aufgaben bekannt sind. Es wird ein neuartiges Verfahren für die Auswahl von Daten aus
einem Rehearsal-Speicher vorgestellt, das auf einer informationstheoretischen Perspektive der
Datenentnahme basiert. Experimentelle Ergebnisse zeigen, dass diese Methode die direkten
Konkurrenten übertrifft und mit den neuesten verwandten Methoden konkurrenzfähig ist.

Die Verwendung synthetisch erzeugter Daten für das kontinuierliche Lernen auf der Grundlage
von Rehearsal weist ein großes Potenzial auf, da sie es ermöglicht, Daten zu erzeugen, welche
die Wiederholungsleistung maximieren. Die Synthese einzelner Beispiele birgt jedoch das
Risiko, redundante Informationen zu erzeugen und zu speichern, da die gemeinsame Nutzung
von Komponenten zwischen den Beispielen verhindert wird. Um dies zu vermeiden und die
Speichereffizienz zu verbessern, wird eine neuartige Methode eingeführt, die Daten in einer
Form lernt, die es erlaubt, gemeinsame Komponenten zwischen ihnen zu teilen. Die gesteigerte
Speichereffizienz und die damit einhergehende Leistungssteigerung durch die Möglichkeit,
mehr Daten in der gleichen Speichergröße zu speichern, wird anhand häufig verwendeter
Datensätze demonstriert und mit ähnlichen Methoden verglichen.

Trotz seiner Einfachheit zeigt Rehearsal eine starke Grundleistung beim kontinuierlichen Ler-
nen, ist aber dennoch empfindlich gegenüber der genauen Implementierung des Rehearsal-
Prozesses selbst. Je nachdem, wie Rehearsal-Daten und neue Daten in einem Mini-Batch kom-
biniert werden, werden sehr unterschiedliche kontinuierliche Lernleistungen und Rechenef-
fizienzen erzielt. Auf der Grundlage einer formalen Untersuchung der zugrundeliegenden
Effekte wird eine neuartige Methode eingeführt, die das Vorabwissen über den Rehearsal-
Mechanismus in die Vorhersage eines DNNs einbezieht. Dadurch wird die Empfindlichkeit
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gegenüber der zugrundeliegenden Implementierung des Rehearsal-Mechanismus reduziert.
Weiterhin ermöglicht dies letztendlich die Verwendung einer wesentlich recheneffizienteren
Implementierung, wobei eine ähnliche Leistung wie bei den anspruchsvollsten Rehearsal-
Schemata erzielt wird.

Abschließend werden die wichtigsten Beiträge dieser Arbeit zur Analyse des katastrophalen
Vergessens, des Rehearsal-Speicher-Managements für kontinuierliches Online-Lernen, der effi-
zienten Erzeugung und Speicherung synthetischer Daten und der Einbeziehung von Vorwissen
über den Rehearsal-Mechanismus selbst in die Vorhersagen eines DNNs zusammengefasst und
ein Ausblick diskutiert.
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Chapter 1.

Introduction

Since the first breakthrough win of a DNN with AlexNet [32] in the ILSVRC-2012 competition,
their capabilities have rapidly increased to a point where DNNs now achieve or even surpass
human performance on several tasks like object recognition [38] and games like Go [65].

But despite this success, DNNs and Artificial Intelligence (AI) in general still fall short in
some aspects of learning when compared to humans. For this thesis, the ability to learn an
ever increasing number of tasks in a sequential way is of particular interest. Humans typically
undergo a life-long learning process without problems in memory retention and tend to learn
sequentially while transferring knowledge between previously learned and new tasks [20].
Although rehearsing previously learned tasks may be part of this process, the incorporation
of new knowledge usually does not interfere with previously learned concepts. The ability to
transfer knowledge from previous experience to new concepts further supports such a sequential
way of learning. Although the details of human cognition currently are not fully understood,
neuroscience research suggests that an intricate balance between stability and plasticity of
neurons is maintained throughout the human brain [45, 86]. As a consequence, humans can
build a vast knowledge over their life-time through accumulation of new, transfer of old to new
and revision of previously acquired knowledge.

In contrast to this, DNNs suffer from the phenomenon of catastrophic forgetting, also known as
catastrophic interference, where the incorporation of new knowledge interferes with previously
learned concepts and causes a severe degradation of performance on all but the most recently
learned ones. Catastrophic forgetting in DNNs is well known since the early 1990s [10, 11]
but overcoming it and maintaining the right balance between plasticity and stability has proven
itself to be a long standing challenge. Recently the study of this phenomenon, methods on
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how to overcome it and enabling DNNs to learn in a sequential way has seen renewed interest
through an advent in the field of continual learning.

1.1. What is Continual Learning?

In the context of machine learning and DNNs, continual learning, also referred to as continuous,
lifelong, or incremental learning, describes the study of learning in an incremental way on a
sequence of tasks with limited access to previously encountered data when a new task is trained.
In principle there are many different types of tasks that can be considered in continual learning
as DNNs can be applied to solve a multitude of different problems like object recognition
and detection, semantic segmentation, natural language processing and regression. While
early work on continual learning was limited to object recognition, i.e. image classification,
an increased interest in the field has lead to continual learning being applied to many other
problem settings as well. Typically all tasks in a sequence originate from the same type of
problem but in general continual learning can also be applied to a sequence of tasks, that
originate from different problems. But even in the former case there can be distinct scenarios
of continual learning depending on what exactly differs between tasks. A formal definition
of continual learning in the context of this thesis, how it relates to other fields and a brief
summary of its biological background are given in chapter 2.

1.2. Why is Continual Learning of Interest?

Given even this rather short introduction to continual learning it is obvious that overcoming
catastrophic forgetting and enabling continual learning is of great interest not only from a purely
scientific perspective but also for enabling new applications of DNNs. The process of training
a DNN that is capable of continual learning, for example, does not require simultaneous access
to the complete training dataset. Instead it can be trained on small parts of the training dataset
individually while accumulating knowledge over time, essentially replacing spatial through
temporal aggregation of data. This can be especially useful in applications where simultaneous
access to the complete training dataset is prohibited, for example due to limited storage or legal
restrictions preventing the accumulation of large amounts of private data. Achieving continual
learning, in general, can be seen as moving away from the current paradigm of static DNNs with
parameters that remain fixed after training on to DNNs that can dynamically adapt to changes
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Figure 1.1.: Number of publications whose title includes the keywords "continual learning",
"continuous learning" or "catastrophic forgetting". Workshop numbers are total
submissions.

in the environment they are deployed in. This would bring them closer to a Artificial General
Intelligence (AGI) “that is capable of solving almost all tasks that humans can solve” [90].

This increasing interest in continual learning for DNNs is also reflected in leading conferences
of the field. Figure 1.1 shows the number of publications form the Conference on Neural
Information Processing Systems (NeurIPS) and Computer Vision and Pattern Recognition
Conference (CVPR) whose title includes at least one of the keywords "continual learning",
"continuous learning" or "catastrophic forgetting". In addition to an increasing number of
publications on conferences, dedicated workshops for continual learning have been introduced.
As an example, the total number of submissions to the "Continual Learning in Computer
Vision" Workshop of CVPR is also shown.

1.3. Contribution and Structure of this Thesis

This thesis combines the work of several years and publications with the goal of contributing to
and advancing the field of continual learning with DNNs. Given the large number of settings
and possible approaches to the problem, a focus is required in order to keep the overall scope
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of this thesis manageable. Based on a thorough review of the literature and experiments,
rehearsal-based methods were identified as a promising direction and therefore a focus of the
work that this thesis is based upon.

The structure of this thesis is split into the first chapters, which introduce a formal definition of
continual learning and a literature overview, the main contributions of this work and a closing
chapter.

Chapter 2 introduces a formal definition of continual learning as the common foundation for
all following chapters. Three scenarios of continual learning that are common in the literature
are introduced using examples. This is followed by a short explanation of the relation between
continual learning and other related but different fields like transfer and federated learning.
The chapter is then closed by a brief introduction into the biological aspects and neuroscience
background of continual learning.

A literature overview that covers the related work most relevant to this thesis follows in
chapter 3. The presented methods are categorized in regularization-based, structural, Bayesian
or memory-based methods in order to give a more structured overview. Due to the large
number of proposed algorithms and methods for avoiding catastrophic forgetting, only a
subset of all works is presented. But to give the reader a wider overview and advice for
further reading references to more methods and their applicability to the different scenarios are
given in Table 3.1. Furthermore, metrics, datasets and architectures that are commonly used
throughout the literature and this thesis are introduced in the closing sections of this chapter.

The main part of this thesis focuses on four aspects of rehearsal-based continual learning that
are formulated as research questions:

• Chapter 4: Which parts of a DNN contribute with what extend to a change in loss
when it is trained on a continual learning sequence without any measures for preventing
catastrophic forgetting?

• Chapter 5: How can the buffer of a rehearsal-based method for continual learning be
managed in a simple but effective way to enable online continual learning?

• Chapter 6: How can synthetic data be learned for rehearsal-based continual learning
while reducing the redundancy of data stored in memory?

• Chapter 7: What types of distribution shifts can be introduced by rehearsal and how can
their negative effects be avoided?
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These four research questions and the corresponding methods introduced in the associated
chapters contribute to a better understanding of catastrophic forgetting, improved buffer man-
agement during online continual learning, more efficient storage of data for rehearsal and an
improved method for using the stored data during rehearsal.

The first main contribution of this thesis presented in chapter 4 is a novel method for determining
the contribution from each weight of a DNN to an increase in loss during catastrophic forgetting.
Its main purpose is to allow a more detailed analysis of the main challenge in continual learning,
catastrophic forgetting. It is based on the approach proposed by Wiewel and Yang [94] but
extends their work with a more advanced numerical integration method and experiments on
more datasets and deeper architectures. The experimental results give more insight into which
parts of a DNN are most vulnerable to catastrophic forgetting and underline the empirical
evidence from related work, which shows that layers closer to the output of a DNN are affected
more than those close to the input.

In chapter 5 the second main contribution in the form of a novel algorithm for selecting
examples to store in rehearsal memory is introduced for the online continual learning setup,
where data is available only as a stream of individual examples. The goal of this contribution
is to provide a lightweight but still powerful method for selecting what data to store in the
challenging online setting. While the algorithm and its information theoretic motivation are
based on the work of Wiewel and Yang [126], the experimental evaluation is expanded to more
datasets and compared with a wider selection of related methods.

Chapter 6 presents the third main contribution and is based on the work of Wiewel and
Yang [125], which explores the use of synthetic data for improving memory-based continual
learning through a more efficient way of storing data. It is a novel method of representing the
learned synthetic examples in a rehearsal memory in a way that allows for sharing components
that are common for a specific class and therefore increases memory efficiency.

The fourth and final main contribution of this thesis is outlined in chapter 7. It is based
on the work of Wiewel, Bartler, and Yang [133], which tries to improve memory-based
continual learning through including prior knowledge into the prediction of a DNN. It exploits
information about the rehearsal process itself, like statistics of the data stored in memory
and training data, in order to improve performance. The experimental results show that this
method not only improves performance significantly when compared to baselines but is also
competitive with related work.
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Chapter 8 concludes this thesis with a summary and discussion of the main contributions to
the field of continual learning. Finally an outlook and remaining open questions are presented
in section 8.2.

Additional Work on Continual Learning There are also two additional publications [93,
111] that are part of the work done on continual learning but cover a related but distinctly
different direction and hence are not included in this thesis as main chapters. Although these
are also based on memory-based continual learning, they rely on a Variational Auto Encoder
(VAE) as an architecture for generative rehearsal. This is in contrast to the main contributions
presented above which store examples of training data in a memory and do not use any kind of
generative model.

In an early work [93] Wiewel and Yang study the extension of an anomaly detection system
based on a VAE with generative rehearsal in order to enable continual learning with it. While
their experiments show success with regards to the continual learning aspect, the anomaly
detection performance is not competitive with current approaches as it relies heavily on the
reconstruction error of the VAE to detect anomalies.

As a continuation of their work in the field of anomaly detection and one-class classification,
Wiewel, Brendle, and Yang propose to use multiple VAEs with a shared encoder as a model
with generative rehearsal ability in [111] for continual learning. Their main idea is to treat the
problem of continual learning as a growing set of one-class classification problem, where each
VAE is specialized to detect if in input originates from its associated class or not while at the
same time providing a generative model for it. While the experimental results of this approach
show some success on rather simple datasets, it suffers from scalability issues since for each
class that is to be learned a new decoder is needed.

List of Publications The following lists all publications that are presented in the main
chapters of this thesis in the same order as the main chapters:

• Felix Wiewel and Bin Yang. “Localizing Catastrophic Forgetting in Neural Networks”.
In: CoRR abs/1906.02568 (2019)1

1Preprint
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• Felix Wiewel and Bin Yang. “Entropy-based Sample Selection for Online Continual
Learning”. In: 2020 28th European Signal Processing Conference (EUSIPCO). 2021,
pp. 1477–1481

• Felix Wiewel and Bin Yang. “Condensed Composite Memory Continual Learning”. In:
2021 International Joint Conference on Neural Networks (ĲCNN). IEEE. 2021, pp. 1–8

• Felix Wiewel, Alexander Bartler, and Bin Yang. “Dirichlet Prior Networks for Continual
Learning”. In: 2022 International Joint Conference on Neural Networks (ĲCNN). 2022,
pp. 1–8

The two publications on continual learning that are not part of this thesis are:

• Felix Wiewel and Bin Yang. “Continual Learning for Anomaly Detection with Vari-
ational Autoencoder”. In: ICASSP 2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 2019, pp. 3837–3841

• Felix Wiewel, Andreas Brendle, and Bin Yang. “Continual Learning Through One-Class
Classification Using VAE”. in: ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 2020, pp. 3307–3311



Chapter 2.

Continual Learning

2.1. Definition of Continual Learning

The informal definition of continual learning as solving a sequence of tasks in an incremental
way given in the introduction is quiet general but imprecise. In order to precisely define
continual learning and what we want to achieve by it, we have to first describe the problem
setting we are operating in. For this, we start with the definition of a task.

Definition 1: A Task in the Context of Continual Learning

A task T in continual learning is represented by a finite set of 𝑁 elements that form a
dataset. In supervised continual learning these are pairs of inputs 𝑥𝑖 ∈ X and outputs
𝑦𝑖 ∈ Y which results in

T = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1, (2.1)

where the function 𝑓 : X → Y that maps the input space X to the output space Y
is generally unknown and to be learned by a DNN. In unsupervised continual learning
only inputs and no outputs are given.

Tasks in continual learning can be of different sizes, from containing many thousand to only
a single input-output pair, from different modalities, e.g. images, audio signals or text data,
and have different underlying functions 𝑓 , e.g. image classification, semantic segmentation,
regression or text translation. A typical example for a task that appears frequently in the
literature is given by a dataset of images x𝑖 ∈ {0, . . . , 255}𝐻×𝑊×𝐶 with height 𝐻, width𝑊 and
𝐶 channels with their associated class labels 𝑦𝑖 ∈ N.
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Although this definition describes what a task is, the process of solving it, which is an integral
part of continual learning, still remains undefined. Given that there are many different types
of possible tasks, a definition for solving a task that is applicable to all of them is necessary. In
the context of continual learning with DNNs the process of minimizing a suitable loss function
by finding optimal parameters for it can be used to find such a common definition.

Definition 2: Solving a Task

The process of solving a task T using a DNN as given by Definition 1 is defined as
finding the optimal parameters

𝜽★ = arg min
𝜽
L(T , 𝜽), (2.2)

where L is a suitable loss function and 𝜽 is a vector containing all parameters of the
DNN.

Although this definition is sufficiently precise to define the process of continual learning with
DNNs, it is flexible enough to be applicable for many different types of tasks. Depending
on the type of a task T , the choice of a suitable loss function L leads to different specific
optimization problems to be solved. In the case of supervised image classification using
empirical risk minimization [14], for example, a popular choice for a suitable loss function is
the categorical cross entropy. In this case, solving a task by finding the optimal parameters
according to (2.2) results in

𝜽★ = arg min
𝜽

−1
|T |

∑︁
x,y∈T

𝐶∑︁
𝑐=1
[y]𝑐 ln( [𝑔𝜽 (x)]𝑐), (2.3)

where y are one-hot encoded class labels and 𝑔𝜽 (x) are probabilities over the𝐶 classes predicted
by the DNN.

Given these definitions of a task and how it can be solved, the continual learning problem as it
will be considered in the remainder of this thesis can be defined.
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Definition 3: The Continual Learning Problem

Considering a DNN parameterized by 𝜽 and given a sequence of 𝑀 tasks T1≤𝑘≤𝑀 , the
continual learning problem requires finding a sequence of optimal parameters

𝜽★𝑘 = arg min
𝜽

𝑘∑︁
𝑗=1
L 𝑗 (T𝑗 , 𝜽), (2.4)

where at step 𝑘 only T𝑘 is accessible,L 𝑗 is a suitable loss function for T𝑗 and 1 ≤ 𝑘 ≤ 𝑀 .

This definition might seem rather strict when compared to human incremental learning as it
prohibits any access to data of tasks T1≤ 𝑗≤𝑘−1 at step 𝑘 while humans occasionally rehearse
previously learned concepts when learning new ones. But, on the other hand, there is no
objective reason why DNNs could not reach or even exceed human level performance in
continual learning since they already outperform them on other problems as well. Relaxations
to this problem which allow for limited access to the data of previous tasks, for example
through a small rehearsal buffer, exist, but their usage is usually carefully limited. In addition
to the restricted access to data of previous tasks and achieving minimum loss, there are also
other desirable properties that any method for continual learning with DNNs should fulfill if
it is to be implemented in practice, e.g. low computational complexity and limited memory
requirements. An overview of metrics used throughout the literature for evaluating such
methods is therefore given in section 3.5.

2.2. Continual Learning Scenarios

In addition to these general definitions of the continual learning problem and tasks, it is also
important to study what changes between tasks can occur and how these can effect a DNN
throughout the sequence of tasks. Although there are potentially many different scenarios for
this, the following discussion is limited to three scenarios from supervised continual learning
with examples of image classification as it is one of the most widely used combinations
throughout the literature. These three characterizations of different scenarios were, to the best
of our knowledge, first proposed by Hsu et al. in [68] and Van de Ven and Tolias in [91] and
form a basis of the following discussion.



– 11–

For the following discussion, a probabilistic view on tasks is adopted since a characterization
in one of these three scenarios is based on how the statistical properties differ between tasks.

Definition 4: A Probabilistic View on Tasks

A task according to Definition 1 can be viewed as a set of 𝑁 samples from the random
variables 𝑋 ∈ X and𝑌 ∈ Y with joint probability density function (pdf) 𝑝𝑋𝑌 : X×Y →
R+ while the function 𝑓 : X → Y can be viewed as a transformation from 𝑋 to 𝑌 and
therefore induces the conditional distribution 𝑝𝑌 |𝑋 : X ×Y → R+.

Using this probabilistic perspective the marginal distribution over 𝑋 𝑝𝑋 , can be obtained
through marginalization of 𝑝𝑋𝑌 over𝑌 . This allows for defining a domain, which describes the
input space and the statistical properties of the input data, and an assignment, which describes
the output space and the statistical properties of the output conditioned on the input.

Definition 5: Domain and Assignment

Given the input space X and the marginal pdf 𝑝𝑋 : X → R+, a domain is defined as

D = {X, 𝑝𝑋 }.

Given the output space Y and the conditional distribution 𝑝𝑌 |𝑋 : X × Y → R+, an
assignment is defined as

A = {Y, 𝑝𝑌 |𝑋 }.

Given these definitions, the task T is a finite set of samples from a domain D and an
assignment A.

These definitions follow the notation used in the literature on transfer learning [130] with
exception of the term assignment, which is referred to as a task but was renamed in the context
of this thesis in order to avoid confusion. Although these definitions are not strictly necessary
in order to define the three different continual learning scenarios, they are none the less useful
when comparing continual learning to other fields like transfer learning.

Incremental Class Learning The Incremental Class Learning (ICL) scenario was originally
proposed in the context of continual learning for image classification with DNNs. It is
characterized by a sequence of tasks where each new task contains data of at least one new
previously unseen class and arises naturally when a classification system needs to be expanded
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with new classes. Given two tasks T𝑘 withD𝑘 ,A𝑘 and T𝑘+1 withD𝑘+1,A𝑘+1, Hsu et al. define
this scenario in [68] such that X𝑘 = X𝑘+1 while 𝑝𝑋,𝑘 ≠ 𝑝𝑋,𝑘+1 and 𝑝𝑌,𝑘 ≠ 𝑝𝑌,𝑘+1. While this
definition uniquely defines what changes occur between tasks, it allows for two different ways
of how to handle the new classes.

First consider the case where Y𝑘 = Y𝑘+1 and 𝑝𝑌,𝑘 ≠ 𝑝𝑌,𝑘+1. In this case, the output space
Y and the conditional distribution 𝑝𝑌 |𝑋 remain unchanged between tasks while the change in
𝑝𝑌 is solely caused by a changing 𝑝𝑋 . For the practical implementation with a DNN, this
means that the number of neurons in its output layer remains constant throughout the complete
sequence of tasks. So even though the first task might contain only a few classes, the output
layer must be large enough to accommodate all classes that might be encountered in future
tasks.

The second case arises when Y𝑘 ⊂ Y𝑘+1 and 𝑝𝑌,𝑘 ≠ 𝑝𝑌,𝑖+𝑘 . This implies that a change in the
marginal distribution 𝑝𝑌 is not only caused by a change in 𝑝𝑋 but also by a changing 𝑝𝑌 |𝑋 . In
contrast to the first case, where the same output layer can be used for all tasks, in this case the
output layer needs to be expanded whenever a new task is learned in order to accommodate
the newly added classes. But since Y𝑘 ⊂ Y𝑘+1 this new expanded output layer is still capable
of classifying previously learned classes as well.

Examples for this scenario are typically constructed using classification datasets that are split
into two or more parts. Usually the split is done in such a way that one task contains all data
of certain classes while other tasks do not contain any examples from those. An example
for supervised image classification can be constructed as follows. Consider a first task T1
represented by a dataset containing RGB images x𝑖,1 ∈ {0, . . . 255}1024×1024×3 that show cars
of two different brands which are to be classified by their brand. The corresponding labels
for these images are given by 𝑦𝑖,1 ∈ {0, 1}. The second task T2 also contains RGB images
x𝑖,2 ∈ {0, . . . 255}1024×1024×3 but from two different car brands. The corresponding labels for
this task are therefore 𝑦𝑖,2 ∈ {2, 3}. It is obvious that X1 = X2 = {0, . . . 255}1024×1024×3 and
hence the input space remains unchanged. At the same time it is also clear that the marginal
distributions over it change, i.e. 𝑝𝑋,1 ≠ 𝑝𝑋,2, since the car brands and their appearance
change between the two tasks. Considering the output space there are two possible cases as
mentioned above. First, one can define Y1 = Y2 = {0, 1, 2, 3}. Although task T1 contains
only two classes, the output space can represent four classes for both tasks. In practice this
requires a DNN with an output layer that has four neurons even for the first task. Or second,
Y1 = {0, 1} ⊂ Y2 = {0, 1, 2, 3} is considered. In this case, the output layer of a DNN needs to
be expanded when switching from task T1 to T2 since the output space is growing. Regardless
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which of these two cases is considered both yield 𝑝𝑌,1 ≠ 𝑝𝑌,2 and therefore comply with the
definition of ICL given above.

Incremental Domain Learning The second scenario, Incremental Domain Learning (IDL),
is well known from the field of transfer learning. In this scenario, tasks differ only in their
domain, specifically in the marginal distribution 𝑝𝑋 over the same input space. So for any
two tasks T𝑘 with D𝑘 ,A𝑘 and T𝑘+1 with D𝑘+1,A𝑘+1, X𝑘 = X𝑘+1 and 𝑝𝑋,𝑘 ≠ 𝑝𝑋,𝑘+1 while
A𝑘 = A𝑘+1. These definitions imply that the function 𝑓 : X → Y mapping the inputs from
both domains D𝑘 and D𝑘+1 to their corresponding class labels remains fixed between tasks.
Formally

dom( 𝑓 ) = supp(𝑝𝑋,𝑘 ) ∪ supp(𝑝𝑋,𝑘+1), (2.5)

where dom() is the domain of a function, i.e. the set of all inputs for which the function is
defined, and supp() is its support, i.e. the set of all inputs for which the function is non-zero.
Or expressed in words: Task 𝑘 contains inputs that only cover a part of the domain 𝑓 , while
task 𝑘 +1 contains inputs from a different part. But a specific input is mapped to the same class
label by the function 𝑓 regardless of the domain it is observed in. It is important to clearly
differentiate between the operator dom() and the domain D in Definition 5.

Since in IDL the input X and output space Y in addition to the function 𝑓 remain unchanged
between tasks, the input and output layers of a DNN used in such a scenario can be shared
between tasks. In contrast to the later introduced ITL scenario, this also means that during
inference there is no need to know from which task an input originated. Although each task
represents a different part of dom( 𝑓 ) the DNN only learns a single unchanging mapping from
the input space X to the output space Y. Hence there is no need to use more than one output
layer.

A typical example for IDL can be constructed for image classification. Suppose the first task T1
is given by a dataset containing RGB images x𝑖,1 ∈ {0, . . . 255}1024×1024×3 showing cars from
two different brands at daytime captured with a resolution of one megapixel. The corresponding
outputs 𝑦𝑖,1 ∈ {0, 1} encode the car brand with one brand represented by 0 and the other by
1. Now let the second task T2 be given by RGB images x𝑖,2 ∈ {0, . . . 255}1024×1024×3 showing
exactly the same car instances1 from the same brands but this time captured during nighttime
with a resolution of one megapixel. Since this second dataset contains exactly the same objects

1Considering exactly the same car instances is not strictly necessary according to the definition above
but it makes the example easier to grasp.
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as the first just photographed at a different time, the corresponding outputs 𝑦𝑖,2 ∈ {0, 1} remain
unchanged. Note that 𝑓1 = 𝑓2 and therefore the conditional distributions 𝑝𝑌 |𝑋,1 and 𝑝𝑌 |𝑋,2

also remain unchanged. This is possible since each domain only covers a part of the input
space while being mapped to the same region in the output space. In this case the output
spaces Y1 = Y2 = {0, 1}, the conditional distributions 𝑝𝑌 |𝑋,1 = 𝑝𝑌 |𝑋,2 and the input spaces
X1 = X2 = {0, . . . 255}1024×1024×3 remain unchanged, since both datasets contain images
of exactly the same cars corresponding to the same brands captured at the same resolution.
But since the first task contains images captured at daytime and the second at nighttime, the
marginal distributions over the input spaces differ, i.e. 𝑝𝑋,1 ≠ 𝑝𝑋,2.

Incremental Task Learning The last scenario, Incremental Task Learning (ITL), in general
allows for the most changes between tasks as each task can feature a completely different
type of problem to be solved. Because of this and in contrast to the two previously discussed
scenarios, ITL generally also requires some architectural changes of a DNN. Given two tasks
T𝑘 with D𝑘 ,A𝑘 and T𝑘+1 with D𝑘+1,A𝑘+1, Hsu et al. define it in [68] by Y1 ≠ Y2. This
definition also implies 𝑝𝑌 |𝑋,1 ≠ 𝑝𝑌 |𝑋,2 and 𝑝𝑌,1 ≠ 𝑝𝑌,2. But in addition to these differences
in the assignments A1 and A2, changes between the domains D1 and D2 are generally also
possible.

These changes in the output space generally require adding a separate output layer for every
task in a practical implementation for supervised classification. Note that for ITL, in contrast
to ICL, just expanding the output layer is not possible since Y𝑘 ⊄ Y𝑘+1. In addition to this a
separate input layer for a task might be needed as well if X1 ≠ X2. During inference it might
be possible to infer which input and output layer to use if every task has a unique combination
of input and output space. But in general this is not the case and therefore a task identifier is
required in order to perform inference. This necessity severely limits the applicability of ITL,
since in practice as such a task identifier is usually not available.

A simple example for ITL would be a sequence of two tasks where the first task requires
classification of RGB images into three classes, e.g. classifying cars by their brand or type,
and the second task requires the regression of a real valued scalar quantity, e.g. their fuel
consumption. Clearly X1 = X2. But it is also obvious that Y1 = {0, 1, 2} ≠ Y2 = R+. The
DNN used in this example therefore needs two different output layers, one with three neurons
featuring a softmax activation function and another with just one neuron with a Rectified Linear
Unit (ReLU) activation function. Given an input car image during inference it is then also
necessary two know the task in order to select the correct output layer.
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2.3. Online vs. Offline Continual Learning

Most research considers continual learning sequences whose tasks are subsets of datasets
with thousands and even millions of training examples. These are then split in a relatively
small number of tasks. As a result individual tasks themselves can feature thousands of
training examples that are assumed to be accessible simultaneously in any order. These two
properties enable the use of common training strategies for DNNs, where multiple epochs can
be completed on each task and data in mini batches can be sampled uniformly at random from
the current task. Such continual learning sequences are said to be offline, since each training
example of a task can be revisited multiple times. Offline continual learning is typically
characterized by independent and identically distributed (i.i.d.) samples because all training
examples are independently drawn at random. The aforementioned scenarios ICL, IDL and
ITL belong to the category of offline continual learning.

In contrast to this, data becomes available in a stream of individual training examples or small
batches in online continual learning and each example can only be observed once. Furthermore,
the data in such a stream can be ordered and therefore it is in general not i.i.d.. An example
for such an online continual learning sequence for supervised image classification under the
ICL scenario can be constructed by splitting any of the datasets introduced in section 3.6
into subsets containing one or more classes. But in contrast to offline continual learning the
corresponding method under test is allowed to visit each training example of these subsets only
once. In addition to this, the training data is not shuffled and even intentionally ordered, i.e.
data might be ordered by their class labels. Another important difference between online and
offline continual learning is the absence of clear task boundaries in online continual learning. In
general there is no abrupt change in the stream of data between what is known as tasks in offline
continual learning. In the case of supervised image classification, for example, there might be
a gradual transition from one class to another in the stream of data. For such a transitional
region, the probability of observing a sample from the current class might gradually decrease
while it becomes increasingly likely to observe a sample of the new class. Furthermore, classes
encountered previously might be absent from the stream for a while and then be encountered
again later on. As a consequence, it is not possible to define tasks in the same sense as for
offline continual learning as a clearly defined part in the sequence of encountered data.

The absence of clear task boundaries in online continual learning prevents a simple definition
of the ICL, IDL and ITL scenarios. But the general distinction between learning new classes,
domains and tasks can still be applied to online continual learning. Most literature [56, 81,
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83, 84, 122, 126] and chapter 5 of this thesis, however, consider a stream of non i.i.d. data
where new classes are introduced one at a time with clear transitions. This resembles an online
version of ICL. All other chapters of this thesis address offline continual learning.

2.4. How Is Continual Learning Different from Related
Fields?

Although continual learning with DNNs has only recently seen renewed interest, the idea of
incremental learning and transferring knowledge has been explored in many other fields of
machine learning. A comparison of commonalities and differences in their problem settings,
goals and approaches is therefore important to understand the context of this thesis. To facilitate
this, an overview of different related fields and concepts is given in the following.

Incremental Learning in General Given that the ability to incrementally learn is an im-
portant part of the learning process for humans, it is not surprising that imitating it using
machine learning methods proceeding DNNs has been explored before. While some of them
are inherently capable of incremental learning by design like the k-Nearest Neighbours (KNN)
classifier [9], others need to be adapted or changed in some way to support it. Algorithms for
incrementally expanding and updating a decision tree in a computationally efficient way, for
example, were already studied by Schlimmer and Fisher in 1986 [7]. Another widely used
method for classification is the Support Vector Machine (SVM) [12]. An incremental version
of it was proposed by Domeniconi and Gunopulos in 2001 [18]. This shows that continual
learning is neither a new concept nor restricted to DNNs in any way. But if they are to replace
other traditional machine learning methods, it is necessary to overcome catastrophic forgetting
and enable continual learning.

Transfer Learning Transfer learning, which studies transferring knowledge between models
trained in different but related environments, is also a broad and well established field. Similar
to incremental learning, it is not limited to DNNs but can also be applied as a general concept
to many machine learning methods and algorithms. A recent comprehensive survey on it
is given by Zhuang et al. in [130]. Although the transfer of knowledge is also an integral
part of continual learning and can therefore be regarded as a common goal, both fields differ
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significantly. In transfer learning, the knowledge learned on a source domain is transferred
to a target model operating in a related but different domain with the goal of improving the
model performance in the target domain only. After the knowledge transfer between these
two, the performance of the target model on the source domain is irrelevant. In fact, the
target model might not even be capable of operating on the source domain at all. In continual
learning, on the other hand, the accumulation over many tasks is critical and therefore a model
capable of it must not only be able to perform well on the most recently learned task but all
previously encountered ones as well. An example for transfer learning is unsupervised domain
adaptation [118] where no labels in the target domain exist. There is also a continual learning
variant of domain adaptation that aims at adapting to a sequence of domains [131, 132].

