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Abstract—Articulated robotics applications typically have a
demand for high torque at low speed. However, conventional
electrical machines cannot generate a reasonable amount of
torque directly by electro-magnetics. Therefore, gearboxes are
used to convert speed and torque, accepting loss of mechanical
power due to additional friction. Although geared solutions
for robotic drive trains already offer exceedingly high torque
densities, they are limited by the drawbacks of high reduction
gears, such as non-linearities in friction, complex flexibility
effects, and limited service life of mechanics in contrary to direct
drive solutions. The Transverse Flux Machine with the high
gravimetric torque density may be a solution for reducing or
eliminating the need for a gearbox. Using a genetic algorithm, the
proposed Transverse Flux Machines are optimized. To enhance
the optimization’s speed, the machines’ calculations done by
Finite-Element-Analysis of selected generations are replaced by a
Regression Tree Model whose results are verified after a defined
expired model service life with a subsequent adjustment of the
model. The eligibility of different arrangements the Transverse
Flux Machines’ rotor are compared regarding the application
as low-speed direct drive in robotics, also compared to similar
Radial Flux Machines. The optimized Transverse Flux Machines
have a higher efficiency due to lower copper loss and a higher
active gravimetric torque density. However, the Radial Flux
Machines have higher total torques and power factors.

Index Terms—Direct drive, electric machines, modulated pole
machines, permanent magnet machines, power factor, robotics,
rotating machines, torque density, torque ripple, transverse flux
machines.

I. INTRODUCTION

The inherent advantages of direct drives are an elimination
of the non-linearities and uncertainties of high reduction gears
[1], such as strain-wave gears and cycloid gears which are
state-of-the-art in lightweight robotics applications. However,
the size of an electrical machine increases with torque demand
resulting in insufficient designs. Transverse Flux Machines
(TFMs) are known for their high gravimetric torque density
and high efficiency at low speed. Within this work, two types
of TFMs are examined as a direct drive solution suited for the
field of robotics.

The research resulting in this publication has received funding from the
DFG (German Research Foundation) as part of the International Research
Training Group “Soft Tissue Robotics” (GRK 2198).

Due to the complex 3D magnetic flux of the TFM, the
optimization of a machine via multiple FEAs has high com-
putational effort. This is especially critical in comparison with
other topologies, such as the 2D-computed Radial Flux Ma-
chine (RFM) or the quasi 3D- or analytically computed Axial
Flux Machine (AFM). For example, in [2] the non-optimized
TFM has inferior electromagnetic properties compared to the
optimized RFM and AFM, neglecting the possibilities of an
optimized design of the TFM. A case study [3] related to the
optimization of a TFM with surface mount permanent magnets
and soft magnetic composite stator points out significant
improvements of the optimized design referred to an initial
design. Therefore, it is assumed that the full potential of TFMs
has not been exploited yet. The study [4] presents a higher
torque density of TFMs with an outer rotor design which also
applies for conventional machines [5] due to the geometry of
higher lever arm of the air gap with a typically lower height
of the rotor compared to the stator. The in [6], [7] presented
double stator machines present an intermediate solution which
will be compared to the single stator designs in the following
sections.

The intended reference application is a direct drive for the
base axis of a lightweight articulated robot arm which is used
for collaborative tasks such as the Franka Emika Panda robot
with a software-set joint torque limit of 87Nm and maxi-
mum speed of 25min−1 [8]. The assumed arising cylindrical
installation space has an outer diameter of do = 180mm and
a length of lo = 150mm, which is nearly double the volume
of the of the Franka Emika Panda installation space (approx.
do ≊ 110mm, lo ≊ 200mm, based on CAD-measurement).
A hollow shaft for routing cables and pipelines through the
drive is an additional requirement. The cooling of the machine
is passive only.

