

Supplementary Material

1 SUPPLEMENTARY TABLES AND FIGURES

1.1 Tables

Table S1. Definition of various trivial integer linear programs for benchmarking and solutions obtainable by classical solver.

ILP variant	A	b	С	bits to re values in x	epresent values in s	solution	cost value
1	$\left \begin{array}{rrr} -1/3 & -1\\ -3 & -1\\ 0 & 1 \end{array}\right $	$\begin{bmatrix} -2\\ -6\\ 2 \end{bmatrix}$	$\begin{bmatrix} 1\\ 3 \end{bmatrix}$	2	3	$\begin{bmatrix} 3\\1 \end{bmatrix}$	6
2	$\begin{bmatrix} -2 & -2\\ -1 & -4\\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} -3\\ -5\\ 2 \end{bmatrix}$	$\begin{bmatrix} 2\\1 \end{bmatrix}$	2	3	$\begin{bmatrix} 0\\2 \end{bmatrix}$	2
3	$\begin{bmatrix} -2 & -2\\ -3 & -4\\ 1 & -1 \end{bmatrix}$	$\begin{bmatrix} -1\\ -6\\ 0 \end{bmatrix}$	$\begin{bmatrix} 1\\ 2 \end{bmatrix}$	2	3	$\begin{bmatrix} 1\\1 \end{bmatrix}$	3
4	$\left \begin{array}{rrrr} -1 & -2 & -3 \\ -3 & -4 & -1 \\ -1 & -1 & 0 \end{array} \right $	$\begin{bmatrix} -5\\ -5\\ -3 \end{bmatrix}$	$\begin{bmatrix} 1\\2\\1 \end{bmatrix}$	2	3	$\begin{bmatrix} 3\\0\\1\end{bmatrix}$	4
5	$ \begin{vmatrix} -1/3 & -1 \\ -3 & -1 \\ -1 & 1 \end{vmatrix} $	$\begin{bmatrix} 2\\6\\0 \end{bmatrix}$	$\begin{bmatrix} 3\\ -3 \end{bmatrix}$	2	3	$\begin{bmatrix} 0\\0\end{bmatrix}$	0

1.2 Figures

Figure S1: Average values of the Hamming distances between the best known solution and solutions obtained by the D-Wave AdvantageTM quantum annealer for various trivial ILP problems that are defined according to Table S1. Varied parameters are the QUBO-specific penalty p and the annealing time.

Figure S2: Rate of feasible solutions obtained by the D-Wave AdvantageTM quantum annealer for various trivial ILP problems that are defined according to Table S1. Varied parameters are the QUBO-specific penalty p and the annealing time.

Figure S3: Amount of individual feasible solutions obtained by the D-Wave AdvantageTM quantum annealer for various trivial ILP problems that are defined according to Table S1. Varied parameters are the QUBO-specific penalty p and the annealing time.

Figure S4: Amount of new feasible solutions obtained by a neural network based on the decision tree method. Results are shown for various trivial ILP problems that are defined according to Table S1. Varied parameters are the QUBO-specific penalty p and the annealing time.

Figure S5: Coincidence of energy values for input and output samples obtained by the decision tree method. Results are shown for various trivial ILP problems that are defined according to Table S1.