Multitask Learning Multitask learning is another field of machine learning that aims at
exploiting the knowledge of multiple related tasks in order to improve the performance of a
learning system on all of them. Similar to continual learning, multiple tasks have to be learned
and knowledge has to be transferred between them. Much like in continual learning, multiple
potentially very different tasks that are represented by individual training datasets have to be
learned. But in contrast to continual learning, access to the datasets of previous tasks is not
restricted when learning a new task. This means that joint training on all tasks simultaneously
can be performed, which completely avoids the phenomenon of catastrophic forgetting. Recent
surveys on multitask learning, methods on how to achieve it and applications are given in [127]
and [124].

Federated Learning Federated learning is concerned with training machine learning mod-
els in a decentralized way. Data is processed locally on devices like smartphones with the goal
of combining their individual knowledge in one shared model while minimizing the communi-
cation overhead between devices. Similar to continual learning, access to the complete dataset
is limited in federated learning. But instead of a strictly temporal limitation that arises due to
the necessity of learning on a sequence of tasks, the data being stored on isolated device leads
to a spatial and potentially also a temporal limitation in federated learning. Recent surveys
on this field include [113] and [104]. While the main challenge of continual learning with
DNNs is overcoming catastrophic forgetting and transferring knowledge between tasks, the
challenges of federated learning are the minimization of communication overhead between
devices during learning, potentially very different characteristics regarding performance and
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available memory of devices, non-identically distributed data across them and preserving the
privacy of device users.

2.5. Continual Learning in the Human Brain

Understanding the mechanisms that allow the human brain to acquire new knowledge effectively
over long sequences of incremental learning [20] is important as it could hint to similarly
effective methods and algorithms that allow DNNs to perform in the same way. While a
comprehensive overview over the biological aspects of continual learning that summarizes
many primary sources is given by Parisi et al. in [89], the following is restricted to the key
aspects of continual learning in the human brain.

Although the human brain is not fully understood yet, research shows that its learning process
features an intricate balance between stability, which prevents knowledge from being forgotten,
and plasticity, which enables new knowledge to be incorporated. This interaction of both
aspects not only varies between different parts of the brain but also over time [45, 86].
Since both mechanisms act against each other during the learning process, finding exactly the
right balance between them is known as the stability-plasticity dilemma [22]. The brain is
particularly plastic in early stages of development and becomes more stable over time but even
in adulthood some plasticity remains [46].

A simple but widely known theory of neuron plasticity by Hebb [2], also known as Hebb’s
rule, states that the connection between two neurons is strengthened when one repeatedly
activates another neuron. But learning using Hebb’s rule is inherently unstable as there is
no limit on how strong such connections can grow and therefore additional mechanisms for
stabilizing the learning process are required [15, 17]. More recent research suggests a different
computational model in which the activity of neurons in each area of the brain is a combination
of feed-forward excitation, feedback and prior expectation [52]. This model, in addition to
feed-forward functions, does also allow for generative models, much like memory recall, and
enables the combination of prior expectation with current inputs in order to predict forward in
time.

While these theories propose computational models for neural plasticity and to some degree
stability, they do not detail the process of remembering previous experiences. The theory
of Complementary Learning Systems (CLS) in the Hippocampus and Neocortex [16] gives
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insight into how these two parts of the human brain interact in order to achieve rapid learning
while remembering previous experiences. Although both of them learn in a Hebbian like way,
their learning speed and function in the overall process differs greatly. The Hippocampus is
capable of rapid learning given new experiences and encodes them in sparse representations.
The information incorporated into the Hippocampus can then be played back over time to
the Neocortex which exhibits much slower learning and is responsible for long term memory
retention. These two systems therefore complement each other with one being capable of
rapid short term learning and the other responsible for long term memory. Some methods for
continual learning with DNNs, like the one proposed in [110], even motivate their approach
on these results from neuroscience and try to replicate a similar form of replay through the
use of generative models. A more detailed description of such methods, which fall under the
category of pseudo rehearsal or generative replay, is given in section 3.4.1.

The process of continual or incremental lifelong learning performed by the human brain has
been studied quiet extensively in the field of neuroscience. But transferring and utilizing the
mechanisms that are responsible for continual learning in the brain directly to DNNs poses
some challenges. While DNNs might be loosely inspired by biological neural networks, their
underlying working principal and the way of training them are fundamentally different [92,
105]. The widely used Backpropagation (BP) algorithm for training a DNN, whose invention
is often attributed to Rumelhart, Hinton, and Williams [6], seems biologically implausible
mainly because of three aspects.

1. BP uses an error signal that is propagated back throughout the whole network. This
implies that weight updates of a neuron depend on all neurons and their activation
proceeding it. This global dependency of weight updates is in contrast to the local
learning performed in biological neural networks.

2. BP uses the same weights for propagating information forward and error signals back-
ward, which implies symmetric connections in both directions. But although there is
evidence for bidirectional connections in biological neural networks, there is no direct
evidence for them being symmetric.

3. BP requires the function of a neuron to be differentiable. While the typical simplistic
models of neurons in DNNs are differentiable, finding a derivative for their biological
counterparts is difficult as their function depends on discrete spikes [21].

But despite of these fundamental differences between DNNs and biological neural networks
findings from neuroscience might still lend themselves as valuable inspiration for finding new
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algorithms or modifications to BP for enabling continual learning in a similar way as they have
inspired the creation of DNNs in the first place.



Chapter 3.

Literature Overview

Because continual learning with DNNs is a growing and active field of research, the following
is not intended to be a complete presentation of the literature on this topic. It rather serves as an
overview over the different types of approaches and a short introduction to selected canonical
examples of those. An overview over which method can be applied to which continual learning
scenario is presented in Tables 3.1 and 3.2. Besides these three scenarios an indication whether
a method can be applied to online continual learning, where data arrives as a stream, or offline
continual learning, where all data of a task can be accessed simultaneously, is given. Section
3.5 in addition presents metrics used to evaluate continual learning methods while sections 3.6
and 3.7 introduce some commonly used benchmark datasets and neural architectures in the
field.

3.1. Regularization-based Methods

Given that catastrophic forgetting in DNNs is a consequence of their inherent plasticity and
lack of stability, using some sort of regularization on their weights to stabilize them is an
intuitive approach. It is therefore no surprise that regularization-based methods were proposed
among the first when continual learning gained renewed interest [53, 63]. In general methods
of this type share the common approach of penalizing the deviation of weights once they have
been trained on a task in order to prevent them from changing too much and causing forgetting.
Considering a continual learning problem according to Definition 3, a regularization-based
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Table 3.1.: Overview of different methods and their applicability to scenarios and online con-
tinual learning.

Method ITL IDL ICL Online Offline

Regularization-based

EWC [53] ✓ ✓ ✓ ✓
R-EWC [70] ✓ ✓ ✓ ✓
OSLA [75] ✓ ✓ ✓ ✓
SI [63] ✓ ✓ ✓ ✓
RWALK [66] ✓ ✓ ✓ ✓
MAS [64, 82] ✓ ✓ ✓ ✓ ✓
LwF [55] ✓ ✓ ✓ ✓ ✓
EbLL [57] ✓ ✓ ✓ ✓
DMC [112] ✓ ✓ ✓ ✓
IMM [54] ✓ ✓ ✓ ✓
CL-LROS [98] ✓ ✓ ✓
OGD [101] ✓ ✓ ✓ ✓

Structural

PNN [48] ✓ ✓
PC [77] ✓ ✓ ✓ ✓
PN [72] ✓ ✓
HAT [78] ✓ ✓
RCL [80] ✓ ✓
ILDA [76] ✓ ✓

Bayesian

NCL [117] ✓ ✓ ✓ ✓
VCL [74] ✓ ✓ ✓ ✓
GVCL [119] ✓ ✓ ✓ ✓
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Table 3.2.: Overview of different methods and their applicability to scenarios and online con-
tinual learning.

Method ITL IDL ICL Online Offline

Memory-based

DGR [59] ✓ ✓ ✓ ✓
GEM [56] ✓ ✓ ✓ ✓ ✓
AGEM [84] ✓ ✓ ✓ ✓ ✓
GSS [83] ✓ ✓ ✓ ✓ ✓
ESS [126] ✓ ✓ ✓ ✓ ✓
MIR [81] ✓ ✓ ✓ ✓ ✓
ASER [122] ✓ ✓ ✓ ✓ ✓
BiC [95] ✓ ✓ ✓ ✓
DCGM [129] ✓ ✓ ✓ ✓
HAL [114] ✓ ✓ ✓ ✓
CCMCL [125] ✓ ✓ ✓ ✓
DPNCL [133] ✓ ✓ ✓ ✓
ICaRL [58] ✓ ✓ ✓ ✓
LUCIR [87] ✓ ✓ ✓ ✓
PODNet [99] ✓ ✓ ✓ ✓
TPCIL [109] ✓ ✓ ✓ ✓
BSIL [116] ✓ ✓ ✓ ✓
MBSIL [116] ✓ ✓ ✓ ✓
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method can be formalized as solving the sequence of optimization problems

𝜽★𝑘 = arg min
𝜽

𝑘∑︁
𝑗=1
L 𝑗 (T𝑗 , 𝜽) + R(𝜽 , 𝜽★𝑘−1, 𝜽

★
𝑘−2, . . . , 𝜽

★
1 ), (3.1)

where R is a regularization depending not only on the weights 𝜽 that are optimized in the 𝑘-th
step but also on the optimal ones 𝜽★

𝑘−1, 𝜽
★
𝑘−2, . . . , 𝜽

★
1 from every previous step. As the goal

of methods in this category is to prevent deviations of weights from their optimal value, R is
generally a distance measure like the squared Euclidean or 2-norm, i.e. ∥ · ∥22. But while this
choice of distance measure might be suitable for preventing weights from deviating too much
from their optimal values, it penalizes deviations with the same strength for all weights. This
implies that every weight is the equally important for solving a particular task, which might
not be true in general. A regularization-based method should therefore be capable to identify
the importance of individual weights for a given task in order to only prevent their deviation
(stability) while allowing less important weights to change freely in order to learn new tasks
(plasticity). Canonical examples of such methods are Elastic Weight Consolidation (EWC)
and Synaptic Intelligence (SI).

Elastic Weight Consolidation (EWC) Kirkpatrick et al. argue in [53] that DNNs are over-
parameterized and many different parameter configurations can result in a similar performance.
It is likely that the solution to a task that is to be learned lies in close proximity of the solution
found on previous tasks. They further justify the use of a regularization by adopting a Bayesian
perspective and pointing out that the posterior over weights of a DNN conditioned on some
dataset is given by

ln 𝑝(𝜽 |T ) = ln 𝑝(T |𝜽) + ln 𝑝(𝜽) − ln 𝑝(T ), (3.2)

where ln 𝑝(T |𝜽) is equivalent to the negative loss function −L(T , 𝜽) under the maximum
likelihood approach to train a DNN. Assuming two independent tasksT𝑘−1 andT𝑘 , this posterior
of the weights conditioned on both tasks is then given by

ln 𝑝(𝜽 |T𝑘−1,T𝑘 ) = ln 𝑝(T𝑘 |𝜽) + ln 𝑝(𝜽 |T𝑘−1) − ln 𝑝(T𝑘 ). (3.3)

From this derivation of Kirkpatrick et al. to be valid, the formal definition of what they refer
to as two tasks being independent can be deduced as

𝑝(T𝑘−1,T𝑘 ) = 𝑝(T𝑘−1)𝑝(T𝑘 ) and 𝑝(T𝑘−1,T𝑘 |𝜽) = 𝑝(T𝑘−1 |𝜽)𝑝(T𝑘 |𝜽). (3.4)
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Using (3.3) Kirkpatrick et al. further argue that the posterior conditioned on both tasks depends
only on the loss function of task − ln 𝑝(T𝑘 |𝜽) = L𝑘 (T𝑘 , 𝜽), i.e. the negative log-likelihood,
and all information about task T𝑘−1 is absorbed into the posterior 𝑝(𝜽 |T𝑘−1) including the
importance of individual weights to task T𝑘−1. EWC therefore uses a Laplace approximation
based on [13] to this posterior, which uses a mean given by the optimal weights 𝜽★

𝑘−1 found on
task T𝑘−1 and the precision given by the diagonal elements of the Fisher Information Matrix
(FIM) F𝑘−1.

Definition 6: Fisher Information Matrix

Given a log-likelihood ln 𝑝(x|𝜽) over the random variable x parameterized by 𝜽 , the
Fisher Information Matrix (FIM) F is defined as a matrix containing the variance of a

so called score function
𝜕

𝜕𝜽
ln 𝑝(x|𝜽). Since the mean of this score function vanishes,

it is given by

[F]𝑖, 𝑗 = E𝑝(x|𝜽)
[(

𝜕

𝜕\𝑖
ln 𝑝(x|𝜽)

) (
𝜕

𝜕\ 𝑗
ln 𝑝(x|𝜽)

)]
(3.5)

= −E𝑝(x|𝜽)
[

𝜕2

𝜕\𝑖𝜕\ 𝑗
ln 𝑝(x|𝜽)

]
(3.6)

and measures the sensitivity of ln 𝑝(x|𝜽) with respect to changes in 𝜽 . Under some mild
regularity conditions it is equivalent to the negative expectation of the Hessian matrix
of the log-likelihood.

Given two consecutive tasks T𝑘 and T𝑘−1, the regularization used in EWC is therefore given
by

R(𝜽 𝑘 , 𝜽★𝑘−1) =
_

2
(𝜽 𝑘 − 𝜽★𝑘−1)

𝑇diag(F𝑘−1) (𝜽 𝑘 − 𝜽★𝑘−1)

=
_

2

∑︁
𝑖

[F𝑘−1]𝑖𝑖 ( [𝜽 𝑘 ]𝑖 −
[
𝜽★𝑘−1

]
𝑖
)2, (3.7)

where _ ∈ R is a parameter for controlling the regularization strength and F𝑘−1 is the FIM
estimated on task T𝑘−1. For training on a sequence of more than two tasks, Kirkpatrick et al.
propose to use a separate regularization term for each previously learned task or to combine
all of those into one regularization term. The latter is possible since a sum of two quadratic
terms in the form of (3.7) is itself a quadratic term.

Given that the FIM according to Definition 6 under mild regularity conditions is equivalent to
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the expected negative Hessian matrix of the log-likelihood from a previous task, an intuitive
interpretation of EWC can be given as follows. Estimating the importance of parameters for a
particular task using the Fisher Information assigns high values to those parameters who are
likely to cause a significant decrease of the log-likelihood if these parameters are changed.
Weighting a regularization that penalizes deviations from their optimal values found on the
previous task therefore only consolidates parameters that are important to that task while
allowing the remaining parameters with low Fisher Information to move freely.

Synaptic Intelligence (SI) Zenke, Poole, and Ganguli also propose a regularization-based
method for overcoming catastrophic forgetting in [63]. While their approach utilizes the
same functional form as EWC, namely a weighted sum of quadratic terms centered at the
parameter values found during training on previous tasks, their method for determining the
importance of individual parameters differs significantly. Instead of estimating it in a separate
stage when training on a task is completed, as in EWC, Zenke, Poole, and Ganguli propose
an online estimate that is calculated simultaneously while training the DNN. They base their
approach on determining the contribution of each parameter to decrease the training loss as it
moves through the parameter space. The authors argue that for an infinitesimal change 𝜹𝜽 of
parameters 𝜽 the loss changes as

L(𝜽 + 𝜹𝜽) − L(𝜽) ≈ 𝜹𝜽∇L(𝜽), (3.8)

where the Nabla operator ∇ is used to evaluate the gradient of a loss function L at position
𝜽 . The authors further point out that the gradient is a conservative vector field1 and the total
change in loss therefore can be obtained by integrating over these infinitesimal changes along
the parameter trajectory C through the parameter space. The total change in loss is then given
by

L(𝜽★𝑘 ) − L(𝜽
0
𝑘 ) =

∫
C
∇L(𝜽)d𝜽 =

∑︁
𝑖

∫
C𝑖

𝜕

𝜕\𝑖
L(𝜽)d\𝑖 ≡ −

∑︁
𝑖

[𝝎𝑘 ]𝑖 , (3.9)

where the path integral of the complete gradient vector along the trajectory is split up into
a sum of contributions [𝝎𝑘 ]𝑖 from each parameter \𝑖. Note that the minus sign before the
last sum is introduced by the authors as one is typically interested in decreasing the loss.
For a practical implementation the authors further propose to approximate [𝝎𝑘 ]𝑖 online as a
running sum of the product between parameter update steps and the gradient. Since usually

1A vector field that results from taking the gradient of a function. Its line integral is path independent,
i.e. changing the path between two endpoints of the line integral does not change its value.
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Stochastic Gradient Descent (SGD) is used to train DNNs, the estimated gradient is noisy and
therefore [𝝎𝑘 ]𝑖 will typically overestimate the true contribution of a parameter according to
the authors. This source of noise is explicitly stated by Zenke, Poole, and Ganguli but an
additional noise source results from the gradient not being constant along an update step of
the parameters. Simple measures for preventing this source of noise in the estimate of [𝝎𝑘 ]𝑖
are therefore the choice of a small learning rate, which results in shorter update steps, or to
introduce intermediate steps for which the gradient can be considered constant during every
parameter update.

In addition to a parameter’s contribution to decrease the loss, the authors argue that the distance
[𝚫𝑘 ]𝑖 ≡

[
𝜽★
𝑘
− 𝜽 𝑘

]
𝑖

that the 𝑖-th parameter moves throughout the training process is another
measure of its importance for a particular task. Using these two measures the authors propose
a regularization that has the same minimum as the loss function of previous tasks and yields
the same 𝝎𝑘 over a parameter distance 𝚫𝑘 as

R(𝜽 𝑘 , 𝜽★𝑘−1) = _
∑︁
𝑖

Ω𝑘
𝑖 ( [𝜽 𝑘 ]𝑖 −

[
𝜽★𝑘−1

]
𝑖
)2, (3.10)

where _ ∈ R is a parameter for controlling regularization strength. The individual weights are
given by

Ω𝑘
𝑖 =

𝑘∑︁
𝑗=1

[𝝎𝑘 ]𝑖
[𝚫𝑘 ]2𝑖 + 𝜖

, (3.11)

where 𝜖 ∈ R is a small constant used to bound the weighting term as 𝚫𝑘 → 0. The authors also
point out that squaring the distance a parameter moved throughout training is used to ensure
that the regularization term carries the same unit as the loss function. While the contributions
𝝎𝑘 are updated continuously throughout the training process, the cumulative weights Ω𝑘

𝑖
are

only updated when the training on task T𝑘 is complete. After these weights have been updated
the contributions 𝝎𝑘 are set to zero. In contrast to EWC the importance weights are updated
in a cumulative way and therefore there are no separate importance weights for different tasks
which need to be stored or combined.

3.2. Structural Methods

Instead of relying on additional regularization terms, structural methods for continual learning
aim at preventing catastrophic forgetting through changes to the architecture of a DNN. This
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typically involves freezing or slowing down learning of weights that were learned on previous
tasks in order to prevent forgetting. But since this also prevents learning new tasks, additional
capacity, typically in the form of new layers, needs to be added for each new task. In addition
to this, connections between parts of a DNN that have been trained on previous tasks and newly
added layers are utilized to facilitate knowledge transfer from previous to new tasks.

Progressive Neural Network (PNN) A typical example of a structural method for continual
learning is a PNN proposed by Rusu et al. in [48]. It instantiates so called columns with
randomly initialized weights for each task that is to be learned. A column, in this case, is a
complete DNN capable of solving the task at hand. After a column is trained on the task its
weights are frozen in order to completely prevent forgetting. In order to enable the transfer of
knowledge learned on previous tasks into the current task, lateral connections to feature maps
at the same network depth to all previously learned columns are used. The input to a layer
in the most recent column is therefore not only the output of a layer preceding it but also the
outputs of all layers from previously learned columns at the same network depth. Although
this approach completely eliminates catastrophic forgetting, its application is limited not only
by a rapidly increasing computational complexity due to the lateral connections but also by
requiring knowledge about the task identity during inference in order to select the output of
a corresponding column. This restricts PNNs to be applied only to the rather limited ITL
scenario discussed in section 2.2. Rusu et al. additionally propose so called adapters, which
replace direct linear connections with non-linear ones, in order to improve initial conditioning
and to reduce the amount of features transferred to the next column. These adapters are
implemented as a single dense or convolutional layers with a kernel size of 1× 1 and their size
is chosen such that the amount of parameters from lateral connections is roughly equal to the
amount of parameters in the first column.

Progress and Compress (PC) Although not strictly a structural method, PC proposed by
Schwarz et al. in [77] is closely related to PNNs as it combines its basic principle of using
columns for different tasks with the regularization approach of EWC. But instead of using one
for each individual task a knowledge base column is used to combine all previously learned
columns while an active column is used to learn new tasks. Overall this results in a two
step process, where the active column with lateral connections to the knowledge base first is
used to efficiently learn a new task and then incorporated or compressed into the knowledge
base. During this compression phase previously learned weights are protected by a modified
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version of EWC that uses a running sum of all Fischer Information matrices instead of one
for each task. While this approach alleviates the problems with a quickly growing number of
parameters as in PNNs, it also eliminates the need to know the task identity during inference
as the active column is incorporated into the knowledge base via distillation [39].

3.3. Bayesian Methods

Adopting a Bayesian perspective and analyzing the continual learning problem leads to another
group of methods for avoiding catastrophic forgetting. These are not only able to express
uncertainty about the weights learned during the training of a DNN but also provide a natural
solution to incremental learning. First, a prior distribution 𝑝(𝜽) over the weights of a DNN
𝜽 is chosen. The not normalized posterior after observing 𝑘 tasks is then given according to
Bayes rule as

𝑝(𝜽 |T1:𝑘 ) ∝ 𝑝(𝜽)
𝑘∏
𝑗=1

𝑝(T𝑗 |𝜽) ∝ 𝑝(𝜽 |T1:𝑘−1)𝑝(T𝑘 |𝜽), (3.12)

where T1:𝑘 is a short notation for T1,T2, . . . ,T𝑘 , 𝑝(T𝑗 |𝜽) is the likelihood of task T𝑗 and it
is assumed that tasks are independent of each other. With this formulation a recursion for
finding the posterior on task 𝑘 based on the previous one can be identified as a product of
the posterior found on task 𝑘 − 1 and the current likelihood. While this approach seems very
intuitive and elegant, its application poses one major challenge common to most Bayesian
methods: Finding a tractable normalized posterior or at least an approximation to it. Note that
the posterior in (3.12) is only proportional to a prior times the likelihoods of all 𝑘 tasks and
lacks the normalization by 𝑝(T1:𝑘 ).

Variational Continual Learning (VCL) Nguyen et al. propose their method VCL in [74],
which is based on online variational inference [19] through the use of a projection operator

𝑞𝑘 (𝜽) = arg min
𝑞∈Q

KL
(
𝑞(𝜽)

𝑞𝑘−1(𝜽)𝑝(T𝑘 |𝜽)
𝑍𝑘

)
, (3.13)

where KL(·∥·) is the Kullback-Leibler (KL) divergence, 𝑍𝑘 is the intractable normalization
constant and 𝑞 is restricted to the set Q of allowed posteriors. It is applied recursively starting
with 𝑞1(𝜽) = 𝑝(𝜽) in order to approximate the true posterior 𝑝(𝜽 |T1:𝑘 ) of task 𝑘 . Note that
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𝑍𝑘 is not needed for finding the optimum of this optimization problem making this approach
tractable. For this, the Evidence Lower Bound (ELBO) given as

L(𝑞𝑘 (𝜽)) = E𝑞𝑘 (𝜽) [ln 𝑝(T𝑘 |𝜽)] − KL(𝑞𝑘 (𝜽)∥𝑞𝑘−1(𝜽)) (3.14)

is maximized with respect to the parameters of 𝑞𝑘 (𝜽). While the KL divergence term in
the ELBO can be evaluated analytically, Monte Carlo (MC) sampling in combination with
the local reparameterization trick [41] is used to maximize the expectation term. Assuming
the true posterior is of the same type as the allowed distributions Q at every time step, i.e.
𝑝(𝜽 |T1:𝑘 ) ∈ Q, VCL will lead to exact Bayesian inference. In practice this assumption will
typically not be true since VCL uses a Gaussian mean-field approximation. Instead it will
only perform approximate inference and any errors will accumulate due to its recursive nature.
Nguyen et al. therefore propose to store a small set of representative samples from each task
that are not used in the recursive approximation of the posterior. Only right before a prediction
is made, this set of samples is used to perform one last projection step following (3.12) in
order to correct for errors introduced by the approximate inference and to prevent any further
forgetting. For more details on how exactly VCL can be applied to continual learning with
DNNs we refer the reader to [74].

Generalized Variational Continual Learning (GVCL) Building upon VCL, Loo, Swaroop,
and Turner propose GVCL in [119] as a generalization of this approach and show that under
certain conditions online EWC can be recovered as a special case of their method. For this,
they point out that in practice the allowed posteriors Q are typically too simple to effectively
approximate the true posterior. An experimentally justified method for improving the quality
of this approximation is given by weighting the KL divergence term in the ELBO with a
parameter 0 < 𝛽 < 1. Assuming Gaussian posteriors, i.e. 𝑞𝑘 ∼ N(𝝁𝑘 ,𝚺𝑘 ), Loo, Swaroop,
and Turner show that in the limit 𝛽→ 0 GVCL recovers online EWC.

3.4. Memory-based Methods

A simple but very effective method for overcoming catastrophic forgetting is to store past
experience from previous tasks which can then be retrieved later and mixed with data of a
new task. Although this approach is rather simple, there are several different variants of it and
many methods that achieve state-of-the-art results utilize some sort of memory for storing and
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rehearsing previously encountered training examples. Methods of this category can be divided
in roughly three different subcategories depending on the form in which past experience is
stored.

In pseudo rehearsal past experience is stored in the form of a generative model that is trained
to reproduce training examples from previously learned tasks. While these methods, in theory,
are able to very efficiently store and replay past experience, their success strongly depends on
the quality of generated training examples. A Generative Adversarial Network (GAN) [35],
for example, is a very capable generative model that can be used for pseudo rehearsal [59] but
on the other hand is notoriously difficult to train.

Core set methods, in contrast, store training examples directly. Methods of this category
usually use some sort of selection mechanism for determining which data is most relevant for
a given task and store only those in the memory. These mechanisms can be rather simple, e.g.
clustering or distance based, but also be more complex and involved in how they determine
which data is to be stored. Methods in this category can further differ in how they use the core
set to avoid catastrophic forgetting.

Approaches of the third category, distillation methods, neither learn a generative model nor
store training examples directly but instead learn synthetic ones. In contrast to pseudo rehearsal
with generative models the process of learning these synthetic examples is performed in such
a way that catastrophic forgetting is minimized. The synthesized data might therefore lack in
visual quality when compared to GANs, for example, but can be better at preventing forgetting
when used for rehearsal. Compared to core set methods, past experience can be stored more
efficiently by synthesizing data more informative examples, which can lead to an improved
performance given a fixed size memory.

Memory-based methods also feature some resemblance of the processes for remembering
in the human brain as discussed in section 2.5, since it also seems to employ some sort of
memory for storing past experience that is repeatedly played back in order to prevent forgetting.
This, in addition to their simplicity and strong performance, makes memory-based methods
an interesting and promising approach to continual learning. In the following some typical
examples of these categories are presented in more detail.
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3.4.1. Pseudo Rehearsal

Deep Generative Replay (DGR) Although there were some previous attempts at using
generative models to mimic the behavior of a CLS similar to the Hippocampus and Neocortex
in the human brain, Shin et al. were the first to propose a method DGR that utilizes a GAN
in [59]. Their framework is centered around so called scholars, where each scholar consists of
a generator, represented by a GAN, and the solver, which is typically a DNN for solving tasks.
Training a scholar on some task T𝑘 involves two steps.

In a first step, the generator is trained to reproduce samples from the data generating distribution
of inputs from the current task T𝑘 and all previously learned tasks T1:𝑘−1. While the data of
task T𝑘 is available in this step, data of previous tasks has to be generated by the generator
trained on the previous task T𝑘−1. This makes training the generator a recursive process where
all except data of the current task is generated using the generator trained on the previous task
T𝑘−1. Imperfections in these generated images can therefore accumulate over the repeated steps
and cause severe performance degradation. It is therefore critical that the generative model is
powerful enough to produce high-quality inputs. Shin et al. use an unconditional Wasserstein
GAN with gradient penalty [51] for the generator. Note that as a consequence, it is only able
to generate inputs x but not the corresponding label 𝑦.

After training the generator, the solver is trained on data of the current task T𝑘 and data
sampled from the generator that reproduces data from all previously learned tasks T1:𝑘−1. But
as a consequence of using an unconditional generative model, the labels of generated samples
must be predicted by the solver trained on task T𝑘−1. Similar to the training of a generator,
any errors in the prediction of labels can accumulate over repeated training steps and cause a
degradation in performance. Another aspect that needs to be controlled is the ratio of mixing
training data from the current task T𝑘 and data replayed by the generator. For this, Shin et al.
propose to minimize

L𝑘 (T𝑘 , 𝜽) = 𝑟E𝑝T𝑘 (x,𝑦) [L( 𝑓𝑘 (x; 𝜽), 𝑦)] + 𝑠E𝑝𝑔𝑘−1 (x,𝑦) [L( 𝑓𝑘 (x; 𝜽), 𝑓𝑘−1(x))] , (3.15)

where 𝑟 is the ratio of new and 𝑠 = 1− 𝑟 of rehearsal data, 𝑓𝑘 (x; 𝜽) is the current solver, 𝑔𝑘−1 is
the generator and 𝑓𝑘−1(x) is the solver trained on the previous task T𝑘−1. Although the authors
state that the mixing ratio 𝑠 for the first task should be zero, they do not provide any information
on how to select 𝑟 on the proceeding tasks. In addition to weighting the losses during training
using 𝑟, they also propose to weight these in a similar way during testing. While this might be
a reasonable assumption to make, it complicates the process of comparing different methods as
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the testing not only depends on a hyperparameter that might be different in every experiment
but it also provides the possibility to drastically reduce the loss for certain parts of the test data.
For a discussion on fair and comparable test procedures and metrics, we refer to section 3.5.

Another strength of pseudo rehearsal with DGR is its general formulation that not only allows
for many different generative models to be used as the generator but also many different
solvers. It is therefore a natural consequence that it can be applied to all three continual
learning scenarios described in section 2.2.

3.4.2. Core Set Methods

Core set methods use a small memory to store training examples in their original form and
mostly differ in the way that these are selected and used throughout the training process. While
there are many different methods that use a core set for continual learning, naive rehearsal with
random sample selection (sometimes referred to as experience replay) is the simplest of them.
It randomly selects training examples from a task to store in a memory and replaces examples
from the buffer at random when its maximum storage capacity is reached. During training, data
of the current task T𝑘 is then mixed with randomly selected data from the memory. Despite its
simplicity naive rehearsal is a strong base line that can outperform some much more complex
continual learning methods [68] even in the most challenging of the scenarios discussed in
section 2.2.

Building on this strong baseline, some methods try to improve various aspects of naive re-
hearsal. One of these is the way samples are selected for storing in the memory as not all
training data might be equally useful for remembering a task. While random selection of
naive rehearsal is trivial, determining which samples to store is in general a challenging task
as the selected data needs to be diverse but at the same time representative. Although various
heuristic methods, such as k-means clustering in input or feature space, the k-center algorithm
or herding [29], have been proposed, they are not directly coupled to the continual learning
problem and therefore struggle to consistently outperform random selection. In contrast to
this, Borsos, Mutny, and Krause reformulate the problem of which samples to select for storing
as a bi-level optimization problem and use a proxy model given by a Neural Tangent Kernel
(NTK) [69] in order to efficiently solve it. Although this approximation leads to a much more
efficient algorithm, the authors note that for a memory with more than 500 samples the compu-
tational overhead of their method becomes significant. Despite this, the experimental results
of their method indicate that it is capable to consistently outperform random selection at least
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for small buffer sizes. This is generally desirable as data from more tasks can be stored in fixed
size memory while achieving the same performance as random selection. Since their method
only effects which samples from the training data are selected for storage, it can be combined
with basically any method that makes use of a memory for preventing catastrophic forgetting.
As an example of this, Borsos, Mutny, and Krause show that their method combined with VCL
can significantly improve its performance when compared to random selection.

