
INSTITUTE FOR PARALLEL AND DISTRIBUTED SYSTEMS

SIMULATION TECHNOLOGY DEGREE COURSE

Bachelor thesis

Submitted to the University of Stuttgart

Comparison of different Hyperparameter-Tuners for Support Vector
Machines

An analysis using Parallel Least-Squares SVM Library on GPU

Examiner

Prof. Dr. Dirk PFLÜGER

Institute for Parallel and Distributed Systems

First Supervisor

M.Sc. Peter Domanski

Institute for Parallel and Distri-

buted Systems

Second Supervisor

M.Sc. Alexander Van
Craen

Institute for Parallel and Dis-

tributed Systems

Third Supervisor

M.Sc. Marcel Breyer

Institute for Parallel and Distri-

buted Systems

Submitted by

Author Yannick Marian DZUBBA

Matriculation number 3401428
SimTech-Nr. 184
Submission date April 2024

Abstract

Working with large datasets requires sophisticated tools. One such tool developed for classification
is the Support Vector Machine (SVM). As with any ML algorithm, the user has to set several
different Hyper Parameter (HP) to run a SVM. Finding the optimal choice of HPs is important for
model performance and it is highly dependent on the dataset. Given the number of different HPs, a
search space might be massive, so optimization methods have been developed, to automate this
search. This work aims to compare three popular choices: The Grid Search, the Random Search
and Bayesian Model Search. They are compared in different metrics, such as performance, runtime
and energy. Optuna [ASY+19] was used as optimizer backend, it implements all three optimizer
types, it implements Tree-Parzan Estimator (TPE) as Bayesian Search algorithm. It was connected
to Parallel Least-Squares Support Vector Machine (PLSSVM) [VCBP22] as SVM implementation.
PLSSVM can efficiently exploit parallel compute cores. The optimizers have been tested on a
selection of different search spaces and datasets with PLSSVM running on Graphic Processing Unit
(GPU).

3

Contents

1 Introduction 13

2 Propraedeuticum 15
2.1 Metrics . 15
2.2 Dataset . 17
2.3 Hyper Parameter . 18
2.4 Hyper Parameter Optimization . 19
2.5 Support Vector Machine . 25
2.6 Related works HPO analysis for SVM . 29

3 Methodology 31
3.1 Dataset preparation . 31
3.2 Dataset selection . 33
3.3 PLSSVM-HPO framework . 36
3.4 Hyper Parameter Sensitivity tests . 46
3.5 Search space definitions . 48
3.6 Study definitions . 50
3.7 Time trials . 51
3.8 Experiment settings . 53

4 Results 55
4.1 GPU power draw . 55
4.2 Performance results . 57
4.3 In-depth search space comparison . 58
4.4 Time Optimized Stop Criteria . 70
4.5 Result Overview . 78

5 Conclusion and Outlook 79
5.1 Iterative problem . 79
5.2 Bias . 79
5.3 Other configurations . 80

Bibliography 81

5

List of Figures

2.1 A confusion matrix for a single label. 15
2.2 Comparison of model evaluation strategies. 18
2.3 Visualization of all dataset slices of a simple Hyper Parameter Optimization (HPO).

In this example, the dataset is split into three parts: One to train the model, one to
validate the trained model and one to assess the performance of the tuned model.
k-fold cross-validation (CV) can be done on the optimizer slice as well. 19

2.4 Recreation of figure in [BB12]. Sketch of a two-dimensional, continuous search
space. In both examples, exactly 16 samples were drawn. The position of each
sample is drawn once as combination and once on each search axis. This example
tries to optimize the function 𝑓 (®𝜆) = 𝑎(𝜆1) + 𝑏(𝜆2), ®𝜆 = [𝜆1, 𝜆2]. 22

2.5 Sketch of a Bayesian Model Search. 23
2.6 Sketch of how the sampling of HP on this objective function might look like. The

contour plot shows the objective function, while the scatter plot shows the sampled
HPs. 23

2.7 Simple example of a SVM on two-dimensional data 25
2.8 This example is not linearly separable. Any linear decision boundary, would result

in a model with bad classification performance. 27
2.9 To solve this problem, the data is transformed from a two-dimensional space to a

three-dimensional space using a second-degree polynomial kernel. Now a linear
decision boundary can separate the two classes again. 27

2.10 Multiclass classification model performance and runtime. Uses the same HPs
described in the significance tests in section 3.4. Accuracy measured on validation
slice defined in section 2.2. 28

3.1 An example of deskewing images of MNIST. The arrows are defined over the
covariance matrix of the digit’s distribution. Eigenvectors of the matrix define their
directions and the square-root of the eigenvalues define their lengths. 35

3.2 PLSSVM-HPO flow diagram . 36
3.3 Class diagram of SVMScore, the Vector class refers to a one-dimensional NumPy-

array [HMW+20]. Using holdout validation, each list only contains one entry. If
used with CV, each list has k-entries, one for each fold. 40

3.4 Sequence diagram of fitting and evaluating a PLSSVM model. If CV is used, then
the main loop is executed k-times. Otherwise it is executed only once. 42

3.5 High-level UML-Diagram of the SVMTuner class. The DatasetContainer class is
described in subsection 3.3.1, whereas the Hyperparameter container is described
in subsection 3.3.2. Vector and Matrix refer to a one- and two-dimensional
NumPy-array respectively [HMW+20]. 43

3.6 Relational diagram of input JSON metadata file. 44

7

3.7 These plot show the main HPs behavior over the MNIST dataset. Sensitivity tests
of the other datasets can be found in Figures 3 and 4 of the appendix. 47

3.8 Different time tests on small search space. Time trials of the other datasets can be
found in the Figures 1 and 2 of the appendix. 52

4.1 Within each dataset, the power of the conducted studies is very consistent. 56
4.2 One of the power outlier on the Software Defects dataset using search space 0. . . 57
4.3 Search space 0 runtime distributions. The line denotes the median of each

distribution, the number besides the dataset name indicates the search space. . . . 60
4.4 Search space 0 score distributions over the trials of all studies combined. 60
4.5 Search space 1 runtime distributions. 62
4.6 Search space 1 score distributions. 62
4.7 Search space 1 Software Defects score and convergence. 63
4.8 Search space 1 MNIST score and convergence. 63
4.9 Search space 1 Deepsat Sat6 score and convergence. 64
4.10 Search space 2 runtime distributions. 65
4.11 Search space 2 score distributions. 65
4.12 Search space 2 Software Defects score and convergence. 66
4.13 Search space 2 MNIST score and convergence. 67
4.14 Search space 2 Deepsat Sat6 score and convergence. 67
4.15 Search space 3 runtime distributions. 68
4.16 Search space 3 score distributions. 68
4.17 Search space 3 Software Defects score and convergence. 69
4.18 Search space 3 MNIST score and convergence. 69
4.19 Search space 3 Deepsat Sat6 score and convergence. 70
4.20 Runtime distributions on search space 4 with timebound studies. 73
4.21 Score distributions on search space 4 with timebound studies. 73
4.22 Software Defects score and convergence of search space 4 timebound studies. . . 73
4.23 MNIST score and convergence of search space 4 timebound studies. 74
4.24 Deepsat Sat6 score and convergence of search space 4 timebound studies. 74
4.25 Runtime distributions on search space 4 with convergence studies. 76
4.26 Score distributions on search space 4 with convergence studies. 76
4.27 Software Defects score and convergence of search space 4 convergence studies. . 76
4.28 MNIST score and convergence of search space 4 convergence studies. 77
4.29 Deepsat Sat6 score and convergence of search space 4 convergence studies. . . . 77

1 Time trials of the Software Defects dataset (section 3.2). Time trials of MNIST can
be found in Figure 3.8. 85

2 Time trials of the Software Defects dataset (section 3.2). Time trials of MNIST can
be found in Figure 3.8. 86

3 Significance tests of Software Defects dataset (section 3.2). Test score refers to the
Accuracy on the validation slice of the dataset, as defined in section 2.2. MNIST
significance test can be found in Figure 3.7. 87

4 Significance tests of Deepsat Sat6 dataset (section 3.2). Test score refers to the
Accuracy on the validation slice of the dataset, as defined in section 2.2. MNIST
significance test can be found in Figure 3.7. 88

8

List of Tables

3.1 Default values used. 𝑎 may also be referred to as 𝜖 48
3.2 Search space 0 definition. 49
3.3 Search space 1 definition. 1e-2 is the programming notation of 1 · 10−2. The steps

argument is left out for continuous sampler in this and all following search space
definitions. 49

3.4 Search space 2 definition. 49
3.5 Search space 3 definition. 𝑎 if written in a study definition file, the limits have to be

written as real numbers. In case of MNIST this would be "float(1.28e-4, 1.28e-2,
log=True)". 50

3.6 Search space 4 definition. 50

4.1 Win and loss comparison per search space and search algorithm and dataset. . . 58
4.2 Performance and runtime figures of one run using the default values. 58
4.3 Performance and runtime comparison of search space 0. 𝑡𝑠𝑡 is the average runtime

of a complete study, while 𝑡𝑡𝑟 is the average runtime of a single trial. Best describes,
which optimizer found the model with the highest accuracy on the study holdout in
all experiments. 59

4.4 Performance and runtime comparison of search space 1. 61
4.5 Performance and runtime comparison of search space 2. 65
4.6 Performance and runtime comparison of search space 3, 𝛾0 = 1/𝑛 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠. 68
4.7 Performance and runtime comparison table A of search space 4 using a timebound

stop criterion. 72
4.8 Performance and runtime comparison table B of search space 4 using a timebound

stop criterion. 72
4.9 Performance and runtime comparison table A of search space 4 using a convergence

stop criterion. 75
4.10 Performance and runtime comparison table B of search space 4 using a convergence

stop criterion. 75
4.11 Performance of found models compared to literature. 78

9

Acronyms

C cost. 61

CG conjugate gradient. 26

CNN Convolutional Neural Network. 78

CPU Central Processing Unit. 26

CSV Comma-Separated Values. 31

CV k-fold cross-validation. 7

d polynomial degree. 64

GPU Graphic Processing Unit. 3

HP Hyper Parameter. 3

HPO Hyper Parameter Optimization. 7

IPVS Institute for Parallel and Distributed Systems. 13

k kernel. 59

ML Machine Learning. 3, 13

NN Neural Network. 78

oaa one against all. 28

oao one against one. 28

OS Operating System. 55

PLSSVM Parallel Least-Squares Support Vector Machine. 3

poly polynomial. 28

PSV proportion of support vectors. 29

RAM Random-Access Memory. 40

rbf Radial Basis Function. 28

sc scaling HP. 59

SMO Sequential Minimal Optimization. 26

SVM Support Vector Machine. 3

TDP Thermal Design Power. 55

11

Acronyms

TPE Tree-Parzan Estimator. 3

VRAM Video Random-Access-Memory. 35

12

1 Introduction

To make predictions based on data, a widely used algorithm is the Support Vector Machine. As
with any Machine Learning (ML) algorithm, with a SVM the user is faced with the question, of
what parameters to use. The correct choice of these parameters is important so that algorithm can
find a good model for the data. These parameters are referred to as HP.

Given this premise, the question arises, how can the user find HP, that will result in a good model? In
the case of a SVM, there are a number of different HP to consider, such as the kernel, the cost, or the
tolerance. Depending on the kernel, there are even more HP (for example the degree parameter of
the polynomial kernel function). Due to the number of HPs, a search space (subsection 2.4.3) might
be massive, and it is not easy to guess which combination of HPs will lead to a good model. To
compound this fact, fitting any ML model usually requires significant resources, both in terms time
and energy. Given these constraints, several automatic optimization methods have been developed,
to help find a good model.

Three popular methods are the Grid Search, the Random Search and the search guided by a Bayesian
Model over the HP. In this work, the Optuna [ASY+19] package was chosen, it implements all three
of the above optimizers. TPE was used as the Bayesian Model Search. For the SVM implementation,
the PLSSVM library [VCBP22], developed by Van Craen et al. at the Institute for Parallel and
Distributed Systems (IPVS) was chosen. PLSSVM takes advantage of the massive amount of
compute cores found on a modern GPU to parallelize the work of fitting the model using the
Least-Squares approach, thereby reducing the required runtime. This is particular important because
a reduction in runtime allows using a bigger search space to be used for´ optimization.

To compare these three HP optimizers, several tests were developed, each increasing the search
space covered by the optimizers. The tests were run on three different datasets, that may be classified
using the PLSSVM library. These tests aim to find out which optimizer works well for a given search
space and dataset. All three optimizers are compared in terms of model performance, optimization
runtime and energy consumption. Additional tests were developed, to find approaches, how to deal
with search spaces, where a full search might exhaust the available resources. The development of
the tests is explained in chapter 3.

This task was accomplished by implementing a comprehensive HPO framework, which combines
Optuna and PLSSVM with components for loading datasets and search spaces [Dzu24] and
then performing the optimization studies. A high-level overview of the framework is given in
section 3.3.

13

2 Propraedeuticum

This chapter discusses works related to our research. It includes the works on which this research
was based and works that aim to research the same field of HPO for SVM.

2.1 Metrics

When evaluating any model, there are two broad categories to consider. First, a trained model will
have some performance on a task. For example, a metric is used to quantify how well a model
trained on handwritten numbers can predict the correct digits. On the other hand, training such
a model requires resources in terms of time and energy. The latter two are logged during model
fitting, which is described in subsection 3.3.5. Grandini et al. wrote a comprehensive paper on the
topic of multiclass classification metrics [GBV20], which was used as basis for this section.

2.1.1 Model performance metrics

Figure 2.1: A confusion matrix for a single label.

Since the scope of this work is limited to classification, only classification metrics are discussed. A
classifier is a supervised ML function that, given an input, predicts which class the data belongs to.
To evaluate the performance of a classifier, there are a handful of different metrics that can be used.

15

2 Propraedeuticum

These metrics exist per class and aggregated for all classes. The performance of a single class 𝑐 𝑗

within the classifier can be evaluated using the following set of metric equations:

𝑝 𝑗 =
𝑇𝑃 𝑗

𝑇𝑃 𝑗 + 𝐹𝑃 𝑗

(2.1)

𝑟 𝑗 =
𝑇𝑃 𝑗

𝑇𝑃 𝑗 + 𝐹𝑁 𝑗

(2.2)

𝑓 1 𝑗 =
2𝑝 𝑗𝑟 𝑗

𝑝 𝑗 + 𝑟 𝑗
(2.3)

𝑇𝑃 𝑗 denotes the true positives of class j. Or in other words, how often the classifier correctly
identified data belongs to class j. This is usually visualized with the aid of a confusion matrix, as in
Figure 2.1. 𝑝 𝑗 denotes precision and 𝑟 𝑗 the recall of class j. The 𝑓 1 𝑗 is the harmonic mean of recall
and precision.

𝐹1 =
1

𝑚 + 1

𝑚∑︁
𝑗=0

𝑓 1 𝑗(2.4)

𝑇𝑃 =

𝑚∑︁
𝑗=0

𝑇𝑃 𝑗(2.5)

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2.6)

𝐸 = 1 − 𝐴𝑐𝑐(2.7)

𝐴𝑐𝑐 is the accuracy score of the model. Accuracy is a very commonly reported metric and has
been used to compare tuning results with each other in section 4.3 and with literature section 4.5.
In some cases, the misclassification error 𝐸 is reported, which is closely related to accuracy. It has
the advantage that when plotted on a logarithmic scale, the difference between better performing
models may be more visible. An example of such a plot can be seen in Figure 3.8. The 𝐹1 denotes
the macro score, which is the unweighted average of all 𝑓 1 𝑗 scores. Accuracy and weighted metrics
have the disadvantage that, in the case of an unbalanced dataset, they may still report a good
aggregated score even if the performance of a less represented class is bad [GBV20, cpt. 4.2].
Conversely, we noticed that the 𝐹1 score was sometimes undefined. This behavior is due to it’s
definition and it depends on the use case if such a behavior is desirable or not. For all these reasons,
both the accuracy and the 𝐹1 metrics are implemented in the PLSSVM-HPO framework developed
(subsection 3.3.4). All defined metrics are in the range [0, 1]. For all of them, higher is better,
except for the misclassification error.

16

2.2 Dataset

2.2 Dataset

A classification dataset is defined as the the data 𝑋 and the corresponding labels 𝑌 . Some practical
considerations on how to prepare a dataset are given in section 3.1. Without loss of generality, each
data point of ®𝑥𝑖 can be written as a one-dimensional vector

[
𝑥𝑖,0 𝑥𝑖,1 ... 𝑥𝑖,𝑚

]
. The formal definition

of a dataset 𝐷 is

𝑋 =


𝑥0,0 𝑥0,1 ... 𝑥0,𝑚
𝑥1,0 𝑥1,1 ... 𝑥1,𝑚

...

𝑥𝑛,0 𝑥𝑛,1 ... 𝑥𝑛,𝑚


, 𝑌 =


𝑦0
𝑦1
...

𝑦𝑛


(2.8)

𝐷 = [𝑋,𝑌] .(2.9)

Each label entry 𝑦𝑖 is part of a set of unique class labels 𝐿. Usually, the size of 𝐿 is much smaller,
then the size of 𝑌 . 𝐿 consists of either discrete or categorical data. Splitting the dataset is crucial
for assessing a model’s generalization. For this purpose, define a sample as 𝑑𝑖 = (®𝑥𝑖 , 𝑦𝑖). Splitting
a dataset can be done by defining a new dataset over indices 𝐽. This approach was adapted from
[BBL+21, cpt. 3.2].

(2.10) 𝐷𝐽 =


𝑑 𝑗0

...

𝑑 𝑗𝑘

 , ∀ 𝑗𝑖 𝜖 𝐽 ⊂ [0, 𝑛]

Notice, that 𝑛 is defined as the numbers of samples in the original dataset 𝐷 Equation 2.9. The
model trains on a part of the data 𝐷𝑡𝑟𝑎𝑖𝑛. After training, the model may have a good classification
performance on the training dataset. In case of accuracy, this would be called the training-accuracy.
However, a high training accuracy only provides insight into how the model can classify previously
seen data. For this reason, a high training accuracy does not imply a good overall model. It is not
uncommon for a model with good training accuracy to perform poorly on unseen data.It is not
uncommon, that a model with a good training-accuracy performs poorly on unseen data. This is a
well-known phenomenon known as overfitting. Practical examples of overfitting in SVM can be
seen in [Tha19]. To get a better idea of the generalization performance of a model, it is used to
predict unseen data. Two common model evaluation approaches are the holdout strategy and CV.

2.2.1 Holdout strategy

With holdout, a slice of the dataset, a part is split off the dataset as validation dataset, while the
remaining slice is used for training. This gives two dataset slices, one 𝐷𝑡𝑟𝑎𝑖𝑛 and one 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛.
The model is trained on 𝐷𝑡𝑟𝑎𝑖𝑛 and assessed on 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, which is used for model selection. It
is sketched in Figure 2.2a. For datasets with few samples, this may lead to a case, where the small
validation dataset is not representative of the entire dataset. Bischl et al. call this a pessimistic bias.
In this case, they recommend using CV.

17

2 Propraedeuticum

(a) Visualization of the holdout strategy. (b) Visualization of 3-fold cross validation, the yellow
slices are the training slice and the red slices are
used for validation of each iteration.

Figure 2.2: Comparison of model evaluation strategies.

2.2.2 K-fold cross-validation

In contrast to the holdout strategy, in CV not one, but k models are trained. The dataset is split in 𝑘

parts, 𝐷1 to 𝐷𝑘 . Using the same HPs, k different models are trained. Each time one of the slices
is used evaluate the performance of that model, while the other 𝑘 − 1 slices are used for training.
For example, in the first iteration, the model is trained on slices 2 to 𝑘 and evaluated on slice 1. In
the second iteration, the model trains on slices 1 and 3 up to 𝑘 and it is evaluated on slice 2. This
process is repeated 𝑘-times, an example of a 3-fold cross validation is sketched in Figure 2.3. To get
a final result, the result of each model is aggregated, often using the arithmetic mean. Of the 𝑘

different models, one is then randomly chosen at random, and the other 𝑘 − 1 models are discarded.
While this approach can reduce the pessimistic bias, it has the disadvantage, that training 𝑘 different
models takes about 𝑘 times the resources.

Given that the training time is usually dependent on the size of the dataset, this is a valid trade-off.
A dataset with few samples, that may benefit from CV will usually be fit in less time. As a result,
the computational overhead of CV may still be feasible. On the other hand, fitting a large data set
𝑘 times may not be feasible. According to the research of Bischl et al., the pessimistic bias of a
larger dataset should be smaller and therefore CV may not be needed. Because of this tradeoff, both
strategies are implemented in the PLSSVM-HPO framework (subsection 3.3.5).

2.3 Hyper Parameter

In general, HPs can be divided into two broad categories: model HPs and non-model HPs. The
category of model HPs includes all HPs that are directly part of the model algorithm directly. This
would be the kernel or the cost parameters in the case of a SVM.

This set is strictly limited by the used ML algorithm implementation used. Non-model HP may
include parameters, such as the feature scaling subsection 3.1.4 used for the dataset. Since these
parameters do not depend on the algorithm itself, there is no clear demarcation of what may or may
not be considered as a HP. A practical definition might be that if a user tunes a certain parameter to
optimize a model, then that parameter can be called to as a Hyper Parameter.

18

2.4 Hyper Parameter Optimization

In this work, a combination of HPs is referred to as ®𝜆, while a single HP of this combination is
written as 𝜆𝑘 . HPs can be of any data type, whether numeric (continuous or discrete), categorical,
or boolean. A single HP 𝜆𝑘 is usually a scalar value. Any HP can be defined for certain ranges. For
example, the polynomial degree HP of a SVM is a strictly positive integer.

2.4 Hyper Parameter Optimization

There are many HPO frameworks available, such as Optuna [ASY+19], Ray Tune [LLN+18]
or frameworks built into general purpose ML libraries, such as GridSearchCV in Scikit-learn
[PVG+12]. This section is based on Bischl et al., which gives a praxis oriented overview of the
concept of HPO.

For any HPO framework, the user specifies the search space per HP and some stop criteria. Usually,
the user can also choose which type of sampler to use. The repeated process of sampling HP and
evaluating them on the objective function 𝜔 (subsection 2.4.2) is called a study. Each study runs,
until at least one stop criterion (subsection 2.4.5) is met. At the end, the best model according to 𝜔

is selected. The best model is validated by measuring it’s predictive performance on the holdout
split (section 2.2). Given this performance, the user can choose to use the model, or to reject it and
rerun the study.

