Supplementary Material

action - Action

- Defines step direction in which the robot moves the block

- Is either left, right, forward, backward, up or down (6 directions)

- Each direction axis has a different movement length in the world space

D S T e

. L h -0.04 -0.02 0.02 -0.07
— Observation engt
L+ Reward - Observation/state

- Consist of world space coordinates and 5 |laser observations
— Done? - 3 cartesian coordinates (x, y, z) that are normalized

- Qutput are float values between 0.0 and 1.0

L+ Info state [x |y |z __Ju [13 15

val 0,1 [01] [01] [01] [01] [01] [01] I[01]

Supplementary Figure 1: Detailed definition of the simulation environment for use in OpenAl Gym
— definition of the continuous action space and observation (or state).

- Reward
- Avalue corresponding to the reward of each step
- Every step that doesn‘t guide to the goal has negative reward

action

- Done
- Boolean: If True, an end-condition occured and the episode ends
- End-Condition are Collisions/Out-of-bounds, reaching goal , and when
maximum of 160 steps per episode is reached (over max steps)

— Observation

— Reward Step 0.05

L+ Done? Out of bounds / unreachable position -8
Plane Collision -8

— Info Wall Collision -8
Self Collision -8
Over Max Steps -7
Goal Reached 12

Supplementary Figure 2: Detailed definition of the simulation environment for use in OpenAl Gym
— definition of reward and done condition (end of a learning episode).

Supplementary Material

action - Info
- Contains additional information about the environment

Object Position Cartesian Coordinate of the object
— Observation Path length Calculated Shortest Path Length
|, Reward Exit Reason One of the End-Conditions

SPL Success weighted by Path Length
— Done? Episodes Current number of episodes
— Info

Supplementary Figure 3: Detailed definition of the simulation environment for use in OpenAl Gym
— definition of the info.

Pipeline to train a Human Feedback (HF) Policy

. Environment gives a state or observation

2. HF Policy chooses an action depending on the
observation given by the environment

3. Environment uses the action to move the robot

Environment 4. Stimuli created by the robot movement is

observed by the participant

EEGAcq o 2. ‘ 5. EEGAcq simultaneously records EEG signals and
ction +— «+—— QObservation . ; . .
while doing real-time pre-processing and data
- HF-Policy epoching steps
BCI -
Classifier

was correct or incorrect
7. Action, Observation and Feedback is saved as a
transition in the environment
Transition is pulled to a replay buffer
. HF Policy is trained/updated using supervised

8. learning and data from the replay buffer
Replay Buffer

'[9 T 6. BCI Classifier infers epoch data and predicts
: whether the movement seen by the participant

o

Transition

Supplementary Figure 4: Detailed description of the real-time pipeline for supervised learning of a
human feedback policy function (fully connected neural network).

Optimized Replay Buffer

Push
l - Push
- Pushes Transition (state, action, feedback from BCl) into replay buffer
= - Pushes also information if Transition was a collision
—t
-— - Sample
Replay Buffer - Samples Transitions from replay buffer into a batch (batch-size=32)
- Batch consists of collision and non-collision batches
l - collision batch consists of Transitions where collisions happened
Sample - Whole batch consist of a maximum of 10% collision batches

i_l_l - => Optimized Batch Sampling

v . - Makes sure that collision will always be trained
Collision Non-collison

Batch Batch - Collision-samples depend not on User-Feedback
10% 90% therefore the feedback-labels of those samples are
I_‘_I 100% accurate
Batch

Supplementary Figure 5: Optimized replay buffer for training the human feedback policy via a fully
connected neural network.

HFPolicyNet(
(linear): Sequential(
(@): Linear(in_features=8, out_features=32, bias=True)
(1): ReLU()
(2): Linear(in_features=32, out_features=6, bias=True)
(3): Softmax(dim=1)
)
)

Supplementary Figure 6: Fully connected neural network for the human feedback policy.

Actor(

Supplementary Material

(net): Sequential(

(@): BatchNormld(8, eps=1le-85, momentum=8.1, affine=True,
track_running_stats=True)

(1): Linear(in_features=8, out_features=64, bias=True)

(2): ReLU()

(3): BatchNormld(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(4): Linear(in_features=64, out_features=64, bias=True)

(5): ReLU()

(6): BatchNormld(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(7): Linear(in_features=64, out_features=6, bias=True)

)
)

Critic(

(net):
(8):
(1):
(2):
(3):
(4):

Sequential(

Linear(in_features=14, out_features=64, bias=True)
ReLU()

Linear(in_features=64, out_features=64, bias=True)
ReLU()

Linear(in_features=64, out_features=1, bias=True)

Supplementary Figure 7: Deep deterministic policy gradient network architecture consisting of

actor-critic neural networks.