II. EXAMINED MACHINES

The evaluated machines are built of a three phase TFM
with hoop coils, as displayed for the single phase segments in
Fig. 1 (a)-(f). For the comparison, the arrangement of the stator
as inner-stator (IS), outer-stator (OS), and double-stator (DS)
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(a) Outer stator design (OS-UI-TFM) (b) Inner stator design (IS-UI-TFM) (c) Double stator design (DS-UI-TFM)

(d) Outer stator design (OS-CP-TFM) (e) Inner stator design (IS-CP-TFM) (f) Double stator design (DS-CP-TFM)

Figure 1: Arrangements of rotors and stators of the (a)-(c) UI- and (d)-(f) CP-TFMs for the comparison, already with selected
geometry of optimization results demonstrated for a single phase and pole pair. Soft magnetics are displayed in gray, the
conductor in copper, and the magnets in green/red.

is varied. Additionally, there are two designs of soft magnetic
stator core investigated.

The structure of the first TFM stators’ soft magentics is an
UI-core, according to the definition in [9], with an adapted
design for two-dimensional laminated steel (M250-35A). A
similar construction is found in [10] for the application as
a generator or in several publications of M.R. Harris et al.,
for instance [11]. The second investigated stator is a claw
pole (CP) stator machine made of isotropic soft magnetic
composite, similar to the machine presented in [12]. All
machines have surface mount permanent magnet rotors with
NdFeB Grade N42-SH with an assumed temperature of 80 ◦C.
In contrast to the previously mentioned machines of Gieras et
al. and Harris et al., for the surface mount rotor coreback
solid free-cutting steel 9S20K (material number 1.0711) is
used instead of laminations, allowing 3D-magnetic flux but
accepting higher iron loss due to eddy current.

For supplementary comparison with conventional machines,
the optimization is performed for Radial Flux Machines as
well (cut-view see Fig. 2). In order to have a comparative
study, the simulation is performed in 2D with similar settings
and properties. An exception is made by the choice of the
material, all soft magnetics are defined as laminated steel
(M250-35A). For a reduction of complexity in winding
design, the number of pole pairs p and the number of slots
nS are proportionally linked 3 · p = nS in order to have
a concentrated winding scheme. This limits the usage of

combinations with higher winding factors, for instance the
popular p = 5 and nS = 12 design.

III. ACCELERATED SIMULATION MODEL AND IRON LOSS
CALCULATION

Using the periodicity of the pole pairs, the simulated ge-
ometry is reduced to only one pole pair. Due to the magnetic
decoupling of the phases of the TFMs, the simulated geometry
is reduced further to only one phase. For the magnetic decou-
pling an additional axial distance is assumed as five times air
gap length between rotor and stator (5 · lδ). Because of the
duration of 3D transient studies of the TFM’s geometries, a
faster multi-static (instead of transient) simulation approach
with less degrees of freedom and iron loss calculation ac-
cording to Bertotti in post-processing (presented in [13]) is
used. This reduces the simulation time from hours to minutes
allowing only an estimation of iron losses PL,Fe. Additionally,
for the 3D loss calculation routine the coordinate transfor-
mation presented in [14] is utilized. In order to obtain the
frequency and amplitude of higher harmonics of flux density
and elimination of the DC-offset, the time domain flux density
signal is transformed into a frequency signal by help of the
Fast Fourier Transform (FFT) and accumulated up to the 12th-
harmonic.

To achieve a shorter duration of single simulations, addi-
tional limitations are accepted, decreasing the precision of the



(a) Outer stator design (OS-RFM) (b) Inner stator design (IS-RFM) (c) Double stator design (DS-RFM)

Figure 2: Cut-view of a pole pair of the RFMs for the comparison, with geometry of optimizations’ selected results. Soft
magnetics are displayed in gray, the conductor in copper, and the magnets in green/red.

calculated results. For a faster simulation, the 3D influence of
the orientation of the lamination is neglected. For an accurate
model, the modeling approach in [15] may be utilized, but due
to the highly non-linear material the solving of the problem has
a high computational effort and is not suited for this optimiza-
tion problem with a large number of simulations. Additionally,
because of the multi-static simulation, the influence of eddy
current with feedback to the magnetics and the magnet loss is
not modeled. The voltages of the coil terminals are calculated
in post-processing utilizing the concatenated flux and the phase
voltage equation. Mechanical constraints such as mechanical
stress are not considered.