2.4.1 HPO validation strategy

Figure 2.3: Visualization of all dataset slices of a simple HPO. In this example, the dataset is split
into three parts: One to train the model, one to validate the trained model and one to
assess the performance of the tuned model. CV can be done on the optimizer slice as
well.

Evaluating the final performance of the HPO can run into the same problem, as evaluating a model
section 2.2. Namely, optimizing the HPs optimizes the final model for samples of the dataset,
which can lead to overfitting. In the case of the holdout strategy, this can lead to a model overfit for
the dataset part 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛. For this reason, the dataset is split into two overarching pieces: The
𝐷𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 optimizer dataset and the 𝐷ℎ𝑜𝑙𝑑𝑜𝑢𝑡 validation holdout dataset. The optimizer trains and
evaluates the model on 𝐷𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 which itself is split once again. When the optimizer finds the
best model, it’s performance is evaluated again, but this time on 𝐷ℎ𝑜𝑙𝑑𝑜𝑢𝑡 . This performance should
be less biased, because the model never had contact with this data. To differentiate the strategies,
this approach might be referred to as holdout-validation. Another approach might be, to use the
same HPs as used by the best model and retrain them on 𝐷ℎ𝑜𝑙𝑑𝑜𝑢𝑡 . A name for this approach could
be holdout-training. The idea behind holdout training is that if the optimizer has found a stable

19

2 Propraedeuticum

optimum, then a model trained on comparable data should have a performance near that optimum as
well. A small deviation in the input data of 𝜔 (in this case the dataset) should still yield comparable
performance. Whereas if the optimizer has found a sharp optimum, then the small change in the
input data results in much worse performance. While both strategies can be used, the holdout
training strategy requires 𝐷ℎ𝑜𝑙𝑑𝑜𝑢𝑡 to be of comparable size of 𝐷𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 for it to be comparable.
This may reduce the size of the latter and thus the performance of the final model. Therefore, the
strategy depends on the datasets to be evaluated. In our case, the objective of the PLSSVM-HPO
framework is to find a well-performing model, not necessarily to find HPs that are likely to result in
a good model. Any model, that performs well on holdout validation would suffice.

2.4.2 Objective function

Let 𝑓 (®𝜆, 𝐷𝑖) be an arbitrary classification function. ®𝜆 are the HP input arguments of the function, 𝐷
is the dataset used. The classification function 𝑓 is trained on the training slice, but the performance
metric can be applied to any of the dataset slices, which is denoted by the 𝐷𝑖 . To evaluate the fitness
of 𝑓 , a metric 𝜇 is applied. An overview of different metrics is given in section 2.1. This leads to
the objective function

(2.11) 𝜔(®𝜆) = 𝜇(𝑓 (®𝜆, 𝐷𝑖)).

In this work, the function 𝑓 would fit a model and then evaluate it using PLSSVM. This process is
also referred to as a trial.

2.4.3 Search space

Any optimization problem begins with the definition of the search space. For each Hyper Parameter
(HP) 𝜆𝑘 , a search space Λ𝑘 is defined. The type of space of Λ𝑘 depends on the HP and the sampler to
be used. It can be categorical, discrete or continuous. In cases, where 𝜆𝑘 is defined for a continuous
space, Λ𝑘 can be defined to be continuous or discrete. A sampler-specific restriction may be, that
Λ𝑘 may only consist of discrete or categorical data in the case of a Grid Search. Λ𝑑𝑒𝑔𝑟𝑒𝑒 = [2, 3,
4, 5] is an example of a search space of the degree HP of a SVM with a polynomial kernel. For
continuous or discrete definition spaces of 𝜆𝑘 , the sampler usually requires Λ𝑘 to have a lower
bound and an upper bound. A general search space is constructed as:

(2.12) Λ = Λ1 × Λ2 × ... × Λ𝑑 , 𝑑 ⩾ 1

To denote the a search space Λ𝑘 of a single HP from the combined search space Λ, the single search
space Λ𝑘 is referred to as the 𝑘-th axis of the search space Λ. Given this definition, even a relatively
small dimension 𝑑 can result in massive search spaces, due to the curse of dimensionality. The
dimension of Λ may be smaller than the number of HP of the function 𝑓 . In such a case, default
values are used for the HP not present in the search space. Finding a search space Λ is discussed in
section 3.4.

20

2.4 Hyper Parameter Optimization

2.4.4 Sampler

In any HPO framework, the sampler is responsible for picking a combination of HP from the search
space Λ. It builds up the HP combination ®𝜆 from the values 𝜆𝑘 sampled from each search axis Λ𝑘

and the default values of the function 𝑓 , for each HP. These are then used to evaluate the objective
function 𝜔. W.l.o.g., this leads to the primary optimization function of

(2.13) ®𝝀 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝜔(®𝜆), ®𝜆𝜖Λ.

Given the fact, that for most of the defined metrics higher is better (subsection 2.1.1), the optimization
function maximizes the objective function. Sampling of some search spaces Λ𝑘 is conditional, on
other search spaces Λ𝑔, or default values. In the case of the SVM, the degree HP is used only for
the polynomial kernel. Thus, a sampler may only draw different values for degree, if the kernel
was determined to be polynomial. In this example, sampling the kernel search space must take
precedence, if it is contained in the overall search space Λ. Conditional sampling has to take default
values into account. If the kernel is set to be polynomial by default, then the degree search space
must be sampled, even if the kernel is not part of the search space. Figure 2.6 shows a sketch of the
behavior of the grid-search, the random-search and the Bayesian Model Search.

Grid Search

As indicated to in subsection 2.4.3, a Grid Search requires a discrete search space. For a continuous
space, this means that some specific points must be selected. The user can either specify each
value. Alternatively, they can specify the limits and the scale. In the case of a linear scale, they can
discretize using the number of steps in the interval, or the length of each step. For the logarithmic
scale, the step size is not defined and the number of steps has to be used for discretization. Typically,
a Grid Search samples a random combination, that has not been evaluated yet. Although some Grid
Search may use a simpler for-each loop approach, that samples the values in a determined order. In
this work, a Grid Search was used that randomly samples combinations. A Grid Search may have
the theoretical advantage, of covering the entire search space, if the search is not interrupted by
some other stopping criterion. However, this may not hold true for large search spaces, where a
complete Grid Search may exhaust the available resources. Another disadvantage may be, that a
grid may miss any optimum that lies outside the discretization.

Random Search

For a Random Search any bounded search space can be used. While the basic idea is similar to the
Grid Search, the Random Search does not require a discretization. HP on continuous spaces are
drawn randomly. This has the theoretical advantage, that the user does not have to consider how
to discretize the data, but only the scale of the data. Another advantage may be, that it evaluates
combinations that would fall outside any discretization. A disadvantage may be, that it cannot
guarantee, that the search space was searched has been searched evenly. Note that in Figure 2.4a, all
corners are searched and the space is searched more evenly than in Figure 2.4b. On the other hand,
Figure 2.4b shows that more samples are tried per axis.

21

2 Propraedeuticum

Assume a two-dimensional search space Λ and Grid Search over four by four combinations (as
in Figure 2.4a). Now if another continuous search axis was added Λ∗ = Λ × Λ3, which is to be
evaluated on four points as well, then the grid of Λ∗ will contain 64 combinations. But the original
search space Λ is still evaluated on the 16 points, as at the beginning of the thought experiment.
While using Random Search, the original search space Λ is likely to result in 64 evaluated points.
Bergstra and Bengio argue that if Λ3 is less important for the objective function, then introducing
the new axis will significantly reduce the performance of the Grid Search, as will require four times
the function evaluation for almost no difference in the result. Whereas it will have little effect
impact on Random Search. Bergstra and Bengio describe this as, the Random Search has a lower
effective dimensionality compared to the Grid Search.

(a) Grid Search (b) Random Search

Figure 2.4: Recreation of figure in [BB12]. Sketch of a two-dimensional, continuous search space.
In both examples, exactly 16 samples were drawn. The position of each sample is drawn
once as combination and once on each search axis. This example tries to optimize the
function 𝑓 (®𝜆) = 𝑎(𝜆1) + 𝑏(𝜆2), ®𝜆 = [𝜆1, 𝜆2].

Bayesian Model Search

Another popular class of samplers are Bayesian Model Search. The same user considerations apply
to Bayesian Model Search as to Random Search. In each trial, the score is stored in an archive.
To build up the archive, a Bayesian Model Search starts by executing a set number of trials of
Random Search. After that, the sampler constructs a surrogate model using the archive 𝐴. One
part of the surrogate 𝜔̂(®𝜆) maps the HP to the expected value of the objective function, which is
usually modeled using a Gaussian process. While another part keeps track of the uncertainty of
the HP 𝜎̂(®𝜆). The uncertainty of 𝜎̂(®𝜆𝑖) = 0, ∀ ®𝜆𝑖𝜖 𝐴. It is bigger in regions, where the next ®𝜆𝑖
are further apart. Therefore a bigger uncertainty can be thought of as an unexplored region of the
objective function. With these two parts, the trade-off between exploration and exploitation can be
adjusted. The loop of optimizing the surrogate, suggesting and evaluating samples is sketched in
Figure 2.5.

While this surrogate model may still be complex, it’s evaluation is cheap. Therefore the surrogate
model is optimized to find the next candidate of HPs to try on the expensive objective function.
This candidate ®𝜆𝑖 is then evaluated on the objective function, and the result is fed back into the
model. The goal of this approach is, for the Model Based sampler to exploit an optimum when

22

2.4 Hyper Parameter Optimization

Figure 2.5: Sketch of a Bayesian Model Search.

it is found. Due to the model uncertainty, the sampler tries to explore the function, to reduce the
risk, of getting stuck in a local optimum. It should also increase the chance, of finding the global
optimum. As in Random Search, omitting the grid helps to reduce the effective dimensionality.
Unlike in Random Search, adding another axis to an existing search space can make the surrogate
model more complex and it may reduce it’s performance.

Basic implementations of a Bayesian model search, such as described in [JSW98]) only work with
real and unconditional HP search spaces. To allow other data than real numbers to be used in
a Gaussian Process, the values of the HP in the model are rounded to the nearest discrete value
[GMHL20]. Conditional search spaces can be implemented by using a tree structure, as was done
in the TPE sampler [Wat23]. Here the conditional hierarchy is implemented as a tree, with the
conditional HPs lower in the tree’s structure. Each HP is then sampled, by recursing over each node
of the tree. For this reason, the TPE sampler was chosen as the Bayesian Model Search.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(a) Grid Search
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) Random Search
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(c) Bayesian Model Search

Figure 2.6: Sketch of how the sampling of HP on this objective function might look like. The
contour plot shows the objective function, while the scatter plot shows the sampled
HPs.

23

2 Propraedeuticum

Evolution Strategy

Bischl et al. identify another popular sampling strategy, the Evolution Search. This strategy has
not been compared in this work. The name of this class of algorithms is due to the fact, that
they are inspired by the biological concept of evolution. A detailed introduction to this class of
algorithms is given by Beyer and Schwefel [BS02]. In this context, each HP configuration ®𝜆𝑖
is called an individual. At each iteration of the algorithm, a new population of individuals is
generated and evaluated. Random Search is used, to generate the first population. The fitness of
each individual is evaluated using the objective function. For each subsequent iteration, a new
population is generated, by randomly mixing the configuration ®𝜆𝑖 of the best individuals, this may
be referred to as reproduction. Next, the population is expanded, by applying mutation. In this
step, individuals are copied and in the copies, one or more HPs are randomly changed in the copies.
Then the fitness of each individual in the new population is evaluated. The process of reproduction,
mutation and evaluation is repeated, until the study is stopped.

One limitation using this approach is, that each individual requires to have the same a combination
of the same HPs. If individual A has the sampled HPs {kernel=polynomial, degree=3, cost=1,
𝜖 = 10−6} and B has {kernel=linear, cost=10, 𝜖 = 10−8}, then these individuals cannot be mixed.
This can be rectified, by always sampling the conditional HPs of the search space, even if they
remain unused. For this reason, this approach is not as well suited to conditional search spaces
(subsection 2.4.3), as other approaches. Also, for the selection of parents to work effectively, the
population of each iteration must be sufficiently big. This makes this type of algorithm more
suitable for less expensive objective functions.

2.4.5 Stop criteria

In general, two different types of stop criteria can be defined for HPO. One is when to stop a running
study, often referred to as pruning. This can be done, by fitting multiple models simultaneously.
During fitting, the performance of all models are evaluated at regular intervals and the worse
performing models are stopped. Another type of stop criteria is when to stop the HPO study. In the
context of a PLSSVM, there is no insight into the model while it is fit to the data. Thus, pruning
any model was not considered. For the same reason, any model optimization strategy, that uses
pruning (e.g. successive halving described in [FH19, cpt. 1.4.2]) cannot be used with PLSSVM.

A variety of different stop criteria can be applied to a study, depending on the constraints at hand.
One of the simplest stop criterion is to execute a fixed number of trials 𝑛𝑡𝑟𝑖𝑎𝑙𝑠 per study. For random
or Bayesian model-based searches, the search space Λ is infinite, if at least one of the dimensions
is continuous. As such, 𝑛𝑡𝑟𝑖𝑎𝑙𝑠 is an arbitrary stop criterion for these samplers, while it can be
defined as the number of unique configurations in the case of a Grid Search. Another class of stop
criteria are resource based. A user can set a runtime or energy budget per study. When the budget
is exhausted, the study is stopped and the best model found so far is evaluated. A final class of
stop criteria is the score-based stop. Bischl et al. also identify a simple threshold based approach
[BBL+21, cpt. 6.5], if the objective function 𝜔 exceeds a set threshold 𝜏, then the study is stopped
and this model is validated. This can be a good approach, if the user has a target performance
in mind and has a rough idea of what performance to expect from a given dataset and objective
function. They also point out two possible drawbacks of such an approach. If set too low, the
optimizer may find a suboptimal model. On the other hand, if it is set too high, and the optimizer

24

2.5 Support Vector Machine

may never reach the threshold. Therefore, for this particular approach, a secondary constraint, such
as a runtime limit or number of trials must be set. Another score-based criterion is formulated in
[RDPCV+18]. If the top 25% of models have a score variance less than 0.01, then the study is
stopped. This is likely to work with a Bayesian Model Search, or an Evolution Strategy. However,
there is a risk that a search algorithm like Grid Search won’t converge, because the results of Grid
Search have a higher variance, compared to other optimizers (as can be seen in section 4.3). A
simpler form of such a convergence criterion was developed as part of this work (section 4.4).

2.5 Support Vector Machine

Developed by Cortes and Vapnik, the Support Vector Machine is one of many tools used for
classification problems. This chapter aims to present the core ideas of [CV95].

2.5.1 Basic working principle

Recall the definition of the dataset section 2.2. In the case of a basic SVM, all values are 𝑥𝑖, 𝑗𝜖R, and
without loss of generality, the labels are defined as 𝑦𝑖𝜖{−1, 1}. Any SVM implemented using this
simple scheme is restricted to a one-dimensional vector with m entries and binary classification. An
example of a simple SVM is sketched in Figure 2.7. Given these constraints, the SVM determines
the m-dimensional hyperplane, that can separate the data with the greatest margin. This plane is also
known as the decision boundary. It is defined as ⟨ ®𝑤𝑖 , ®𝑥𝑖⟩ + 𝑏 = 0. ®𝑤𝑖 defines a vector orthogonal to
the decision boundary, 𝑏 describes the distance to the origin. This leads to the primary optimization
inequality

(2.14) 𝑦𝑖 (⟨ ®𝑤𝑖 , ®𝑥𝑖⟩ + 𝑏) ⩾ 1 ∀𝑖.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-4

-3

-2

-1

0

1

2

3
Linear Support Vector Machine

Figure 2.7: Simple example of a SVM on two-dimensional data

25

2 Propraedeuticum

2.5.2 Soft margin hyperplane

The SVM model constructed so far works for cases, where the data is separable using a hyperplane.
This model may only work if the margin of the decision boundary is positive. If this is not
the case and the data is not linearly separable, the model will never find any decision boundary.
The soft margin hyperplane solves this problem by reformulating the objective. Instead of just
maximizing the decision boundary margin, missclassification is allowed. Now, the boundary margin
is maximized, while the margin violation error is also minimized. This is achieved by introducing a
slack variable ®𝜉. The rate, at which this error minimization is done is controlled by the cost Hyper
Parameter 𝐶.

(2.15) 𝑚𝑖𝑛

(
1
2
| | ®𝑤 | |22 + 𝐶

∑︁
𝑖

𝜉𝑖

)
, 𝐶 > 0, ∀𝑖,

defines the boundary violation error (using the form defined in [VCBP22]), while the the main
inequality is changed to

(2.16) 𝑦𝑖 (⟨ ®𝑤𝑖 , ®𝑥𝑖⟩ + 𝑏) ⩾ 1 − 𝜉𝑖 , 𝜉𝑖 ⩾ 0, ∀𝑖.

2.5.3 Parallel Least-Squares Support Vector Machine

To implement the SVM optimization problem, many libraries, such as the popular LIBSVM library
[CL11], use an algorithm known as Sequential Minimal Optimization (SMO) [Pla98]. While SMO
is a proven algorithm, Van Craen et al. identify its sequential nature as a bottleneck for parallel
computing. As a result, these types of algorithms have difficulty efficiently exploiting multicore
hardware. blem is reformulated as an equality [SV99]:

(2.17) 𝑦𝑖 (⟨ ®𝑤𝑖 , ®𝑥𝑖⟩ + 𝑏) = 1 − 𝜉𝑖 , ∀𝑖.

Now the problem can be solved using the Least-Squares method, for which massively parallel
algorithms are well known. In the implementation of PLSSVM the conjugate gradient (CG)
method [HS52] was used to solve the Least-Squares problem [VCBP22]. Van Craen et al.’s primary
motivation was to develop a Least-Squares SVM library, that works with systems that use different
software and hardware components. It can efficiently utilize the many cores of modern Central
Processing Units (CPUs) and GPUs, thereby significantly reducing the runtime of fitting each SVM
model. To solve the matrix, PLSSVM implements two modes, the explicit and the implicit CG. In
the explicit mode, the matrix is completely assembled and then solved. In implicit mode, parts of
the matrix are calculated, as soon as they are used in the calculation. As a result, in explicit mode,
the algorithm uses more memory and the initial setup of the matrix takes more time. Whereas in
implicit mode, each iteration takes more time to compute.

2.5.4 Kernel

The approach described so far has the drawback, that it only works for data, that can be separated
by a hyperplane. The data visualized in the example in Figure 2.8, cannot be separated using a
hyperplane with any reasonable performance.

26

2.5 Support Vector Machine

-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 2.8: This example is not linearly separable. Any linear decision boundary, would result in a
model with bad classification performance.

This problem is solved by introducing the kernel function. The kernel function is applied to the
data 𝑋 to transform it to a higher dimension. Instead of separating the data directly, the SVM now
separates the transformed data. This means, the kernel function is an important Hyper Parameter to
consider. See Figure 2.9 for an example of this approach.

0

1

2

3

4

2

5

6

7

8

20 10-1-2-2

Class 1
Class 2
Linear decision boundary
Kernel function

Figure 2.9: To solve this problem, the data is transformed from a two-dimensional space to a
three-dimensional space using a second-degree polynomial kernel. Now a linear
decision boundary can separate the two classes again.

27

2 Propraedeuticum

𝑙𝑖𝑛𝑒𝑎𝑟 : ⟨𝑥, 𝑥′⟩
(2.18)

𝑝𝑜𝑙𝑦 : (𝛾⟨𝑥, 𝑥′⟩ + 𝑐0)𝑑
(2.19)

𝑟𝑏 𝑓 : 𝑒𝑥𝑝(−𝛾 | |𝑥 − 𝑥′ | |2).
(2.20)

PLSSVM supports the linear, polynomial (poly) and Radial Basis Function (rbf) kernels. The short
forms of poly and rbf were adopted from SVM interface libraries, such as Scikit-Learn [PVG+12].

2.5.5 Multiclass classification

Currently, the SVM model is restricted to data with labels {−1, 1}. To get around this limitation,
data with more than two unique labels are split up into multiple binary models. Two popular
approaches are the one against one (oao) approach (also known as one versus one) and the one
against all (oaa) (also known as one versus all) [MG13]. The classification labels are defined by the
following equation. 𝐿 is the set of labels of the dataset, 𝐿 has 𝑘 different unique entries,

(2.21) 𝑦𝑖 𝜖 {𝑙0, 𝑙1, ..., 𝑙𝑘} = 𝐿, 𝑘 > 2.

In oao classification, one model is constructed for each non-trivial, unordered combination of 𝐿 × 𝐿.
This means that only one of the models {𝑙1, 𝑙0} and {𝑙1, 𝑙0}, only one is used. Trivial models of
the type {𝑙 𝑗 , 𝑙 𝑗} are omitted. As a result, one binary model is constructed for each possible label
combination, resulting in 𝑘 (𝑘−1)

2 unique binary models. In PLSSVM, one Least-Squares problem is
solved for each model.

MNIST: multiclass significance test

va
lid

at
io

n
ac

cu
ra

cy
 %

ru
nt

im
e

s

oaa oao

multiclass

163.8205

131.0564

98.2923

65.5282

32.7641

0

20

40

60

80

100

linear
poly
rbf

Figure 2.10: Multiclass classification model performance and runtime. Uses the same HPs
described in the significance tests in section 3.4. Accuracy measured on validation
slice defined in section 2.2.

Another common approach is oaa, where one binary model is constructed for each label. Model 𝑗
classifies, whether a sample belongs to class to class 𝑗 , or to any other class. This is formalized as
the model {𝑙 𝑗 ,¬𝑙 𝑗}, where ¬𝑙 𝑗 is defined for all 𝐿 𝑗 = 𝐿\{𝑙 𝑗}. In PLSSVM, this is implemented, by
using a single CG matrix that is solved for each label.

28

2.6 Related works HPO analysis for SVM

Due to the difference in how each approach classifies data, both approaches can lead to models
with different performance. For example, when using a linear kernel, oao tends to increase the
model performance, which is shown in Figure 2.10. This is probably due to the fact, that combining
several classes ¬ 𝑗 in oaa makes them less linearly separable from class 𝑗 . This means that the type
of classification is an important HP for multiclass classification problems1.