Gradient Episodic Memory (GEM) While the method used for selecting data to store is
undeniably one way to improve the naive rehearsal base line, how this data is used when
training on a new task is equally important. In naive rehearsal data is randomly sampled from
the memory and mixed in a certain, usually predefined, ratio with new data to form a mini batch
for training. The performance of this rather intuitive way of using the stored data depends on
the mixing ratio 𝑟. But unfortunately it does not ensure that the loss on previously learned
tasks increases whenever data is selected to form a mini batch. In order to ensure that the
loss on previous tasks does not increase, Lopez-Paz and Ranzato propose their method GEM
in [56]. To this end, they reformulate the optimization problem

min
𝜽
L𝑘 (T𝑘 , 𝜽) (3.16)

s.t. L 𝑗 (M 𝑗 , 𝜽) ≤ L 𝑗 (M 𝑗 , 𝜽 𝑗 ) ∀ 1 ≤ 𝑗 < 𝑘,

whereM𝑘 is the set of data from task T𝑘 stored in memory. There are two key observations for
their reformulation. First, it is unnecessary to store the weights 𝜽 𝑘 learned on previous tasks if
during each update step it is guaranteed that the loss on previous tasks does not increase. And
second, for small step sizes and a representative memory, an increase in loss can be determined
by evaluating the inner product between the gradient w.r.t 𝜽 of two losses: L𝑘 (T𝑘 , 𝜽) evaluated
on the current training dataset from task 𝑘 and the loss L𝑘 (M 𝑗 , 𝜽) evaluated on the data of
tasks 1 ≤ 𝑗 < 𝑘 stored in memory. With these observations, the constraints of optimization
problem 3.16 can be reformulated as

⟨g, g 𝑗 ⟩ = ⟨
𝜕L 𝑗 (T𝑗 , 𝜽)

𝜕𝜽
,
𝜕L 𝑗 (M 𝑗 , 𝜽)

𝜕𝜽
⟩ ≥ 0 ∀ 1 ≤ 𝑗 < 𝑘. (3.17)

Using this reformulation GEM reduces to ensuring that each update step when training task T𝑘
aligns with the gradients evaluated on data from previous tasks T𝑗 stored in memoryM 𝑗 with
1 ≤ 𝑗 < 𝑘 . If all constraints are met, the update step can be performed without increasing
the loss on previous tasks. But if one or more constraints are violated such an update step
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would increase the corresponding losses. In this case, GEM projects g to the closest gradient
g̃ measured using the Euclidean norm that satisfies all constraints. This projected gradient
g̃, which ensures that the loss on previous tasks does not increase, is then used instead for
updating the weights of a DNN.

Another more computationally efficient version of GEM called Averaged Gradient Episodic
Memory (AGEM) is proposed by Chaudhry et al. in [84]. Instead of enforcing each constraint
in (3.16) individually, it only enforces the gradient g evaluated on the current task to align with
the average of gradients ḡ =

1
𝑘 − 1

∑𝑘−1
𝑗=1 g 𝑗 on all previous tasks. This reduces the multiple

constraints of GEM to just one constraint, which can be enforced much more efficiently.

3.4.3. Data Distillation Methods

Another interesting approach to memory-based continual learning are methods based on data
distillation. In contrast to core set approaches and pseudo rehearsal, neither original training
examples nor a generative model are used for rehearsal but the data itself is learned. To this end,
the rehearsal data are treated as trainable parameters and a suitable loss function is minimized
by adapting those data using SGD or one of its variants. Through learning the data used in
rehearsal, some advantages over these competing categories can be gained. First, learning a
generative model that fully captures the data generating distributions of task, a challenging
problem for pseudo rehearsal, is not necessary. In addition to this, the process of learning
rehearsal data can be formulated in a way that is directly connected to minimizing catastrophic
forgetting as it is done in [114]. Second, in contrast to core set methods data for rehearsal can
be stored in a more efficient form since a dataset can be distilled into a small set of synthetic
examples that essentially capture most of the information present in the original dataset. These
properties make data distillation an interesting approach to continual learning as it circumvents
the computational challenges associated with pseudo rehearsal while at the same time offering
greater storage efficiency when compared to core set methods.

Hindsight Anchor Learning (HAL) An example for a data distillation method is HAL
proposed by Chaudhry et al. in [114]. The authors introduce so-called anchor points e𝑘 that
are used to preserve the knowledge learned on task T𝑘 by preventing a DNN from deviating
much in their prediction for e𝑘 when trained on a new task. As these anchor points are intended
to prevent forgetting when training on future tasks, directly learning them is impossible. This
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would require knowing future tasks including their datasets before they are accessible. Instead,
the authors propose to learn an approximation to them based on previous tasks. These are
accessible, although only partially, through the memoryM which stores training examples for
rehearsal. According to Chaudhry et al. anchor points can therefore be learned by finding the
synthetic input that undergoes maximum forgetting when the DNN is fine tuned on data from
previous tasks. For each task T𝑘 one anchor point per class 𝑐 is therefore learned according
to

e𝑘 = arg max
e
L(e, �̃� 𝑘−1) − L(e, 𝜽 𝑘 ) − 𝛾(∥𝝓(e) − 𝝓𝑘 ∥22), (3.18)

where �̃� 𝑘−1 is an approximation to the parameters learned on the previous task T𝑘−1. These are
obtained by fine tuning the DNN on data of all previous tasks stored in the memoryM1:𝑘−1 for
one epoch. By maximizing the difference in loss for an anchor point when using the current
weights 𝜽 𝑘 and �̃� 𝑘−1 an anchor point that undergoes maximum forgetting is found. To prevent
this anchor point from becoming too different from the original data, a regularization term is
used. It uses the Euclidean distance between an embedding of the anchor point 𝝓(e) and the
mean embedding 𝝓𝑘 of all original data from task T𝑘 . The hyperparameter 𝛾 is used to control
the strength of this regularization. For creating an embedding the first part of the current DNN
is used as a feature extractor 𝝓. The learned anchor points are then used in conjunction with
regular examples from the memory for rehearsal.

Dataset Condensation with Gradient Matching (DCGM) While HAL learns anchor points
in addition to original training examples for rehearsal, DCGM proposed by Zhao, Mopuri, and
Bilen in [129] learns a set of purely synthetic samples. Their main idea is to match the gradients
of original training examples with those of synthetic data throughout the process of training
a DNN. For this, they propose a distance measure based on the cosine similarity that is given
by

𝐷 (A,B) =
out∑︁
𝑖=1

(
1 −

a𝑇
𝑖
b𝑖

∥a𝑖∥2∥b𝑖∥2

)
, (3.19)

where a𝑖 and b𝑖 are flattened vectors corresponding to the 𝑖-th output node, i.e. neuron, of a
layer with weight matrix/tensor A and B. For a dense layer parameterized by a weight matrix
W ∈ Rin×out these correspond to individual columns with shape in while for a convolutional
layer parameterized by a weight tensor W ∈ Rh×w×in×out they correspond to the flattened
gradients for one neuron with shape h×w× in. The distance 𝐷 (·, ·) is then used to measure the
distance between gradients of original training data and synthetic examples. Zhao, Mopuri,
and Bilen then minimize it with respect to the latter during training of a DNN via SGD in order
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to learn the synthetic data. For their method to not only work on one specific initialization of a
DNN, they repeat this process for many different randomly initialized DNNs which leads to an
algorithm with two nested loops. For more details on their method we refer the reader to [129].
While DCGM is motivated by the authors as a means to speed up Neural Architecture Search
(NAS), where instead of training on a full dataset the small set of synthetic examples can be
used to evaluate an architectures performance, they also show that it can be used in continual
learning. For this, DCGM is used to replace an existing sample selection method in order to
build a rehearsal buffer.

3.5. Metrics

Given that continual learning with DNNs can be applied to many different problem settings and
deals with learning on a sequence of potentially very different tasks, it is not trivial to effectively
and fairly compare competing methods. Even comparing approaches proposed for the same
type of machine learning problem using the same datasets can be difficult since there are
many different ways a continual learning problem can be constructed, e.g. by using different
scenarios as discussed in section 2.2. The work of Prabhu, Torr, and Dokania [107], for
example, highlights the different experimental setups used by many publications on continual
learning for image classification and shows that some setups are oversimplified and easy to
perform on while simultaneously having little practical relevance. But even if the same scenario
and experimental setup are used, comparing continual learning methods can be non-trivial as
we need to compare the performance on a sequence of tasks rather than a single task.

Díaz-Rodríguez et al. therefore propose six metrics in [67] with the intention to unify the
evaluation of continual learning methods and make them more comparable. The authors
focus on the widely used setting of continual learning for supervised classification. Hence the
underlying metric used to measure the performance is the common classification accuracy.

The first three of these metrics measure the performance of a method and were originally
proposed by Lopez-Paz and Ranzato in conjunction with their method GEM discussed in
section 3.4.2. They are calculated from a matrix R whose elements [R]𝑖 𝑗 ∈ [0, 1] contain the
accuracy of a considered method on the test dataset of the 𝑗-th task after training on the 𝑖-th



– 38–

task has completed. With this matrix the authors define their first metric Accuracy (A) as

A =

∑𝑀
𝑖≥ 𝑗 [R]𝑖 𝑗

𝑀 (𝑀 + 1)
2

∈ [0, 1] , (3.20)

where 𝑀 is the number of tasks. Achieving a high A is desirable for all continual learning
methods. As this metric measures the performance of a method over the complete sequence of
tasks, Díaz-Rodríguez et al. argue that it is well suited for capturing not only the performance
on a final task but the "dynamic aspects" of continual learning as well. This is in contrast
to the original proposal of Lopez-Paz and Ranzato in [56], which only considers a methods
performance at the end of a sequence.

The second metric, Backward Transfer (BWT), measures to what extend learning a task affects
all previously learned ones. It is defined as

BWT =

∑𝑀
𝑖=2

∑𝑖−1
𝑗=1( [R]𝑖 𝑗 − [R] 𝑗 𝑗 )
𝑀 (𝑀 − 1)

2

∈ [−1, 1] . (3.21)

While catastrophic forgetting currently is the biggest challenge of continual learning with
DNNs, in the long term it is desirable to not only avoid performance degradation but to improve
on previously learned tasks when learning new ones. BWT explicitly measures this effect and
assumes positive values whenever the performance on previously learned tasks improves and
negative ones when it degrades after a task has been learned. In general maximizing BWT is
therefore the goal of all continual learning methods.

Similar to how learning a task can influence previously learned tasks, it can also affect perfor-
mance on tasks that are encountered in the future. This can be quantified by Forward Transfer
(FWT) which Díaz-Rodríguez et al. define as

FWT =

∑𝑀
𝑖< 𝑗 [R]𝑖 𝑗

𝑀 (𝑀 − 1)
2

∈ [0, 1] . (3.22)

Since FWT measures how well a DNN can generalize to unseen tasks in a continual learning
sequence, the authors argue that a model capable of zero-shot learning can show signs of such
a transfer. In contrast to the original proposal of FWT in [56], Díaz-Rodríguez et al. do not
normalize this forward transfer by subtracting the test accuracy of a randomly initialized DNN
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on each task. Again, maximizing FWT is the goal of all continual learning methods.

In addition to only measuring the performance of a method for continual learning with DNNs,
it is also important to consider its efficiency. This includes the size of a model, the number
of samples stored in memory and the computational efficiency. In the case of memory-based
methods discussed in section 3.4.2, a method that has a larger memory in general performs
better than those with a smaller one. Similar arguments can be made for structural methods,
where the model size directly influences how much parameters can be assigned to solving a
single task, and in general for the computational efficiency. To measure these efficiencies,
Díaz-Rodríguez et al. again propose three metrics.

Their Model Size (MS) metric measures the number of parameters, i.e. ∥𝜽 𝑘 ∥0, at each task.
Since some methods, e.g. EWC or PNN discussed in sections 3.1 and 3.2, grow the number
of parameters or regularization weights for each task, this metric measures the growth in the
number of parameters. It is given as

MS = min

(
1,

1
𝑀

𝑀∑︁
𝑘=1

∥𝜽1∥0
∥𝜽 𝑘 ∥0

)
∈ [0, 1] , (3.23)

where the growth is averaged over all𝑀 tasks and a method that grows the number of parameters
with each task has a MS smaller than one. Although not stated explicitly by the authors, using
this definition simplifies the comparison of different continual learning methods since an ideal
method would achieve MS close to one. It is however unclear why the authors propose to use
the minimum operator since typically the size of a model only grows during continual learning
and hence the average of fractions is smaller than one.

In order to quantify the number of samples stored in memory, Díaz-Rodríguez et al. propose
Sample Storage Size (SSS). It is based on the number of bits 𝑏𝑖𝑡 (M𝑘 ) required for storing the
rehearsal data of task T𝑘 in memory and the storage requirements for the complete training
dataset 𝑏𝑖𝑡 (T1:𝑀). Given these, the SSS is defined by the authors as

SSS = 1 −min

(
1,

1
𝑀

𝑀∑︁
𝑘=1

𝑏𝑖𝑡 (M𝑘 )
𝑏𝑖𝑡 (T1:𝑀)

)
∈ [0, 1] . (3.24)

A method that uses an overall smaller memory for all tasks obtains a higher SSS. An ideal
continual learning method uses the smallest possible number of bits to store rehearsal data
and therefore achieves a SSS close to one. Since it not only measures the memory size at the
end of a continual learning sequence but averages the memory size over all tasks, it can also
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differentiate methods with a growing memory from those with a fixed size one even if their
memories have the same storage requirement on the last task.

Methods with a growing buffer therefore achieve a higher SSS. But it is questionable if using
a growing memory instead of completely filling it already on the first task is beneficial. In
general the performance of a memory-based method is positively correlated with the size of
its memory. Utilizing all available storage capacity by filling the buffer completely right from
the first task and simply replacing old examples in the buffer on new tasks is therefore a simple
but effective way to maximize performance. Before using the SSS to compare memory-based
methods it should therefore always be analyzed if a growing memory is really better then a
fixed size one.

The last metric proposed Díaz-Rodríguez et al. is Computational Efficiency (CE) which quan-
tifies the number of Multiply-Accumulate (MAC) operations required for learning a task. It is
defined as

CE = min

(
1,

1
𝑀

𝑀∑︁
𝑘=1

O↕(T𝑘 ) · 𝜖
1 + O(T𝑘 )

)
∈ [0, 1] , (3.25)

where O↕(T𝑘 ) measures the number of MAC operations for one forward and backward pass on
T𝑘 , O(T𝑘 ) measures the total number of MAC operations required to learn T𝑘 and 𝜖 ≥ 1 is a
scaling factor. It essentially measures the average reciprocal number of forward and backward
passes required to learn a task. Similar to the other metrics defined above, the reciprocal is used
to ensure that the CE is between zero and one. Although a computationally efficient method
with a CE close to one is generally preferred, it is also obvious that the actual implementation
of a proposed algorithm can have a large influence on its computational efficiency. This makes
comparing methods based purely on the CE difficult.

Although the above metrics were proposed in order to unify evaluations and enable fair
comparisons of methods for continual learning with DNNs, they are not uniformly used by
all authors. Instead, many publications considering the ICL scenario use an evaluation metric
proposed by Rebuffi et al. in [58]. Since the authors only consider image classification, their
metric is also based on the classification accuracy. They define the Average Incremental
Accuracy (AIA) as

AIA =
1
𝑀

𝑀∑︁
𝑘=1

Acc𝑘 ∈ [0, 1] , (3.26)

where Acc𝑘 is the classification accuracy of a tested method evaluated on the test dataset
containing all classes that have been learned up to and in the 𝑘-th task. Similar to the metric A
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Table 3.3.: Overview of presented datasets.

Dataset #Train #Validation #Test Dimensions #Classes

MNIST [30] 60000 N/A 10000 28 × 28 × 1 10
FashionMNIST [62] 60000 N/A 10000 28 × 28 × 1 10
SVHN [31] 73257 N/A 26032 32 × 32 × 3 10
CIFAR10 [27] 50000 N/A 10000 32 × 32 × 3 10
CIFAR100 [27] 50000 N/A 10000 32 × 32 × 3 100
ImageNet [43] 1281167 50000 100000 Variable 1000
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2500
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Figure 3.1.: Number of examples per digit in the training and test datasets of MNIST.

defined in (3.20), it considers not only the performance on the last task but also all intermediate
ones as well and an ideal continual learning method achieves an AIA close to one. Both metrics
are scalar and can therefore be used to quickly compare methods. But despite this similarity
they are generally different as A averages the accuracy evaluated on test datasets of individual
tasks while AIA averages the accuracy evaluated on a cumulative test dataset that grows larger
with every task. Only if all tasks in a continual learning sequence contain an equal number of
examples in their test datasets both metrics are equivalent as well.

3.6. Datasets

Continual learning with DNNs covers many different problem settings and scenarios with a
diverse and open set of datasets. Due to the limited scope of this work, only supervised image
classification is considered as it covers a large body of recently published research. In the
following section several commonly used datasets, which are used to create continual learning
sequences following the scenarios discussed in section 2.2, are presented. In addition to this,
Table 3.3 provides an overview over the discussed datasets and their properties.

MNIST The MNIST dataset proposed by LeCun, Cortes, and Burges in [30] is arguably one
of the simplest and most widely used datasets for image classification. It contains centered
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gray-scale images of handwritten digits with a resolution of 28×28 pixel and is split into 60000
training and 10000 test images. The number of examples per class is not exactly balanced
as shown in Figure 3.1. But the imbalance is comparatively small and usually neglected in
practice.

FashionMNIST Another simple image classification dataset is FashionMNIST proposed by
Xiao, Rasul, and Vollgraf in [62]. Its general properties, resolution, number of examples and
classes, are identical to MNIST such that it can serve as a drop-in replacement for the latter.
FashionMNIST differentiates itself from MNIST only through the semantic meaning of its
classes, i.e. different types of clothing, and the fact that it is completely balanced.

SVHN The SVHN dataset proposed by Netzer et al. in [31] contains colored images of
digits which are obtained from house numbers in Google Street View images. These digits
are centered and cropped to a resolution of 32 × 32 pixel. In contrast to MNIST, there can
be neighboring digits next to the centered one which make SVHN much more challenging
than MNIST. The number of examples per class in SVHN is not exactly but close to being
balanced.

CIFAR10 The CIFAR10 dataset introduced by Krizhevsky in [27] features colored images
of natural objects with a resolution of 32 × 32 pixel grouped into 50000 training and 10000
test images. Its 10 classes are in general harder to discriminate than those of the previously
introduced datasets. This, in combination with the still small size of the dataset and images,
makes it a more suitable choice for evaluating and comparing modern algorithms and methods.
The number of examples per class in both, the training and test set, are again perfectly
balanced.

CIFAR100 In addition to CIFAR10, Krizhevsky also introduced CIFAR100 in [27]. This
dataset has the same number of training and test examples as CIFAR10 with the same resolution
but 100 classes that are grouped in 20 superclasses. Given the greater number of classes in
this dataset while simultaneously featuring similar object categories as CIFAR10, it can be
considered a more difficult dataset. Despite their similar names, the classes in CIFAR100 and
CIFAR10 are mutually exclusive as pointed out by Krizhevsky in [27, Chapter 3].
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ImageNet The final and largest dataset is the ImageNet introduced by Russakovsky et al.
for the "ImageNet Large Scale Visual Recognition Challenge" in [43]. It features 1281167
training, 50000 validation and 100000 test color images with varying resolutions showing
natural objects from 1000 classes. Due to it being used in a competition, the test dataset is not
directly accessible to the general public. Similar to most of the other presented datasets it is
also almost perfectly balanced. Given its size and the large number of classes compared to all
other datasets presented above, the ImageNet dataset can be considered as the most challenging
but also most realistic dataset used in this thesis.

3.7. Neural Architectures

Similar to the datasets being used in the continual learning literature, the type of neural
architecture used in these depends on the problem type. For supervised image classification
the classic ResNet architecture [44] is used in many recent publications [56, 58, 96, 107,
114, 129]. ResNets can be scaled by adjusting the number of layers and implementations
for them are widely available for common deep learning frameworks. These properties make
ResNets a suitable architecture for evaluating continual learning methods despite their age.
For experiments on ImageNet or a subset of its classes, ResNet18 is typically used while on
smaller datasets, e.g. CIFAR10/100, ResNet32 is used. The input resolution for ResNet18 is
chosen as 224× 224 pixel while for ResNet32 it is 32× 32 pixel for CIFAR10/100 and 28× 28
pixel for MNIST and FashionMNIST. The structure of both variants is detailed in Table 3.4
and Table 3.6. For experiments on CIFAR10 in the online continual learning setting, a reduced
version of ResNet18 with less filters in each ResBlock, a smaller filter size and a stride of one
in the first convolution is used. Its details are shown in Table 3.5.

The operations used in these are:

• The two-dimensional convolution 𝐶𝑜𝑛𝑣(𝑘 × 𝑘, 𝑓 , 𝑠), where 𝑘 is the kernel size, 𝑓 is the
number of filters and 𝑠 is the stride;

• Batch normalization [40] 𝐵𝑛𝑜𝑟𝑚(𝑚), where 𝑚 is the momentum used in the moving
average;

• The Rectified Linear Unit (ReLU) activation 𝑅𝑒𝐿𝑈 ();
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Table 3.4.: Details on ResNet18.

Layer Name Operation Output size

Conv0 𝐶𝑜𝑛𝑣(7 × 7, 64, 2) 112 × 112
BNorm0 𝐵𝑛𝑜𝑟𝑚(0.9) 112 × 112
ReLU0 𝑅𝑒𝐿𝑈 () 112 × 112
ResBlock0 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 64, 1) 56 × 56
ResBlock1 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 64, 1) 56 × 56
ResBlock2 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 128, 2) 28 × 28
ResBlock3 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 128, 1) 28 × 28
ResBlock4 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 256, 2) 14 × 14
ResBlock5 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 256, 1) 14 × 14
ResBlock6 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 512, 2) 7 × 7
ResBlock7 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 512, 1) 7 × 7
Glbl. Avg. Pool 𝐺𝑙𝑏𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙 () 512
Dense 𝐷𝑒𝑛𝑠𝑒(𝑛) 𝑛

• Residual Blocks 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (𝑘 × 𝑘, 𝑓 , 𝑠) where 𝑘 is the kernel size, 𝑓 is the number of
filters and 𝑠 is the stride applied in the first convolution;

• Global Average Pooling 𝐺𝑙𝑏𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙 ()

• and the final dense Layer 𝐷𝑒𝑛𝑠𝑒(𝑛) with 𝑛 neurons.

For a detailed discussion on ResNets and how residual blocks are constructed, the reader is
referred to the original publication [44].

For experiments on synthetic data presented in chapter 6 another architecture that is popular
in the field of few-shot learning [50, 60] is used. Its structure is much simper than ResNet and
features blocks of convolutional layers with ReLU activation and instance normalization [49].
The final layer in a block is an average pooling layer that reduces the feature dimension. Similar
to [129] this architecture is referred to as ConvNet in this thesis and its structure is detailed in
Table 3.7. The two additional layer types that are not already explained in the previous section
are:

• The instance normalization [49] layer 𝐼𝑛𝑜𝑟𝑚() which does not rely on statistics estimated
along the batch dimension but rather normalizes instance-wise;

• and average pooling 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (𝑘 × 𝑘) which pools the input by taking the average over
a 𝑘 × 𝑘 grid.
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Table 3.5.: Details on reduced ResNet18 for online continual learning on CIFAR10.

Layer Name Operation Output size

Conv0 𝐶𝑜𝑛𝑣(3 × 3, 20, 1) 32 × 32
BNorm0 𝐵𝑛𝑜𝑟𝑚(0.9) 32 × 32
ReLU0 𝑅𝑒𝐿𝑈 () 32 × 32
ResBlock0 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 20, 1) 32 × 32
ResBlock1 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 20, 1) 32 × 32
ResBlock2 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 40, 2) 16 × 16
ResBlock3 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 40, 1) 16 × 16
ResBlock4 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 80, 2) 8 × 8
ResBlock5 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 80, 1) 8 × 8
ResBlock6 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 160, 2) 4 × 4
ResBlock7 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 160, 1) 4 × 4
Glbl. Avg. Pool 𝐺𝑙𝑏𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙 () 160
Dense 𝐷𝑒𝑛𝑠𝑒(𝑛) 𝑛

Table 3.6.: Details on ResNet32.

Layer Name Operation Output size

Conv0 𝐶𝑜𝑛𝑣(3 × 3, 64, 1) 32 × 32
BNorm0 𝐵𝑛𝑜𝑟𝑚(0.9) 112 × 32
ReLU0 𝑅𝑒𝐿𝑈 () 32 × 32
ResBlock0 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 16, 1) 32 × 32
ResBlock1 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 16, 1) 32 × 32
ResBlock2 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 16, 2) 32 × 32
ResBlock3 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 16, 1) 32 × 32
ResBlock4 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 16, 1) 32 × 32
ResBlock5 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 32, 2) 16 × 16
ResBlock6 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 32, 1) 16 × 16
ResBlock7 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 32, 1) 16 × 16
ResBlock8 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 32, 1) 16 × 16
ResBlock9 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 32, 1) 16 × 16
ResBlock10 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 64, 2) 8 × 8
ResBlock11 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 64, 1) 8 × 8
ResBlock12 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 64, 1) 8 × 8
ResBlock13 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 64, 1) 8 × 8
ResBlock14 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (3 × 3, 64, 1) 8 × 8
Glbl. Avg. Pool 𝐺𝑙𝑏𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙 () 64
Dense 𝐷𝑒𝑛𝑠𝑒(𝑛) 𝑛
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Table 3.7.: Details on ConvNet used for generating synthetic data.

Layer Name Operation Output size

Conv0 𝐶𝑜𝑛𝑣(3 × 3, 128, 1) 32 × 32
INorm0 𝐼𝑛𝑜𝑟𝑚() 32 × 32
ReLU0 𝑅𝑒𝐿𝑈 () 32 × 32
Avg. Pool0 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (2 × 2) 16 × 16
Conv1 𝐶𝑜𝑛𝑣(3 × 3, 128, 1) 16 × 16
INorm1 𝐼𝑛𝑜𝑟𝑚() 16 × 16
ReLU1 𝑅𝑒𝐿𝑈 () 16 × 16
Avg. Pool1 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (2 × 2) 8 × 8
Conv2 𝐶𝑜𝑛𝑣(3 × 3, 128, 1) 8 × 8
INorm2 𝐼𝑛𝑜𝑟𝑚() 8 × 8
ReLU2 𝑅𝑒𝐿𝑈 () 8 × 8
Avg. Pool2 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (2 × 2) 4 × 4
Dense 𝐷𝑒𝑛𝑠𝑒(𝑛) 𝑛

These different choices for the normalization and pooling layers are due to the application of
ConvNet for generating synthetic data which usually requires taking the gradient with respect
to the input of a DNN. Since the output of an average pooling is influenced by all inputs
on the 𝑘 × 𝑘 grid, a denser flow of gradients is maintained compared to the common max
pooling layer. Additionally, synthetic data is usually generated in very small amounts as it is
intended to compress the information in an original training dataset. Reliably estimating batch
statistics therefore becomes challenging and leads to the replacement of batch normalization
with instance normalization layers. These do not rely on batch statistics and therefore are more
suitable for generating synthetic data than common batch normalization layers.



Chapter 4.

Localizing Catastrophic Forgetting in
Neural Networks

In this chapter a method for determining which part of a DNN contributes with
what extend to a change in loss when it is trained on a continual learning se-
quence without any measures for preventing catastrophic forgetting is presented.
While the work by Wiewel and Yang [94] is the basis for this chapter, we extend
their work with experiments on more datasets, a deeper DNN architecture and
an improved numerical integration method. Experiments on the commonly used
MNIST , FashionMNIST and CIFAR10 datasets are performed using the pop-
ular ResNet32 architecture. The results are discussed, compared and validated
with related work in the field of continual learning.

4.1. Motivation

In section 3.5 several metrics that are suitable to evaluate the performance and efficiency of a
method for continual learning with DNNs are discussed. Except for the efficiency metrics, that
measure how much resources are needed in a specific method, all of them quantify how well
a given DNN performs on a sequence of continual learning tasks. In the case of supervised
image classification considered in this work, the preferred underlying metric from which those
are derived is the classification accuracy. Their scalar nature and the fact that they capture
the central challenge of continual learning, namely catastrophic forgetting, allows for fast and
simple comparisons between competing methods.
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But despite their ability to quantify catastrophic forgetting, they provide no insight into which
parts of a DNN contribute to it in what extend. Studying catastrophic forgetting and localizing
it in a DNN is not only important for a better understanding of the phenomenon itself but
can also guide the development of new methods and algorithms for overcoming it. Given
the hierarchical structure of a typical DNN used in computer vision tasks, where the first
layers learn general and later ones more specific features, different parts might experience
catastrophic forgetting to a differing extend. Yosinski et al. point out in [37] that the general
features learned in the first layers of a DNN are observed mostly independent of the used loss
function and natural image dataset while features found in the last layers are highly dependent
on those. Considering the definition of a task in continual learning as discussed in section 2 it
can therefore be hypothesized that different layers in a DNN are affected to a differing extend
by catastrophic forgetting. More specifically, as the first layers learn features that are more
general and potentially transferable between tasks, the effect of catastrophic forgetting on them
might be lower than for later layers. The central research question we try to answer in this
chapter is therefore:

Which parts of a DNN contribute with what extend to a change in loss when it is trained on a
continual learning sequence without any measures for preventing catastrophic forgetting?

In this chapter, we introduce a method for estimating the contribution of individual parameters
to the commonly observed phenomenon of catastrophic forgetting in continual learning with
DNNs. Our approach is inspired by the parameter space view of SI, discussed in section 3.1,
and is based on tracking the contribution of individual parameters to the change in loss when
changing between two tasks. This allows for studying and localizing catastrophic forgetting
at different resolutions by aggregating the individual contributions of parameters over layers
or even bigger substructures of a DNN. We use this method to empirically study catastrophic
forgetting in supervised image classification under the three different scenarios discussed in
section 2.2 on select datasets and neural architectures.

4.2. Method

This section is structured in three parts. First, the main idea of how parameter specific
contributions can be estimated and an approach for validating the found parameter specific
contributions are described. This is followed by a section covering how this basic idea can be
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applied to continual learning in order to analyze catastrophic forgetting. Finally, a practical
implementation using numerical integration is presented.

4.2.1. Training DNNs: Moving Through Parameter Space

According to Definition 2, solving a task T in the context of continual learning is done by
finding the optimal parameters 𝜽★ that minimize a suitable loss function L(T , 𝜽) ∈ R. For
this, the DNN is first initialized with random weights which are then repeatedly updated using
SGD or a variant of it for 𝑁 iterations in order to minimize the given loss. During the 𝑖-th step
of this process the current parameter vector is given by 𝜽𝑖 and the corresponding loss can be
evaluated by simply determining L(T , 𝜽𝑖). Given these definitions, the following introduces
two different levels of abstraction with which the training dynamics can be described. For this,
the process of training is viewed as moving along a trajectory C through parameter space in
discrete steps. Its starting point is therefore given by the randomly initialized parameter vector
𝜽1 and its endpoint by the optimal weights 𝜽★ = 𝜽𝑁 .

Starting with the higher level of abstraction, only the scalar loss L(T , 𝜽𝑖) is evaluated at every
time step. The overall change in loss is therefore given by

ΔL = L(T , 𝜽𝑁 ) − L(T , 𝜽1), (4.1)

i.e. the difference between L evaluated at time step 𝑁 and one. This commonly used way of
describing the training dynamics is simple, fast and easy to visualize as only the loss, which
describes the model performance in one scalar, needs to be evaluated. But since it summarizes
the performance of a DNN in a single scalar, the contributions of individual parameters to
the decrease in loss are indistinguishable. In other words, the change in loss is quantified by
summarizing the contributions of all parameters into a single scalar.

