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Quantum fluctuations in one-dimensional supersolids
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In one dimension, quantum fluctuations prevent the appearance of long-range order in a supersolid, and only
quasi-long-range order can survive. We derive this quantum critical behavior and study its influence on the
superfluid response and properties of the solid. The analysis is based on an effective low-energy description
accounting for the two coupled Goldstone modes. We find that the quantum phase transition from the superfluid
to the supersolid is shifted by quantum fluctuations from the position where the local formation of a solid
structure takes place. For current experimental parameters with dipolar atomic gases, this shift is extremely
small and cannot be resolved yet, i.e., current observations in experiments are expected to be in agreement with
predictions from mean-field theory based on the extended Gross-Pitaevskii formalism.
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I. INTRODUCTION

A remarkable property of quantum fluctuations is that they
strongly influence spontaneous symmetry breaking in one-
dimensional systems. Especially, it is well established that
one-dimensional superfluids only exhibit quasi-long-range or-
der with a characteristic algebraic decay [1–4]. Nevertheless,
the latter can support a superfluid flow across a weak impu-
rity [5,6]. Recent experiments with weakly interacting dipolar
Bose gases have observed the appearance of a supersolid
phase in elongated one-dimensional geometries [7–9]. Such
a supersolid state breaks the translational symmetry giving
rise to a solid structure as well as the U(1) symmetry for
the superfluid and combines the characteristic properties of
both [10,11]. In this paper, we study the influence of quan-
tum fluctuations and the appearance of quasi-long-range order
for such one-dimensional supersolid phases in the thermody-
namic limit.

For a long time, the search for a supersolid state of matter
focused on systems with an averaged particle number per
lattice site close to 1 [11–13]. Remarkably, recent experiments
with dysprosium atoms are in a complementary regime with
a large amount of particles per lattice site [7–9]. So far,
the theoretical description of these experiments is based on
mean-field theory within the extended Gross-Pitaevskii for-
malism. It includes the leading beyond-mean-field correction
within the local-density approximation [14,15] and accounts
for quantum fluctuations modifying short-range correlations;
the behavior of this contribution has been studied for su-
perfluids in tight traps [16–18]. These analyses are in good
agreement with the experimental observations in elongated
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trap geometries and also predict the stability of the supersolid
phase in the thermodynamic limit for a one-dimensional ge-
ometry [19–22].

Quantum fluctuations will in addition prevent the ap-
pearance of long-range order and modify the characteristic
properties of this supersolid state. This effect has been in-
tensely studied for superconducting thin wires: In addition
to the appearance of quasi-long-range order, the quantum
nucleation of phase slips provides dissipation even in the
superconducting phase at zero temperature and gives rise
to an algebraic current-voltage characteristic [23–28]. Such
an algebraic current-voltage characteristic still gives rise to
a superconducting phase as the linear resistivity vanishes.
However, quantum fluctuations can eventually drive a quan-
tum phase transition from the superconductor to a state with
finite resistivity for increasing influence of the phase fluctu-
ations [23–28]. For a Galilei invariant superfluid, quantum
nucleation of phase slips can only appear at an impurity, but
it similarly gives rise to dissipation and eventually drives a
quantum phase transition [5,6,29,30]. In analogy, the phonon
mode in a solid gives rise to a similar effective low-energy
description, and therefore quantum fluctuations also strongly
affect the properties of a solid [31].

