
Adaptive Human-Robot Policy

Blending for Shared Control

Teleoperation

Von der Fakultät für Informatik, Elektrotechnik und

Informationstechnik der Universität Stuttgart zur Erlangung der

Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Yoojin Oh

aus Cheonan, Republik Korea

Hauptberichter: Prof. Dr. rer. nat. Marc Toussaint

Mitberichter: Prof. Dr. Katherine J. Kuchenbecker

Tag der mündlichen Prüfung: 08.03.2024

Institut für Parallele und Verteilte Systeme der Universität Stuttgart

2024

2

Abstract

Technology is rapidly advancing toward intelligent systems driven

by artificial intelligence (AI). Expectations are growing for fully au-

tonomous systems that can assist humans in efficiently completing tasks

in various domains, such as autonomous vehicles and mobile robots,

industrial robots, medical and assistive robots, service robots, and

rescue robots. Existing robotic systems still lack robustness and adapt-

ability when operating in highly dynamic environments. Teleoperation

enables the deployment of robots with partial autonomy to execute

tasks with the help of human operators. Robots can be more agile,

execute highly diverse tasks, and achieve long-term goals with the help

of human assistance, but humans are prone to making operational errors

when teleoperating robots under pressure. Shared control aims to solve

this problem by combining the advantages of both humans and robots,

where the robot and human agents support each other to maximize the

overall performance of the system. In shared control, it is essential to

determine an acceptable blending strategy (arbitration), that combines

human and autonomous robot policies to generate an arbitrated action.

This dissertation proposes novel arbitration strategies for robot tele-

operation, that focus on maximizing the control authority of the human

3

operator while allowing the robot to assist the human in avoiding oper-

ational errors. In the dissertation, it is assumed that a goal-conditioned

autonomous robot policy is provided that can generate optimized actions

toward a target goal at any state. The methods utilize this autonomous

robot policy to infer intrinsic information about the task, to assist the

human operator in critical situations. The thesis formulates shared

control as an optimization problem to find the blended policy that max-

imizes the operator’s internal action-value function, while maintaining

a trust region to keep the policy close to the autonomous robot policy.

This leads to a state update rule in the form of natural gradient descent,

which emerges from sampling local robot policies and computing the

second derivative. In addition, a method that actively allocates more

control authority to the human at a decision point is introduced, rea-

soning on the modality of the marginalized probability distribution of

all goal-conditioned autonomous robot policies. The concept is used to

train a nonlinear differentiable arbitration strategy using reinforcement

learning, by learning a policy through user interaction. Finally, a teleop-

eration system is presented that combines perception and manipulation

solutions using hand gestures as the teleoperation interaction method.

The results of the methods presented in this dissertation demonstrate

an improvement in safe teleoperation while allowing the operator to

retain control authority.

4

Zusammenfassung

Die Technologie entwickelt sich rasch zu intelligenten Systemen, die

durch künstliche Intelligenz (KI) angetrieben werden. Die Erwartungen

an vollständig autonome Systeme, die den Menschen bei der effizien-

ten Erledigung von Aufgaben in verschiedenen Bereichen unterstützen

können, wie z. B. autonome Fahrzeuge und mobile Roboter, Industriero-

boter, medizinische Roboter und Assistenzroboter, Serviceroboter und

Rettungsroboter, steigen. Bestehenden Robotersystemen mangelt es

noch an Robustheit und Anpassungsfähigkeit beim Einsatz in hochdy-

namischen Umgebungen. Die Teleoperation ermöglicht den Einsatz von

Robotern mit teilweiser Autonomie zur Ausführung von Aufgaben mit

Hilfe von menschlichen Steuerungen. Roboter können mit menschlicher

Unterstützung agiler sein, sehr unterschiedliche Aufgaben ausführen und

langfristige Ziele erreichen, aber Menschen sind anfällig für Bedienungs-

fehler, wenn sie unter Druck mit Robotern arbeiten. Die gemeinsame

Steuerung zielt darauf ab, dieses Problem zu lösen, indem die Vor-

teile von Menschen und Robotern kombiniert werden, wobei sich die

Roboter und die menschlichen Agenten gegenseitig unterstützen, um

die Gesamtleistung des Systems zu maximieren. Bei der gemeinsamen

Steuerung ist es wichtig, eine annehmbare Mischstrategie (Arbitrierung)

5

zu bestimmen, die die Richtlinien des Menschen und des autonomen

Roboters kombiniert, um eine abgestimmte Aktion zu erzeugen.

In dieser Arbeit wird die gemeinsame Steuerung als Optimierungs-

problem formuliert, bei dem es darum geht, die gemischte Strategie zu

finden, die die interne Aktionswertfunktion des Bedieners maximiert

und gleichzeitig einen Vertrauensbereich aufrechterhält, um die Strate-

gie nahe an der autonomen Roboterstrategie zu halten. Dies führt zu

einer Zustandsaktualisierungsregel in Form eines natürlichen Gradien-

tenabstiegs, der sich aus dem Abtasten lokaler Roboterstrategien und

der Berechnung der zweiten Ableitung ergibt. Darüber hinaus wird eine

Methode eingeführt, die dem Menschen an einem Entscheidungspunkt

aktiv mehr Kontrollbefugnisse zuweist, indem sie auf der Modalität

der marginalisierten Wahrscheinlichkeitsverteilung aller zielbedingten

autonomen Roboterstrategien beruht. Das Konzept wird verwendet, um

eine nichtlineare differenzierbare Arbitrierungsstrategie mit Hilfe von

Reinforcement Learning zu trainieren, die eine Strategie durch Benutzer-

interaktion lernt. Schließlich wird ein Teleoperationssystem vorgestellt,

das Wahrnehmungs- und Manipulationslösungen unter Verwendung

von Handgesten als Interaktionsmethode für die Teleoperation kombi-

niert. Die Ergebnisse der in dieser Dissertation vorgestellten Methoden

zeigen eine Verbesserung der sicheren Teleoperation bei gleichzeitiger

Beibehaltung der Steuerungskompetenz des Bedieners.

6

Acknowledgements

I would like to express my deepest gratitude to my supervisor Dr. Jim

Mainprice for not only allowing me to pursue my Ph.D. in Germany

under his supervision but also supporting me until the end of my

Ph.D. journey. I am grateful for the detailed and constructive guidance

and valuable feedback he gave me. His direct involvement in research

allowed me to gain fruitful insights as well as hands-on experience in

practical programming skills, which I truly value. I would also like

to thank Prof. Marc Toussaint for his support with my Ph.D. process

and the passion he showed me for science. I enjoyed supporting him

as a teaching assistant in his courses and am grateful to gain valuable

insights through his teaching.

I am grateful to be a scholar of the International Max Planck Re-

search School for Intelligent Systems (IMPRS-IS) and I would like to

thank Dr. Katherine Kuchenbecker and Dr. Jörg Stückler for being a

member of my IMPRS-IS thesis committee and for providing me with

feedback and guidance. I would especially like to express my gratitude

to Dr. Kuchenbecker for allowing me to finish my research in the Haptic

Intelligence department at the Max Planck Institute for Intelligent

Systems (MPI-IS) and providing me with support and advice on my

7

career.

I am thankful to have met wonderful colleagues and students over the

past years. A big thank you to Carola Stahl for helping me with all the

administrative tasks that I had to deal with in Germany, and to Philipp

Kratzer and Janik Hager who were the last members of the remaining

Machine Learning and Robotics group at the University of Stuttgart.

Thank you Dr. Jean-Claude Passy for providing technical support and

motivating me to complete my last research project. I truly enjoyed

working with him and gaining new technical insights during my last

months at MPI. Thanks to all my other colleagues for their support.

My appreciation goes to the students I supervised: Hangbeom Kim,

Shaowen Wu, Gunjan Gupta, Benedikt Rüther, Tim Bacher, and Likith

Rana Vayala. Thank you for bringing your creative insights and helping

me conduct experiments and collect data.

Last but not least, I am forever grateful for all the love and support

my family and my partner Florian Behrle provided me throughout this

journey.

8

List of Figures

1.1 Shared control agent interacting with the environment . . 26

2.1 Agent interacting with the environment in an MDP . . . 36

3.1 Baxter robot performing pick and place (a chain of reach-

ing tasks) . 49

3.2 Manipulation environment setup 50

3.3 Computed values with respect to the state using trained

policies . 51

3.4 Pick-and-place trajectories generated using a Gauss-Newton

trajectory optimizer . 57

3.5 Overview of the autonomous robot agent’s policy network 58

3.6 Quiver plot of the actions generated by the trained au-

tonomous robot policies and its projection onto the simu-

lated environment . 59

3.7 Comparison between the neural network policy (green

arrows) and the augmented policy using LWR (red arrows) 60

3.8 Distribution of the joint configuration values from the

training data . 62

9

3.9 Trajectories generated using LQR at different locations . 65

4.1 Overview of arbitration strategy using Natural Gradient

Shared Control . 69

4.2 Plots showing the computed ellipses over the state space 78

4.3 The simulated teleoperation environment and an example

of the user interaction setup 80

4.4 Comparison of control paradigms across all users for (a)

execution time, (b) travel distance, (c) minimum proximity

to the obstacle, (d) cosine distance 83

4.5 Top-down visualization of user demonstrations for tele-

operation method (rows) of three different environments

(columns) . 86

5.1 Estimating the Hessian using finite differences 99

5.2 Teleoperation interface using VR and robot setup 101

5.3 Simulating optimized reference trajectories using KOMO 102

5.4 Trajectory comparison between simulated policies and

methods . 106

5.5 Qualitative results of the user study 112

6.1 Overview of the method using the Deep Deterministic

Policy Gradient algorithm 119

6.2 Examples of scenarios encountering a decision point where

one has to choose an option among multiple options . . . 120

10 List of Figures

6.3 The simulated environment and an example image of the

visual interface for human operators 131

6.4 Comparison between the policies with different reward

functions during training 134

6.5 Performance of the trained models during an episode . . 135

7.1 Overview of the traded control teleoperation system . . . 143

7.2 Varied grasp positions when virtually grasping the cylinder

using the Leap Motion sensor 148

7.3 User interface for reach and grab motion in a setting with

three objects . 149

7.4 Overview of the object tracking pipeline and an image of

the simulated robot environment 150

7.5 Demonstration of the DBOT tracker 152

7.6 Simulated robot environment using RAI 153

7.7 Objects used to train Mask R-CNN 154

7.8 Accuracy-threshold curve of the average ADD-S for seven

objects with a maximum threshold of 10 cm 156

7.9 Prediction accuracy of the grasp intention prediction av-

eraged throughout the episode 160

List of Figures 11

List of Tables

4.1 User study results: mean and standard deviation 82

5.1 Results of 100 reach-and-grasp tasks with simulated hu-

man policies . 104

5.2 Quantitative results showing the total number of collisions,

average task duration, path length, and distance between

the gripper center and the object at grasp 113

6.1 Rollouts with simulated users over 15 episodes 138

7.1 Accuracy of the object tracking pipeline 158

7.2 Tracking accuracy on similar objects in comparison to

PoseCNN and DenseFusion 159

7.3 Teleoperation results for different simulated users and

control modes . 163

13

List of Symbols

The symbols frequently used throughout the dissertation are listed

below for convenience. They follow a general rule: scalar values are

shown in lowercase (e.g., t), vectors in bold lowercase (e.g., x), and

matrices are shown in bold uppercase letters (e.g., J). Some symbols

may play a dual role. In this case, the meaning should be clear from

the context.

Indices and Scalars

i Enumeration index

t Time index

α Arbitration factor

γ Discount rate

η Step size

r Reward

g Goal object index

g∗ Human operator’s intended goal object index

b Goal confidence (belief) of the object

G Return

15

Vectors

x State in Cartesian space

s System’s state

a Action

aR Autonomous agent’s action

aH Human agent’s action

u Arbitrated action that the robot executes, control action

(Chapter 3.2.1)

q Joint configuration

p Position

pgripper Robot end-effector position

pgoal Goal position

papproach Approaching point when grasping

v Velocity

vgripper Robot end-effector velocity

vH Human agent’s velocity command

a Acceleration

t Translation

vrotZ Robot end-effector rotation vector

θ Parameters

Matrices

I Identity matrix

J Jacobian

16 List of Tables

J† Jacobian pseudo-inverse

H Hessian matrix

G Riemannian metric tensor

W Riemannian metric in the configuration

F Fisher information matrix

A State transition matrix

B Control multiplier

Q State cost matrix

R Control cost matrix (Chapter 3.2.1), replay buffer (Chap-

ter 6), rotation matrix (Chapter 7)

Others

vπ State value function

v∗ Optimal state value function

qπ State-action value function

QH Human agent’s internal action-value function

π Policy

π∗ Optimal policy

πH Human agent’s policy

πR Autonomous agent’s policy

πS Shared control policy

S State space

A Action space

U Shared control action space

List of Tables 17

R Reward function

G Goal space

M Manifold

Q Configuration manifold

T State-transition function

V State log partition function

ξref Reference trajectory

ϕ Forward kinematics map

µ Actor network policy

Q Critic network

18 List of Tables

Contents

List of Figures 9

List of Tables 13

List of Symbols 15

1 Introduction 25

1.1 Dissertation Outline . 27

2 Background 31

2.1 Teleoperation . 31

2.2 Shared Control and Shared Autonomy 33

2.3 Arbitration . 34

2.4 Formulation as a Reinforcement Learning Problem 35

2.5 Riemannian Geometry . 39

2.5.1 Riemannian Geometry 39

2.5.2 Riemannian Geometry of Manipulators 41

2.6 Natural Gradients . 43

2.6.1 Gradient Descent . 43

2.6.2 Natural Gradient Descent 44

19

2.6.3 Fisher Information Matrix 45

2.7 Summary . 46

3 Representing the Semi-Autonomous Agent 47

3.1 The Reaching Task . 49

3.2 Insight into the Value Function Through Policies 50

3.2.1 Linear Dynamics and Quadratic Cost Assumption . 52

3.2.2 Action as a Gradient of the Value Function 54

3.3 Learning a Goal-Conditioned Autonomous Agent Policy . 54

3.3.1 Learning an Optimal Policy in Task Space 55

3.3.2 Fitting Locally Weighted Regression Models 59

3.3.3 Learning an Optimal Policy in Configuration Space 60

3.3.4 Generating Local Policies Using Linear Quadratic

Regulator . 62

3.4 Summary . 65

4 Natural Gradient Shared Control 67

4.1 Introduction . 68

4.2 Related Work . 71

4.2.1 Different Methods of Sharing Control 71

4.2.2 Natural Gradients 72

4.3 Natural Gradient Shared Control 73

4.3.1 Expressing Shared Control as an Optimization Problem 73

4.3.2 Natural Gradient Shared Control 75

4.3.3 Computing the Fisher Information Matrix 76

20 Contents

4.4 Experiments . 79

4.4.1 Experiment Setup 79

4.4.2 User Study Procedure 79

4.5 Results . 81

4.6 Discussion . 87

4.7 Summary . 88

5 Augmenting Human Policies Using Riemannian Met-

rics for Shared Control 89

5.1 Introduction . 90

5.2 Related Work . 92

5.2.1 Teleoperation in Different Workspaces 92

5.2.2 Riemannian Approach to Shared Control 93

5.3 Shared Control as an Optimization Problem 94

5.3.1 Constrained Optimization Problem 94

5.3.2 Least-Squares Problem (Sum-of-Squares) 96

5.4 Recovering the Riemannian Metric 98

5.4.1 Estimating the Hessian Using Finite Differences . . 99

5.5 Experiments . 101

5.5.1 Experiment Setup 101

5.5.2 Simulating Human Operator Behaviors 102

5.5.3 Simulation Results 103

5.6 Teleoperation System Design 106

5.6.1 System Implementation 106

5.6.2 Pilot User Study . 107

Contents 21

5.7 Results . 111

5.8 Discussion . 113

5.9 Summary . 115

6 Learning to Arbitrate Using Disagreement Between

Robot Sub-policies 117

6.1 Introduction . 118

6.2 Related Work . 121

6.3 Identifying Disagreement Between Sub-policies 122

6.3.1 Identifying Decision Points 122

6.3.2 Directional Deterministic Policies on the Plane . . . 124

6.3.3 Modality Estimation 125

6.4 Reinforcement Learning for Arbitration 126

6.4.1 DDPG for Arbitration Learning 126

6.4.2 Reward Function Using Disagreement 128

6.5 Experiments . 130

6.6 Results . 133

6.6.1 Effects of Penalizing Disagreement During Training 133

6.6.2 Demonstration Using Trained Agents 135

6.6.3 Comparison Between Different Simulated Users . . . 137

6.7 Discussion . 139

6.8 Summary . 139

22 Contents

7 A System for Traded Control Teleoperation Combin-

ing Manipulation and Perception 141

7.1 Introduction . 142

7.2 Related Work . 145

7.2.1 Traded Control in Teleoperation 145

7.2.2 Hand Gesture Recognition for Robot Control 145

7.2.3 Depth Based Object Tracking (DBOT) 146

7.3 Manipulation: Hand-Gesture-Based Robot Control 146

7.3.1 Traded Control . 147

7.3.2 Grasp Intent Prediction 148

7.4 Perception: Object Tracking Pipeline 149

7.4.1 DBOT Initializer: Automated Object Tracker Ini-

tialization . 150

7.4.2 DBOT Tracker . 151

7.5 Experiments . 152

7.5.1 Simulated Robot Environment 152

7.5.2 Transfer Learning on a Synthetic Dataset 153

7.5.3 Accuracy of the Initial Object Pose Estimation . . . 155

7.5.4 Accuracy of the DBOT Tracker 157

7.5.5 Accuracy of the Grasp Intent Prediction 159

7.5.6 Experiment Setup for a Teleoperation Task 161

7.5.7 Evaluation of Different Simulated Users 162

7.6 Summary . 163

Contents 23

8 Conclusion 165

8.1 Future Work . 168

Bibliography 171

24 Contents

Chapter 1

Introduction

Technology is rapidly advancing towards autonomous systems with

Artificial Intelligence (AI). Intelligent robots are integrated increasingly

into our daily lives: from semi-autonomous vehicles, surgical robots,

social and collaborative robots, to disaster relief and field robots. Such

robots can assist or even substitute for people, with their ability to

access inhospitable areas, fast computation skills, and precision and

strength exceeding human capabilities. Yet, contrary to our anticipation

of futuristic and versatile robots, current robotic systems lack resilience

in unpredictable scenarios.

By contrast, humans are skilled at interpreting such complex environ-

ments and planning comprehensive sequential decisions. While they can

provide supervision and guidance to robotic systems, they are prone to

making operational mistakes when it comes to controlling robots with

low situational awareness. In fact, operator mistakes were the major

cause of robot errors during the DARPA Robotics challenge [1].

25

Figure 1.1: Shared control agent interacting with the environment

Shared control is a framework that combines the best of both worlds.

It aims to leverage human intelligence and the robot’s partial autonomy

to enhance the overall performance of the robotic system. As shown in

Figure 1.1, the framework consists of three agents: the human agent

provides long-term goals, forestalling unreliable actions from the robot;

the (semi-) autonomous agent provides optimal solutions for precision

and efficiency; and the shared control agent combines the commands

from both agents to filter out human mistakes, but efficiently performs

the task in the way the human prefers. However, balancing this level of

assistance, i.e., arbitration, can be challenging as users exhibit different

preferences for robot assistance. Some anticipate active assistance to

ensure the execution of optimal behaviors while others feel being in

control is more important. According to a user study in [2], when

participants were unable to understand the purpose of the automated

26 1 — Introduction

assistance, there was a decrease in trust and a preference for control

over automated aids. Therefore, there is a strong demand for flexible

arbitration methods that seamlessly blend both forms of control.

This dissertation attempts to design such adaptable arbitration meth-

ods to improve teleoperation performance during robot manipulation

tasks. The focus is on allowing the users to retain control authority

without risking the safety and stability of the robotic system. Beginning

with a description of how to represent a robot agent with optimal be-

haviors, I present multiple approaches for arbitration. I then introduce

a teleoperation system that combines solutions to both perception and

manipulation. This work demonstrates that the proposed novel ap-

proaches can improve the performance of safe and efficient teleoperation,

while still allowing the user to take control.

1.1 Dissertation Outline

The focus of the dissertation is on arbitration methods that combine

robot autonomy and human assistance for a human-robot teleoperation

system. The following chapters are structured as follows:

Chapter 2: Background provides relevant background knowl-

edge necessary for understanding the techniques described in the

dissertation.

Chapter 3: Representing the Semi-Autonomous Agent

discusses the teleoperation task addressed in the dissertation

1.1 — Dissertation Outline 27

and presents how a global policy is obtained that represents the

semi-autonomous robot agent.

Chapter 4: Natural Gradient Shared Control presents a

method to arbitrate human and robot controls, by observing the

local landscape of the vector field that the semi-autonomous agent

policy forms, to alter the robot assistance level depending on the

complexity of the state. The Fisher information matrix expresses

the sensitivity of the policy within a close range, and the human

operator’s controls are augmented accordingly to provide robot

assistance in critical situations.

Chapter 5: Augmenting Human Policies using Rieman-

nian Metrics for Human-Robot Shared Control extends

the work of the previous chapter to higher dimensional spaces,

integrating human and robot control in different coordinate sys-

tems, demonstrating the method using a simulated teleoperation

setup allowing interaction via a VR system.

Chapter 6: Learning to Arbitrate using Disagreement

Between Robot Sub-policies introduces a method to learn

an arbitrated shared control policy using reinforcement learning.

The von Mises distribution measures the uncertainty of the states

that could lead to a disagreement between the human and the

semi-autonomous agent. The reinforcement learning agent then

reduces the level of assistance in these areas to give the human

operator more control.

28 1 — Introduction

Chapter 7: A System for Traded Control Teleoperation

Combining Manipulation and Perception proposes a tele-

operation system setup using traded control, which is a special

form of shared control. State-of-the-art perception methods are

combined to allow for the most intuitive form of teleoperation,

where commands are given as if the human is executing them.

Chapter 8: Conclusion is a summary of the findings presented

throughout the dissertation.

1.1 — Dissertation Outline 29

Chapter 2

Background

This chapter provides prior knowledge that is necessary for under-

standing the theory and techniques described in the dissertation.

2.1 Teleoperation

Teleoperation refers to “operating a system at a distance”, where a

physical distance or change in scale separates the work being performed

from the human operator [3] and the robot/system is operated using

human intelligence [4]. Its main function is to assist the operator in

accomplishing complex tasks in hazardous and unstructured environ-

ments that are difficult to access and to reduce the cost of the mission

or safety risks. For this reason, teleoperation systems were initially

widely used to operate unmanned vehicles underwater, in space, and

for military and defense applications since the 1970s [5].

A teleoperation system consists of a human operator controlling a

remote robot using one or more human-robot interface devices (e.g.,

31

mouse, keyboard, buttons, joystick, manipulators, etc.). Depending on

the system, special controllers [6]–[8] or control stations [5] that consist

of multiple interface devices were designed to control the robot while

perceiving the robot’s status and its surroundings through sensors and

visual interfaces.

The design of the teleoperation interface largely impacts the perfor-

mance of the robot. According to Murphy [9], more than 50 percent of

all robot failures at disaster sites are the result of human error. In addi-

tion, the DARPA Robotics Challenge (DRC) held from 2012 to 2015 well

reflected the recent advances in the development of semi-autonomous

robots for disaster or emergency response. The competition focused on

building robots that are capable of accomplishing complex mobility and

manipulation tasks in a disaster scenario. It was reported that one of the

major causes of failures originated from human operator errors [1] and

the performance of the robots was heavily dependent on the operator’s

skill which required extensive training and experience [10]. Atkeson

et al. [1] emphasized that designing effective teleoperation interfaces is

the most cost-effective research area to improve robot performance and

that interfaces should help eliminate errors or mistakes that humans

make while controlling the robots under pressure. The main focus of

the dissertation is to explore different human-robot interaction methods

from the perspective of shared control for teleoperation that increase

efficiency and prevent human operator errors.

32 2 — Background

2.2 Shared Control and Shared Autonomy

Shared control is an intermediary control method in the levels of robot

autonomy taxonomy, that ranges from human direct control to fully

autonomous systems. It refers to a concept where the human and

robot autonomy share control over a system together at the operational

level [11]–[13].

According to Musić and Hirche [14], shared control can be classified

into the complementary interaction paradigm and overlapping interac-

tion paradigm. In the complementary interaction paradigm, the control

is shared at the task level [15]. The human takes on a supervisory role

and provides high-level task commands such as managing a team of

robots, navigating between points or exploring an area, while subtasks

are allocated to the robot’s autonomy and the robot supports the human

by executing these sub-tasks such as computing low-level control inputs,

collision avoidance [16]–[18].

The overlapping interaction paradigm directly arbitrates human and

robot actions, and control sharing is done at the servo-level. The

human and the robot simultaneously provide task-related controls and

the resulting control commands are a blend of their control inputs.

Since the arbitration is happening more repeatedly compared to the

previous paradigm, the human operators must always be engaged in the

control loop and the performance of the shared control system is highly

influenced by how the control inputs are blended [15]. Nevertheless, it

is assumed that the paradigm can be a practical solution when working

2.2 — Shared Control and Shared Autonomy 33

with semi-autonomous systems with lower autonomy levels or a fallback

plan to take over the controls of autonomous systems since it does not

involve long-horizon tasks and motion planning with complex tasks.

The shared control setting discussed in the dissertation follows the

overlapping interaction paradigm.

The term shared autonomy emerged as an emphasis on combining

humans with an intelligent system equipped with some degree of auton-

omy. Selvaggio et al. [19] recently distinguished the terms depending

on the subject that is in charge of adjusting the level of autonomy.

They distinguished shared control, where humans manually tune the

assistance levels, from shared autonomy, where the robot regulates its

autonomy based on its understanding of human intentions and the

environment. The methods presented in the dissertation are more re-

lated to shared autonomy based on their definition. However, the term

shared control is used throughout the dissertation to emphasize the

idea of shared authority over the robot, and the authority is assigned

dynamically. It is worthwhile to note that both terms are still often

used interchangeably in many prior publications.

2.3 Arbitration

The arbitration function α : (aH ,aR) 7→ u, given user and robot

actions aH ,aR, outputs an arbitrated action u that is executed by the

robot. The arbitration function can depend on different factors such

as confidence in the user intent prediction [20]–[22], or considering the

34 2 — Background

difference between each command [23]. One common form of blending is

through a linear combination between the human user and autonomous

robot agent policies [20]–[23].