More insight can be gained if the training process is viewed as moving along the continuous
trajectory C through the parameter space. Under this perspective, an infinitesimal change in
loss is given by

dL = ∇𝜽L(T , 𝜽)d𝜽 , (4.2)

where ∇𝜽 is the Nabla operator and d𝜽 is an infinitesimal step in the parameter vector. Using
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this, the overall change in loss is equivalently given as

ΔL =

∫
C

dL =

∫
C
∇𝜽L(T , 𝜽)d𝜽 , (4.3)

where the infinitesimal loss changes are integrated along the continuous trajectory C through
the parameter space. It is critical to note that although (4.1) and (4.3) are in fact equivalent,
the computational complexity for evaluating them differs significantly. While the former only
requires the evaluation of L(T , 𝜽) at two different points, the latter requires integrating the
gradient ∇𝜽L(T , 𝜽) along a potentially long continuous trajectory C. But crucial to our
approach (4.3) can be decomposed into

ΔL =

∫
C
∇𝜽L(T , 𝜽)d𝜽 =

∑︁
𝑗

∫
C 𝑗

∇\ 𝑗L(T , 𝜽)d\ 𝑗 =
∑︁
𝑗

[c] 𝑗 , (4.4)

where the vector c contains the contributions for each parameter in 𝜽 and C 𝑗 describes the
integration bounds for the individual parameter \ 𝑗 . Based on this observation, we can evaluate
the path integral while keeping the parameter specific contributions separate.

4.2.2. Application to Continual Learning

The previous paragraph considered two different levels of abstraction for analyzing the training
process of a DNN. As shown above, using the path integral along the training trajectory C
through parameter space allows for determining individual contributions of parameters to a
change in loss. This can now be used to study the effects of catastrophic forgetting on a
sequence of continual learning tasks. For this, we consider a sequence of two tasks T1 and
T2.

First, the DNN is trained on task T1 to convergence after which the optimal parameters 𝜽★1 are
obtained. This is the starting point of our approach as the DNN is now capable of solving the
first task, characterized by a low loss L(T1, 𝜽★1 ). All changes in loss up to this point are of
minor interest as they only account for learning the first task starting from randomly initialized
weights. Tracking the changes along its corresponding trajectory C1 is done by only evaluating
the loss function on the test dataset of the first task.

Next, the DNN is trained only on the data of taskT2 without any measure to prevent catastrophic
forgetting until convergence and the optimal parameters 𝜽★2 are obtained. During this process,
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the change in loss on task T1 is of special interest as any increase in it quantifies the amount of
catastrophic forgetting experienced by the DNN. We therefore evaluate the path integral from
(4.4) on the test dataset of task T1 while moving along the training trajectory C2 of task T2, i.e.
we evaluate

∫
C2
∇𝜽L(T1, 𝜽)d𝜽 . The parameter specific contributions can be used for further

analysis of which parameters or layers contributed in what extend to a change in loss on the
first task.

4.2.3. Numerical Integration: An Approximate Solution

Determining the path integral analytically is infeasible. The reason for this is twofold. During
training we only observe discrete points along C2 and not a continuously changing parameter
vector 𝜽 . But even if the continuous path C2 would be known, evaluating the gradient along it
is impractical since an analytical expression for the gradient is unavailable. We therefore resort
to numerical integration methods in order to approximate the path integral in a computationally
efficient way.

During training of a DNN discrete points on the path C2, i.e. the parameter vector at the 𝑖-th
iteration when training on task T2, are observed. The exact path through the parameter space
between two consecutive iterations, however, is unknown. But considering that the learning
rates and therefore step sizes are usually small when training a DNN, it is reasonable to assume
that the parameter vector moves along a direct path between iterations. The path C2 is therefore
approximated by straight line segments C𝑖2 connecting 𝜽𝑖 and 𝜽𝑖−1.

Definition 7: Simpson’s Rule

Named after the British mathematician Thomas Simpson (1710-1761), Simpson’s
rule [24] is a numerical approximation of a definite integral. It is given by∫ 𝑥1

𝑥0

𝑓 (𝑥)d𝑥 ≈ ℎ 𝑓 (𝑥0) + 4 𝑓 (𝑥0 + ℎ/2) + 𝑓 (𝑥1)
6

, (4.5)

where ℎ = 𝑥1 − 𝑥0. It is a third order approximation, i.e. it is exact for polynomials
up to and including order three, and requires three evaluations of the function 𝑓 . Its
application to rotational solids is equivalent to the "Fassregel" already published by
Keppler in 1615.
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Since each contribution vector c𝑖 evaluated along the line segment C𝑖2 corresponds to a definite
integral, well known quadrature methods can be used to approximate it component wise. For
contributions during the 𝑖-th training iteration, Simpson’s rule yields

c𝑖 =
[∫
C𝑖2
∇\ 𝑗L(T1, 𝜽)d\ 𝑗

]
𝑗

≈ h ⊙ ∇𝜽L(T1, 𝜽𝑖) + 4∇𝜽L(T1, 𝜽𝑖−1 + h/2) + ∇𝜽L(T1, 𝜽𝑖−1)
6

, (4.6)

where h = 𝜽𝑖 − 𝜽𝑖−1 is the update step performed in this iteration and the Hadamard product ⊙
is used to perform an element-wise multiplication. The total contribution vector c from (4.4)
is simply the accumulation of these for each training iteration, i.e. c =

∑
𝑖 c𝑖. With this, our

method for localizing catastrophic forgetting is summarized using pseudo code as shown in
Algorithm 1.

Algorithm 1: Pseudo code for localizing catastrophic forgetting using SGD
Input: Number of iterations 𝑁1, 𝑁2; Learning rate 𝛾, Tasks T1,T2, Loss function L

1 Randomly initialize DNN weights 𝜽0;
2 for 1 ≤ 𝑖 ≤ 𝑁1 do
3 Update weights: 𝜽𝑖 ← 𝜽𝑖−1 − 𝛾∇𝜽L(T1, 𝜽𝑖−1);
4 end
5 Initialize contribution vector: c𝑁1 = 0;
6 for 𝑁1 ≤ 𝑖 ≤ 𝑁2 + 𝑁1 do
7 Update weights: 𝜽𝑖 ← 𝜽𝑖−1 − 𝛾∇𝜽L(T2, 𝜽𝑖−1);
8 Determine step: h = 𝜽𝑖 − 𝜽𝑖−1;
9 Update contribution:

c𝑖+1 ← c𝑖 + h ⊙ ∇𝜽L(T1, 𝜽𝑖) + 4∇𝜽L(T1, 𝜽𝑖−1 + h/2) + ∇𝜽L(T1, 𝜽𝑖−1)
6

;
10 end

Output: Contribution vector c𝑁1+𝑁2

4.3. Experiments

In this section we use our method to visualize catastrophic forgetting for all three continual
learning scenarios discussed in section 2.2. For this, we construct corresponding continual
learning sequences using some of the datasets discussed in section 3.6 and train ResNet32
on them without any measure against catastrophic forgetting. Throughout these sequences
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we record scalar performance metrics and the individual contributions of parameters using
our method. We visualize both types of metrics and verify the estimated contributions by
comparing the changes in loss according to (4.1) and (4.4).

4.3.1. Hyperparameters

For all experiments we first train ResNet32, discussed in section 3.7, for 4000 iterations on
the first task T1 using the SGD optimizer with a learning rate of 0.1, a batch size of 128 and
a momentum of 0.9. We then train on the second task T2 for 10 iterations with the same
batch size and optimizer parameters while tracking the changes in loss on the test dataset
of task T1 according to section 4.2. Although training and tracking for only 10 iterations
on the second task is not enough to reach convergence, it is sufficient to show the effects of
catastrophic forgetting for the different scenarios. All results are reported as the average over
10 independent runs with different random initializations.

4.3.2. ICL Experiment Setup

Constructing the ICL sequence is done by splitting a dataset for supervised image classification
into two parts. Although it is not strictly necessary, each part contains the same number of
classes in order to achieve the same class balance in every task. For this experiment to be
comparable with the following ones, we chose the same datasets for all of them. These are
MNIST, FashionMNIST and CIFAR10. They are split into taskT1 containing the first half of all
classes while task T2 contains the remaining ones. Again the input space remains unchanged,
i.e. X1 = X2, while the output spaces are different, i.e. Y1 ⊂ Y2. But unlike in the ITL
sequence since Y1 is a subset of Y2 the same output layer can be used for both tasks. Note
that this also implies that during training on task T1 only the first five output neurons are used
to predict and compute gradients. During the second task all ten output neurons are used for
training. Tracking the change in loss on task T1 according to algorithm 1, however, is again
performed using only the first five output neurons. In addition to this the marginals over both,
the input and output spaces, change between tasks, i.e. 𝑝𝑋,1 ≠ 𝑝𝑋,2 and 𝑝𝑌,1 ≠ 𝑝𝑌,2.
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4.3.3. IDL Experiment Setup

The IDL sequence is constructed as follows: Task T1 consists of the original dataset with all its
classes. The second task T2 is created by flipping each image in the dataset upside down while
keeping its label unchanged. In this case, the input spaces X1 = X2 are again identical while
the marginal distributions over it change, 𝑝𝑋,1 ≠ 𝑝𝑋,2. But in contrast to the ITL sequence
described later, flipping the images does not change the label and therefore the label spaces
Y1 = Y2 and the conditional distributions 𝑝𝑌,1|𝑋,1 = 𝑝𝑌,2|𝑋,2 are identical. This implies that in
the implementation of this experiment only one output layer can be used for both tasks.

4.3.4. ITL Experiment Setup

For constructing an ITL sequence, two supervised classification tasksT1 andT2 are constructed.
Task T1 consists of classifying the first half of all classes from a dataset and task T2 requires the
classification of all remaining classes. Using the notation introduced in section 2.2, the input
spaces X1 = X2 are identical for both tasks. But since both tasks contain different classes,
the marginal distributions over the input spaces are not identical, 𝑝𝑋,1 ≠ 𝑝𝑋,2. Although both
tasks are supervised image classification tasks, the output spaces are treated separately, i.e.
Y1 ≠ Y2, which requires a separate output layer for each task. Therefore it is important to use
the correct output layer when evaluating the gradients in algorithm 1.

4.3.5. Scenario-Specific Challenges

The three scenarios described above differ significantly in their definition and therefore also
pose different challenges regarding continual learning. The ICL scenario is probably the most
intuitive one for an image classification problem as it simply adds more classes to be classified
with each new task. It is, however, also the most challenging one. The reason for this is
twofold. First, the final layer of a DNN, i.e. the classification layer, needs to be expanded
for accommodating these new classes. After this expansion the layer has weights that were
trained on previous tasks while those of the newly added output neurons are just randomly
initialized. Training this layer to not only distinguish between the newly added classes but
also the previously learned ones is challenging, especially since access to data of previous
tasks is severely restricted. Second, newly added classes might differ significantly in their
class-defining visual features. This might require changes to layers that are associated with
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feature extraction. For differences in high-level features, deeper layers close to the final layer
need to be adapted. For more general low-level features the first layers of a DNN need to be
changed. Although such changes are generally simple to accomplish by retraining with all
data, they can lead to severe catastrophic forgetting in continual learning. When localizing
changes in loss using the previously introduced method, high contributions of the very first
and/or later layers including the final one to catastrophic forgetting are expected.

The IDL scenario is less challenging than ICL since it does not require to expand the last layer
of a DNN. The challenges associated with this expansion therefore do not apply to IDL. But
the visual features both high- and low-level might still change significantly when learning a
new domain. Forgetting might therefore still occur but usually to a lesser extend. If the class-
defining features in two different domains are similar enough only small adaptations might
be needed to learn the new domain and therefore only limited forgetting might occur. When
localizing a change in loss significant contributions are to be expected mostly for the feature
extracting layers, i.e. the very first ones for low- and the last layers for high-level features. In
contrast to ICL, much less loss change contribution is expected for the final layer of a DNN.

The last scenario ITL is the least challenging, at least in the way it is usually constructed in the
literature and also this thesis. The reason for this is that although in general ITL allows for task
to be completely different, e.g. image classification in the first and semantic segmentation in the
second task, it is often constructed from tasks of the same type, i.e. here image classification.
This in combination with the separate final layer for each task means that only limited changes
are required to the feature extracting part of a DNN that is actually shared between tasks. If
the class-defining features of the classes from these tasks are also similar, there is only very
limited potential for catastrophic forgetting to occur. During localization of changes in loss,
only the feature extracting layers might show some contribution while the classification layer
contributes nothing. The reason for this is the use of a separate final layer for every task.

4.4. Results

The estimated changes in loss for each of the experiments described above are shown in
Figure 4.1. For a clear visualization the contributions of all parameters in a layer according
to the structure of ResNet32 described in Table 3.6 have been aggregated by summing their
contributions. Each row shows the results for a particular dataset. The top row shows those
of MNIST, the second row those of FashionMNIST and the last row show the results for
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CIFAR10. The left column shows the total contribution of each layer while the right column
shows it normalized by the number of parameters in each layer. Results for the experiments
using different continual learning scenarios are color coded as red, blue and purple for ICL,
IDL and ITL.

4.4.1. Observations

Comparing the results shown in Figure 4.1 it is obvious that the contribution to a changing
loss is different for the three scenarios. But for each scenario some similarities can be
observed between the datasets. This section presents the qualitative observations provided
by the localization of changes in loss. Quantitative results are presented and discussed in
section 4.4.2.

For ICL significant contributions of later layers and the final layer are observed for every
dataset. This aligns with the expectation formulated in section 4.3.5. While for MNIST and
FashionMNIST all layers on average show a positive contribution, i.e. an increase in loss,
ResBlock14 and the last Dense layer actually show a significant negative contribution, i.e.
a decrease in loss for CIFAR10. Although this is somewhat surprising, the overall change
in loss is still positive for CIFAR10 as reported in Table 4.2 and 4.3. Hence there is still
catastrophic forgetting as can be observed from the scalar metrics discussed in section 4.4.2.
Another difference for ICL between the datasets is an increasingly positive contribution of the
first layer. This also aligns with the previously formulated expectations since the low-level
class-defining features in MNIST are rather simple. Digits are simply combinations of straight
and curved lines. Classes of FashionMNIST on the other hand also have texture and more
complex shapes. The classes of CIFAR10 posses arguably even more sophisticated low-level
features since they show natural objects. Consequently the contribution to a change in loss of
the first layer increases from MNSIT, to FashionMNIST and is highest for CIFAR10. When
considering the contribution per parameter the first and last layer even show larger contribution
than the hidden layers for FashionMNIST and CIFAR10. For MNIST the first layer shows a
similar contribution per parameter as the hidden layers while again the last layer shows a much
larger one.

The contributions for IDL on the other hand are more similar for the tested datasets. In
this case, most of the overall contribution is attributable to the later feature extracting layers
while the last layer shows a smaller even negative contribution. This again agrees with the
expectations formulated in section 4.3.5. Similar to ICL the contribution of first layers again
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increases from MNIST over FashionMNIST up to CIFAR10. This can best be observed by
using the contribution per parameter1. A possible explanation for this is again the increasing
complexity of class-defining visual features in these datasets.

In the case of ITL there are only few layers which show noticeable contributions. These are
mostly the later feature extracting layers while the last Dense layer as expected has always a
contribution of zero. The observable contributions are mostly small and strictly negative for
MNIST and FashionMNIST. They also closely match the difference in scalar loss as shown in
Table 4.3. Hence these results do not seem plausible. A possible reason for this might be that
the changes in loss are so small that errors in the numerical integration have a significant impact.
In contrast to this, a positive contribution that is close to the difference in loss determined using
scalar metrics is observed for ResBlock14 on CIFAR10. A possible reason for this could be
that the separate final layer that is used for every task in ITL is not sufficient to account for
all required changes to learn the new classes. Hence adaptations in the preceding layers are
required. Since these are shared between all tasks, changes to them might cause catastrophic
forgetting.

4.4.2. Scalar Metrics

In addition to the estimated contributions to the change in loss on task T1, we also evaluate
the loss and accuracy on both tasks throughout the continual learning sequences. The loss
and accuracy are shown in Table 4.2 where L(T𝑖, 𝜽★𝑗 ) is the loss evaluated on task T𝑖 using the
optimal weights 𝜽★𝑗 found by training on task T𝑗 and A(T𝑖, 𝜽★𝑗 ) is the corresponding accuracy.

Since no measure for protecting the DNN against catastrophic forgetting is used, a decrease
in performance on task T1 is to be expected after task T2 is learned. The expected changes
in accuracy A are summarized in Table 4.1. After the DNN is trained on the first task (left
column) it achieves a high accuracy on this task. Since it was not trained on the second task at
this point, it will achieve only low performance on it. After the DNN is trained on the second
task (right column) a high accuracy is to be expected on this task. But since no measures
against catastrophic forgetting were used, its performance on task T1 will deteriorate due to
forgetting. For the loss an opposite trend can be observed since a low loss corresponds to a
high accuracy and vice versa.

1Note the different scales for every dataset.
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Table 4.1.: Expected accuracy changes.
Accuracy A 𝜽★1 𝜽★2
T1 High Forgetting
T2 Low High

Since catastrophic forgetting effects the performance of ResNet32 on task T1, we focus our
discussion of the scalar metrics on the first task. Similar to the results discussed in the previous
section, there is a significant difference in the scalar metrics between different continual
learning scenarios as well. Across all dataset and scenario combinations the loss L(T1, 𝜽★2 )
is significantly higher than L(T1, 𝜽★1 ). But comparing the scenarios it is obvious that this
increase is smaller for ITL when compared with the other two scenarios. The reason for this
is that during IDL and ICL all weights of the DNN are shared between tasks, while in ITL
a separate output layer is used for every task. Most of the changes required during ITL for
learning a new task can therefore be accounted for by this last layer. The preceding layers
remain mostly unchanged. This is also reflected in Figure 4.1 where only ResBlock14 showed
a significant contribution to the changing loss during ITL on CIFAR10. Interestingly, the
increase in loss is slightly higher for IDL than ICL on MNIST and CIFAR10. This is in
contrast to FashionMNIST where ICL shows a significantly higher increase in loss.

The ordering in difficulty from ICL being the most challenging over the less demanding IDL
to the least difficult ITL scenario as discussed in section 4.3.5 is based on the performance of a
DNN. This is measured using not the loss but accuracy as a metric. The ordering is therefore
reflected in the lower half of Table 4.2. Comparing A(T1, 𝜽★1 ) to A(T1, 𝜽★2 ) the largest decrease
is observed for ICL, followed by IDL and finally ITL. Although the changes in loss for ICL
are slightly smaller than those for IDL on MNIST and CIFAR10, the accuracy shows a much
larger decrease for ICL than IDL.

4.4.3. Result Verification

Conclusions can only be derived from the estimated contributions shown in Figure 4.1 if these
closely match the actual changes in loss. For this, the change in loss on task T1 are determined
directly by (4.1) and compared with (4.4). The results for different continual learning scenarios
and datasets are shown in Table 4.3. While the actual change in lossΔL is close to the estimated
ΔL𝑒𝑠𝑡 for ICL and IDL on all datasets, there is a noticeable difference between both for ITL.
On MNIST and FashionMNIST our algorithm seems to severely underestimate the change
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in loss and on CIFAR10 it seems to slightly overestimate it. Although the cause for this
behavior remains unclear, one possible explanation could be an approximation error due to
the numerical integration using Simpson’s rule. But since the changes in loss are small and
catastrophic forgetting seems to be much less severe for ITL when compared to the other
scenarios, this discrepancy can be tolerated. Overall we are interested in studying a significant
change in loss due to catastrophic forgetting which seems to only be present in the ICL and
IDL scenarios.

4.5. Related Work

Our method is inspired by the parameter space view on the training process of DNNs as
proposed by Zenke, Poole, and Ganguli in conjunction with their method SI [63]. The same
perspective is also adapted by Chaudhry et al. for their method Riemannian Walk (RWALK)
proposed in [66]. But while the contribution of parameters to a change in loss for SI and
RWALK is determined on the same task T𝑘 as the DNN is trained on, our method tracks the
change in loss on the previously learned task T𝑘−1. Similar to our work, Goodfellow et al.
study the phenomenon of catastrophic forgetting in [34]. But their empirical study considers
only scalar metrics and studies the effects of different activation functions and Dropout [36]
on the continual learning performance of a DNN. Overall our findings agree with Yosinski
et al. [37] in a sense that the first layers of a DNN seem to learn more general and therefore
transferable features when trained on natural image datasets like those used in this thesis. We
base this claim on the results in Figure 4.1 which show that, at least for the used datasets and
the ResNet32 architecture, the later layers contribute more to a change in loss. This increased
contribution can partly be explained by a greater number of parameters in these layers but even
when normalizing by the number of parameters the contribution per parameter is increased
for later layers. Although our experiments are limited to only one neural architecture and a
small number of datasets, Wu et al. [95] also conclude that the last layer in a DNN gets biased
towards the most recently learned classes in an ICL sequence which agrees with our findings
as well.
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4.6. Conclusion

By interpreting the process of training a DNN as moving along a trajectory in parameter
space, similar to SI, we derived Algorithm 1 in section 4.2 for estimating the contribution
of individual parameters to a change in loss. For this, Simpsons rule is used to numerically
approximate the path integral along the training trajectory while keeping the contributions of
all parameters separate. The resulting contribution vector c can then be aggregated over layers
and even bigger structures, e.g. ResBlocks, that contain multiple layers in order to visualize
the contributions of these. Using this algorithm we try to answer the research question from
the motivation:

Which parts of a DNN contribute with what extend to a change in loss when it is trained on a
continual learning sequence without any measures for preventing catastrophic forgetting?

For this, we first train a ResNet32 on taskT1 until convergence and then train it on a different task
T2 while simultaneously tracking the change in loss on task T1 as described in section 4.3. The
resulting estimated contributions are shown for each individual layer in Figure 4.1 and discussed
in section 4.4. The exact contributions differ for different datasets and scenarios but there are
patterns that can be recognized in how the contributions are distributed across ResNet32. For
ICL mostly later layers and the final dense layer contribute to a change in loss. The first layer also
has a contribution that increases from MNIST over FashionMNIST to CIFAR10. Interestingly,
the contributions of ResBlock14 and the final dense are negative on CIFAR10. But the overall
change in loss remains positive and significant catastrophic forgetting is observed. IDL shows
similar results with the dense layer and ResBlock14 contributing significantly less than the
layers proceeding them. For ITL only ResBlock14 shows the highest contribution while layers
preceding it show much less and the final dense layer zero contribution.

Comparing the scalar metrics reveals that although the increase in loss is larger for IDL than
ICL on MNIST and CIFAR10, the drop in accuracy is largest for ICL, followed by IDL and
smallest for ITL on all tested datasets. This aligns with the expected order of difficulty for the
three continual learning scenarios. The result of ITL being the least challenging scenario is
somewhat counter intuitive but is due to the reason that separate output and/or input layers are
used for different tasks. This is not the case for ICL and IDL where the same input and output
layers are used for different tasks. This makes a solo comparison of the loss change between
ITL and ICL/IDL not fair.
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In the literature and this thesis the problem types, i.e. image classification, are identical for
every task. This is in agreement with the general definition of ITL but at the same time
also quiet restrictive. The definition allows for each task to have arbitrary problem types.
A much more challenging ITL sequence might have one task requiring image classification,
another one semantic segmentation and a final one image synthesis. Although such sequences
might be more challenging and realistic they are also much more difficult to construct and
will complicate comparisons with other methods which have never addressed this mixed task
setup. Hence this thesis follows the literature and only constructs ITL sequences using image
classification tasks.
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Table 4.2.: Loss and accuracy for ResNet32 trained on different datasets and continual learning
scenarios.

Loss L(T1, 𝜽★1 ) L(T1, 𝜽★2 ) L(T2, 𝜽★1 ) L(T2, 𝜽★2 )
Scenario MNIST
ICL 0.0279±0.066 1.49±0.48 6.81±0.92 0.906±0.18
IDL 0.0163±0.0016 1.62±0.53 6.32±0.31 0.783±0.25
ITL 0.00563±0.0017 0.135±0.22 4.59±0.64 0.409±0.092
Scenario FashionMNIST
ICL 0.281±0.018 3.03±1.3 9.33±0.74 1.69±0.33
IDL 0.305±0.025 0.785±0.082 5.25±0.41 0.846±0.12
ITL 0.273±0.018 0.743±0.5 10.0±0.98 1.96±1.0
Scenario CIFAR10
ICL 0.42±0.039 1.75±0.11 7.56±0.15 1.53±0.062
IDL 0.659±0.052 2.22±0.16 3.31±0.15 1.99±0.097
ITL 0.445±0.016 1.32±0.33 10.6±0.31 0.594±0.065

Accuracy A(T1, 𝜽★1 ) A(T1, 𝜽★2 ) A(T2, 𝜽★1 ) A(T2, 𝜽★2 )
Scenario MNIST
ICL 0.993±0.014 0.486±0.12 0.000432±0.00087 0.67±0.11
IDL 0.995±0.00044 0.597±0.046 0.436±0.013 0.786±0.054
ITL 0.998±0.00067 0.968±0.044 0.354±0.025 0.861±0.039
Scenario FashionMNIST
ICL 0.948±0.0019 0.285±0.12 0.0±0.0 0.355±0.1
IDL 0.929±0.0024 0.764±0.023 0.276±0.01 0.754±0.029
ITL 0.948±0.0034 0.88±0.06 0.213±0.017 0.515±0.11
Scenario CIFAR10
ICL 0.896±0.0073 0.255±0.053 0.0±0.0 0.335±0.05
IDL 0.829±0.011 0.417±0.026 0.353±0.011 0.463±0.026
ITL 0.895±0.0039 0.769±0.035 0.049±0.0034 0.792±0.023

Table 4.3.: Loss on task T1 for ResNet32. ΔL is the change in loss evaluated by (4.1) while
ΔL𝑒𝑠𝑡 is the change in loss determined by summing up all parameter specific
contributions in (4.4).

Change ΔL/ΔL𝑒𝑠𝑡 ΔL/ΔL𝑒𝑠𝑡 ΔL/ΔL𝑒𝑠𝑡
Scenario MNIST FashionMNIST CIFAR10
ICL 1.461/1.470 ≈ 0.9939 2.753/2.736 ≈ 1.0062 1.333/1.442 ≈ 0.9244
IDL 1.604/1.601 ≈ 1.0019 0.480/0.492 ≈ 0.9756 1.563/1.835 ≈ 0.8518
ITL 0.130/−0.437 ≈ −0.2975 0.469/−0.059 ≈ −7.9491 0.880/0.995 ≈ 0.8844
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Chapter 5.

Online Continual Learning and Buffer
Management

This chapter presents an algorithm first proposed by Wiewel and Yang in [126]
for managing a small rehearsal memory in the online continual learning setting
where data becomes available in a stream of individual examples or small batches
at a time. Given these constraints, online continual learning more closely
resembles the environment power and compute restricted autonomous systems
could encounter in the real world. It is therefore of great interest as it would
allow such systems to accumulate knowledge of potentially long time periods
without forgetting. The method itself is motivated and derived by adopting
an information theoretic perspective and applying the well known principle
of entropy maximization. Experimental results for different online continual
learning problems on commonly used benchmark datasets are presented while
the proposed algorithm is compared with related methods.

5.1. Motivation

Although continual learning problems share a common definition, i.e. Definition 3, there exist
differences that lead to significantly different challenges that need to be overcome. The first
and most obvious one is the underlying problem type of each task in a continual learning
sequence. It is common in the literature that all tasks originate from the same type of machine
learning problem, i.e. supervised image classification. But in general this is not required and
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each task can be of a different type and possibly feature a differing dataset. In addition to this,
there can be different continual learning scenarios as discussed in section 2.2 for supervised
image classification. These can lead to different continual learning sequences even if all tasks
are of the same type and use the same dataset. Finally, the way data is made available to a
method during continual learning is another distinctive feature.

Although the properties of online continual learning as presented in section 2.3 might seem
overly restrictive at first glance, they represent the environment that an autonomous learning
system might encounter in the real world more closely than its offline counterpart. The au-
tonomous system might be able to observe its surrounding and learn from it through interacting
with it. But due to limited storage space or other reasons it might be prevented from accumu-
lating a large dataset for offline training and therefore needs to be capable of online learning.
In this case, it is also impossible to access data at random. Studying and developing methods
for online continual learning with DNNs is therefore an important part of the research body
on continual learning. The potential application in autonomous systems with often limited
computational and storage resources in addition to the online aspect requires powerful but also
efficient methods. Examples of online continual learning for autonomous systems include Si-
multaneous Localization and Mapping (SLAM) [134], Visual-Inertial Odometry (VIO) [135]1

and depth estimation [136]1.

The method Gradient based Sample Selection (GSS) proposed by Aljundi et al. in [83], for
example, uses a small rehearsal buffer in combination with an algorithm that uses gradient
information in order to decide which examples to store and keep in it for online continual
learning with DNNs. It is motivated by a constraint reduction of an optimization problem
that ensures a non-increasing loss on all training examples stored in the rehearsal buffer. But
although GSS achieves strong results, it is computationally intensive and even a faster but in-
exact greedy alternative of the original algorithm requires the calculation of gradients for many
examples from the buffer whenever a new training example is observed. This computational
complexity makes it unattractive for power and computationally limited autonomous systems
and motivates us to search for a more efficient and potentially even better algorithm. In this
chapter, we therefore intend to answer the following research question:

How can the buffer of a rehearsal-based method for continual learning be managed in a simple
but effective way to enable online continual learning?

1Preprint



– 66–

An important thing to note is that the focus of this chapter is purely on optimizing the
management of a rehearsal buffer, i.e. which data to store and what to replace, not how this
stored buffer is used in training. Therefore, only random sampling from the rehearsal buffer
and mixing this data is used during training for the method proposed in this chapter. A more
complex and improved way of using stored rehearsal data during continual learning is presented
in chapter 7 of this thesis.

In this chapter, we adopt an information theoretic perspective and use the well known Shannon
entropy [1] in order to derive an algorithm in section 5.2. It is capable to decide which examples
should be stored and which ones replaced by them in a rehearsal buffer. The experimental
setups and results for comparing our method to related work are presented in section 5.3.
Finally the chapter is closed with a conclusion in section 5.4.

5.2. Method

This section is structured in three parts. First, the basic idea of our approach that allows us to
rank rehearsal buffers of the same size according to their informational value in section 5.2.1
is introduced. Building on this, an optimization problem that aids as a rule for selecting which
examples to store in a rehearsal buffer of fixed size is introduced in section 5.2.2. Our algorithm
is then derived as an approximate solution to the optimization problem in section 5.2.3.

5.2.1. A Probabilistic Perspective on Sampling from a Rehearsal
Buffer

All memory-based methods for continual learning with DNNs discussed in section 3.4 share a
rehearsal buffer that serves as a memory from which previously encountered training examples
are drawn randomly and interleaved with new data during training on a new task as their
fundamental protection against catastrophic forgetting. In the following we use the notation
M = {x𝑖, y𝑖}𝑁𝑖=1 for a set of 𝑁 training examples stored in the rehearsal buffer. In the case of
an online continual learning on supervised image classification, each training example is given
by an image x𝑖 with its corresponding class label y𝑖 as a one-hot vector. Selecting examples
uniformly at random fromM is then equivalent to sampling from the distribution

𝑝(x, y|M) = 𝑝(x|y,M)𝑝(y|M), (5.1)
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which serves as an approximation to a true data generating distribution 𝑝(x, y) of the observed
data and depends on the set of training examplesM that are stored. Note that the rehearsal
bufferM contains only samples from 𝑝(x, y|M) while its exact form is unknown.

Interpreting the process of randomly selecting examples from the rehearsal buffer as sampling
from a distribution that depends on M enables us to rank different buffers based on their
contents. For this, we can think of a rehearsal buffer as a communication channel between
previously learned tasks and the current task during continual learning. Choosing different
training examples on previous task to store in the rehearsal buffer is then equivalent to sending
different messages through time. This similarity to a classical communication channel allows
for using well established principles from the field of information theory to analyze and optimize
the composition of a rehearsal buffer. As one of the most central quantities in information
theory, the Shannon entropy [1] is a natural choice for this since it measures the informational
value of a random variable given its probability density function. For a pair of random variables
𝑋 and 𝑌 it is given by

𝐻 (𝑋,𝑌 ) = −E𝑝(x,y) [log 𝑝(𝑋,𝑌 )] , (5.2)

where 𝑝(x, y) is the joint probability density or mass function. Note that the entropy is usually
measured in bits and the logarithm is taken with base 2. But since we are just interested in
comparing the entropy of different distributions, the absolute value and therefore its unit are
irrelevant.