2.5.6 Support Vector Regression

To allow the SVM to be used for regression, Scholkopf et al. proposed a modification of the
established SVM algorithm. Instead of maximizing the decision boundary, the SVM regression
algorithm aims to minimize the boundary around the data. This allows the SVM to predict continuous
values. Tuning of a SVM regression model is beyond the scope of this work. Optimization for
SVM regression follows the same principles, but it would use differnet metrics, to measure model
performance.

2.6 Related works HPO analysis for SVM

This section lists some of the related research on the topic of HPO with SVM. [MRV+15] explore
an extensive set of search algorithms and datasets, to optimize the 𝛾 and the cost parameter. As
search algorithms, they compare particle swarm optimization, model-based search, Random Search,
Grid Search and genetic algorithm, which includes the three algorithms of our research. Their list
of datasets includes some popular examples, such as the Iris dataset [Fis36], or the wine dataset
[AF91]. All their datasets are simple, only five out of 70 datasets have more than 50 features, which
is not comparable to our dataset selection section 2.2. Their research itself is mainly concerned with
the raw model performance. While their title suggests that they mainly studied Random Search,
their findings seem to indicate, that the choice of search algorithms depends on the dataset.

The paper [RDPCV+18] also includes an extensive selection of datasets. As was the case in
[MRV+15], the selection uses only simple datasets with only few samples and features. They
compared Bayesian Model Search with several evolutionary algorithms. With proportion of support
vectors (PSV), they optimize for an interesting secondary objective.

(2.22) 𝑃𝑆𝑉 =
𝑛𝑢𝑚𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑛𝑢𝑚𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑎𝑚𝑝𝑙𝑒𝑠

can be used as an indicator of generalization. The lower the metric, the simpler the model, and
therefor the lower the risk of an overfit model. They emphasize, that a more complex model is
more likely to be overfit. Furthermore, they formulate a stop criterion, that stops the study early
when convergence is observed. In our research, we formulate a comparable, but simpler criterion in
section 4.4. While they use PSV to formulate a efficiency, they did not include any information
about runtime versus performance.

1At the time the experiments ran, the oao could not be used. This should be addressed in future research.

29

2 Propraedeuticum

[CSB15] studies the use of the same classes of search algorithms as our research on bioactive
compounds datasets. Their results suggest, that in most cases, the Bayesian search is the best choice
for their application in terms of performance. While also mainly concerned with performance, some
plots of iteration and accuracy are included. With these plots, they show, that Grid Search takes
longer than any other search to find the best solution. This may not be the best way, to represent
model performance. At least in our experience, the runtime of each SVM trial may vary somewhat.
For this reason, a plot of score against runtime may be a better idea. The plot is further limited by
the fact, that it does not convey any information about the variance over multiple trials of the same
search.

Compared to these two, [KFB+17] contains extensive graphs of runtime against error. They
have developed an interesting Bayesian-based algorithm called Fabolas. It adapts the size of the
dataset, to find a tradeoff between computational cost and information gain. They tested SVM three
big datasets including the MNIST dataset [LBBH98] with different Bayesian search algorithms,
multi-tasking Bayesian search, Random Search and their Fabolas search.

A drawback identified in all these works is, that they only focus on optimizing the cost and the 𝛾

HPs. Many other relevant HPs for SVM are identified in section 3.4. This was used to formulate
search spaces with different numbers of axes in section 3.5.

30

3 Methodology

This chapter aims to give the reader an overview over the developed Hyper-Parameter Tuning setup
used in the optimization experiments chapter 4. It lays out the basics, of how a study is set up
using this framework. Furthermore, it gives insight, how the experiments were designed. This
includes the selection of the datasets, the definition of the search spaces, and setting a timeout for
each trial.

3.1 Dataset preparation

Recall the definition of the dataset Equation 2.8. A data feature can be defined as a column of the
data matrix 𝑋 . So we can define a feature 𝑖 of the dataset as,

(3.1) ®𝑥 𝑓 𝑖 =


𝑥0,𝑖
...

𝑥𝑠,𝑖

 .
In literature, a feature may also be referred to as a predictor [KK20]. Usually, raw is a problem for
ML algorithms. One problem would be, that outside of text-specialized algorithms, most algorithms
work with numeric data only. Another common issue would be, that these algorithms tend to work
better with normalized data [AMS+21]. Normalization is discussed in subsection 3.1.4. Besides data
scaling, all other data preparation strategies fall under the research domain of feature engineering.
To enable the development of a HPO framework, that works with common Comma-Separated
Values (CSV) tables, some of these issues need to be considered. The basis of this discussion is
[KK20].

3.1.1 Types of data

Each feature 𝑖 can hold only one type of data at a time. There are only two broad categories of data,
numeric data and categorical data. While one can identify several different types of numeric data,
such as integer numbers, or floating point numbers, for practical purposes they are all considered as
floating point numbers. Categorical data are usually strings, the number of different categories per
categorical feature should be small compared to the number of samples. Each numeric feature may
only contain real scalar data, vectorized data or imaginary numbers would have to be separated into
one feature per scalar value. The same consideration applies for categorical data, which must not be
concatenated.

31

3 Methodology

3.1.2 Missing data

Many algorithms, including SVM, do not work with undefined or missing data. In the context of
a numeric feature, this could be a NaN1, ±∞, or any other non-numeric data. Usually, such data
would be discarded. Kuhn and Kjell identify alternative ways, of how to deal with missing numeric
data. One might use some default value, such as 0. This approach is very use-case specific. For
example, if the data is on an exponential scale, changing undefined data to 0 would not allow the
feature to be log-transformed later on. A final method would be, to impute the missing data. In this
process, the feature with the missing data would be used as label for a simple model, such as k-NN.
This model would then predict the missing value. Compared to the other two solutions, this is a
non-trivial process.

For categorical data, only an empty string may be defined as missing data. In some cases, it is
advantageous to encode a missing value, rather than remove the data [KK20, cpt. 8]. Kuhn and Kjell
describe, that the fact that a value is missing, can itself be used as valuable information. For example,
a dataset dealing with daily commute may contain a feature describing the car manufacturer. In this
case, one might expect, that if this value is missing, then the person might not own a car. Removing
such data will likely result in reduced model performance. It is clear, that such considerations are
use-case specific. For the PLSSVM-HPO framework, the decision was made, to implement the
simpler approach of removing missing data. This decision was reached, because the framework
is primarily designed to be used as a tool to do HPO, and the decision, of how to deal with such
a problem is highly use-case specific. Furthermore, this does not prevent the user from applying
the described preprocessing steps themselves. For example, if a user wants to encode missing
categorical data, they can overwrite it with a category called missing.

To remove missing data, Kuhn and Kjell identify two possible approaches. A sample with missing
data can be removed from the dataset. Alternatively, if too many entries of a feature are missing,
then one may consider removing that feature instead. This is due to the fact that while this removes
information from all remaining samples, it also reduces the number of samples, that would have to
be discarded. In the developed HPO framework, this is implemented by using a removal threshold,
that defaults to 10%. If a single feature has more than 10% of it’s data missing, then the feature is
removed. Thus, the choice of threshold is a trade-off between the loss of information per sample
and the reduction of the number of samples. This trade-off also depends on the importance of the
feature itself. If the information represented by a feature is low, then the removal threshold can be
lowered.

3.1.3 Numerical conversion

Numerical conversion describes the method, of converting categorical data to numerical values,
that a SVM can use. Two common approaches to conversions are the hash-based conversion, or
the one-hot conversion. In a hash based conversion, the category is computed into a number using
a hash function. A hash function is a tool used in cryptography, that converts a key (in this the
category) into a unique integer. As noted, the SVM works best with scaled data. For this reason, the
hash function has been implemented by giving each unique category an increasing number starting

1This refers to not any number, which is often used to encode undefined real numbers.

32

3.2 Dataset selection

from 0. This way, if the feature has 𝑚 different categories, then the hash function would convert
them to a range of [0, 𝑚-1]. They are ordered by the number occurrences. A category that occurs
more often will have a lower integer value.

A drawback of such a conversion would be that would order the categories arbitrarily. This may
result in a dataset, that is harder to separate. For this reason, one may choose to use an approach,
such as one-hot encoding instead. In this scheme, the processed dataset will have one feature per
category. Kuhn and Kjell call these dummy data. For this categorical data entry, the dummy data
column, that matches the entry is 1 and all other dummy data columns of this categorical data
are 0. This makes the data more sparse, which may help with separability. Both approaches are
implemented in the PLSSVM-HPO framework.

3.1.4 Linear transformation

As noted, training on unscaled data can lead to a less optimal model [AMS+21]. This raises the
question of which transformation should to use. A common choice is a linear transformation.
Within linear transformations, there are a variety of different types. The simplest ones are the
min-max scaler. Two of them are the uniform scaler, which scales the feature to the interval [−1, 1],
while the unit scaler scales the data to the interval [0, 1]. A shortcoming of the min-max approach
may be, that if the feature contains outliers, they will make up the interval boundaries, while the
actual data will be compressed somewhere in between. Another common approach is to use a
standard scaler, which refers to the standard normal distribution. The data is scaled in a way so
that it’s mean is at 0, while it’s standard deviation is 1. This can make this type of scaling more
robust against outliers, since the outliers should be much larger than the standard deviation. Besides
standard scaling, there are other methods of dealing with outliers, such as clipping and there are
many possible combinations of preprocessing steps one might wish to implement. Using standard
scaling, the feature ®𝑥 𝑓 𝑖 is scaled by using

(3.2) ®𝑥∗𝑓 𝑖 = ®𝑥 𝑓 𝑖

1
𝜎 𝑓 𝑖

−
𝑥 𝑓 𝑖

𝜎 𝑓 𝑖

∀𝑖.

Here, the 𝑥 𝑓 𝑖 refers to the mean of ®𝑥 𝑓 𝑖 and 𝜎 𝑓 𝑖 refers to its standard deviation. While this form may
look different, from most definitions of this formula, it highlights the building blocks of the linear
transformation: The factor 1

𝜎 𝑓 𝑖
and the offset − 𝑥 𝑓 𝑖

𝜎 𝑓 𝑖
. Both are calculated on the training dataset

using the specified scaling type and then used to transform each feature in the training dataset and
each feature in any data, that is to be predicted with the trained model.

3.2 Dataset selection

In this project three different datasets with different applications were chosen. The simplest dataset
is the Software-Defects dataset from Kaggle [WR23], also referred to as software-faults. It consists
of 21 features and has two unique labels. All features are numeric, some are on a zero-inclusive
exponential scale. Given these constraints, users are likely to choose a SVM. The second dataset
selected is the MNIST developed by [LBBH98, cpt. III.A]. This dataset is from the field of pattern
recognition. It has 784 feature, which are 28 · 28𝑝𝑖𝑥𝑒𝑙 grayscale images of handwritten digits. The

33

3 Methodology

labels are the digits 0 - 9. For this dataset, users are likely to choose a Neural-Network architecture
[LBBH98, cpt. II], [SSP03, cpt. 3]. Although the model performance of SVMs may somewhat
lower, then other models, LeCun et al. note, that a SVM has the advantage, that it does not require
any a priori knowledge of the problem to develop the model [LBBH98, cpt. III.C11]. This may
make the SVM easier up for the user to set. The final dataset is the Deepsat Sat-6 dataset [BGM+15].
Like MNIST, Deepsat is an image recognition dataset using 28 · 28𝑝𝑖𝑥𝑒𝑙 images. Unlike MNIST,
each pixel consists of a red, green, blue, and near-infrared channel each, resulting in 3136 features
per sample. Furthermore, Deepsat does not classify shapes, but rather ground features captured by
an observation satellite. Although the use of SVM is uncommon [LBG+20, cpt. 4.2], the PLSSVM
library is able to generate a competitive model in a short time, as shown in Table 4.11. All three
datasets have in common, that the number of samples is sufficient, to fill a reasonable amount of
memory on the GPUs used. This is important to make each study GPU bound so that the energy
analysis in section 4.1 is consistent.

3.2.1 MNIST

The MNIST dataset [LBBH98] is a well-known choice as a classification benchmark. It consists of
images of the handwriting of Bureau of Census employees and handwriting of college students.
These images make up the training set of 60,000 images and test set of 10,000 images in equal
parts. The training set corresponds with 𝐷𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 in this project, while the test dataset corresponds
with 𝐷ℎ𝑜𝑙𝑑𝑜𝑢𝑡 . LeCun et al. applied preprocessing to the original black and white pictures. First,
the images were cropped and centered to 20 · 20𝑝𝑖𝑥𝑒𝑙. To make the images more suitable for
classification algorithms antialiasing was applied. This caused the Boolean edges to become blurred.
The pixel became grayscale and the dimensions changed to 28 · 28𝑝𝑖𝑥𝑒𝑙 per image.

Each of the best performing SVMs on the MNIST dataset uses additional preprocessing steps. These
include deskewing and virtual sample contruction. The latter approach constructs new samples are
constructed from existing samples. This can be done, by slightly shifting or blurring the edge of the
digit. Other ways to create virtual image samples are to mirror the image, which would not work
with digits, or rotating images, which would make classification harder for SVMs. While adding
virtual samples can slightly improve the accuracy, hardware limitations prevented the use of a much
larger dataset. Therefore, this approach was not used.

Deskewing MNIST

When using photographed or scanned images, then they may be skewed. This means, that an
image may be stretched, rotated, or translated, or any of those combination of these. Many
algorithms, including SVMs, use one-dimensional data. To generate one-dimensional data from
two-dimensional data, w.l.o.g. the rows of each sample are concatenated. This makes these
algorithms more sensitive to skewed images, because a skewed image shifts the data from one
feature to another feature, compared to an unskewed image. In the deskewing process, each digit is
tilted upward and positioned using its center of mass. Deskewing was done using a lightweight
procedure [WGL16] which is based on the theory of principal component analysis [Shl14]. In this
approach, the written numbers can be thought of as a two-dimensional random distribution. Each
pixel ≠ 0 is a sample, from the distribution. Calculating the covariate of this distribution, can be
used as an estimate of the rotation angle of the digit. An affine transformation is used to rotate and

34

3.2 Dataset selection

Figure 3.1: An example of deskewing images of MNIST. The arrows are defined over the covariance
matrix of the digit’s distribution. Eigenvectors of the matrix define their directions and
the square-root of the eigenvalues define their lengths.

center the image. Figure 3.1 visualizes this process. Affine transformation for digit recognition
was used before in [WKT01], although their Optical Character Recognition implementation used
Cross-Correlation to determine the digit. Deskewing improved the SVM accuracy by about 0.5%
without increasing the size of the dataset. Therefore, the small additional overhead for each
prediction was considered reasonable.

QMNIST

It would be remiss not to mention recent critique of the MNIST dataset. Using the original MNIST
dataset may result in reported model performance that is somewhat inflated compared to reality
[YB19]. In their findings, they suggest to increase the size of the MNIST test dataset, to obtain
more realistic performance results. While this criticism does not seems unfounded, the goal of this
work is not to find the most realistic performance numbers. The main goal is to compare the models
found by each optimizer with each other, and a secondary goal is, to compare the found model
performances with existing literature. According to Yadav and Bottou, classifier ordering model
selection should still be reliable. Thus, the main goals are met and the use of MNIST allows for
more comparisons. This made MNIST the preferred choice.

3.2.2 Deepsat Sat-6

The main motivation behind Deepsat [BGM+15] was to develop a dataset, that could serve as a high
quality source of satellite imagery, tailored for testing ML algorithms. These images were obtained
from [US 09]. Basu et al. developed two separate datasets, Sat-4 with four labels and Sat-6 with
six classes. The latter was used in this work, it may be referred to as Deepsat. The class labels
of Deepsat Sat-6 are: barren land, trees, grassland, roads, buildings, and bodies of water. Each
image is cropped to 28 · 28𝑝𝑖𝑥𝑒𝑙. With a ground resolution of 1 pixel/m, each image spans about
28𝑚 · 28𝑚. The dataset itself is consists of 324,000 training images and 81,000 test images. For this
work, only a quarter of the training set was used for 𝐷𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 , while 𝐷ℎ𝑜𝑙𝑑𝑜𝑢𝑡 consists of all test
images. The number of training samples was reduced so that the PLSSVM model fits into the used
GPUs Video Random-Access-Memory (VRAM)used . This was done for performance reasons.
Using the full dataset would require the PLSSVM to use the implicit CG-solver, instead of the

35

3 Methodology

CG-explicit. Due to the complexity of the dataset, using the implicit solver would take significantly
longer, fitting each model takes an average of 1000 iterations of CG. The enormous increase in the
time required by the implicit solver would make any detailed analysis impossible.

3.3 PLSSVM-HPO framework

Figure 3.2: PLSSVM-HPO flow diagram

For this project, a user tool has been developed to support searching HPs using Grid Search, Random
Search and TPE optimization (subsection 2.4.4). On one end, the user defines the tuning parameters,
the dataset and the HP search space. Then the framework searches the HP space and finds the
best model under the given constraints. Figure 3.2 visualizes a high-level sequence diagram of the
framework. As indicated in chapter 1, PLSSVM [VCBP22] is used as the SVM implementation and
Optuna [ASY+19] as the HP sampler. The framework itself is written in Python3.10 [Ros95], it
loads the study parameters, the dataset and then runs the study using Optuna and PLSSVM. Unlike
most existing HPO frameworks, this tool provides the user with a text file based frontend. This
eliminates the need for programming to set up a tuning study.

3.3.1 DatasetContainer class

The Dataset Container is a data structure responsible for loading the dataset used in a study. A
diagram of the DatasetContainer class can be found in Figure 3.5. It can load any CSV table, convert
all data to numeric form, and clean up missing, or incorrect entries. To optimize loading time and
dynamic memory allocation, a raw format has also been developed. The raw format can only load a
purely numeric CSV table. As such, the header has to be removed as well. For large datasets, this
can drastically reduce the load time. To optimize load times, a user can convert a normal dataset
and save it in a raw format using the Dataset Container file on the command line. Other dataset
types, such as the sparse libsvm format, are planned but not yet implemented.

36

3.3 PLSSVM-HPO framework

When the dataset is loaded, the user is able to split a Dataset Container into two smaller Dataset
Container. The dataset is shuffled and then the selected size is taken from the top and used to
create a new Dataset Container. This feature is used when the user does not select a separate
validation holdout dataset in the study settings. In either case, each study has two Dataset Container
objects. One is is the optimizer dataset, which is used to train and select a model. The other is the
holdout dataset, which is used to measure the final model performance unbiased by the optimization
process.

To use the Dataset Container as an optimizer dataset, the following functionality has been developed:
Given a Hyperparameter object, the training data is prepared. This includes slicing the dataset
using the holdout method, or CV described in section 2.2. The next step is to perform any selected
preprocessing step on the current training slice of the dataset. The resulting training slice is used to
train the model. Then, the same steps are repeated for the validation slice of the optimizer dataset.
The performance of the validation slice is measured, it is one of the most important metrics, that
may be used for model selection. These preprocessing steps are saved to a file so that the end user
can recreate them for prediction samples.

In order to use the Dataset Container as a holdout dataset, the functionality has been implemented,
to preprocess the data and measure performance. In this mode, a preprocessing file is loaded. Each
step specified in the file is performed on the entire dataset. This dataset is then used to measure the
performance of the found model. Due to the separation this should result in less bias in the reported
performance, as described in section 2.2.

3.3.2 Hyperparameter class

This is a class that contains all the HP that a user can select. Setting any of the object’s attributes
will be checked for type and range. For example, the degree parameter must be an integer, or
integer string and the number must be greater then 0. These checks are implemented and enforced
through the use of asserts. Setting an attribute incorrectly will raise an AssertionError. This has the
consequence, that the user must ensure that the type and interval of a search axis for a given HP
are compatible with that HP. The reason for such an approach is to reduce the risk of undefined
behavior in any component that uses the Hyperparameter object.

Any HP, that is not set in the constructor will be set to a default value. In each trial, the sampler in
the SVMTuner study object (subsection 3.3.6) sets each attribute, that is specified in the study entry.
At this point, the Hyperparameter object can be used to set the PLSSVM and perform preprocessing
on the dataset.

3.3.3 Hyper Parameter Sampling

To set each HP attribute of the Hyperparameter object, the sampler draws all HP of the defined
search space. In each case, first a Hyperparameter object with default values is constructed first.

37

3 Methodology

Continuous sampler

The group of continuous samplers includes the Random Search and the TPE optimization, both
support the use of continuous search spaces. Recall from subsection 2.4.3 that each search space Λ
is made up of search axes Λ𝑎. In the first step, all conditional search axes Λ𝑐𝑎 are removed from the
overall search space Λ. Then the sampler iterates over all the remaining axes of Λ and draws a HP
for each. For each HP the corresponding attribute of the Hyperparameter object are set. After that,
the conditional axes Λ𝑐𝑎 can be evaluated. For each conditional axis, the relevant HP attribute of the
Hyperparameter object is checked. If the relevant attribute is set, then a HP of the conditional axis
is drawn and set. Otherwise, the conditional axis is ignored. For example, drawing the degree HP
would be redundant, if the kernel was determined to be linear. While evaluating unused conditional
axes would not make no difference for the Random Search, it would unnecessarily increase the
complexity of the TPE model.

Grid Search

Optuna’s Grid Search is implemented, to draw a random untested combination from the search
space. They ensure that Optuna will try all available combinations of the search space exactly once,
unless the study is aborted earlier. However, the same conditional sampling approach described
above is incompatible with Optuna’s Grid Search. To quote the website, a conditional search using
the Grid Search works, but inefficiently2. If an unmodified Grid Search would be performed, Optuna
would draw all possible combinations of the search space. To distinguish them, this approach is
referred to as the unconditional grid. This grid includes irrelevant conditional combinations, such
as combining a linear kernel with different polynomial degrees. Using a grid in this way would
increase the number of trials needed to perform an an exhaustive search. Therefore, the performance
of the Grid Search would artificially suffer, compared to the continuous sampler methods.

In the worst case scenario, the number of trials would be almost three times the conditional
combinations. Suppose a search space of

(3.3) Λ = Λ𝑘 × Λ𝑑 , Λ𝑘 = [𝑙𝑖𝑛𝑒𝑎𝑟, 𝑝𝑜𝑙𝑦, 𝑟𝑏 𝑓] ,

and the degree search axis Λ𝑑 . Λ𝑑 is dependent on the polynomial kernel only. The number of
unconditional combinations is | |Λ| |𝑢 = 3 ∗ ||Λ𝑑 | |, whereas the number of relevant conditional
combinations would be | |Λ| |𝑐 = 2 + ||Λ𝑑 | |. For

(3.4) lim
| |Λ𝑑 | |→∞

| |Λ| |𝑢
| |Λ| |𝑐

= | |Λ𝑘 | | = 3.

