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Editorial on the Research Topic
Physics of droplets

Droplets are frequently encountered in our daily lives [1], and have long played a
prominent role in industries [2]. Processes such as atomization and sprays have become so
familiar that one might overlook the complexity of the underlying physics and the
numerous unresolved questions that persist. This Research Topic, comprised of original
research articles, aims to advance fundamental knowledge on the physics of droplets and
facilitate their widespread and effective application.

Under the influence of various types of forces, such as inertial force, viscous shear, and
interfacial tensions, as well as of surrounding conditions, such as geometrical constraints,
temperature field, electric and magnetic forces, droplets (or more generally multiphase
flows) experience a multitude of deformations, including elongation. Liquid masses
stretched beyond a certain aspect ratio become unstable. The reduction of surface area
and flow driven by capillary pressure gradients lead to their fragmentation into smaller
droplets. The well-known Plateau-Rayleigh instability is just one of many mechanisms of
droplet formation. The resulting droplets open the possibilities to modify heat, mass, and
momentum interactions with the environment.

The paper by Joksimovic et al., which focuses on spray cooling of solid substrates,
perfectly illustrates both the apparent familiarity of the process due to its widespread use
and the challenges with optimizing it beyond empirical knowledge. By adding white
lubricant to distilled water, cooling efficacy can be strongly improved. High-speed
movies provides valuable insights into the fundamental phenomena responsible for
these improvements. At lower lubricants concentrations, heat exchange is primarily
enhanced through the increased viscosity. For intermediate concentrations, the
deposition of lubricant crystals onto the substrate improves the wetting conditions, and
thus the contact between liquid and solid phases. Finally, at higher concentrations,
surfactants stabilize liquid sheets found between adjacent bubbles, preventing vapor
channels to percolate and thus, the undesired Leidenfrost effect. In the context of
diabatic multiphase flows, where hot liquid droplets are dispersed within another liquid,
the evaporation of the continuous phase can have profound consequences. Cunningham
and Frost presents a critical scenario, namely, the melt-coolant interaction-driven
explosion, which can potentially take place in nuclear reactors. Such an explosion
occurs when a triggering event initiates the coherent propagation of interactions among
dispersed melt fragments through the coolant. To mitigate such risks, it is imperative to
comprehend how individual melt droplets disintegrate and the ensuing impacts on
temperature, pressure, and velocity fields within the coolant and its vapor. By
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combining high-speed photography and flash radiography, the
authors unravel the existence of two fundamentally different
processes. At low velocities, thermal effects drive droplet
disintegration, while at higher velocities, hydrodynamic
instabilities, particularly Rayleigh-Taylor and Kelvin-Helmholtz,
govern the drop’s disintegration. At intermediate velocities, both
processes coexist, resulting in a more complex fragmentation.

Beyond previous example, the advancement of measurement
technologies has driven the acquisition of new information in
increasingly dynamic and extreme environments. Techniques
continue to evolve with a constantly improving temporal and
spatial resolution, enabling theoretical models and simulations to
be probed and further developed. Within this Research Topic, two
noteworthy experimental methodologies are presented, promising
significant contributions to the scientific community.

In Ulrich et al., the capabilities of two-color laser-induced
fluorescence for droplet thermometry are showcased. By employing
fluorescein disodium and sulforhodamine 101, the authors achieve a
sensitive signal ratio between one temperature-dependent and one
temperature independent fluorophore. This approach allows for
monitoring the cooling process of evaporating droplets within the
distance separating them from the nozzle.

An alternative experimental technique to analyse quantitatively
the behaviour of evaporating droplets was presented by Steinhausen
et al. The authors employed laser-induced thermal acoustics (LITA)
to investigate the mixing behaviour in the wake of an evaporating
droplet injected into a supercritical atmosphere in combination with
planar spontaneous Raman scattering. By applying an advection
controlled mixing assumption, it was possible to determine for the
first time the concentration-temperature field in the droplet wake.
The analysis indicates a classical two-phase evaporation process with
evaporative cooling of the droplet, so that the subsequent mixing of
fluid vapour and ambient gas remains also subcritical in the direct
vicinity of the droplet.

Concurrently with these advancements, computational progress
has opened complementary avenues to explore parameters thatmay not
be easily varied experimentally [3, 4]. This is exemplified by Roa et al.
which presents Computational Fluid Dynamics simulations of single oil
droplets dispersed in water and flowing through a membrane with a
variable contact angle at various flow rates. The membrane geometry is
derived from the CT-scanned porous structure of borosilicate glass, and
thus very realistic. The OpenFoam interFlow solver, coupled with
isoAdvector, is employed to resolve the multiphase flow within this
intricate geometry. While state-of-the-art experiments may not
precisely control the contact angle of the dispersed phase with the
membrane, numerical simulations advantageously treat it as a freely
adjustable parameter. Furthermore, these simulations offer detailed
insights into either the retention (filtration, lipophilic membrane) or
the breakup (emulsification, lipophobic membrane) of the droplet. The

findings will contribute to the optimization of operating conditions,
enabling membrane-based processes to become more energy-efficient.

In addition to practical applications, numerical simulations play a
crucial role in unraveling fundamental physics. In Roa et al.,
demonstrate how turbulent conditions developing in the continuous
phase influence the oscillations of droplets dispersed within it. While
solving individual oscillation modes theoretically derived from weakly
viscous linear theory is feasible, the complexity increases significantly
when considering a large number of modes and accounting for their
coupling with the surrounding flow. The authors address this challenge
through numerical simulations, revealing that, after a transient regime,
the deformation level of the droplet surface reaches a saturation level.
This saturation level determines the stored surface energy and is set by
the surrounding turbulence. Under the studied conditions, the droplet
relaxation is found to be governed by capillary forces, an expected result
that supports the validity of this work.

The variety of the physical problems discussed in this Research
Topic provides a good overview of the current progress in
experimental and numerical methods, aimed at advancing
knowledge of multiphase systems under extreme conditions.
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