In this paper, we analyze how quantum fluctuations
affect the characteristic properties of a supersolid in a one-
dimensional geometry. The analysis is based on the effective
low-energy theory for a supersolid with many particles within
a lattice site [32–34] and allows for the derivation of the
algebraic behavior of the characteristic correlation functions.
The superfluid is defined by the ability of the system to sustain
a dissipationless particle flow across a weak impurity, i.e., the
absence of a linear relation between flow and pressure [5,6].
In analogy, the solid character is defined by the ability of the
system to drag the solid structure with a moving impurity. We
find that the quantum phase transition from the superfluid to
the supersolid is shifted: The formation of a solid structure
takes place first, while the supersolid phase only appears for
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sufficient correlations between these local solid structures.
However, for current experimental setups with dipolar quan-
tum gases, this shift is extremely small and beyond current
experimental resolution. In addition, we find that correlations
only decay very slowly, such that mean-field theory within
the extended Gross-Pitaevskii approach is expected to provide
an accurate description for current experimental parameters
in elongated traps. Finally, we study the disappearance of
the supersolid phase for increasing correlations. This paper
is ordered as follows: In Sec. II we discuss the underlying
low-energy theory. The phase boundaries between superfluid,
supersolid, and solid are derived in Sec. III. Finally, in Sec. IV
we discuss the connection of the effective parameters in the
low-energy theory to the experimental setting with dyspro-
sium atoms.

II. LOW-ENERGY THEORY

We start with the effective low-energy description of a
one-dimensional supersolid consisting of weakly interacting
bosons with a large number of atoms per lattice site. Then, the
bosonic field operator can be written as ψ (x) = √

ρ(x) eiϕ(x)

with the phase field ϕ and the density field

ρ(x) = [n + δn(x)] f

(
x − d

2π
u(x)

)
, (1)

while we introduced the notation x = (x, t ) for the space-time
coordinate. Here, f (x) = f (x+d ) is a periodic function with
period d and normalized to

∫ d
0 dx f (x)/d = 1; it accounts

for the local formation of a solidlike structure by droplets,
while the displacement field u(x) allows for fluctuations in the
position of these droplets. Note that n denotes the averaged
density with nd particles within each droplet, while δn(x)
describes local density fluctuations. The low-energy behavior
is then captured by the effective Lagrangian for the slowly
varying fields ϕ, δn, and u [32–34],

L = − h̄δn∂tϕ − κ

2
(δn)2 − λ′

2
(∂xu)2 − ξ ′δn∂xu

+ h̄2n

2m

[
nL

n

(
md

2π h̄
∂t u − ∂xϕ

)2

− (∂xϕ)2

]
. (2)

The second line corresponds to the kinetic energy, where the
term ∂t u accounts for the velocity of the droplet at position
x, while the superfluid exhibits a reduced superfluid density
ns ≡ n − nL due to the formation of a local solidlike structure
[10]. Furthermore, the first line includes the conventional cou-
pling between the phase field and the density in a superfluid
as well as an expansion of the interaction energy to second
order in the slowly varying fields with parameters κ , λ′, and
ξ ′. Note that these parameters can be conveniently derived
within mean-field theory [21], and the stability of the system
naturally requires κλ′ − (ξ ′)2 > 0. In the weakly interacting
regime, we also require h̄2n/(mκ ) � 1, i.e., the kinetic energy
of the superfluid is much larger than the interaction energy.

The Lagrangian in Eq. (2) describes a strong coupling be-
tween the Bogoliubov mode of the superfluid and the phonon
mode of a solid, and it gives rise to two linear sound modes
accounting for the two broken symmetries. Furthermore, we
find the current conservation ∂tδn = −∂x( js + jn) with the

normal and superfluid current jn = (nLd/2π )∂t u and js =
(h̄ns/m)∂xϕ. For nL/n → 0 the solid structure disappears.
Consequently, ξ ′ → 0 and λ′ → 0, and we recover the effec-
tive low-energy description of a superfluid. For nL/n → 1, we
obtain the theory of phonons in a solid with the compressibil-
ity (n2κ + 4π2λ′/d2 − 4πnξ ′/d )/m.

In the following, it is convenient to switch to a Hamiltonian
description of the low-energy quantum theory,

H = h̄

2π

∫
dx

[
vJ

(
∂xϕ

∂xw

)
MJ

(
∂xϕ

∂xw

)

+ vN

(
∂xϑ

∂xu

)
MN

(
∂xϑ

∂xu

)]
, (3)

where −h̄∂xϑ/π and −h̄∂xw/π denote the conjugate vari-
ables to ϕ and u, respectively. We have introduced the two
velocities vJ = h̄πn/m and vN = κ/π h̄, with vN/vJ � 1 in
the weakly interacting regime. The matrices MJ and MN take
the form