When the robot predicts the user’s intent with high confidence, the

user often loses control authority. This has been reported to generate

mixed preferences from users where some users prefer to keep control

authority despite longer completion times [24], [25]. Additionally, when

assistance is against the user’s intention, this approach can aggravate

the user’s workload [20]; the user “fights” against the assistance rather

than gain help from it. Defining an arbitration function that is not

too timid (i.e., only assists when very confident) nor to aggressive, is

generally difficult and interpreting the noisy confidence estimate of the

intent prediction is error-prone.

2.4 Formulation as a Reinforcement Learning

Problem

Humans reason about the long-term consequences of their actions, rather

than making myopic decisions, and they utilize their previous experience

to improve their future decisions [26]. Their behaviors are considered

optimal (or suboptimal); their sensorimotor system is the result of

processes that act constantly to enhance behavioral performance and

optimal control models have been used to explain biological behaviors

based on optimal performance [27]. Human behavior is regarded as an

expert who acts optimally (or suboptimally) and is observed to infer the

2.4 — Formulation as a Reinforcement Learning Problem 35

Figure 2.1: Agent interacting with the environment in an MDP

reward function that explains their behaviors in inverse reinforcement

learning (IRL) [28].

The purpose of reinforcement learning (RL) is to find an optimal

strategy in the long term, similar to how humans behave and therefore

suitable to describe the shared control problem setting. I summarize

the key components of a reinforcement learning problem setup that are

adopted throughout the dissertation to describe the problem setting,

from Sutton and Barto [29].

Markov Decision Process A Markov Decision Process (MDP) is a

formulation of sequential decision-making in a stochastic setting. It is a

straightforward formulation of the problem of learning from interaction

to achieve a goal, and it is widely used in solving optimization problems

using dynamic programming and reinforcement learning.

In an MDP, an agent learns and makes decisions by interacting with

the environment. At each discrete time step t, the agent observes a

representation of the environment’s state st ∈ S and selects and action

at ∈ A. In the next step, the agent receives a reward rt+1 ∈ R and

36 2 — Background

observes a new state st+1, as shown in Figure 2.1. The state-transition

function T : S ×A× S → [0, 1] describes the probability of landing in

a state st+1 given the previous state st and action at.

Policy A policy is a strategy that directs the agent’s actions to

maximize its long-term reward. A policy can either be stochastic or

deterministic depending on the number of actions an agent can take at

a state, and it assigns either a probability or directly an action.

A stochastic policy π : A × S → [0, 1] represents the probability of

choosing a possible action based on a state. That is, a policy π(at|st)
indicates the probability of taking an action at at a state st. This

implies that there can be multiple actions to select from in a certain

state.

A deterministic policy π : S → A directly maps states to actions, and

a policy π(st) = at prescribes an action at at a state st. When the

policy is deterministic, there is only one action that the agent can take

at a certain state.

Value Function The state-value function vπ(s) expresses how good

a state is for the agent to be in. It is the expected return (discounted

sum of rewards) when following a policy π starting at a state s

vπ(s) = Eπ[

∞∑
k=0

γkrt+k+1|St = s] (2.1)

= Eπ[rt+1 + γGt+1], for all s ∈ S (2.2)

2.4 — Formulation as a Reinforcement Learning Problem 37

where γ is the discount rate, rt is the reward, and Gt is the return.

From the perspective of optimal control, the objective is to minimize

the cost rather than the reward. Therefore, the value function measures

the long-term cost at the given state, which is known as the cost-to-go

function [30].

The action-value function (state-action value function) qπ(s,a) rep-

resents the value for the state-action pair. It is the expected return of

taking action a in state s:

qπ(s,a) = Eπ[

∞∑
k=0

γkrt+k+1|St = s, At = a]. (2.3)

for all s ∈ S and a ∈ A.
In reinforcement learning, the agent’s goal is to find the optimal policy

π∗ that maximizes the cumulative reward. The value of following the

optimal policy π∗ is represented by the optimal state-value function,

defined as

v∗(s) = max
π

vπ(s) for all s ∈ S (2.4)

Likewise, following π∗ generates an optimal action-value function defined

as:

q∗(s,a) = max
π

qπ(s,a), for all s ∈ S and a ∈ A (2.5)

= E[rt+1 + γv∗(St+1)|St = s, At = a]. (2.6)

38 2 — Background

2.5 Riemannian Geometry

This section introduces the mathematical background of the methods

presented later in Chapters 4 and 5 concerning Riemannian geometry,

by summarizing topics from [31]–[33]. For an in-depth introduction, see

the mentioned references.

2.5.1 Riemannian Geometry

Manifold A manifoldM is a topological space that appears locally

Euclidean. The set of all derivatives of all smooth curves passing

through a point p ∈M defines a vector space called the tangent space,

denoted as TpM. Tangent vectors are vectors on TpM that are tangent

to the manifoldM at point p. The union of all tangent spaces at all

points on the manifold M forms a new manifold called the tangent

bundle TM.

Riemannian metric A Riemannian metric g on a manifoldM is a

smooth, covariant 2-tensor field whose value gp at each point p ∈M is

a positive, definite inner product on the tangent space TpM

⟨v,w⟩g = gp(v,w) (2.7)

for vectors v and w The inner product induces a Riemannian norm

defined as:

||v|| :=
√
⟨v,v⟩g =

√
v⊤gv (2.8)

2.5 — Riemannian Geometry 39

Naturally, the metric g augments the space along its Eigenspectrum

proportional to the square roots of its Eigenvalues.

The Euclidean metric is a special case of the Riemannian metric

where the value at each point is the Euclidean dot product on the

tangent space. On the Euclidean plane, the metric tensor corresponds

to an Identity matrix and the Euclidean distance is then defined as

||v|| =
√
v⊤v.

Riemannian manifold A Riemannian manifoldM is an n-dimen-

sional, differentiable smooth manifold, which is endowed with the Rie-

mannian metric g.

Geodesic A geodesic is a parameterized, smooth curve on the Rie-

mannian manifold that is locally the shortest possible path between

two points.

Pushforward and pullback Given a smooth map φ : M → N
between two smooth manifolds M and N , the differential maps the

tangent space of the domain manifoldM to the tangent space of the

co-domain manifold N at a point p, dϕp : TpM→ TpN . Conceptually,

the differential “pushes” the tangent vectors from the tangent space

TpM to the cotangent space Tϕ(p)N , hence the term pushforward.

The pullback refers to the dual linear map dφ∗
p that maps the tangent

space of the co-domain N back to its domainM.

40 2 — Background

2.5.2 Riemannian Geometry of Manipulators

Riemannian geometry provides a mathematical framework explaining

the movements of multi-joint manipulators, including human and robot

arms. The geometric properties of the human arm such as the path

and the posture, follow geodesics, i.e., the shortest possible path in

the Riemannian configuration space that generates less muscular effort

when ignoring external forces [34]. Human motions are described as

sequences of geodesic synergies, series of minimum energy movements in

the configuration manifold, which can then be transferred to the robot

motion as geodesic paths in the robot configuration space [35].

Any n-dimensional, multi-linked mechanical system’s configuration

space can be characterized by a Riemannian manifold, referred to as

the configuration manifold Q [31] and it is the space spanned by the

degrees of freedom of multi-joint robots [36]. Each robot configuration

q is a point on Q and the tangent vector on the point corresponds to the

velocity. Multiple points on the manifold Q can be connected to form a

curve, and the robot generates a trajectory following the sequence of

configurations along the curve.

The forward kinematics map ϕ : q 7→ x links the robot configuration

manifold to the robot’s end-effector workspace manifold, by mapping

the robot configuration q to the end-effector position x in Cartesian

coordinates. Specifically, the Jacobian Jϕ ≡ ∂ϕ
∂q is the differential that

2.5 — Riemannian Geometry 41

transforms the configuration velocity to the task space velocity:

ẋ = Jϕq̇ (2.9)

which gives the best linear approximation near the given point.

For a redundant manipulator, the aim is to find a solution that

minimizes the quadratic cost functional of joint velocities

c(q̇) =
1

2
q̇W q̇ (2.10)

where W enables us to compute path lengths using the norm. Among

the possible curves ξ = (q1, · · ·, qT)⊤ in the Riemannian configuration

space, the manipulator follows the shortest path – i.e., geodesics– which

minimizes the cost [37]:

ψ(ξ) =
1

2

T∑
t=1

q̇⊤
t W (qt)q̇t∆t. (2.11)

The solution to minimizing the functional (Equation (2.10)) can be

derived using the method of Lagrange multipliers as:

q̇ = W−1J⊤(JW−1J⊤)−1ẋe (2.12)

where ẋe denotes the end-effector velocity defined in task space. Here,

the subscript from Jϕ is dropped and the notation J is used for simplicity.

When W is the identity matrix, the solution locally minimizes the norm

42 2 — Background

of joint velocities and Equation (2.12) is simplified into q̇ = J†ẋe, where

J† = J⊤(JJ⊤)−1 is known as the pseudo-inverse of Jϕ [38].

2.6 Natural Gradients

2.6.1 Gradient Descent

Gradient descent is a first-order optimization procedure to locally mini-

mize a real-valued function f : Rd → R

min
θ
f(θ). (2.13)

The local minimum is found by iteratively taking steps in the direction

of the negative gradient −∂f(θ)
∂θ , the steepest descent direction, until it

converges to a local minimum:

θt+1 = θt − η
∂f(θ)

∂θ
(2.14)

where η is the step size [39].

The choice of η influences the speed of convergence, and it is generally

difficult to choose the suitable η that guarantees fast convergence from

any initial θ0. This is because each gradient component ∂f(θ)
∂θi

varies

in size and direction along each dimension. Without considering the

structure of the underlying parameter space, it is difficult to choose η

that assures fast convergence of each θi [40].

2.6 — Natural Gradients 43

2.6.2 Natural Gradient Descent

In the general non-linear optimization framework, the parameter space

is often non-Euclidean, but rather a Riemannian space. In this case,

the natural gradient represents its steepest direction, rather than the

ordinary gradient [41].

Recalling gradient descent, we write it as an optimization problem

where we minimize a first-order approximation of the function f(θ)

subject to the constraint that the distance in the step δθ = θ − θt is

marginal [39]:

arg min
θ

f(θt) +∇f(θt)⊤(θ − θt)

subject to ||θ − θt||2G = ϵ2
(2.15)

The natural gradient descent computes the distance over the manifold

in the Riemannian space that the coordinates parameterize, rather

than the Euclidean space. G(θ) is the Riemannian metric tensor

described in Equation (2.7), which characterizes the intrinsic curvature

of a particular manifold in n-dimensional space. The natural gradient

is then defined as

∇̃f = G−1∇f (2.16)

It is equivalent to standard gradient descent (in Euclidean space) when

G(θ) is the identity matrix, such that Equation (2.8) is equivalent to the

squared Euclidean norm [41]. When G(θ) is a positive-definite Hessian,

44 2 — Background

it is analogous to Newton’s method. When G(θ) lies in the parameter

space of a statistical model, it refers to the Fisher information matrix

F (θ).

2.6.3 Fisher Information Matrix

The Fisher information F (θ), by definition, measures the expectation of

the overall sensitivity of a probability distribution p(x|θ) to changes of

parameters dθ. It is defined as the variance of the score = d
dθ log p(x|θ),

which indicates the sensitivity of the model to changes in θ [42].

F (θ) = E
p(x|θ)

[(d

dθ
log p(x|θ)

)2]
= −

∫
p(x|θ) d

2

dθ2
log p(x|θ)dx1

(2.17)

Most importantly to our interest, the Fisher information is the second-

order derivative (Hessian, H) of the Kullback–Leibler (KL) diver-

gence [43].

F (θ) = −
∫
p(x|θ)∇2

θ′ log p(x|θ′)
∣∣
θ′=θ

dx

= HKL(p(x|θ||p(x|θ′)))

(2.18)

This gives the key to the connection between natural gradient and the

KL divergence, where KL divergence is the function to measure the

1It is equivalently defined under mild regularity conditions [42]

2.6 — Natural Gradients 45

“distance2” in gradient descent [44] as below:

KL(p(x|θ)||p(x|θ′)) ≈ 1

2
δθ⊤F (θ)δθ (2.19)

2.7 Summary

The chapter begins by defining shared control and what it means to

share control between the human operator and the semi-autonomous

agent. It also introduces the main techniques underlying the algorithms

that are presented in the dissertation, such as the formulation of the

problem using terminology from reinforcement learning, Riemannian

geometry, and natural gradients.

2KL divergence is not formally a distance metric since it is not symmetric

46 2 — Background

Chapter 3

Representing the

Semi-Autonomous Agent

In the proposed shared control setting, the overlapping interaction

paradigm is chosen where both the human operator and the semi-

autonomous agent simultaneously provide the system with control inputs

at every time step. Since the resulting robot’s actions are influenced

by both the human and the semi-autonomous agents’ commands, the

robot never follows a pre-planned, fine-tuned, optimal trajectory. From

the semi-autonomous agent’s point of view, its trajectory is constantly

perturbed by human control. The semi-autonomous agent should

therefore be responsive enough to generate optimal control inputs from

any state of the environment.

In this chapter, I describe how the policies of semi-autonomous agents

are represented which are used to blend control inputs for shared control.

I first start with defining the task scenario for shared control and lay out

47

the key assumptions and the relationship between the policy and the

value function which are the key concepts that support the contributions

made in the following Chapters 4 and 5. Different techniques, including

the use of neural networks, are demonstrated to learn an optimal robot

policy for reaching that is fast to query the action from any state of

the robot. These policies are utilized in the next chapters to present

novel arbitration methods for shared control, which is the main focus

of the dissertation.

Parts of the work presented in this chapter are based on the following

publications:

� Y. Oh, S.-W. Wu, M. Toussaint, and J. Mainprice, ‘Natural Gradi-

ent Shared Control’, IEEE International Symposium on Robot and

Human Interactive Communication (RO-MAN), pp. 1223–1229,

2020, © 2020 IEEE.

� Y. Oh, M. Toussaint, and J. Mainprice, ‘Learning to Arbitrate

Human and Robot Control Using Disagreement Between Sub-

Policies’, IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 5305–5311, 2021, © 2021 IEEE.

� Y. Oh, J.-C. Passy, and J. Mainprice, ‘Augmenting Human Poli-

cies Using Riemannian Metrics for Human-Robot Shared Control’,

IEEE International Symposium on Robot and Human Interactive

Communication (RO-MAN), 2023, © 2023 IEEE.

48 3 — Representing the Semi-Autonomous Agent

Figure 3.1: Baxter robot performing pick and place (a chain of reaching
tasks)

3.1 The Reaching Task

In the dissertation, I investigate the problem of shared control teleop-

eration for reaching tasks. Whether teleoperation in manipulation or

navigation, reaching a point in space by moving the robot (or a part of

the robot) is the most elemental subtask. For example, manipulation

tasks in disaster response, such as clearing debris or operating tools,

can be broken down into a chain of reaching subtasks including moving

to the object-grasping point, grasping, and moving to the target point,

similar to Figure 3.1. Navigation of a robotic wheelchair or a mobile

robot can be viewed as a long-horizon reaching task.

When a robot has a comprehensive model of its environment, reaching

can be simple; the robot can compute an optimal policy toward the

target point. If not (e.g., poor perception, limited autonomy), it can be

challenging to scale the reaching task to become robust.

A teleoperation manipulation scenario in which the goal is to direct the

gripper to grasp an object from a set of graspable objects is considered,

similar to Figure 3.2. It is critical to highlight that it is presumed that

3.1 — The Reaching Task 49

Figure 3.2: Manipulation environment setup

the semi-autonomous agent has access to the optimal policy for reaching

the goal given its precise location. Details on obtaining the optimal

policy will follow in Section 3.3.

3.2 Insight into the Value Function Through

Policies

A significant assumption made throughout the dissertation (especially

Chapters 4 and 5) is that information about the value function can be

derived from the policy. The value of a state indicates how desirable a

state is for the agent to be in. Estimating the landscape of the value

function through queried policies enables us to infer information about

50 3 — Representing the Semi-Autonomous Agent

the robot’s perceived environment through the tendency of their values.

Intuitively, large changes in the values in the local neighboring states

indicate a strong preference towards being in the state.

Figure 3.3 shows the values calculated for each state of the environment

as a heatmap, from the environment shown in Figure 3.2 The goal state

has a higher value than its surroundings and all the neighboring states

generate an optimal action that leads to the goal. In contrast, a state

near an obstacle has a lower value than its neighbor, causing actions to

move away from it.

From Equation (2.5), the action-value function is at its maximum

when following the optimal policy. In other words, the optimal policy

(a) Object pick policy (b) Object place policy

Figure 3.3: Computed values with respect to the state using trained
policies

3.2 — Insight into the Value Function Through Policies 51

π∗ at a state s chooses the action a that maximizes the action-value

function qπ(s,a):

π∗(s) = argmax
a

qπ(s,a) (3.1)

Combining the equation with the Bellman optimality equation, i.e.

v∗(s) = maxa∈A(s) q
∗(s,a), the optimal policy at a state corresponds

to the action that maximizes the value function v∗(s):

π∗(s) = argmax
a

v∗(s) (3.2)

The policy cannot be used to directly estimate the value of a state. In

special circumstances where the system dynamics are linear and the

reward function (cost function) is quadratic, the policy represents the

steepest descent direction of the value function as discussed in the next

section.

3.2.1 Linear Dynamics and Quadratic Cost Assumption

When it is approximated that the dynamics of the system are linear

and the cost function is quadratic, the value function is a quadratic

function of the state [48]:

dynamics: f(x,u) = ẋ = Ax+Bu (3.3)

cost function: C(x,u) = x⊤Qx+ u⊤Ru (3.4)

value function: V (x, t) = x⊤Px (3.5)

52 3 — Representing the Semi-Autonomous Agent

where x is the state vector, u is the control vector1, A and B refer to

the state transition matrix and control multipliers, and Q and R are

the state and control cost matrices.

The optimal control becomes:

u = −R−1B⊤Px (3.6)

which is known as a Linear Quadratic Regulator. The solution can be

driven by substituting Equations (3.3)−(3.5) in the Hamilton-Jacobi-

Bellman equation:

−∂V (x, t)

∂t
= min

u

{
C(x,u) +

∂V (x, t)

∂x
· f(x,u)

}
(3.7)

where V (x, t) is the value function, C(x,u) is the cost function (i.e., neg-

ative reward function), and f(x,u) is the dynamics of the system [30].

The optimal control action u is a linear transformation of the gradient

of the value function V (x, t). In Equation (3.6), −Px indicates the

steepest descent direction of the value function. B⊤ projects the

steepest descent onto the control space, and −B⊤Px is the steepest

descent achieved with the control vector u. R−1 scales the direction

of descent based on different control inputs [49]. This idea is utilized

to estimate a scalar map of the value function (except for the constant

term) from its derivatives, to determine the level of arbitration during

shared control based on the landscape of the underlying value function.

1The notations follow the conventional optimal control theory notations: x as
state, u as action, V as value function, to prevent confusion.

3.2 — Insight into the Value Function Through Policies 53

3.2.2 Action as a Gradient of the Value Function

Specifically, in a linear dynamics system where action u is a tangent

vector of the state manifold, e.g., the position as the state and the

velocity as the action, the optimal action u∗ can be expressed using

Equation (3.7) and u = ẋ = f(x, ẋ):

u̇∗ = argmin
ẋ

[
C(x, ẋ) +

∂V

∂x
ẋ

]
(3.8)

The minimum of [·] is obtained when ∂
∂ẋ

(
C(x, ẋ) + ∂V

∂x ẋ
)
= 0. In

special cases when the cost function C(x, ẋ) is only dependent on

the state, i.e., C(x, ẋ) = C(x), Equation (3.8) can then be further

simplified:
∂2V

∂x∂ẋ
ẋ+

∂V

∂x
= 0⇒ ẋ∗ = −∂V

∂x

The equation leads to the optimal action being directly the negative

gradient of the value function with respect to the state. This is an

important assumption used in the following chapters to locally estimate

the value function.

3.3 Learning a Goal-Conditioned Autonomous

Agent Policy

From the perspective of the semi-autonomous agent, the robot’s trajec-

tory is consistently perturbed by human controls in a shared control

setting. While some work such as Wang et al. [15] explicitly model

54 3 — Representing the Semi-Autonomous Agent

the uncertainty in the interaction, the focus here is to obtain a robust

and reactive optimal policy that can handle disruptions and generate

optimal actions for any state, given a single known goal location. The

semi-autonomous agent is capable of being fully “autonomous” when

it has an accurate model of the environment; in other words, it can

achieve the task without the presence of the human agent when the

goal is known.

The trained optimal policy in a three-dimensional task space (transla-

tion in x, y plane + rotation) is described. The policy illustrated in this

section serves as a foundation for Chapters 4 and 6. Next, approaches

to acquiring an optimal policy in a seven-dimensional configuration

space are described, which is later utilized in Chapter 5.

3.3.1 Learning an Optimal Policy in Task Space

The robot policy is represented using a neural network that outputs

robot actions that resemble an optimized trajectory, which was com-

puted using a trajectory optimization algorithm. When trained effec-

tively, the network is generalized over the entire state space, allowing it

to infer an optimal action for the robot at any state.

Given the system’s state s̃t and a goal g, the network infers a unit

velocity vector vgripper and end-effector rotation vrotZ that represent

the next optimal action towards the goal. The state s̃t is a concatenation

of robot and environment states consisting of: end-effector position

pgripper, relative obstacle position pobstacle, relative goal position pgoal,

3.3 — Learning a Goal-Conditioned Autonomous Agent Policy 55

and the rotation of the gripper vrotZ in the axis orthogonal to the

workspace plane. That is, for the two-dimensional rotation matrix

M ∈ SO(2), where

M =

cosφ − sinφ

sinφ cosφ


the rotation is represented by its first column vector allowing the

representation to be continuous [50]:

vrotZ = [cosφ, sinφ]⊤ (3.9)

The state and action space of the robot policy is solely defined in task

space. Therefore, the network must learn to predict end-effector actions

that also avoid collisions after computing the joint configurations using

inverse kinematics. The training data is meticulously collected by

producing pick-and-place trajectories with random starting positions

and environment configurations. Trajectories were generated using a

Rapidly exploring Random Tree (RRT) followed by a Gauss-Newton

trajectory optimizer [51] that is tuned to perform precise pick-and-place

motions considering the full-arm kinematics and the workspace, as

shown in Figure 3.4. A generous number of trajectories is required for

training to cover the whole state space of the network input during

training, however, this can be obtained effortlessly from simulated robot

motions.

Figure 3.5 illustrates the architecture of the neural network that

56 3 — Representing the Semi-Autonomous Agent

Figure 3.4: Pick-and-place trajectories generated using a Gauss-Newton
trajectory optimizer

represents the autonomous robot agent. The network consists of multiple

fully connected dense layers that predict the optimal robot actions aR
t at

a given state. A multi-loss function is used to penalize/enforce specific

behaviors of the robot policy.

In the pick phase, the network predicts an approach point papproach,

which is a point in the optimal trajectory that the gripper reaches

when approaching the object, and an additional cost term is added to

minimize its prediction error. This ensures that the network generates

actions that lead the gripper to approach the object parallel to the

gripper’s fingers for grasping.

In addition, the network predicts a cost map of the environment

(shown as heatmaps in Figure 3.5) that replicates the state log partition

function V (s) computed with Maximum Entropy Inverse Optimization

Control (MaxEnt IOC) [52][53]. The state log partition function V (s)

3.3 — Learning a Goal-Conditioned Autonomous Agent Policy 57

© 2020 IEEE

𝒂𝒕
𝑹 =

𝒗𝒈𝒓𝒊𝒑𝒑𝒆𝒓
v𝑟𝑜𝑡𝑧

𝑝𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

𝑉(𝑠)

Optimized

Trajectories

. . .

. . .

. . .

. . .

MLP

Decoder

=

𝑝𝑔𝑟𝑖𝑝𝑝𝑒𝑟
v𝑟𝑜𝑡𝑧

𝑝𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
𝑝𝑔𝑜𝑎𝑙

෤𝒔𝒕

Robot policy

𝜋𝑅

Figure 3.5: Overview of the autonomous robot agent’s policy network

is a soft estimate of the expected cost to reach the goal from a state s.

The network generates smoother trajectories by enforcing the network

to reconstruct the learned V (s) from the latent layer of the network

using a decoder structure with a series of convolution and up-sampling

layers. After training with 24K trajectories, the network generates

autonomous pick-and-place trajectories with a success rate of 95% in

random environment conditions when following inferred action at each

state. Figure 3.6 shows the vector field of the robot policy inferred over

the whole workspace. The successfully learned policies show positive

divergence from the obstacle and negative divergence towards a goal.

58 3 — Representing the Semi-Autonomous Agent

© 2020 IEEE

(a) Inferred pick and place policy actions over the
state space

(b) The policy projected
onto the environ-
ment

Figure 3.6: Quiver plot of the actions generated by the trained au-
tonomous robot policies and its projection onto the simu-
lated environment

3.3.2 Fitting Locally Weighted Regression Models

Locally Weighted Regression (LWR) fits a regression model that is valid

only in the local region given a set of data points around the point

of interest [54]. Since the resulting model is linear, the robot policy

is fitted to an LWR model to reduce any non-linearity generated by

the output of the network. The model is used to query data points to

compute smoother Jacobians using the finite difference method, as part

of the process to compute the Fisher information matrix F described

in Section 4.3.3.

Another advantage of using LWR is that the model can be augmented

by providing additional data points since the model is fit only in the

local region. This is useful to improve the behavior of the learned policy.

For instance, we prefer the learned policy to enforce stronger obstacle

3.3 — Learning a Goal-Conditioned Autonomous Agent Policy 59

© 2020 IEEE

(a) Object pick scenario (b) Object place scenario

Figure 3.7: Comparison between the neural network policy (green ar-
rows) and the augmented policy using LWR (red arrows)

avoidance; thus, we provide additional data points computed using a

signed distance field when fitting LWR near the obstacle.

The vector fields of the policies regressed using LWR are shown as

red arrows in the top row in Figure 3.7. The LWR model successfully

approximates the neural network policy (shown in green arrows), as

well as augmenting a stronger repulsion in neighboring points of the

obstacle.

3.3.3 Learning an Optimal Policy in Configuration Space

A neural network model is trained to represent the optimal robot policy

in a seven-dimensional configuration space. The network directly infers

the configuration velocity ∆q ∈ R7 given the gripper position pgripper,

60 3 — Representing the Semi-Autonomous Agent

relative goal object position pgoal, rotation of the goal object Rgoal6D ,

and current configuration q. The rotation of the goal object Rgoal6D

is represented as a 6-dimensional vector composed of the first two

columns of the rotation matrix to ensure continuity in the rotation

representation [50][55].