Much more important for the derivation of our method is its interpretation as the number of
bits on average required to describe the random variables, i.e. its informational value. Overall,
the rehearsal buffer is intended to serve as a memory of previously learned knowledge and
sampling from it should provide useful information. The entropy as an informational value of
a random variable serves as a way to quantify this rather vague concept of providing useful
information. Under this perspective, a rehearsal buffer with high entropy associated with
sampling uniformly at random from it provides more useful information than one with a low
entropy. Suppose, for example, that the rehearsal buffer is filled with 𝑁 copies of the same
training example. It would certainly not provide much useful information as sampling from
it is totally predictable and correspondingly the associated entropy would be zero. Any other
buffer with more than one unique stored example would feature a higher entropy and also be
considered to provide more useful information during rehearsal.
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5.2.2. Entropy Maximization as a General Rule for Sample Selection

Given this perspective and notation on a rehearsal buffer and randomly sampling from it
introduced in the previous section, a simple rule for selecting training examples to store in a
rehearsal buffer can be derived. For this, consider an already filled rehearsal bufferM of size
𝑁 . If an unseen training example is encountered we have to decide between 𝑁 + 1 different
actions: We can replace one of the 𝑁 already stored examples with the new one or we can
simply leave the rehearsal buffer unchanged and move on to the next training example from the
data stream. Each of these actions results in a new rehearsal bufferM𝑙 for 0 ≤ 𝑙 ≤ 𝑁 , where
M0 denotes an unchanged rehearsal buffer andM𝑙 for 𝑙 ≠ 0 is the result of replacing the 𝑘-th
stored with the new training example. Following the premise of maximizing the informational
value when sampling from the rehearsal buffer, selecting an action to enact out of these 𝑁 + 1
possible ones is performed by solving the optimization problem

max
𝑙
𝐻 (𝑋,𝑌 |M𝑙) = max

𝑙
−E𝑝(x,y|M𝑙) [log 𝑝(𝑋,𝑌 |M𝑙)] , (5.3)

where 𝐻 (𝑋,𝑌 |M𝑙) denotes the entropy of 𝑝(𝑋,𝑌 |M𝑙). The idea of maximizing the entropy
for selection problems is well known in maximum entropy sampling [8] or the training of
decision trees [5] but was never applied to sample selection in the context of online continual
learning. Although the above optimization problem is easily formulated, solving it efficiently
is not trivial. The first challenge lies in the fact that it is a discrete optimization problem since
we are optimizing over buffer states. Thus gradient-based methods can not be used as the
gradient with respect to the buffer contents does not exist. In addition to that, the exact form of
𝑝(x, y|M𝑙) is unknown and has to be approximated. Finally, using an exhaustive search over
all potential solutions is possible but infeasible since the entropy has to be determined for all
of the potentially thousands of possible actions for each newly encountered training example.
We therefore restrain from finding an exact solution to the optimization problem given in (5.3)
and instead propose an algorithm to solve it approximately in the next section.

5.2.3. An Approximate Solution to an Infeasible Optimization Problem

In the following we assume that the underlying type of problem in an online continual learning
sequence is supervised image classification as this allows us to easily compare our approach
to related work such as GSS. The motivation and introduction of our approach, however, is
general enough such that is can be applied to other settings as well. The starting point for our
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approximate method is a decomposition of the joint entropy of two random variables 𝑋 and 𝑌
into

𝐻 (𝑋,𝑌 |M𝑙) = 𝐻 (𝑋 |𝑌,M𝑙) + 𝐻 (𝑌 |M𝑙), (5.4)

where 𝐻 (𝑋 |𝑌,M𝑙) is the conditional entropy of 𝑋 conditioned on 𝑌 . Maximization of
𝐻 (𝑋,𝑌 |M𝑙) in general is therefore performed by maximizing 𝐻 (𝑌 |M𝑙) only over 𝑌 while
𝐻 (𝑋 |𝑌,M𝑙)must be maximized jointly over 𝑋 and𝑌 . Considering our intention of maximizing
the joint entropy by selecting the action on our buffer that maximizes the joint entropy, this
decomposition is not simplifying the original problem, at least if we intend to strictly maximize
𝐻 (𝑋,𝑌 |M𝑙). This is due to the fact that replacing an example inM𝑙 with a new one in general
has an influence on both 𝐻 (𝑋 |𝑌,M𝑙) and 𝐻 (𝑌 |M𝑙) at the same time.

But if we instead allow for an action on the buffer to occasionally cause a decrease in the joint
entropy, the decomposition above allows for a simple approximate algorithm for maximizing
𝐻 (𝑋,𝑌 |M𝑙). For this, we first select the subset of actions on the buffer that maximize𝐻 (𝑌 |M𝑙)
and then choose from those the action that maximizes 𝐻 (𝑋 |𝑌,M𝑙). This is an approximate
solution to the optimization problem in (5.3) since it optimizes sequentially first over𝑌 and then
over 𝑋 instead of jointly optimizing over 𝑋 and 𝑌 . As our experimental results in section 5.3
show, it is a reasonable simplification that allows for a fast but still capable algorithm.

Building on this basic idea and the restriction to supervised image classification our method is
derived in the following. Since in this case 𝑌 is a discrete random variable representing class
labels, it follows a categorical distribution 𝑝(y|M𝑙) whose entropy is at its maximum for equal
class probabilities.

The first step in our method is therefore to select a subset from all possible actions that result
in a more uniform distribution of classes in the rehearsal buffer. This is done by replacing
an example of the majority class in the rehearsal buffer with a new one. Any action in this
subset then increases 𝐻 (𝑌 |M𝑙) given that the replacing example is of a class other than the
majority class. Otherwise the balance of classes in the buffer and therefore also 𝐻 (𝑌 |M𝑙)
remain unchanged. If it is not possible to determine a single majority class, i.e. two or more
classes have the same and highest number of examples in the rehearsal buffer, one of these is
selected randomly for replacement.

While choosing a subset of actions in order to maximize 𝐻 (𝑌 |M𝑙) is rather simple under the
given circumstances, the next step of our method is complicated due to the lack of knowledge
about an exact analytical form of 𝑝(x|y,M𝑙). An approximation of it in form of a Kernel
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Density Estimator (KDE) is given by

𝑝(x|y,M𝑙) ≈
1
𝑀𝑦

𝑀𝑦∑︁
𝑚=1

𝐾 (x − x𝑦 [𝑚]), (5.5)

where 𝑀𝑦 is the number of examples x𝑦 inM𝑙 with label 𝑦 and 𝐾 (x) ∈ R+ is a kernel function.
Choosing a Gaussian, i.e. 𝐾 (x) = (2𝜋)−1/2e−∥x∥22/2, as the kernel function yields

𝐻 (𝑋 |𝑌,M𝑙) = −E𝑝(x|y,M𝑙) [log 𝑝(𝑋 |𝑌,M𝑙)]

≈ −E𝑝(x|y,M𝑙)

log
1

𝑀𝑦

√
2𝜋

𝑀𝑦∑︁
𝑚=1

e
−∥x − x𝑦 [𝑚] ∥22

2
 , (5.6)

where we did not include a kernel width parameter for a lighter notation and since it does not
change the following reasoning. With this particular choice of a kernel function, the second
step of our method is then equivalent to solving the optimization problem

𝑙★ = arg max
𝑙
𝐻 (𝑋 |𝑌,M𝑙) = arg max

𝑙

∫
−𝑝(x|y,M𝑙) log 𝑝(x|y,M𝑙)dx, (5.7)

where 𝑙★ is the index of a particularM𝑙★ that from all possible memories achieves the highest
conditional entropy. Similar to Gaussian mixture models [25], there is unfortunately no
analytical solution for determining the entropy of this KDE although 𝑝(x|y,M𝑙) is known
according to (5.5). It can therefore only be evaluated by approximations, e.g. Monte Carlo
sampling. For our approach we choose to approximate it by

𝑙★ = arg max
𝑘
𝐻 (𝑋 |𝑌,M𝑙) ≈ arg max

𝑙

−1
𝑀𝑦

𝑀𝑦∑︁
𝑚=1

log
1

𝑀𝑦

√
2𝜋

𝑀𝑦∑︁
𝑛=1

e
−∥x𝑦 [𝑚] − x𝑦 [𝑛] ∥22

2 , (5.8)

where the expectation operator is approximated by sampling only at the modes x𝑦 [𝑚] of
𝑝(x|y,M𝑙). Although this is a rather imprecise approximation due to a potentially small
number of samples with which an expectation over a high-dimensional density is evaluated, it
can be argued that the highest density is concentrated around the modes. From this approx-
imation a simple decision rule for deciding which sample stored in the rehearsal memory is
to be replaced is derived. More details on this derivation is presented in the appendix under
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section A. This results in

𝑙★ = arg max
𝑙
𝐻 (𝑋 |𝑌,M𝑙) ≈ arg max

𝑙

𝑀𝑦∑︁
𝑚=1

𝑀𝑦∑︁
𝑛=1
∥x𝑦 [𝑚] − x𝑦 [𝑛] ∥22, (5.9)

which implies that the action performed on the buffer that maximizes the conditional entropy
𝐻 (𝑋 |𝑌,M𝑙) is approximately equal to the action that maximizes the sum of squared distances
between the kernel modes, i.e. the stored examples of class 𝑦 in the rehearsal memory.

Finally, we propose a simple and fast algorithm for solving the optimization problem presented
in (5.9) by randomly selecting the 𝑖-th example of the majority class in the buffer for replacement
with probability

𝑝𝑖 =
1 − 𝑑𝑖/𝑑𝑚𝑎𝑥∑
𝑗

(
1 − 𝑑 𝑗/𝑑𝑚𝑎𝑥

) , (5.10)

where 𝑑𝑖 is the minimum distance of the 𝑖-th example to all other examples of the majority
class and 𝑑𝑚𝑎𝑥 is the maximum of these minimum distances used for normalization. This
again does not strictly maximize the distance between all examples of the majority class in
the buffer during every step but it replaces examples which lie close to another example of the
same class with high probability. If during this replacement process the newly added example
lies even closer to another one of the same class, it will be selected for replacement in the next
iteration with an even higher probability. Overall this prevents a static buffer when it achieves
maximum entropy and does not change anymore regardless of how many new examples of the
same class are encountered. Such a static buffer can have a negative impact on performance as
repeatedly sampling from the same small buffer can cause overfitting of a DNN to the stored
examples. This risk is reduced when samples in the buffer are replaced regularly. Finally, we
summarize the steps of our method discussed above in Algorithm 2 and call it Entropy-based
Sample Selection (ESS).

5.3. Experiments and Results

The experiments presented in this section are structured in two parts: A direct comparison
with GSS on sequences from the MNIST and CIFAR10 datasets. This is followed by a com-
parison with other recently published methods, like Maximally Interfered Retrieval (MIR) [81]
and Adversarial Shapely value Experience Replay (ASER) [122], which propose improved
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Algorithm 2: Entropy-based Sample Selection
Input: x, 𝑦, BufferM
Output: UpdatedM

1 if |M| < 𝑁 then
2 M ← x, y
3 end
4 if |M| = 𝑁 then
5 C ← samples of majority class inM;
6 for x𝑖 ∈ C do
7 𝑑𝑖 = minx 𝑗∈C\x𝑖 ∥x𝑖 − x 𝑗 ∥2
8 end
9 𝑑𝑚𝑎𝑥 ← max𝑖 𝑑𝑖;

10 𝑖 ∼ 𝑝𝑖 =
1 − 𝑑𝑖/𝑑𝑚𝑎𝑥∑
𝑗

(
1 − 𝑑 𝑗/𝑑𝑚𝑎𝑥

) ;

11 x𝑖, y𝑖 ← x, y
12 end

rehearsal mechanisms in addition to a sample selection strategy. Experiments in the second
part are performed using the CIFAR10 and CIFAR100 datasets only.

The online continual learning sequences that these methods are evaluated on differ significantly.
Similar to Aljundi et al., we evaluate and compare our method with GSS in the first part on
shorter sequences from the MNIST and CIFAR10 datasets. In the experiments of Aljundi et al.
an equal number of examples per class in the online continual learning sequence is referred
to as balanced while sequences with 10 times more examples from one class are defined as
unbalanced2. These experiments are intended to test the ability of sample selection strategies
to maintain a representative rehearsal memory. In addition, these sequences are constructed
only from a subset of the full datasets. Although Aljundi et al. do not provide a reason for this
in [83] we follow their experimental setup for a fair comparison. When comparing our method
with MIR and ASER in the second part, only balanced sequences from the full CIFAR10 and
CIFAR100 datasets are used.

Neither GSS nor MIR or ASER utilize knowledge distillation [39] or any form of data augmen-
tation although these methods are standard techniques in order to improve the performance
of continual learning methods. Especially in the online setting, where each example is only
accessible once to the model and only very small rehearsal memories are used, it seems counter

2Note that this definition is arbitrary but was used in order to compare our methods with those from
the literature in a fair way.



– 73–

Table 5.1.: Final classification accuracy in % of evaluated methods on the balanced online
continual learning sequences of the reduced MNIST dataset.

Buffer size |M|
Method 300 400 500

Random 27.4±1.7 28.3±2.5 30.4±4.1
Reservoir 79.0±3.6 76.9±5.2 78.4±2.8
GSS-IQP [83] 75.9±2.5 82.1±0.6 84.1±2.4
GSS-Greedy [83] 82.6±2.9 84.6±0.9 84.8±1.8
ESS (Ours) 84.7±1.3 86.0±1.3 87.4±1.1

intuitive to not use these methods. But in order for a fair comparison, we also do not use these
techniques for our method.

5.3.1. Direct Comparison with GSS

First, GSS is evaluated on MNIST by splitting the complete dataset into five tasks, T1≤𝑖≤5,
with two classes each in the order 0, 1 → 2, 3 → 4, 5 → 6, 7 → 8, 9. Instead of using all
available training data we follow Aljundi et al. and use only 1000 randomly selected examples
per task. Although not explicitly mentioned in [83], it is evident from the publicly available
original implementation that each task contains an equal number of examples from its two
corresponding classes. GSS is evaluated on this balanced online continual learning sequence
using a two layer MLP with 100 neurons in each hidden layer with a ReLU activation for
different buffer sizes. The output layer is expanded according to the ICL scenario description
presented in section 2.2 to accommodate the new classes of every new task. In order to obtain
comparable results, we evaluate our method on the same sequence using a MLP of identical
size with the same buffer sizes. We train our model using SGD with a learning rate of 0.1 and
a batch size of ten. Similar to GSS, we allow our method to train the MLP for multiple steps,
four in this case, on a mini batch of new training data while mixing it with newly sampled data
from the rehearsal buffer in each step before moving on the next mini batch in the sequence.
All runs are repeated ten times with independent random initializations and results are reported
in Table 5.1 as the average and standard deviation of the final classification accuracy on the
complete test dataset.

First, the results of our method are compared with the baselines of randomly selecting examples
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to be replaced from the buffer and Reservoir Sampling3 [4] in Table 5.1. It is obvious that the
latter is a strong baseline as it comes close to the performance of our method while the former
is comparatively weak. Both versions of GSS, the exact Interger Quadratic Program (IQP)
solution and the greedy approximation of it, clearly beat the Random and Reservoir Sampling
baseline for |M| > 300. Interestingly, the greedy approximation achieves better results than
the exact IQP solution for GSS, especially when |M| = 300. In this case the latter is even
worse than Reservoir Sampling. Our method, ESS, outperforms not only the baselines but also
both versions of GSS.

In addition to just testing the performance on a balanced online continual learning sequence,
where each task has the same number of training examples, we follow Aljundi et al. and test
our approach on unbalanced sequences. For this, we create a sequence with 2000 examples
for one and 200 for all remaining tasks. The first sequence has 2000 training examples from
classes 1 and 2 while the remaining ones feature only 200. During the second sequence classes
3 and 4 are represented by 2000 while the remaining tasks feature only 200 training examples.
This is repeated until five sequences are created. Due to the sections with differing length in an
unbalanced sequence, it is much more difficult for an algorithm to properly manage the buffer.
It is, for example, unknown when a much longer section begins and how long it is. Therefore,
a more elaborate buffer management algorithm when compared with balanced sequences is
needed. Reservoir Sampling, for example, is designed specifically for the case of balanced
sequences and hence will perform much worse on unbalanced ones.

Table 5.2 summarizes the results of this experiment with a buffer size of 300 and all other
hyperparameters are identical to those of the previous experiment. Both variants of GSS again
outperform the baselines significantly. Similar to the previous one, our method outperforms
GSS in this experiment as well, especially for the first sequence. Given that the total number
of examples in each of the five tested sequences is identical, a sample selection method should
lead to roughly the same final accuracy. While GSS in both of its forms shows more stable
results than reservoir sampling, our method shows even less variation in the final accuracy.

The direct comparison of our method with GSS is concluded by an experiment on the CIFAR10
dataset. For this a balanced online continual learning sequence is constructed by splitting the
dataset into five tasks with 2000 samples each. These tasks again feature an equal number
of examples from two consecutive classes of the original dataset. Instead of the small MLP

3The Reservoir Sampling algorithm begins with filling the bufferM. For every newly arriving sample
x𝑖 , y𝑖 it generates a random integer 𝑗 uniformly in the interval [1, . . . , 𝑖]. If 𝑗 ∈ [1, . . . , |M|] it
replaces the j-th sample in the buffer with x𝑖 , y𝑖.
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Table 5.2.: Final classification accuracy in % of evaluated methods on the unbalanced online
continual learning sequences of the MNIST dataset.

Sequence
Method 1 2 3 4 5

Random 44.4±4.8 40.8±4.2 35.3±3.1 34.9±2.1 21.8±2.6
Reservoir 53.6±5.1 63.9±2.1 76.4±1.9 73.2±3.0 67.7±2.6
GSS-IQP [83] 75.9±3.2 76.2±4.1 79.1±0.7 76.6±2.0 74.7±1.8
GSS-Greedy [83] 71.2±3.6 78.5±2.7 81.5±2.3 79.5±0.6 79.1±0.7
ESS (Ours) 82.3±2.1 82.2±1.7 82.4±2.3 81.8±2.7 82.6±1.6

Table 5.3.: Final classification accuracy in % of evaluated methods on the balanced online
continual learning sequences of the reduced CIFAR10 dataset.

Method Buffer size |M| = 1000

Random 17.3±0.6
Reservoir 32.9±2.1
GSS-Greedy [83] 33.6±1.7
ESS (Ours) 37.6±2.0

used in the previous experiments on MNIST, a reduced version of ResNet18 as described in
Table 3.5 from section 3.7 and a rehearsal memory of size 1000 is used. All other hyperpa-
rameters, however, remain unchanged and still no data augmentation, not even the standard
horizontal flipping and random cropping used for training on CIFAR10 in the original ResNet
publication [44], is used.

Comparing the results of this experiment shown in Table 5.3 reveals that, unlike in the previous
experiments on MNIST, GSS performs only marginally better than reservoir sampling. The
random selection baseline unsurprisingly achieves the worst results and our method again shows
a significant improvement over GSS with an approximately 12% higher average accuracy and
similar variance. A possible reason for GSS being outperformed by our method could be its
reliance on gradient information. While our approach is completely independent from the
DNN used as a classifier, the only information that GSS uses to select which samples to store
and which to replace depends on the data itself but also the weights and loss function utilized
in the gradient calculation. Since GSS additionally only considers gradients of individual
samples, any noise in this gradient might have a significant impact on the selection.
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5.3.2. Comparison with other Related Methods

While the first part of our experiment section focuses on the direct comparison of the sample
selection strategies only, this section compares our method not only to GSS and baselines
but also other methods for online continual learning. These also feature improved rehearsal
strategies in addition to a sample selection strategy and therefore improve an additional aspect
of rehearsal based online continual learning. MIR, for example, selects those samples from the
rehearsal memory that show the highest increase in loss if an update step would be performed
on a mini batch containing only the new data. These are then combined with the new data in
order to perform an actual update step. As a consequence, they have the potential to outperform
our method.

In contrast to the previous experiments, the following ones all use balanced online continual
learning sequences that are constructed using the complete CIFAR10 or CIFAR100 dataset.
While the former is split into five tasks featuring two classes each, the latter is split into ten
tasks where each of those features ten classes. Again a reduced ResNet18 as described in
Table 3.5 is trained using SGD with a learning rate of 0.1 and batch size of ten. But unlike in
the previous experiments where the online continual learning sequences are constructed using
only a subset of the original datasets, we only perform one update step on each mini batch
consisting of new and randomly sampled examples from the rehearsal memory.

The results for CIFAR10 with buffer sizes of 200, 500 and 1000 are shown in Table 5.4. Similar
to the previous experiment on the reduced CIFAR10 dataset, GSS and our method outperform
the random selection baseline. Unlike in the previous experiment, both do not outperform
reservoir sampling for |M| > 200. Only MIR and ASER are able to achieve a significantly
higher accuracy than reservoir sampling in this experiment. Given that both of these use an
improved version of rehearsal when compared to our method and GSS, this is not surprising as
this setup with a balanced online continual learning sequence does not pose a serious challenge
to the sample selection algorithm. The strong performance of the reservoir sampling baseline
is testimony of this, since it was originally proposed in [4] as an optimal selection strategy
from balanced sequences and typically fails on unbalanced ones. It is also worth mentioning
that the advantage of MIR and ASER over our method decreases with an increasing buffer
size and all methods except the weak random selection baseline achieve a similar accuracy for
a buffer size of 1000. EWC as a regularization-based method achieves to lowest results and
is even worse than the random selection baseline. The performance of AGEM does not seem
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Table 5.4.: Final classification accuracy in % of evaluated methods on the balanced online
continual learning sequences of the CIFAR10 dataset. † Results reported in [122].

Buffer size |M|
Method 200 500 1000

Random 18.5±0.3 18.6±0.3 18.8±0.2
Reservoir 24.6±2.1 31.3±3.4 40.6±4.0
EWC [53]† 17.9±0.3 17.9±0.3 17.9±0.3
AGEM [84]† 22.7±1.8 22.7±1.9 22.6±0.6
GSS [83]† 26.9±1.2 30.7±1.2 40.1±1.4
MIR [81]† 28.3±1.6 35.6±1.2 42.4±1.5
ASER [122] 26.4±1.5 36.3±1.2 43.5±1.4
ESS (Ours) 23.7±2.5 30.3±2.3 40.4±2.5

to increase with an increasing buffer size, which seems counter intuitive and might hint at its
simplifications over GEM being overly simplistic.

The CIFAR100 dataset is arguably more challenging than CIFAR10 as it includes ten times
more classes with ten times fewer examples per class while featuring natural objects of a
similar complexity. The experimental results in Table 5.5 are therefore obtained with buffer
sizes of 1000, 2000 and 5000 while all other hyperparameters are identical to the CIFAR10
experiment. Although the underlying online continual learning sequence is also balanced as in
the previous experiment, our method outperforms the random selection baseline and reservoir
sampling. But only for |M| > 1000 does our method show a significantly higher result than
Reservoir Sampling. GSS is also only in this case able to outperform Reservoir Sampling.
In addition, our method also outperforms GSS and again achieves results very close to MIR
and ASER especially for a larger rehearsal memory. Comparing ESS with GSS on CIFAR10
and CIFAR100 is seems that only for buffer sizes greater than 1000 is our method able to
outperform GSS on balanced sequences.

5.4. Conclusion

The unique challenges in online continual learning where data becomes available in a stream
of individual examples or small batches and the need for computationally algorithms result in
the research question:
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Table 5.5.: Final classification accuracy in % of evaluated methods on the balanced online
continual learning sequences of the CIFAR100 dataset. † Results reported in [122].

Buffer size |M|
Method 1000 2000 5000

Random 6.9±0.3 6.9±0.2 6.9±0.3
Reservoir 9.7±0.7 10.8±0.7 11.2±0.5
EWC [53]† 4.8±0.2 4.8±0.2 4.8±0.2
AGEM [84]† 9.5±0.4 9.3±0.4 9.7±0.3
GSS [83]† 9.3±0.2 10.9±0.3 15.9±0.4
MIR [81]† 11.2±0.3 14.1±0.2 21.2±0.6
ASER [122] 14.0±0.4 17.2±0.5 21.7±0.5
ESS (Ours) 10.3±0.8 13.2±1.1 19.9±1.5

How can the buffer of a rehearsal-based method for continual learning be managed in a simple
but effective way to enable online continual learning?

In this chapter, we adopt a probabilistic perspective on the process of selecting samples to be
stored in a small memory for a later use in rehearsal during online continual learning. By
using the well known entropy maximization principle, we derive our method ESS summarized
in Algorithm 2. The experimental results for the MNIST and CIFAR10 datasets obtained
in a direct comparison with the related sample selection method GSS in section 5.3.1 show
that ESS is capable of outperforming it on balanced and unbalanced online continual learning
sequences. Further experiments on the CIRAR10 and CIRAR100 datasets in section 5.3.2
partially confirm this finding. A comparison to other recently proposed methods that feature
improved sample selection and rehearsal strategies shows that our method is outperformed by
MIR and ASER. But although their advantages for smaller buffer sizes was substantial, ESS
achieves only marginally worse results for larger rehearsal memories.

Our method ESS is much simpler than GSS since it only requires distance calculations on
the data in a rehearsal memory and keeps track of how much examples per class are stored.
Additionally it is capable to outperform GSS in most of the tested dataset and buffer sizes.
Only for balanced sequences and rehearsal buffers sizes smaller than 1000 on CIFAR10 is
ESS outperformed by GSS. The comparison to MIR and ASER, which both not only use
improved sample selection but also rehearsal strategies, shows that there is still some potential
for improvement in online continual learning. This can be realized by improving how data
from the rehearsal memory is used during training in addition to only optimizing the sample
selection strategy. Such an improved sampling from the buffer can in principal also be applied
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to ESS. The focus of this work, however, is purely on one aspect of rehearsal-based continual
learning, namely improving the buffer management, i.e. which data to store and what to
replace, and not how to use the stored data during training. An improvement to this aspect is
presented in chapter 7 of this thesis.



Chapter 6.

Dataset Condensation and Synthetic
Data for Rehearsal

This chapter presents a method published by Wiewel and Yang in [125] for
learning a small set of synthetic data for rehearsal during continual learning.
It is based on DCGM and uses the same approach of matching gradients for
learning synthetic data. The main novelty of this method compared with DCGM
and others is the way synthetic data is represented, which allows for sharing
common components between individual samples in order to avoid storing re-
dundant information and therefore to improve memory efficiency. Being able to
learn synthetic data directly in a more efficient representation is of interest since
it allows for improving rehearsal-based continual learning by simply storing
more information in a fixed-size memory when compared with other methods.
Experimental results on commonly used datasets indeed indicate a significantly
increased performance over related approaches especially for small rehearsal
memories. In addition to this comparison with related methods, the learned data
is compared to original and synthetic data generated by other approaches.

6.1. Motivation

Storing data for rehearsal is a simple but effective approach for mitigating catastrophic forgetting
and enabling continual learning with DNNs. It is therefore a central component in many
recently proposed methods, some of which are referenced in section 3.4 and the other chapters
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of this thesis. An intuitive correlation between the performance of a method and the size of
its rehearsal memory is not only observable in the results presented in section 5.3 but many
publications on continual learning as well [56, 58, 81, 83, 87, 97, 99, 107, 109, 116]. This
in combination with a typically limited size of the rehearsal memory makes compression of
stored data a promising direction for improving the already strong performance of rehearsal.
The goal of this is to capture as much information as possible of a particular dataset with a
small set of compressed examples and therefore utilize the memory in an efficient way.

There are common compression algorithms like JPEG for images and MP3 for audio which
are in widespread use today. In addition compression based on deep learning has also been
explored in the literature [61, 73, 85, 115]. Both of these approaches can greatly reduce
the amount of storage required to store, for example, an image during rehearsal. A learning
based approach for storing more data in the context of continual learning is explored by Hayes
et al. in [103]. They combine an encoder with weights that are fixed after a pre-training phase
with Vector Quantization (VQ) and a trainable classifier in order to greatly reduce the training
and storage cost for continual learning. This approach essentially projects the original problem
from the input space to a much lower dimensional feature space that not only speeds up training
but also permits to store much more data in a fixed size rehearsal memory. A similar approach
with a fixed pre-trained encoder but without any further compression in the latent space is
proposed by Pellegrini et al. in [106]. The authors focus on reduced computational complexity
for real-time continual learning in applications that are restricted in their storage capacity and
computational power.

In contrast to these approaches that compress original training examples either in the input
space directly or in a learned feature space, there is also a recently proposed approach that learns
synthetic data as discussed in section 3.4.3. Instead of compressing data these approaches learn
entirely synthetic data that is not present in the original training dataset. This offers another
degree of freedom since the content of data can be learned to capture the most essential
information. HAL [114], for example, learns one anchor point per class that is intended to
minimize catastrophic forgetting. It thereby couples the process of learning synthetic data
with the objective of overcoming catastrophic forgetting. An anchor point can therefore
be interpreted as synthetically generated data that is representative and explicitly minimizes
forgetting. Instead of learning just one synthetic example per class, DCGM [129] learns
multiple examples in order to maximize the performance of a DNN when trained on this
synthetic dataset. Although this approach lacks a direct connection to continual learning or
catastrophic forgetting, it can still be applied to it as the authors show with their experiments.
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These approaches of learning synthetic data offer new possibilities of improving rehearsal based
continual learning since they are orthogonal to the already existing and proven techniques of
data compression mentioned above, i.e. the learned data can additionally be compressed in
the same way as original training data. HAL and DCGM demonstrated the feasibility of such
approaches in the context of continual learning but can still be improved upon, which is the
motivation for this chapter. Although DCGM achieves better results than using original data
for rehearsal, it is ignoring possible redundancy in the learned data. In the case of supervised
image classification for example, it learns multiple synthetic examples of the same class which
might share common features that are stored individually with every learned example. This
motivates the following research question:

How can synthetic data be learned for rehearsal-based continual learning while reducing the
redundancy of data stored in memory?

For this, Wiewel and Yang propose their method Condensed Composite Memory Continual
Learning (CCMCL) in [125], which is based on DCGM and improves upon it by representing
each synthetic example as a weighted combination of shared components. The remainder of
this chapter introduces their method, presents an experimental evaluation and closes with a
short conclusion on its effectiveness and applicability in continual learning.

6.2. Method

Since the proposed CCMCL method is based on learning synthetic data via the process
of dataset condensation, the first part of this chapter outlines the basic idea and practical
implementation of it. Although multiple different approaches for this have been proposed in
recent publications [79, 121, 123, 128], the focus of this chapter is on DCGM proposed by
Zhao, Mopuri, and Bilen in [129] since it is the underlying algorithm of CCMCL and was
shown to improve rehearsal performance by the authors. A key aspect that is not covered in
detail by the authors is how to implement it for rehearsal in the context of continual learning.
We therefore devote section 6.2.2 to outline a possible implementation that includes rehearsal
explicitly. The key innovation of CCMCL over DCGM, namely sharing common features
between synthetic examples, is introduced in section 6.2.3. Finally, the complete algorithm is
presented and discussed in section 6.2.4.
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6.2.1. Dataset Condensation with Gradient Matching

According to [129] the goal of dataset condensation is to find a set of synthetic examples such
that a model trained on them has a similar generalization performance as one that is trained on
the original dataset. Approaches for this can be formulated in different ways.

Wang et al. [79], for example, propose a nested optimization

S★ = arg min
S
L(𝜽𝑆,T) subject to 𝜽S = arg min

𝜽
L(𝜽 ,S), (6.1)

where T is the original training dataset and S is the set of synthetic examples. The main
idea is that the parameters 𝜽𝑆 depend on synthetic data. This allows for optimizing the data
S through minimization of a loss on the training dataset. While this formulation leads to a
direct minimization of a loss L on the original training dataset, it does not scale since the inner
optimization, i.e. the training on synthetic examples, can involve large models and potentially
many iterations to find 𝜽𝑆.

Another approach mentioned by Zhao, Mopuri, and Bilen [129] matches the parameters 𝜽𝑆

of a DNN trained on the set of synthetic examples with those of one trained on the original
training dataset. But this does not scale either as the authors point out. The reason for this is
again that this approach requires a costly nested optimization similar to (6.1) where the inner
problem involves a potentially large scale training of a DNN on the synthetic data.

In order to overcome this lack of scalability, the authors therefore propose to match the
gradients of a DNN obtained on the original and synthetic data throughout the training process.
Performing this for multiple different random initial parameters then yields

S★ = arg min
S
E𝑝(𝜽0)

[
𝑇−1∑︁
𝑡=0

𝐷 (∇𝜽L(𝜽 𝑡 ,T),∇𝜽L(𝜽 𝑡 ,S))
]
, (6.2)

where 𝑇 is the number of training iterations, 𝑝𝜽0 is the distribution for random initialization
and 𝐷 (·, ·) is a distance measure based on the cosine similarity that is discussed in more detail
throughout section 3.4.3. The main idea of this approach is that synthetic data S leads to
gradients that are similar to those determined on original data T . Crucially, this needs to be
ensured not only for one specific step in the training process and only one random initialization
but for all steps and many different initial weights 𝜽0. The authors also argue that while this
might constrain the overall optimization process more than matching the endpoints of training,
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it allows for a more guided optimization. In addition, this approach is much faster since it does
not require a nested optimization with a costly inner training on synthetic data.