MJ =
(

1 −β

−β β2/γ

)
, MN =

(
1 ξ

ξ λ

)
, (4)

with β = 2/nd , γ = nL/n, and the dimensionless parameters
λ = λ′π2/κ and ξ = ξ ′π/κ . Since γ � 1, MJ is positive
semidefinite. The stability in the thermodynamic limit re-
quires MN to be positive semidefinite as well, i.e., λ − ξ 2 � 0.
Being conjugate variables, the canonical commutation rela-
tions read

[∂xϑ (x), ϕ(y)] = iπδ(x − y) = [∂xu(x),w(y)]. (5)

It is possible to diagonalize this Hamiltonian into two uncou-
pled sound modes by the transformation(

φ+
φ−

)
= Q

(
ϕ

w

)
,

(
θ+
θ−

)
= (Q−1)T

(
ϑ

u

)
. (6)

The construction of this canonical transformation is presented
in the Appendix, and we obtain the Hamiltonian

H = h̄

2π

∫
dx

∑
σ∈{+,−}

vσ [(∂xφσ )2 + (∂xθσ )2] (7)

with the two sound velocities

v2
± = vJvN

2
[α ±

√
α2 − 4β2(λ − ξ 2)(1−γ )/γ ] (8)

and α = 1 − 2ξβ + β2λ/γ . The Hamiltonian in Eq. (7) al-
lows us to derive the behavior of correlation functions at long
distances [2]. We obtain quasi-long-range off-diagonal order
for the superfluid as well as quasi-long-range diagonal order
for the solid,

〈ψ (x)ψ†(0)〉 = n

(
ζ

|x|
)A/2

,

〈ρ(x)ρ(0)〉−n2 = − C

2π2|x|2 + η cos
2πx

d

(
ζ

|x|
)B/2

. (9)

Here, we introduced the nonuniversal parameter η and the
short-distance cutoff ζ , while the algebraic decay is deter-
mined by the canonical transformation via A = ((Q−1)11)2 +
((Q−1)12)2, B = (Q12)2 + (Q22)2, and C = (Q11)2 + (Q21)2.
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III. PHASE DIAGRAM

In the following, we study the quantum phase transitions
in the system. The characteristic property of a superfluid is
that it can sustain a superfluid flow, while in a solid a moving
localized impurity can drag the solid structure along; a su-
persolid exhibits both of these properties, i.e., it can sustain
a superfluid flow while a moving impurity drags the solid
structure along. These conditions provide critical values for
the algebraic correlations above and will be studied in the
following.

A. Superfluid-supersolid transition

We start with the parameters in the superfluid close to
the formation of a solidlike structure, i.e., γ � 1 with A ∼√

vN/vJ � 1. This condition is sufficient to sustain a super-
fluid flow (see below). Therefore we first study the transition
into the supersolid for increasing γ , i.e., stronger local solid-
like structure. A local impurity at position x0 is described by
an external potential VI ≈ gδ(x − x0) and provides a contribu-
tion to the low-energy Hamiltonian

HI =
∫

dxρ(x)VI (x) ∼ gu cos (u(x0) + 2πx0/d ), (10)

where we expanded the local solid structure f (x) in Eq. (1)
into a Fourier series. Note that the impurity can provide addi-
tional terms when taking the discrete nature of particles into
account [2], but these do not become relevant before super-
fluidity is lost (see below). The low-energy description then
reduces to a coupled boundary sine-Gordon model [35–40].
The term in Eq. (10) is irrelevant for B > 4, and therefore
the system does not feel the presence of the impurity in the
low-energy regime. In turn, the term becomes relevant for
B < 4 and pins u(x0) to the minimum of the cosine. Varying
the position x0 of the impurity now results in a change in
u, which shifts the local solid structure of the system with
the impurity. Hence the system exhibits a solid character for
B < 4. In our dimensionless units, B is given by

B = β2 vJ

(v+ + v−)

⎡
⎣ 1

γ
+

√
1 − γ

γ β2(λ − ξ 2)

⎤
⎦

∼ β2

√
vJ

vN

1√
γ β2λ

for γ → 0. (11)

In Fig. 1 the critical line B = 4 of the quantum phase transition
separating the superfluid from the supersolid is shown for
different values of ξ . The parameters vJ/vN = 1.0 × 107 and
β = 2.1 × 10−4 are fixed to realistic values derived within
mean-field theory using an extended Gross-Pitaevskii ap-
proach for an experimentally realistic setup (see below). The
transition always takes place at a finite and nonvanishing value
of γ , i.e., the transition is shifted from the local formation of
a solid structure at γ = 0.