This example is also true, if search space Λ𝑑 was substituted by another space, that was conditional
on only one of the kernels. If Λ𝑑 was replaced by a space that was partially or completely conditional
on two or more of the kernels, then this number would be lower than this worst-case scenario. This
is, what happens in practice, in which case this number tends to be around two. The simple proof
holds only for the SVM search spaces, since all conditional parameters only depend on the choice
of the kernel.

2https://optuna.readthedocs.io/en/stable/reference/samplers/index.html [checked 11.04.]

38

https://optuna.readthedocs.io/en/stable/reference/samplers/index.html

3.3 PLSSVM-HPO framework

To avoid this issue, a conditional grid search has been developed. In this mode, the grid is flattened
before it is used. This means, that each viable combination is precomputed. For the PLSSVM
model HPs, all conditional HPs are dependent on the kernel. One conditional parameter is 𝛾, which
is defined for both the polynomial and the rbf kernels. Otherwise, the polynomial kernel uses the
coef0 and degree parameters. This divides the search space into three subspaces, one for each
choice of kernel. Each subspace is filtered for relevant conditional dimensions. As example, the
degree and coef0 axes are removed from the rbf’s kernel subspace. Then each subspace is expanded.
Starting with the kernel, it is combined with each entry of the first dimension Λ1, resulting in the
combination vector Λ 𝑓 𝑙𝑎𝑡 . The length at this point is | |Λ 𝑓 𝑙𝑎𝑡 | | = 1 · | |Λ1 | |. Then each entry of Λ 𝑓 𝑙𝑎𝑡

is expanded with the next axis, which would result in | |Λ 𝑓 𝑙𝑎𝑡 | | = 1 · | |Λ1 | | · | |Λ2 | |. This process
of expanding the subspace is repeated, until no axis is left. At the end, each the three expanded
subspaces are concatenated into one long space. The name flat comes from the fact, that it is a long
one-dimensional vector. Each entry of the flat grid is a combination of different scalar HP values.
This is implemented as a dictionary, using the name is used as the key for each HP. Sampling from
the grid would be done by drawing an index of the vector. The entry at that index is then used to
evaluate the objective function.

As example, let

Λ = Λ𝑘𝑒𝑟𝑛𝑒𝑙 × Λ𝑑𝑒𝑔𝑟𝑒𝑒 × Λ𝑐𝑜𝑠𝑡(3.5)
Λ𝑘𝑒𝑟𝑛𝑒𝑙 = [𝑘 = ”𝑙𝑖𝑛𝑒𝑎𝑟”, 𝑘 = ”𝑝𝑜𝑙𝑦”], Λ𝑑𝑒𝑔𝑟𝑒𝑒 = [𝑑 = 2, 𝑑 = 3], Λ𝑐𝑜𝑠𝑡 = [𝑐 = 1, 𝑐 = 10] .(3.6)

1. Now we generate the filtered subspaces Λ𝑙𝑖𝑛𝑒𝑎𝑟 = [{𝑘 = ”𝑙𝑖𝑛𝑒𝑎𝑟”}] × Λ𝑐𝑜𝑠𝑡 and Λ𝑝𝑜𝑙𝑦 =

[{𝑘 = ”𝑝𝑜𝑙𝑦”}] × Λ𝑑𝑒𝑔𝑟𝑒𝑒 × Λ𝑐𝑜𝑠𝑡 .

2. Then we expand both subspaces the first time to Λ𝑙𝑖𝑛𝑒𝑎𝑟 = [{𝑘 = ”𝑙𝑖𝑛𝑒𝑎𝑟”, 𝑐 = 1}, {𝑘 =

”𝑙𝑖𝑛𝑒𝑎𝑟”, 𝑐 = 10}] and Λ𝑝𝑜𝑙𝑦 = [{𝑘 = ”𝑝𝑜𝑙𝑦”, 𝑐 = 1}, {𝑘 = ”𝑝𝑜𝑙𝑦”, 𝑐 = 10}] × Λ𝑑𝑒𝑔𝑟𝑒𝑒

3. The polynomial subspace needs one more iteration to be fully expanded Λ𝑝𝑜𝑙𝑦 = [{𝑘 =

”𝑝𝑜𝑙𝑦”, 𝑐 = 1, 𝑑 = 2}, {𝑘 = ”𝑝𝑜𝑙𝑦”, 𝑐 = 10, 𝑑 = 2}, {𝑘 = ”𝑝𝑜𝑙𝑦”, 𝑐 = 1, 𝑑 = 3}, {𝑘 =

”𝑝𝑜𝑙𝑦”, 𝑐 = 10, 𝑑 = 3}]

4. With both subspaces fully expanded, they are concatenated, which yields the flat-grid
Λ 𝑓 𝑙𝑎𝑡 = [{𝑘 = ”𝑙𝑖𝑛𝑒𝑎𝑟”, 𝑐 = 1}, {𝑘 = ”𝑙𝑖𝑛𝑒𝑎𝑟”, 𝑐 = 10}, {𝑘 = ”𝑝𝑜𝑙𝑦”, 𝑐 = 1, 𝑑 = 2}, {𝑘 =

”𝑝𝑜𝑙𝑦”, 𝑐 = 10, 𝑑 = 2}, {𝑘 = ”𝑝𝑜𝑙𝑦”, 𝑐 = 1, 𝑑 = 3}, {𝑘 = ”𝑝𝑜𝑙𝑦”, 𝑐 = 10, 𝑑 = 3}]

5. Notice, the flat-grid Λ 𝑓 𝑙𝑎𝑡 has only six combination, whereas the unconditional grid Λ has 8
combinations.

A possible disadvantage of the precomputed grid is, that for large search spaces, computing all
possible combinations may exceed practical runtime and memory constraints due to the curse of
dimensionality. This is avoided by setting a pragmatic upper limit of 106 combinations calculated
for an unconditional grid3. The number of 106 was chosen arbitrarily because a grid of this size
cannot be searched efficiently. For this reason, both grid methods are available to the user. In this
work, only the conditional grid was tested.

39

3 Methodology

Figure 3.3: Class diagram of SVMScore, the Vector class refers to a one-dimensional NumPy-array
[HMW+20]. Using holdout validation, each list only contains one entry. If used with
CV, each list has k-entries, one for each fold.

3.3.4 SVMScore class

To select one of many models requires insight into the model’s performance. For this purpose,
the SVMScore class, seen in Figure 3.3, has been developed. It is mainly used as a container,
for all relevant different metrics of the model. An overview of the classification metrics is
given in section 2.1. It contains a score for each the training and validation score of 𝐷𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟

(section 2.2) called training_score and test_score respectively. The training_score is defined as the
train_class_score.accuracy, since the framework is mainly designed to tune classification models.
However, it is conceivable that these two scores could store any regression metric, if Support Vector
Regression was to be implemented. A number of attributes are not related to the performance of
the model, but to the resources used to generate the models. Two of the most important ones are
the runtime_s and the gpu_energy_Wh4, both are logged, while the model is being fitted. Of other
logged data (e.g. CPU or Random-Access Memory (RAM) utilization) the min, max, mean and
standard deviation is calculated and stored in the SVMScore object. If an NVidia GPU is selected,
this list is extended by the CUDA core utilization and the VRAM. The data_valid attribute encodes
whether the score is usable. This may be relevant in cases where fitting the model crashes or a hard
timeout occurs, in which case no model and no predictions would be available. Two attributes of
the class ConfusionScore are used to keep track of all the model performances for each label and
the aggregated classification scores. It’s main usage is, to compute all the metrics and to average
multiple ConfusionScore in case of CV using the arithmetic mean. For each of the float attributes

3This can be calculated trivially, by multiplying the length of each HP axis.
4As of now, the gpu_energy_Wh is only defined if a NVidia GPU was selected.

40

3.3 PLSSVM-HPO framework

of the main SVMScore object, there exist a -_rel attribute. This is calculated by using the first valid
result as the baseline SVMScore-object and then calculating the relative value of the corresponding
attribute of both objects.

The most important attribute is the scalar_score. It is used by the tuner, to select the model and
it is used as feedback for the TPE optimizer. To set this attribute, the SVMScore object must be
converted to a scalar value. This is done using one of the metric functions implemented in the
svm_score_metrics file. Each of the metric functions takes the SVMScore object as argument and
returns a single attribute of the SVMScore, or an aggregated score. A relevant example is the
test_acc-metric 𝑡𝑒𝑠𝑡_𝑎𝑐𝑐(𝑠𝑐𝑜𝑟𝑒) = 𝑠𝑐𝑜𝑟𝑒.𝑡𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒. It is conceivable, that one could implement
any other metric. For example, one that uses the train_class_score.macro_f1 in case, an unbalanced
dataset is to be evaluated (see section 2.1, or [GBV20, cpt. 4.2]). Recall the definition of the metric
function 𝑓 1 𝑗 in Equation 2.3: If the number of true positives of any classifier 𝑗 is zero, then the
resulting 𝑓 1 𝑗 is undefined. This can lead to undefined scalar_scores. Returning an undefined float
does not work with the Optuna library. So any undefined value must be converted. Since the metric
functions are defined from a range of 0 to about 1, any undefined value will be encoded as -1.

Another possible type of metric function is a multi-objective metric. One implemented example is
the time_metric

𝑡𝑖𝑚𝑒_𝑚𝑒𝑡𝑟𝑖𝑐(𝑠𝑐𝑜𝑟𝑒) = 𝑠𝑐𝑜𝑟𝑒.𝑡𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 ∗ 0.8 + 𝑟𝑒𝑙_𝑡𝑟𝑎 𝑓 𝑜(𝑠𝑐𝑜𝑟𝑒.𝑟𝑢𝑛𝑡𝑖𝑚𝑒_𝑠_𝑟𝑒𝑙) ∗ 0.2(3.7)

𝑟𝑒𝑙_𝑡𝑟𝑎 𝑓 𝑜(𝑥) = 2.0
1.0 + 𝑥

,(3.8)

where the score is weighted towards the performance. However, models with less runtime are are
rewarded. The relative transformation is implemented to ensure, that the transformed values remain
between 0 and 2. Furthermore, 𝑟𝑒𝑙_𝑡𝑟𝑎 𝑓 𝑜(𝑥) → 1, for 𝑥 → 1. It should become evident, that
there are many possible metrics that a user might want to try, depending on the use case. For this
reason, any user is invited to write their own metric function in the svm_score_metric file. Any of
the described attributes can be used.

3.3.5 PLSSVM trial execution

With the dataset loaded and the HPs sampled, the study can proceed to evaluate the objective
function. An overview of the following is given in Figure 3.4. Before fitting any data, a telemetry
thread is spawned. The purpose of this thread is to log hardware information, such as the CPU
utilization, or the GPU power consumption. It logs hardware information every second it is
not stopped. The GPU energy usage is calculated by integrating the power over the scheduling
interval.

While the telemetry is being logged, the trial can fit the dataset 𝐷𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 using PLSSVM. If CV
is not used, k is set to 1 and data is fit only one time. Additionally, for k=1, the size of the training
and validation slices of 𝐷𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 can be configured using the Hyperparameter object. Using CV
will fit k models with the same HP, but k different training and validation slices. Each time a model
is is fitted, a new PLSSVM thread is spawned. The rationale of this decision is, that it allows to
implement a hard timeout. That is, if a model does not converge, or converges too slowly, then the

41

3 Methodology

Figure 3.4: Sequence diagram of fitting and evaluating a PLSSVM model. If CV is used, then the
main loop is executed k-times. Otherwise it is executed only once.

trial thread may terminate it5. Compared to the hard timeout, a user can set a soft timeout, by setting
the max_iter HP. This parameter sets the limit of iterations of the CG algorithm used by PLSSVM,

5A hard timeout is not implemented in PLSSVM as of now.

42

3.3 PLSSVM-HPO framework

as described in subsection 2.5.3. When used on the same hardware, the same dataset, the same
multiclass classification type and the same type of CG solver, then the time of each CG iteration is
very consistent. Therefore, executing a fixed number of CG iterations takes about the same time.

After the model is fitted, it predicts the samples of the training and validation slices, so that the
model performance can be evaluated. When the main loop exits, the main thread sets the stop flag
of the telemetry thread. This allows the telemetry to gracefully exit, construct an SVMScore object,
and set it’s telemetry data, as described in subsection 3.3.4. Then the SVMScore is returned to
the main thread. If at least one model was fit, the model performance is evaluated and saved in
the SVMScore object. In case, CV is used, all k-models are used to evaluate their performance.
Their performance is then averaged. In all cases, the first model fit during the trial is saved to disk
for later use. With the model performance calculated, the SVMScore can be converted to a scalar
score using the selected metric in svm_score_metric (see subsection 3.3.4). The scalar score is then
returned by the trial.

3.3.6 SVMTuner class

The SVMTuner class is the main framework, that combines the classes discussed so far, as can be
seen in Figure 3.5. For each defined study, an SVMTuner object is constructed. During construction
it loads all the study settings (subsection 3.3.7) and the two datasets. When finished, it can be run
using the run_job method. This will repeat a loop of sampling HPs, executing the PLSSVM trials
on the optimizer_dataset, and calculating the score of the trials. If at least one stop criterion is met,
this loop is stopped and the results and the model are saved to a file. This cycle can be seen in
Figure 3.2.

Figure 3.5: High-level UML-Diagram of the SVMTuner class. The DatasetContainer class is
described in subsection 3.3.1, whereas the Hyperparameter container is described in
subsection 3.3.2. Vector and Matrix refer to a one- and two-dimensional NumPy-array
respectively [HMW+20].

43

3 Methodology

The best_trial and best_value attributes are the trial number with the best scalar_score and score
itself (subsection 3.3.4). With the sampler_type enum attribute, the tuner object selects one of the
implemented Optuna sampler backends. To keep the diagram compact, only the two most important
stop criteria are listed. The num_trials sets the number of trials the study will execute. If it is set
to exactly 0, then the study will be skipped and the datasets are not loaded into memory, to save
time. Another important stop criterion is the job_timeout_s, which determines how long the study
is run. At least one of these two stop criterion must be set. An exception is the Grid Search, where
num_trials is set to the number of unique combinations, if it is not specified. The hard timeout
(subsection 3.3.5) of each trial of a study can be set with the trial_timeout_s attribute. The baseline
score is a copy of the first valid SVMScore object, which is used to calculate relative performance
scores (subsection 3.3.4). hp_list is a list of the HPs used in each trial. The score_list contains the
SVMScore object of each trial, evaluated on optimizer_dataset. Parallel is the validation_score_list
attribute, which is not used by default. When used, it stores a SVMScore of the performance of
each fitted model on the holdout_dataset. Tuning is done exclusively using the SVMScore object
associated with the optimizer_dataset. When a study is complete, both lists are dumped into a CSV
table. These results are used for this report to provide insight into the tuning performance.

3.3.7 Tuning job Input data

Each study is defined using a metadata file in the JSON format. This file format has the advantage,
that it can be trivially loaded into a Python dictionary. An overview of the file structure is given
in Figure 3.6. The CommonSVMInfo entry applies to all studies defined as SVMJobs. Both the
CommonSVMInfo entry and the hyperparameter entry must use this exact name, which is defined
as their dictionary key. Each SVMJob entry only requires the String SVMJob to be contained in
their name. However, each SVMJob name has to be unique. Using SVMJob in the name ensures,
that studies defined as SVMJobs are executed.

Figure 3.6: Relational diagram of input JSON metadata file.

44

3.3 PLSSVM-HPO framework

CommonSVMInfo

The dataset_metadata field is required, it contains the path to the dataset- etadata file. Each key of
the dataset-metadata is the name of a dataset, it’s values are instructions, on how to load the dataset.
With the output_folder field defines the path where all studies will save their output files (see ??).
Selecting the PLSSVM target-hardware and backend can be done using the target_platform and
backend fields respectively. If not selected, both default to automatic, in which case PLSSVM will
automatically select the best available choice. validation_level refers to, how the model is validated
on the holdout dataset. It can be set, to do no validation, validate only the best model or validate all
models. If not set, it defaults to the second choice.

SVMJob

On the SVMJob entry, the dataset_name refers to the dataset entry in the dataset metadata file.
This dataset will then be the optimizer dataset of the later generated SVMTuner object. To load
the holdout dataset, either the holdout_name field, or the holdout_split field may be used. The
first one loads a separate dataset, while the second one splits the specified percentage from the
optimizer dataset (see subsection 3.3.1). Exactly one of these fields must be set. The score_metric
field specifies which of the metrics in the svm_score_metric file to execute (see subsection 3.3.4).
If not set, it defaults to the test_acc metric, which reports the accuracy of the model on the test
slice of the optimizer dataset. If set, it must correspond with one of the metric functions in the
svm_score_metric file, to prevent arbitrary code execution. Setting the num_trials field sets a
limit on the number of trials, that are run, which is described in subsection 3.3.6. To set the study
timeout of the SVMTuner, one can use the global_study_timeout field in CommonSVMInfo. It
will set the job_timeout_s of all studies. This can be overridden per study with the job_timeout
field. If the global_study_timeout remains unset, it defaults to a value of 1h. The hard timeout
(subsection 3.3.5) of each trial of the studies is set the same way using the fields global_trial_timeout
and svm_abs_timeout respectively.

hyperparameter

In each hyperparameter field, the user defines each HPs search space by setting the key with the
name of the HP. The value of the parameter can be set as a single value or a list of values. If
the parameter is a numeric value, then a range can be set using an invocation written as string.
An example invocation is "float(0, 1)". Here, the first argument is the lower limit and the second
argument is the upper limit of the search axis. The upper limit is included in the search axis, it
must be equal to or greater than the lower limit. This example would result in a search axis of
[0, 1]. For Grid Search, the invocation requires a discretization, which is set with an additional
steps argument. If set, it defines how many equidistant values are generated in the interval. An
invocation of "float(0, 1, steps=3)" would result in the search grid {0, 0.5, 1}. The steps argument
may not be used with any continuous sampler6. Using an all equidistant space may not be suitable
for values approaching 0 or very big values. In this case, the scale can be changed to logarithmic,

6Using discrete spaces for continuous sampler is not their intended use-case (subsection 2.4.4) and as such it is not fully
implemented as of now.

45

3 Methodology

by supplying the argument log. An example would be "float(1, 1000, steps=4, log=True)", which
would be interpreted as the grid {1, 10, 100, 1000}. On the log scale, both limits must be strictly
greater than 0. The log argument is compatible with all samplers. Alternatively, one can use a
integer invocation using "int(0, 3)". The same rules apply, as did for the float invocation. One
difference is, that due to the nature of the data, no discretization is required for a Grid Search. This
would be translated to a search axis of {0, 1, 2, 3}. Note that due to the integer data, the data cannot
be used on a logarithmic scale. This invocation is compatible with all sampler types.

3.4 Hyper Parameter Sensitivity tests

To find the range and importance of each used HP used, each parameter was varied with the rest
using a default setting. This approach gives only limited insight, as the behavior of each HP is
depends on the other HPs. For this reason, each HP has been used with each kernel, as it changes
the behavior of the SVM the most. The most important HPs are: Kernel (Equation 2.5.4), which
defaults to rbf. Scaling, which defaults to uniform transformation (subsection 3.1.4). Cost defaults
to a value of 1, while the tolerance 𝜖 (also called tol) defaults to 10−8. The degree HP is used for
the polynomial kernel, it defaults to 3. 𝛾 used in polynomial and rbf kernel defaults to 1/𝑛 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠.
The coef0 parameter has been set to a default of 0 for the significance tests.

As noted in subsection 3.1.4, the scaling of the data is very important for the performance of a
SVM. Standard, uniform, and unit scaling perform well on MNIST (Figure 3.7a) and they are
popular choices for scaling. Quartile scaling does not perform well on MNIST and on Software
Defects (Figure 3b in the appendix). Unscaled data produces bad result on all datasets. Therefore
these two scaling types are not considered to be used on the scaling search axis. Additionally, the
default choice of uniform scaling does produce suboptimal results on Deepsat, which can be seen in
Figure 4a of the appendix. The cost HP needs careful consideration. Setting it too low will result in
bad performance, while setting it too high may cause a model to never converges. The default of 1
seems to work well on all datasets and a range of 10±2 seems to cover all the performance plateaus
reasonably well. Setting the degree HP is also a important choice. While any choice seems to lead
to a good model on MNIST (Figure 3.7c), setting it too high on Deepsat seems to lead to a bad
performance, as can be seen in Figure 4c in the appendix. So a range of 3 to 9 was determined, so
it covers the optimum for MNIST. Using the default 𝛾0 HP seems to produce good results on all
dataset. It is defined as 𝛾0 = 1/𝑛 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠. The correct choice seems to be very important for the
polynomial kernel, as can be seen in Figure 3.7d. Here, the 𝛾0 = 1.28 · 10−3. While the choice of
coef0 = 0 works well in most cases, it seems, that a choice of coef0 = 1 can work even better. This
can be seen in the appendix in Figure 4e, where a coef0 = 0 appears to be less robust. 𝜖 , also known
as tol, seems to produce very stable results for tol < 10−8.

How limited the significance tests are can be demonstrated by Figure 4c of the appendix. This plot
is part of the significance test and uses the default values described above. It seems, that increasing
polynomial degrees results in decreasing model performance on the Deepsat dataset. Yet it was
observed, that one TPE study found an optimum on Deepsat for the HPs {kernel=poly, degree=9,
coef0=1, cost=6.70}. This underlines the importance of finding a good combination of HPs.