Similar to the robot policy network for task space, a multi-layer

perceptron network (MLP) composed of fully connected dense layers

is used to predict the configuration velocity ∆q, where the network

outputs both the unit velocity q̂ = ∆q
||∆q|| and the norm of the velocity

||∆q|| individually. The loss function is computed as a weighted sum of

the mean squared errors of the outputs. The trained network generates

autonomous pick trajectories with a success rate of 92 ∼ 97% when

following the inferred action at each state.

As the feature space of the network becomes high dimensional, it

becomes nearly impossible to collect training data that covers the whole

state space. The goal position pgoal is restricted to a fixed position

to reduce the complexity when training the model. Despite the effort,

many blind spots occur especially when training the network from

trajectory data, as shown in Figure 3.8. The figure shows that the data

is not distributed along the joint limit boundaries (shown as vertical

red lines), albeit collecting almost 300K grasp trajectories from random

starting positions.

3.3 — Learning a Goal-Conditioned Autonomous Agent Policy 61

Figure 3.8: Distribution of the joint configuration values from the train-
ing data

3.3.4 Generating Local Policies Using Linear Quadratic

Regulator

Given a single, optimized reference trajectory ξref , a Linear-quadratic

regulator (LQR) controller is used to generate policies that steer the

system toward the reference trajectory ξref , such that limt→∞ x−xd =

0, where x and xd are states of the robot and the reference trajectory.

This is known as trajectory tracking [31].

Assuming that the error is small, a linear system using the state error

e = x− xd and the control error ν = a− ad can be written as:

ė = Ae+Bν (3.10)

62 3 — Representing the Semi-Autonomous Agent

The optimal control controller is computed using the following equation

ν = −Ke (3.11)

which leads to the control ut for state xt at time t

ut = −K(xt − xd) + ud (3.12)

The control matrix K is obtained by solving the discrete-time algebraic

Riccati equation, given the coefficient matrices that define the LQR

problem. The overall algorithm for computing the policy is summarized

in Algorithm 1. At a robot configuration qt, we find the index it of

the configuration qtd of the reference trajectory ξref , that is the closest

to qt. The state and control errors are computed using a segment of

the reference trajectory starting from the index. The velocity of the

trajectory is computed using backward finite difference, where the initial

velocity is set to zero. Our main interest is to determine the optimal

velocity at qt, as opposed to the entire LQR trajectory. The velocity is

computed using the equation of motion.

Figure 3.9 illustrates the generated trajectories using LQR trajectory

tracking which converge to the reference trajectory. The gray dotted line

indicates the reference trajectory, whereas the black solid line represents

the segment of the reference trajectory. The colored lines show the

trajectories starting from nearby states, and the red arrows show the

calculated velocity.

3.3 — Learning a Goal-Conditioned Autonomous Agent Policy 63

The state cost matrix Q and the control cost matrix R define the

quadratic cost function, which alters the behavior of the tracking tra-

jectory.

Algorithm 1: Generating Robot Policies using LQR

Input:

� Robot configuration qt

� reference trajectory ξref = {qref
n }Nn=1

� control matrix K

Output: velocity vt

Function compute policy(qt, ξ
ref ,K, dt):

Find the closest configuration qtd = ξref [it]
Calculate robot state xt = [qt,vt]
Calculate reference state xtd = [qtd,vtd]
Compute acceleration using Equation (3.12)
Integrate to obtain velocity
return vt

End Function

64 3 — Representing the Semi-Autonomous Agent

© 2023 IEEE

X

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Y

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Z

0.65

0.70

0.75

0.80

0.85

0.90

0.95

X

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Y

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Z

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Figure 3.9: Trajectories generated using LQR at different locations

3.4 Summary

This chapter focuses on describing the semi-autonomous agent (goal-

conditioned autonomous agent) that is utilized throughout the next

chapters, including the problem formulation, key assumptions and

the technical methods for training a global policy using data-driven

architectures. Since the state of the robot is constantly changing due

to the inputs from the human agent, and the autonomous agent has

to compute a global optimal policy from each new state at each time

step, a reactive autonomous agent is essential for the proposed shared

control setting.

Providing a powerful, robust autonomous agent that can solve manipu-

lation tasks in diverse settings is beyond the scope of the research. With

3.4 — Summary 65

the help of complex data-driven models and advanced reinforcement

learning techniques such as [56]–[58], it is anticipated that the burden

of obtaining a robust optimal policy will decrease, allowing easy access

to the semi-autonomous robot agent.

66 3 — Representing the Semi-Autonomous Agent

Chapter 4

Natural Gradient Shared

Control

In this chapter, I introduce a novel method to arbitrate the commands

of human and semi-autonomous agents. The method allows the human

operator to retain maximum control whenever possible, so that the

human operator does not have to fight against the robot’s autonomy,

but still receives assistance in critical situations. For background theory

related to the chapter, refer to Section 2.6.

The work presented in this chapter has been published in:

� Y. Oh, S.-W. Wu, M. Toussaint, and J. Mainprice, ‘Natural Gradi-

ent Shared Control’, IEEE International Symposium on Robot and

Human Interactive Communication (RO-MAN), pp. 1223–1229,

2020, © 2020 IEEE.

67

4.1 Introduction

A simple form of policy blending that is still widely used in many shared

control frameworks [59]–[61] is the linear blending paradigm introduced

by Dragan et al. [20]. The blended policy u is represented as

u = αaR + (1− α)aH (4.1)

where aH and aR are human and autonomous robot policies and

α ∈ [0, 1] is a coefficient to adjust the level of arbitration. In this

approach, the amount of arbitration depends on how well the intentions

of the human operator are predicted. The blended policy follows the

autonomous policy when the robot predicts the user’s intent with high

confidence. However, this has been reported to result in mixed user

preference, with some users preferring to retain control despite longer

completion times [24], [25]. In addition, if the assistance is against the

user’s intention, this approach can increase the user’s workload [20];

the user “fights” against the assistance rather than gain help from it.

Some works have taken the option of giving the user maximum control

authority by providing minimal assistance only when necessary. Broad

et. al. introduced minimal intervention shared control, which computes

whether the control signal will lead to an unsafe state and, if so, replaces

the user’s control [62], [63]. However, in these works, the problem is

usually modeled by the selection of an action within a feasible set.

In this work, the shared control is formulated as an optimization

68 4 — Natural Gradient Shared Control

© 2020 IEEE

argmin
𝑢

𝑄𝐻

subject to
𝐾𝐿(𝜋𝑅| 𝜋𝑆 < 𝜖

User Input 𝜋𝐻

Robot Policy 𝜋𝑅

𝑠𝑡+1 = 𝑠𝑡 + 𝜂𝐹−1(𝑠𝑡)𝑎𝑡
𝐻

Shared Control

System

Compute ∇𝑠𝑎𝑡
𝑅, 𝐹

𝑎𝐻
𝐹−1𝑎𝐻

Compute Natural
Gradient

𝑎𝐻

𝐹−1

Problem:

Figure 4.1: Overview of arbitration strategy using Natural Gradient
Shared Control

problem, as shown in Figure 4.1. The shared control action is chosen

to maximize the internal action-value function of the user, while the

shared control policy is constrained not to deviate from the policy of

the autonomous robot. The Fisher information matrix is constructed,

which is an expression of how sensitive a distribution is to changes in the

local neighborhood of the state. When the autonomous robot’s policy is

represented as a vector field over the state space, assistance is provided

where the policy locally diverges. The inverse Fisher information matrix

adapts the user’s actions so that the robot gains more authority when

the robot’s policy changes rapidly in the local region (e.g., near an

obstacle or near a goal). In the regions where the policy does not locally

diverge, the user can retain more control authority Through the use

4.1 — Introduction 69

of the Fisher information matrix, the term “Natural Gradient Shared

Control” is introduced.

In order to evaluate the efficacy of the approach, we define a teleoper-

ation task and compare the quantitative metrics, where a user performs

pick-and-place tasks with a simulated robotic arm. We show that our

shared control paradigm can assist the user in achieving the goal while

simultaneously giving the user more control authority.

The main contributions are summarized as:

� A shared control paradigm that depends on natural gradients

emerging from the divergence constraint between the robot and

the shared policy

� Approximating the Fisher information matrix by sampling the

autonomous robot’s policy and computing the local gradient using

finite difference

� Generation of an autonomous robot policy that is based on task

space states and can be regressed over the entire state space

� Quantitative results of a preliminary human user study with

16 participants, demonstrating the effectiveness of the proposed

paradigm to give more user control

70 4 — Natural Gradient Shared Control

4.2 Related Work

4.2.1 Different Methods of Sharing Control

Shared control refers to the cooperation between the user and the

autonomous robot agent to achieve a common task at a control level [13].

Different paradigms for shared control have been developed depending

on the task and purpose of the application. We categorize the paradigms

into three groups depending on how the agents share control: control

switching, direct blending, and indirect blending.

Control switching is the allocation of all-or-none assistance during

control. It is a discrete switch between full autonomy and direct control

depending on a predefined circumstance. Control switching can be

momentary: at each state, the robot evaluates whether to take over,

depending on its confidence in the user’s intentions [20] (aggressive

mode); or to prevent the system from entering an unsafe state [62]. It is

also called traded control when the robot fully takes over and executes

a sub-task over a sequence of time steps [64]–[66].

Direct blending involves explicitly combining both agents’ control

using an arbitration function. The above control switching corresponds

to when the step function is used as the arbitration function. Approaches

include using a linear function [20], [60], [61], a sigmoid function [67],

specifically tuned [21], [68], or learned [59], [69]. It can be tedious to

define and tune an arbitration function that generalizes across users

and tasks. As a result, the blended action may be worse than following

either policy.

4.2 — Related Work 71

Indirect blending occurs when the shared control is a result of

an optimization problem. Javdani et al. [25] formulated the problem

as a POMDP (Partially Observable Markov Decision Process) and

approximated using hindsight optimization to provide assistance which

minimizes the expected cost-to-go for an unknown goal. Reddy et al. [70]

used deep Q-learning to select an action closest to the user’s suggestion

while being suboptimal in discrete states. Broad et al. [63] introduced

shared control with “minimal intervention”, such that the human’s

command is perturbed when the system leads to an inevitable collision

state. Similarly, our work does not directly blend the controls despite

the presence of the autonomous robot action but rather computes a

metric based on the topology of the autonomous policy in the local

neighborhood and adjusts the user commands.

4.2.2 Natural Gradients

The natural gradient adjusts the direction of the standard gradient

according to the underlying Riemannian structure of the parameter

space. It is effective when the direction of the standard gradient descent

does not represent the steepest descent direction of the cost function in

the parameter space, which leads to poor convergence [40], [41].

The natural gradient is advantageous as it is invariant under coordi-

nate transformations and unlike Newton’s method, it doesn’t assume

the cost function is locally quadratic. It is widely applicable to non-

linear functions in neural networks [41], including reinforcement learning

72 4 — Natural Gradient Shared Control

methods such as policy gradient [71] and actor-critic [72]. In Schulman

et al. [73], a trust region is defined by constraining the KL divergence

between the old and the new policy during policy updates. Similarly,

our shared control framework imposes a constraint on the KL divergence

of the autonomous policy and the shared control policy such that the

shared control policy does not diverge far from the autonomous robot

policy.

4.3 Natural Gradient Shared Control

4.3.1 Expressing Shared Control as an Optimization

Problem

Let s ∈ S be the state of the system. Let aH ∈ AH as the user action,

aR ∈ AR be the autonomous robot action, and u ∈ U be the shared

control action. The human and the robot agent both select actions

following their stochastic policies, πH , and πR. Our goal is to find

a shared control policy πS that satisfies the following optimization

problem.

arg max
ut

QH(st,ut)

subject to KL(πR∥πS) < ϵ

(4.2)

At each time step, the shared control policy is chosen to maximize the

user’s internal action-value function QH(st,ut). The KL divergence

constraint between the robot policy and the shared policy ensures that

4.3 — Natural Gradient Shared Control 73

Algorithm 2: Natural Gradient Shared Control

for t = 1, T do
Observe user action aH

t

foreach g ∈ G do
Compute belief bt,g
Fg(st) = ComputeFisher(st, g)

F (st)
−1 =

∑
g bt,gF

−1
t,g (st) ▷ weighted sum over goals

ut ← F (st)
−1aH

t ▷ compute shared action
s← s+ ηut ▷ update state

the shared policy does not deviate far from the autonomous robot policy.

The user’s internal action-value function QH(st,ut) is approximated

using the user’s action. We view the user’s action as an estimate

of ∇sQH(st,a
H
t) at each step (refer to Section 3.2.2), assuming that

people take actions in the direction that maximizes their internal value

function. Otherwise, it is possible to learn QH using methods such as

Maximum Entropy Inverse Optimal Control (MaxEnt IOC) [52], but

predicting the user controls aH
t can be challenging due to interpersonal

differences.

The problem can be expressed using a Lagrange Multiplier, assuming

a linear approximation of our objective QH(st,a
H
t) and a quadratic

approximation of the KL divergence constraint. Solving this approxima-

tion of the Lagrangian leads to an update rule that introduces natural

gradient adaptation.

74 4 — Natural Gradient Shared Control

4.3.2 Natural Gradient Shared Control

We introduce a state update function for shared control using natural

gradient adaptation. Note that our goal is to find the action that

maximizes QH , resulting in taking gradient steps in the direction of

ascent.

st+1 = st + ηF (st)
−1∇sQH(st,a

H
t)

= st + ηut

(4.3)

η is the step size and the natural gradient in Equation (2.16) corre-

sponds to the shared control action ut ∼ πS(·|st,aH
t ,a

R
t). We utilize

the approximation aH
t ∝ ∇sQH(st,a

H
t) in Equation (4.5). The propor-

tionality constant is absorbed by the step size η. The overall algorithm

is summarized in Algorithm 2.

ut = F (st)
−1∇sQH(st,a

H
t) (4.4)

= F (st)
−1aH

t (4.5)

The Fisher information matrix F (st) can be interpreted as the sensi-

tivity of the autonomous robot policy πR to changes in the parameter.

Intuitively, a vector field is defined by regressing a deterministic

robot policy over the entire state space. This vector field contains

information about which optimality and constraint trade-offs are made

about the underlying actions. When an obstacle is in an environment,

it acts as a source (positive divergence) in the vector field resulting

4.3 — Natural Gradient Shared Control 75

Algorithm 3: Computing Fisher Information Matrix

Init: Load pre-trained robot policy model fnn
Input: st, g
Output: Ft,g

Function ComputeFisher(st, g):
Sample set of states S = {(si, g)}Ni=1

Infer robot actions D = fnn(S)
Fit LWR model Lg = LWR(S,D)
ãR
t,g ← Lg(st) ▷ query action from LWR

Ht,g ← ∇sã
R
t,g ▷ compute Jacobian of action

Ft,g ← 1
2 (Ht,g +H⊤

t,g) ▷ ensure symmetry

return Ft,g

End Function

in a repulsive action. When the policy is goal-directed, the goal acts

as a sink (negative divergence) and the vectors around the goal point

inward. F measures how sensitive the field changes and emphasizes or

discounts towards certain directions of ut.

4.3.3 Computing the Fisher Information Matrix

We approximate F as the curvature of the robot’s action-value function

at a given state:

F (st) = E
πH

[∇s log πR(a
R
t |st)∇s log πR(a

R
t |st)⊤] (4.6)

≈ ∇2
sQR(st,at) (4.7)

Keeping in mind the connection between F and the KL divergence

76 4 — Natural Gradient Shared Control

and the asymmetry of the KL divergence, one may ask how dependent

is F to the underlying assumption of KL(p||q) or KL(q||p). It turns out
that when p and q are close, the KL divergence is locally/asymptotically

symmetric [44]. Hence, our definition for F ≈ ∇2
sQR is equivalent to

integrating the user actions over all possible robot actions.

We describe our method for computing F in Algorithm 3, where F

is computed at each state for each goal. We use Locally Weighted

Regression (LWR) to fit a local model Lg using a set of sampled states

and actions inferred using a pre-trained model. A detailed explanation

regarding LWR is described in Section 3.3.2. As we consider action as an

approximation of the first derivative of the Q-function, we consider the

Jacobian of the robot action as the Hessian of the Q-function. ∇sã
R
t is

the Jacobian computed using the finite difference method with actions

ãR
t,g from Lg. The Fisher information matrix F is positive-definite by

definition. However, the Jacobian computed using the finite difference

method may not always be symmetric. Thus, we decompose the matrix

into a symmetric and a skew-symmetric matrix, and we apply the

symmetric matrix.

The objective of the robot assistance can be flexibly defined depend-

ing on the cost function that the robot policy optimizes. Figure 4.2

shows the ellipses computed over the state space, using eigenvalues and

eigenvectors of F (s)−1 for each assistance mode; the robot assistance

can be goal-directed (in Figure 4.2(a)), or it can minimally assist to

avoid obstacles (in Figure 4.2(c)). The direction of the ellipse represents

the direction along which the user’s action is stretched. When the

4.3 — Natural Gradient Shared Control 77

© 2020 IEEE

(a) Single goal (b) Belief-weighted
over goals in
a multi-goal
environment

(c) Obstacle avoidance

Figure 4.2: Plots showing the computed ellipses over the state space

ellipse is close to a circle, the user has more control authority over the

system. When the ellipse is narrow, for example near an obstacle, the

robot augments the user’s action toward one direction.

In the case of goal-directed assistance with multiple goals, the robot

must predict a single goal among multiple candidates. We compute

F (st)
−1 as a weighted sum over the beliefs representing the confidence

in the goal prediction. Figure 4.2(b) shows F (st)
−1 computed using

beliefs as a naive distance-based goal prediction. It is shown that when

the confidence is low (right top corner, or above the left two objects),

the user gains more control authority.

78 4 — Natural Gradient Shared Control

4.4 Experiments

4.4.1 Experiment Setup

To assess the efficacy of the proposed method, we conducted a study

including human participants. We defined a simulated teleoperation

environment consisting of the Baxter robot operating in a 50 cm × 50 cm

workspace over a table and several cylinders representing objects and an

obstacle, as shown in Figure 4.3. In the environment, physical collisions

were not simulated and grabbing was implemented by attaching the

object to the gripper when grasping is initiated by the user. A joystick

(Logitech Extreme 3D Pro) was used to control the robot’s right end-

effector and the robot was controlled at approximately 30 Hz.

We hypothesized:

� Shared control method based on natural gradients allows the user

to have greater control over the task while maintaining both safety

and efficiency.

4.4.2 User Study Procedure

The user study included 16 individuals (12 males and 4 females) who

used the right hand as their dominant hand. The participants had no

apparent prior experience with robots and gave their informed consent

before beginning the study.

As demonstrated in Figure 4.3b, participants were instructed to

teleoperate the robot’s gripper using the joystick to pick up the red

4.4 — Experiments 79

cylinder and return it to the green goal position while avoiding the blue

pole. The participants controlled the gripper in task space, using the

joystick’s yaw motion to rotate the z-axis and pitch and roll motions to

manipulate the end-effector velocity. The trigger button on the joystick

was used to initiate a grasp. Participants were given a perspective view

of the robot’s workspace to replicate a teleoperation scenario with a

limited camera view.

We designed a within-subjects study in which all participants took

part in all the conditions, namely:

� DC: Direct Control

� NG: Natural Gradient Shared Control

� LB: Linear Blending

© 2020 IEEE

(a) Simulated teleoperation environ-
ment

(b) A user interacting with the envi-
ronment using a joystick

Figure 4.3: The simulated teleoperation environment and an example
of the user interaction setup

80 4 — Natural Gradient Shared Control

� OA: Obstacle Avoidance

Each participant carried out three sets of demonstrations, each set

consisting of four different environment settings repeated across the

four different control conditions. The random order of the conditions

and the environment settings were predefined and balanced.

For LB, we implemented the “timid” mode for linear arbitration

suggested in Dragan et al. [20], in which the assistance is proportional

to the goal confidence level but never fully taking charge. The robot

policy described in Section 3.3.1 was used as the optimal robot policy to

linearly blend the policies. In OA, minimal assistance was provided to

avoid the obstacle using a signed distance function. In all the conditions,

the participant was responsible for determining the resulting action’s

speed.

4.5 Results

A repeated-measures analysis is used to analyze the results, with the

assistance method as a factor. As shown in Table 4.1 and Figure 4.4,

we compared four quantitative measures: task duration, travel distance,

minimum proximity to the obstacle, and the cosine distance between

actions. In Figure 4.4, the mean value is indicated using a white dot

and the median is indicated as the orange horizontal line in the box.

The outliers are indicated as plus symbols.

The results indicate that our method successfully assisted the user in

completing the task while allowing the user to maintain control authority.

4.5 — Results 81

Table 4.1: User study results: mean and standard deviation

Method Duration Travel Dist. Proximity Cosine Dist.
(s) (cm) (cm) (× 10−2)

DC 14.1 ± 3.5 163.0 ± 26.2 5.5 ± 1.8 0.4 ± 0.25
NG 12.7 ± 2.8 155.2 ± 20.5 7.4 ± 1.0 6.6 ± 1.0
LB 15.2 ± 4.0 148.0 ± 14.6 6.6 ± 1.1 19.2 ± 5.2
OA 16.5 ± 4.2 191.2 ± 40.4 6.5 ± 0.9 1.5 ± 0.6

© 2020 IEEE

As seen in Figure 4.4 (a), NG reported the shortest average task

duration with statistical significance: DC(f(4, 12) = 20.67, p = 0.0004),

LB(f(4, 12) = 16.93, p = 0.0009), and LB(f(4, 12) = 61.50, p <

0.0001). Comparing the end-effector travel distance in Figure 4.4 (b),

LB exhibited the shorted average distance followed by NG. However,

the results were statistically equivalent to NG (f(4, 12) = 1.7933, p =

0.2005)

Interestingly, although the LB had the shortest average travel distance,

its duration was not the shortest, and it had the greatest average cosine

distance. This suggests that there may have been a mismatch between

the participants’ intentions and the actions of the robot, forcing them

to resist the robot’s behavior. On the other hand, this was not shown

in NG, indicating that the arbitrated action was acceptable to the user

while still being efficient.

As a measure of safety, we compared the average minimum dis-

tance between the gripper and the obstacle. The shorter distance

82 4 — Natural Gradient Shared Control

© 2020 IEEE

Direct
Control

Natural Gradient
Shared Control

Linear
Blending

Obstacle
Avoidance

10

12

14

16

18

20

22

24

26

Ti
m

e
(s

)
Average Timesteps

(a) Duration

Direct
Control

Natural Gradient
Shared Control

Linear
Blending

Obstacle
Avoidance

120

140

160

180

200

220

240

260

Di
st

an
ce

 (c
m

)

Average Travel Distance

(b) Travel distance

Direct
Control

Natural Gradient
Shared Control

Linear
Blending

Obstacle
Avoidance

2

3

4

5

6

7

8

9

10

11

Di
st

an
ce

 (c
m

)

Average Minimum Proximity to Obst

(c) Minimum proximity to obstacle

Direct
Control

Natural Gradient
Shared Control

Linear
Blending

Obstacle
Avoidance

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Co

sin
e

Di
st

an
ce

Average Cosine Distance

(d) Cosine distance

Figure 4.4: Comparison of control paradigms across all users for (a)
execution time, (b) travel distance, (c) minimum proximity
to the obstacle, (d) cosine distance

signifies a higher risk of collision with the obstacle. NG demon-

strated the most effective obstacle avoidance with statistical significance:

DC(f(4, 12) = 31.42, p < 0.001), LB(f(4, 12) = 18.7363, p = 0.0006),

and OA(f(4, 12) = 23.2720, p = 0.0002), while still retaining a rea-

sonably short overall travel distance In DC and OA where there is

minimal to no robot assistance, the participants were responsible for

4.5 — Results 83

avoiding obstacles.

The cosine distance indicates the degree of disagreement between

the human command and the executed command. As depicted in

Figure 4.4 (d), the average cosine distance of NG is significantly less

than that of LB (f(4, 12) = 104.36, p < 0.001), indicating that the NG

method executed actions that were closer to what the user intended,

verifying our hypothesis that NG would allocate more control authority.

Methods DC and OA provided no assistance toward the goal, which

explains the smallest cosine distances. The trajectory was minimally

influenced, thus resulted in a larger variance compared to NG or

LB when comparing the duration, travel distance, and the minimum

proximity to the obstacle.

Figure 4.5 shows the participants’ trajectories during the user study

for three different environments. Participants were instructed to start

from the red star, grab the red object, and retrieve back to the green

position, while avoiding the blue obstacle. As seen from quantitative

results, DC and OA exhibit divergent paths compared to NG or

LB. Trajectories include dragging along the workspace boundary or

approaching the place position from various directions. A notable

characteristic of the LB method is shown in the second column of

Figure 4.5. Since the target object and another object were relatively

close in this environment, assistance was often provided toward the

wrong goal. The user had to fight against the assistance and noisy

trajectories are shown near the objects. Overall, NG showed reliable

performance in task execution while still maintaining compliance with

84 4 — Natural Gradient Shared Control

user commands. The results show that our method can be an option

for reducing the discrepancy and increasing user satisfaction during

teleoperation.

4.5 — Results 85

© 2020 IEEE

(a) Direct control

(b) Natural Gradient Shared Control

(c) Linear Blending

(d) Obstacle Avoidance

Figure 4.5: Top-down visualization of user demonstrations for tele-
operation method (rows) of three different environments
(columns)

86 4 — Natural Gradient Shared Control

4.6 Discussion

The novelty of the chapter lies in defining the shared control problem as

an optimization problem which leads to the use of the Fisher information

matrix to define a trust region to keep the shared control action close to

the optimal robot action. The Fisher information matrix F measures

the sensitivity of the autonomous robot policy to changes in the state.

Since the method is based on the assumption that there exists a

global policy that represents the semi-autonomous agent, the result

of the shared control action is dependent on the quality of the semi-

autonomous robot policy. The more accurate the optimal policy is,

the better the quality of the arbitration between the policies. For this

reason, the method presented in this chapter was limited to the end-

effector space and the teleoperation task was designed simple enough to

acquire an optimal policy. Even so, it was a laborious effort to obtain a

feasible optimal policy that can be applied to the method.

In practice, it can be challenging to acquire a global policy for a

bigger state space. However, with the help of current advancements in

robot control such as task and motion planning (TAMP), reinforcement

learning, and parallel computing, sampling diverse optimal robot policies

are becoming more accessible with little cost. Further investigations

with a larger state space are discussed in the next chapter.