It is important to note that the local formation of droplets
can act as a source for the nucleation of quantum phase slips.
Even in the superfluid as well as in the supersolid, such phase
slips will give rise to a small dissipation and an algebraic
behavior between the pressure difference �P for sustaining

FIG. 1. Critical line B = 4 (red solid line) as a function of γ and
β2(λ − ξ 2) at βξ = 0 for fixed vJ/vN ≈ 1.0 × 107 and β ≈ 2.1 ×
10−4. The black dashed line shows the asymptotic behavior of B for
γ → 0. In the gray-shaded region, B > 4 and the system does not
feel the impurity (superfluid), while in the white region B < 4 and
the perturbation becomes relevant (supersolid). The orange dotted
line shows the path across the phase transition for experimentally
realistic parameters. In the inset, we fix βξ = 0.1 while vJ/vN and β

remain unchanged.

the particle current I with �P ∼ I2/A−2; this behavior is in
analogy to thin superconducting wires [23].

B. Supersolid-solid transition

Next we analyze the quantum phase transition from the
supersolid into a solid, which appears for γ → 1. One can un-
derstand this transition as in this regime, the different droplets
of the solid structure are only connected by a very weak su-
perfluid link and essentially give rise to a Josephson junction
between each droplet. Note that such a Josephson junction
can only support a superfluid flow if A < 1 [35]. For exper-
imentally realistic setups with vN/vJ � 1 and the asymptotic

behavior A ∼ 1√
1−γ

√
vN
vJ

for γ → 1, we find indeed that this

transition can only appear for γ ≈ 1. This simple criterion
provides an upper bound on the transition from the supersolid
into the solid. However, this transition can be preempted at
commensurate fillings with an integer number of particles
within each droplet, i.e., nd = 2/β ∈ N. Then, the micro-
scopic interaction between the particles also generates a term
[2]

HM = gM

∫∫
dx dt cos (2ϑ (x) + 2u(x)/β ), (12)

which becomes relevant for D = (Q11 + Q12/β )2 + (Q21 +
Q22/β )2 < 2 and pins the number of particles in each droplet
to the integer value 2/β. It describes the quantum phase tran-
sition into a Mott insulator with an excitation gap for adding
or removing a particle from a droplet. However, the droplets
can still fluctuate in position giving rise to a phononic sound
mode characteristic for a solid. Since D = A−1 for γ → 1, the
Mott transition at commensurate fillings occurs earlier than
the transition of a single Josephson junction.
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IV. EXPERIMENTAL PARAMETERS

In the following, we demonstrate how to obtain the ef-
fective parameters of our low-energy theory close to the
superfluid-to-supersolid phase transition within a mean-field
study. The setup we focus on is based on dysprosium atoms.
We consider a reduced three-dimensional model of weakly
interacting dipolar bosons of mass m in a transverse harmonic
trap of oscillator length l⊥ within mean-field theory. Our
approach is based on a recent mean-field study [21], where
also the excitation spectrum has been studied in detail. For
the transverse wave function we use the ansatz ψ (y, z) =

