Supplementary Material

- Action
 - Defines step direction in which the robot moves the block
 - Is either left, right, forward, backward, up or down (6 directions)
 - Each direction axis has a different movement length in the world space

Direction	Left	Right	Forward	Backward	Down	Up
Length	-0.04	0.04	-0.02	0.02	-0.07	0.07

- Observation/state
 - Consist of world space coordinates and 5 laser observations
 - 3 cartesian coordinates (x, y, z) that are **normalized**
 - Output are float values between 0.0 and 1.0

State	Х	Υ	Z	L1	L2	L3	L4	L5
Val	[0, 1]	[0, 1]	[0, 1]	[0, 1]	[0, 1]	[0, 1]	[0, 1]	[0, 1]

Supplementary Figure 1: Detailed definition of the simulation environment for use in OpenAI Gym – definition of the continuous action space and observation (or state).

- Reward
 - A value corresponding to the reward of each step
 - Every step that doesn't guide to the goal has negative reward
- Done
 - Boolean: If True, an end-condition occured and the episode ends
 - End-Condition are Collisions/Out-of-bounds, reaching goal, and when maximum of 160 steps per episode is reached (over max steps)

End-Condition	Reward				
Step	-0.05				
Out of bounds / unreachable position	-8				
Plane Collision	-8				
Wall Collision	-8				
Self Collision	-8				
Over Max Steps	-7				
Goal Reached	12				

Supplementary Figure 2: Detailed definition of the simulation environment for use in OpenAI Gym – definition of reward and done condition (end of a learning episode).

Supplementary Figure 3: Detailed definition of the simulation environment for use in OpenAI Gym – definition of the info.

Pipeline to train a Human Feedback (HF) Policy

- 1. Environment gives a state or observation
- 2. HF Policy chooses an action depending on the observation given by the environment
- 3. Environment uses the action to move the robot
- 4. Stimuli created by the robot movement is observed by the participant
- 5. EEGAcq simultaneously records EEG signals and while doing real-time pre-processing and data epoching steps
- 6. BCI Classifier infers epoch data and predicts whether the movement seen by the participant was correct or incorrect
- 7. Action, Observation and Feedback is saved as a transition in the environment
- 8. Transition is pulled to a replay buffer
- 9. HF Policy is trained/updated using supervised learning and data from the replay buffer

Supplementary Figure 4: Detailed description of the real-time pipeline for supervised learning of a human feedback policy function (fully connected neural network).

Optimized Replay Buffer

- Push

- Pushes Transition (state, action, feedback from BCI) into replay buffer
- Pushes also information **if Transition was a collision**
- Sample
 - Samples Transitions from replay buffer into a **batch (batch-size=32)**
 - Batch consists of collision and non-collision batches
 - collision batch consists of Transitions where collisions happened
 - Whole batch consist of a maximum of 10% collision batches
 - => Optimized Batch Sampling
 - Makes sure that collision will always be trained
 - Collision-samples depend not on User-Feedback therefore the feedback-labels of those samples are 100% accurate

Supplementary Figure 5: Optimized replay buffer for training the human feedback policy via a fully connected neural network.

```
HFPolicyNet(
  (linear): Sequential(
    (0): Linear(in_features=8, out_features=32, bias=True)
    (1): ReLU()
    (2): Linear(in_features=32, out_features=6, bias=True)
     (3): Softmax(dim=1)
  )
)
```

Supplementary Figure 6: Fully connected neural network for the human feedback policy.

```
Actor(
  (net): Sequential(
   (0): BatchNorm1d(8, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
   (1): Linear(in_features=8, out_features=64, bias=True)
    (2): ReLU()
   (3): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
    (4): Linear(in_features=64, out_features=64, bias=True)
    (5): ReLU()
    (6): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
   (7): Linear(in_features=64, out_features=6, bias=True)
Critic(
  (net): Sequential(
    (0): Linear(in_features=14, out_features=64, bias=True)
    (1): ReLU()
    (2): Linear(in_features=64, out_features=64, bias=True)
    (3): ReLU()
    (4): Linear(in_features=64, out_features=1, bias=True)
  )
)
```

Supplementary Figure 7: Deep deterministic policy gradient network architecture consisting of actor-critic neural networks.