IV. OPTIMIZATION ROUTINE

The multiobjective optimization is performed using a ge-
netic algorithm from Mathworks MATLAB®’s Global Opti-
mization Toolbox (gamultiobj). A parameter set that com-
pletely describes the corresponding machine is optimized.
In contrast to the multiobjective optimization for a TFM
presented in [16], there is no preselection of parameters with
higher importance. For all machines, a population of 100
individuals with a maximum of 100 generations is utilized. The
initial population is generated by a Latin Hypercube Sampling
(LHS), considering the lower and upper boundaries of the
optimization parameters. The simulations are performed for
a single operation point defined by the rms-current density of
the coil of Jel,rms = 10Amm−2 assuming a copper slot fill of
0.6 and a mechanical speed of 30min−1. For the excitation
of the coil a Field-Oriented-Control with pure iq-current is
utilized.

For the multiobjective optimization routine, the efficiency
η and the active gravimetric torque density τ are selected as
objectives. Additional conditions are used for a well-designed
machine. The demagnetization of the permanent magnets is
restricted with a maximum proportion of 2.5% of volume with
magnetic field |H⃗| below the knee point. This is expressed with
the ratio of demagnetization RPM,dmg = VPM,dmgVPM

−1. The
limit for the power factor cos (φ) of ≥ 0.7 is selected because
of the recommendation as seen in [17]. The third criterion is
the torque ripple Tripple which is limited to Tripple ≤ 15% of
T . The summary of these objectives is presented in Table I.

There are no direct constraints considering the thermal limits
or the maximum allowed loss of the machines. Due to the
fixed value of the current density representing a short-term
operating point, the copper loss per area copper in the slot is
limited.

Table I: Summary of the output of calculation routine with
optimization objectives and additional conditions

Symbol Description Condition

η Efficiency a max (η)
τ Act. gravi. torque den. a max (τ)

cos (φ) Power factor b cos (φ) ≥ 0.7
Tripple Torque ripple b Tripple ≤ 15%

RPM,dmg Demag. ratio b RPM,dmg ≤ 2.5%

a Optimization objective
b Additional nonlinear condition

Under the given conditions, the optimization routine does
not ensure that the machine is able to perform the robotic task
with minimum cost and maximum efficiency, as for instance
presented in [18]. The target of this paper’s optimization is to
increase the active materials’ gravimetric torque density and
efficiency with a given current density of the coils Jel,rms and
restricted installation space regardless a minimum required
torque output. Regarding the individual types of machines,
there are also different number optimization parameters. The
parameter-set includes a complete description of the geometry
of the machines, the outer diameter do is fixed to the maximum
value of 180mm. Machines with a comparatively high number
of parameters may result in a less progressed optimization.
Also, the boundaries of the parameter’s design space are set
to values expected for favorable designs.

V. REPLACEMENT OF FEA BY REGRESSION TREE MODEL

Compared to the combined GA introduced in [19] in which
the surrogate model built once does not change during op-
timization, in this paper, the optimization is performed with
both models: the FEA model and the surrogate model. During
the multiobjective genetic algorithm optimization, the FEA-
model is replaced in selected generations by a prediction
using a binary decision Regression Tree Model algorithm from



Mathworks MATLAB®’s Statistics and Machine Learning
Toolbox (fitrtree) as presented in the flowchart of Fig. 3. In
order to gain a first dataset, the generations [0, 5] are calculated
by FEA only. If there are less than 100 data-points that do not
meet all conditions, the FEA-calculations are continued till
the number of minimally acceptable data-points is reached.
In the next step, all previous objectives and conditions of
the single FEAs are normalized into an interval [0, 1] with
a step size depending on the size of the dataset calculated
by FEA (nsteps = max (20, ⌈0.01 · nFEAs⌉)). The intention
is not to obtain exact numerical results from the regression
tree, but to obtain a scale from unacceptable to satisfactory.
For building the surrogate, the normalized dataset is split
into 90%-training / 10%-testing data. The regression tree is
optimized regarding the leaf size and is validated for accuracy
with the testing data. If the conditions of accuracy are met,
the FEA is replaced by the fast-solving predictive model for
the next three generations. Finally, the following generation
utilizes the FEA-method again in order to confirm or correct
interim results obtained by the RTM and the model will be
updated.