1√
πσ

e−(νy2+z2/ν)/σ 2
and determine the variational parameters σ

and ν by minimizing the ground-state energy. In addition, we
include quantum fluctuations in local-density approximation
(extended mean-field theory), which is crucial for the stability
of the supersolid state. These quantum fluctuations only in-
fluence the short-range correlations and provide a correction
to the mean-field ground-state energy. They do not influence
spontaneous symmetry breaking in the one-dimensional sys-
tem as mean-field theory inherently assumes the presence of
order. For a transverse harmonic trapping with length l⊥ =
200as and a density n ≈ 11.931/as, the extended mean-field
formalism predicts a second-order quantum phase transition
from the superfluid to the supersolid state, where the local
formation of a structure appears at ε∗

dd = 1.34 [21]; here,
as denotes the s-wave scattering length, and εdd denotes the
relative dipolar interaction strength. In the supersolid regime,
we use the mean-field ansatz

φ(x) =
√

n√
1 + ∑∞

j=1
�2

j

2

⎛
⎝1 +

∞∑
j=1

� j cos [ j ksx]

⎞
⎠ (13)

for the longitudinal direction, with the order parameters � j ,
the wave vector ks of the modulation, and the one-dimensional
density n. We write the energy as

E = Et (σ, ν) −
∫

dx φ∗(x)
h̄2∇2

2m
φ(x)

+ 1

2

∫
dx dx′ V (x − x′)|φ(x′)|2|φ(x)|2

+ 2

5
γ̃

∫
dx |φ(x)|5, (14)

where Et = Nh̄2

4ml2
⊥

( 1
ν

+ ν)( 1
σ 2 + σ 2) is the energy contribution

of the transverse confinement of the N particles and V (x) is the
effective one-dimensional (1D) dipolar interaction potential
in real space, which we obtain by integrating out the trans-
verse degrees of freedom of the three-dimensional dipolar
interaction potential with dipolar strength εdd and scattering
length as, assuming the shape ψ (y, z) for the transverse wave
function [41]. The last term in Eq. (14) takes into account
fluctuations within the local-density approximation, and γ̃

controls the strength of these fluctuations. The ground state
is obtained by minimizing Eq. (14) with respect to �l and
ks as well as σ and ν. From the ground state we can extract
all relevant quantities of our model. Within mean-field theory,
Leggett’s upper bound for the superfluid fraction [10] is com-

×

FIG. 2. Superfluid-to-supersolid transition for increasing dipolar
strength. We show B/4 as a function of εdd − ε∗

dd, where ε∗
dd = 1.34

marks the local formation of droplets. The system transitions to the
supersolid at B/4 = 1 (red vertical line), which is shifted compared
with the local formation of a solid structure at γ = 0 (gray vertical
line). The inset shows the system parameters γ , βξ , and β2λ used
to calculate B/4 as a function of εdd for a harmonic transverse trap-
ping with oscillator length l⊥ = 200as and one-dimensional density
n = 11.931/as.

pletely saturated [42],

1

fs
= k2

s

4π2

(∫ 2π/ks

0
dx|φ(x)|2

)(∫ 2π/ks

0

dx

|φ(x)|2
)

,

(15)

and we obtain γ = 1 − fs. The parameters κ , ξ ′, and λ′ of our
model characterize the effective potential of the supersolid. By
considering the ground state of Eq. (14) for a fixed chemical
potential μ, we can connect variations of the wave vector ks

and the density n to the parameters κ , ξ ′, and λ′. Variations in
the density δn are directly connected to κ , while a variation
in the wave vector ks is connected to λ, since a linear dis-
placement field ∂xu = δa = const changes the periodicity of
the system, ks → ks − δa = ks + δks. We expand E − μN up
to second order in δn and δks,

ml2
⊥

h̄2

(E − μN )as

L
= C0 + Cκ (asδn)2 + Cλ(l⊥δks)2

+ Cξ (asδn)(l⊥δks), (16)

and obtain the expansion coefficients Cκ , Cλ, and Cξ nu-
merically. Comparing the Hamiltonian in Eq. (3) with the
expansion in Eq. (16) yields the dimensionless parameters

λ = π2l2
⊥Cλ

a2
sCκ

, ξ = −π l⊥Cξ

2asCκ

,

β = ks

nπ
,

vJ

vN
= π2nl2

⊥
2asCκ

. (17)

For the parameters as/l⊥ = 1/200 and n ≈ 11.931/as,
vJ/vN ≈ 1.0 × 107 and β ≈ 2.1 × 10−4 are approximately
constant in the vicinity of the extended mean-field transition
at ε∗

dd = 1.34. In the inset of Fig. 2, we show the parameters
γ , ξ , and β as a function of εdd − ε∗

dd. As predicted above, we
find that ξ and λ vanish for γ → 0. Then, the behavior of the
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parameter B/4 is shown in Fig. 2 as a function of εdd − ε∗
dd.