Zhao, Mopuri, and Bilen further point out some key aspects that contribute to improved
results of their method. One of these is the separate processing of individual classes in
their experiments on image classification problems. As the authors point out, this reduces
the memory requirement and leads to better convergence of the learned synthetic data since
imitating the mean gradient of an individual class is easier than to imitate that of multiple
classes. Furthermore, since only a small set of synthetic examples is used during training,
estimating reliable statistics for batch normalization layers is difficult. To overcome this
problem, the authors use instance normalization. Their experimental results also suggest that
leaky ReLU performs better than ReLU and average outperforms max pooling. As a possible
explanation for this a denser flow of gradients from the output to synthetic inputs is put forward
by the authors.

Dataset condensation using DCGM not only allows for learning synthetic images in the case
of supervised image classification, but also to learn the corresponding labels as well. This is
possible since both contribute to the loss in a differentiable way if the common categorical
cross entropy loss is used. A gradient with respect to the labels can therefore theoretically
be used to optimize the complete synthetic example, which contains both the input and its
corresponding label. But experiments by Zhao, Mopuri, and Bilen have shown that a joint
optimization of both is challenging. According to the authors these difficulties are caused by
the close dependence between the contents of input and their label, which leads them to only
synthesize the input, e.g. an image, for a given and fixed label.

6.2.2. Adaptation to Rehearsal

Applying dataset condensation for rehearsal in the context of continual learning comes with
some aspects that differ from the original context. Instead of having access to the complete
training dataset, in a typical continual learning setup only a small part of it is available at any
time. In the case of supervised image classification for example, only a few classes might be
present in the current task and all previously encountered ones are only accessible through
the rehearsal memory. This is in contrast to the original setup for which dataset condensation
is proposed for. Even if the stored data is the result of applying dataset condensation, some
performance degradation is to be expected since not all original training data is available.
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Solving the optimization problem (6.2) requires minimization of the expected distance between
gradients with respect to many different initial parameters 𝜽0 drawn from the distribution 𝑝𝜽0 .
As a strategy for approximating this expectation, Zhao, Mopuri, and Bilen propose to simply
reinitialize the DNN used for dataset condensation after a certain number of training steps 𝑇
have been used to minimize the distance between gradients. In the original setup considered
by the authors this is not a problem since the goal is to generate only synthetic data which can
be used in any following step, for example to speed up hyperparameter optimization. But in the
context of continual learning a sequence of tasks is to be learned with limited storage capacity.
In order to reinitialize the DNN without losing weights learned on previously encountered
tasks, they have to be stored in a copy at the beginning of every task. This requires additional
memory that is not available for rehearsal anymore. But fortunately such a copy is also
required for knowledge distillation that is commonly used in many continual learning methods.
Therefore no additional memory is required if dataset condensation is used in conjunction with
it since the weights stored for knowledge distillation can be reused for dataset condensation.
After this process is completed on a task the DNN can simply be initialized with the weights
stored for knowledge distillation.

6.2.3. Sharing Common Components for Increased Memory
Efficiency

Although the inspiring work of Zhao, Mopuri, and Bilen already shows that synthetic data can
be used in order to compress the information in a training dataset into a small set of synthetic
examples, learning and storing them individually can introduce redundancy, since features
that define a particular class are learned and stored with each example separately. Choosing
a representation that shares components among these examples therefore has the potential to
greatly reduce memory requirements as a feature has to be learned and stored only once and
can be shared among a potentially large number different training examples.

To this end, Wiewel and Yang propose in [125] to represent each synthetic example

x 𝑗 = 𝜎
(
𝑃∑︁
𝑖=1

𝑤𝑖 𝑗c𝑖

)
(6.3)

as a composition of 𝑃 components c𝑖 weighted by the example-specific weights 𝑤𝑖 𝑗 ∈ R. In
order to ease optimization and ensure a valid range, e.g. of pixels in a synthetic image, the
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function 𝜎 is applied to this composition. Image pixels are normalized such that their values
fall into the interval [0, 1] and hence the sigmoid function 𝜎(𝑥) = (1 + 𝑒−𝑥)−1 is used in
this thesis. By representing synthetic data in this way, common features can be learned as a
combination of different weighted components and therefore reduce memory requirements in
rehearsal. It is not guaranteed that different components are learned and redundancy among
them is avoided. But the much smaller number of them compared to the amount of original data
they are learned from leads to different components as observed in the experiments presented
in section 6.3.3.

In order to illustrate this, an example of storing 𝑄 𝑆-dimensional examples individually as
it is done in DCGM and according to (6.3) is considered. If these are stored individually,
|M𝑖𝑛𝑑 | = 𝑄 × 𝑆 real numbers are required where the subindex "ind" refers to the storage of
individual samples. CCMCL on the other hand requires storing only |M𝐶𝐶𝑀𝐶𝐿 | = 𝑃× (𝑆+𝑄)
real numbers with 𝑃 components c𝑖 ∈ R𝑆 and𝑄×𝑃weights𝑤𝑖 𝑗 ∈ R. If 𝑆 ≫ 𝑄, which typically
holds true for high-dimensional data used as input to DNNs, the storage requirement of CCMCL
is dominated by the components while any contribution due to storing the associated weights
can be neglected. This means that in this case storing additional synthetic examples in the
rehearsal memory comes at a very small cost when compared to storing them individually.

Figure 6.1 demonstrates the advantage of this approach over individual storage for the CIFAR10
dataset that features comparatively small images with a resolution of only 32 × 32 pixel. It
shows the amount of real numbers to be stored in logarithmic scale on its Y-axis over the
number of corresponding examples 𝑄 on its X-axis. Storing them individually, i.e. |M𝑖𝑛𝑑 |, is
depicted in red while the memory requirement of CCMCL, i.e. |M𝐶𝐶𝑀𝐶𝐿 |, is shown in blue
for different numbers of components. It is obvious that when 𝑃 synthetic examples are to be
stored using 𝑃 components, CCMCL has a slightly higher memory requirement than storing
them individually since the corresponding weights 𝑤𝑖 𝑗 have to be stored as well. But this is
quickly negated when even slightly more examples are added to the rehearsal memory since
for these only their weights have to be stored. But of course there is a compromise to be made
between the number of used components and weights. If too few of the former are used, the
synthetic data might lack variety as there are not enough components to accurately represent
all features of a class. Using too much components on the other hand adds significant storage
overhead that might not be necessary.



– 87–

0 200 400 600 800 1000

Examples

105

106

S
to

ra
ge

re
qu

ire
m

en
t

P = 10

P = 20

P = 40

P = 80

P = 160

P = 320

Individual
CCMCL

Figure 6.1.: Comparison of memory requirement for storing CIFAR10 images with a resolu-
tion of 32 × 32 pixel individually versus sharing a certain number of common
components between them.

6.2.4. Algorithm

Combining dataset condensation with the described adaptations for rehearsal and sharing
components according to (6.3) yields the full algorithm of CCMCL proposed by Wiewel and
Yang [125] that is summarized with pseudo code in Algorithm 3. It covers the main steps
necessary to generate synthetic examples and update the rehearsal memory which can be used
as a substitute for regular data in any rehearsal based approach. In CCMCL this memory stores
synthetic data following (6.3) and hence it is called composite memory. Therefore only the
aspects different to common rehearsal-based approaches are emphasized.

First the components c𝑖 and weights𝑤𝑖 𝑗 are randomly initialized. For a continual learning setup
based on supervised image classification, Wiewel and Yang propose to use a uniform random
initialization of the components c𝑖 in the interval [0, 1] while the weights 𝑤𝑖 𝑗 are initialized
according to a standard normal distribution. This is followed by a loop of 𝐾 outer iterations
at the beginning of which the DNN is initialized randomly. Similar to DCGM this is intended
to approximate the expectation operator in (6.2), which ultimately leads to synthetic data that
is useful for training a DNN from any initial parameters. The next step involves 𝑇 iterations
of computing the gradients of a training loss function L with respect to the parameters 𝜽 for
both a batch of original and synthetic data. Then these gradients are used to minimize the
distance 𝐷 (·, ·) between them with respect to the synthetic data, i.e. the components c𝑖 and
weights 𝑤𝑖 𝑗 that are used to compose x 𝑗 . In contrast to common training methods for DNNs
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based on SGD, the gradient here is taken not with respect to the weights of a DNN but rather
to its inputs. Depending on the used network architecture, training data and optimizer used for
this, only a few iterations 𝐼 are required until the gradients are matched. Finally, a batch of
rehearsal data is sampled from the memory and used to train the parameters for 𝐽 iterations.
The output of this algorithm is a rehearsal memory that has been updated with synthetic data
represented according to (6.3).

Algorithm 3: Dataset condensation using CCMCL
Input: Rehearsal memoryM, task T𝑘 , composite memoryMS , training batch size 𝐵𝑇 ,

condensation batch size 𝐵𝑀 , training learning rate 𝛾𝑇 , condensation learning rate
𝛾𝐶 , outer iterations 𝐾 , inner iterations 𝑇 , matching iterations 𝐼, training iterations
𝐽, DNN 𝑓𝜽

1 Initialize composite memory c𝑖 and 𝑤𝑖 𝑗 ;
2 for 𝐾 iterations do
3 Reinitialize model 𝑓𝜽 ;
4 for 𝑇 iterations do
5 Sample from individual classes of task B𝑇 ∼ T𝑘 ;
6 Sample from composite memory B𝑀 ∼ MS;
7 Compute gradient g𝑇 = ∇𝜽

∑
x,𝑦∈B𝑇 L( 𝑓𝜽 (x), y);

8 Compute gradient g𝑀 = ∇𝜽
∑

x,𝑦∈B𝑀
L( 𝑓𝜽 (x), y);

9 for 𝐼 iterations do
10 Update composite memoryMS ←MS − 𝛾𝐶∇S𝐷 (g𝑇 , g𝑀);
11 end
12 Sample from rehearsal memory B𝐵 ∼ M;
13 for 𝐽 iterations do
14 Update DNN parameters 𝜽 ← 𝜽 − 𝛾𝑇∇𝜽

∑
x,𝑦∈B𝐵

⋃B𝑇 L( 𝑓𝜽 (x), y);
15 end
16 end
17 end
18 Update memoryM ←M⋃MS;

Output: Updated rehearsal memoryM

6.3. Experiments and Results

For evaluating the CCMCL method outlined in Algorithm 3 its performance is evaluated
on four datasets: MNIST, FashionMNIST, SVHN and CIFAR10 which are summarized in
section 3.6. It is compared against the baseline of naive rehearsal with a growing memory,
DCGM as proposed by Zhao, Mopuri, and Bilen [129], BiC introduced by Wu et al. in [95]
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and the Upper Bound (UB) given by training on all data simultaneously. Similar to previous
chapters only the ICL scenario is evaluated for the same reasons of being the most challenging
out of the three scenarios presented and since it is widely used in the literature as a benchmark.
But CCMCL can also be applied to the ITL and IDL scenarios without any modifications.
The reason for this is that it only relies on differentiating a loss function with respect to the
input in order to generate synthetic data. The same holds true for the other methods mentioned
above.

6.3.1. Hyperparameters and Architecture

For all experiments presented in the remainder of this chapter the ConvNet architecture is used.
Its structure is presented in Table 3.7. It is a small DNN architecture that is especially popular
in the field of few-shot learning [50, 60]. Since this field also deals with rather small datasets,
the building blocks and structure of the ConvNet are adapted in a way that mitigates problems
specific to such few amounts of data.

First, it avoids the use of batch normalization since this layer requires the estimation of statistics
over many different batches in order to work properly. Instance normalization as proposed
in [49] is used due to its reliance on only individual instances instead of complete batches for
normalization. This leads to a more stable and overall better performance of DCGM according
to Zhao, Mopuri, and Bilen and is therefore also used for the evaluation of CCMCL. Second,
it replaces max with average pooling which leads to a more dense flow of gradients as the
pooling operation is differentiable with respect to every input. This results in an overall more
stable and better generation of synthetic data as shown in [129]. For a fair comparison, the
ConvNet architecture is used for all methods compared in this chapter.

The hyperparameters used for CCMCL as described in Algorithm 3 are summarized in Ta-
ble 6.1. They are largely adopted and only slightly modified from those used for DCGM by
Zhao, Mopuri, and Bilen [129] while only a limited manual optimization was performed on
them. This revealed that the subjective visual quality of the generated synthetic data increased
with the number of iterations for the outer and inner loop in addition to the batch size used for
distillation. During training SGD is used while the generation of synthetic data is performed
using the RMSprop optimizer. Because the MNIST and FashionMNIST datasets feature sig-
nificantly less complex images than SVHN or CIFAR10, only half of the training and outer
loop iterations are needed for CCMCL to converge. These reduced numbers are shown in
Table 6.1 first while the iterations used for SVHN and CIFAR10 are shown after the forward
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Table 6.1.: Hyperparameters used throughout all experiments on CCMCL.

Parameter Value Parameter Value

Training learning rate 𝛾𝑇 0.01 Matching iterations 𝐼 10
Training iterations for each task 500/1000 Training iterations 𝐽 1
Condensation learning rate 𝛾𝐶 0.1 Training batch size 𝐵𝑇 128
Outer iterations 𝐾 50/100 Condensation batch size 𝐵𝑀 256
Inner iterations 𝑇 10

slash. All results are reported as an average and standard deviation over five independent runs.
No data augmentation or learning rate schedule is used for any of the compared methods.

As mentioned in section 6.2.3, |M𝐶𝐶𝑀𝐶𝐿 | = 𝑃 × (𝑆 + 𝑄) real numbers need to be stored by
CCMCL for 𝑄 synthetic 𝑆-dimensional examples represented by 𝑃 components c𝑖 and 𝑃 × 𝑄
weights 𝑤𝑖 𝑗 . Since typically 𝑆 ≫ 𝑄, the storage requirement of CCMCL is dominated by the
components 𝑃 and only a small overhead is required to store the 𝑃 × 𝑄 weights. The number
of components for CCMCL is therefore chosen as the memory size, i.e. an equal amount of
components per class 𝑃𝑐𝑙𝑎𝑠𝑠 are stored such that the complete rehearsal memory is filled. This
results in a slightly higher storage requirement for CCMCL when compared with the other
methods due to the additional memory that is required to store the 𝑃×𝑄 weights 𝑤𝑖 𝑗 associated
with each synthetic example. This overhead is included in Figure 6.3 and also in Table 6.2 and
Table 6.3 where it is included in a separate row. The number of stored synthetic examples per
class 𝑄𝑐𝑙𝑎𝑠𝑠 is defined using the hyperparameter𝑈 as 𝑄𝑐𝑙𝑎𝑠𝑠 = 𝑈 × 𝑃𝑐𝑙𝑎𝑠𝑠.

In order to determine the optimal 𝑈 for every dataset, a search over values between two and
16 is performed on the held out validation parts of the datasets. The results represented by the
mean and standard deviation over five independent runs are shown in Figure 6.2. Comparing
the results for different choices of 𝑈 reveals that a larger 𝑈 and correspondingly number of
stored synthetic examples per class 𝑄𝑐𝑙𝑎𝑠𝑠 can lead to a higher accuracy. But a larger 𝑈 also
requires to store weights which increases the storage overhead and can also lead to instabilities
in the process of learning the synthetic examples. This can be observed for the more complex
datasets SVHN with 𝑈 = 8/16 and for CIFAR10 with 𝑈 = 16. In these cases the accuracy
first increases with the memory size but than plateaus are even decreases. The optimal value
for𝑈 is therefore dependent on the dataset. It should be chosen as large as possible in order to
maximize performance. But at the same time it needs to be small enough to avoid instabilities
in the generation of synthetic data. Based on the results shown in Figure 6.2, 𝑈 = 16/16/4/8
are chosen for the MNIST/FashionMNIST/SVHN/CIFAR10 datasets.
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Figure 6.2.: Results of different values for the hyperparameter 𝑈 for the MNIST, FashionM-
NIST, SVHN and CIFAR10 datasets.
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6.3.2. ICL Results

For all experiments the corresponding datasets are split into five tasks with two classes each in
order to form an ICL sequence. This split is performed in such a way that each task contains
classes with an increasing class label, i.e. 0, 1 → 2, 3 → . . . → 8, 9. Every method is then
evaluated on a sequence for five independent runs each with a different random initialization of
the DNN parameters, components c𝑖 and the weights 𝑤𝑖 𝑗 . The average and standard deviation
of the final accuracy on the complete test dataset after the final task is trained are reported.

Figure 6.3 shows this average accuracy after the final task is trained over various rehearsal
memory sizes measured in number of samples. Since CCMCL stores not only components 𝑐𝑖 𝑗
but also additional weights 𝑤𝑖 𝑗 , its required memory size is not an integer and slightly higher
than those of the other methods. Given that the generated synthetic data for both DCGM
and CCMCL is intended to capture a training dataset in a small set of synthetic examples,
all experiments in the following are performed with comparatively small rehearsal memories.
Ultimately it is desirable for all memory-based methods for continual learning to achieve the
best performance with a minimum of stored data. This allows for learning more tasks with the
same storage requirement or reducing the required memory size for the same performance. For
the rather simple MNIST and FashionMNIST datasets the maximum size of this memory is 20
to 100 images at the end of each ICL sequence. On the more complex SVHN and CIFAR100
datasets its size is increased to a range of 100 to 500. In all experiments an equal amount of
examples per class are stored during each task. Compared with the total amount of samples in
the training sets, i.e. 60000 for MNIST/FashionMNIST and 50000 for CIFAR10/CIFAR100,
only a small fraction of the training data is stored in the rehearsal memories.

Without using rehearsal and assuming the DNN is capable of perfectly discriminating between
all classes, the average accuracy after task T5 is learned would be 𝐴 = 0.2. This is due to the
forgetting of all but the most recent task. Using a rehearsal memory prevents forgetting and
avoids overfitting to the last learned task.

Comparing the results shown in Figure 6.3, it is evident that there is a correlation between the
performance of a method and the rehearsal memory size. But although there is a significant
increase in performance when its size is increased, this effect slows down with an increasing
rehearsal memory size. This is especially noticeable for the comparatively simple datasets
MNIST and FashionMNIST. A possible explanation for this is that most of the information
contained in a dataset can be captured with a rather small amount of examples, i.e. basic
class features. But capturing the information contained in more varied classes, e.g. those
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Figure 6.3.: Results of different methods for incremental class learning sequences of the
MNIST, FashionMNIST, SVHN and CIFAR10 datasets.
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of the SVHN and CIFAR10 datasets, requires much more stored data to effectively prevent
catastrophic forgetting. This becomes evident by a comparison with the Upper Bound (UB),
which is given by training on all data simultaneously. On MNIST CCMCL and DCGM achieve
a result close to the UB already with memory size of 40 and show only a slow increase in
performance when the memory sizes is increased. The gap between CCMCL and the UB is
much larger for the other datasets. Especially on CIFAR10, the rehearsal methods achieve
results that are significantly lower than the UB even for a memory size of 500. But there is still
a significant increase in performance when the memory size is increased.

The naive rehearsal baseline, which randomly selects samples to store and random sampling
from the memory during training of new tasks, achieves the worst results. But it profits the
most from an increase in size of its rehearsal memory. It is outperformed significantly by
BiC in all experiments. Especially on the more complex SVHN and CIFAR10 datasets, BiC
outperforms naive rehearsal by a large margin that is even increasing slightly with the rehearsal
memory size. This again suggests that while most information of a simple training dataset
can be captured with a rather small amount of data, learning a task with more complex data
requires much more data. When using naive rehearsal an additional problem is overfitting to
the memory as many training iterations are performed on a limited amount of data. Measures
intended to prevent overfitting, like those proposed with BiC, therefore show a significantly
better performance than naive rehearsal. CCMCL on the other hand stores much more synthetic
samples in its memory with only a small overhead in storage requirement. It therefore is much
less prone to overfitting when compared with naive rehearsal. But although all methods exhibit
an increased variance in their results on FashionMNIST compared to all other datasets, the
highest variance in the results is observed for BiC on this dataset. It is also worth noting that
there is a rather early plateauing of its performance when compared with other methods on this
dataset.

The characterizing feature of CCMCL when compared with DCGM is the more memory
efficient representation of synthetic data according to (6.3). It is therefore unsurprising that
CCMCL outperforms DCGM for a similar memory size. On all datasets CCMCL achieves
a significantly higher final accuracy when compared with DCGM. It is worth noting again
that the additional storage overhead due to the weights 𝑤𝑖 𝑗 for CCMCL is also included in
Figure 6.3.
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Table 6.2.: Average accuracy and standard deviation of experiments on MNIST and Fashion-
MNIST. *Overhead applies only to CCMCL and describes the additional storage
requirement of the weights 𝑤𝑖 𝑗 measured in equivalent sample, e.g. an overhead of
1.0 requires storing the same amount as is required for one image.

Memory size 20 40 60 80 100
Overhead* 0.82 3.27 7.35 13.06 20.41

MNIST
Naive rehearsal 61.4 78.3 85.2 87.3 89.5

±2.9 ±1.46 ±0.7 ±1.1 ±1.3
BiC [95] 67.4 81.6 87.2 88.8 90.5

±4.4 ±2.9 ±1.3 ±0.9 ±1.6
DCGM [129] 85.9 91.1 92.7 93.8 94.1

±0.8 ±0.8 ±0.3 ±0.3 ±0.3
CCMCL (Ours) 88.6 93.8 94.9 95.3 95.8

±0.7 ±0.3 ±0.1 ±0.3 ±0.2
Upper Bound (UB) 99.452 ± 0.017

Memory size 20 40 60 80 100
Overhead* 0.82 3.27 7.35 13.06 20.41

FashionMNIST
Naive rehearsal 54.9 61.4 67.1 69.8 71.6

±0.9 ±1.2 ±1.4 ±1.1 ±1.7
BiC [95] 59.7 68.0 72.1 73.3 73.7

±4.7 ±2.3 ±1.0 ±1.5 ±1.8
DCGM [129] 69.6 72.6 73.7 75.8 76.1

±2.5 ±1.4 ±1.3 ±0.8 ±0.7
CCMCL (Ours) 74.0 77.9 79.9 79.9 80.0

±1.1 ±0.7 ±0.6 ±1.4 ±0.7
Upper Bound (UB) 93.116 ± 0.083
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Table 6.3.: Average accuracy and standard deviation of experiments on SVHN and CIFAR10.
*Overhead applies only to CCMCL and describes the additional storage requirement
of the weights 𝑤𝑖 𝑗 measured in equivalent sample, e.g. an overhead of 1.0 requires
storing the same amount as is required for one image.

Memory size 100 200 300 400 500
Overhead* 1.30 5.20 11.72 20.83 32.55

SVHN
Naive rehearsal 32.3 48.9 55.4 59.2 63.9

±1.8 ±2.9 ±1.0 ±0.7 ±0.6
BiC [95] 43.1 60.1 65.3 70.0 72.7

±1.6 ±2.0 ±0.9 ±0.9 ±1.0
DCGM [129] 53.2 63.4 69.4 70.9 71.3

±0.8 ±1.0 ±1.1 ±0.3 ±1.1
CCMCL (Ours) 72.4 74.6 75.7 76.1 76.8

±1.1 ±0.8 ±0.4 ±0.2 ±0.3
Upper Bound (UB) 91.868 ± 0.100

Memory size 100 200 300 400 500
Overhead* 2.60 10.42 23.44 41.67 65.10

CIFAR10
Naive rehearsal 24.0 30.4 34.7 38.4 41.2

±0.8 ±0.5 ±0.5 ±0.5 ±0.5
BiC [95] 25.5 34.1 38.8 43.2 44.8

±1.1 ±1.1 ±0.4 ±1.0 ±0.9
DCGM [129] 36.6 40.5 42.1 44.0 46.2

±0.7 ±0.4 ±0.9 ±0.9 ±0.7
CCMCL (Ours) 45.1 49.4 49.7 50.2 50.9

±0.6 ±0.8 ±0.5 ±0.9 ±0.8
Upper Bound (UB) 79.398 ± 0.279
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6.3.3. Qualitative Comparison

In addition to comparing the performance of all analyzed approaches based on the classification
accuracy, it is also of interest to compare original data with the learned synthetic data produced
by CCMCL and DCGM. This can give insights into whether these two approaches generate
not only data that leads to a similar DNN performance when trained upon and in addition if
the synthetic data looks subjectively similar to original data. For this, the contents of their
memories with a size of 100 is plotted for naive rehearsal, DCGM and CCMCL on all datasets
in Figure 6.4.

The first row in Figure 6.4 shows the examples stored by naive rehearsal, which are used as a
sample of original data and serve as a reference. For each of the datasets, 10 examples of each
class are shown in one row. Although those do not capture all different styles of instances in
a class, they give an indication on the visual appearance of original data. It is immediately
evident that the data of MNIST and FashionMNIST is rather simple compared to SVHN and
CIFAR10 since it is not only gray scale but also seems to feature less variation even considering
the very limited sample size shown.

Comparing to this the synthetic data learned by DCGM in the second row, a lack of contrast
and a significant noise can be observed. This is especially noticeable for the gray scale images
where the background of original data is completely black while the synthetic data shows not
only a brighter background but also a non uniform one. The lack of contrast can be explained
by the pre-processing applied before plotting, which normalizes the pixel of each image into
to the interval [0, 1]. Since there is no mechanism that prevents DCGM from learning pixel
values outside of this range, the background pixel are close to but not exactly zero. The noise
also results from this and is inherent to the process of learning synthetic data. The severity of
this phenomenon depends partly on the DNN architecture used for learning the synthetic data
and is also observed by Zhao, Mopuri, and Bilen [129]. A similarly reduced sharpness and
increased noise can be observed for the SVHN and CIFAR10 datasets when comparing the
synthetic data of DCGM with original data. Nonetheless, there is a certain similarity between
the synthetic and original data showing similar features. It is also interesting to observe that
the synthetic data learned on SVHN only shows a central digit whereas the original data shows
multiple digits in many instances. This is due to the fact that labels for SVHN are derived
from the center digit, which therefore should be the characteristic feature used by a DNN to
discriminate between classes. Hence the synthetic data is learned in such a way by DCGM that
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Figure 6.4.: Examples of images stored by naive rehearsal, DCGM and CCMCL. For the latter
components and reconstructed composite images are shown in the last two rows
for𝑈 = 2.
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only this feature is present. On CIFAR10 it is difficult to identify finer details in the synthetic
data but the overall shape and color palette of individual classes can be identified.

For a comparison of the synthetic data learned by CCMCL to those generated by DCGM and
original data, the components c𝑖 are shown in the third and images generated from them using
weights 𝑤𝑖 𝑗 according to (6.3) are shown in the fourth row. Each image is comprised of ten
weighted components and a total of 200 composite images.

Similar to the synthetic data learned by DCGM, these components show a significant level of
noise. At least on the gray scale datasets, its intensity appears to be even higher. On the SVHN
and CIFAR10 datasets there is also visible noise but subjectively the overall contrast seems to
be higher than in the data shown in the second row. Another interesting observation is that the
components seem to be partly or completely inverted. This is especially noticeable on the gray
scale datasets as here the original data shows digits with a high intensity while some components
are partly or even completely lower in intensity than the background. In combination with the
weighting this allows CCMCL to subtract or add features when combining the components
into an image and therefore increases the variety of images that can be stored.

An exemplary illustration of this process is shown in Figure 6.5 for the fifth stored example
of the first class, i.e. T-shirt, from the FashionMNIST dataset. While the top row shows
all ten learned components and the corresponding weight for one synthetic example of the
T-shirt class, the bottom row shows the cumulative image according to (6.3) from just one
component on the left to all ten on the right. Comparing these components to the final image,
it is obvious that none of them individually shows a close resemblance to the final image.
But through the process of weighting and combining them, the components accumulate to the
final image. It is also worth noting that beginning with the second component noise in the
background is significantly suppressed. This it due to the sigmoid function applied pixel-wise
to the weighted components. Due to its asymptotically flat behavior, small variations in the
intensity are drastically reduced. More examples from other datasets are shown in Figure 6.6,
Figure 6.7 and Figure 6.8.

When comparing the synthetic data learned by CCMCL directly with those from DCGM, a
much higher contrast and lower noise is observed. But compared with original data, there is
still noticeable noise and a lack of sharpness present that degrade the perceived quality of it. In
addition to this, the synthetic data generated by CCMCL shows more variety since it can store
twice the amount of images at the cost of a small overhead. For the MNIST, FashionMNIST
and SVHN datasets, it generates not only data that is better suited for rehearsal but also data
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Figure 6.5.: Example of composition from the fifth image of the first class of the FashionMNIST
dataset with top row showing components with corresponding weight in title and
cumulative image according to (6.3) in bottom row.

C
om

po
ne

nt
s

w0,6 = −6.9 w1,6 = −0.84 w2,6 = −1.4 w3,6 = −2.9 w4,6 = −1.5 w5,6 = −4.7 w6,6 = −1.2 w7,6 = −3.6 w8,6 = −1.1 w9,6 = −3.9

C
um

ul
at

iv
e

Im
ag

e

Figure 6.6.: Example of composition for the digit 7 of the MNIST dataset.
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Figure 6.7.: Example of composition for the digit 2 of the SVHN dataset.
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Figure 6.8.: Example of composition for the class car of theCIFAR10 dataset.

that is subjectively more similar to original data. Interestingly, this does not transfer directly
to the CIFAR10 dataset. While on this experiment CCMCL outperforms all other compared
methods by a wide margin in the objective comparison, the synthetic data generated by it in
some instances suffers from a very high brightness and saturation. These two effects lead to
pixel artifacts which are especially noticeable for images with a white background.

6.4. Conclusion

Related work has shown the potential of synthetic data for applications like NAS [129] and
even to a limited extend for continual learning itself. In this chapter an improvement of such
methods is motivated by the introductory research question:

How can synthetic data be learned for rehearsal-based continual learning while reducing the
redundancy of data stored in memory?

This question arises from the observation that several methods [79, 128, 129], which generate
a small set of synthetic examples intended to summarize a much larger dataset, learn each
example of synthetic data individually and hence store potentially redundant information.

Based on the work of Wiewel and Yang [125] a novel method to improving upon these
approaches, called CCMCL, is presented in this chapter. It is based on DCGM proposed
by Zhao, Mopuri, and Bilen [129] and uses a simple but effective principal of representing
and storing synthetic data as a weighted combination of shared components as described in
section 6.2.3. This allows for a more memory efficient rehearsal as components do not need
to be learned and stored repeatedly for semantically similar data but can instead be shared and
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stored only once. The weighting coefficients, which are unique to a synthetic example, can not
be shared and instead need to be stored individually.

Experimental are presented in section 6.3. CCMCL is compared against the naive rehearsal
baseline and related methods, e.g. BiC and DCGM, on ICL sequences with 5 steps for varying
rehearsal memory sizes. Throughout this comparison it outperforms all compared methods by
a significant margin on almost all datasets with the only exception being the MNIST dataset,
where its performance is only marginally better than that of DCGM. On the SVHN and
CIFAR10 datasets a large advantage of CCMCL over all other methods is observed, especially
for the smaller memory sizes. For an increasing rehearsal memory size this advantage decreases
as all methods including the baseline achieve increasingly similar results but with CCMCL
still performing best.

In addition to this quantitative comparison, a qualitative one is presented in section 6.3.3. The
data stored in the rehearsal memory at the end of an ICL sequence is compared between naive
rehearsal/BiC, which store original data, and DCGM/ CCMCL, which both store synthetic data.
In the case of CCMCL shared components are shown in addition to the synthetic data itself.
In order to illustrate the process of weighting and summing components used by CCMCL, an
example of this process is shown in Figure 6.5. It is also observed that DCGM suffers from
a higher level of noise when compared to original data. But although CCMCL generates less
noisy data, it still shows noticeable levels of it when compared to original data.

Based on these results it can be concluded that there is potential in using synthetic data for
rehearsal-based continual learning through a more efficient way of representing and storing it.
Especially for smaller memory sizes and more complex datasets it can improve the performance
on rehearsal. The method and experiments presented throughout this chapter show that memory
efficiency and consequently performance can indeed be improved in this way and can therefore
be interpreted as an answer to the motivating question. Naturally a deeper investigation on
what is the most efficient way in representing synthetic data is required. Potential directions of
improvement over CCMCL are among others: Sharing components not just between one but
many classes, introducing multiple levels of components that are combined on different scales
or determining the optimal number of components to learn from a dataset. Due to the limited
scope of this thesis these topics are left open for further research.



Chapter 7.