46

3.4 Hyper Parameter Sensitivity tests

MNIST: scaling significance test

va
lid

at
io

n
ac

cu
ra

cy
 %

ru
nt

im
e

s

quartile standard uniform unit unscaled

scaling

79.2138

63.371

47.5283

31.6855

15.8428

0

20

40

60

80

100

linear
poly
rbf

(a)

10 -10 10 -5 10 0 10 5 10 10

cost

0

10

20

30

40

50

60

70

80

90

100

va
lid

at
io

n
ac

cu
ra

cy
 %

0

10

20

30

40

50

60

70

80

90

ru
nt

im
e

s

MNIST: cost significance test

linear
poly
rbf

(b)

2 4 6 8 10 12 14 16 18 20

degree

97.2

97.4

97.6

97.8

98

98.2

98.4

98.6

va
lid

at
io

n
ac

cu
ra

cy
 %

7

8

9

10

11

12

13

14

15

ru
nt

im
e

s
MNIST: degree significance test

(c)

10 -6 10 -4 10 -2 10 0

gamma

0

10

20

30

40

50

60

70

80

90

100

va
lid

at
io

n
ac

cu
ra

cy
 %

0

10

20

30

40

50

60

70

80

ru
nt

im
e

s

MNIST: gamma significance test

poly
rbf

(d)

-2 0 2 4 6 8 10

coef0

10

20

30

40

50

60

70

80

90

100

va
lid

at
io

n
ac

cu
ra

cy
 %

0

10

20

30

40

50

60

70

80

ru
nt

im
e

s

MNIST: coef0 significance test

(e)

10 -12 10 -10 10 -8 10 -6 10 -4 10 -2

tol

0

10

20

30

40

50

60

70

80

90

100

va
lid

at
io

n
ac

cu
ra

cy
 %

0

10

20

30

40

50

60

70

80

ru
nt

im
e

s

MNIST: tol significance test

linear
poly
rbf

(f)

Figure 3.7: These plot show the main HPs behavior over the MNIST dataset. Sensitivity tests of
the other datasets can be found in Figures 3 and 4 of the appendix.

47

3 Methodology

3.5 Search space definitions

This chapter describes the search spaces used in all tests. The premise is, that a user may not
know the exact range and the importance of each HP. Therefore, it would not be useful to develop
individual search spaces for each dataset. Instead, the results of all the tests in section 3.4 were
used to formulate search spaces to be used on all datasets. Each search space adds one additional
search axis, with the exception of search space four, which adds two axes. With each aditional
axis, the search space increases significantly. The order in which each HP search axis is added is
determined by the estimated importance of each HP. While this process is largely guesswork, the
rationale is described in each search space definition. The ranges are chosen, so all three datasets
work reasonably well.

3.5.1 Default values

Before defining the search spaces, one must define the values, that are not in the search space. If
not noted otherwise, then the default values were used from PLSSVM [VCBP22] and they were
verified to work well with the selected datasets. The values are shown in Table 3.1.

HP value comment
𝑘𝑒𝑟𝑛𝑒𝑙 "rbf"
𝑠𝑐𝑎𝑙𝑖𝑛𝑔 "uniform" determined by test
𝑐𝑜𝑠𝑡 1
𝑑𝑒𝑔𝑟𝑒𝑒 3
𝑔𝑎𝑚𝑚𝑎 𝛾0 𝛾0 = 1/𝑛 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑐𝑜𝑒 𝑓 0 1 1 yields same or better results
then 0

𝑡𝑜𝑙 𝑎 10−9 determined by test
𝑚𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠 "oaa" multiclass classification strategy,

defined in subsection 2.5.5
𝑠𝑝𝑙𝑖𝑡_𝑡𝑟𝑎𝑖𝑛 0.8 Slice of 𝐷𝑡𝑟𝑎𝑖𝑛

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 2000, 3300 3300 on MNIST, else 2000.
Soft timeout determined in sec-
tion 3.7.

Table 3.1: Default values used. 𝑎 may also be referred to as 𝜖 .

3.5.2 Search space 0

Search space 0 is designed to be a simple baseline. Due to it’s definition, it has only nine unique
combinations. If a HP is not listed, then it is left as default. According to an analysis about feature
scaling [AMS+21], SVM is sensitive towards feature scaling, which was also observed in the tests.
It was chosen as the second axis because that in the tests, a HP like 𝑐𝑜𝑠𝑡 did always yield good
performance for it’s default value. This is not the case with the scaling, which had more varied
results, depending on the kernel and dataset.

48

3.5 Search space definitions

HP value
𝑘𝑒𝑟𝑛𝑒𝑙 ["linear", "poly", "rbf"]
𝑠𝑐𝑎𝑙𝑖𝑛𝑔 ["standard", "uniform", "unit"]

Table 3.2: Search space 0 definition.

3.5.3 Search space 1

As indicated to in the previous sections, the 𝑐𝑜𝑠𝑡 HP is also important. Therefore, it was chosen as
the third axis. The float search space invocation is described in subsubsection 3.3.7. This search
space has 45 unique combinations and as such, it is described as a small search space. In our tests,
average computation times of one to two minutes per trial were observed (section 3.7), depending on
the dataset and sampler. Thus, calculating all trials of the study will not require many resources.

HP value
𝑘𝑒𝑟𝑛𝑒𝑙 ["linear", "poly", "rbf""]
𝑠𝑐𝑎𝑙𝑖𝑛𝑔 ["standard", "uniform", "unit"]
𝑐𝑜𝑠𝑡 "float(1e-2, 1e2, steps=5, log=True)"

Table 3.3: Search space 1 definition. 1e-2 is the programming notation of 1 · 10−2. The steps
argument is left out for continuous sampler in this and all following search space
definitions.

3.5.4 Search space 2

Figure 4c in the appendix section demonstrates, that the choice of the degree HP is important as well.
Since the degree HP depends on the kernel, there are 135 unique combinations on the conditional
grid (subsection 2.4.4). In this case, an unconditional sampler would have 315 combinations.
With 135 combinations, each study will take some time to compute, but it will still be reasonable.
Therefore, this was called the medium search space.

HP value
𝑘𝑒𝑟𝑛𝑒𝑙 ["linear", "poly", "rbf"]
𝑠𝑐𝑎𝑙𝑖𝑛𝑔 ["standard", "uniform", "unit"]
𝑐𝑜𝑠𝑡 "float(1e-2, 1e2, steps=5, log=True)"
𝑑𝑒𝑔𝑟𝑒𝑒 "int(3, 9)"

Table 3.4: Search space 2 definition.

3.5.5 Search space 3

Using the default value 𝛾0 seem to produce very consistent results in the sensitivity tests. Hence
why it was not included in the search spaces earlier. This search space has 375 unique combinations
on the conditional grid. Calculating all the combinations takes some considerable resources, but it

49

3 Methodology

is still doable. For this reason it has been named the big search space. The point at which a search
space becomes too big depends on the use case. For a detailed comparison analysis, each study may
not bee to big. Because for statistical significance, each study has to be run multiple times on each
dataset.

HP value
𝑘𝑒𝑟𝑛𝑒𝑙 ["linear", "poly", "rbf"]
𝑠𝑐𝑎𝑙𝑖𝑛𝑔 ["standard", "uniform", "unit"]
𝑐𝑜𝑠𝑡 "float(1e-2, 1e2, steps=5, log=True)"
𝑑𝑒𝑔𝑟𝑒𝑒 "int(3, 9)"
𝑔𝑎𝑚𝑚𝑎 "float(𝛾0e-1, 𝛾0e1, steps=3, log=True)" 𝑎

Table 3.5: Search space 3 definition. 𝑎 if written in a study definition file, the limits have to
be written as real numbers. In case of MNIST this would be "float(1.28e-4, 1.28e-2,
log=True)".

3.5.6 Search space 4

This search space now includes HPs, which produced very consistent plateaus in the sensitivity
tests. While this may seem to inflate the studies unnecessarily, recall the premise, that the user may
not be aware of this observed consistency. Furthermore, the basis on which the search spaces were
defined were significance tests. So there is a very good chance, that adjusting these HPs may give a
combination, that could yield a model with good performance. With 5280 unique combinations
on the conditional grid, computing all of them may exhaust available computing resources. This
search space was mainly used to study, how a partial study could be performed. In this case, other
stop criteria, besides the number of combinations are tested, which is discussed in section 4.4.

HP value
𝑘𝑒𝑟𝑛𝑒𝑙 ["linear", "poly", "rbf"]
𝑠𝑐𝑎𝑙𝑖𝑛𝑔 ["standard", "uniform", "unit"]
𝑐𝑜𝑠𝑡 "float(1e-2, 1e2, steps=5, log=True)"
𝑑𝑒𝑔𝑟𝑒𝑒 "int(3, 9)"
𝑔𝑎𝑚𝑚𝑎 "float(𝛾0e-1, 𝛾0e1, steps=3, log=True)"
𝑐𝑜𝑒 𝑓 0 "float(0, 6, steps=4, log=True)"
𝑡𝑜𝑙 "float(1e-12, 1e-6, steps=4, log=True)"

Table 3.6: Search space 4 definition.

3.6 Study definitions

Recall the definition of a study in section 2.4 each study samples HPs over its defined search spaces
and evaluates the objective function until at least one specified stop criterion is triggered. For
each combination of search spaces (section 3.5), datasets (section 2.2) and optimizers one study is

50

3.7 Time trials

defined. As noted, the optimizers are Grid Search (conditional grid subsubsection 3.3.3), Random
Search and TPE. Only the conditional Grid Search used the discretization of each search space. For
the other search algorithms, the discretization was removed.

3.6.1 Full tests

The studies on search spaces 0 to 3 were run on their complete respective grids. Hence the name
full test. The stop criterion was the number of combinations on the conditional grid. These are 9,
45, 135 and 375 for the search spaces 0, 1, 2 and 3 respectively, they were used for all sampler types.
To obtain a statistically relevant results, each study was run five times.

3.6.2 Partial tests

As noted in subsection 3.5.6, search space 4 with 5280 combinations on the conditional grid is
to big to be searched exhaustively. Assuming an average of two minutes per trial on the Deepsat
dataset, this would result in a runtime of about seven days for a single study. Based on the results of
the full tests, the stop criteria were changed, which is described in section 4.4.

3.7 Time trials

Another important quantity to set is the runtime limit of each dataset. As was established in
subsection 2.5.3, there is a risk, that the PLSSVM model may never converge, or it may converge
very slowly. However, it is important to keep in mind, that stopping any model early poses the
risk of losing a well-performing model. Therefore a compromise has to be found. To measure this
behavior, the simple HP search space 1 was used, to evaluate both runtime and errors. The runtime
limits were set very high, to allow an analysis of the distribution of runtime per trial. With these
findings we try to formulate a limit that represents a reasonable compromise between stopping
non-converging models and not losing too many well-performing models. For this analysis, search
space 1 with 45 combinations was chosen for three reasons:

• It is small enough, that calculation will finish in reasonable time.

• The number of trials is big enough, to get a coarse estimation of the runtime distribution.

• Due to the inclusion of the cost HP, the search should yield trials with varying runtime and
performance. The importance of the cost HP can be seen in Figure 3.7b.

Search space 1 was run on a setup described in section 3.8.

To determine the timeout, the plots in Figure 3.8 were used. On the x-axis they show, how long a
model took to fit. The bar graph is visualizes the distribution of models with different runtimes,
which is the primary method of finding the timeout. Furthermore, the scatter plot shows the error
on the validation dataset, described in section 2.2. The error refers to the missclassification error,
described in subsection 2.1.1. This plot is used to determine the risk, of cutting of well-performing
models.

51

3 Methodology

MNIST Grid: time-trials

0 200 400 600 800 1000 1200

runtime s

0

5

10

15

20

25

30

35

40

F
re

qu
en

cy
 o

f o
cc

ur
re

nc
e

10 -1

10 0

10 1

10 2

va
lid

at
io

n-
er

ro
r

%

(a)

MNIST Random: time-trials

0 200 400 600 800 1000

runtime s

0

5

10

15

20

25

30

35

40

F
re

qu
en

cy
 o

f o
cc

ur
re

nc
e

10 0

10 1

va
lid

at
io

n-
er

ro
r

%

(b)
MNIST TPE: time-trials

0 100 200 300 400 500 600 700 800

runtime s

0

5

10

15

20

25

30

F
re

qu
en

cy
 o

f o
cc

ur
re

nc
e

10 0

10 1

va
lid

at
io

n-
er

ro
r

%

(c)

Figure 3.8: Different time tests on small search space. Time trials of the other datasets can be
found in the Figures 1 and 2 of the appendix.

In all plots, there is no indication that suggests, that a longer fitting model performs significantly
better. As such, the analysis is purely done using the bar graph. In each bar graph, only few models
take any longer, than 300 s. Therefore, setting a timeout of 300 s would stop only few models. TPE
seems to be a special case, where only very few models take longer than 200 s to fit. The surrogate
model converged to an optimum of the cost parameter. As noted in section 3.4, the runtime is very
sensitive towards the choice of cost parameter. So it is plausible, that a study converging to an
optimum of this parameter may also converge to a certain runtime (in this case, 120 s). For this
reason, the TPE time-trial shows fewer models, that take longer than 200 s. Yet from the other
optimizers we know, that a reasonable number of models may take up to 300 s to fit. For this reason,
the TPE optimizer may not be the best choice, to evaluate, how long a model will take to fit.

To sum up, a timeout of 300 s was determined for the MNIST dataset. Although to allow for some
variance in computing time, the timeout was extended to a 330 s soft timeout and a 360 s hard
timeout. Both types of timeouts are described in subsection 3.3.5. Using the same approach on
the Software Defects and Deepsat Sat6 datasets, shown in Figures 1 and 2 of the appendix, which
coincidentally arrived at the same timeouts.

52

3.8 Experiment settings

3.8 Experiment settings

The purpose of this section is to provide insight into the experimental environment in order to make
our results repeatable. The experiments were run on IPVS’ simcl1 cluster. It consists of two AMD
EPYC 9274F server CPUs, each with 24 cores and 48 threads, it is equipped with 384GB of RAM.
The scheduling software slurm [YJG03] divides simcl1 into four nodes, two of which have access
to an NVidia A30 GPU with 24GB of VRAM each, and one node has access to an AMD Instinct
MI210 with 64GB of VRAM. All tests were run on one of the NVidia GPU nodes with exclusive
access, with PLSSVM running in the CUDA backend.

53

4 Results

This chapter presents and discusses the results of the studies as defined in section 3.5. Furthermore
using these observations, optimized rules for searching large spaces are formulated.

4.1 GPU power draw

Recall the experiment setup (section 3.8), all studies were run on NVidia A30 GPUs and the energy
consumption drawn by the GPU was logged. The first observation to establish is that in each study,
the GPU power consumption was very consistent. Using Figure 4.1a as an example, most of the
energy plots look comparable. For the small Software Defects dataset some minor deviations
were observed, an example is Figure 4.2. The biggest outlier is still within 20% of the median
(Figure 4.1b). Without doing any further research into the problem, it is hard to say, what causes
these outliers. But it is likely one of several causes:

• Theoretically, certain HPs can lead to different complex models. For example, using a kernel
other then linear will require transforming of the input samples as an extra step. It is not
assumed, but it is possible, that a step like the kernel transformation may change the power
consumption.

• The average power of a study is calculated by Δ𝐸
Δ𝑡

, which is the energy consumed and runtime
respectively.

(4.1) Δ𝐸 =

∫
𝑝(𝑡)𝑑𝑡

the energy is calculated by taking the integral of the power over the runtime. Research
suggests, that the NVidia-smi measurements deviate ±5% from the real value [YAA24]. At a
rated Thermal Design Power (TDP)1 of 165𝑊 , this should be around ±8.25𝑊 of electrical
power draw. Additionally, the integration itself introduces a small error.

• While the experiments are running with exclusive slurm access to a node, the Operating
System (OS) is still running tasks in the background. Furthermore, the separation of each
node within slurm is not perfect and jobs on other nodes may interfere, especially when using
shared resources, such as RAM or hard drives.

1TDP describes the dimensions of the cooling solution. While this is not necessarily the same as electrical power
consumption, the average power at a continuous maximum computing load should still be at around this figure. This
is due to the fact that almost all of a processor’s electrical energy is converted to heat. The exact figure would depend
on the computing load and the temperature of the processor.

55

4 Results

• The power consumption of any processor is a dynamic process. It is likely that for example
during a short study, the power consumption of the GPU has not yet stabilized. This may be
due to measurement errors (caused by averaging [YAA24]), as mentioned above, but it may
also have a physical explanation: When a processor is idle, it cools down; when a load is
present, it heats up. Because of the extensive cooling solution designed to dissipate a heat
load of 165𝑊 , the GPU takes some time to heat up. The efficiency of such a system is directly
dependent on the temperature. A colder system requires less power to perform the same
computations. In fact, the outlier in Figure 4.2 coincides with a short study. The search space
0 baseline studies are computed first, while the GPU may still be cold. Thus, this is a likely
cause for this behavior.

However, we observe a quartile range of about ±6𝑊 or ±5%, which is consistent. Thus, we
can assume, that for each of the selected datasets, runtime is interchangeable with the energy
consumed.

Although it is important to note that the power drawn by the GPU during fitting seems to be dataset
dependent (Figure 4.1b). It is likely, that the dataset structure (number of samples and number
of features) is the factor behind this observation. In these measurements, the higher dimensional
feature spaces (section 2.2) seem to result in lower power consumption. One explanation may be,
that with a higher dimensional feature space, the GPU has to do more memory transfers during the
process of fitting the dataset. The main computing units of any processor consumer the most power,
but in this case they may be waiting for the data to be transferred. Nevertheless, this is an open
avenue for further research. Especially due to the fact, that only one GPU from one vendor was
studied. It is likely, that the qualitative behavior of other GPUs is different.

0 1 2 3 4 5

runtime-s #10 4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

gp
u-

en
er

gy
-W

h

mnist-3: cumulated runtime-s against gpu-energy-Wh

mnist-grid-3
mnist-random-3
mnist-tpe-3

(a) Energy per runtime on one of the MNIST
studies on search space 3.

Software Defects MNIST Deepsat Sat6

dataset

115

120

125

130

135

140

145

150

155

gp
u-

po
w

er
-W

power boxplot

(b) Each sample is the average power of a single
study. These averages are plotted over the
different datasets.

Figure 4.1: Within each dataset, the power of the conducted studies is very consistent.

While this does account of the energy consumed by the GPU, the CPU will consume energy at
the same time. Measuring the energy was not part of this research, but should be addressed in
future research. It is expected, that the energy consumed by the CPU will follow roughly the same
linear pattern. It is possible, however, that the energy consumed by X86-type processors is harder
to estimate due to their rich feature set.

56

4.2 Performance results

0 50 100 150 200 250 300 350 400

runtime-s

0

2

4

6

8

10

12

14

16

gp
u-

en
er

gy
-W

h

software-defects-0 cumulated runtime-s against gpu-energy-Wh

grid
random
tpe

Figure 4.2: One of the power outlier on the Software Defects dataset using search space 0.

4.2 Performance results

This section discusses the final tuning results, without regard to efficiency, which is discussed in
section 4.3. If an optimizer finds the model with the best score, as measured by accuracy on the
validation holdout of the studies (section 2.4), it "wins". If the best model found by a study had
a lower accuracy, it "looses". In case of search space 0, multiple optimizers may find the same
optimum model and therefore multiple may win. This is summarized in Table 4.1.

Using the small search space 0, Grid Search is the best choice. This is to be expected, because it is a
small and fully discrete space, only the Grid Search does guarantee, that the full grid was searched.
For search space 1 and 2, TPE search seems the best choice. With three and four search axes, the
Bayesian model is able, to find better optima outside the search grid. In the last search space 3, the
Grid Search seems to win. This result is somewhat surprising due to the five search axes. Recall
subsection 2.4.4, that Grid Search has a higher effective dimensionality. One explanation is, that
Grid Search had an advantage due to it’s exhaustive nature. It is feasible, that the Random Search
sampled HPs too unevenly. Due to the dimensionality, it is possible, that the surrogate model of
TPE may have gotten to complicated. This may have lead it to converge to a local optimum, instead
of the global optimum. An explicit example of this behavior is discussed in the results of search
space 2 subsection 4.3.4.

Furthermore, it is important to mention, that the choice of optimizer also depends on the dataset.
While TPE was overall better on the search spaces 1 and 2, it is only on par with the Grid Search on
the MNIST dataset. As is discussed in subsection 4.3.3, this may be related to the fact, that the Grid
Search has an advantage, if the optimum is at the boundary of a search space.

57

4 Results

Search space 0 1 2 3 overall
win loss win loss win loss win loss win loss

overall
Grid Search 15 0 5 10 2 13 6 9 28 32
Random Search 11 4 2 13 3 12 5 10 21 39
TPE 12 3 9 6 10 5 9 6 40 20
Software Defects
Grid Search 5 0 0 5 0 5 0 5 5 15
Random Search 4 1 2 3 0 5 3 2 9 11
TPE 5 0 3 2 5 0 2 3 15 5
MNIST
Grid Search 5 0 5 0 2 3 3 2 15 5
Random Search 3 2 0 5 1 4 2 3 6 14
TPE 3 2 1 4 2 3 5 0 11 9
Deepsat Sat6
Grid Search 5 0 0 5 0 5 3 2 8 12
Random Search 3 2 0 5 2 3 0 5 5 15
TPE 4 1 5 0 3 2 2 3 14 6

Table 4.1: Win and loss comparison per search space and search algorithm and dataset.

4.3 In-depth search space comparison

This section will now discuss the efficiency of each algorithm. While the Table 4.1 may be an
interesting starting point, it is more theoretical in nature. As will become apparent throughout this
section, with the defined search spaces, all optimizers find a model with comparable performance.
The performance difference between a winning or loosing model may be very small. However,
other metrics, such as the performance variance or the runtime between the optimizers, can be very
different. The search spaces are defined in section 3.5.

4.3.1 Default values

As a rough guideline, the default values defined in section 3.5 yield the following model performances:

Dataset Software Defects MNIST Deepsat Sat6
𝐴𝑐𝑐ℎ [%] 80.09 97.95 95.35
𝑏𝑖𝑎𝑠 [%] 0.18 -0.21 -0.16
𝑡𝑡𝑟 [s] 5.8 19.8 49.5

Table 4.2: Performance and runtime figures of one run using the default values.

58

4.3 In-depth search space comparison

Repeatedly fitting datasets with PLSSVM using these default values will always yield the same
performance. Using the same experiment settings (section 3.8), the runtime will vary slightly. The
accuracy was measured on the HPO holdout slice 𝐷ℎ𝑜𝑙𝑑𝑜𝑢𝑡 (section 2.4), the bias refers to the
difference to the optimizer validation slice 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛. A positive value indicates that the value was
higher during model selection. 𝑡𝑡𝑟 is the runtime a single trial. It measures the elapsed time of fitting
the data on 𝐷𝑡𝑟𝑎𝑖𝑛 and predicting the data of 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 to estimate performance.