Indeed, we find that the quantum phase transition to the su-
persolid is shifted by quantum fluctuations from the position
where a local solid structure forms at ε∗

dd = 1.34. However,
this region is extremely small with δ ≈ 5 × 10−7 and beyond
current control on the experimental parameters. Therefore
the transition from the superfluid into the supersolid phase
is extremely well described by mean-field theory within the
extended Gross-Pitaevskii approach for current experimental
setups.

V. CONCLUSION

In conclusion, we have studied the influence of quantum
fluctuations on a one-dimensional supersolid and determined
both the quasi-long-range diagonal and off-diagonal order.
The quantum phase transition from the superfluid to the su-
persolid is shifted by quantum fluctuations from the position
where a local solid structure forms. Furthermore, the quantum
nucleation of phase slips provides a weak dissipation with an
algebraic behavior between the pressure difference and the
particle flow. However, for current experimental parameters
for dysprosium atoms with many atoms per lattice site, these
effects are extremely weak, and therefore the supersolid is ac-
curately described by the extended Gross-Pitaevskii equation.
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APPENDIX: CONSTRUCTION OF THE
TRANSFORMATION MATRIX

In this Appendix we derive the transformation which de-
couples the Hamiltonian in Eq. (3) of the main text into two
modes with sound velocity v±. This can be achieved if we

require that the transformation Q fulfills the equations

(Q−1)T [vJMJ ]Q−1 =
(

v+ 0
0 v−

)
,

Q[vN MN ]QT =
(

v+ 0
0 v−

)
. (A1)

From these equations it also follows that Q has to fulfill

Q[vNvJMN MJ ]Q−1 =
(

v2
+ 0
0 v2

−

)
, (A2)

meaning that it diagonalizes the matrix MN MJ with eigen-
values v2

±. We can therefore construct Q by finding the
eigenvectors of MN MJ . These are

pσ = 1

Nσ

(
1

2
[1 − β2λ/γ + σ

√
�], ξ − βλ

)T

, (A3)

with σ ∈ {+,−} and � = (1 − 2ξβ + β2λ/γ )2 − 4β2(λ −
ξ 2)(1 − γ )/γ and yet-undetermined constants Nσ . The matrix
is then defined as Q−1 = (p+ p−). The still-undetermined
constants Nσ must now be used to make sure that Eq. (A1)
is fulfilled. We obtain that

N2
± = ±

√
�

v2
± − vNvJβ

2λ(1 − γ )/γ

vNv±
, (A4)

which fully determines the transformation. A bit of calcula-
tion leads to a somewhat compact form

Q−1 = 4

√
vN

vJ

⎛
⎜⎜⎜⎝

s+
1

√
γ v̂2+−β2(λ−ξ 2 )

γ v̂+
√

�
s−

1

√
β2(λ−ξ 2 )−γ v̂2−

γ v̂−
√

�

s+
2

√
λv̂2+−(λ−ξ 2 )

v̂+
√

�
s−

2

√
(λ−ξ 2 )−λv̂2−

v̂−
√

�

⎞
⎟⎟⎟⎠,

with s±
i = sgn((p±)i ) and v̂σ = vσ /

√
vJvN . The inverse is

then given by

Q = 4

√
vJ

vN

⎛
⎜⎜⎜⎝

√
γ v̂2+−β2λ(1−γ )

γ v̂+
√

�
−s−

1 s−
2 β

√
v̂2+−(1−γ )

γ v̂+
√

�

−
√

β2λ(1−γ )−γ v̂2−
γ v̂−

√
�

s+
1 s+

2 β

√
(1−γ )−v̂2−
γ v̂−

√
�

⎞
⎟⎟⎟⎠.
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