Dirichlet Prior Networks for Continual
Learning

Although rehearsal is a simple and effective method for continual learning, its
performance depends strongly on how exactly it is performed. Depending on
how much and what data is replayed, a shift in the data generating distribution
can occur. In this chapter these shifts are studied and a novel method first
published by Wiewel, Bartler, and Yang in [133] to mitigate their negative effects
is presented. The basic idea of this method is the incorporation of known
and controllable rehearsal parameters into the prediction of a DNN. These
model the otherwise unaccounted distribution shift by a simple modification
of the output layer. Using this approach, the mentioned strong dependence of
rehearsal-based continual learning on its implementation is drastically reduced.
Experimental results on commonly used datasets show that this method can
improve the performance of rehearsal significantly.

7.1. Motivation

Despite its simplicity rehearsal using a small memory that stores training examples from
previously learned tasks is an effective and commonly used method for mitigating catastrophic
forgetting. Even used entirely on its own it is a strong baseline. Given its effectiveness
it is no surprise that methods improve upon it in different ways. These improvements are



– 104–

targeting various aspects of rehearsal, namely data selection, storage efficiency and replay
mechanisms.

Approaches that try to improve rehearsal performance by means of improved data selection
strategies are, for example, GSS and ESS presented in chapter 5. Although these approaches
were originally proposed and evaluated in the setting of online continual learning, the same
question of what data to store is also relevant in the offline setting. In the latter, however,
data selection is simplified since task boundaries are known and the complete dataset of a
task is accessible at once. This allows for simple heuristics like uniform random selection
or Herding [29] but also more complex approaches such as bi-level optimization proposed by
Borsos, Mutny, and Krause in [97].

Since the performance of rehearsal scales with the amount of data that can be stored in
memory, some methods use a compression mechanism to store more data. These approaches
exploit redundancy in the original training examples to store compressed representations that
can later be reconstructed and then used in rehearsal. Hayes et al., for example, propose to
use VQ [3] for compressing and storing learned latent representations of inputs in [103]. A
similar approach that also stores learned latent representations but without an additional VQ
is proposed by Pellegrini et al. in [106]. Related but distinctly different from this are methods
that use synthetic or learned data in order to store more information about previous tasks like
HAL [114] or DCGM [129] and our method CCMCL presented in chapter 6. Rather than
compressing original training examples, entirely synthetic ones are learned in order to capture
as much information as possible about the original dataset.

Lastly, there is the aspect of how stored data is used during training on new tasks. While
most methods randomly sample examples from the rehearsal memory and mix it with data
of the current task, the exact procedure used for sampling and mixing can have a significant
influence on the final performance. Especially the ratio of rehearsal and new data in each mini
batch needs to be controlled in order to avoid distribution shifts and performance degradation.
A study of these effects in the context of ICL for image classification is presented by Wu
et al. in [95], where the authors find empirical evidence that the last layer of a DNN is biased
towards the most recently learned classes. As a remedy for this the authors propose an additional
correction layer that is trained on a balanced validation dataset stored separately and never used
during rehearsal. Similarly, Jodelet, Liu, and Murata [116] analyze different strategies like
oversampling of the rehearsal memory or loss scaling to overcome the negative effects of the
imbalance between rehearsal and new data in ICL. The authors further propose to use a balanced
softmax activation function introduced initially by Ren et al. in [108] for the final layer of a DNN
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resulting in their method Balanced Softmax Incremental Learning (BSIL) and its meta-learning
variant Meta Balanced Softmax Incremental Learning (MBSIL). Hou et al. [87] also conclude
that the last layer of a DNN used for ICL in image classification is biased towards the most
recently learned classes and propose their method Learning a Unified Classifier Incrementally
via Rebalancing (LUCIR) that is based on cosine similarity classification in conjunction with
fine tuning on a balanced validation dataset. Lastly, our approach for localizing catastrophic
forgetting presented in chapter 4 also indicates an increased contribution of the last layers in a
DNN to catastrophic forgetting.

Parameters like the ratio of new and stored data in each mini batch and the algorithm used for
selecting data from the memory for rehearsal are known in advance and can be controlled during
continual learning. In conjunction with the empirically found evidence for the importance of
avoiding biases introduced by rehearsal in the final layer of a DNN we therefore try to answer
the following research question:

What types of distribution shifts can be introduced by rehearsal and how can their negative
effects be avoided?

In this chapter, we first analyze different types of distribution shifts due to rehearsal with a small
memory in section 7.2.1. We then proceed with introducing a novel method for modeling prior
knowledge about rehearsal parameters using a Dirichlet Prior Network (DPN) in sections 7.2.2
and 7.2.3. Experimental results on common benchmark datasets are presented and discussed
in section 7.3. Afterwards the chapter is concluded by a brief summary in section 7.4.

7.2. Method

Our method is based on modeling prior knowledge about the process of rehearsal such that
the negative effects of using a small memory, i.e. distribution shift, are reduced. It uses
three components to form a prediction for one input image: Statistics of the current task and
rehearsal memory, the mixing ratios of the rehearsal process and the predictions of a DNN
given an input image. The distribution shifts due to rehearsal are first analyzed in section 7.2.1.
To combine these three components the theoretical framework of DPNs, which is described
in section 7.2.2, is used. Finally, all three components are combined into a novel method
for continual learning in section 7.2.3. Following most rehearsal-based methods, knowledge
distillation is used to transfer previously learned knowledge to the current task. Similar to the
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previous chapters, we focus on ICL for supervised image classification in order to compare our
approach to related work.

7.2.1. Distribution Shifts due to Rehearsal

First a clear definition of what is meant by a distribution shift in the context of rehearsal for
continual learning is required. A typical distribution shift in the context of machine learning
arises when training data comes from a distribution that is different from that of test data [26,
28, 33, 100].

In this case, the distribution 𝑝(x, y) of the data generating process is not accurately represented
by the training dataset. Given a set of samples, e.g. a task T𝑘 according to Definition 1,
selecting a sample randomly from it can be viewed as sampling from the conditional distribution
𝑝(x, y|T𝑘 ). If not enough samples are available in the training dataset, 𝑝(x, y|T𝑘 ) might differ
from 𝑝(x, y) and hence there will be a distribution shift between training and testing. Especially
for long-tailed distributions characterized by regions of considerable probability density far
away from their central part, a large number of samples might be needed to accurately capture
𝑝(x, y) completely.

But while this type of shift poses an important challenge to machine learning in general, it is
not what we want to focus on in this chapter. We assume that there is no such distribution
shift between training and testing data in the whole sequence of tasks during ICL. Instead, we
focus solely on the distribution shifts caused by rehearsal with a memory that is limited in size.
Note that since rehearsal is only applied during training, the testing data is unaffected and a
distribution shift can only occur for the training data.

For this, we remind ourselves what the goal of continual learning according to Definition 3
is: We want to find a sequence of optimal parameters for a DNN which minimize the chosen
loss function on a sequence of 𝑀 tasks T1,T2, . . . ,T𝑀 while only the dataset associated with
the most recent task is accessible. A naive solution to this problem is storing all previously
encountered data followed by joint training, possibly with repeated re-initialization of all
weights, on all data for every task. While this approach does solve the continual learning
problem and can be considered an upper bound, it does not scale due to an ever increasing
computational and memory complexity. But despite its lacking scalability, this approach does
not introduce any distribution shift since all training data are stored in the rehearsal memory
and can be mixed in the right proportion with new training data. The corresponding distribution
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𝑝(x, y|T1:𝑘 ) = 𝑝(x, y|T1∪T2∪ . . .∪T𝑘 ) of training data resulting from this approach is therefore
the reference for all distribution shifts discussed in the following.

Selecting Samples to Store In contrast to the solution presented above, typically not all
training data can be stored during ICL but only a subsetM𝑘 ⊂ T𝑘 . This leads to the problem
of deciding which data to store in the rehearsal memory such that

𝑝(x, y|M𝑘 ) = 𝑝(x|y,M𝑘 )𝑝(y|M𝑘 ) (7.1)

matches
𝑝(x, y|T𝑘 ) = 𝑝(x|y,T𝑘 )𝑝(y|T𝑘 ) (7.2)

as closely as possible. In the case of ICL for supervised image classification it is known that
the labels y follow a categorical distribution

𝑝(y|𝝁) =
𝐶∏
𝑐=1

`
𝑦𝑐
𝑐 , (7.3)

where the parameter vector 𝝁 = [`1, `2, . . . , `𝐶]𝑇 contains the class probabilities for the 𝐶
classes with 0 ≤ `𝑐 ≤ 1,

∑𝐶
𝑐=1 `𝑐 = 1 and y = [𝑦1, 𝑦2, . . . , 𝑦𝐶]𝑇 being a one-hot encoded

vector. These class probabilities depend on the task T𝑘 and therefore the notation 𝑝(y|T𝑘 ) is
used to make this dependence clear. Hence the parameters of 𝑝(y|M𝑘 ) can easily be matched
with those of 𝑝(y|T𝑘 ) when selecting samples to store.

For many benchmark datasets, like those presented in section 3.6, the number of examples per
class is exactly or at least approximately the same, i.e. they are balanced datasets. Matching
the parameters of these categorical distributions is therefore ensured by selecting an equal
number of samples from each class to store in the memory. If this rehearsal buffer is allowed
to grow an equal number of samples per class can be stored on every task without the need
to remove any previously stored data. A fixed size memory, on the other hand, is usually
kept completely filled on every task such that the maximum amount of data is stored right
from the beginning of an ICL sequence. This necessitates a slightly more complex memory
management algorithm that not only stores new but also removes previously stored data in
order to match the class balance. It is therefore not surprising that many methods for continual
learning use some mechanisms that ensure an equal number of samples per class are stored in
the rehearsal buffer.
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Matching the conditional distributions, i.e. 𝑝(x|y,M𝑘 ) ≈ 𝑝(x|y,T𝑘 ), on the other hand is
much more challenging since the input spaceX is typically high dimensional and no analytical
expression for a distribution of the input data is known. Most methods therefore use an
alternative approach for selecting which samples of a class to store in memory. While some
use simple heuristics like random selection or Herding [29]1, Aljundi et al. treat the process
of sample selection as a constraint reduction problem [83]. Borsos, Mutny, and Krause [97]
on the other hand use bi-level optimization in combination with a NTK to select samples
for storage in memory. A different approach based on entropy maximization is proposed by
Wiewel and Yang in [126] and presented in chapter 5.

Sampling From Rehearsal Memory In addition to the aspects of selecting samples to
store in memory, the process of sampling and mixing data from it with data of the current
task is also of great importance since an improper mixing ratio or sampling strategy can
introduce biases [87, 95, 116]. Suppose that during an ICL on task T𝑘 enough diverse samples
from the previously encountered tasks T1:𝑘−1 are stored in the rehearsal memoryM1:𝑘−1 and
therefore 𝑝(x, y|M1:𝑘−1) ≈ 𝑝(x, y|T1:𝑘−1) holds. Sampling a mini batch with data from both
the rehearsal memoryM1:𝑘−1 and the new task T𝑘 can then be interpreted as observing samples
from

𝑝(x, y|T𝑘★) = 𝑝(x|y,T𝑘★)𝑝(y|T𝑘★), (7.4)

where T𝑘★ is an effective dataset consisting of samples from the rehearsal memory 𝑀1:𝑘−1

and the new task 𝑇𝑘 . From this dataset, samples are selected uniformly at random to form a
mini batch for the continual learning task T𝑘 . The size and composition of T𝑘★ depend on the
fraction 𝑟 ∈ [0, 1] of data selected uniformly at random from the rehearsal memory 𝑀1:𝑘−1 and
the complementary fraction 𝑠 = 1 − 𝑟 of data from task T𝑘 in each mini batch. The parameters
𝑟 and 𝑠 are user chosen and have an impact to the class imbalance in T𝑘★. Following the
same basic idea of avoiding distribution shifts during training on an ICL sequence, 𝑝(x, y|T𝑘★)
should match in the ideal case the true distribution of the data generating process

𝑝(x, y|T1:𝑘 ) = 𝑝(x|y,T1:𝑘 )𝑝(y|T1:𝑘 ) (7.5)

for all tasks encountered so far as if the model was trained on all tasks jointly. This is considered
later as the performance Upper Bound (UB). Here, similar to the problem of selecting samples

1Herding iteratively selects a subset of data such that the moments of this subset closely match those
of the complete set. In ICaRL, for example, this is the mean feature vector obtained before the final
layer in a DNN.
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to store, it is again difficult to match the conditional distributions 𝑝(x|y,T1:𝑘 ) and 𝑝(x|y,T𝑘★)
for the same reasons mentioned before. In the case of ICL for supervised image classification,
the marginals 𝑝(y|T1:𝑘 ) and 𝑝(y|T𝑘★) are categorical distributions and have a parameterized
analytical expression. Given that y is a one-hot encoded vector with y = [𝑦1, 𝑦2, . . . , 𝑦𝐶]𝑇 , the
parameters of 𝑝(y|T1:𝑘 ) can be estimated by

𝝁T1:𝑘 = E𝑝(y|T1:𝑘) [y] ≈
∑

y∈T1:𝑘 y
|T1:𝑘 |

, (7.6)

which depends only on the complete training data T1:𝑘 . The parameters of 𝑝(y|T𝑘★)

𝝁T𝑘★ = E𝑝(y|T𝑘★) [y] = 𝑟𝝁M1:𝑘−1 + 𝑠𝝁T𝑘 ≈ [𝑁1, 𝑁2, . . . , 𝑁𝐶]𝑇 /|T𝑘★, (7.7)

where 𝑁𝑐 is the number of examples from class 𝑐 in T𝑘★, depend on the contents ofM1:𝑘−1,
the training data of the current task T𝑘 and the parameters 𝑟 and 𝑠. This illustrates that the
composition of a mini batch and therefore the choice of 𝑟 and 𝑠 has a direct influence on the
parameters of 𝑝(y|T𝑘★). The distributions 𝑝(y|T𝑘★) and 𝑝(y|T1:𝑘 ) can therefore be matched
simply by adjusting the rehearsal parameters 𝑟 and 𝑠 accordingly for every task. Although 𝑟 and
𝑠 also influence the conditional distribution 𝑝(x|y,T𝑘★), it can not be matched to 𝑝(x|y,T1:𝑘 )
in such a simple way. The reason for this is the lack of an analytical expression for 𝑝(x|y,T𝑘★).
We therefore focus only on matching the analytical form of the priors for y in this chapter.

Different Rehearsal Strategies There are many different strategies how a mini batch can
be constructed during rehearsal. Potentially the simplest is to select samples uniformly at
random from the union of the rehearsal memory M1:𝑘−1 with the complete dataset of the
current task T𝑘 . Given thatM1:𝑘−1

⋂T𝑘 = ∅ follows T𝑘★ =M1:𝑘−1
⋃T𝑘 . This is the strategy

of No Oversampling (NoOS) and the ratio of rehearsal data in a mini batch is given by
𝑟 = |M1:𝑘−1 |/|T𝑘★ | = |M1:𝑘−1 |/( |M1:𝑘−1 | + |T𝑘 |). This ratio might change with every task
depending on the amount of data in the current task and whether the rehearsal memory is
growing or fixed in size. Another common strategy is Buffer Oversampling (BOS), where each
mini batch contains an equal amount of data sampled uniformly at random from the rehearsal
memoryM1:𝑘−1 and the current task T𝑘 . This leads to a mixing ratio of 𝑟 = 𝑠 = 1/2 which
remains constant for every task. Usually this requires oversampling the pretty small rehearsal
memory, i.e. the same sample from the rehearsal memory may be selected multiple times,
hence its name. Class Oversampling (COS) on the other hand ensures that the probability of
observing a particular class in a mini batch is equal for all classes on average. While COS also
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requires oversampling the buffer similar to BOS, it leads to a mixing ratio 𝑟 that changes with
each task. The reason for this is that during ICL the number of classes stored in the rehearsal
memory increases with every task.

Figure 7.1 shows the class probabilities of these three different strategies during an ICL
sequence for five tasks with two distinct classes each. This is a typical setup used in the
literature on continual learning that arises when a dataset with ten classes is split into five
equally sized tasks. The first row (a) shows the class probabilities of the dataset from task T𝑘
in red while the second row (b) shows in blue the class probabilities of all data stored in a
rehearsal memory with a fixed size that is nine times smaller than the training dataset of the
current task, i.e. |M1:𝑘−1 | = |T𝑘 |/9. It is further assumed that the all tasks of the ICL sequence
feature an equal number of examples per class and hence this class balance is maintained when
filling the rehearsal memory. Rows three to five then show the class probabilities of 𝑝(y|T𝑘★)
for the three rehearsal strategies NoOS, BOS and COS introduced above. In these rows the
color red shows the component of class probabilities caused by data of the new task T𝑘 and
blue the component due to data stored in the rehearsal buffer. When comparing those with the
class probabilities of a setup where the training data of all tasks can be stored shown as purple
in row (f), a significant discrepancy for NoOS and BOS becomes obvious. Given that the class
probabilities fully describe a categorical distribution, it can therefore be concluded that these
two strategies cause a distribution shift between 𝑝(y|T𝑘★) and 𝑝(y|T1:𝑘 ). It is, however, also
obvious that BOS leads to class probabilities that are closer to the ideal case shown in the last
row (f). It should therefore induce less biases than NoOS during rehearsal. Only for COS are
the class probabilities identical to those of a training where all data can be stored. Based on
our reasoning it should therefore result in the best performance of all these strategies which
we will verify in section 7.3.

But despite this theoretical advantage of COS over BOS, in practice it has some serious
disadvantages. When using BOS a constant amount of data from the current task T𝑘 is present
in each mini batch. The number of iterations to complete one epoch over the training data
of T𝑘 with fixed size remains constant no matter how many classes are stored in the rehearsal
memory. This is in contrast to COS which processes increasingly less data of the current
task T𝑘 in each mini batch as the number of classes stored in the rehearsal memoryM1:𝑘−1

increases. In practice this leads to an ever increasing number of iterations that are required to
complete one epoch over the training data of the current task. Especially if many classes are
stored in the rehearsal buffer and the current task only features a small number of classes, a
large amount of data in each mini batch is sampled from the rehearsal memory. Given that it is
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Figure 7.1.: Class probabilities during an ICL sequence for supervised image classification
with five tasks each containing two distinct classes. Depicted are : a) 𝝁T𝑘 , b)
𝝁M1:𝑘−1 , c) 𝝁T𝑘★ using NoOS with 𝑟 = 1/10, d) 𝝁T𝑘★ using BOS, e) 𝝁T𝑘★ using
COS and f) 𝝁T1:𝑘 .
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generally desirable to use a small rehearsal memory this also increases the risk of overfitting
to the stored data significantly.

This means, COS eliminates the discussed distribution shift and leads to better results than BOS
but comes not only with an increased computational cost but also a greater risk of overfitting.
It would therefore be desirable to find an approach that similarly to COS prevents distribution
shifts but also avoids excessive repetitions of the relatively few data stored in the rehearsal
memory. As a potential solution to this we propose an approach that uses the prior knowledge
about the class probabilities of both 𝑝(y|M1:𝑘−1) and 𝑝(y|T𝑘 ) in addition to the parameters 𝑟
and 𝑠 in the prediction of a DNN such that potential distribution shifts are accounted for by the
prior knowledge and therefore have reduced impact on the weights learned during training.

7.2.2. Dirichlet Prior Networks

Definition 8: Conjugate Prior

In Bayesian probability theory the prior distribution 𝑝(𝝁) is said to be the conjugate of
a likelihood function 𝑝(y|𝝁) if the posterior

𝑝(𝝁 |y) = 𝑝(y|𝝁)𝑝(𝝁)
𝑝(y) (7.8)

is of the same family as the prior. This means that the form of 𝑝(y|𝝁) and 𝑝(𝝁 |y) is
identical.

In the setting of supervised learning DNNs are typically trained to predict a point estimate for
the parameters of a distribution 𝑝(y|x) over a target y ∈ Y conditioned on an input x ∈ X. In
the case of supervised image classification with a one-hot encoding y = [𝑦1, 𝑦2, . . . , 𝑦𝐶]𝑇 ,

𝑝(y|𝝁) =
𝐶∏
𝑐=1

`
𝑦𝑐
𝑐 (7.9)

is a categorical distribution over 𝐶 different class labels whose associated class probabilities
are predicted by a standard DNN 𝑓𝜽 (x), i.e. 𝝁 = [`1, `2, . . . , `𝐶]𝑇 = 𝑓𝜽 (x). The dependence
of 𝝁 on x is omitted for a cleaner notation.
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A Dirichlet Prior Network (DPN) directly predicts parameters 𝜶 of the conjugate prior to the
categorical [23, 76 f.], namely the Dirichlet distribution

Dir(𝝁 |x) = Γ(𝛼0)∏𝐶
𝑐=1 Γ(𝛼𝑐)

𝐶∏
𝑐=1

`𝛼𝑐−1
𝑐 (7.10)

with

𝛼𝑐 > 0, 𝛼0 =

𝐶∑︁
𝑐=1

𝛼𝑐, (7.11)

where 𝜶 = [𝛼1, 𝛼2, . . . , 𝛼𝐶]𝑇 = 𝑔𝜽 (x) are the so called concentration parameters of the
Dirichlet distribution and 𝑔𝜽 (x) is the DPN with input x. The sum of all concentration
parameters 𝛼0 is defined as the precision and Γ(𝑧) =

∫ ∞
0 𝑥𝑧−1e−𝑥d𝑥 is the gamma function.

Note that 𝜶 represents the parameters of the Dirichlet prior Dir(𝝁 |x) while 𝝁 in (7.9) represents
the parameters of the categorical distribution 𝑝(y|𝝁). Again the dependence of 𝜶 on x is
omitted for a cleaner notation. The concentration parameters completely define the Dirichlet
distribution and are predicted by the DPN. A proof that the Dirichlet distribution is indeed the
conjugate prior of the categorical in (7.9) is provided in appendix B.

DPNs were initially proposed by Malinin and Gales [71] in the context of predictive uncertainty
estimation, where they are intended to model three types of uncertainty in the prediction of a
DNN: distributional, data and model uncertainty.

Distributional uncertainty is caused by a mismatch or shift between the distributions of data
from training and testing datasets. It is usually not explicitly modeled but rather part of model
uncertainty in Bayesian approaches.

Model or epistemic uncertainty measures how well a model, e.g. DNN, is matched to given
training data, i.e. the uncertainty in estimated model parameters. It can be reduced by
increasing the amount of training data and is therefore more pronounced for small datasets.

Data or aleatoric uncertainty on the other hand can not be reduced by increasing the size of a
training dataset as it is inherent to the data itself. Examples for this are overlapping classes or
noise in the ground truth labels.

According to Malinin and Gales, data uncertainty is a known-unknown since the DNN is
capable of confident predictions after training and can predict whether an input is difficult
to classify or not. Distributional uncertainty on the other hand is stated to be an unknown-
unknown as a confident prediction is impossible since the model is exposed to unseen data
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under the distribution shift and therefore can only predict with a low confidence. While this
short and simple introduction to uncertainty suffices for our purposes, we refer the reader to
[71] and [88] for a detailed discussion on uncertainty and training methods for DPNs. In this
chapter, we use the DPN in another context, namely to derive a novel solution to mitigate class
prior distribution shifts during continual learning.

Making Predictions using DPNs Given parameters 𝜶, the distribution over class labels
according to Malinin and Gales [71] can be determined through marginalization as

𝑝(y|x) =
∫

𝑝(y|𝝁)Dir(𝝁 |x)d𝝁 =

𝐶∏
𝑐=1

(
𝛼𝑐

𝛼0

) 𝑦𝑐
. (7.12)

A detailed derivation of this equivalence is provided in Appendix B. Note that in this equation
the dependence of 𝜶 on x is again omitted. Comparing this with the categorical distribution
obtained using a standard DNN shown in (7.9) reveals that 𝛼𝑐/𝛼0 is equivalent to the class
probability `𝑐 of the 𝑐-th class. Importantly, these are unaffected by a scaling of𝜶 and therefore
the information carried by the precision 𝛼0 is lost in the process of marginalization. But unlike
the normalized class probabilities `𝑐 with 0 ≤ `𝑐 ≤ 1 and

∑
𝑐 `𝑐 = 1, predicted concentration

parameters 𝛼𝑐 are not normalized and lower bounded, i.e. 0 < 𝛼𝑐, and therefore offer an
additional degree of freedom.

This additional freedom is used by Malinin and Gales to model distributional uncertainty
using DPNs. For this, the DPN is trained to predict with a high precision 𝛼0 =

∑
𝑐 𝛼𝑐 on In-

Distribution (ID) and a low one on Out-Of-Distribution (OOD) data. This training procedure
not only requires additional OOD data that is close but still different in distribution from the
ID data, but also determines an explicit target precision for ID data as well. For a more
detailed discussion about training losses and DPN calibration we refer an interested reader to
the original publications [71, 88].

In our case, for a fair comparison with related methods on continual learning, no additional
OOD data can be used and therefore the corresponding training methods from [71, 88] can
not be applied. But fortunately, if a calibrated precision is not required, a DPN can simply be
trained using the commonly used cross entropy loss as we do in this chapter.

Activation Functions Many different activation functions can be used in the construction
of a DPN 𝑔𝜽 (x), which is used to predict the parameters 𝜶. While there are no constraints for
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hidden layers, the activation function in the final layer of the DPN has to be chosen carefully.
In order to fulfill the constraints stated in Eq.7.11, a strictly positive output for each neuron is
required. This allows for many popular activation functions like the Softplus or exponential
function to be used. Even the frequently used ReLU activation can be used if a small offset is
added to its output such that it is strictly positive for all inputs. Using an activation function
that is not only lower but also upper bounded like the sigmoid is also possible but leads to
an upper bounded maximum precision 𝛼0. To still enable the DPN to predict with a high
precision, a scaling is necessary in this case.

Among these activation functions the exponential is of particular theoretical importance. Given
an output of the final layer z = [𝑧1, 𝑧2, . . . , 𝑧𝐶]𝑇 in a DPN it is defined as 𝛼𝑐 = e𝑧𝑐 with 𝑧𝑐
being the output of a neuron corresponding to the 𝑐-th class. Using the exponential activation
function in combination with (7.12) yields

𝑝(y|x) =
∫

𝑝(y|𝝁)Dir(𝝁 |𝜶)d𝝁 =

𝐶∏
𝑐=1

(
𝛼𝑐

𝛼0

) 𝑦𝑐
=

𝐶∏
𝑐=1

(
e𝑧𝑐∑
𝑗 e𝑧 𝑗

) 𝑦𝑐
. (7.13)

As Malinin and Gales point out, this is equivalent to the prediction of a DNN with Softmax
activation, i.e. ˆ̀𝑐 = e𝑧𝑐/∑ 𝑗 e𝑧 𝑗 . Such a DNN can therefore be interpreted as a special case of
a DPN with exponential activation in its final layer.

7.2.3. Continual Learning with DPNs

As discussed in section 7.2.1 there can be distribution shifts caused by using a small rehearsal
memory. These have an effect on the weights of a DNN when not accounted for by appro-
priate counter measures. Since during each task T𝑘 the network is trained by sampling from
𝑝(y|x,T𝑘★), a potential shift between it and 𝑝(y|x,T1:𝑘 ) is learned as well and may lead to
biases in the prediction.

Wiewel, Bartler, and Yang therefore propose for their method Dirichlet Prior Networks for
Continual Learning (DPNCL) in [133] to use a priori information about such shifts and
incorporate this knowledge into the prediction of a DPN. In order to motivate how the prior
information can be incorporated into the prediction of a DPN, Bayesian inference is considered.
Given a dataset, e.g. the effective dataset T𝑘★ from section 7.2.1, containing 𝑁𝑐 examples of
class 𝑐, the likelihood function of the parameter vector 𝝁 = [`1, `2, . . . , `𝐶]𝑇 of the categorical
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distribution is given by

𝑝(T𝑘★ |𝝁) =
𝐶∏
𝑐=1

`𝑁𝑐
𝑐 . (7.14)

Note that T𝑘★ depends not only on the current task T𝑘 and the rehearsal memoryM1:𝑘−1 but
also on the mixing ratios 𝑟 and 𝑠. Before observing this dataset the concentration parameters
of a Dirichlet prior Dir(𝝁 |𝜶) are chosen to be uninformative, i.e. 𝜶 = [1, 1, . . . , 1]𝑇 . This
expresses that nothing about the distribution of 𝝁 is known at this point. After T𝑘★ is observed,
our knowledge about it is updated and by combining (7.10) with (7.14) and utilizing 𝛼𝑐 = 1¸
the result is a posterior

𝑝(𝝁 |T𝑘★,𝜶) ∝ 𝑝(T𝑘★ |𝝁)Dir(𝝁 |𝜶) ∝
𝐶∏
𝑐=1

`𝑁𝑐+𝛼𝑐−1
𝑐 =

𝐶∏
𝑐=1

`𝑁𝑐
𝑐 , (7.15)

where 𝑁𝑐 is the number of occurrence for class 𝑐 in task T𝑘★. When comparing (7.15) with
(7.10) it is evident that this posterior is again a Dirichlet distribution Dir(𝝁 |𝜶) with updated
concentration parameters 𝜶 = [𝑁1 + 1, 𝑁2 + 1, . . . , 𝑁𝐶 + 1]𝑇 , which can be used as an updated
prior for a categorical distribution again. Since the concentration parameters 𝜶 of the Dirichlet
distribution 𝑝(𝝁 |T𝑘★,𝜶) contain class counts 𝑁𝑐 of the effective dataset T𝑘★ from section 7.2.1,
it can model the distribution shift introduced by rehearsal. The reason for this is that the
vector of class probabilities 𝝁T𝑘★ in (7.7) is directly proportional to the class counts, i.e.
𝝁T𝑘★ = [𝑁1, 𝑁2, . . . , 𝑁𝐶]𝑇 /|T𝑘★ |.

In contrast to the DPN 𝑔𝜽 (x), which predicts the parameters 𝜶 solely based on individual
inputs x, the posterior in (7.15) is independent of any input x and can be viewed as a summary
of knowledge about the dataset T𝑘★. The main idea of Wiewel, Bartler, and Yang [133] is to
combine the posterior 𝑝(𝝁 |T𝑘★,𝜶) with the prediction of a DNN ℎ𝜽 (x). This has the advantage
that a prediction not only depends on an input x but also on knowledge of the observed dataset
T𝑘★ through the choice of a prior Dir(𝝁 |𝜶). The distribution shifts due to rehearsal as described
in 7.2.1 can therefore be modeled by choosing corresponding concentration parameters 𝜶. This
effectively avoids the need of changing the trainable parameters 𝜽 of ℎ𝜽 (x) just to follow the
distribution shift and the biasing of a DNN ℎ𝜽 (x) towards the most recently learned classes
due to rehearsal [95].

For this, the parameters 𝑟 and 𝑠 are used in conjunction with the estimates of 𝝁M1:𝑘−1 and 𝝁T𝑘
as prior information in the prediction. This results in

𝜶 = �̂�
(
𝑟𝝁M1:𝑘−1 + 𝑠𝝁T𝑘

)
⊙ ℎ𝜽 (x) = �̂�𝝁T𝑘★ ⊙ ℎ𝜽 (x), (7.16)
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Figure 7.2.: Comparison of different architectures mentioned in this chapter. A DNN directly
predicts the class probabilities 𝝁 while a DPN outputs the parameters 𝜶 of a
Dirichlet distribution. The approach proposed by Wiewel, Bartler, and Yang [133],
on the other hand, uses prior knowledge of rehearsal parameters, the memory
M1:𝑘−1 and task T𝑘 in the prediction of concentration parameters 𝜶.

where ⊙ is the Hadamard product, �̂� is a hyperparameter and ℎ𝜽 (x) is a DNN with trainable
parameters 𝜽 . A connection to the discussion of Bayesian inference and (7.15) above can be
made if the parameter �̂� is chosen as the total number of training examples from T𝑘★. In this
particular case, �̂�𝝁T𝑘★ contains the number of examples for every class in the effective dataset
T𝑘★. This allows for modifying the known prior information �̂�𝝁T𝑘★ based on individual inputs
x and decouples the known shift in 𝑝(y|x,T𝑘★) during rehearsal from the learned weights of
ℎ𝜽 . As a result biases towards the most recently encountered classes are reduced during ICL. A
comparison of how the method proposed by Wiewel, Bartler, and Yang differs from a standard
DNN 𝑓𝜽 and DPN 𝑔𝜽 is shown in Figure 7.2.