4.3.2 Search space 0

Dataset Software Defects MNIST Deepsat Sat6
Tuner Grid Random TPE Grid Random TPE Grid Random TPE
win 5 4 5 5 3 3 5 3 4
loss 0 1 0 0 2 2 0 2 1
𝐴𝑐𝑐ℎ [%] 81.132 80.985 81.132 98.330 98.218 98.198 97.384 97.366 97.384
std 0 0.3296 0 0 0.1534 0.1842 0 0.1090 0.08765
𝑏𝑖𝑎𝑠 [%] 0.319 0.277 0.319 0.028 0.107 0.020 -0.131 -0.174 -0.123
std 0 0.0935 0 0 0.108 0.154 0 0.121 0.0188
𝑡𝑠𝑡 [s] 360 480 359 698 933 580 766 703 671
min 352 88 64 360 589 234 760 606 615
max 364 957 652 705 1072 731 773 848 724
𝑡𝑡𝑟 40.0 53.3 39.9 77.5 103 64.4 85.1 78.1 74.6
best Grid @81.132% Grid @98.830% Grid @97.384%
HPs sc=standard, k=rbf sc=uniform, k=poly sc=standard, k=rbf

Table 4.3: Performance and runtime comparison of search space 0. 𝑡𝑠𝑡 is the average runtime
of a complete study, while 𝑡𝑡𝑟 is the average runtime of a single trial. Best describes,
which optimizer found the model with the highest accuracy on the study holdout in all
experiments.

On search space 0, the difference between each optimizer should be minimal. Indeed, in case of
model performance, this is the case. Due to it’s exhaustive nature, the Grid Search always finds
the optimum within the grid. Furthermore, it always requires about the same time to finish, within
a narrow window. This is not the case for the other optimizers. While their results are close and
they almost always found the same optimum on the grid, their runtime varied considerably. The
runtime itself is dependent on the HPs. In case of the TPE and Random Search, both are not grid
based and both may sample previously sampled combinations. Due to this, there is a small chance,
that the optimum was not within all the sampled HPs. With only nine evaluations, TPE is still
doing Random Search, as explained in subsection 2.4.4. This is also the reason for the runtime
differences: The longer running studies (especially on Software Defects) sampled a long running
HP combination multiple times, whereas the shorter running combinations may have missed the
same combination. For the Software Defect dataset, one combination {kernel (k)=poly, scaling HP
(sc)=standard} on the grid does not converge before the soft timeout (subsection 3.3.5). Fitting this
combination takes much longer, then any other combination, which can be seen in Figure 3b. In
fact, it is possible, this combination does not converge. The variance of runtime per study is less on
the other datasets, it is shown in Figure 4.3. These graphs compare the runtime variance per study,

59

4 Results

it shows the distribution of runtime per trial. In particular Figure 4.3 shows, that only very few
models take around 300 s to fit on Software Defects. So any study, that fits this model multiple
times will take much longer and any study, that misses this model will be done much quicker.

grid random tpe
0

50

100

150

200

250

300

ru
nt

im
e

s

Software Defects0: runtime variance

(a)

grid random tpe
0

50

100

150

200

250

300

ru
nt

im
e

s

MNIST0: runtime variance

(b)

grid random tpe

50

75

100

125

150

175

200

ru
nt

im
e

s

Deepsat0: runtime variance

(c)

Figure 4.3: Search space 0 runtime distributions. The line denotes the median of each distribution,
the number besides the dataset name indicates the search space.

grid random tpe

0.77

0.78

0.79

0.80

0.81

ho
ld

ou
t a

cc
ur

ac
y

Software Defects0: holdout accuracy variance

(a)

grid random tpe
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

ho
ld

ou
t a

cc
ur

ac
y

MNIST0: holdout accuracy variance

(b)

grid random tpe

0.80

0.85

0.90

0.95

ho
ld

ou
t a

cc
ur

ac
y

Deepsat0: holdout accuracy variance

(c)

Figure 4.4: Search space 0 score distributions over the trials of all studies combined.

60

4.3 In-depth search space comparison

4.3.3 Search space 1

On search space 1, the cost (C) search axis was added. This axis is continuous and as such,
this allows the continuous samplers to work more efficiently compared to a grid, as described in
subsection 2.4.4. As a result, on two of three datasets, the continuous samplers find the best models.
On MNIST, many of the better models have higher sampled cost values. In case of Grid Search, the
sampled cost value was exactly at the boundary of the search axis. Therefore it is likely, that the
Grid Search had an advantage on MNIST, as it does sample all values on the boundary of a search
space. Continuous samplers are less likely to sample values on the boundary of a search axis, as
can be seen in Figure 2.6. Furthermore, it is likely, that increasing the cost HP may increase the
performance further. Yet it is important to keep in mind, that this would also result in exponentially
higher time to fit the model. In the worst case, a model may never converge. This is discussed
in section 3.4. One other likely explanation would be, that using TPE the surrogate has trouble
exploring the boundary of a search space. This is due to the Gaussian Process: Each HP starts with
a normal distributed prior. Meaning, that each HP is more likely to be sampled from the center of
their defined search axis.

Dataset Software Defects MNIST Deepsat Sat6
Tuner Grid Random TPE Grid Random TPE Grid Random TPE
win 0 3 2 5 0 1 0 0 5
loss 5 2 3 0 5 4 5 5 0
𝐴𝑐𝑐ℎ [%] 81.132 81.213 81.207 98.870 98.790 98.828 97.999 98.011 98.029
std 0 0.05259 0.03680 0 0.04637 0.03033 0 0.01919 0.00626
𝑏𝑖𝑎𝑠 [%] 0.32 0.28 0.28 0.29 0.28 0.267 -0.042 -0.040 -0.034
std 0 0.017 0.037 0 0.012 0.029 0 0.015 0.0063
𝑡𝑠𝑡 [s] 1978 480 2322 4216 4024 5724 5070 4840 5634
min 1954 88 744 4196 3682 3806 4867 4233 5373
max 1996 957 4414 4247 4332 6827 5807 5398 5930
𝑡𝑡𝑟 44.0 10.7 51.6 93.7 89.4 127 113 108 125
best Random @81.245% Grid @98.870% TPE @98.038%
HPs sc=standard, k=rbf, sc=uniform, k=poly, sc=standard, k=rbf,

C=0.366 C=100 C=19.0

Table 4.4: Performance and runtime comparison of search space 1.

Again, the highest performance increase can be observed on the Deepsat Sat6 dataset. The best
model had an accuracy increase of 0.65%. Comparing the continuous samplers on Software Defects
and Deepsat, there is a correlation between bias and optimizer on this search space. With the lower
absolute bias of Deepsat, the models found by the TPE sampler are better on the study validation
holdout. This may be the reason, why TPE found models with higher performance. A reduced bias
means, that the real performance of the selected model is closer to the one known by the optimizer.
This may be achieved by increasing the size of the validation dataset, although this is likely to reduce
the performance of the found model as well. Theoretically one may also try using CV instead. As
described in section 2.2, this is likely to reduce the pessimistic bias of the simple holdout approach
used in these experiments. While this will drastically increase the required resources, due to the low
number of trials on this search space, a 5 or 10 fold cross validation would still be feasible.

61

4 Results

grid random tpe
0

50

100

150

200

250

300

ru
nt

im
e

s

Software Defects1: runtime variance

(a)

grid random tpe
0

50

100

150

200

250

300

ru
nt

im
e

s

MNIST1: runtime variance

(b)

grid random tpe

50

100

150

200

250

300

350

ru
nt

im
e

s

Deepsat1: runtime variance

(c)

Figure 4.5: Search space 1 runtime distributions.

grid random tpe
0.2

0.3

0.4

0.5

0.6

0.7

0.8

ho
ld

ou
t a

cc
ur

ac
y

Software Defects1: holdout accuracy variance

(a)

grid random tpe
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ho
ld

ou
t a

cc
ur

ac
y

MNIST1: holdout accuracy variance

(b)

grid random tpe

0.2

0.4

0.6

0.8

1.0

ho
ld

ou
t a

cc
ur

ac
y

Deepsat1: holdout accuracy variance

(c)

Figure 4.6: Search space 1 score distributions.

In all cases, the models found by the TPE sampler have a smaller standard deviation in their model
performance. On the Deepsat Sat6 dataset all five studies of TPE found very similar HPs. Scaling
and kernel were always identical, the average of the cost HP was 16.5, whereas its standard deviation
was 1.88. All TPE studies found the same optimum, so it is likely, they all found the global optimum
within the defined search space. Another trend that can be observed from here on (Figure 4.6) is
that the median score of each study within the TPE studies is always close to its respective optimum
score.

The accuracy on the study validation holdout is plotted over the runtime in Figures 4.7a, 4.8a
and 4.9a. Instead of using accuracy directly, it was transformed into the missclassification error
(subsection 2.1.1). This allows visualization on a logarithmic scale, smaller values are further apart
and therefore more visible. The line of each plot is the mean of all five conducted studies at the
sampled runtime. The upper and lower edges are the maximum and minimum error of the five
studies, respectively.In most cases, the optimizer found a good model before executing the last trial.
In case of Figure 4.7a, we may stop tuning after 20 min and the model performance should still be
very good. One limitation of this type of plot is, that it only depicts the best and worst model at that
point in time. If those two are far apart, this does not mean, both optimizer have not converged. It is
possible, as is discussed in subsection 4.3.4, that two studies converge towards different optima.
To visualize the convergence behavior, the relative difference of the top-5 holdout validations are
plotted. This is calculated as

(4.2)
𝐴𝑐𝑐1 − 𝐴𝑐𝑐5

𝐴𝑐𝑐5
,

62

4.3 In-depth search space comparison

where 𝐴𝑐𝑐1 denotes the highest accuracy of all found models so far and 𝐴𝑐𝑐5 the fifth highest.
Using the top-5 convergence gives some insight, how much a optimizer has converged so far. The
lower the score, the smaller the change and therefore models found in further trials are expected to
not to be much better. In all cases, the TPE optimizer has a lower top-5 convergence difference on
average. This is due to the fact, that TPE exploits optima. Many sampled HPs combinations are
near a found optimum, so the score converges. Basing a stopping criterion around this behavior
may not yield the best performing model, but it it very likely to find a well performing model in
shorter time.

50
0

10
00

15
00

20
00

25
00

30
00

runtime s

18.5%

19%

19.5%

20%

20.5%

21%

ho
ld

ou
t e

rr
or

 o
f s

el
ec

te
d

m
od

el

Software Defects1: score-variance over runtime

grid
random
tpe

(a)

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

runtime s

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

co
nv

er
ge

nc
e

of
 5

 b
es

t m
od

el
s

Software Defects1: top k-convergence

grid
random
tpe

(b)

Figure 4.7: Search space 1 Software Defects score and convergence.

50
0

10
00

20
00

40
00

runtime s

2%

3%

4%

5%

6%

7%

8%
9%

ho
ld

ou
t e

rr
or

 o
f s

el
ec

te
d

m
od

el

MNIST1: score-variance over runtime

grid
random
tpe

(a)

10
00

20
00

40
00

runtime s

10 -4

10 -3

10 -2

10 -1

10 0

co
nv

er
ge

nc
e

of
 5

 b
es

t m
od

el
s

MNIST1: top k-convergence

grid
random
tpe

(b) TPE studies had a top-5 difference of zero,
which which was cut off on the log-plot.

Figure 4.8: Search space 1 MNIST score and convergence.

63

4 Results

50
0

10
00

20
00

40
00

runtime s

10%

ho
ld

ou
t e

rr
or

 o
f s

el
ec

te
d

m
od

el

Deepsat1: score-variance over runtime

grid
random
tpe

(a)

10
00

20
00

40
00

runtime s

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

co
nv

er
ge

nc
e

of
 5

 b
es

t m
od

el
s

Deepsat1: top k-convergence

grid
random
tpe

(b)

Figure 4.9: Search space 1 Deepsat Sat6 score and convergence.

4.3.4 Search space 2

On this search space, the polynomial degree (d) search axis is introduced. This only yielded minor
improvement, the biggest one was 0.1% of the best model found on the MNIST dataset. In this
case, the continuous samplers were on par with the Grid Search on MNIST. Given, that this axis is
again discrete, it is somewhat surprising, that the continuous samplers improved. It is a possible
consequence of the fact, that using a polynomial kernel, the matching cost HP is not at the boundary
of its search space. Another consequence of introducing the new search axis is, that one of the TPE
studies on Deepsat got stuck in a local optimum. This study found a optimum at the ninth degree
polynomial kernel. It diverged from all other four studies, that found the optimum at the rbf kernel,
which was already described in subsection 4.3.3. The other studies on the Deepsat Sat6 dataset
found the same optimum and as such, the new search axis does not benefit the tuning for this dataset.
This can also be seen in the Figures 4.14a and 4.14b. According to the second plot, all TPE studies
seem to have converged well, while their score variance in the first plot is still very high.

And while it reduced the average performance of TPE, it did boost that of Random Search. Random
Search works by sampling the unconditional kernel HP first (see subsection 3.3.3). The number
of each drawn linear, polynomial or rbf kernel HP is expected to be a third of all trials. Next the
conditional polynomial HPs, like degree are drawn. While the expected value of sampled rbf kernels
on search space 1 is 15, for the search space 2 this would be 45. Due to the fact, that the degree HP
remains unused for the rbf kernel, all 45 trials are only evaluated on the scaling and cost HPs (as
was on search space 1). However, it is likely that the expected number of 45 trials of the polynomial
kernel may be a disadvantage for a case, where the optimum is within the polynomial kernel. This
imbalance of the Random Search opens the possibility for further research.

Another observation is, that using this search space introduced many longer running trials within
the conditional grid sampler. This is depicted in Figure 4.10, it is particularly visible for the MNIST
dataset. It is likely caused by the fact, that the introducing a HP dependent on the polynomial
kernel increased the size of the polynomial subspace of the conditional grid, compared to the other
subspaces, that remain constant. Combinations of polynomial kernel with standard scaling are
likely to converge only slowly on the MNIST dataset as depicted in Figure 3.7a. Conversely, TPE

64

4.3 In-depth search space comparison

Dataset Software Defects MNIST Deepsat Sat6
Tuner Grid Random TPE Grid Random TPE Grid Random TPE
win 0 0 5 2 1 2 0 2 3
loss 5 5 0 3 4 3 8 3 2
𝐴𝑐𝑐ℎ [%] 81.132 81.223 81.253 98.930 98.912 98.928 97.999 98.031 97.985
std 0 0.03358 0.00828 0 0.02588 0.03114 0 0.04868 0.1094
𝑏𝑖𝑎𝑠 [%] 0.319 0.271 0.184 0.262 0.266 0.269 -0.042 -0.041 -0.027
std 0 0.0180 0.0898 0 0.142 0.0171 0 0.0199 0.0163
𝑡𝑠𝑡 [s] 8962 4826 4992 18841 13834 13830 19147 15162 18703
min 8911 3206 4366 18803 12986 9286 19062 13665 17870
max 9038 5757 6493 18872 15335 24587 19207 17215 19745
𝑡𝑡𝑟 66.4 35.7 37.0 140 102 102 142 112 139
best TPE @81.265% TPE @98.970% TPE @98.041%
HPs sc=uniform, k=poly, d=9, sc=uniform, k=poly, d=9, sc=standard, k=rbf,

C=4.05 C=0.127 C=18.8

Table 4.5: Performance and runtime comparison of search space 2.

grid random tpe
0

50

100

150

200

250

300

ru
nt

im
e

s

Software Defects2: runtime variance

(a)

grid random tpe
0

50

100

150

200

250

300

ru
nt

im
e

s

MNIST2: runtime variance

(b)

grid random tpe

50

100

150

200

250

300

350
ru

nt
im

e
s

Deepsat2: runtime variance

(c)

Figure 4.10: Search space 2 runtime distributions.

grid random tpe
0.2

0.3

0.4

0.5

0.6

0.7

0.8

ho
ld

ou
t a

cc
ur

ac
y

Software Defects2: holdout accuracy variance

(a)

grid random tpe

0.2

0.4

0.6

0.8

1.0

ho
ld

ou
t a

cc
ur

ac
y

MNIST2: holdout accuracy variance

(b)

grid random tpe
0.0

0.2

0.4

0.6

0.8

1.0

ho
ld

ou
t a

cc
ur

ac
y

Deepsat2: holdout accuracy variance

(c)

Figure 4.11: Search space 2 score distributions.

sampled HP combinations, such that the runtime distributions concentrate around the median. The

65

4 Results

combinations near the optimum all have a comparable runtime per trial. It is likely, that this has
occurred on search space 1, but to a lesser degree. Since TPE can exploit optima more efficiently
with 90 more trials compared to search space 12.

Although the validation error should decrease over time, in certain cases it may increase. This
behavior is clearly visible in Figure 4.12a, where the validation error of the models selected by
Grid Search, increases after 30min. The cause of this behavior is bias. Recall, the optimizer only
optimizes given the accuracy on the 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 dataset within 𝐷𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 (subsection 2.4.1). It
does not know about the accuracy on the studies 𝐷ℎ𝑜𝑙𝑑𝑜𝑢𝑡 , which is measured here. Selecting a
model with higher accuracy on 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 often, but not always translates into higher accuracy on
𝐷ℎ𝑜𝑙𝑑𝑜𝑢𝑡 . This behavior is repeated in Figure 4.13a, where the error of both Randoms Search and
TPE increases after 1500s.

As on search space 1, on this search space, one may formulate criteria to stop early as well. For both
MNIST and Software Defects, one can stop at about half an hour without dramatically affecting the
model found. In both cases TPE seems to be better, if the study was stopped then. The difference,
of their average scores may not be that different, but the maximum error of TPE in Figure 4.13a is
lower, then that of the other optimizers. This does coincide with Figure 4.13b, where beyond this
point, the convergence difference of TPE seems to stagnate. However, defining such an early stop is
not so clear for Deepsat, which converges more gradually. One may choose 4000s, in which case
the Random Search seems to find the best models. In this case, the difference between all Random
Search studies is rather low, at around 0.1% accuracy difference.

50
0

10
00

20
00

40
00

runtime s

18%

20%

22%

24%

26%

28%

30%

32%

34%

36%

38%

40%

ho
ld

ou
t e

rr
or

 o
f s

el
ec

te
d

m
od

el

Software Defects2: score-variance over runtime

grid
random
tpe

(a)

10
00

20
00

40
00

80
00

runtime s

10 -4

10 -2

10 0

co
nv

er
ge

nc
e

of
 5

 b
es

t m
od

el
s

Software Defects2: top k-convergence

grid
random
tpe

(b)

Figure 4.12: Search space 2 Software Defects score and convergence.

2According to its documentation (https://optuna.readthedocs.io/en/stable/reference/samplers/index.html
[checked 11.04.24]), Optuna recommends to use TPE with around 100 to 1000 trials.

66

https://optuna.readthedocs.io/en/stable/reference/samplers/index.html

4.3 In-depth search space comparison

10
3

10
4

runtime s

1%

10%

100%

ho
ld

ou
t e

rr
or

 o
f s

el
ec

te
d

m
od

el

MNIST2: score-variance over runtime

grid
random
tpe

(a)

10
3

10
4

runtime s

10 -4

10 -3

10 -2

10 -1

10 0

10 1

co
nv

er
ge

nc
e

of
 5

 b
es

t m
od

el
s

MNIST2: top k-convergence

grid
random
tpe

(b) TPE studies had a top-5 difference of zero,
which which was cut off on the log-plot.

Figure 4.13: Search space 2 MNIST score and convergence.

10
3

10
4

runtime s

2%

4%

6%

8%

12%

16%

20%

ho
ld

ou
t e

rr
or

 o
f s

el
ec

te
d

m
od

el

Deepsat2: score-variance over runtime

grid
random
tpe

(a)

10
3

10
4

runtime s

10 -4

10 -2

10 0

co
nv

er
ge

nc
e

of
 5

 b
es

t m
od

el
s

Deepsat2: top k-convergence

grid
random
tpe

(b)

Figure 4.14: Search space 2 Deepsat Sat6 score and convergence.

4.3.5 Search space 3

With search space 3, the 𝛾 search axis is added. Like the cost search axis, it is continuous for the
continuous samplers. Interestingly, on Software Defects the average performance all found models
decreased due to increased bias. This may be a likely reason, why the performance TPE is on par
with Random Search, even though TPE performed better on search space 2. It is likely, that tuning
both 𝛾 and cost leads to slight overfitting of the 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 dataset within 𝐷𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 .

Comparing the performance of search space 3 models, they are on par with models in search space 2.
The average increase in performance is very small. However, it is noteworthy that on Figure 4.18a
always found a optimum way quicker, then any other optimizer on this dataset. Even though its
final performance may not be as good, as the one of the exhaustive Grid Search, it seems to be
very resource efficient in this experiment. One possible reason, why TPE has trouble finding the
optimum may be, that models on MNIST are fairly robust: As was observed, the performance

67

4 Results

Dataset Software Defects MNIST Deepsat Sat6
Tuner Grid Random TPE Grid Random TPE Grid Random TPE
win 0 3 2 3 2 0 3 0 2
loss 5 2 3 2 3 5 2 5 3
𝐴𝑐𝑐ℎ [%] 81.127 81.219 81.237 98.960 98.938 98.930 98.199 93.139 98.199
std 0 0.07870 0.01966 0 0.05541 0.01414 0 0.05425 0.00507
𝑏𝑖𝑎𝑠 [%] 0.330 0.265 0.277 0.240 0.254 0.272 -0.076 -0.018 0.0276
std 0 0.0753 0.0860 0 0.0466 0.0202 0 0.05097 0.0631
𝑡𝑠𝑡 [s] 30966 13898 9706 48443 34509 39618 51370 44339 44274
min 30839 12102 7470 48321 28916 28471 50993 43457 42721
max 31114 15422 12911 48667 37235 44715 51569 47401 46105
𝑡𝑡𝑟 82.6 37.1 25.9 129 92.0 106 137 118 118
best Random @81.294% Random @99.01% TPE @98.207%
HPs sc=standard, k=rbf, sc=uniform, k=poly, d=8, sc=standard, k=rbf,

C=0.072, 𝛾 = 1.81𝛾0 C=0.0155, 𝛾 = 1.79𝛾0 C=9.86, 𝛾 = 2.94𝛾0

Table 4.6: Performance and runtime comparison of search space 3, 𝛾0 = 1/𝑛 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠.

increase on MNIST over the last search spaces was small. If many HP combinations produce a
good model, then the difference between each model is minute. In this case the surrogate model
may have trouble suggesting new samples, that will improve its performance.

grid random tpe
0

50

100

150

200

250

300

ru
nt

im
e

s

Software Defects3: runtime variance

(a)

grid random tpe
0

50

100

150

200

250

300

350

ru
nt

im
e

s

MNIST3: runtime variance

(b)

grid random tpe

50

100

150

200

250

300

350

ru
nt

im
e

s

Deepsat3: runtime variance

(c)

Figure 4.15: Search space 3 runtime distributions.

grid random tpe
0.2

0.3

0.4

0.5

0.6

0.7

0.8

ho
ld

ou
t a

cc
ur

ac
y

Software Defects3: holdout accuracy variance

(a)

grid random tpe
0.0

0.2

0.4

0.6

0.8

1.0

ho
ld

ou
t a

cc
ur

ac
y

MNIST3: holdout accuracy variance

(b)

grid random tpe
0.0

0.2

0.4

0.6

0.8

1.0

ho
ld

ou
t a

cc
ur

ac
y

Deepsat3: holdout accuracy variance

(c)

Figure 4.16: Search space 3 score distributions.