4.6 — Discussion 87

4.7 Summary

This chapter presented a novel shared control paradigm based on natural

gradients, that provides effective task completion without compromising

the human operator’s control authority. Shared control is formulated

as an optimization problem, in which the cost function maximizes

the human operator’s internal value function while minimizing the

KL divergence between the autonomous agent policy and the shared

control policy. This provides an effective balance where the robot’s

policy is not compromised while maintaining a high level of user control.

Comparisons with other methods of human-in-the-loop control such

as linear blending and direct control are shown in the results section,

which described the effectiveness of the proposed framework.

88 4 — Natural Gradient Shared Control

Chapter 5

Augmenting Human Policies

Using Riemannian Metrics

for Shared Control

The work presented in Chapter 4 is extended to higher dimensional

spaces, to enable human and robotic agents to operate in different

coordinate systems.

The work presented in this chapter has been published in:

� Y. Oh, J.-C. Passy, and J. Mainprice, ‘Augmenting Human Poli-

cies Using Riemannian Metrics for Human-Robot Shared Control’,

IEEE International Symposium on Robot and Human Interactive

Communication (RO-MAN), 2023, © 2023 IEEE.

89

5.1 Introduction

Manipulation is an essential feature of teleoperation robots and robots

are expected to perform tasks that require a high level of manipulability

in a limited amount of time. When it comes to manipulating a high-

dimensional robot arm with low-dimensional human inputs, many works

relied on the inverse kinematics (IK) solver to control the end-effector

of the robot arm to achieve manipulation tasks [74]–[76].

We tackle the task of reaching an object through teleoperation. Reach-

ing a point in space is the most basic subtask when teleoperating a

robot arm, and various manipulation tasks in disaster response, such

as clearing debris or operating tools, can be broken down into a chain

of reaching subtasks. The focus is to develop a smooth teleoperation

method that allows the human operator to control the robot manipulator

as if they are embodied in the teleoperation robot.

In the previous chapter, a shared control paradigm that prioritizes

human inputs while augmenting them with robot assistance only when

necessary is presented. The Fisher information matrix is computed,

which reflects the changes in the distribution of robot assistance in the

neighborhood, and the human inputs are augmented accordingly. The

chapter extends the paradigm to higher-dimensional spaces, enabling

human and robotic agents to provide commands in their most natural

settings.

The human input and robot assistance are in velocities, which are

considered to be gradients of the value function existing in the tangent

90 5 — Augmenting Human Policies Using Riemannian Metrics for Shared Control

space of the manifold. Each agent commands actions that maximize

their internal value functions and the human inputs are supplemented

according to the curvature of the robot’s optimal value function, a

Riemannian metric. The measure keeps track of the cost terms (e.g.,

avoiding collisions, grasp orientation, joint limits, etc.) that the robot

assistance takes into account. In this way, the assistance can help

minimize any cost terms or constraints that the human operator might

miss during teleoperation. The curvature of the robot’s value function

is calculated by sampling robot policies in the local neighborhood states.

This is useful when the robot’s value function is hard to obtain, such

as when the policy is modeled by a neural network.

The main contributions are summarized as the following:

� generalizing the shared control framework from Chapter 4 to the

configuration space to enable human and robot agents to operate

in different spaces

� approximating the curvature of the autonomous robot’s value

function from policy samples of neighboring states

� locally approximating the global robot policy using a single opti-

mized robot trajectory and computing the curvature using finite

differences

� presenting results using simulated human behavior policies that

show the potential of the proposed paradigm

5.1 — Introduction 91

5.2 Related Work

5.2.1 Teleoperation in Different Workspaces

The morphological difference between humans and robots results in an

asymmetry in the degrees of freedom (DoF), and different workspaces

between the human and robot can increase operator workload by de-

manding intensive training and focus [77]. Prior studies have focused

on developing teleoperation systems that reduce the physical workload

of the operator through motion mapping [78]–[80], relying on the redun-

dancy mechanism to allow the operator to manipulate the end-effector.

Simultaneously, the robot ensures automatic collision avoidance [76],

[81], or using learning from demonstration to estimate the desired robot

action given the operator’s inputs [82], or by learning a correspondence

between human and robot arm poses [22]. Another common solution

is using virtual fixtures that constrain the manipulability of the robot

so that the operator can focus on the high-level task objective while

the assistive system takes care of tasks such as collision avoidance or

orientation assistance [83]. The virtual fixtures are hand-coded [84],

or learned from demonstration [83], [85], [86]. The method is often

combined with haptic feedback, known as Haptic Shared Control [87],

[88]. Our approach is similar to virtual fixtures as it augments the

human inputs to prevent any collisions when teleoperating a redundant

manipulator, but the information is acquired from the optimal robot

motions rather than demonstrations from the human operator.

92 5 — Augmenting Human Policies Using Riemannian Metrics for Shared Control

5.2.2 Riemannian Approach to Shared Control

Riemannian geometry provides a principled way to extend algorithms

from Euclidean space to other manifolds [89]. The configuration space

of an n-dimensional, multi-linked robot can be characterized by a

Riemannian manifold, referred to as the configuration manifold Q [31],

and previous works such as [37], [90], [91] formulated robot motion

using Riemannian geometry, which we take as theoretical inspiration

for our method.

From the perspective of shared autonomy, Zeestraten et al. [85] devel-

oped a Riemannian approach for Programming by Demonstration to

define virtual fixtures that restrict the manipulability of the robot for

shared control. In [89], task-parameterized Gaussian Mixture models

combined with model predictive control were used to teleoperate a

bimanual underwater robot. Also, Ti et al. [92] proposed a Learning

from Demonstration (LfD) approach, where the demonstration data

distribution is represented using Gaussian distributions on Riemannian

manifolds to reduce the number of demonstrations required by the

robot to acquire manipulation skills. In a shared control setting, the

robot is guided by the operator while automatically determining the

grasping strategy. Our approach expresses the local curvature of the

autonomous agent’s value function using a Riemannian metric, that is

used to augment the human operator’s command to support grasping

while preventing collision.

5.2 — Related Work 93

5.3 Shared Control as an Optimization Problem

In a teleoperation scenario, the human operator and the autonomous

robot work together to complete a task. We define two different methods

of defining shared control as an optimization problem that combines both

agents operating in different dimension spaces, which leads to utilizing

the Riemannian metric to modify the human operator’s commands.

5.3.1 Constrained Optimization Problem

Recalling our previous work [45], we formulate the optimization problem:

arg max
u

QH(s,u)

subject to KL(πR∥πS) < ϵ

(5.1)

where s and u denote the state and the shared control action. The

objective is to find a shared control policy πS that maximizes the

user’s internal action-value function QH(s,u) while retaining a trust

region to keep πS in the local neighborhood of the autonomous robot

policy πR. We referred to this as “Natural Gradient Shared Control”

as the constraint induces a natural gradient update, with respect to the

distance in the parameter space. Here, the Fisher metric was used to

measure the distance in the distribution space.

In the case of deterministic policies, the policy π : S → A directly

maps the state space S to the action space A rather than outputting a

94 5 — Augmenting Human Policies Using Riemannian Metrics for Shared Control

probability associated with the action. Thus, the optimization problem

can be rewritten in a similar form as Equation (2.15):

arg max
u

QH(s,u)

subject to ∥aR − u∥2W < ϵ

(5.2)

where the constraint is defined to ensure that u is close to the au-

tonomous robot action aR.

W is a symmetric, positive definite n × n matrix that defines an

inner product on the vector space Rn. The inner product induces a

norm, enabling us to compute the distances between two vectors. It is

analogous to the Riemannian metric g described in Section 2.5 since

an n-dimensional robot configuration space can be characterized by a

Riemannian manifold.

In our prior work [45], we investigated combining policies of both

agents operating in the same task space. We now investigate combining

both agents’ policies operating in different spaces, where the human

operator specifies end-effector commands in the task space and the

autonomous robot computes appropriate configurations in the joint

space. This leads to the following state update rule in the form of

qt+1 = qt + ηq̇t, which adapts the joint variables q:

qt+1 = qt + ηW−1∇sQH(st,u
H
t) (5.3)

where η is the step size and we approximate ∇sQH(st,ut) = J†vH

5.3 — Shared Control as an Optimization Problem 95

as the human operator’s action converted into the configuration space.

Intuitively, the human operator naturally decides the action they believe

to be optimal according to their policy. This is comparable to the

optimal action being proportional to the value function for a system

with linear dynamics and quadratic costs. At each time step, the metric

W directly augments the user’s action according to the curvature of

the autonomous robot policy space.

5.3.2 Least-Squares Problem (Sum-of-Squares)

We formulate the shared control problem for manipulation as an un-

constrained optimization problem, where the cost function is a sum of

squares that jointly minimizes the distance in the end-effector space

and the configuration space:

qt+1 = argmin
q

∥ϕ(q)− x∗∥2C + ∥q − qt∥2W (5.4)

where C and W are task and the configuration space metrics, respec-

tively. The first norm penalizes the quadratic cost between the position

of the end-effector and the intended position of the human operator x∗,

and the second norm penalizes the quadratic cost of the joint velocities.

The optimum can be obtained by differentiating Equation (5.4) and

utilizing ϕ(q) ≈ xt + J(q − qt) which expresses the local linearization

96 5 — Augmenting Human Policies Using Riemannian Metrics for Shared Control

of ϕ at qt.

f(q) = ∥ϕ(q)− x∗∥2C + ∥q − qt∥2W
= ∥xt + J(q − qt)− x∗∥2C + ∥q − qt∥2W

∂

∂q
f(q) = 0⊤ = 2(xt − x∗ + J(q − qt))

⊤CJ + 2(q − qt)
⊤W

Rearranging the equation leads to the following update rule, analogous

to the Gauss-Newton method:

qt+1 = qt + (J⊤CJ +W)−1J⊤C(x∗ − xt)

= qt +W−1J⊤(JW−1J⊤ +C−1)−1(x∗ − xt)

= qt + ηW−1J⊤(JW−1J⊤ + ϵI)−1vH

where vH = x∗ − xt is the human operator’s commands. The equation

is equivalent to Equation (2.12) when C →∞, which strictly enforces

the robot’s end-effector position to be at the user’s intended position

x∗ = ϕ(q). We substitute C−1 = ϵI in the last line of the calculation

to ensure numerical stability when inverting near singularity.

The first cost objective in Equation (5.4) is analogous to maximizing

QH(s,u) given that the user’s action-value is the maximal when exe-

cuting the user’s commands that lead to the user’s intended position

x∗.

When the human operator provides only the linear velocity commands

vH ∈ R3, the operator can rely on the shared control to modify the ori-

5.3 — Shared Control as an Optimization Problem 97

entation accordingly. This is useful in teleoperation scenarios where the

human conveniently controls the end-effector position, without having

to worry about detailed grasp orientations when controlling redundant

manipulators. For full-dimension control, the human can provide both

linear velocity ṗH and angular velocity ωH , ṽH = [ṗH ωH]⊤, and the

geometric Jacobian J̃ = [Jpos Jori]
⊤ is applied.

5.4 Recovering the Riemannian Metric

The work is motivated by [37], [90], and [91] where robot motion is opti-

mized by solving a constrained sum-of-squares problem of the objective.

The objective incorporates cost terms or constraints (task-related or

transitional costs) along the trajectory (for example, Equation (2.11)

penalizes square velocities). The optimized robot motion creates an

optimal robot policy that minimizes its “cost-to-go”, in other words,

that yields the optimal value function. Its second derivative (Hes-

sian), comparable to the metric W , expresses the value function’s local

curvature.

Inversely, given an optimized autonomous robot policy, we can es-

timate the value function and its curvature by computing the finite

differences of configuration space variables. This reveals the underlying

cost terms (collision avoidance, grasp orientation, joint limits etc.) that

the autonomous robot takes into account, and our idea is to augment

the human operator’s commands using the metric W to stretch the

tangent space according to the topology of the value function to consider

98 5 — Augmenting Human Policies Using Riemannian Metrics for Shared Control

any cost terms or constraints that the human operator might overlook

during teleoperation.

It is important to mention that the actions of the robot are velocities

which are regarded as gradients of the value function that exists in

the tangent space of the manifold, which enables the estimation of the

metric W using finite difference approximation.

5.4.1 Estimating the Hessian Using Finite Differences

Theoretically, the second derivative Hessian can be directly computed

as the Jacobian of the gradient. However, directly estimating the

Hessian matrix by computing first derivatives from velocities can lead

to asymmetrical Hessian matrices, which violates the definition that

the Hessian matrix of a scalar-valued function is symmetric. Instead, it

is computed by first recovering the local values of the scalar field and

directly constructing the Hessian using finite difference approximation,

as shown in Figure 5.1.

That is,

W = Φ2Φ
−1
1 q̇robot

Figure 5.1: Estimating the Hessian using finite differences

5.4 — Recovering the Riemannian Metric 99

where Φ1 and Φ2 are finite difference operators for computing the first

and second derivatives of the scalar-valued function. Specifically, Φ1

estimates the local function values f(q + hiei) for a perturbation along

the i-th unit vector ei defined by the step size hi:

f(q + hiei) = f(q)′hi + f(q) (5.5)

where the original function value f(q) is considered as f(q) ≈ 0, which

is an offset of the function that vanishes when computing the second

derivative. Based on the recovered function values in the local region,

Φ2 computes the second derivatives [93]:

∂2f

∂qi∂qj
=
f(q + hiei + hjej)− f(q + hiei)− f(q + hjej) + f(q)

hihj
.

(5.6)

Utilizing the central finite difference approximation would generate

more accurate estimates. However, it would also require more function

calls. Since the Hessian is updated at every time step, we favor speed

over accuracy and adopt the forward difference, which requires only

1 + n+ n(n+ 1)/2 = 1 + n(n+ 3)/2 additional function calls, where n

is the number of degrees of freedom. A seven-dimensional robot arm

requires 36 function calls from neighboring states to estimate a Hessian

matrix. This emphasizes the need for a global robot policy that can

rapidly query actions at perturbed states to reduce computation costs.

100 5 — Augmenting Human Policies Using Riemannian Metrics for Shared Control

© 2023 IEEE

(a) Using VR headset and
controllers

(b) Simulation setup (c) Physical robot
setup

Figure 5.2: Teleoperation interface using VR and robot setup

5.5 Experiments

5.5.1 Experiment Setup

We created a simulated teleoperation environment with two Franka

Emika Panda robot arms [94]. The robot arms are mounted on a table

facing the same direction, and a rectangular box (6 cm× 6 cm× 12 cm)

is placed on the table in front of the robot. The objective is to reach

and grab the rectangular box, starting from a random initial position

and a random object position. We consider it a successful grasp when

the object is between the gripper’s fingers. We used KOMO [90] to

generate reference trajectories ξref in the joint space and included cost

terms and constraints such as collision, joint limits, target position,

grasp approach position, and gripper orientation. The robot executes

a trajectory that first reaches the grasp approach position above the

object and grabs the middle of the object to avoid collisions. When

grasping, the orientation of the gripper is defined to point downwards

5.5 — Experiments 101

© 2023 IEEE

Figure 5.3: Simulating optimized reference trajectories using KOMO

with its lateral axis perpendicular to the long axis of the gripper (See

Figure 5.3).

5.5.2 Simulating Human Operator Behaviors

To test our method, we simulate human policies inspired by [70] and [95].

The simulated human is modeled using an inverse kinematics solver

and generates different behavior policies:

� Straightline: Actions that point directly toward the object

� Approach: Actions to reach a pre-grasp position above the object

and descend to grab the object

� Noisy-k: Approach policy action with injected uniform noise on

the joints with size k

102 5 — Augmenting Human Policies Using Riemannian Metrics for Shared Control

� Biased : Actions reaching the incorrect object location with max.

5 cm error radius

� Laggy-m: Actions based on the previous state observed m steps

ago

Noisy, Biased, and Laggy policies are variants of the Approach policy

which simulates the disturbance in human actions leading to inaccurate

commands.

5.5.3 Simulation Results

Table 5.1 summarizes the results for 100 reach-and-grasp tasks using

the simulated human policies. The task is considered a success when

the object lies between the gripper’s fingers and the object has not

deviated from its initial position. We terminate the episode as collided

when the gripper collides with the object before reaching a grasp, and

timeout occurs when the task duration exceeds the provided time limit.

The constrained optimization method (Constr.) and the least squares

method (SoS) outperform the NoAssist method regarding the number of

succeeded tasks. The two proposed methods formed robot trajectories

similar to the reference trajectory. This indicated that optimizing one

reference trajectory at the beginning of the episode and using LQR to

approximate its action was sufficient to represent the autonomous robot

agent without accessing a traditional motion optimizer at each time step.

Figure 5.4 shows generated trajectories using different simulated human

policies. Each represents the following: human policy (NoAssist, blue),

5.5 — Experiments 103

©
2
0
2
3
IE

E
E

R
IG

H
T

S
tra

ig
h
tlin

e
A
p
p
ro

a
ch

N
o
isy

-0
.1

N
o
isy

-0
.2

B
ia
se
d

L
a
g
g
y
-5

L
a
g
g
y
-1
0

A
v
g
.
C
o
ssim

Collision

Timeout

Success

Collision

Timeout

Success

Collision

Timeout

Success

Collision

Timeout

Success

Collision

Timeout

Success

Collision

Timeout

Success

Collision

Timeout

Success

x
y

z

N
o
A
ssist

6
6

0
3
4

2
0

0
8
0

3
8

0
6
2

7
9

0
2
1

1
8

0
8
2

2
0

0
8
0

1
9

0
8
1

0
.8
8

0
.8
6

0
.9
0

C
o
n
str.

2
6

0
7
4

2
7

9
1

6
2

9
2

7
5

8
8

1
4

9
5

2
9

8
9

2
9

8
9

0
.9
9

0
.9
9

0
.9
9

S
o
S

1
1

9
8

1
3

9
6

1
6

0
8
4

2
4

2
7
4

0
2

9
8

0
1

9
9

1
1

9
8

0
.9
9

0
.9
9

0
.9
9

L
E
F
T

S
tra

ig
h
tlin

e
A
p
p
ro

a
ch

N
o
isy

-0
.1

N
o
isy

-0
.2

B
ia
se
d

L
a
g
g
y
-5

L
a
g
g
y
-1
0

A
v
g
.
C
o
ssim

Collision

Timeout

Success

Collision

Timeout

Success

Collision

Timeout

Success

Collision

Timeout

Success

Collision

Timeout

Success

Collision

Timeout

Success

Collision

Timeout

Success

x
y

z

N
o
A
ssist

6
3

0
3
7

1
7

0
8
3

4
4

0
5
6

5
8

0
4
2

1
8

0
8
2

1
7

0
8
3

1
5

0
8
5

0
.9
0

0
.8
6

0
.9
1

C
o
n
str.

1
8

0
8
2

1
1
3

8
6

4
4

9
2

3
2

9
5

0
9

9
1

1
1
2

8
7

1
1
5

8
4

0
.9
9

0
.9
9

0
.9
9

S
o
S

2
0

9
8

0
3

9
7

1
2

2
8
6

2
8

1
7
1

1
2

9
7

0
2

9
8

0
1

9
9

0
.9
9

0
.9
9

0
.9
9

T
ab

le
5.1:

R
esu

lts
of

100
reach

-an
d
-grasp

task
s
w
ith

sim
u
lated

h
u
m
a
n
p
o
licies

104 5 — Augmenting Human Policies Using Riemannian Metrics for Shared Control

constrained (Constr, green), least-squares (SoS, red), and autonomous

robot reference trajectory ξref (yellow). As shown in Figure 5.4, our

methods adjusted the orientation of the gripper and altered the trajec-

tory to achieve the task, even though the simulated human policies only

provided three-dimensional linear velocities excluding the orientation.

The proposed methods also improve the average cosine similarity

between the object and the final gripper orientation results. Since the

autonomous robot policy follows the reference trajectory ξref , which

satisfies grasp orientation cost terms (described in Section 5.5.1), the

metric W also contributed to correcting the gripper’s orientation.

This supports our hypothesis that through the estimated curvature,

we can infer the underlying information about the cost and constraint

terms of the autonomous robot policy and apply it to adjust the human

operator’s actions.

The least-squares (SoS) method generally performed better than

the constrained method in all simulated users except the Noisy users.

We assume that in Sections 5.3.1 and 5.3.2, the constrained method

imposes harder constraints on the optimization problem, whereas the

least-squares method adds softer constraints by optimizing all cost

terms altogether. Since the constrained method directly applied the

metric W in Equation (5.3), the behavior was more “aggressive” and

led to better success rates with the Noisy policies by damping out the

gripper tremble.

5.5 — Experiments 105

© 2023 IEEE

(a) Straightline (b) Approach

(c) Noisy-0.1 (d) Biased

Figure 5.4: Trajectory comparison between simulated policies and meth-
ods

5.6 Teleoperation System Design

5.6.1 System Implementation

One of the challenges of implementing a teleoperation system using a

VR headset was bridging two different OS systems. The majority of the

robot’s implementation was done using ROS in Ubuntu, but the VR

headset (Meta’s Oculus Rift S) required development in Windows. We

created a simulated teleoperation environment with two Franka Emika

Panda robot arms using the RAI interface, which included the Bullet

106 5 — Augmenting Human Policies Using Riemannian Metrics for Shared Control

physics engine. The two robot arms are mounted on a table both facing

the same direction similar to the setup using real Panda robot arms, as

shown in Figure 5.2.

The environment data such as robot and object configurations and

states were published as ROS messages, and the simulation environment

was recreated in Unity so that it could be accessed with the VR headset

and its touch controllers.

The recent development of Windows Subsystem for Linux (WSL) and

Unity Robotics Hub allowed easy implementation and communication

between the robotic system and the VR interface without providing

separate computers for each OS. The robot was controlled at a frequency

of 15 Hz.

The user wears the VR headset and perceives the virtual teleoperation

environment from the first-person viewpoint, through a virtual camera

located between the robot’s arms and facing toward the middle of the

table. The touch controllers were used to command movements in free

space as well as to send start and grasp signals via the controllers’

buttons.

5.6.2 Pilot User Study

Using the Oculus Rift S VR headset and its controllers [96], we developed

a teleoperation system where the human operator can give natural task

space motion commands as if performing the task themselves. The

simulated robot interface was created using Unity Robotics Hub [97],

5.6 — Teleoperation System Design 107

and the robot was controlled at a frequency of 15 Hz.

We conducted a pilot user study to test the system’s efficacy, compar-

ing 6-dimensional NoAssist, 3- and 6-dimensional constrained modes.

The 6-dimensional modes refer to the control scheme where the human

operator provides linear and angular velocities.

We recruited 11 participants (4 males and 7 females, 9 right-handed

and 2 left-handed) to test the system’s efficacy, all of whom had prior

experience with robots or VR systems but none with our system. The

user study followed procedures approved under the Haptic Intelligence

framework agreement from the Max Planck Ethics Council (protocol

F028A).

� Condition 1: The human and the robot control the 3-dimensional

position of the end-effector, and the robot takes care of the 3-

dimensional orientation of the gripper, i.e.,

∆q = W−1J†
posvuser (5.7)

where J†
pos ∈ R7×3 and vuser ∈ R3

� Condition 2: Only the human controls both the 3-dimensional

position and the 3-dimensional orientation of the end-effector, i.e.,

∆q = IJ†
posevuser (5.8)

where W−1 = I, J†
pose ∈ R7×6 and vuser ∈ R6

108 5 — Augmenting Human Policies Using Riemannian Metrics for Shared Control

� Condition 3: The human and the robot together control the 3-

dimensional position and the 3-dimensional orientation of the

end-effector, i.e.,

∆q = W−1J†vuser (5.9)

where J†
pose ∈ R7×6 and vuser ∈ R6

For condition 1, the human user’s command vuser was computed as

the difference between the commanded position and the current position

of the end-effector. For conditions 2 and 3, the human user’s command

vuser was computed as the pose difference including the orientation

represented as 3-dimensional Euler angles.

The condition was considered a within-subjects factor, as each subject

experienced all conditions. The order of the conditions was randomized

across all participants and each participant was randomly assigned to

one of the orders.

The study began with the participants providing their consent and

completing a pre-session questionnaire. The study consisted of three

sessions, one per condition, during which the participant performed ten

rounds of reach-and-grab tasks for each hand using the teleoperation

system. Participants had time to adjust to the new condition before

starting the data collection. Upon completion of the session, they com-

pleted the NASA Task Load Index (NASA-TLX) workload assessment

questionnaires and questionnaires inspired by [25] and [98]:

(Q1) I felt in control,

5.6 — Teleoperation System Design 109

(Q2) The robot did what I wanted,

(Q3) I was able to accomplish the tasks quickly,

(Q4) The robot and I collaborated well together,

(Q5) The assistance from the robot was useful in accomplishing the task,

(Q6) The robot’s actions were reasonable,

(Q7) The robot was responsive to me,

(Q8) The robot was trustworthy,

(Q9) If I were going to teleoperate a robotic arm, I would like to use the

system.

Each session consisted of 10 reach-and-grab tasks with a randomized

starting configuration and a random object orientation. The random

environment set was pre-defined before the study, and the participants

used the same set but in a different order for each condition. For each

round, the participants started by matching their virtual end-effector’s

pose to the given start pose. The participants started the round by

clicking on a button on the hand controller and finished by clicking on

another button when they believed the robot could successfully grab

the object. User commands were given to the robot by moving and

turning the hand controls in the roll/pitch/yaw direction.

After the user study, we asked the participants to rank their preferred

control methods.

110 5 — Augmenting Human Policies Using Riemannian Metrics for Shared Control

5.7 Results

The results were mixed between the NoAssist and the 6-dimensional

constrained modes, each with four votes as their most preferred control

method, with the rest of the participants voting for the 3-dimensional

constrained mode. Participants who favored the NoAssist mode re-

ported that it was more straightforward when controlling the gripper

orientation. The robot gripper did not comply with their instructions

when using other modes. They showed, on average, low effort and

frustration levels for their preferred method on the NASA-TLX ques-

tionnaires and high scores for custom questionnaires which indicate

more control authority such as “I felt in control” or “The robot did

what I wanted”. On the other hand, participants who favored the

6-dimensional constrained mode also showed on average the lowest

frustration levels when using the mode and high scores for questions

such as “The robot and I collaborated well together” and “The robot’s

actions were acceptable”, but still gave positive scores for “I felt in

control”. This suggests that participants viewed the shared control as

tolerable and reasonable.