Fig. 4 displays a benchmark between the FEA and
FEA&RTM mixed methods. All results of the FEA-
simulations during the genetic algorithm of both methods are
displayed for the OS-UI-TFM with the number of generation
indicated. Due to the exceed of maximum number of genera-
tions, the tolerance critera was not meet and the final pareto
fronts are not found. Due to the limited number of calculated
datapoints and conducted benchmarks this method has to be
validated further.

Both optimizations are performed on a personal
computer with AMD Ryzen 9 5900X 12-Core CPU,
NVIDIA GeForce GT 710 GPU, and 128GB of RAM. The
FEA is performed via COMSOL Multiphysics® 6.0 and
Mathworks MATLAB® R2021b connected via LiveLink™
for post-processing, optimization routine including build and
prediction of RTM, and data handling. The duration of the
complete optimization was 370.94 h (FEA) versus 117.30 h
(FEA&RTM) which is a speed-up of 216.23%. Despite
the presented methods, the optimization routine is still
time-intensive and may be replaced by a further simplified
model. Due to the time-intense optimization of FEA-only
method, the benchmark is performed only with a single type
of machine.

VI. COMPARISON OF OPTIMIZATION RESULTS AND
SELECTED MACHINES

The pareto fronts resulting of the multiobjective optimiza-
tion (FEA&RTM) are illustrated in Fig. 5. All machines have
the same outer diameter with a varying length depending
on the optimization parameters. Certain pareto fronts do not
appear to be fully formed due to the exceed of maximum
number of generations, but provide a good indication of the
achievable ratings

The UI-TFMs achieve higher active gravimetric torque den-
sities and higher efficiencies. Regarding both objectives, the
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Figure 3: Schematic description of the genetic optimization
routine with selective replacement of calculation by FEA with
an intercalated estimation by a Regression Tree Model.

IS-UI-TFM is the superior machine. The comparison among
the OS/IS/DS-TFMs also reveals the hoop coil’s- and air gap
diameter’s impact the efficiency. The small difference of DS-
CP-TFM’s and OS-CP-TFM’s torque density is particularly
noticeable, whereas the OS-CP-TFM has the higher efficiency.
For the RFMs, also the IS-RFM is superior regarding the
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Figure 4: Results of FEAs of genetic algorithm during the
optimization routine regarding the OS-UI-TFM for the con-
ventional FEA-only method and purposed mixed FEA and
Regression Tree Model method. For both, the stopping criteria
was the exceed of maximum number of generations, therefore
the final pareto fronts are not found, but the FEA&RTM is
further progressed. The predictions from the RTM are not
displayed.

pareto front. For all types of machines, the DS-machines are
inferior. For a further investigation selected properties of the
highlighted machines selected from the pareto fronts of Fig. 5
are evaluated. In Table II this comparison is illustrated. The
TFMs are inferior regarding the total torque, power factor,
and specific tangential force density in the air gap regarding
the RFMs with the same rotor configuration. Noticable is also
the low specific tangential force density of the UI-TFMs. The
utilization of the permanent magnet is similar for all machines.
Regarding the loss, the TFMs are highly superior, but due to
the lower total power output, the advantage is not as huge as
assumed by the difference in Watts. The loss mainly consists
of copper loss. Iron loss has only a small fraction of the
total losses in all machines. Regarding the pole pairs, the UI-
TFM’s has a tendency of higher optimum numbers compared
to the CP-TFM’s followed by the RFM’s with the lowest
numbers. Regarding the length of the machines, the shorter
CP-TFM’s are noticeable. The air gap diameters and also the
inner diameter of active material are similar for all three types
of machines and rotor arrangements.