68

4.3 In-depth search space comparison

Conversely, the new search axis boosted the performance of Deepsat Sat6 models by about 0.2% on
average. In this search space, TPE and Grid Search converge to a similar performing model. Yet
TPE got stuck in local optima more often. The best study, converged towards an optimum at 2.7𝛾0
and the resulting model had an accuracy of 98.207%. Whereas the other TPE studies converged
to an optimum at about 10𝛾0, which coincides with the one found by Grid Search. Without more
insight into the surrogate model, it is not trivial to speculate, what went wrong. However, it is is
possible that the new search axis has increased the complexity of the surrogate model so that it no
works as efficiently. Another possibility is, that the optimum at 2.7𝛾0 is smaller. This means that
only small deviations in 𝛾 (and all other HPs of the search space) may lead to a bigger changes in
the score. In this case, this optimum would be harder to find. Again, like on the MNIST dataset,
the TPE search converges quicker towards the optimum, then the other optimizers. On all three
datasets, one can may implement an early stopping criterion. Except for Grid Search on Deepsat
Sat6, an early stopping is not likely, to change the final result much.

10
3

10
4

runtime s

19%

20%

21%

22%

23%

24%

25%

ho
ld

ou
t e

rr
or

 o
f s

el
ec

te
d

m
od

el

Software Defects3: score-variance over runtime

grid
random
tpe

(a)

10
3

10
4

runtime s

10 -4

10 -2

10 0
co

nv
er

ge
nc

e
of

 5
 b

es
t m

od
el

s

Software Defects3: top k-convergence

grid
random
tpe

(b)

Figure 4.17: Search space 3 Software Defects score and convergence.

10
3

10
4

runtime s

1%

10%

100%

ho
ld

ou
t e

rr
or

 o
f s

el
ec

te
d

m
od

el

MNIST3: score-variance over runtime

grid
random
tpe

(a)

10
3

10
4

runtime s

10 -4

10 -3

10 -2

10 -1

10 0

10 1

co
nv

er
ge

nc
e

of
 5

 b
es

t m
od

el
s

MNIST3: top k-convergence

grid
random
tpe

(b)

Figure 4.18: Search space 3 MNIST score and convergence.

69

4 Results

10
3

10
4

runtime s

2%

4%

6%

8%

12%

16%

20%

ho
ld

ou
t e

rr
or

 o
f s

el
ec

te
d

m
od

el

Deepsat3: score-variance over runtime

grid
random
tpe

(a)

2#
10

3

1#
10

4

4#
10

4

runtime s

10 -4

10 -2

10 0

co
nv

er
ge

nc
e

of
 5

 b
es

t m
od

el
s

Deepsat3: top k-convergence

grid
random
tpe

(b)

Figure 4.19: Search space 3 Deepsat Sat6 score and convergence.

4.4 Time Optimized Stop Criteria

Due to the fact, that SVM seems to be quite robust on the selected datasets, an exhaustive search may
not be necessary, to find a good model. As noted in several search space discussions in section 4.3,
terminating a study early may still yield very good results while reducing the required computing
resources. Two relevant criteria were identified:

• A time budget, where a study runs trials, until a time limit is reached. One difficulty would
be, that the user does not know, how long it would take, until a optimizer is likely to have
found a well performing model.

• Alternatively, one can define a criterion based on the convergence of the optimizer. If it
appears, that the performance improvements are small, then a study is stopped.

The second approach, called the convergence stop works like the top-k diagrams. Although in
the context of an optimizer, instead of the accuracy on the study validation holdout, this criterion
uses the SVMScore subsection 3.3.4, which usually is the accuracy of the 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 dataset slice
within 𝐷𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 . The k best SVMScores are saved within a vector 𝜎. If their relative difference
is less, then a set threshold, then the study is halted.

(4.3)
𝑚𝑎𝑥(𝜎) − 𝑚𝑖𝑛(𝜎)

𝑚𝑖𝑛(𝜎) < 𝜏𝑐

The theory behind this approach is, with the observed combinations of objective functions and
datasets, multiple trials of each optimizer come close to a performance limit. This is similar to
top-5 convergence plots, one example is section 4.3. As such, the min and max of the 𝑘 best models
should converge after sufficient trials. Again, just as with the simple score threshold, this bears
the risk, that it may not work as single stop criterion. There are only so many models, that reach
a certain performance. So if 𝑘 is too high, 𝜎 never converges below 𝜏𝑐. For this reason, another
constrain, such as runtime or number of trials must be set.

A related criterion was developed in [RDPCV+18, cpt. IV], although they did not use a constant k,
but rather a relative number. They formulated a criterion that would stop, when the variance of
the best 25% models is less then 0.01. This has the advantage, that it may be simpler to set for the

70

4.4 Time Optimized Stop Criteria

user. Although due to the dynamic nature of this criterion, it will compare an increasing number of
models. For an optimizer, that has a high median score, compared to the best score, this may stop
too early. But for optimizer with a bad median score (as for example Grid Search in Figure 4.26b),
this criterion may never stop. This is, because the chance of a good model is lower, so the expected
relative number of good models compared is low as well. In fact, in their work, all but one study
stopped due to a timeout instead. Further research into the topic would be required, to verify this
hypothesis.

Both criteria were set using the results found in section 4.3. The time limits were set to 30 min for
Software Defects, 60 min for MNIST and 90 min for Deepsat Sat6. For the convergence stop, 10−2

was chosen as the relative threshold. This number was chosen because once this value is reached in
the top 5 convergence plots, the results shown in the corresponding plots are close to the optimum.
To complement the convergence stop, a time limit was set to double the time limit defined for the
timed searches.

To find out, if optimizing for runtime helps, a fourth study was setup. Called the TimeTPE study,
it uses TPE as optimizer and the time metric described in subsection 3.3.4. TPE will optimize
primarily for model performance, but as a secondary objective it reduces the runtime of each trial.
All three samplers and the TimeTPE study were run on every dataset, optimizing search space 4
(section 3.5) using both stop criteria described in this section.

4.4.1 Timebound search

Using a limited time seems to benefit the TPE sampler. It had the best average results on all three
datasets. It is very likely, that with the aid of the surrogate, TPE can converge towards a optimum
quicker, which can be observed in Figures 4.22a and 4.24a. However, on the MNIST dataset, it is
just on par with the Random Search, probably for the same reasons that TPE performed on par with
the grid search in subsection 4.3.3. Yet, TPE still converges to its optimum faster, which can be
observed in Figure 4.23. It is important to note, that in all cases, if Grid Search and Random Search
were run longer, then they may still find a better optimum, as was the case with the fulltest studies
in subsection 4.3.5. One possible reason, why the Grid Search performs worse is the poor accuracy
variance. This can be seen in Figure 4.21, particularly on MNIST, or Deepsat, where many of the
combinations on the Grid have a very bad accuracy, compared to the all the other search spaces. It
is possible, that due to the new search axes, the HP combinations at the boundary or in the corner of
the new search space are particularly bad.

Compared to any other optimizer, the TimeTPE search greatly reduces the time per trial, as can
be seen in Figure 4.20. Due to the reduced time per trial, the TimeTPE study is able to test more
configurations in the same time. However, due to its secondary goal, accuracy is reduced in all
tests. In both MNIST and Deepsat Sat6, its accuracy is improved, compared to the default values
subsection 4.3.1, while it even decreased on the Software Defects dataset. Recall the correlation
between score and cost parameter in Figure 3.7b, in this plot, another correlation was determined
for the polynomial and rbf kernel: A higher cost parameter can result in a higher score, yet it also
increases the fitting time. Thus, reducing the cost can increase the multi-objective formulated by the
time-metric, yet the performance of the model is reduced. It is important to mention however, that
not all models found by TimeTPE have a much worse performance, as can be seen in Figure 4.21.
Therefore, it might be an interesting to research, whether a split metric approach may help in this

71

4 Results

Dataset Software Defects MNIST
Tuner Grid Random TPE TimeTPE Grid Random TPE TimeTPE
win 1 1 3 0 1 2 2 0
loss 4 4 2 5 4 3 3 5
𝐴𝑐𝑐ℎ [%] 81.151 81.186 81.249 78.410 98.904 98.908 98.918 98.214
std 0.202 0.0973 0.0860 1.44 0.0971 0.0811 0.1823 0.708
𝑏𝑖𝑎𝑠 [%] 0.101 0.226 0.207 0.224 0.221 0.211 0.232 0.0774
std 0.0439 0.0436 0.162 0.158 0.0791 0.0541 0.0570 0.196
𝑡𝑠𝑡 [s] 1811 1858 1861 1632 3656 3658 3630 3319
min 1789 1758 1791 1552 3560 3568 3538 3301
max 1838 1984 1993 1688 3773 3826 3840 3335
𝑡𝑡𝑟 96 37.1 38.1 5.4 134 104 120 23.6
best TPE @81.373% Grid @99.07%
HPs sc=unit, k=poly, d=8, coef0=3.60, sc=uniform, k=poly, d=8, coef0=0,

C=4.63, 𝛾=5.42𝛾0, 𝜖=6.58e-10 C=100, 𝛾 = 𝛾0, 𝜖=1e-6

Table 4.7: Performance and runtime comparison table A of search space 4 using a timebound stop
criterion.

Dataset Deepsat Sat6
Tuner Grid Random TPE TimeTPE
win 1 1 3 0
loss 4 4 2 5
𝐴𝑐𝑐ℎ [%] 97.378 97.866 97.967 96.881
std 0.399 0.245 0.238 0.547
𝑏𝑖𝑎𝑠 [%] -0.013 -0.013 -0.011 -0.115
std 0.0857 0.0552 0.0812 00278
𝑡𝑠𝑡 [s] 4646 4810 4595 3921
min 4601 4609 4289 3814
max 4735 4958 5084 4017
𝑡𝑡𝑟 140 134 122 63.1
best TPE @98.183%
HPs sc=standard, k=rbf,

C=13.6, 𝛾=2.59𝛾0, 𝜖=7.62e-8

Table 4.8: Performance and runtime comparison table B of search space 4 using a timebound stop
criterion.

72

4.4 Time Optimized Stop Criteria

case: The combined metric (e.g. time-metric in this case) is used to guide the Bayesian Surrogate
Model. In this way, many different combinations are tested. Then, a purely performance-based
metric, such as accuracy, is used to select the model.

grid random tpe timetpe
0

50

100

150

200

250

300

ru
nt

im
e

s

Software Defects timebound: runtime variance

(a)

grid random tpe timetpe
0

50

100

150

200

250

300

ru
nt

im
e

s

MNIST timebound: runtime variance

(b)

grid random tpe timetpe

50

100

150

200

250

300

350

ru
nt

im
e

s

Deepsat timebound: runtime variance

(c)

Figure 4.20: Runtime distributions on search space 4 with timebound studies.

grid random tpe timetpe
0.2

0.3

0.4

0.5

0.6

0.7

0.8

ho
ld

ou
t a

cc
ur

ac
y

Software Defects timebound: holdout accuracy var

(a)

grid random tpe timetpe
0.0

0.2

0.4

0.6

0.8

1.0

ho
ld

ou
t a

cc
ur

ac
y

MNIST timebound: holdout accuracy variance

(b)

grid random tpe timetpe
0.0

0.2

0.4

0.6

0.8

1.0

ho
ld

ou
t a

cc
ur

ac
y

Deepsat timebound: holdout accuracy variance

(c)

Figure 4.21: Score distributions on search space 4 with timebound studies.

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

runtime s

18%

20%

22%

24%

26%

28%

30%

32%

34%

36%

38%

40%

ho
ld

ou
t e

rr
or

 o
f s

el
ec

te
d

m
od

el

Software Defects timebound: score-variance over runtime

grid
random
tpe
timetpe

(a)

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

runtime s

10 -4

10 -3

10 -2

10 -1

10 0

10 1

co
nv

er
ge

nc
e

of
 5

 b
es

t m
od

el
s

Software Defects timebound: top k-convergence

grid
random
tpe
timetpe

(b)

Figure 4.22: Software Defects score and convergence of search space 4 timebound studies.

73

4 Results

10
00

20
00

30
00

runtime s

1%

10%

100%

ho
ld

ou
t e

rr
or

 o
f s

el
ec

te
d

m
od

el

MNIST timebound: score-variance over runtime

grid
random
tpe
timetpe

(a)

10
00

20
00

30
00

runtime s

10 -4

10 -2

10 0

10 2

co
nv

er
ge

nc
e

of
 5

 b
es

t m
od

el
s

MNIST timebound: top k-convergence

grid
random
tpe
timetpe

(b)

Figure 4.23: MNIST score and convergence of search space 4 timebound studies.

10
00

20
00

30
00

40
00

runtime s

1%

10%

100%

ho
ld

ou
t e

rr
or

 o
f s

el
ec

te
d

m
od

el

Deepsat timebound: score-variance over runtime

grid
random
tpe
timetpe

(a)

10
00

20
00

30
00

40
00

50
00

runtime s

10 -4

10 -3

10 -2

10 -1

10 0

10 1
co

nv
er

ge
nc

e
of

 5
 b

es
t m

od
el

s
deepsat timebound: top k-convergence

grid
random
tpe
timetpe

(b)

Figure 4.24: Deepsat Sat6 score and convergence of search space 4 timebound studies.

4.4.2 Convergence search

As was the case in the timebound studies, on the convergence search, the accuracy of models found
by TimeTPE search is also worse in these tests.

Overall the Grid Search performs poorly in many of the trials, which can be seen in Figure 4.26. It
is possible, that this is due to the added search axes. Both coef0 and tol for larger coef0 values and
smaller tol values respectively, which can be seen in Figure 3.7. It is likely, that the bad trials were
due to a timeout, when fitting the combination. In fact, Grid Search had many more trials with a
longer runtime than any other optimizer, which can be seen in Figure 4.25. Despite this, Table 4.9
shows, that Grid Search found well working models. This is most likely due to the way these
optimizers behave: A TPE study often converges quickly, as can be seen in Figures 4.27 to 4.29.
However, when it does converge, it may only have converged to a local optimum. In this case, it can
still explore and find a better optimum. Yet this criterion has stopped the search already. This is
likely the case, as the runtime of TPE was always at the lower end. In contrast, the Grid Search takes

74

4.4 Time Optimized Stop Criteria

Dataset Software Defects MNIST
Tuner Grid Random TPE TimeTPE Grid Random TPE TimeTPE
win 3 1 1 0 0 5 0 0
loss 2 4 4 5 5 0 5 5
𝐴𝑐𝑐ℎ [%] 81.235 81.165 81.083 79.099 98.836 98.968 98.892 96.328
std 0.0541 0.1464 0.237 1.28 0.130 0.0277 0.0277 0.890
𝑏𝑖𝑎𝑠 [%] 0.083 0.087 0.211 0.176 0.242 0.135 0.238 -0.159
std 0.0439 0.104 0.0950 0.138 0.091 0.0520 0.0446 0.110
𝑡𝑠𝑡 [s] 1130 609 550 782 4807 3083 1719 1387
min 964 117 59.3 398 3507 1299 1122 940
max 1312 1434 884.2 1244 5938 4800 2452 1839
𝑡𝑡𝑟 91.7 33.3 41.1 36.2 140 103 116 97.6
best Random @81.294% Random @98.99%
HPs sc=standard, k=rbf, sc=uniform, k=rbf,

C=0.0716, 𝛾=0.953𝛾0, 𝜖=2.10e-7 C=5.45, 𝛾=9.02𝛾0, 𝜖=4.21e-9

Table 4.9: Performance and runtime comparison table A of search space 4 using a convergence
stop criterion.

Dataset Deepsat Sat6
Tuner Grid Random TPE TimeTPE
win 1 2 2 0
loss 4 3 3 5
𝐴𝑐𝑐ℎ [%] 97.630 97.916 97.996 96.613
std 0.338 0.381 0.288 1.24
𝑏𝑖𝑎𝑠 [%] -0.044 -0.024 -0.048 -0.032
std 0.0410 0.00674 0.0202 0.0978
𝑡𝑠𝑡 [s] 8183 4868 2120 2488
min 5607 2273 1457 2049
max 9474 8097 3106 2865
𝑡𝑡𝑟 132 118 123 82.6
best Random @98.198%
HPs sc=standard, k=rbf,

C=11.4, 𝛾=2.41𝛾0, 𝜖=1.81e-9

Table 4.10: Performance and runtime comparison table B of search space 4 using a convergence
stop criterion.

more time to converge and during this time, it is more likely to find a better optimum. To get more
comparable results, the values of the convergence search needs to be adjusted, depending on the
optimizer. A TPE optimizer can be set to a higher k-value, or a lower threshold, compared to Grid
Search, or Random Search. Furthermore, in the case of MNIST, the same reasons are suspected, as
in subsection 4.3.3, that TPE had trouble exploiting the optimum closer to the boundary.

75

4 Results

grid random tpe timetpe
0

50

100

150

200

250

300

ru
nt

im
e

s

Software Defects conv: runtime variance

(a)

grid random tpe timetpe
0

50

100

150

200

250

300

ru
nt

im
e

s

MNIST conv: runtime variance

(b)

grid random tpe timetpe

50

100

150

200

250

300

350

ru
nt

im
e

s

Deepsat conv: runtime variance

(c)

Figure 4.25: Runtime distributions on search space 4 with convergence studies.

grid random tpe timetpe
0.2

0.3

0.4

0.5

0.6

0.7

0.8

ho
ld

ou
t a

cc
ur

ac
y

Software Defects conv: holdout accuracy variance

(a)

grid random tpe timetpe
0.0

0.2

0.4

0.6

0.8

1.0

ho
ld

ou
t a

cc
ur

ac
y

MNIST conv: holdout accuracy variance

(b)

grid random tpe timetpe
0.0

0.2

0.4

0.6

0.8

1.0

ho
ld

ou
t a

cc
ur

ac
y

Deepsat conv: holdout accuracy variance

(c)

Figure 4.26: Score distributions on search space 4 with convergence studies.

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

runtime s

20%

22%

24%

26%

28%

30%

32%

34%

36%

38%

40%

ho
ld

ou
t e

rr
or

 o
f s

el
ec

te
d

m
od

el

Software Defects conv: score-variance over runtime

grid
random
tpe
timetpe

(a)

40
0

60
0

80
0

10
00

12
00

14
00

runtime s

10 -3

10 -2

10 -1

10 0

10 1

co
nv

er
ge

nc
e

of
 5

 b
es

t m
od

el
s

Software Defects conv: top k-convergence

grid
random
tpe
timetpe

(b)

Figure 4.27: Software Defects score and convergence of search space 4 convergence studies.

76

4.4 Time Optimized Stop Criteria

10
00

20
00

30
00

40
00

50
00

runtime s

1%

10%

100%

ho
ld

ou
t e

rr
or

 o
f s

el
ec

te
d

m
od

el

MNIST conv: score-variance over runtime

grid
random
tpe
timetpe

(a)

10
00

20
00

30
00

40
00

50
00

runtime s

10 -3

10 -2

10 -1

10 0

10 1

10 2

co
nv

er
ge

nc
e

of
 5

 b
es

t m
od

el
s

MNIST conv: top k-convergence

grid
random
tpe
timetpe

(b)

Figure 4.28: MNIST score and convergence of search space 4 convergence studies.

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

runtime s

1%

10%

100%

ho
ld

ou
t e

rr
or

 o
f s

el
ec

te
d

m
od

el

Deepsat conv: score-variance over runtime

grid
random
tpe
timetpe

(a)

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

runtime s

10 -3

10 -2

10 -1

10 0

10 1

co
nv

er
ge

nc
e

of
 5

 b
es

t m
od

el
s

deepsat conv: top k-convergence

grid
random
tpe
timetpe

(b)

Figure 4.29: Deepsat Sat6 score and convergence of search space 4 convergence studies.

77

4 Results

4.5 Result Overview

The best results of each search space are compared to the literature in Table 4.11. Using a SVM on
the MNIST dataset, our work is able to reproduce the results found by LeCun et al. The average
models found from search space 2 on match the performance of the unmodified SVM. However,
it cannot match the performance of the Virtual SVM, compared in their work. This is to be
expected, since this is a SVM specifically designed for this task, while PLSSVM is a general purpose
SVM implementation. The same goes for the Convolutional Neural Network (CNN) presented in
[SSP03].

In the case of Deepsat, unfortunately no published performance figures for SVMs was found. The
models found in this work were able to exceed the performance of Neural Network (NN) originally
developed for Deepsat [BGM+15]. It should come as no surprise, that our SVM models could not
match the a custom built CNN described in [LBG+20]. In any case, the performance of the models
found is still respectable, given the fact, that dataset like Deepsat are usually not modeled using a
general purpose SVMs.

Dataset MNIST
Search space Algorithm 𝐴𝑐𝑐ℎ [%] total time [s]
Default values 97.95 19.8
0 Grid Search 98.33 698
1 Grid Search 98.87 4216
2 Grid Search 98.93 18841
3 Grid Search 98.96 48443
4 timebound TPE 98.918 3630
4 convergence Random Search 98.968 3080

SVM [LBBH98] 98.9
V-SVM [LBBH98] 99.2
LeNet5 [LBBH98] 99.05
CNN [SSP03] 99.6

Dataset Deepsat Sat6
Search Space Algorithm 𝐴𝑐𝑐𝑣𝑎𝑙 [%] total time [s]
Default values 95.35 49.5
0 Grid Search 97.384 766
1 TPE 98.029 5634
2 Random Search 98.031 15162
3 TPE 98.199 44274
4 timebound TPE 97.976 4595
4 convergence TPE 97.996 2120

NN [BGM+15] 93.916
CNN [LBG+20] 99.84 1200

Table 4.11: Performance of found models compared to literature.