Participants who favored the 3-dimensional shared control reported

low frustration and high performance on the NASA-TLX questionnaires.

They also showed high ratings for the custom questionnaire “I was able

to accomplish the tasks quickly” and low levels of temporal demand,

suggesting that they could finish the task naturally without being

hurried or rushed.

5.7 — Results 111

© 2023 IEEE

M
en

ta
l

Phy
sic

al

Tem
po

ra
l

Per
fo

rm
an

ce

Effo
rt

Fr
us

tr
at

io
n

0

20

40

60

80

100
Subgroup Preference 3-dim Constrained

M
en

ta
l

Phy
sic

al

Tem
po

ra
l

Per
fo

rm
an

ce

Effo
rt

Fr
us

tr
at

io
n

Subgroup Preference NoAssist

M
en

ta
l

Phy
sic

al

Tem
po

ra
l

Per
fo

rm
an

ce

Effo
rt

Fr
us

tr
at

io
n

Subgroup Preference 6-dim Constrained

(a) NASA-TLX

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

0

2

4

6

8

10

Subgroup Preference 3-dim Constrained

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Subgroup Preference NoAssist

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Subgroup Preference 6-dim Constrained

(b) Custom questionnaires

Figure 5.5: Qualitative results of the user study

We present the total number of collisions for all participants, average

task duration, average path distance, and the distance between the

gripper center and the object when the grasp command was triggered.

There is little or no improvement in the quantitative results compared

to the NoAssist mode, as shown in Table 5.2. Using repeated-measures

analysis of variance (ANOVA) with the assistance mode as the factor,

the 3-dimensional constrained mode outperforms the other modes with

statistical significance (f(2, 20) = 4.89, p = 0.01) in task duration, but

no statistical significance is observed for the path distance (f(2, 20) =

112 5 — Augmenting Human Policies Using Riemannian Metrics for Shared Control

© 2023 IEEE

Mode Collision Duration (s) Path (m) Dist. at grasp (cm)

NoAssist 48 10.36 ± 7.86 0.66 ± 0.36 1.5 ± 2.5

3-dim 54 8.20 ± 3.56 0.68 ± 0.33 1.6 ± 2.2

6-dim 49 10.80 ± 6.38 0.63 ± 0.34 1.3 ± 2.2

Table 5.2: Quantitative results showing the total number of collisions,
average task duration, path length, and distance between
the gripper center and the object at grasp

0.60, p = 0.56) and the distance at grasp (f(2, 20) = 0.30, p = 0.74).

The main reason for the weak improvement in the user experiment is

likely due to the designed task being too short and easy to highlight

the advantages of the proposed methods. It was easy enough with the

NoAssist mode, which made it unnecessary to require assistance. Also,

we noticed that the 6-dimensional constrained mode was slower than

the other modes despite the same frame rate. The mode modified more

joints simultaneously to match the desired end-effector pose rather than

a few joints to only reach the desired end-effector position, which resulted

in a slower end-effector motion after normalizing the configuration in

Equation (5.3) to prevent sudden movements. Therefore, adjustments

should be made to adapt its speed to follow the human input commands.

5.8 Discussion

This chapter showed how the method described in Chapter 4 can be

extended to higher dimensional spaces. Although the method was

5.8 — Discussion 113

justified through mathematical derivation, no sufficient improvement

in the experiment with human subjects was found with the proposed

method. One possible reason is the lack of complexity in the experiment

design. The teleoperation task that the participants had to carry out

was not complicated enough to require such a system; thus it lacked

showing the benefits of the proposed system. Results from a user study

with a teleoperation task that requires longer times and more precision

would be necessary to justify the effectiveness of the proposed method.

As discussed in the previous chapter, a major limitation of the pro-

posed method is the necessity of an optimal controller that is capable of

generating optimal policies at each step. Controlling the robot in con-

figuration space greatly increases the complexity of sampling, making

it very difficult to obtain an optimal policy from regression by simply

sampling policy across the state space using data-driven methods. Col-

lecting policy samples from viable robot grasp trajectories covers only

part of the state space as seen in Figure 3.8, and the rest of the state

space includes infeasible joint configurations that may be inaccessible.

This makes it difficult for the robot to recover once it enters an unseen

state because the semi-autonomous agent starts to generate random

actions. Thus, a more intelligent method is required to represent the

semi-autonomous agent for a robust shared control system.

114 5 — Augmenting Human Policies Using Riemannian Metrics for Shared Control

5.9 Summary

The method presented in the previous chapter is extended using Rieman-

nian geometry to allow shared control in higher dimensional spaces. The

proposed method augments the human inputs using the Riemannian

metric to consider any cost terms or limitations the human operator

may overlook when operating a redundant manipulator, which enables

straightforward, low-workload teleoperation of redundant manipulators

for complex tasks. In addition, we described how the curvature of

the value function is approximated using finite differences. Although

simulated teleoperation experiments showed an improvement in teleop-

eration performance, the pilot user study with human subjects did not

show sufficient improvement in task performance.

5.9 — Summary 115

Chapter 6

Learning to Arbitrate Using

Disagreement Between Robot

Sub-policies

Many prior works consider it crucial to predict the user’s intent to

promote teleoperation efficiency [99], [100] and to actively determine

the level of assistance during teleoperation [20], [101]–[103]. However,

accurately inferring the user intent can be a challenging task and

unreliable predictions from an immature prediction system can aggravate

the teleoperation experience of the user. The chapter presents an

arbitration strategy for shared control teleoperation that is robust to

uncertain predictions of the user’s intent. While the previous chapters

provide a direct strategy to combine human and semi-autonomous

agents, this chapter proposes to dynamically tune the arbitration using

reinforcement learning.

117

The work presented in this chapter has been published in:

� Y. Oh, M. Toussaint, and J. Mainprice, ‘Learning to Arbitrate

Human and Robot Control Using Disagreement Between Sub-

Policies’, IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 5305–5311, 2021, © 2021 IEEE.

6.1 Introduction

Shared autonomy systems rely on two components:

1. prediction of user intent

2. blending user vs. autonomous controls

Trading off the autonomous robot and human control is usually

directly based on the confidence scores associated with the intent pre-

diction module. The chapter focuses on the blending strategy (i.e.,

arbitration), and leaves the prediction to other works.

The proposed approach (see Figure 6.1) learns an arbitration strategy

from user interaction. This is generally beneficial as different users may

have different preferences. Though tempting, it is difficult to learn an

arbitration function using supervised learning. Indeed, the introduction

of arbitration will inevitably shift the data distribution and hence the

behavior of the human in return.

Several works have studied the problem of using reinforcement learning

in shared control. However, to the best of our knowledge, no work has

focused on directly learning the arbitration module while leveraging the

118 6 — Learning to Arbitrate Using Disagreement Between Robot Sub-policies

© 2021 IEEE

Shared Control

System

scores 𝒃

𝒂𝑯

User Policy 𝜋𝐻

𝒂𝒈
𝑹

𝒂𝟏
𝑹

𝒂𝟐
𝑹

Robot Policy 𝜋𝑅

. . .

Sub-Policies

State 𝒔

. . .

Environment States

DDPG

𝒂𝑺

Shared Control

Policy

Actor

Critic

𝑠

𝑠
𝑎𝑆

𝑟

reward 𝒓

𝑸

. . .

Figure 6.1: Overview of the method using the Deep Deterministic Policy
Gradient algorithm

local geometry of the available sub-policies. This is desirable to limit

the sample complexity by 1) limiting the search space by using readily

available optimal actions, 2) making use of the disagreement between the

sub-policies and the shared actions to create implicit feedback, resulting

in dense rewards. To solve control tasks in the continuous action-space,

we apply the modern actor-critic algorithm Deep Deterministic Policy

Gradient (DDPG) [104].

The approach explicitly lowers the arbitration level at states when

the robot encounters decision points (i.e., intersections, moving past an

obstacle, deciding which object to grasp, shown in 6.2) to actively allow

the user to guide the robot rather than providing assistance when the

6.1 — Introduction 119

user’s intent is not clear. This enables precise execution of the user’s

intentions and provides the user with a sense of control over the robot.

Decision points are identified by observing the modality of the marginal

of the goal-conditioned sub-policies of the robot policy. Implicit feed-

back is then generated as a specific reward term in the reinforcement

learning training process to tune the level of assistance through user

interaction. Results of a simulated user study indicate that this method

can be used to effectively learn an arbitration policy that recognizes

when to hand over control authority while maintaining safe and accurate

teleoperation despite an imperfect goal prediction system.

The main contributions of the chapter are the following:

� A generic arbitration learning formulation, which we cast as an

actor-critic reinforcement learning problem

� Identification of “decision points” in the environment, where the

robot encounters multiple options

Figure 6.2: Examples of scenarios encountering a decision point where
one has to choose an option among multiple options

120 6 — Learning to Arbitrate Using Disagreement Between Robot Sub-policies

� A new reward term that allows maximizing human control au-

thority near decision points, by implicit feedback in continuous

domains

� Quantitative results in simulation that show the effectiveness of

the approach on a realistic robot manipulation scenario.

6.2 Related Work

Recent works have proposed the use of reinforcement learning for shared

control (RLSC) in different application contexts. In [105], SARSA, an

on-policy reinforcement learning algorithm, is used to produce an arbi-

tration weight for a walking-aid robot. The reward function penalizes

collision with the environment and promotes smoothness. In contrast

to our work, no implicit feedback from the user is considered.

The notion of implicit feedback as a reward term is introduced in [106]

to train an agent for an X-to-Text application. The error correction

input (i.e., backspace) from the user is used to penalize the wrong

actions taken by the autonomous agent.

Recently model-free RLSC methods have been proposed. The ear-

liest work is [70], where the agent maximizes a combination of task

performance and user feedback rewards using Deep-Q learning. In [107],

the approach is extended to maximize human-control authority us-

ing residual policy learning. While general, model-free approaches do

not consider the structure of the problem to maximize adaptability at

the cost of sample complexity. Instead, our approach investigates the

6.2 — Related Work 121

case where robot sub-policies are available. In our experiments, these

correspond to goal-conditioned policies, but they do not have to be.

Fernandez and Caarls [108] developed an RLSC agent to learn a haptic

policy using a type of implicit feedback, which compares the velocity

the user applies with the forces exerted. While similar to our approach,

their approach does not make use of an available optimal policy, which

is instead learned online.

The ideas developed in RLSC have been generalized in [95], which

formalizes a framework for assistive systems where the notion of human

empowerment is introduced to denote reward terms that promote the

operator’s control over the state. The reward function we propose

can be viewed as a type of empowerment proxy, specially designed to

account for sub-policies in continuous action spaces, which are common

in robot control problems.

6.3 Identifying Disagreement Between Sub-policies

6.3.1 Identifying Decision Points

We propose an arbitration strategy that allocates more control authority

when the robot needs to decide, that is, at a decision point. A decision

point is like a fork in the road, where one must choose an option

among multiple presented options that lead to different possibilities in

the subsequent results (examples in Figure 6.2). These points can be

explicit, such as physically encountering an intersection of different paths

or bypassing an obstacle, or implicit by having to make implications or

122 6 — Learning to Arbitrate Using Disagreement Between Robot Sub-policies

decisions from multiple prospective goals. In human-robot collaboration

tasks such as teleoperation, the human’s intent is inferred by estimating

the belief over the possible goals based on the robot’s past trajectory or

other cues given by the human. The true human’s intent only becomes

certain when the robot has passed the decision point. Rather than

relying on early intent predictions and providing assistance near a

decision point, the proposed method actively lets the user decide by

lowering the assistance level. As a result, the human has more control

authority and can direct the robot to their intended goal instead of

fighting against the robot that provides assistance toward a wrong goal.

The decision points are identified by observing how the sub-policies

diverge at a state. When the robot encounters an obstacle, the sub-

policies generate different actions to maneuver around the obstacle.

Similarly, when the robot is between two goal objects, the policies for

each object produce two divergent paths that the robot can take. This

property is expressed through observing its modality of the mixture

model π(a|s)

π(a|s) = Σg∈Gπ(a|s, g)p(g) (6.1)

which is a marginalized probability distribution of goal-conditioned

sub-policies π(a|s, g) with their probabilities p(g), for each goal g ∈ G.
If all sub-policies are similar, then the marginalized distribution would

be uni-modal. On the contrary, the marginalized distribution starts to

become multi-modal if the sub-policies are diverse. Hence, a decision

6.3 — Identifying Disagreement Between Sub-policies 123

point exists.

6.3.2 Directional Deterministic Policies on the Plane

We consider the case where the action is a directional vector, which is

a one-dimensional rotation angle along the axis that is surface normal

to the plane. Therefore, it is natural to express the sub-policy π(a|s, g)
as a von Mises distribution. The von Mises distribution is a continuous

probability distribution along a unit circle [109]:

f(θ| µ, κ) = 1

2πI0(κ)
expκ cos(θ−µ) (6.2)

for an angle θ. The mode µ and dispersion 1/κ are comparable to the

mean µ and the variance σ2 in the normal distribution. I0(κ) is the

modified Bessel function of order 0.

For each sub-policy, the mode µ points in the direction of the action

and the dispersion κ is associated with the goal prediction scores. The

marginal distribution π(a|s) becomes a Finite von Mises Mixture model

(FVMM).

The FVMM is unimodal when: 1) the robot is bypassing an obstacle

or 2) attempting a precise grasp. In the first case, all sub-policies are

co-directed (pointing in the same direction) to avoid collision with the

obstacle. In the second case, one sub-policy is predominant among

others due to a high confidence score. These situations indicate when the

robot should take more control authority and provide greater assistance

to enhance safety and improve efficiency.

124 6 — Learning to Arbitrate Using Disagreement Between Robot Sub-policies

The FVMM is multimodal when: 1) the robot is approaching an

obstacle or 2) in between multiple goal objects. The diverse sub-

policies lead to the resulting mixture distribution being multimodal

with multiple modes, each facing different directions. This indicates

the decision point, where the robot provides less assistance so that the

human user’s intentions are more conveyed in the robot’s actions.

6.3.3 Modality Estimation

Carreira-Perpinan [110] proves that there exists at most M modes in

any one-dimensional Gaussian mixture. To accurately determine the

number of modes, a solution is to use a hill-climbing algorithm or

gradient ascent to locate the local maxima in the distribution. These

methods, however, can be exhaustive to compute at each time step of

the teleoperation loop.

Rather, the distribution’s modality is approximated by sampling

several points from the FVMM and evaluating whether the value exceeds

a certain threshold. According to Carreira-Perpinan [110], “it is clear

that every centroid µm of the mixture must be near, if not coincident,

with one of the modes, since the modes are contained in the convex hull

of the centroids (as the mean is)”(p. 3), the modes are located near the

means of each distribution. Furthermore, due to the superposition of

the individual distributions, a unimodal mixture model exhibits higher

values at the modes. To estimate the multi-modality of the FVMM,

the value of the FVMM is sampled at the locations of each mean of the

6.3 — Identifying Disagreement Between Sub-policies 125

sub-policy, which is then compared to a threshold value.

6.4 Reinforcement Learning for Arbitration

The reinforcement learning problem is modeled as a Markov Decision

Process (MDP).

The state space S includes user action aH ∈ AH and autonomous

robot actions aR
g ∈ AR

g conditioned on a goal g ∈ G. The shared control

agent generates an arbitrated action u ∈ U , executed by the robot.

Each goal is associated with a confidence score or belief bg to describe

the likelihood of that goal matching the user’s intentions.

The shared control agent learns a policy µ(ut|st) that outputs ut,

given the following as input:

st = {x,aH ,aR
1 , . . . ,a

R
g , b1, . . . , bg}

where x denotes the environment states (e.g., gripper position, distance

to goals, distance to obstacle).

6.4.1 DDPG for Arbitration Learning

The Deep Deterministic Policy Gradient (DDPG) algorithm [104] is

used to train the policy µ, as shown in Algorithm 4. Adjustments are

made that distinguish the method from the vanilla DDPG, as discussed

in the following paragraphs.

126 6 — Learning to Arbitrate Using Disagreement Between Robot Sub-policies

Algorithm 4: DDPG for Arbitration Learning

Init:
Load actor µ(s|θµ), critic Q(s,a|θQ) weights θµ, θQ

Initialize target network µ′, Q′ with weights θµ′ ← θµ,θQ′ ← θQ

Initialize replay buffer R, episode buffer RE

for episode = 1,M do
for t = 1, T do

Observe user action aH
t

foreach g ∈ G do
Query sub-policy action aR

t,g

Compute score bt,g
Select action ut = µ(ut|θµ) +Nt

Execute ut, observe next state st+1, done dt
Store transition (st,ut, st+1, dt) in RE

if t > n then
Sample a random mini-batch of N transitions
(si,ui, ri, si+1, dt) from R

Update θµ,θµ′
, θQ,θQ′

Observe true goal g∗

foreach o ∈ RE do
Compute reward ri = Reward(o, g∗)
Store transition (si,ui, ri, si+1, dt) in R

Sub-policies A sub-policy refers to the autonomous robot policy

that is conditioned on a variable, i.e., a goal. Each robot action aR
g

is sampled according to the goal-conditioned sub-policy π(aR
g |x, g) for

each prospective goal g. π(aR
g |x, g) is considered as a deterministic

policy, as described in Section 3. That is,

aR
g = π(aR

g |x, g) (6.3)

6.4 — Reinforcement Learning for Arbitration 127

The score bg denotes how likely an object is the target goal, and it can

be described as the posterior probability given a history of observed

features ξS→U [20], [102].

bg = P (g|ξS→U) (6.4)

All sub-policies along with their scores are considered at every time

step when learning the arbitration, rather than using only the sub-policy

with the highest confidence score. This allows the arbitration network

to take into account the uncertainty of the intent prediction.

Hindsight goal labeling The true user’s intended goal g∗ is verified

to the robot once the episode is terminated. Therefore, the reward for

each state-action pair cannot be computed in real time without knowing

g∗. The state-action pairs are stored in a separate episode buffer RE

and their rewards are computed in hindsight once the episode terminates.

The off-policy characteristic of the DDPG algorithm enables the update

of the replay buffer R in a delayed manner, since the network samples

a mini-batch from R to update its parameters. The replay buffer R is

filled with transitions (si,ui, ri, si+1, dt) of n episodes before updating

the network to compensate for the delayed population of R.

6.4.2 Reward Function Using Disagreement

The goal is to learn an arbitrated, shared control policy using reinforce-

ment learning and commands from both the human and the robot. The

128 6 — Learning to Arbitrate Using Disagreement Between Robot Sub-policies

Algorithm 5: Reward Function

Input: st,a
S
t , g

∗

Output: rt
Function Reward(st,a

S
t , g

∗):
Compute renv
MeansM = {aR

t,g}Gg=1

Dispersions K = {bt,g}Gg=1

Construct FVMM π(at|st) = 1
2πI0(κ)

expκ cos(at−µ)

if multimodal then
ragree = −||aH

t − ut||2
else

ragree = −||aR
t,g∗ − ut||2

Rspeed = −
∣∣ ||aH

t || − ||ut||
∣∣

ragree ← ragree +Rspeed

rt ← ragree + renv
return rt

End Function

policy is learned by using implicit feedback in the form of a specific

reward term by reasoning on the FVMM modality, as opposed to the

user providing external feedback to adjust the level of assistance.

Algorithm 5 provides a summary of the overall algorithm used to

compute the reward. The reward function consists of a reward term

based on an agreement between the policies ragree and renv to punish

or reward certain acts taken when interacting with the environment.

R(s,a, s′) = ragree + renv (6.5)

The value Renv includes a negative reward when the robot collides

6.4 — Reinforcement Learning for Arbitration 129

with the obstacle (-10) or the workspace border (-2) and positive reward

when the gripper reaches the desired object (+10). By penalizing policy

differences between agents based on the FVMM’s modality, ragree serves

as a type of implicit feedback. When the FVMM is multimodal, ragree

is calculated using the negative Euclidean distance between the human

agent aH and the shared control action u. On the other hand, if the

FVMM is unimodal, ragree is determined by computing the negative

Euclidean distance between the arbitrated action u and the robot action

aR
g∗ . Note that aR

g∗ denotes the robot sub-policy for the actual aim g∗

that the user intended, which is available once the episode has concluded.

The actions are normalized before computing the L2 norm, and the

speed difference is deducted from ragree to adjust the policy’s speed to

that of the human operator (referred to as Rspeed).

6.5 Experiments

The section describes the experimental procedures for building the

neural network model and assess how well the trained shared control

agent performed. The following hypotheses were proposed:

� When the prediction is uncertain, the shared control agent can

learn to delegate more control authority to the human and provide

more assistance when the goal is clear.

� The custom reward function enables faster training convergence

as well as safe and accurate execution towards the user’s intended

goal.

130 6 — Learning to Arbitrate Using Disagreement Between Robot Sub-policies

© 2021 IEEE

Figure 6.3: The simulated environment and an example image of the
visual interface for human operators

Environment details We consider a teleoperation task in which the

human agent controls the robot manipulator’s end-effector to move

toward and grab the goal object while avoiding an obstacle. Figure 6.3

shows the Baxter robot and a table with objects that comprise the

simulated environment. The robot’s end-effector can be moved on a

parallel plane above the 50 cm × 50 cm table workspace. Graspable

cylinders (colored yellow and red) are placed toward the workspace’s

edge, while the obstacle is positioned at a random point near the center

(blue cylinder). The gripper position is initialized to begin behind the

obstacle to ensure that the obstacle is encountered when the robot arm

reaches for the desired object. The simulated environment does not

include physical collisions.

Obtaining robot sub-policies Each robot sub-policy π(aR
g |x, g) is

represented as a neural network policy, described in Section 3.3.1.

6.5 — Experiments 131

Predicting user intent We consider a simple intent inference model

proposed in Dragan and Srinivasa [20], based on distance and direction

towards the goal.

The score bg describes how likely the object is the goal object. Here,

we use the posterior probability value for each object. The goal object

g∗ can be chosen as the object that maximizes the posterior probability

given a history of observed features ξS→U [20], [102].

g∗ = argmax
g∈G

P (g|ξS→U) (6.6)

The P (g|ξS→U) is computed using the sum of squared velocity magni-

tudes as the cost function.

Simulating human users In the experiments, we simulate human

policies to replace the interaction with the reinforcement learning agent

during training and evaluation:

� Noisy user as a sub-optimal noisy policy

� Straight user executes a policy that points directly to the goal

� Biased user misperceives the goal location due to imprecise per-

ception (e.g., perceiving the goal closer than it actually is)

Both Noisy and Biased users make use of the policy described in

Section 3.3.1. The Noisy user adds random noise at each time step to

the policy, whereas the Biased user adds a random offset to the goal

position.

132 6 — Learning to Arbitrate Using Disagreement Between Robot Sub-policies

Training details The 1seven-dimensional input st to the DDPG

arbitration module contains the user command, all sub-policies and

their scores, and environmental states (end-effector position, distance

to objects, and distance to the obstacle). The input st, except the user

input, is processed through three dense layers of 32 units each, followed

by a layer of two units. This portion of the network is referred to as

the “head”.

The head is then concatenated with the user input and passed through

three dense layers of 16 units, producing a continuous two-dimensional

action that represents the arbitrated action. This is known as the actor

network.

The same head structure is used in the critic network. The output of

the critic network’s head is concatenated with the user action and the

arbitrated action and processed through two dense layers of 128 units.

The critic network’s output is a one-dimensional value that calculates

the expected return following an action at a given state.

6.6 Results

6.6.1 Effects of Penalizing Disagreement During Training

We compare the training outcomes between the proposed combined

reward function (ragree + renv) that also penalizes disagreement and

the environment reward function (renv) to see if the suggested reward

function promotes conversion during training. Figure 6.4a shows that

after 110 training episodes, the model with the combined reward function

6.6 — Results 133

had a high success rate (> 90%), whereas the success rate of the

model with only the environment reward function dropped over training.

Considering that our goal prediction model is imprecise, we can presume

that the model with the combined reward function has learned to

delegate more control authority to the user at decision points where

the FVMM is multimodal, as opposed to relying exclusively on the

prediction and guiding the robot toward the goal with the highest

confidence.

The combined reward model also demonstrated safe robot motion

throughout the episode by avoiding collisions with the environment.

The agent earns negative rewards at each time step if the robot col-

lides with the obstacle or goes out of bounds, and a positive reward

if it successfully reaches the correct goal object. When an episode is

completed without any collisions, the agent earns the maximum envi-

© 2021 IEEE

0 50 100 150 200
Training Episodes

0

20

40

60

80

100

A
ve
ra
ge

S
uc
ce
ss

R
at
e
(%

)

Training: Success Rate

Combined Reward

Env Reward

(a) Averaged success rate of episodes
throughout training

0 50 100 150 200
Training Episodes

−250

−200

−150

−100

−50

0

50

A
ve
ra
ge

E
nv
ir
on
m
en
t
R
ew

ar
ds

Training: Renv Comparison

Combined Reward

Env Reward

(b) Comparison of renv received
throughout training

Figure 6.4: Comparison between the policies with different reward func-
tions during training

134 6 — Learning to Arbitrate Using Disagreement Between Robot Sub-policies

© 2021 IEEE

0 20 40 60 80 100
Percent

0.0

0.5

1.0

1.5

2.0
L

2
N

or
m

Rollout: Env Reward Model

Simulated User

Predicted Sub-Policy

0 20 40 60 80 100
Episode Duration (%)

20

40

60

80

100

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

(a) Environment Reward Model

0 20 40 60 80 100
Percent

0.0

0.5

1.0

1.5

2.0

L
2

N
or

m

Rollout: Combined Reward Model

Simulated User

Predicted Sub-Policy

0 20 40 60 80 100
Episode Duration (%)

20

40

60

80

100

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

(b) Combined Reward Model

Figure 6.5: Performance of the trained models during an episode

ronment reward (max renv = 10). Figure 6.4 shows the performance of

the models with different reward functions during training. The metrics

are computed by averaging across 12 trained models and smoothed

using a moving average (window size: 10 episodes).

As seen in Figure 6.4b, the combined reward model agent remained

stable across the training episodes and eventually gained positive re-

wards after 170 episodes. This implies that the agent has learned to

allocate more control authority in areas where the FVMM is unimodal,

i.e., near the obstacle or while approaching a grasp.

6.6.2 Demonstration Using Trained Agents

Using the trained models, we demonstrated episodes using the trained

agents to observe their behavior. The agents with the highest cumulative

reward after training were selected and gathered demonstrations from

6.6 — Results 135

15 randomly generated episode settings.