The TFM’s impress with a low mass of active material,
whereas the RFM’s have significantly higher mass. The weight
of the UI-TFM’s carrier material is not included in the
active gravimetric torque density. After evaluating the resulting
designs of the optimization in Fig. 1 (a)-(c), there is a high
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Figure 5: Resulting pareto front of single low-speed operation
point by the presented mixed genetic algorithm and regression
tree method from the multiobjective optimization for the
studied arrangements and machines.

amount of air enclosed by the designs, for the UI-TFM usually
filled by a carrier material lowering the total gravimetric torque
density. The RFM’s and CP-TFM’s have no need for a carrier
material. Therefore, it is not reasonable to conclude from the
higher active gravimetric torque density of the UI-TFM that
the total gravimetric torque density is also higher.

VII. CONCLUSION

The optimization with mixed methods results in an in-
creased speed of the routine. Using the multiobjective genetic
algorithm with a large population and multiple intercalated
generations of the Regression Tree Model, the optimization
with a high number of parameters of different relevance to
the result shows better performance in the benchmark. The
comparison reveals that both Transverse Flux Machines in the
specified low-speed operating point have a higher efficiency
and a higher active gravimetric torque density compared to
the Radial Flux Machines. However, the total torque and the
power factor of the Transverse Flux Machines are lower. Due
to the simplified FEA in order to reduce the required calulation
time for the purpose of the optimization, the results have to
be validated by more detailed simulations. To conclude, the
inner stator UI-core Transverse Flux Machine with high active
gravimetric torque density and efficiency emerges as a suitable
solution for the application as a low-speed actuator. In order to
achieve a high total gravimetric torque density, an appropriate
solution for the integration of the machine into the application
without the need for a heavyweigth carrier is required.



Table II: Comparison of selected results and design parameters for the investigated optimized machines with the same outer
diameters in the low-speed operating point.

Key-parameters Symbol Unit UI-TFM CP-TFM RFM
OS IS DS OS IS DS OS IS DS

Torque T Nm 47.6 83.3 73.8 59.2 66.2 55.0 105.8 106.7 123.2
Torque ripple Tripple % 5.4 8.3 5.9 9.3 6.6 4.3 14.1 12.6 12.2
Act. grav. torque density τ Nmkg−1 11.65 14.38 10.99 9.57 12.46 9.19 11.09 11.92 10.43
Torque / Inertia T/J kNkg−1 m−1 7.4 5.6 8.5 6.8 6.4 8.6 9.9 8.3 13.2
Torque / PM-mass T/mPM Nmkg−1 95.8 126.4 109.5 78.7 116.0 92.5 96.3 116.2 134.1
Spec. tang. force density OS σOS kNm−2 13.4 N/A 11.7 17.9 N/A 14.8 21.7 N/A 17.4
Spec. tang. force density IS σIS kNm−2 N/A 18.1 8.9 N/A 20.8 8.0 N/A 20.7 11.2

Copper loss PL,Cu W 114.1 155.6 216.8 159.9 174.3 192.8 451.8 450.9 637.1
Iron loss PL,Fe W 5.4 7.7 5.1 2.6 3.0 2.0 3.1 4.2 4.3
Efficiency η % 56.53 62.86 51.06 54.91 54.29 48.34 42.47 42.52 37.72
Power factor cos (φ) - 0.79 0.71 0.73 0.80 0.70 0.79 0.99 0.99 0.99

Pole pairs p - 45 44 44 29 35 40 22 29 25
Ratio do/lact - 1.52 1.57 1.51 1.69 2.21 2.29 1.34 1.58 1.50
Ratio di/do - 0.77 0.71 0.62 0.76 0.73 0.66 0.79 0.76 0.69
Act. length lact mm 118.34 114.78 119.28 106.82 81.41 78.68 134.62 114.12 120.22
Air gap diameter OS dδ,OS mm 146.94 N/A 151.15 148.36 N/A 154.47 152.66 N/A 155.74
Air gap diameter IS dδ,IS mm N/A 169.66 139.12 N/A 169.56 142.22 N/A 170.78 145.55
Active mass mact kg 4.08 5.79 6.72 6.19 5.32 5.98 9.54 8.95 11.81
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