78

5 Conclusion and Outlook

In this research the qualitative difference between popular optimizers was compared in different test
scenarios. The choice of which optimizer to choose depends on the dataset, the search space, and
the objective. If the aim is to find a good solution quickly, then TPE or Random Search seems to be
a good choice. The main difference between TPE and Random Search seems to be, that TPE has
a lower variance over multiple studies. If the search space is not too large and the objective is to
find the best performing model, then the Grid Search may be a viable solution. In any case, the
second important choice is, which stop criterion to use. A trial limit is perfect for Grid Search, if
on a budget however, then choosing a runtime limit, or a convergence criterion might be a better
option. As was demonstrated by the TimeTPE studies, multi-objective optimization can be used
with optimizers, such as TPE, to improve a multiple aspects of a model. However, it was found that
combining multiple metrics in this way is likely to result in a lower metric than a single-objective
optimization with a single metric. More research would be required to determine, how best to use
multi-objective optimization for SVMs.

5.1 Iterative problem

Running a tuning study is an iterative problem. Finding good search spaces (section 3.4) to test and
the correct timeout for the studies (section 3.7) requires retesting the experiments several times. As
discussed in subsection 4.3.3, in some of the search axes, the boundary was found as a optimum. In
these cases, it might be a good idea to increase the size of the search axes. It was also observed that
the optimizer never selected linear models. With this result in mind, it would be a good idea, to
remove this combination from the search space, to maximize the the optimizer’s efficiency. Since it
is difficult to predict such behavior, one strategy is to run a search, evaluate the results, and then
modify the search space accordingly. Tuning the search space was not the aim of this work, but it
would be an interesting future research direction.

Outlook

5.2 Bias

During this research it became apparent (subsection 4.3.3) that the bias often increases the difficulty
of any optimizer to find a well generalizing model. Therefore, future work should focus on reducing
the bias of any optimizer. For applications like ours that deal with large datasets, it would be
desirable to implement a method that reduces the bias but has a smaller resource impact than k-fold
cross-validation.

79

5 Conclusion and Outlook

5.3 Other configurations

To get a more general idea of how the optimizers behave with PLSSVM, it would be a good idea
to increase the number of datasets being compared. Also, it might be a good idea to run these
experiments on different hardware, for example different GPUs. In this context, a very important
test to perform is to analyze the energy used by the CPU. Also, tuning PLSSVM with different
software backends and OSs would be required, to strengthen our findings.

80

Bibliography

[AF91] S. Aeberhard, M. Forina. Wine. UCI Machine Learning Repository. 1991. doi:
10.24432/C5PC7J (cit. on p. 29).

[AMS+21] M. M. Ahsan, M. A. P. Mahmud, P. K. Saha, K. D. Gupta, Z. Siddique. “Effect of
Data Scaling Methods on Machine Learning Algorithms and Model Performance”.
In: Technologies 9.3 (2021). issn: 2227-7080. doi: 10.3390/technologies9030052
(cit. on pp. 31, 33, 48).

[ASY+19] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama. Optuna: A Next-generation
Hyperparameter Optimization Framework. 2019. arXiv: 1907.10902 [cs.LG] (cit. on
pp. 3, 13, 19, 36).

[BB12] J. Bergstra, Y. Bengio. “Random search for hyper-parameter optimization”. In: J.
Mach. Learn. Res. 13.0 (2012), 281–305. issn: 1532-4435 (cit. on p. 22).

[BBL+21] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas,
T. Ullmann, M. Becker, A.-L. Boulesteix, D. Deng, M. Lindauer. Hyperparameter
Optimization: Foundations, Algorithms, Best Practices and Open Challenges. 2021.
arXiv: 2107.05847 [stat.ML] (cit. on pp. 17–19, 24).

[BGM+15] S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki, R. Nemani. DeepSat
- A Learning framework for Satellite Imagery. 2015. arXiv: 1509.03602 [cs.CV]

(cit. on pp. 34, 35, 78).
[BS02] H.-G. Beyer, H.-P. Schwefel. “Evolution strategies - A comprehensive introduction”.

In: Natural Computing 1 (Mar. 2002), pp. 3–52. doi: 10.1023/A:1015059928466
(cit. on p. 24).

[CL11] C.-C. Chang, C.-J. Lin. “LIBSVM: A library for support vector machines”. In: ACM
Trans. Intell. Syst. Technol. 2 (2011), 27:1–27:27. doi: 10.1145/1961189.1961199
(cit. on p. 26).

[CSB15] W. Czarnecki, S. Smusz, A. Bojarski. “Robust optimization of SVM hyperparame-
ters in the classification of bioactive compounds”. In: Journal of cheminformatics
7 (Dec. 2015), p. 38. doi: 10.1186/s13321-015-0088-0 (cit. on p. 30).

[CV95] C. Cortes, V. Vapnik. “Support-Vector Networks”. In: Mach. Learn. 20.3 (1995),
273–297. issn: 0885-6125. doi: 10.1023/A:1022627411411 (cit. on p. 25).

[Dzu24] Y. Dzubba. PLSSVM-HPO. 2024. url: https://gitlab-sim.informatik.uni-
stuttgart.de/domanspr/plssvm_hpo (cit. on p. 13).

[FH19] M. Feurer, F. Hutter. “Hyperparameter Optimization”. In: Automated Machine
Learning. 2019, pp. 3–33. doi: 10.1007/978-3-030-05318-5_1 (cit. on p. 24).

[Fis36] R. A. Fisher. “THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC
PROBLEMS”. In: Annals of Eugenics 7.2 (1936), pp. 179–188. doi: 10.1111/j.
1469-1809.1936.tb02137.x (cit. on p. 29).

81

https://doi.org/10.24432/C5PC7J
https://doi.org/10.3390/technologies9030052
https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/2107.05847
https://arxiv.org/abs/1509.03602
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1186/s13321-015-0088-0
https://doi.org/10.1023/A:1022627411411
https://gitlab-sim.informatik.uni-stuttgart.de/domanspr/plssvm_hpo
https://gitlab-sim.informatik.uni-stuttgart.de/domanspr/plssvm_hpo
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

Bibliography

[GBV20] M. Grandini, E. Bagli, G. Visani. Metrics for Multi-Class Classification: an
Overview. 2020. arXiv: 2008.05756 [stat.ML] (cit. on pp. 15, 16, 41).

[GMHL20] E. C. Garrido-Merchán, D. Hernández-Lobato. “Dealing with categorical and
integer-valued variables in Bayesian Optimization with Gaussian processes”. In:
Neurocomputing 380 (Mar. 2020), 20–35. issn: 0925-2312. doi: 10.1016/j.

neucom.2019.11.004 (cit. on p. 23).

[HMW+20] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwĳk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
T. E. Oliphant. “Array programming with NumPy”. In: Nature 585.7825 (Sept.
2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2 (cit. on pp. 40, 43).

[HS52] M. R. Hestenes, E. Stiefel. “Methods of conjugate gradients for solving linear
systems”. In: Journal of research of the National Bureau of Standards 49 (1952),
pp. 409–435. doi: 10.6028/jres.049.044 (cit. on p. 26).

[JSW98] D. R. Jones, M. Schonlau, W. J. Welch. “Efficient Global Optimization of Expensive
Black-Box Functions”. In: 13.4 (1998), 455–492. issn: 0925-5001. doi: 10.1023/A:
1008306431147 (cit. on p. 23).

[KFB+17] A. Klein, S. Falkner, S. Bartels, P. Hennig, F. Hutter. Fast Bayesian Optimization of
Machine Learning Hyperparameters on Large Datasets. 2017. arXiv: 1605.07079
[cs.LG] (cit. on p. 30).

[KK20] M. Kuhn, J. Kjell. Feature Engineering and Selection: A Practical Approach for
Predictive Models. Chapman & Hall, 2020. url: http://www.feat.engineering/
(cit. on pp. 31–33).

[LBBH98] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. “Gradient-based learning applied to
document recognition”. In: Proceedings of the IEEE. Vol. 86. 11. IEEE, 1998,
pp. 2278 –2324. doi: 10.1109/5.726791 (cit. on pp. 30, 33, 34, 78).

[LBG+20] Q. Liu, S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki, R. Nemani.
“DeepSat V2: feature augmented convolutional neural nets for satellite image
classification”. In: Remote Sensing Letters 11.2 (2020), pp. 156–165. doi: 10.1080/
2150704X.2019.1693071 (cit. on pp. 34, 78).

[LLN+18] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gozalez, I. Stoica. “Tune: A
Research Platform for Distributed Model Selection and Training”. In: CoRR
abs/1807.05118 (2018). arXiv: 1807.05118 (cit. on p. 19).

[MG13] N. Mehra, S. Gupta. “Survey on multiclass classification methods”. In: Int. J.
Comput. Sci. Inf. Technol. 4 (Jan. 2013), pp. 572–576 (cit. on p. 28).

[MRV+15] R. Mantovani, A. Rossi, J. Vanschoren, B. Bischl, A. de Carvalho. “Effectiveness
of Random Search in SVM hyper-parameter tuning”. In: July 2015. doi: 10.1109/
IJCNN.2015.7280664 (cit. on p. 29).

82

https://arxiv.org/abs/2008.05756
https://doi.org/10.1016/j.neucom.2019.11.004
https://doi.org/10.1016/j.neucom.2019.11.004
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://arxiv.org/abs/1605.07079
https://arxiv.org/abs/1605.07079
http://www.feat.engineering/
https://doi.org/10.1109/5.726791
https://doi.org/10.1080/2150704X.2019.1693071
https://doi.org/10.1080/2150704X.2019.1693071
https://arxiv.org/abs/1807.05118
https://doi.org/10.1109/IJCNN.2015.7280664
https://doi.org/10.1109/IJCNN.2015.7280664

Bibliography

[PVG+12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay. “Scikit-learn: Machine
Learning in Python”. In: CoRR abs/1201.0490 (2012). arXiv: 1201.0490 (cit. on
pp. 19, 28).

[Pla98] J. Platt. Sequential Minimal Optimization: A Fast Algorithm for Training Support
Vector Machines. Tech. rep. MSR-TR-98-14. Microsoft, 1998. url: https://www.mi
crosoft.com/en-us/research/publication/sequential-minimal-optimization-

a-fast-algorithm-for-training-support-vector-machines/ (cit. on p. 26).

[RDPCV+18] A. Rojas-Domínguez, L. C. Padierna, J. M. Carpio Valadez, H. J. Puga-Soberanes,
H. J. Fraire. “Optimal Hyper-Parameter Tuning of SVM Classifiers With Application
to Medical Diagnosis”. In: IEEE Access 6 (2018), pp. 7164–7176. doi: 10.1109/
ACCESS.2017.2779794 (cit. on pp. 25, 29, 70).

[Ros95] G. van Rossum. Python tutorial. Tech. rep. CS-R9526. Amsterdam: Centrum voor
Wiskunde en Informatica (CWI), 1995 (cit. on p. 36).

[SSP03] P. Y. Simard, D. Steinkraus, J. Platt. “Best Practices for Convolutional Neural
Networks Applied to Visual Document Analysis”. In: IEEE, 2003. doi: 10.1109/
ICDAR.2003.1227801 (cit. on pp. 34, 78).

[SSWB00] B. Scholkopf, A. Smola, R. C. Williamson, P. L. Bartlett. “New Support Vector
Algorithms”. In: Neural Computation 12 (2000), pp. 1207–1245. doi: 10.1162/
089976600300015565 (cit. on p. 29).

[SV99] J. Suykens, J. Vandewalle. “Least Squares Support Vector Machine Classifiers”.
In: Neural Processing Letters 9 (June 1999), pp. 293–300. doi: 10.1023/A:

1018628609742 (cit. on p. 26).

[Shl14] J. Shlens. A Tutorial on Principal Component Analysis. 2014. arXiv: 1404.1100
[cs.LG] (cit. on p. 34).

[Tha19] A. Tharwat. “Parameter investigation of support vector machine classifier with
kernel functions”. In: Knowledge and Information Systems 61.3 (Dec. 2019),
pp. 1269–1302. doi: 10.1007/s10115-019-01335-4 (cit. on p. 17).

[US 09] US department of agriculture. National Agriculture Imagery Program. 2009. url:
https://www.fsa.usda.gov/Internet/FSA_File/naip_2009_info_final.pdf

(cit. on p. 35).

[VCBP22] A. Van Craen, M. Breyer, D. Pflüger. “PLSSVM: A (multi-)GPGPU-accelerated
Least Squares Support Vector Machine”. In: 2022 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2022, pp. 818–
827. doi: 10.1109/IPDPSW55747.2022.00138. url: https://github.com/SC-
SGS/PLSSVM (cit. on pp. 3, 13, 26, 36, 48).

[WGL16] A. Wan, D. Gosh, S. Liu. A Guide to MNIST. 2016. url: https://fsix.github.io/
mnist/ (cit. on p. 34).

[WKT01] T. Wakahara, Y. Kimura, A. Tomono. “Affine-invariant recognition of gray-scale
characters using global affine transformation correlation”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 23.4 (2001), pp. 384–395. doi:
10.1109/34.917573 (cit. on p. 35).

83

https://arxiv.org/abs/1201.0490
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
https://doi.org/10.1109/ACCESS.2017.2779794
https://doi.org/10.1109/ACCESS.2017.2779794
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1162/089976600300015565
https://doi.org/10.1162/089976600300015565
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1023/A:1018628609742
https://arxiv.org/abs/1404.1100
https://arxiv.org/abs/1404.1100
https://doi.org/10.1007/s10115-019-01335-4
https://www.fsa.usda.gov/Internet/FSA_File/naip_2009_info_final.pdf
https://doi.org/10.1109/IPDPSW55747.2022.00138
https://github.com/SC-SGS/PLSSVM
https://github.com/SC-SGS/PLSSVM
https://fsix.github.io/mnist/
https://fsix.github.io/mnist/
https://doi.org/10.1109/34.917573

Bibliography

[WR23] A. C. Walter Reade. Binary Classification with a Software Defects Dataset. 2023.
url: https://kaggle.com/competitions/playground-series-s3e23 (cit. on p. 33).

[Wat23] S. Watanabe. Tree-Structured Parzen Estimator: Understanding Its Algorithm
Components and Their Roles for Better Empirical Performance. 2023. arXiv:
2304.11127 [cs.LG] (cit. on p. 23).

[YAA24] Z. Yang, K. Adamek, W. Armour. Part-time Power Measurements: nvidia-smi’s
Lack of Attention. 2024. arXiv: 2312.02741 [cs.DC] (cit. on pp. 55, 56).

[YB19] C. Yadav, L. Bottou. Cold Case: The Lost MNIST Digits. 2019. arXiv: 1905.10498
[cs.LG] (cit. on p. 35).

[YJG03] A. B. Yoo, M. A. Jette, M. Grondona. “SLURM: Simple Linux Utility for Resource
Management”. In: Job Scheduling Strategies for Parallel Processing. Ed. by
D. Feitelson, L. Rudolph, U. Schwiegelshohn. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 44–60. isbn: 978-3-540-39727-4. doi: 10.1007/10968987_3
(cit. on p. 53).

All links were last followed on April 11, 2024.

84

https://kaggle.com/competitions/playground-series-s3e23
https://arxiv.org/abs/2304.11127
https://arxiv.org/abs/2312.02741
https://arxiv.org/abs/1905.10498
https://arxiv.org/abs/1905.10498
https://doi.org/10.1007/10968987_3

Appendix

Software Defects Grid: time-trials

0 500 1000 1500

runtime s

0

5

10

15

20

25

30

35

40

45

F
re

qu
en

cy
 o

f o
cc

ur
re

nc
e

10 1

10 2

va
lid

at
io

n-
er

ro
r

%

(a)

Software Defects Random: time-trials

0 500 1000 1500

runtime s

0

5

10

15

20

25

30

35

40

F
re

qu
en

cy
 o

f o
cc

ur
re

nc
e

10 1

10 2

va
lid

at
io

n-
er

ro
r

%

(b)
Software Defects TPE: time-trials

0 500 1000 1500

runtime s

0

5

10

15

20

25

30

35

40

45

F
re

qu
en

cy
 o

f o
cc

ur
re

nc
e

10 1

10 2
va

lid
at

io
n-

er
ro

r
%

(c)

Figure 1: Time trials of the Software Defects dataset (section 3.2). Time trials of MNIST can be
found in Figure 3.8.

Deepsat Sat6 Grid: time-trials

0 100 200 300 400 500 600 700

runtime s

0

5

10

15

20

25

30

F
re

qu
en

cy
 o

f o
cc

ur
re

nc
e

10 0

10 1

10 2

va
lid

at
io

n-
er

ro
r

%

(a)

Deepsat Sat6 Random: time-trials

0 100 200 300 400 500

runtime s

0

5

10

15

20

25

30

F
re

qu
en

cy
 o

f o
cc

ur
re

nc
e

10 0

10 1

10 2

va
lid

at
io

n-
er

ro
r

%

(b)
Deepsat Sat6 TPE: time-trials

0 50 100 150 200 250 300 350 400 450

runtime s

0

2

4

6

8

10

12

14

16

F
re

qu
en

cy
 o

f o
cc

ur
re

nc
e

10 0

10 1

10 2

va
lid

at
io

n-
er

ro
r

%

(c)

Figure 2: Time trials of the Software Defects dataset (section 3.2). Time trials of MNIST can be
found in Figure 3.8.

Software Defects: scaling significance test

va
lid

at
io

n
ac

cu
ra

cy
 %

ru
nt

im
e

s

quartile standard uniform unit unscaled

scaling

26.9248

21.5399

16.1549

10.7699

5.38496

0

20

40

60

80

100

linear
poly
rbf

(a) Fitting polynomial kernel with standard scaled
data timed out and quartile scaled data is
outside the scale at 120 s.

10 -10 10 -5 10 0 10 5 10 10

cost

30

40

50

60

70

80

90

va
lid

at
io

n
ac

cu
ra

cy
 %

0

50

100

150

200

250

300

ru
nt

im
e

s

Software Defects: cost significance test

linear
poly
rbf

(b)

2 4 6 8 10 12 14 16 18 20

degree

80

80.2

80.4

80.6

80.8

81

81.2

81.4

va
lid

at
io

n
ac

cu
ra

cy
 %

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

ru
nt

im
e

s

Software Defects: degree significance test

(c)

10 -4 10 -2 10 0 10 2

gamma

40

45

50

55

60

65

70

75

80

85

va
lid

at
io

n
ac

cu
ra

cy
 %

0

10

20

30

40

50

60

70

80

ru
nt

im
e

s

Software Defects: gamma significance test

poly
rbf

(d)

-2 0 2 4 6 8 10

coef0

35

40

45

50

55

60

65

70

75

80

85

va
lid

at
io

n
ac

cu
ra

cy
 %

0

50

100

150

ru
nt

im
e

s

Software Defects: coef0 significance test

(e)

10 -15 10 -10 10 -5 10 0 10 5

tol

77.5

78

78.5

79

79.5

80

80.5

va
lid

at
io

n
ac

cu
ra

cy
 %

1

2

3

4

5

6

7

8

ru
nt

im
e

s

Software Defects: tol significance test

linear
poly
rbf

(f)

Figure 3: Significance tests of Software Defects dataset (section 3.2). Test score refers to the
Accuracy on the validation slice of the dataset, as defined in section 2.2. MNIST
significance test can be found in Figure 3.7.

Deepsat Sat6: scaling significance test

va
lid

at
io

n
ac

cu
ra

cy
 %

ru
nt

im
e

s

quartile standard uniform unit unscaled

scaling

93.0953

74.4762

55.8572

37.2381

18.6191

0

20

40

60

80

100

linear
poly
rbf

(a)

10 -6 10 -4 10 -2 10 0 10 2 10 4 10 6

cost

0

10

20

30

40

50

60

70

80

90

100

va
lid

at
io

n
ac

cu
ra

cy
 %

10

20

30

40

50

60

70

80

90

100

110

ru
nt

im
e

s

Deepsat Sat6: cost significance test

linear
poly
rbf

(b)

2 4 6 8 10 12 14 16 18 20

degree

30

40

50

60

70

80

90

va
lid

at
io

n
ac

cu
ra

cy
 %

15.5

16

16.5

17

17.5

18

18.5
ru

nt
im

e
s

Deepsat Sat6: degree significance test

(c)

10 -8 10 -6 10 -4 10 -2 10 0

gamma

20

30

40

50

60

70

80

90

100

va
lid

at
io

n
ac

cu
ra

cy
 %

15

20

25

30

35

40

45

ru
nt

im
e

s

Deepsat Sat6: gamma significance test

poly
rbf

(d)

-2 0 2 4 6 8 10

coef0

20

30

40

50

60

70

80

90

100

va
lid

at
io

n
ac

cu
ra

cy
 %

10

20

30

40

50

60

70

80

90

100

110

ru
nt

im
e

s

Deepsat Sat6: coef0 significance test

(e)

10 -12 10 -10 10 -8 10 -6 10 -4 10 -2

tol

0

10

20

30

40

50

60

70

80

90

100

va
lid

at
io

n
ac

cu
ra

cy
 %

0

10

20

30

40

50

60

70

80

90

100

ru
nt

im
e

s

Deepsat Sat6: tol significance test

linear
poly
rbf

(f)

Figure 4: Significance tests of Deepsat Sat6 dataset (section 3.2). Test score refers to the Accuracy
on the validation slice of the dataset, as defined in section 2.2. MNIST significance test
can be found in Figure 3.7.

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Propraedeuticum
	2.1 Metrics
	2.2 Dataset
	2.3 Hyper Parameter
	2.4 Hyper Parameter Optimization
	2.5 Support Vector Machine
	2.6 Related works HPO analysis for SVM

	3 Methodology
	3.1 Dataset preparation
	3.2 Dataset selection
	3.3 PLSSVM-HPO framework
	3.4 Hyper Parameter Sensitivity tests
	3.5 Search space definitions
	3.6 Study definitions
	3.7 Time trials
	3.8 Experiment settings

	4 Results
	4.1 GPU power draw
	4.2 Performance results
	4.3 In-depth search space comparison
	4.4 Time Optimized Stop Criteria
	4.5 Result Overview

	5 Conclusion and Outlook
	5.1 Iterative problem
	5.2 Bias
	5.3 Other configurations

	Bibliography