Figure 6.5a and Figure 6.5b show demonstrations of the trained

models, each averaged across 15 random setting episodes. The figures

show the difference between the actions of the trained agents, the human

user, and the autonomous robot policy by comparing the Euclidean

norm (L2 norm). The blue line indicates the L2 norm between the

human action and the arbitrated action and the orange line indicates the

L2 norm between the action from the sub-policy with the highest score

(predicted sub-policy) and the arbitrated action. Here, the simulated

user with the straight policy was used to demonstrate the human user,

and the sub-policy with the highest goal confidence was used as the

robot policy.

As seen in Figure 6.5b, the trained agent with the combined reward

function flexibly assigns the control authority depending on the situation.

At the beginning of the episode (duration< 30%), the robot manipulator

approaches the first decision point, and the agent should decide which

way to get around the obstacle. The policy of the trained agent was

closer to the human policy despite the low prediction accuracy. In the

middle of the episode when the robot gripper must avoid colliding with

the obstacle (duration 40% ∼ 60%), the trained agent’s policy was closer

to the predicted sub-policy, indicating more robot assistance. Towards

the end of the episode (duration 60% ∼ 80%), the robot manipulator

approaches the second decision point for determining the target object.

The agent’s policy resembles the human policy, and the human acquires

more control authority. By the end of the episode, the agent’s policy

136 6 — Learning to Arbitrate Using Disagreement Between Robot Sub-policies

is closer to the predicted sub-policy, which makes grasping the object

easier.

The behavior was not shown in the demonstration with the envi-

ronment reward model. As seen in Figure 6.5a, the L2 norms for the

environment reward function agent were comparably higher than those

for the combination reward. The arbitrated policy was neither near to

the human nor the predicted sub-policy, indicating that it generated

policies that do not conform with both policies.

6.6.3 Comparison Between Different Simulated Users

Table 6.1 shows the results of demonstrations for all user modes based

on the learned policies: Noisy user with two different noise sizes, the

Straight user, and the Biased user. Direct control refers to operating

the robot without any assistance.

Although the combined reward policy did not result in the shortest

travel distance compared to other assistance methods, it did result

in more successful episodes and fewer collisions for all users than the

environment reward policy. A compromise in the travel distance would

have been required to safely avoid collision from a distance. When

compared to the direct control method, the improved success rate,

increased travel distance, and decreased number of collisions in the

Straight user proves that the combined reward policy curved the user’s

straight course to avoid collision. For the Noisy user, the success rate

and the number of collisions did not improve drastically since the Noisy

6.6 — Results 137

Table 6.1: Rollouts with simulated users over 15 episodes

User Assistance Success Travel Dist. Collisions
Mode Method (cm)

Noisy 0.5
Combined Reward 14/15 53.68 ± 3.17 0/15

Environment Reward 12/15 53.06 ± 2.64 2/15
Direct Control 14/15 59.12 ± 16.09 1/15

Noisy 1.0
Combined Reward 14/15 59.41 ± 18.70 0/15

Environment Reward 12/15 53.99 ± 4.06 2/15
Direct Control 14/15 71.16 ± 13.23 0/15

Straight
Combined Reward 13/15 51.63 ± 1.65 2/15

Environment Reward 10/15 54.02 ± 2.38 9/15
Direct Control 11/15 49.19 ± 2.17 7/15

Biased
Combined Reward 8/15 54.60 ± 11.81 0/15

Environment Reward 6/15 62.54 ± 21.46 1/15
Direct Control 3/15 65.27 ± 22.21 0/15

© 2021 IEEE

user policy is created based on optimized trajectories that guarantee a

successful grasp. However, the shorter travel distance in the combined

reward policy implies that the combined policy compensated for the

noise. The combined reward policy was advantageous for the Biased

user as well, as it corrected the imprecise user commands to grab

the target object. The results indicate that the ragree term in the

combined reward function leads to the successful learning of a policy

that appropriately supports the user in achieving the objective while

ensuring safety.

138 6 — Learning to Arbitrate Using Disagreement Between Robot Sub-policies

6.7 Discussion

As the arbitration policy was learned through interactions with simu-

lated human behaviors, it would be interesting to investigate how the

system reacts to actual humans. Further research can focus on whether

transfer learning is possible, i.e., training the agent with simulated be-

havior and then fine-tuning it with actual human interaction to reduce

the burden of collecting user interaction. The key is to find a strategy

that minimizes agent training with real human interaction data without

compromising system effectiveness. Also, it would be interesting to

study whether the arbitration agent can pick up on different behaviors

of the users, such as their adaptability to assistance, through interaction.

This would imply that the agent can be fine-tuned to provide suitable

assistance depending on the user’s reaction by calibrating the agent

using a few interactions with the actual user. Overall, this chapter

describes how to learn arbitrated policies directly through user interac-

tion in a continuous state space, and lays the groundwork for learning

arbitration directly through data-driven methods.

6.8 Summary

A framework is proposed to learn an arbitrated policy for shared control

using DDPG that can dynamically hand over control authority to the

user at a decision point. The decision points are defined by looking at

the diversity of the sub-policies and constructing a Finite von Mises

6.8 — Summary 139

Mixture model to observe the modality of the distribution. Experiment

results indicate that incorporating implicit feedback allows the agent to

effectively learn when to hand over control authority while maintaining

safe and accurate teleoperation despite an imperfect goal prediction

system.

140 6 — Learning to Arbitrate Using Disagreement Between Robot Sub-policies

Chapter 7

A System for Traded Control

Teleoperation Combining

Manipulation and Perception

In the previous chapters, I discussed various methods of blending

control between the human and the autonomous agent to provide a

single robot command. With shared control, human-intended actions

can be optimally executed at the servo level, because human control is

modified by autonomous agent control at each step. However, for fast

and intuitive teleoperation, it may not be necessary to directly mix the

two controls at each time step.

Assuming a perfect world where intelligent systems can better predict

user intent and robots are capable of planning robust motions that

match their intent, human operators may not need to provide continuous

commands but let the autonomous agent take action when the intent is

141

clear. Instead of sharing control at the servo-level, this concept moves

toward task-level arbitration where the human and the autonomous

agents share tasks at a higher level. In this chapter, the approach is

based on traded control, in which the operator specifies only the target

object to initiate the subtask and the robot executes the task using

autonomous motion planning.

The work presented in this chapter has been published in:

� Y. Oh, T. Schäfer, B. Rüther, M. Toussaint, and J. Mainprice, ‘A

System for Traded Control Teleoperation of Manipulation Tasks

Using Intent Prediction from Hand Gestures’, IEEE International

Symposium on Robot and Human Interactive Communication

(RO-MAN), 2021, © 2021 IEEE.

7.1 Introduction

When using interfaces such as hand gesture controllers, direct teleopera-

tion is often nearly impossible as the mismatch between the kinematics

of the robot and hand gestures is too large to produce fluid movements.

In addition, the noisy output from the hand gesture makes it difficult

to perform precise manipulation. However, motion-tracking controllers

such as hand gesture controllers can provide unrestricted and intuitive

motion control.

In this chapter, we demonstrate a complete traded control teleop-

eration implementation, where the user specifies the task objectives

and executes the motion autonomously. Contrary to the previous ap-

142
7 — A System for Traded Control Teleoperation Combining Manipulation and

Perception

© 2021 IEEE

User InterfaceSimulated Robot Environment

in Rai

Object Localization

Grasp Intent Prediction

RGB-D Image

Mask R-CNN + DBOT Tracker

Object Positions

𝑝𝑜𝑏𝑗𝑠

Hand FeaturesGrasp Intention

𝑜𝑏𝑗, 𝑑𝑖𝑟
Hand

Features

Object ID

Grab Direction

Classification Model

Figure 7.1: Overview of the traded control teleoperation system

proaches, it does not blend between direct and autonomous control at

each time step but allows the robot to take control when the intent is

clear.

Hand gestures are used to specify the goal objects for a sequential

manipulation task; the robot then autonomously generates a grasping

or a retrieving motion using trajectory optimization. The perception

module identifies the objects present in the robot workspace and the

intent prediction module which object the user likely wants to grasp.

It relies on the model-based tracker to accurately track the 6-dim

pose of the objects and makes use of a state-of-the-art learning-based

object detection and segmentation method, to initialize the tracker by

automatically detecting objects in the scene. Goal objects are identified

7.1 — Introduction 143

from user hand gestures using a trained multi-layer perceptron classifier.

The goal of this chapter is not to present novel components but to

present a teleoperation system that makes use of existing models, for

practical applications.

We present and evaluate all components needed for the system: 1)

a perception pipeline capable of identifying and tracking objects, 2)

an intent estimation system that can identify which objects to grab

and how, 3) a motion planning system that can produce accurate

manipulation motion according to the human operator’s intent.

We assess the accuracy of the different modules on dedicated tasks.

The performance of the object localization and tracking module is

evaluated on several objects in simulation. The accuracy of the grasp

intent prediction module is tested using a dataset of trajectories. Finally,

we present results using our grasp intent inference module, where various

users are simulated by modifying user-demonstrated trajectories that

were collected using the hand gesture controller.

The main contributions of the chapter are summarized as the following:

� A teleoperation system capable of traded control using hand

gestures through prediction of the operator’s intent

� A solution for automatic initialization of an existing object track-

ing module using Mask R-CNN [112]

� Simulated user experiment assessing the capacity of our grasp

intent prediction module to perform teleoperation of pick and

place motions

144
7 — A System for Traded Control Teleoperation Combining Manipulation and

Perception

7.2 Related Work

7.2.1 Traded Control in Teleoperation

Traded control is a discrete switching mechanism between high-level

robot autonomy and low-level control depending on predefined circum-

stances. It is also referred to as control switching, as the system allocates

all-or-none assistance rather than a blended spectrum between user and

robot controls. The operator initiates a sub-task or behavior for the

robot, and the robot performs the sub-task autonomously while the

operator monitors the robot [64], [66]. Bohren et al. [113] showed that

intent-based traded control can improve teleoperation performance and

alleviate difficulties in high-latency teleoperation scenarios.

7.2.2 Hand Gesture Recognition for Robot Control

The Leap Motion controller (Ultra Leap, https://www.ultraleap.com/)

is a consumer-grade, marker-less motion capture sensor that tracks

hand gestures and finger movements up to 200 Hz. Weichert et al. [114]

showed that its accuracy is below 2.5 mm; however, the controller

shows inconsistent performance due to its limited sensory range [115].

Nevertheless, its simplicity and its capability to track the hand in 6-Dof

are the reasons for its application.

Prior works used deep learning to improve the accuracy of gesture

recognition, such as support vector machines (SVM) and random

forests [116], or neural networks using radial basis functions (RBF) [117].

Similar to [118], we propose to train a gesture classifier (i.e., which

7.2 — Related Work 145

object is intended) for hand motion recognition rather than mapping

hand features directly to robot configurations. Achieving higher accu-

racy is easier on classification than regression (i.e., predicting accurate

positions) tasks, which is one of the justifications for our traded control

approach.

7.2.3 Depth Based Object Tracking (DBOT)

We utilize the implementation of depth-based object tracking methods

described in [119] (“particle tracker”) and [120] (“Gaussian tracker”) to

acquire the 6-dimensional pose of objects during teleoperation. Com-

pared to recent learning-based methods such as PoseCNN [121] and

DenseFusion [122], the methods take a model-based approach.

The particle tracker in DBOT tracks objects by computing a posterior

distribution over the object using a dynamic Bayesian network for

inference [119], while the Gaussian tracker improves the performance

of a Gaussian filter using a robustification method as well as reducing

the filter’s computational complexity [120]. This approach has the

advantage of being robust without requiring any extra tuning or pre-

training.

7.3 Manipulation: Hand-Gesture-Based Robot

Control

The user issues commands by performing reach-and-grasp gestures with

the right-hand as if they were naturally reaching and grasping an object

146
7 — A System for Traded Control Teleoperation Combining Manipulation and

Perception

in front of themselves, while viewing the environment through the

robot’s perspective. We use the Leap Motion controller to capture the

hand movement at a frame rate of 180 Hz and access its features, such

as the palm position, hand direction vector, the normal vector to the

palm, and roll/pitch/yaw rotation of the hand, through ROS topics.

The gripping positions vary substantially since the user is actually

reaching for an invisible object. Figure 7.2 shows actual grasp positions

from a single participant who repeatedly performed reach-and-grasp

trajectories for a single object, where the blue dot and red dots in the

figure represent the user’s attempts to grab the side and top of the

cylinder, respectively.

As it is evident that using real user commands (i.e., position com-

mands) for accurate teleoperation would be challenging, we overcome

this issue by adopting a traded control paradigm and utilizing the user’s

intent instead of their actual controls.

7.3.1 Traded Control

Instead of using a continuous shared control paradigm, we propose

a traded control strategy to overcome the inconsistent hand-tracking

performance. This additionally alleviates the issues caused by the

physical mismatch between the human arm and the robot manipulator.

After detecting the graspable objects in the environment using the

method described in Section 7.4, we infer the user’s intent with respect

to the target object and the grasping direction. The robot executes the

7.3 — Manipulation: Hand-Gesture-Based Robot Control 147

reach-and-grasp motion as soon as the intent is identified. The user

retains control authority over the task by deciding in which order to

grab the set of objects. In other words, the human is responsible for

making high-level decisions while the robot handles low-level control

and motion planning.

7.3.2 Grasp Intent Prediction

We use supervised learning to train a multi-layer perceptron (fully

connected dense layers) to classify the target object and the grasp

direction. As seen in Figure 7.3, we assume a fixed number of items

(m=3) and two possible grasp directions (top grasp/right grasp, n=2).

© 2021 IEEE

Figure 7.2: Varied grasp positions when virtually grasping the cylinder
using the Leap Motion sensor

148
7 — A System for Traded Control Teleoperation Combining Manipulation and

Perception

© 2021 IEEE

(a) Disk top grab (b) Cylinder right grab

Figure 7.3: User interface for reach and grab motion in a setting with
three objects

The input of the network consists of eight features: distances from hand

to objects, the x-component of the hand position, the x-component of

the hand direction, the x, y-components for the palm normal vector,

and the y-rotation of the hand. The model generates class labels and

consists of three dense layers of 64 hidden units attached to two separate

layers of two units.

7.4 Perception: Object Tracking Pipeline

The object tracking pipeline automatically tracks the 6-dimensional

pose of rigid objects. We utilize the already existing object tracking

library DBOT [119], [120] but provide a solution to avoid manual

initialization, which is required when using the libraries.

The pipeline includes two components: object tracker initializer

7.4 — Perception: Object Tracking Pipeline 149

© 2021 IEEE

RAI simulation/
RaiEnv DBOT

point cloud
& image

pose
 feedback

DBOT initalizer

initial pose

point cloud
& image

rai_baxter package

label

environment
config:
robot, objects and
poses

Figure 7.4: Overview of the object tracking pipeline and an image of
the simulated robot environment

(DBOT initializer) and the object tracker (DBOT tracker), as shown

in Figure 7.4. The DBOT initializer obtains camera images of the

surrounding environment and predicts both the initial pose (position +

orientation) and semantic label of observed objects. Given the initial

pose and label of the object, the DBOT tracker constantly tracks the

object. The following sections provide detailed descriptions of each

component.

7.4.1 DBOT Initializer: Automated Object Tracker

Initialization

The depth-based object tracking library (DBOT) follows the general

model of a Bayes filter, which predicts the current object pose given the

previous pose based on observations. However, the authors stated that

the initialization of the tracking was outside the scope of their study.

150
7 — A System for Traded Control Teleoperation Combining Manipulation and

Perception

In practice, the initialization is done manually by specifying the object

pose using an interactive marker.

We utilize the state-of-the-art instance segmentation method Mask

R-CNN [112] to automate the initialization procedure by identifying

the masks and labels. The label identifies the object for tracking while

the mask is used to segment the depth image and extract depth pixels

corresponding to the object.

After segmenting the depth pixels, the 6-dimensional pose of the object

is computed using point cloud registration. The matching mesh model

of the object is loaded using the labels from the Mask R-CNN, and

points are sampled from the mesh to create a reference point cloud for

registration. We perform rigid registration using the coherent-point-drift

(CPD) algorithm [123] and obtain a 4×4 homogeneous transformation

matrix. This estimated pose is referred to as mesh pose.

7.4.2 DBOT Tracker

Once the DBOT trackers have been successfully configured, the refined

poses can be subscribed to execute precise object manipulation, as

shown in Figure 7.5. We tested the DBOT up to seven objects per CPU

core at 10 Hz. By utilizing GPU, the performance can be enhanced

further.

7.4 — Perception: Object Tracking Pipeline 151

© 2021 IEEE

(a) Tracking a real environment (b) Tracking simulated objects

Figure 7.5: Demonstration of the DBOT tracker

7.5 Experiments

7.5.1 Simulated Robot Environment

We create a simulated environment using the RAI1 interface. RAI

provides a physics-simulated environment as well as a robot motion

optimization solver using k-Order Motion Optimization (KOMO) [124]

The interface offers simple and straightforward approaches for defining

cost objectives for robot motion optimization problems, by listing the

optimization objects that represent cost terms or in/equality constraints.

As shown in Figure 7.6, the environment consists of a Baxter robot

with graspable items on a table. A virtual depth camera is added to

the Baxter’s head display to provide first-person view images.

1https://github.com/MarcToussaint/rai

152
7 — A System for Traded Control Teleoperation Combining Manipulation and

Perception

https://github.com/MarcToussaint/rai

7.5.2 Transfer Learning on a Synthetic Dataset

We tune the Mask R-CNN using transfer learning to detect custom

objects that are used in the simulation. A dataset of images that include

the following objects is gathered to train the network: cube, sphere,

toy, teapot, cup, jug, and bowl. The objects are shown in Figure 7.7.

Simulated images lack noise, shadows, inconsistent lighting conditions,

and varying textures. The images are modified to guarantee that the

network can generalize to real or noisy images. Modifications include

flipping, affine transformation, light contrast, blur/sharpening, and

color adjustments. Additionally, the dataset is collected with random

robot arm joint positions included in the image, so that the Mask R-

CNN network can learn to ignore the appearance of robot arms during

© 2021 IEEE

Figure 7.6: Simulated robot environment using RAI

7.5 — Experiments 153

© 2021 IEEE

(a) cube (b) sphere (c) lego toy

(d) teapot (e) cup (f) jug (g) bowl

Figure 7.7: Objects used to train Mask R-CNN

object detection.

The detection rate of the retrained Mask R-CNN network ranged

between 92% to 95%, with an error rate between 0.16% to 0.74%

based on different training settings, such as the dataset size (107 to 50K

samples) and the number of epochs (10 to 80 epochs). The definitions of

the detection rate and error rate are shown in Equations (7.1) and (7.2)

detection rate =
of successfully classified objects

of objects
(7.1)

error rate =
of wrongly classified objects

of classified objects
(7.2)

The model used to evaluate the pose initialization results displayed

154
7 — A System for Traded Control Teleoperation Combining Manipulation and

Perception

in Table 7.1 was trained using 40 epochs of unmodified images. Out

of 4798 sample images that were excluded during the training of the

network, the detection rate of the retrained Mask R-CNN was 92.73%,

with an error rate of 0.16%.

The influence of each network parameter was found to be minor

when comparing the outcomes of the entire initialization pipeline. As

long as the detected label is accurate, a decent mask is sufficient for

computing the initial pose. Thus, we do not present specific results for

each configuration.

7.5.3 Accuracy of the Initial Object Pose Estimation

Using the average distance (ADD) metric proposed in [125], we evaluate

the accuracy of the estimated pose. The average distance computes

the mean of the pairwise distances of all model points x between two

3D models with ground truth pose (translation t, rotation R) and

estimated pose (translation t̂, rotation R̂):

ADD =
1

m

∑
x∈M

||(Rx+ t)− (R̂x+ t̂)|| (7.3)

where m is the number of 3D model points and M is the set. For

symmetric objects, the average distance is calculated using the closest

point distance:

ADD-S =
1

m

∑
x1∈M

min
x2∈M

||(Rx1 + t)− (R̂x2 + t̂)|| (7.4)

7.5 — Experiments 155

© 2021 IEEE

0.00 0.02 0.04 0.06 0.08 0.10

Threshold (m)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
u
ra
cy

add-s all 7 objects

mask pose

mesh pose

particle pose 1s

gaussian pose 1s

particle pose 3s

gaussian pose 3s

Figure 7.8: Accuracy-threshold curve of the average ADD-S for seven
objects with a maximum threshold of 10 cm

Following recent work [121], [122], we report the area under the curve

(AUC) by computing the pose accuracy while increasing the threshold

up to 0.1 m. We also measure the proportion of AUC below a 2 cm

threshold, which is the lowest tolerance for robot grasping.

Table 7.1 and Figure 7.8 show the accuracy of object tracking ap-

proaches, including the method described in Section 7.4.1. In Table 7.1,

the upper table shows the accuracy of the position and the orientation.

The lower table shows the accuracy computed using the area under the

ADD-S curve (AUC) and the <2cm metric. The mask pose (indicated

as mask in Table 7.1) refers to the center position of the masked point

156
7 — A System for Traded Control Teleoperation Combining Manipulation and

Perception

cloud, and it is used as a baseline when comparing translation to other

methods. However, the mask pose does not have rotation, which ex-

plains the poor AUC. The mesh pose, which was calculated using rigid

registration, is slightly more precise in translation than the mask pose,

but it is sufficient to provide an initial rotation estimate for DBOT

initialization.

7.5.4 Accuracy of the DBOT Tracker

We report the accuracy of each estimated pose after obtaining the initial

mesh pose and after the DBOT tracker has been set up. Using both

the particle filter and Gaussian filter methods, the DBOT object pose

is measured at one and three seconds after startup while the object

is stationary. As shown in Table 7.1, all DBOT trackers outperform

the mesh pose, which indicates that the tracker was able to function

successfully after receiving an initial pose from mesh pose.

In reality, the particle tracker corrected the pose faster and more

accurately than the Gaussian tracker. It is likely that the Gaussian

tracker is less resistant to inaccurate initialization. The authors of

DBOT [120] stated that the particle tracker is slightly more robust,

while the Gaussian tracker is more accurate. The Gaussian tracker is

tolerant to distortions in the input point cloud and occluded settings in

which the particle tracker is incapable of tracking.

As shown in Table 7.2, we compare the tracking accuracy of our objects

to comparable objects in the YCB dataset [126]. The mean AUC of the

7.5 — Experiments 157

©
2
0
2
1
IE

E
E

m
ask

m
esh

p
article

1s
G
au

ssian
1s

p
article

3
s

G
a
u
ssia

n
3
s

t
t

R
t

R
t

R
t

R
t

R

cu
b
e

89.1
90.3

96.0
97.4

97.0
93.9

97.0
9
7
.7

9
7
.2

9
0
.7

9
6
.9

sp
h
ere

76.1
79.2

9
7
.0

97.9
9
7
.0

97.5
9
7
.0

97.9
9
7
.0

9
8
.0

9
7
.0

lego
toy

66.7
80.2

90.2
8
5
.0

92.2
84.8

92.3
84.9

9
2
.4

8
3
.0

9
2
.3

teap
ot

77.8
80.0

90.7
91.7

93.3
86.5

92.8
9
4
.0

9
5
.2

9
1
.2

9
4
.8

cu
p

90.9
90.2

95.0
94.0

95.9
85.1

95.6
9
4
.3

9
6
.2

7
7
.1

9
5
.7

ju
g

69.8
77.3

90.2
93.6

92.4
74.8

92.8
9
5
.1

9
5
.3

8
9
.9

9
6
.2

b
ow

l
69.3

70.4
84.4

81.0
87.7

8
6
.6

84.9
81.1

8
8
.7

8
0
.8

8
5
.6

M
E
A
N

77.1
81.1

91.9
91.5

93.7
87.0

93.2
9
2
.1

9
4
.6

8
7
.2

9
4
.1

m
esh

p
article

1s
G
au

ssian
1
s

p
article

3
s

G
a
u
ssia

n
3
s

A
U
C

<
2cm

A
U
C

<
2cm

A
U
C

<
2cm

A
U
C

<
2
cm

A
U
C

<
2
cm

cu
b
e

93.8
100.0

96.8
100.0

95.6
99.7

9
7
.0

1
0
0
.0

9
4
.3

9
8
.8

sp
h
ere

88.6
100.0

9
6
.1

100.0
96.0

100.0
9
6
.1

1
0
0
.0

9
6
.1

1
0
0
.0

lego
toy

90.8
99.3

93.3
98.1

9
3
.4

96.7
9
3
.4

9
7
.3

9
2
.3

8
8
.4

tea
p
ot

88.2
100.0

93.7
100.0

91.3
94.0

9
5
.2

1
0
0
.0

9
3
.8

9
5
.2

cu
p

92.9
100.0

95.1
99.0

92.0
92.7

9
5
.3

9
8
.9

8
7
.8

8
6
.4

ju
g

84.6
98.8

91.8
99.6

86.6
82.7

9
5
.2

9
9
.6

9
3
.3

9
4
.5

b
ow

l
80.4

78.7
83.6

80.2
8
5
.5

78.1
82.9

8
0
.2

8
3
.9

7
5
.0

M
E
A
N

88
.5

9
6
.7

92.9
9
6
.7

91.5
92.0

9
3
.6

9
6
.6

9
1
.6

9
1
.2

T
ab

le
7.1:

A
ccu

racy
of

th
e
ob

ject
track

in
g
p
ip
elin

e

158
7 — A System for Traded Control Teleoperation Combining Manipulation and

Perception

© 2021 IEEE

PoseCNN DenseFusion Own results
[121] [122] own mesh particle 3s

AUC <2cm AUC <2cm class AUC <2cm AUC <2cm

pitcher base 97.8 100.0 97.1 100.0 jug 84.6 98.8 95.2 99.6
bowl 81.0 54.9 88.2 98.8 bowl 80.4 78.7 82.9 80.2
mug 95.0 99.8 97.1 100.0 cup 92.9 100.0 95.3 98.9
wood block 87.6 80.2 89.7 94.6 cube 93.8 100.0 97.0 100.0

MEAN 90.35 83.73 93.03 98.35 87.93 94.38 92.6 94.68

Table 7.2: Tracking accuracy on similar objects in comparison to
PoseCNN and DenseFusion

particle tracker at 3 seconds after initialization is 92.6%, which is slightly

lower than DenseFusion [122] but higher than PoseCNN [121]. A direct

comparison with these previous works is not entirely fair because of the

different datasets used for the evaluation and the use of simulated images.

Nevertheless, it shows the feasibility of the proposed object-tracking

pipeline and its potential application in robot manipulation.