The predictive categorical distribution that results from this modification is given by

𝑝(y|x) =
∫

𝑝(y|𝝁)Dir(𝝁 |x)d𝝁 =

𝐶∏
𝑐=1

©«
[
𝝁T𝑘★ ⊙ ℎ𝜽 (x)

]
𝑐∑

𝑗

[
𝝁T𝑘★ ⊙ ℎ𝜽 (x)

]
𝑗

ª®®¬
𝑦𝑐

. (7.17)

Compared with prediction of a standard DPN shown in (7.12), (7.17) contains a scaling for each
output of ℎ𝜽 (x) that is dependent on the rehearsal parameters and estimated class probabilities
of data in the memory and current task. While training on an ICL sequence this accounts for
a potential shift in 𝑝(y|x,T𝑘★). During testing, however, no prior information is available. In
common benchmarks each class is typically equally important and therefore all components of
𝝁T𝑘★ are chosen to have an equal magnitude. If only a prediction over class labels is of interest
as in our case, the parameter �̂� can be chosen as an arbitrary positive constant since it has no
influence on the predictive distribution (7.17). Similar to a standard DNN, the common cross
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entropy loss

L𝐶𝐸 (𝜽 ,T) =
−1
|T |

∑︁
x,y∈T

𝐶∑︁
𝑐=1

𝑦𝑐 ln

[
𝝁T𝑘★ ⊙ ℎ𝜽 (x)

]
𝑐∑𝐶

𝑗=1

[
𝝁T𝑘★ ⊙ ℎ𝜽 (x)

]
𝑗

(7.18)

is used during training.

As an activation function of the last layer in ℎ𝜽 (x), Wiewel, Bartler, and Yang propose to use
the sigmoid function, i.e. 𝛼𝑐 = 𝜎(𝑧𝑐) = 1/(1 + e−𝑧𝑐 ), as it is not only lower but also upper
bounded. Since it approaches zero in the limit as its input goes to negative infinity, it satisfies
the constraints on 𝜶 stated in (7.11). The upper bound of one, which is achieved in limit
as the input approaches infinity, ensures that the maximum precision is limited by the prior
knowledge encoded in �̂�𝝁T𝑘★ . Additionally, it also prevents the model from predicting for a
class by simply outputting a very large activation for that particular class. Instead it requires
not only predicting a large activation for this class but also a low one for all other classes.

7.2.4. Knowledge Distillation for DPNCL

Many other methods for continual learning that use a rehearsal memory also use knowledge
distillation as proposed by Hinton, Vinyals, and Dean in [39]. Therefore it is also used in
DPNCL as an additional component that is added to the loss in (7.18). For this, a copy of the
weights learned during task T𝑘−1 is saved as 𝜽𝐷𝑖𝑠𝑡 and used to predict distillation targets 𝜶𝐷𝑖𝑠𝑡
when task T𝑘 is trained. The standard formulation of knowledge distillation for classification
uses the categorical cross entropy loss

L𝐷𝑖𝑠𝑡 (𝜽𝐷𝑖𝑠𝑡 , 𝜽 ,T , 𝑇) =
−1
|T |

∑︁
x∈T

𝐶∑︁
𝑖=1

[
𝝁T𝑘★ ⊙ 𝜎(z𝐷𝑖𝑠𝑡/𝑇)

]
𝑖∑𝐶

𝑗=1

[
𝝁T𝑘★ ⊙ 𝜎(z𝐷𝑖𝑠𝑡/𝑇)

]
𝑖

ln

[
𝝁T𝑘★ ⊙ 𝜎(z/𝑇)

]
𝑖∑𝐶

𝑗=1

[
𝝁T𝑘★ ⊙ 𝜎(z/𝑇)

]
𝑗

,

(7.19)
where 𝑇 is called the distillation temperature, 𝜎(.) is the sigmoid activation function and
z/z𝐷𝑖𝑠𝑡 is the output of the final layer of ℎ𝜽 (x)/ℎ𝜽𝐷𝑖𝑠𝑡

(x). Note that since ℎ𝜽𝐷𝑖𝑠𝑡
was only trained

on the classes encountered in tasks T1:𝑘−1, the distillation loss on task T𝑘 is only computed for
the output neurons corresponding to those previously learned classes.

The distillation loss in (7.19) is independent of �̂� which prevents it from being distilled into the
currently trained model. This means that the prior information encoded in �̂� would be lost if
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Figure 7.3.: Comparison between standard knowledge distillation and DPNCL.

only the standard knowledge distillation from [39] would be used. In order to avoid this, Wiewel,
Bartler, and Yang propose to add the squared euclidean distance between the concentration
parameters predicted by the distillation model 𝜶𝐷𝑖𝑠𝑡 and 𝜶 to L𝐷𝑖𝑠𝑡 . A comparison between
standard knowledge distillation and the one used by DPNCL is shown in Figure 7.3.

The complete loss used for training in DPNCL is therefore given by

L(𝜽𝐷𝑖𝑠𝑡 , 𝜽 ,T , 𝑇) = L𝐶𝐸 (𝜽 ,T) + 𝑇 ·
[
L𝐷𝑖𝑠𝑡 (𝜽𝐷𝑖𝑠𝑡 , 𝜽 ,T , 𝑇) +

∑︁
x∈T

∥𝜶(x) − 𝜶𝐷𝑖𝑠𝑡 (x)∥22
|T |

]
,

(7.20)
where 𝜶(x)/𝜶𝐷𝑖𝑠𝑡 (x) are the concentration parameters predicted on the input image x by
ℎ𝜽 /ℎ𝜽𝐷𝑖𝑠𝑡

. Algorithm 4 summarizes the complete DPNCL method in pseudo code.

7.3. Experiments and Results

This section covers experiments that not only compare the method proposed by Wiewel,
Bartler, and Yang to related work in section 7.3.1 but also verifies the motivation of it through
comparisons to baselines in section 7.3.2. Similar to the chapters before, the experiments are
restricted to the ICL scenario of continual learning in order to allow for a fair comparison
with related methods. For this, the CIFAR100 and ImageNet datasets discussed in section 3.6
form the basis from which sequences with five or ten incremental steps are constructed.
While the complete CIFAR100 dataset is used for this, only a subset of 100 classes selected
randomly from the ImageNet dataset are used. This subset is referred to as ImageNet-100 and
is build in accordance to the many other publications on continual learning [58, 95, 99, 109,
116, 120]. The selection of those 100 classes is performed using the Numpy [102] function
random.shuffle with the seed 1993.
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Algorithm 4: Pseudo code of DPNCL
Input: Number of tasks 𝑁𝑇 , Number of samples per task to 𝑁𝑆𝑡𝑜𝑟𝑒, rehearsal mixing

ratios 𝑟 = 1 − 𝑠, hyperparameter �̂�, batch size 𝑁𝐵, learning rate 𝛾, distillation
temperature 𝑇

1 Randomly initialize weights 𝜽 of ℎ𝜽 ;
2 Initialize empty rehearsal memoryM;
3 for 1 ≤ 𝑘 ≤ 𝑁𝑇 do
4 Determine 𝝁T𝑘★ = 𝑟𝝁M1:𝑘−1 + 𝑠𝝁T𝑘 ;
5 while Not converged do
6 Sample mini batch B = {x𝑖, y𝑖}𝑁𝐵

𝑖=1 from T𝑘★;
7 Predict 𝜶𝑖 = �̂�𝝁T𝑘★ ⊙ ℎ𝜽 (x𝑖);
8 Compute loss L𝐶𝐸 (𝜽 ,B) given in (7.18);
9 if 𝑘 > 1 then

10 Predict 𝜶𝑖,𝐷𝑖𝑠𝑡 = �̂�𝝁T𝑘★ ⊙ ℎ𝜽𝑫𝒊𝒔𝒕 (x𝑖);
11 Compute L𝐷𝑖𝑠𝑡 (𝜽𝐷𝑖𝑠𝑡 , 𝜽 ,B, 𝑇) given in (7.19);
12 Loss L(𝜽𝐷𝑖𝑠𝑡 , 𝜽 ,B, 𝑇) =

L𝐶𝐸 (𝜽 ,B) + 𝑇 ·
[
L𝐷𝑖𝑠𝑡 (𝜽𝐷𝑖𝑠𝑡 , 𝜽 ,B, 𝑇) +

∑
x∈B
∥𝜶(x) − 𝜶𝐷𝑖𝑠𝑡 (x)∥22

|B|

]
;

13 else
14 Loss L(𝜽 ,B) = L𝐶𝐸 (𝜽 ,B);
15 end
16 Update weights 𝜽 ← 𝜽 − 𝛾∇𝜽L;
17 end
18 Select 𝑁𝑠𝑡𝑜𝑟𝑒 samples randomly from T𝑘 and store them inM;
19 Save weights for distillation 𝜽𝑫𝒊𝒔𝒕 ← 𝜽;
20 end
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For constructing ICL sequences, the datasets are split in two subsets containing exactly half
of all classes. While the first half is used as a base task, the remaining half is split into five
or ten subsets again. These are then used as the incremental steps, where during each step
only data of the corresponding subset is available to the model under test. Following related
work, the order of classes 0, 1, . . . , 99 is shuffled using random.shuffle with the seed 1993.
This setup with a base task containing a large number of classes is intended to mimic a more
realistic continual learning scenario, where a DNN is trained on a large dataset, e.g. ImageNet,
and only a small number of new classes is learned with each step.

For the experiments on CIFAR10 and CIFAR100, the ResNet32 architecture detailed in Ta-
ble 3.6 is used. All experiments on ImageNet-100 are performed with the ResNet18 architecture
shown in Table 3.4. These architectures are used since they are commonly used throughout the
literature for many different benchmarks and therefore allow for a simple and fair comparison
between methods.

The hyperparameters used for training are not optimized extensively and are identical for
both datasets used in the experiments. Given that the ImageNet-100 dataset is much more
computationally demanding than CIFAR100 due to the much higher resolution images, a
small-scale manual hyperparameter optimization was performed only on the latter. Similar to
many related methods, we use the SGD optimizer with a batch size of 256 and a momentum
of 0.9. The DNNs are trained for 250 on CIFAR100 and 150 epochs on ImageNet-100.
During training on CIFAR100 the learning rate follows a schedule that starts at 0.1 and
decays the learning rate through dividing it by ten after 70% of the iterations on a task are
completed. On ImageNet-100 this schedule is only applied during training of the base task
and all subsequent tasks are trained using a learning rate of 0.01. Knowledge distillation as
described in section 7.2.3 and shown in Algorithm 4 is used with a temperature of𝑇 = 2.0. The
parameter �̂� is selected on each experiment in such a way that �̂�𝝁T𝑘★ is a vector that contains
the number of examples per class in the equivalent dataset T𝑘★.

Only those data augmentations that are also used by related work are employed. For CIFAR100
this is a random horizontal flipping and padding by four pixel with value zero for each of
their RGB components on each side of the images followed by a random crop down to the
original image size of 32 × 32 pixel. On ImageNet-100 a smart image resize function from
Tensorflow [42] that prevents aspect ratio distortion is used to create 256 × 256 pixel images
from which random crops of 224×224 pixels are extracted. This is again followed by a random
horizontal flipping. During testing only one center crop of each image is used instead of a
multiple random ones. Following the literature, all results are reported for a growing rehearsal
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Table 7.1.: AIA in % on CIFAR100 and ImageNet-100 with a growing buffer of 20 examples
per class for different number of steps.

CIFAR100 ImageNet-100
Number of tasks 5 10 5 10

Baseline (NoOS) 29.34 18.89 37.00 25.52
Baseline (BOS) 52.06 43.70 54.51 46.09
Baseline (COS) 55.21 51.14 N/A N/A
ICaRL [58] 57.17 52.57 65.04 59.53
BiC [95] 59.36 54.20 70.07 64.96
BSIL [116] 62.22 58.32 72.57 68.25
DPNCL (Ours, NoOS) [133] 62.33 56.63 71.29 64.60
LUCIR [87] 63.42 60.18 70.47 69.09
DPNCL (Ours, COS) [133] 63.64 58.29 N/A N/A
MBSIL [116] 64.11 60.08 72.88 69.26
PODNet [99] 64.83 63.19 75.54 74.33
TPCIL [109] 65.34 63.58 76.27 74.81
DPNCL (Ours, BOS) [133] 65.74 62.83 73.91 70.65
Upper Bound (UB) 67.82 79.76

memory that stores 20 images per class as the average over five independent training runs.
Random selection is used as strategy for selecting examples to store in memory.

7.3.1. Comparison to Related Work

The comparison with related work on methods for continual learning is of great interest and
therefore presented first. But while there are many methods proposed in the literature, not
all share the same experimental setup or scenario and can therefore not be compared directly.
Table 7.1 shows many recently proposed methods that are evaluated for the ICL scenario
using an identical DNN architecture, i.e. ResNet, and also use a growing buffer that stores 20
examples per class. Additionally, the performance of a baseline that uses naive rehearsal with
different types of oversampling is included and serves as a baseline. Naive rehearsal selects
uniformly at random which data to store in and replay from its rehearsal memory. The AIA as
discussed in section 3.5 is used since it allows for a quick comparison of the performance of a
method throughout the whole continual learning sequence with just one scalar.

Beginning with the baseline, it is evident that using NoOS results in poor performance, not
only compared with other more advanced methods but also other oversampling strategies of
the same baseline as well. Even using BOS increases the performance significantly while COS
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yields even better results. Especially on the longer sequence with ten tasks there is a significant
advantage of the latter. Unfortunately due to the drastically higher computational cost of COS
no results on ImageNet-100 are available. But a better performance of COS when compared
with BOS can be expected on this dataset as well.

Other methods like ICaRL or BiC achieve better results than the baseline on both CIFAR100
and ImageNet-100 for every sequence length. The BSIL and its variant using meta learning
MBSIL proposed by Jodelet, Liu, and Murata [116] are closely related to DPNCL. In fact,
they are equivalent in structure if an exponential activation function is used for the last layer
of ℎ𝜽 (x). But despite their similarity on both datasets they fall behind DPNCL with BOS for
both sequence lengths. This might be due to DPNCL using a sigmoid activation for the last
layer of ℎ𝜽 (x), better optimized hyperparameters or the additional distillation loss. Similarly,
LUCIR achieves lower results than DPNCL with BOS in all experiments.

When comparing the best results for every dataset and sequence length, DPNCL with BOS
achieves the best results on CIFAR100 with a sequence length of five and outperforms PODNet
significantly while TPCIL only marginally. On the ten step sequence and on ImageNet-100
TPCIL achieves the best results, closely followed by PODNet and DPNCL with BOS. But
it is important to note that TPCIL stores not only training examples in its buffer but also
additional information about the relation of those in an elastic Hebbian graph. Comparing the
performance of DPNCL with the best performing method on the longer sequences reveals that
especially on ImageNet-100 it falls behind. A possible reason for this might be the distillation
that is only applied on the last layer in contrast to PODNet, where it is performed on all layers
and the additional information stored by TPCIL.

Comparing the above mentioned methods with the Upper Bound (UB) in Table 7.1 it seems
that the best performing methods, i.e. DPNCL for CIFAR100 with five steps and TPCIL for all
other cases, achieve similar results as the UB of training on all data simultaneously. But it has
to be noted that the AIA is equivalent to the standard classification accuracy A if a sequence
has only one task as it is the case for UB. If, however, there is more than one task in the
sequence as it is the case for all results in Table 7.1 except the UB, they are not equivalent and
the AIA is generally higher than the standard classification accuracy A determined on the last
task. This means that although it might seem that a continual learning methods might achieve
results close to the UB in terms of AIA, it might achieve a significantly lower classification
accuracy on the final task as shown in the next chapter.
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7.3.2. Comparison to Baselines and Upper Bound

Apart from comparing the AIA, which summarizes the performance of a model for the whole
continual learning sequence, it can also be of interest to compare its accuracy A on the test
dataset throughout the ICL sequence. This metric is of more use for a practical application
since it reflects the actual classification accuracy on a cumulative test dataset for every task.
In contrast to this, the AIA is generally higher than that since it includes the test accuracy on
previous tasks, which contain less classes and are therefore in general simpler to solve.

For this, Figure 7.4 shows the accuracy A of baselines, DPNCL and the UB over all tasks
for the five and ten step sequences on CIFAR100. While all methods start with an identical
performance on the base task, it is obvious that the baseline without oversampling (NoOS)
suffers from severe catastrophic forgetting even after the first task, where its accuracy is already
half of that achieved on the base task. During the next tasks its performance deteriorates
exponentially until it reaches roughly 10% which is approximately the performance a model
trained only on the last task with ten classes would achieve. The baseline with BOS on the
other hand retains much of its initial performance but also experiences catastrophic forgetting.
On the final task it achieves almost a four times higher accuracy than the baseline without
oversampling. A slightly better result is obtained by the baseline using COS with a consistently
higher accuracy. This advantage gets more pronounced for later tasks which makes it a much
better choice for longer sequences if its increased computational cost is acceptable.

The motivation for incorporating the prior knowledge into the predictions as shown in (7.16) is
to reduce the effects of distribution shifts caused by oversampling or a lack of it. Consequently,
when using DPNCL the performance of a model during an ICL sequence should be independent
of the chosen oversampling method. To some extend this is indeed the case as indicated by
the results of DPNCL shown in Figure 7.4. All of these show significantly less catastrophic
forgetting when compared with the baselines. But more importantly the dependence of their
performance on the oversampling strategy is greatly reduced, especially on the five step
sequence. For ten steps, the difference between oversampling strategies is reduced for DPNCL
but still significant. Even NoOS achieves almost the same accuracy on every task when
compared with BOS or COS. It is further interesting to note that BOS achieves even better
results than COS for both sequence lengths with DPNCL. In combination with a much smaller
computational cost when compared with COS, BOS is not only achieving a better accuracy
but is also faster to train. But although on the first tasks there is virtually no difference
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Figure 7.4.: ICL sequence on CIFAR100 comparing the baseline and our method with different
oversampling strategies.
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Figure 7.5.: ICL sequence on ImageNet-100 comparing the baseline and our method with
different oversampling strategies.
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in performance, a growing discrepancy between BOS and NoOS with DPNCL can also be
observed.

Similar results are obtained on ImageNet-100. The baselines again deteriorate rapidly in
their performance but not as drastic when compared with CIFAR100. The difference between
NoOS and BOS is also less severe but still very significant. A reason for this could be the
much higher resolution of ImageNet-100 images when compared with CIFAR100 which might
not only lead to more information stored in the buffer but also easier discrimination between
classes. Overall these results and those shown in Table 7.1 indicate that the ICL sequence
on ImageNet-100 is less difficult than the one on CIFAR100. Due to limited computational
resources and the observation that BOS performed better on CIFAR100 when combined with
DPNCL, an experiment using the baseline with COS is not performed on ImageNet-100.

Comparing the accuracy of all baselines and DPNCL on the final task with the UB confirms
that indeed even the highest performing continual learning method still achieves significantly
lower results than the UB. Since this accuracy on the final task is most relevant for a practical
application, comparisons with an UB in terms of the AIA as they are common in the literature
can be misleading.

7.4. Conclusion

As a closing remark of this chapter the motivating research question is considered again:

What types of distribution shifts can be introduced by rehearsal and how can their negative
effects be avoided?

In order to determine what types of distribution shifts are possible, in section 7.2.1 several
different types and their causes are discussed. Aspects like selecting examples to store and
different oversampling strategies applied during rehearsal in the case of ICL are discussed.
While distribution shifts are possible in both the high-dimensional continuous input and low-
dimensional discrete output space, only for the latter an analytical approach is feasible. The
very high-dimensional input space and the unknown form of distribution over it prevent an
analytical approach for addressing distribution shifts in the input space.

Although the COS oversampling strategy prevents a distribution shift between rehearsal with
a small buffer and an ideal scenario where all data can be stored in the rehearsal memory,
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it comes with serious limitations and drawbacks. Compared to NoOS and BOS it leads to
an increasingly larger number of examples in a mini batch being sampled from the rehearsal
memory and therefore slows down training. In addition to this, it also increases the risk of
overfitting on the stored data since a large number of training iterations are performed on a
rather small amount of training examples stored in the rehearsal memory.

As a way to incorporate prior knowledge about the oversampling strategy and rehearsal memory
content into the prediction of a DNN, the concept of a DPN is introduced in section 7.2.2.
Using this as a basis, an approach referred to as DPNCL by Wiewel, Bartler, and Yang [133]
is introduced in section 7.2.3. It uses estimates of class probabilities from both the rehearsal
memory and current task in combination with the prediction of a DNN in order to model a
distribution shift due to rehearsal with a small memory. This reduces the effect of such shifts
on the parameters that are learned and therefore reduces catastrophic forgetting. Through this
modeling of known shifts the use of extensive oversampling and therefore a prolonged training
including an increased risk of overfitting can be avoided.

The direct comparison of experimental results on the CIFAR100 and ImageNet-100 datasets
presented in section 7.3.1 shows that this method not only achieves results that are competitive
with but on CIFAR100 even outperforms recently proposed related methods. But on ImageNet-
100 and for a ten step ICL sequence it is outperformed by two competing methods which use
a more complex distillation loss and in one case store additional data in form of a graph that
models the relation between individual training examples. Another interesting observation is
that, in contrast to the baseline, DPNCL with BOS outperforms DPNCL with COS. Given that
the former requires much less training iterations to complete an epoch when compared with the
latter, this is a surprising and interesting result. A possible reason for this could be that during
COS overfitting to the small number of samples stored in the rehearsal buffer is much more
likely than during BOS. Without using DPNCL this overfitting might be unnoticeable since the
performance degradation due to the rehearsal induced distribution shift dominates. But when
using DPNCL overfitting to the rehearsal data is a more noticeable. An additional comparison
to a baseline with different oversampling strategies presented in section 7.3.2 provides further
evidence for the claim that incorporating the prior knowledge in this way reduces the effects
of distribution shifts. As expected, the influence of an oversampling strategy used during
rehearsal is greatly reduced when the prior knowledge is included compared with the baseline
that does not include it.

In summary, it can be concluded that there are distribution shifts caused by using only a small
rehearsal memory that can not store all data. While oversampling can to some extend overcome
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the negative effects of such shifts, it on its own introduces new problems like a significant slow
down and risk of overfitting in the case of COS or a rather weak performance when compared
with related methods. Using the theory of DPNs to incorporate prior knowledge about the
oversampling strategy and memory contents into the prediction of a model is able to overcome
these. It not only prevents the negative effects of a distribution shift in the output space but also
enables the use of computationally much less demanding oversampling strategies like BOS.
Extending the approach to settings other than ICL for supervised image classification or to also
model shifts in the input space is left open for further research.



Chapter 8.

Conclusion and Future Work

In this thesis, different aspects of rehearsal-based continual learning for image classification
are addressed in an attempt to contribute a better understanding of the current main challenge,
i.e. catastrophic forgetting, and novel methods for overcoming it. The main goal of this thesis
is to improve the capability of DNNs to learn on long sequences of tasks without requiring
to store all previous training data. This would close an important gap between human and
machine learning and move today’s weak AI closer to AGI [90]. There are many different
ways to approach continual learning as presented in chapter 3. This thesis focuses on the most
promising family of rehearsal-based methods. Despite their rather simple approach of storing
previously encountered training data for rehearsal during later tasks, they provide a strong
baseline and basis for further improvements.

8.1. Summary of Contributions

The first contribution of this thesis is intended to study the phenomenon of catastrophic
forgetting in more detail when compared with simply using scalar metrics. i.e. loss or
accuracy. To gain more insight into which parts of a DNN are affected to what extend by
catastrophic forgetting, a novel method for attributing an increase in loss to its weights is
proposed. The process of training a DNN is interpreted as moving along a trajectory in the
parameter space. The individual contributions are determined by integrating the gradient of
a loss w.r.t. to the weights on the previous task along the trajectory of the new task for every
weight separately. Afterwards these individual contributions can be aggregated and visualized
at different levels, i.e. individual weights, layers or groups of layers. This is in contrast
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to the commonly used scalar quantities, i.e. losses or metrics, which can only indicate an
increase in loss but not localize its cause. An application on this method to multiple datasets
in three different continual learning scenarios, i.e. ICL, IDL and ITL, confirms experimental
observations from previous work and provides new insights.

This study of catastrophic forgetting is followed by the second contribution of this thesis: a novel
method for selecting which data to store in a rehearsal-memory for online continual learning.
This less studied problem assumes that data becomes available in a stream of individual samples
rather than tasks with clearly defined boundaries and large datasets. It is often associated with
autonomous systems that experience and interact with the world. These systems are typically
limited by their storage capacity and computational power. To overcome catastrophic forgetting
in this setting, a novel method is derived from information theoretic principles. It maximizes
an approximation of the entropy of a distribution associated with sampling uniformly at
random from the rehearsal memory. It is shown through experimental evaluation that this
method outperforms its closest competitor GSS on all tested datasets. Furthermore, it is also
competitive with more complex related work that not only utilizes improved sample selection
techniques but also employs more sophisticated rehearsal methods.

Next the use of synthetic data in the context of continual learning is addressed as the third
contribution of this thesis. Based on previous work, which demonstrated a certain potential of
synthetic data in rehearsal-based continual learning, a novel way of representing the synthetic
data is presented. Its main idea is to avoid learning redundant information and storing synthetic
data not individually. It rather learns components with associated weights that form synthetic
data. This allows for sharing the same components across many different samples and therefore
leads to a much more memory-efficient rehearsal. Experiments show a significant performance
increase when compared to related work on several datasets, especially for small rehearsal
memories.

Finally, the rehearsal process itself is analyzed with respect to distribution shifts caused by
a limited memory size. It is shown theoretically that a rehearsal with limited memory size
leads to a distribution shift which degrades the performance when compared to the ideal case
of training on all data. This shift depends on the specific memory size, its content and the
oversampling strategy. In order to mitigate the effects of such a distribution shift, a novel
method based on DPNs is used. It incorporates prior knowledge about the rehearsal process
and the current training dataset into the prediction of a DNN. This reduces the influence of
the distribution shift on the learnable weights. Experimental results show that this method is
competitive on several datasets and sequence lengths when compared with related work and
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even outperforms it in some cases. An ablation study further shows that the final continual
learning performance is largely unaffected by the type of oversampling during rehearsal and
therefore validates the main idea of this method.

8.2. Outlook and Open Questions

The results of this thesis show that recent methods for continual learning with DNNs for
image classification can reduce the performance degradation due to catastrophic forgetting
significantly. But there are still open questions which could not be answered in this thesis and
are left open for potential future work.

Given that learning without forgetting requires some sort of memory, be it explicitly or im-
plicitly through generative models or regularization terms, and there are no practical systems
with unlimited resources, a continual learning system will at some point reach its maximum
storage capacity. If learning is to be continued beyond this point, it has to be decided how to
make resources available for new tasks. This inevitably means that some information about
previously encountered tasks will be lost. Selecting what and how much to forget is a trade-off
between freeing resources for new tasks while at the same time keeping the most relevant
information about previously encountered tasks. This is an aspect that humans experience
repeatedly throughout their life but it is rarely discussed in the literature. Usually a growing
memory without a maximum size is used. A notable exception to this are online continual
learning methods, similar to the one presented in chapter 5, where a fixed size memory is
assumed and an algorithm is used to store only the most relevant data in memory.

In chapter 6 it is shown that sharing components of synthetic data for rehearsal has the
potential to improve the memory efficiency of rehearsal-based methods significantly. The
linear combination of components with a final non-linear function is a first attempt but more
complicated compositions of synthetic data are possible. It might, for example, not be necessary
for individual components to have the same size as the input data but rather could span only a
partition of it. Sharing not only a fixed number of components between data of the same class
but across all classes and reusing those learned on previous tasks cumulatively is a another
direction that can be explored in order to further increase memory efficiency.

The main chapters of this thesis study different aspects like sample selection in chapter 5,
learning synthetic rehearsal data in chapter 6 and improving the rehearsal process itself in
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chapter 7. But a natural next step is to combine these different approaches into one method.
This is possible at least for the combination of ESS with DPNCL for online continual learning
and CCMCL with DPNCL in offline continual learning. Such combinations might improve
continual learning performance even more than one method individually can. But due to the
limited scope of this thesis, such combinations were not studied. The simultaneous use of ESS
and CCMCL in one method is not possible, since the former selects data from the dataset to
store in the rehearsal memory while the latter learns completely synthetic data.

It is implicitly assumed in most of the literature that Backpropagation (BP) is a suitable
algorithm for training DNNs in the context of continual learning. This assumption is probably
driven by the overwhelming success that it achieved in recent years. But additional measures
are required to achieve continual learning with DNNs that are trained using BP. In addition,
there is also longstanding evidence from neuroscience that BP is biologically implausible as
discussed in section 2.5. Given the success of biological systems in continual learning, it
might therefore be worthwhile to investigate if more biologically plausible training algorithms
like Direct Feedback Alignment (DFA) [47] are inherently more suitable for continual learning
than BP.

Finally, there is more to continual learning than simply avoiding catastrophic forgetting. If its
goal is to achieve human-like learning on a sequence of tasks, other aspects like the ability to
quickly learn from only a few examples, improving on previously learned tasks by learning new
ones, adapting to changing domains and utilizing multiple input modalities at the same time
are also important. Incorporating more methods and insights from other fields like transfer,
few-shot and self-supervised learning for building a system that is truly capable of continual
learning is therefore required. After all, each of these aspects alone is probably not enough to
achieve true human-like sequential learning without forgetting. Only a suitable combination
of them will enable true continual learning with DNNs.



Appendix A.

Online Continual Learning and Buffer
Management

This section presents the process of deriving the approximate solution to the optimization
problem (5.7). Starting with the KDE from (5.5) we have

𝐻 (𝑋 |𝑌,M𝑙) = −E𝑝(x|y,M𝑙) [log 𝑝(𝑋 |𝑌,M𝑙)]
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Maximization over the index 𝑙 of all possible memoriesM𝑙 then yields
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Approximating the expectation operator by sampling at the modes x𝑦 [𝑚] then gives
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Using Jensen’s inequality − log
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bounded. This allows for maximizing the bound instead of the objective function and permits
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further simplification as
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Since the exponential is a monotonically increasing function and the summation is performed
over all possible distances between all examples stored in M𝑙 , 𝑙★ identifies the memory
which has the maximum distance between all examples stored in it. This results in our final
approximation

𝑙★ = arg max
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Dirichlet Prior Networks for Continual
Learning

Following Bishop and Nasrabadi [23, 76 f.], consider the categorical likelihood function for
𝑁 =

∑𝐶
𝑐=1 𝑁𝑐 observations from a dataset D

𝑝(D|𝝁) =
𝐶∏
𝑐=1

`𝑁𝑐
𝑐 , (B.1)

where 𝑁𝑐 is the number of observations with class label 𝑐. With the Dirichlet prior

Dir(𝝁) = Γ(𝛼0)∏𝐶
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follows for the posterior

𝑝(𝝁 |D) ∝ 𝑝(D|𝝁)Dir(𝝁) ∝
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𝑐=1

`𝑁𝑐+𝛼𝑐−1
𝑐 . (B.3)

According to Bishop and Nasrabadi [23, 76 f.] this is again the form of a Dirichlet distribution
whose normalization coefficient can be obtained by comparison with (B.2). This leads to

𝑝(𝝁 |D) = Γ(𝛼0 + 𝑁)∏𝐶
𝑐=1 Γ(𝛼𝑐 + 𝑁𝑐)

𝐶∏
𝑐=1

`𝛼𝑐+𝑁𝑐−1
𝑐 . (B.4)

Hence the posterior 𝑝(𝝁 |D) is of the same form as the Dirichlet prior and according to Defini-
tion 8 the Dirichlet distribution is indeed the conjugate prior to the categorical distribution.
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In section 7.2.2 it is stated that according to Malinin and Gales [71] the distribution over class
labels can be determined through marginalization as

𝑝(y|x) =
∫

𝑝(y|𝝁)Dir(𝝁 |x)d𝝁 =
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. (B.5)

In order to show that this is indeed true, the probability 𝑝(𝑦1 = 1, 𝑦2 = 0, . . . , 𝑦𝑐 = 0|x) is
considered as an example. Note that the dependence of the concentration parameters of the
Dirichlet distribution 𝜶 on x is omitted for a cleaner notation. For this specific case follows

𝑝(𝑦1 = 1, 𝑦2 = 0, . . . , 𝑦𝑐 = 0|x) =
∫
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where �̃� = [𝛼1 + 1, 𝛼2, . . . , 𝛼𝐶] and the property Γ(𝑥 + 1) = 𝑥Γ(𝑥) of the gamma function is
used. By analogous derivations for all other 𝐶 − 1 values of the one-hot vector y, this results
can be generalized to

𝑝(y|x) =
𝐶∏
𝑐=1

(
𝛼𝑐

𝛼0

) 𝑦𝑐
, (B.7)

which shows that (7.17) is indeed true.
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