7.5.5 Accuracy of the Grasp Intent Prediction

We obtained the reach-and-grasp motion trajectories of two individuals

(one male and one female). A total of 350 trajectories were collected

in four different environment settings, with each trajectory lasting

approximately two to five seconds. Users started with their right hand

over the Leap Motion controller and reached forward to mimic grasping

an object in a particular direction (right or top) while looking at the

display interface. The start and end of the trajectories were set by

pressing a key on the keyboard.

Figure 7.9 illustrates the average accuracy of prediction for 18 grasping

7.5 — Experiments 159

© 2021 IEEE

0 20 40 60 80 100

Episode Percentage (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
cc
u
ra
cy

Object Prediction

Direction Prediction

Figure 7.9: Prediction accuracy of the grasp intention prediction aver-
aged throughout the episode

episodes in a single environment using trajectories that were excluded

during training. The target object prediction and the grab direction

prediction had an accuracy of 79.4% and 77.4%, respectively. The accu-

racy of the target prediction reached perfect accuracy before reaching

70% of the episode, and the accuracy of the direction prediction reached

an average of 89% at the end of the episode. The low accuracy during

the first twenty percent of the episode was caused by the delay between

the beginning of the recording and the beginning of the movement.

Further optimization of the hyperparameters and the neural network

structure can be performed to improve prediction outcomes. The use

of recurrent neural networks may also improve the accuracy of early

predictions.

160
7 — A System for Traded Control Teleoperation Combining Manipulation and

Perception

7.5.6 Experiment Setup for a Teleoperation Task

To evaluate the efficacy of the system, we designed a manipulation-based

teleoperation task. We anticipate that the quicker the target object is

identified, the sooner the robot can begin motion planning, resulting in

faster task completion in a traded control scenario. We conducted a

simulated user study by modeling different human user behaviors:

� Normal user consists of human user trajectory data

� Noisy user is simulated by adding Gaussian noise at each time

step to the normal user

� Biased user is simulated by adding a constant random offset to

the normal user trajectory.

The Biased user simulates the human user with poor perception, such

as perceiving the object to be closer than it is. The difference between

a Biased user and a Noisy user is that the noise in the Biased user

stays constant throughout the trajectory, but the noise in the Noisy

user varies with each time step.

The task is to conduct a series of picking motions to retrieve three

objects off a table. The user selects the target object and demonstrates

the picking motion. By combining the framework from Section 7.4, we

presume that all object poses are known. The robot has to determine

the order in which the objects are collected. An object is identified as

the goal object when the robot predicts the same target for t consecutive

time steps (t = 80) and the first 300 time steps are discarded to lower

7.5 — Experiments 161

the prediction error at the beginning of the episode.

7.5.7 Evaluation of Different Simulated Users

To demonstrate that early prediction increases teleoperation efficiency,

we refer to Early mode as the control mode in which, during user

demonstration, the robot begins to plan its grasping trajectory toward

the predicted target object. This mode is compared to Late mode,

where the motion planning does not begin until the user completes the

user demonstration.

The teleoperation system was evaluated based on the following criteria:

time required to predict the goal object (a.k.a. time until execution),

episode duration, and the accuracy of prediction (goal prediction, di-

rection prediction) when the robot identified a goal. The time until

execution is the sum of the time required for the robot to initiate the

grasp motion for the three objects and the episode duration represents

the total time for picking all three objects, including the time it took for

motion planning. Table 7.3 displays the average results for 12 episodes.

Despite a reduction in prediction accuracy, early motion planning and

execution based on goal prediction resulted in reduced episode duration,

approximately five seconds faster for all user modes. The Noisy and

Biased users required more time for the robot to confidently identify a

goal. Also, except for the direction prediction for the Biased user in

Early mode, the accuracy of predictions did not decrease throughout

user modes. This indicates that the prediction model was robust enough

162
7 — A System for Traded Control Teleoperation Combining Manipulation and

Perception

© 2021 IEEE

Control User Mode
Criteria Mode Normal Noisy Biased MEAN

Time until Early 9.6 ± 1.1 10.3 ± 0.9 10.1 ± 1.3 10.0
Execution (s) Late 14.6 ± 1.4 14.7 ± 1.2 14.1 ± 1.5 14.5

Episode Early 33.1 ± 5.6 32.5 ± 3.7 33.9 ± 5.3 33.2
Duration (s) Late 38.6 ± 5.1 39.2 ± 3.1 38.1 ± 5.4 38.6

Goal Early 0.86 ± 0.49 0.89 ± 0.47 0.89 ± 0.62 0.88
Prediction (%) Late 0.97 ± 0.28 0.97 ± 0.28 0.89 ± 0.62 0.94

Direction Early 0.94 ± 0.37 0.97 ± 0.28 0.89 ± 0.62 0.93
Prediction (%) Late 1.00 ± 0.00 0.97 ± 0.28 0.97 ± 0.28 0.98

Table 7.3: Teleoperation results for different simulated users and control
modes

to withstand the noisy conditions. Overall, the results demonstrate

that the suggested traded control system can enhance teleoperation

performance while utilizing noisy hand motions to control the robot.

7.6 Summary

Traded control can be a useful method to improve teleoperation perfor-

mance and handle high-latency teleoperation situations. To successfully

implement such a paradigm, the following schemes are a prerequisite

for the autonomous system. First, an accurate prediction of the hu-

man operator’s intent to avoid conflicts between the human operator

and the operating robot. Second, a comprehensive understanding of

its surrounding environment to interpret and associate the operator’s

7.6 — Summary 163

intentions with tasks.

In this chapter, I present ideas to satisfy the prerequisites to enable

traded control. I presented a teleoperation system that utilizes intuitive

human-grabbing hand gestures to perform sequential manipulation tasks.

The operator’s intention is acquired using a prediction model from hand

gestures. This allows us to mitigate the issues that arise when using

hand gestures, where the control signals are noisy and inconsistent.

The robot autonomously generates a grasping or retrieving motion

using trajectory optimization as soon as the robot identifies the user’s

intention. To obtain an understanding of the robot’s environment, the

combination of Mask R-CNN [112] and the model-based object tracker

DBOT [120] is used to locate objects of interest and initialize the

tracker. Results showed the successful mask detection and initial pose

estimation through the proposed method and showed the feasibility

of its application in robot manipulation. The simulated user study

indicated that using intent prediction brought down the overall task

execution time.

164
7 — A System for Traded Control Teleoperation Combining Manipulation and

Perception

Chapter 8

Conclusion

The dissertation explored how intelligent systems and human opera-

tors can share control to ensure accurate and safe execution, yet allow

the human operator to maintain a sense of control during teleopera-

tion. In the chapters, I investigated different methods for arbitrating

the commands of human and semi-autonomous agents, specifically for

reaching tasks, in which both agents are providing control inputs to the

system at each time step.

Throughout the dissertation, the semi-autonomous agent was assumed

to be able to autonomously accomplish the task, when the goal is

known. I first described in Chapter 3 how to represent a robust semi-

autonomous agent that generates optimal policies at any given state.

Building on top of this global optimal policy of the semi-autonomous

agent, I investigated how we can extract information about the robot’s

surrounding environment by observing the semi-autonomous agent’s

policies and use this to modify the human operator’s commands.

165

Chapters 4 and 5 focused on representing a metric that expresses the

divergence of the semi-autonomous agent’s policy within a close range.

The metric emerged from the formulation of an optimization problem to

find the policy that favors the human operator while remaining within

a trust region to prevent the arbitrated policy from deviating too much

from the autonomous policy. This metric is then used to augment the

human operator’s policy, to prevent the robot from collisions or assist

the robot near a goal state. The positive results from Chapter 4 showed

the effectiveness and the potential of the proposed method in a low-

dimensional setting, where both the human and the semi-autonomous

agent operated in the same workspace. Chapter 5 generalized the

framework to higher dimensional spaces and settings using Riemannian

geometry considering the kinematic differences between the human

operator and the robot.

While Chapters 4 and 5 provide methods for combining human and

semi-autonomous agents policies, Chapter 6 provides a framework for

tuning the level of arbitration interactively. By utilizing the goal-

conditioned semi-autonomous agent policies, states that possess un-

certainty can be identified. These states are referred to as decision

points, and the human operator’s commands are prioritized in these

states to clear out any ambiguity rather than relying on unstable in-

tent prediction. This prevents fighting against the autonomous system

during teleoperation caused by incorrect prediction of the user intent.

Here, the reinforcement learning approach is used to learn a model

that outputs an arbitrated action given both agents’ actions, through

166 8 — Conclusion

interaction with the system. The experiments showed that the method

learned to effectively lower its arbitration in the decision points while

avoiding collisions and helping to reach the goal. Although the chapter

only showed results from simulated users, it is expected that the method

can be further refined through interactions with a real human operator.

Chapter 7 showed an example of a complete teleoperation setup

including a perception and manipulation pipeline. In this chapter, a

traded control framework was implemented to enable reach-and-grasp

teleoperation tasks using hand gestures, allowing the human operator

to give commands as if performing the task in first-person perspective.

From the operator’s hand gesture commands, the high-level commands

were extracted such as the intent and the grasping order rather than

the exact signals of the hand motion. The intention was interpreted

by a trained neural network classifier. The classifier identified the

grasp direction and the object. For the perception, the combination of

Mask-CNN and the depth-based object tracker enabled the automatic

initialization of the object tracker to identify the goal space. The

experiment results showed successful mask detection and initial pose

estimation using the perception pipeline and showed the feasibility of

its application in robot manipulation. Altogether, the simulation study

showed that the traded control system reduced the total task execution

time while using noisy hand gestures of the human operator.

7.6 — Summary 167

8.1 Future Work

The possible future directions are laid out in this section.

User-specific Adaptability during Arbitration When teleoper-

ating a robot, some operators prefer to retain control over the perfor-

mance. Others are more accepting of assistance from the autonomy.

In addition, their preference toward assistance and their teleoperation

skills tend to vary through interaction. Previous works such as Nikoladis

et al. [98] have addressed the issue of human-robot mutual adaptation

during short teleoperation experiments in a discrete state setting. It

would be interesting to extend the ideas proposed in Chapter 6 where

an arbitration agent is trained through interaction using reinforcement

learning, to experiment with whether different arbitration strategies

could be fine-tuned by interactions with users with different preferences.

Arbitration in Variable Autonomy A variable autonomy system

refers to a system where the degree of robot assistance can be dynam-

ically adjusted within the Levels of Autonomy [127], [128], ranging

from complete direct control to full autonomy [129]. It is also referred

to as adjustable autonomy [130], [131]. In contrast to shared control

where the arbitration is happening at the servo-level, variable autonomy

combines both agents at the task or mission level depending on the task

and situation. Designing such interfaces that can seamlessly leverage

human and robot controls by fluently switching between autonomy

168 8 — Conclusion

levels (i.e., using data-driven approaches) can enhance the effectiveness

of the teleoperation interface. Specifically, further work is required to

answer the following research questions:

� When does the operator require a shift in the level? Is it task-

dependent, interface-dependent, or user-dependent?

� What are the implicit/explicit reactions towards the changed

autonomy? How does the operator react to unwanted autonomy?

The Future of Teleoperation The enhancement of teleoperation

through balancing between human intelligence and robot autonomy can

enable robots to perform a range of manipulation tasks, from simple

pick-and-place operations to precision-requiring and heavy-duty tasks

across different domains such as disaster relief, outer space, underwater

operations, semi-autonomous driving, assistive robots, medical robots,

and so much more. Often teleoperation is regarded as an intermediate

solution toward developing fully autonomous robots and human inter-

vention is required to control the robot [132]–[134]. Does this mean

that one day, when intelligent robots achieve full autonomy, there will

be no need to teleoperate robots?

Teleoperation and shared control is not solely an interim solution

before full robot autonomy is realized. Even when systems achieve full

autonomy, human supervision (teleoperation) will still be required to

maintain control of the intelligent systems at any moment. In addition,

as robots work with humans in close proximity, safer teleoperation

8.1 — Future Work 169

methods may be needed to ensure that the robot does not harm nearby

humans. Thus, many exciting research topics remain in developing

intelligent shared control methods for teleoperation.

170 8 — Conclusion

Bibliography

[1] C.G. Atkeson, P.B. Benzun, N. Banerjee, D. Berenson, C.P. Bove,

X. Cui, M. DeDonato, R. Du, S. Feng, P. Franklin, et al., ‘What

Happened at the DARPA Robotics Challenge Finals’, The DARPA

Robotics Challenge Finals: Humanoid Robots to the Rescue, pp. 667–

684, 2018 (cit. on pp. 25, 32).

[2] M.T. Dzindolet, L.G. Pierce, H. P. Beck, L.A. Dawe, ‘The Perceived

Utility of Human and Automated Aids in a Visual Detection Task’,

Human factors, vol. 44, no. 1, pp. 79–94, 2002 (cit. on p. 26).

[3] S. Lichiardopol, ‘A Survey on Teleoperation’, 2007 (cit. on p. 31).

[4] J. Cui, S. Tosunoglu, R. Roberts, C. Moore, D.W. Repperger, ‘A

Review of Teleoperation System Control’, in Proceedings of the Florida

Conference on Recent Advances in Robotics, Citeseer, 2003, pp. 1–12

(cit. on p. 31).

[5] T. Fong, C. Thorpe, ‘Vehicle Teleoperation Interfaces’, Autonomous

Robots, vol. 11, pp. 9–18, 2001 (cit. on pp. 31, 32).

[6] W. Conklin, S. Tosunoglu, ‘Conceptual Design of a Universal Bilateral

Manual Controller’, in Proceedings of the Florida Conference on Recent

Advances in Robotics, 1996, pp. 187–191 (cit. on p. 32).

171

[7] W. S. Kim, A.K. Bejczy, ‘Demonstration of a High-Fidelity Predic-

tive/Preview Display Technique for Telerobotic Servicing in Space’,

IEEE Transactions on Robotics and Automation, vol. 9, no. 5, pp. 698–

702, 1993 (cit. on p. 32).

[8] P. Batsomboon, S. Tosunoglu, ‘A Review of Teleoperation and Tele-

sensation System’, in Proceedings of the Florida Conference on Recent

Advanced in Robotics, 1996 (cit. on p. 32).

[9] R.R. Murphy, Disaster Robotics. MIT press, 2014 (cit. on p. 32).

[10] H.A. Yanco, A. Norton, W. Ober, D. Shane, A. Skinner, J. Vice,

‘Analysis of Human-Robot Interaction at the DARPA Robotics Chal-

lenge Trials’, Journal of Field Robotics, vol. 32, no. 3, pp. 420–444,

2015 (cit. on p. 32).

[11] P. Griffiths, R.B. Gillespie, ‘Shared Control Between Human and

Machine: Haptic Display of Automation During Manual Control of

Vehicle Heading’, in Proceedings of the International Symposium on

Haptic Interfaces for Virtual Environment and Teleoperator Systems,

IEEE, 2004, pp. 358–366 (cit. on p. 33).

[12] F. Flemisch, M. Heesen, J. Kelsch, J. Schindler, C. Preusche, J. Dit-

trich, ‘Shared and Cooperative Movement Control of Intelligent Tech-

nical Systems: Sketch of the Design Space of Haptic-Multimodal

Coupling Between Operator, Co-Automation, Base System and En-

vironment’, IFAC Proceedings Volumes, vol. 43, no. 13, pp. 304–309,

2010 (cit. on p. 33).

[13] F. Flemisch, D. Abbink, M. Itoh, M.-P. Pacaux-Lemoine, G. Weßel,

‘Shared Control is the Sharp End of Cooperation: Towards a Common

Framework of Joint Action, Shared Control and Human Machine

172 Bibliography

Cooperation’, IFAC-PapersOnLine, vol. 49, no. 19, pp. 72–77, 2016

(cit. on pp. 33, 71).

[14] S. Musić, S. Hirche, ‘Control Sharing in Human-Robot Team Interac-

tion’, Annual Reviews in Control, vol. 44, pp. 342–354, 2017 (cit. on

p. 33).

[15] W. Wang, X. Na, D. Cao, J. Gong, J. Xi, Y. Xing, F.-Y. Wang,

‘Decision-Making in Driver-Automation Shared Control: A Review

and Perspectives’, IEEE/CAA Journal of Automatica Sinica, vol. 7,

no. 5, pp. 1289–1307, 2020 (cit. on pp. 33, 54).

[16] A. Franchi, C. Secchi, M. Ryll, H.H. Bulthoff, P.R. Giordano, ‘Shared

Control: Balancing Autonomy and Human Assistance with a Group

of Quadrotor UAVs’, IEEE Robotics & Automation Magazine, vol. 19,

no. 3, pp. 57–68, 2012 (cit. on p. 33).

[17] E. J. Rodŕıguez-Seda, J. J. Troy, C.A. Erignac, P. Murray, D.M. Sti-

panovic, M.W. Spong, ‘Bilateral Teleoperation of Multiple Mobile

Agents: Coordinated Motion and Collision Avoidance’, IEEE Trans-

actions on Control Systems Technology, vol. 18, no. 4, pp. 984–992,

2009 (cit. on p. 33).

[18] J. Tan, C. Xu, L. Li, F.-Y. Wang, D. Cao, L. Li, ‘Guidance Control

for parallel parking Tasks’, IEEE/CAA Journal of Automatica Sinica,

vol. 7, no. 1, pp. 301–306, 2019 (cit. on p. 33).

[19] M. Selvaggio, M. Cognetti, S. Nikolaidis, S. Ivaldi, B. Siciliano, ‘Au-

tonomy in Physical Human-Robot Interaction: A Brief Survey’, IEEE

Robotics and Automation Letters, vol. 6, no. 4, pp. 7989–7996, 2021

(cit. on p. 34).

Bibliography 173

[20] A.D. Dragan, S. S. Srinivasa, ‘A Policy-Blending Formalism for Shared

Control’, The International Journal of Robotics Research, vol. 32, no. 7,

pp. 790–805, 2013 (cit. on pp. 34, 35, 68, 71, 81, 117, 128, 132).

[21] D. Gopinath, S. Jain, B.D. Argall, ‘Human-in-the-Loop Optimization

of Shared Autonomy in Assistive Robotics’, IEEE Robotics and Au-

tomation Letters, vol. 2, no. 1, pp. 247–254, 2016 (cit. on pp. 34, 35,

71).

[22] C. Schultz, S. Gaurav, M. Monfort, L. Zhang, B.D. Ziebart, ‘Goal-

Predictive Robotic Teleoperation from Noisy Sensors’, IEEE Interna-

tional Conference on Robotics and Automation (ICRA), 2017 (cit. on

pp. 34, 35, 92).

[23] A.A. Allaban, V. Dimitrov, T. Padır, ‘A Blended Human-Robot

Shared Control Framework to Handle Drift and Latency’, in IEEE

International Symposium on Safety, Security, and Rescue Robotics

(SSRR), 2019 (cit. on p. 35).

[24] D.-J. Kim, R. Hazlett-Knudsen, H. Culver-Godfrey, G. Rucks, T. Cun-

ningham, D. Portee, J. Bricout, Z. Wang, A. Behal, ‘How Auton-

omy impacts Performance and Satisfaction: Results from a Study

with Spinal Cord Injured Subjects Using an Assistive Robot’, IEEE

Transactions on Systems, Man, and Cybernetics-Part A: Systems and

Humans, vol. 42, no. 1, pp. 2–14, 2011 (cit. on pp. 35, 68).

[25] S. Javdani, H. Admoni, S. Pellegrinelli, S. S. Srinivasa, J.A. Bagnell,

‘Shared Autonomy via Hindsight Optimization for Teleoperation and

Teaming’, The International Journal of Robotics Research, vol. 37,

no. 7, pp. 717–742, 2018 (cit. on pp. 35, 68, 72, 109).

174 Bibliography

[26] D. Lee, H. Seo, M.W. Jung, ‘Neural Basis of Reinforcement Learning

and Decision Making’, Annual Review of Neuroscience, vol. 35, pp. 287–

308, 2012 (cit. on p. 35).

[27] E. Todorov, ‘Optimality Principles in Sensorimotor Control’, Nature

Neuroscience, vol. 7, no. 9, pp. 907–915, 2004 (cit. on p. 35).

[28] D. Hadfield-Menell, S. J. Russell, P. Abbeel, A. Dragan, ‘Cooperative

Inverse Reinforcement Learning’, Advances in Neural Information

Processing Systems, vol. 29, 2016 (cit. on p. 36).

[29] R. S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction.

MIT press, 2018 (cit. on p. 36).

[30] E. Todorov et al., ‘Optimal Control Theory’, Bayesian Brain: Proba-

bilistic Approaches to Neural Coding, pp. 268–298, 2006 (cit. on pp. 38,

53).

[31] F. Bullo, A.D. Lewis, ‘Geometric Control of Mechanical Systems’,

2005 (cit. on pp. 39, 41, 62, 93).

[32] J.M. Lee, Introduction to Riemannian Manifolds. Springer, 2018, vol. 2

(cit. on p. 39).

[33] ——, Smooth Manifolds. Springer, 2012 (cit. on p. 39).

[34] P.D. Neilson, M.D. Neilson, R.T. Bye, ‘A Riemannian Geometry

Theory of Human Movement: The Geodesic Synergy Hypothesis’,

Human Movement Science, vol. 44, pp. 42–72, 2015 (cit. on p. 41).

[35] H. Klein, N. Jaquier, A. Meixner, T. Asfour, ‘A Riemannian Take on

Human Motion Analysis and Retargeting’, IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 5210–5217,

2022 (cit. on p. 41).

Bibliography 175

[36] S. Arimoto, M. Yoshida, M. Sekimoto, K. Tahara, ‘A Riemannian-

Geometry Approach for Control of Robotic Systems under Con-

straints’, SICE Journal of Control, Measurement, and System In-

tegration, vol. 2, no. 2, pp. 107–116, 2009 (cit. on p. 41).

[37] N. Ratliff, M. Toussaint, S. Schaal, ‘Understanding the Geometry of

Workspace Obstacles in Motion Optimization’, IEEE International

Conference on Robotics and Automation (ICRA), 2015 (cit. on pp. 42,

93, 98).

[38] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, ‘Differential Kinematics

and Statics’, Robotics: Modelling, Planning and Control, pp. 105–160,

2009 (cit. on p. 43).

[39] M. Toussaint, ‘Lecture Notes: Some Notes on Gradient Descent’, 2012.

[Online]. Available: https://www.user.tu-berlin.de/mtoussai/

notes/gradientDescent.pdf (cit. on pp. 43, 44).

[40] S.-I. Amari, S. C. Douglas, ‘Why Natural Gradient?’, in Proceedings

of the 1998 IEEE International Conference on Acoustics, Speech and

Signal Processing, ICASSP’98 (Cat. No. 98CH36181), vol. 2, 1998,

pp. 1213–1216 (cit. on pp. 43, 72).

[41] S.-I. Amari, ‘Natural Gradient Works Efficiently in Learning’, Neural

Computation, vol. 10, no. 2, pp. 251–276, 1998 (cit. on pp. 44, 72).

[42] A. Ly, M. Marsman, J. Verhagen, R. P. Grasman, E.-J. Wagenmakers,

‘A Tutorial on Fisher Information’, Journal of Mathematical Psychol-

ogy, vol. 80, pp. 40–55, 2017 (cit. on p. 45).

176 Bibliography

https://www.user.tu-berlin.de/mtoussai/notes/gradientDescent.pdf
https://www.user.tu-berlin.de/mtoussai/notes/gradientDescent.pdf

[43] A. Kristiadi. (Mar. 2018). Natural Gradient Descent, [Online]. Avail-

able: https://wiseodd.github.io/techblog/2018/03/14/natural-

gradient/ (cit. on p. 45).

[44] J. Martens, ‘New Insights and Perspectives on the Natural Gradient

Method’, arXiv preprint arXiv:1412.1193, 2014 (cit. on pp. 46, 77).

[45] Y. Oh, S.-W. Wu, M. Toussaint, J. Mainprice, ‘Natural Gradient

Shared Control’, IEEE International Symposium on Robot and Human

Interactive Communication (RO-MAN), pp. 1223–1229, 2020 (cit. on

pp. 48, 67, 94, 95).

[46] Y. Oh, M. Toussaint, J. Mainprice, ‘Learning to Arbitrate Human and

Robot Control Using Disagreement Between Sub-Policies’, IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),

pp. 5305–5311, 2021 (cit. on pp. 48, 118).

[47] Y. Oh, J.-C. Passy, J. Mainprice, ‘Augmenting Human Policies Using

Riemannian Metrics for Human-Robot Shared Control’, IEEE Inter-

national Symposium on Robot and Human Interactive Communication

(RO-MAN), 2023 (cit. on pp. 48, 89).

[48] M. Toussaint, ‘Introduction to Robotics’, 2016. [Online]. Available:

https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-

Robotics.pdf (cit. on p. 52).

[49] R. Tedrake, Underactuated Robotics, Algorithms for Walking, Running,

Swimming, Flying, and Manipulation. 2023. [Online]. Available: https:

//underactuated.csail.mit.edu (cit. on p. 53).

[50] Y. Zhou, C. Barnes, J. Lu, J. Yang, H. Li, ‘On the Continuity of

Rotation Representations in Neural Networks’, in Proceedings of the

Bibliography 177

https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/
https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/
https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-Robotics.pdf
https://www.user.tu-berlin.de/mtoussai/teaching/Lecture-Robotics.pdf
https://underactuated.csail.mit.edu
https://underactuated.csail.mit.edu

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2019, pp. 5745–5753 (cit. on pp. 56, 61).

[51] J. Mainprice, N. Ratliff, S. Schaal, ‘Warping the Workspace Geometry

with Electric Potentials for Motion Optimization of Manipulation

Tasks’, IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2016 (cit. on p. 56).

[52] B.D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A. Bag-

nell, M. Hebert, A.K. Dey, S. Srinivasa, ‘Planning-Based Prediction

for Pedestrians’, IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 3931–3936, 2009 (cit. on pp. 57, 74).

[53] K.M. Kitani, B.D. Ziebart, J. A. Bagnell, M. Hebert, ‘Activity Fore-

casting’, in European Conference on Computer Vision, Springer, 2012,

pp. 201–214 (cit. on p. 57).

[54] C.G. Atkeson, A.W. Moore, S. Schaal, ‘Locally Weighted Learning’,

in Lazy learning, Springer, 1997, pp. 11–73 (cit. on p. 59).

[55] G. Wang, F. Manhardt, F. Tombari, X. Ji, ‘GDR-Net: Geometry-

Guided Direct Regression Network for Monocular 6D Object Pose

Estimation’, in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2021, pp. 16 611–16 621 (cit. on p. 61).

[56] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, P. Abbeel, ‘Over-

coming Exploration in Reinforcement Learning with Demonstrations’,

IEEE International Conference on Robotics and Automation (ICRA),

pp. 6292–6299, 2018 (cit. on p. 66).

[57] L. Marzari, A. Pore, D. Dall’Alba, G. Aragon-Camarasa, A. Farinelli,

P. Fiorini, ‘Towards Hierarchical Task Decomposition Using Deep

178 Bibliography

Reinforcement Learning for Pick and Place Subtasks’, in 2021 20th

International Conference on Advanced Robotics (ICAR), IEEE, 2021,

pp. 640–645 (cit. on p. 66).

[58] S. Nasiriany, H. Liu, Y. Zhu, ‘Augmenting Reinforcement Learning

with Behavior Primitives for Diverse Manipulation Tasks’, IEEE In-

ternational Conference on Robotics and Automation (ICRA), pp. 7477–

7484, 2022 (cit. on p. 66).

[59] A. Goil, M. Derry, B.D. Argall, ‘Using Machine Learning to Blend

Human and Robot Controls for Assisted Wheelchair Navigation’, in

2013 IEEE 13th International Conference on Rehabilitation Robotics

(ICORR), IEEE, 2013, pp. 1–6 (cit. on pp. 68, 71).

[60] S. J. Anderson, J.M. Walker, K. Iagnemma, ‘Experimental Perfor-

mance Analysis of a Homotopy-Based Shared Autonomy Framework’,

IEEE Transactions on Human-Machine Systems, vol. 44, no. 2, pp. 190–

199, 2014 (cit. on pp. 68, 71).

[61] M. Gao, J. Oberländer, T. Schamm, J.M. Zöllner, ‘Contextual Task-

aware Shared Autonomy for Assistive Mobile Robot Teleoperation’,

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 3311–3318, 2014 (cit. on pp. 68, 71).

[62] A. Broad, T. Murphey, B. Argall, ‘Operation and Imitation under

Safety-Aware Shared Control’, in Workshop on the Algorithmic Foun-

dations of Robotics, 2018 (cit. on pp. 68, 71).

[63] A. Broad, T. Murphey, B. Argall, ‘Highly Parallelized Data-Driven

MPC for Minimal Intervention Shared Control’, in Robotics: Science

and Systems, 2019 (cit. on pp. 68, 72).

Bibliography 179

[64] J. Kofman, X. Wu, T. J. Luu, S. Verma, ‘Teleoperation of a Robot

Manipulator Using a Vision-Based Human-Robot Interface’, IEEE

Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1206–1219,

2005 (cit. on pp. 71, 145).

[65] C. Smith, M. Bratt, H. I. Christensen, ‘Teleoperation for a Ball-

Catching Task with Significant Dynamics’, Neural Networks, vol. 21,

no. 4, pp. 604–620, 2008 (cit. on p. 71).

[66] C. Phillips-Grafflin, H.B. Suay, J. Mainprice, N. Alunni, D. Lofaro,

D. Berenson, S. Chernova, R.W. Lindeman, P. Oh, ‘From Autonomy

to Cooperative Traded Control of Humanoid Manipulation Tasks with

Unreliable Communication’, Journal of Intelligent & Robotic Systems,

vol. 82, no. 3-4, pp. 341–361, 2016 (cit. on pp. 71, 145).

[67] K. Muelling, A. Venkatraman, J.-S. Valois, J. Downey, J. Weiss,

S. Javdani, M. Hebert, A.B. Schwartz, J. L. Collinger, J. A. Bagnell,

‘Autonomy Infused Teleoperation with Application to BCI Manipula-

tion’, arXiv preprint arXiv:1503.05451, 2015 (cit. on p. 71).

[68] S. Jain, B. Argall, ‘An Approach for Online User Customization of

Shared Autonomy for Intelligent Assistive Devices’, in Proceedings of

the IEEE International Conference on Robotics and Automomation,

Stockholm, Sweden, 2016 (cit. on p. 71).

[69] Y. Oh, M. Toussaint, J. Mainprice, ‘Learning Arbitration for Shared

Autonomy by Hindsight Data Aggregation’, in Robotics: Science and

Systems, Workshop on AI and Its Alternatives for Shared Autonomy

in Assistive and Collaborative Robotics, 2019 (cit. on p. 71).

180 Bibliography

[70] S. Reddy, A.D. Dragan, S. Levine, ‘Shared Autonomy via Deep

Reinforcement Learning’, arXiv preprint arXiv:1802.01744, 2018 (cit.

on pp. 72, 102, 121).

[71] S.M. Kakade, ‘A Natural Policy Gradient’, in Advances in Neural

Information Processing Systems, 2002, pp. 1531–1538 (cit. on p. 73).

[72] J. Peters, S. Schaal, ‘Natural Actor-Critic’, Neurocomputing, vol. 71,

no. 7-9, pp. 1180–1190, 2008 (cit. on p. 73).

[73] J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, ‘Trust

Region Policy Optimization’, in International Conference on Machine

Learning, 2015, pp. 1889–1897 (cit. on p. 73).

[74] T. Koolen, J. Smith, G. Thomas, S. Bertrand, J. Carff, N. Mertins,

D. Stephen, P. Abeles, J. Englsberger, S. Mccrory, et al., ‘Summary of

Team IHMC’s Virtual Robotics Challenge Entry’, IEEE-RAS Inter-

national Conference on Humanoid Robots (Humanoids), pp. 307–314,

2013 (cit. on p. 90).

[75] M. DeDonato, V. Dimitrov, R. Du, R. Giovacchini, K. Knoedler,

X. Long, F. Polido, M.A. Gennert, T. Padır, S. Feng, et al., ‘Human-

in-the-Loop Control of a Humanoid Robot for Disaster Response: A

Report from the DARPA Robotics Challenge Trials’, Journal of Field

Robotics, vol. 32, no. 2, pp. 275–292, 2015 (cit. on p. 90).

[76] C. Yang, X. Wang, L. Cheng, H. Ma, ‘Neural-Learning-Based Teler-

obot Control with Guaranteed Performance’, IEEE Transactions on

Cybernetics, vol. 47, no. 10, pp. 3148–3159, 2016 (cit. on pp. 90, 92).

Bibliography 181

[77] H. Wang, X.P. Liu, ‘Adaptive Shared Control for a Novel Mobile

Assistive Robot’, IEEE/ASME Transactions on Mechatronics, vol. 19,

no. 6, pp. 1725–1736, 2014 (cit. on p. 92).

[78] M. Laghi, M. Maimeri, M. Marchand, C. Leparoux, M. Catalano,

A. Ajoudani, A. Bicchi, ‘Shared-Autonomy Control for Intuitive Bi-

manual Tele-Manipulation’, IEEE-RAS International Conference on

Humanoid Robots (Humanoids), 2018 (cit. on p. 92).

[79] T.-C. Lin, A.U. Krishnan, Z. Li, ‘Shared Autonomous Interface for

Reducing Physical Effort in Robot Teleoperation via Human Motion

Mapping’, IEEE International Conference on Robotics and Automation

(ICRA), pp. 9157–9163, 2020 (cit. on p. 92).

[80] X. Gao, J. Silvério, E. Pignat, S. Calinon, M. Li, X. Xiao, ‘Motion

Mappings for Continuous Bilateral Teleoperation’, IEEE Robotics and

Automation Letters, vol. 6, no. 3, pp. 5048–5055, 2021 (cit. on p. 92).

[81] X. Wang, C. Yang, H. Ma, L. Cheng, ‘Shared Control for Teleoperation

Enhanced by Autonomous Obstacle Avoidance of Robot Manipulator’,

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 4575–4580, 2015 (cit. on p. 92).

[82] B. Xi, S. Wang, X. Ye, Y. Cai, T. Lu, R. Wang, ‘A Robotic Shared

Control Teleoperation Method Based on Learning from Demonstra-

tions’, International Journal of Advanced Robotic Systems, vol. 16,

no. 4, p. 1 729 881 419 857 428, 2019 (cit. on p. 92).

[83] K.H. Khokar, R. Alqasemi, S. Sarkar, R.V. Dubey, ‘Human Motion

Intention Based Scaled Teleoperation for Orientation Assistance in

Preshaping for Grasping’, in 2013 IEEE 13th International Conference

182 Bibliography

on Rehabilitation Robotics (ICORR), IEEE, 2013, pp. 1–6 (cit. on

p. 92).

[84] J. J. Abbott, P. Marayong, A.M. Okamura, ‘Haptic Virtual Fixtures

for Robot-Assisted Manipulation’, in Robotics Research: Results of

the 12th International Symposium ISRR, Springer, 2007, pp. 49–64

(cit. on p. 92).

[85] M. J. Zeestraten, I. Havoutis, S. Calinon, ‘Programming by Demon-

stration for Shared Control with an Application in Teleoperation’,

IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1848–1855,

2018 (cit. on pp. 92, 93).

[86] M. Ewerton, G. Maeda, D. Koert, Z. Kolev, M. Takahashi, J. Peters,

‘Reinforcement Learning of Trajectory Distributions: Applications in

Assisted Teleoperation and Motion Planning’, IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pp. 4294–

4300, 2019 (cit. on p. 92).

[87] D.A. Abbink, M. Mulder, E. R. Boer, ‘Haptic Shared Control: Smoothly

Shifting Control Authority?’, Cognition, Technology & Work, vol. 14,

pp. 19–28, 2012 (cit. on p. 92).

[88] G. Li, F. Caponetto, X. Wu, I. Sarakoglou, N.G. Tsagarakis, ‘A

Haptic Shared Autonomy with Partial Orientation Regulation for DoF

Deficiency in Remote Side’, IEEE Transactions on Haptics, vol. 16,

no. 1, pp. 86–95, 2023 (cit. on p. 92).

[89] S. Calinon, ‘Gaussians on Riemannian Manifolds: Applications for

Robot Learning and Adaptive Control’, IEEE Robotics & Automation

Magazine, vol. 27, no. 2, pp. 33–45, 2020 (cit. on p. 93).

Bibliography 183

[90] M. Toussaint, ‘Newton Methods for K-Order Markov Constrained

Motion Problems’, arXiv preprint arXiv:1407.0414, 2014 (cit. on pp. 93,

98, 101).

[91] J. Mainprice, R. Hayne, D. Berenson, ‘Goal Set Inverse Optimal

Control and Iterative Replanning for Predicting Human Reaching

Motions in Shared Workspaces’, IEEE Transactions on Robotics,

vol. 32, no. 4, pp. 897–908, 2016 (cit. on pp. 93, 98).

[92] B. Ti, A. Razmjoo, Y. Gao, J. Zhao, S. Calinon, ‘A Geometric Optimal

Control Approach for Imitation and Generalization of Manipulation

Skills’, Robotics and Autonomous Systems, vol. 164, p. 104 413, 2023

(cit. on p. 93).

[93] J. E. Dennis Jr, R. B. Schnabel, Numerical Methods for Unconstrained

Optimization and Nonlinear Equations. SIAM, 1996 (cit. on p. 100).

[94] Franka Emika, Franka Emika Panda Robot, https://www.franka.de/,

Accessed: 2024–02-22 (cit. on p. 101).

[95] Y. Du, S. Tiomkin, E. Kiciman, D. Polani, P. Abbeel, A. Dragan,

‘AvE: Assistance via Empowerment’, Neural Information Processing

Systems (NeurIPS), 2020 (cit. on pp. 102, 122).

[96] Facebook Technologies & Lenovo, Oculus Rift S, https://www.oculus.

com/rift-s/, Accessed: 2024–02-22 (cit. on p. 107).

[97] Unity, Unity Robotics Hub, https://github.com/Unity-Technologies/

Unity-Robotics-Hub, Accessed: 2024–02-22, 2019 (cit. on p. 107).

[98] S. Nikolaidis, Y.X. Zhu, D. Hsu, S. Srinivasa, ‘Human-Robot Mutual

Adaptation in Shared Autonomy’, ACM/IEEE International Confer-

184 Bibliography

https://www.franka.de/
https://www.oculus.com/rift-s/
https://www.oculus.com/rift-s/
https://github.com/Unity-Technologies/Unity-Robotics-Hub
https://github.com/Unity-Technologies/Unity-Robotics-Hub

ence on Human-Robot Interaction (HRI), pp. 294–302, 2017 (cit. on

pp. 109, 168).

[99] S. Li, M. Bowman, H. Nobarani, X. Zhang, ‘Inference of Manipulation

Intent in Teleoperation for Robotic Assistance’, Journal of Intelligent

& Robotic Systems, vol. 99, pp. 29–43, 2020 (cit. on p. 117).

[100] L. Wang, Q. Li, J. Lam, Z. Wang, Z. Zhang, ‘Intent Inference in Shared-

Control Teleoperation System in Consideration of User Behavior’,

Complex & Intelligent Systems, pp. 1–11, (cit. on p. 117).

[101] D. E. Gopinath, B.D. Argall, ‘Active Intent Disambiguation for Shared

Control Robots’, IEEE Transactions on Neural Systems and Reha-

bilitation Engineering, vol. 28, no. 6, pp. 1497–1506, 2020 (cit. on

p. 117).

[102] S. Jain, B. Argall, ‘Probabilistic Human Intent Recognition for Shared

Autonomy in Assistive Robotics’, ACM Transactions on Human-Robot

Interaction (THRI), vol. 9, no. 1, pp. 1–23, 2019 (cit. on pp. 117, 128,

132).

[103] R.M. Aronson, T. Santini, T.C. Kübler, E. Kasneci, S. Srinivasa,

H. Admoni, ‘Eye-Hand Behavior in Human-Robot Shared Manipula-

tion’, in Proceedings of the 2018 ACM/IEEE International Conference

on Human-Robot Interaction, 2018, pp. 4–13 (cit. on p. 117).

[104] T.P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,

D. Silver, D. Wierstra, ‘Continuous Control with Deep Reinforcement

Learning’, arXiv preprint arXiv:1509.02971, 2015 (cit. on pp. 119,

126).

Bibliography 185

[105] W. Xu, J. Huang, Y. Wang, C. Tao, L. Cheng, ‘Reinforcement Learning-

Based Shared Control for Walking-Aid Robot and Its Experimental

Verification’, Advanced Robotics, vol. 29, no. 22, pp. 1463–1481, 2015

(cit. on p. 121).

[106] J. Gao, S. Reddy, G. Berseth, A.D. Dragan, S. Levine, ‘Xt2: Training

an X-to-Text Typing Interface with Online Learning from Implicit

Feedback’, in International Conference on Learning Representations

(ICLR), 2021 (cit. on p. 121).

[107] C. Schaff, M.R. Walter, ‘Residual Policy Learning for Shared Auton-

omy’, arXiv preprint arXiv:2004.05097, 2020 (cit. on p. 121).

[108] F. C. Fernandez, W. Caarls, ‘Deep Reinforcement Learning for Haptic

Shared Control in Unknown Tasks’, arXiv preprint arXiv:2101.06227,

2021 (cit. on p. 122).

[109] K.V. Mardia, P. E. Jupp, K. Mardia, Directional Statistics. Wiley

Online Library, 2000, vol. 2 (cit. on p. 124).

[110] M.A. Carreira-Perpinan, ‘Mode-Finding for Mixtures of Gaussian

Distributions’, IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 22, no. 11, pp. 1318–1323, 2000 (cit. on p. 125).

[111] Y. Oh, T. Schäfer, B. Rüther, M. Toussaint, J. Mainprice, ‘A System

for Traded Control Teleoperation of Manipulation Tasks Using Intent

Prediction from Hand Gestures’, IEEE International Symposium on

Robot and Human Interactive Communication (RO-MAN), 2021 (cit.

on p. 142).

186 Bibliography

[112] K. He, G. Gkioxari, P. Dollár, R. Girshick, ‘Mask R-CNN’, IEEE

International Conference on Computer Vision (ICCV), 2017 (cit. on

pp. 144, 151, 164).

[113] J. Bohren, L. L. Whitcomb, ‘A Preliminary Study of an Intent-Recognition-

Based Traded Control Architecture for High Latency Telemanipula-

tion’, IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2017 (cit. on p. 145).

[114] F. Weichert, D. Bachmann, B. Rudak, D. Fisseler, ‘Analysis of the

Accuracy and Robustness of the Leap Motion Controller’, Sensors,

vol. 13, no. 5, 2013 (cit. on p. 145).

[115] J. Guna, G. Jakus, M. Pogačnik, S. Tomažič, J. Sodnik, ‘An Analysis

of the Precision and Reliability of the Leap Motion Sensor and Its

Suitability for Static and Dynamic Tracking’, Sensors, vol. 14, no. 2,

2014 (cit. on p. 145).

[116] G. Marin, F. Dominio, P. Zanuttigh, ‘Hand Gesture Recognition with

Jointly Calibrated Leap Motion and Depth Sensor’, Multimedia Tools

and Applications, vol. 75, no. 22, 2016 (cit. on p. 145).

[117] W. Zeng, C. Wang, Q. Wang, ‘Hand Gesture Recognition Using Leap

Motion via Deterministic Learning’, Multimedia Tools and Applica-

tions, vol. 77, no. 21, 2018 (cit. on p. 145).

[118] W. Qi, S. E. Ovur, Z. Li, A. Marzullo, R. Song, ‘Multi-Sensor Guided

Hand Gestures Recognition for Teleoperated Robot Using Recurrent

Neural Network’, IEEE Robotics and Automation Letters, 2021 (cit. on

p. 145).

Bibliography 187

[119] M. Wüthrich, P. Pastor, M. Kalakrishnan, J. Bohg, S. Schaal, ‘Prob-

abilistic Object Tracking Using a Range Camera’, IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), 2013

(cit. on pp. 146, 149).

[120] J. Issac, M. Wüthrich, C.G. Cifuentes, J. Bohg, S. Trimpe, S. Schaal,

‘Depth-Based Object Tracking Using a Robust Gaussian Filter’, IEEE

International Conference on Robotics and Automation (ICRA), 2016

(cit. on pp. 146, 149, 157, 164).

[121] Y. Xiang, T. Schmidt, V. Narayanan, D. Fox, ‘PoseCNN: A Convolu-

tional Neural Network for 6D Object Pose Estimation in Cluttered

Scenes’, arXiv preprint arXiv:1711.00199, 2017 (cit. on pp. 146, 156,

159).

[122] C. Wang, D. Xu, Y. Zhu, R. Mart́ın-Mart́ın, C. Lu, L. Fei-Fei,

S. Savarese, ‘DenseFusion: 6D Object Pose Estimation by Iterative

Dense Fusion’, 2019 (cit. on pp. 146, 156, 159).

[123] Kenta-Tanaka et al., Probreg, version 0.1.6. [Online]. Available: https:

//probreg.readthedocs.io/en/latest/ (cit. on p. 151).

[124] M. Toussaint, ‘Komo: Newton Methods for K-Order Markov Con-

strained Motion Problems’, arXiv preprint arXiv:1407.0414, 2014 (cit.

on p. 152).

[125] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,

N. Navab, ‘Model Based Training, Detection and Pose Estimation

of Texture-Less 3D Objects in Heavily Cluttered Scenes’, in Asian

Conference on Computer Vision, Springer, 2013, pp. 548–562 (cit. on

p. 155).

188 Bibliography

https://probreg.readthedocs.io/en/latest/
https://probreg.readthedocs.io/en/latest/

[126] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, A.M. Dollar,

‘The YCB Object and Model Set: Towards Common benchmarks for

Manipulation Research’, in International Conference on Advanced

Robotics (ICAR), IEEE, 2015, pp. 510–517 (cit. on p. 157).

[127] T. B. Sheridan, W. L. Verplank, T. Brooks, ‘Human/Computer Control

of Undersea Teleoperators’, in NASA. Ames Res. Center The 14th

Ann. Conf. on Manual Control, 1978 (cit. on p. 168).

[128] M.R. Endsley, D.B. Kaber, ‘Level of Automation Effects on Perfor-

mance, Situation Awareness and Workload in a Dynamic Control

Task’, Ergonomics, vol. 42, no. 3, pp. 462–492, 1999 (cit. on p. 168).

[129] M. Chiou, N. Hawes, R. Stolkin, ‘Mixed-Initiative Variable Autonomy

for Remotely Operated Mobile Robots’, ACM Transactions on Human-

Robot Interaction (THRI), vol. 10, no. 4, pp. 1–34, 2021 (cit. on p. 168).

[130] P. Scerri, D.V. Pynadath, M. Tambe, ‘Towards Adjustable Autonomy

for the Real World’, Journal of Artificial Intelligence Research, vol. 17,

pp. 171–228, 2002 (cit. on p. 168).

[131] M.A. Goodrich, D.R. Olsen, J.W. Crandall, T. J. Palmer, ‘Experi-

ments in Adjustable Autonomy’, in Proceedings of IJCAI Workshop

on Autonomy, Delegation and Control: Interacting with Intelligent

Agents, Seattle, WA, 2001, pp. 1624–1629 (cit. on p. 168).

[132] P. Kaiser, D. Kanoulas, M. Grotz, L. Muratore, A. Rocchi, E.M. Hoff-

man, N.G. Tsagarakis, T. Asfour, ‘An Affordance-Based Pilot In-

terface for High-Level Control of Humanoid Robots in Supervised

Autonomy’, IEEE-RAS International Conference on Humanoid Robots

(Humanoids), pp. 621–628, 2016 (cit. on p. 169).

Bibliography 189

[133] J. Luo, Z. Lin, Y. Li, C. Yang, ‘A Teleoperation Framework for Mobile

Robots Based on Shared Control’, IEEE Robotics and Automation

Letters, vol. 5, no. 2, pp. 377–384, 2019 (cit. on p. 169).

[134] K.T. Ly, M. Poozhiyil, H. Pandya, G. Neumann, A. Kucukyilmaz,

‘Intent-Aware Predictive Haptic Guidance and Its Application to

Shared Control Teleoperation’, IEEE International Symposium on

Robot and Human Interactive Communication (RO-MAN), pp. 565–

572, 2021 (cit. on p. 169).

All URLs were last accessed on 22.02.2024.

190 Bibliography

	List of Figures
	List of Tables
	List of Symbols
	1 Introduction
	1.1 Dissertation Outline

	2 Background
	2.1 Teleoperation
	2.2 Shared Control and Shared Autonomy
	2.3 Arbitration
	2.4 Formulation as a Reinforcement Learning Problem
	2.5 Riemannian Geometry
	2.5.1 Riemannian Geometry
	2.5.2 Riemannian Geometry of Manipulators

	2.6 Natural Gradients
	2.6.1 Gradient Descent
	2.6.2 Natural Gradient Descent
	2.6.3 Fisher Information Matrix

	2.7 Summary

	3 Representing the Semi-Autonomous Agent
	3.1 The Reaching Task
	3.2 Insight into the Value Function Through Policies
	3.2.1 Linear Dynamics and Quadratic Cost Assumption
	3.2.2 Action as a Gradient of the Value Function

	3.3 Learning a Goal-Conditioned Autonomous Agent Policy
	3.3.1 Learning an Optimal Policy in Task Space
	3.3.2 Fitting Locally Weighted Regression Models
	3.3.3 Learning an Optimal Policy in Configuration Space
	3.3.4 Generating Local Policies Using Linear Quadratic Regulator

	3.4 Summary

	4 Natural Gradient Shared Control
	4.1 Introduction
	4.2 Related Work
	4.2.1 Different Methods of Sharing Control
	4.2.2 Natural Gradients

	4.3 Natural Gradient Shared Control
	4.3.1 Expressing Shared Control as an Optimization Problem
	4.3.2 Natural Gradient Shared Control
	4.3.3 Computing the Fisher Information Matrix

	4.4 Experiments
	4.4.1 Experiment Setup
	4.4.2 User Study Procedure

	4.5 Results
	4.6 Discussion
	4.7 Summary

	5 Augmenting Human Policies Using Riemannian Metrics for Shared Control
	5.1 Introduction
	5.2 Related Work
	5.2.1 Teleoperation in Different Workspaces
	5.2.2 Riemannian Approach to Shared Control

	5.3 Shared Control as an Optimization Problem
	5.3.1 Constrained Optimization Problem
	5.3.2 Least-Squares Problem (Sum-of-Squares)

	5.4 Recovering the Riemannian Metric
	5.4.1 Estimating the Hessian Using Finite Differences

	5.5 Experiments
	5.5.1 Experiment Setup
	5.5.2 Simulating Human Operator Behaviors
	5.5.3 Simulation Results

	5.6 Teleoperation System Design
	5.6.1 System Implementation
	5.6.2 Pilot User Study

	5.7 Results
	5.8 Discussion
	5.9 Summary

	6 Learning to Arbitrate Using Disagreement Between Robot Sub-policies
	6.1 Introduction
	6.2 Related Work
	6.3 Identifying Disagreement Between Sub-policies
	6.3.1 Identifying Decision Points
	6.3.2 Directional Deterministic Policies on the Plane
	6.3.3 Modality Estimation

	6.4 Reinforcement Learning for Arbitration
	6.4.1 DDPG for Arbitration Learning
	6.4.2 Reward Function Using Disagreement

	6.5 Experiments
	6.6 Results
	6.6.1 Effects of Penalizing Disagreement During Training
	6.6.2 Demonstration Using Trained Agents
	6.6.3 Comparison Between Different Simulated Users

	6.7 Discussion
	6.8 Summary

	7 A System for Traded Control Teleoperation Combining Manipulation and Perception
	7.1 Introduction
	7.2 Related Work
	7.2.1 Traded Control in Teleoperation
	7.2.2 Hand Gesture Recognition for Robot Control
	7.2.3 Depth Based Object Tracking (DBOT)

	7.3 Manipulation: Hand-Gesture-Based Robot Control
	7.3.1 Traded Control
	7.3.2 Grasp Intent Prediction

	7.4 Perception: Object Tracking Pipeline
	7.4.1 DBOT Initializer: Automated Object Tracker Initialization
	7.4.2 DBOT Tracker

	7.5 Experiments
	7.5.1 Simulated Robot Environment
	7.5.2 Transfer Learning on a Synthetic Dataset
	7.5.3 Accuracy of the Initial Object Pose Estimation
	7.5.4 Accuracy of the DBOT Tracker
	7.5.5 Accuracy of the Grasp Intent Prediction
	7.5.6 Experiment Setup for a Teleoperation Task
	7.5.7 Evaluation of Different Simulated Users

	7.6 Summary

	8 Conclusion
	8.1 Future Work

	Bibliography

