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Abstract

Gaze redirection refers to the task of modifying the direction of eye gaze and its cor-
responding facial counterparts to a targeted direction, while preserving the original
identity of the subject. An effective gaze redirection approach must (i) be aware of
the 3D nature of the task, (ii) accurately redirect the gaze into any specified direction,
and (iii) generate photorealistic output images that preserve the shape and texture
details from the input images. In response to these requirements, this thesis presents
a novel approach to gaze redirection using a 3D-aware conditional diffusion model
that leverages the intrinsic geometric properties of human faces. This approach effec-
tively transforms the task into a conditional image-to-image translation. To embed 3D
awareness comprehensively, we adopt a viewpoint-conditioned diffusion model, that
can learn the 3D context of the facial geometry. Then, the conditions to this model
are unique gaze rotations and latent facial parameters from the face images. These
strategies are further reinforced by a novel loss function focused on gaze direction and
head orientation, which enhances the model’s ability to learn and apply accurate gaze
and head adjustments effectively. Together, these elements underscore the potential of
our approach to produce high-quality, accurate gaze redirection, fulfilling the complex
demands of this sophisticated visual task.
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1 Introduction

1.1 Motivation

As individuals, humans possess a myriad of distinctive attributes that define our human
nature. This includes vocal characteristics, unique fingerprints, and the capacity for
logical thinking. Along with these distinguishing traits, human gaze emerges as a
significant non-verbal cue that serves as a rich source of information. This subtle yet
powerful aspect of human behavior is capable of conveying a spectrum of emotional
states, levels of visual attention, underlying intentions, and even physical well-being. As
a result, it has found applications across diverse domains.

• Human-Computer Interaction

In the field of human-computer interaction, gaze data bridges the communication
between human and non-human or human-like devices, to eventually enhance
the user’s interaction experiences. The system infers the user’s attentional state
and adapts its behavior accordingly, by simply tracking the data. This enables
hands-free interaction between the user and the system. For example, an intelli-
gent tutoring system can analyze collected gaze data and detect when a student
is struggling or disengaged and provide targeted assistance or feedback [RJ21].
Furthermore, in immersive virtual reality (VR) and augmented reality (AR) ex-
periences, gaze-based interaction techniques enable a more natural interaction
with virtual objects and environments. Gaze-based interfaces in these systems can
support disabled users in accessing computers, communicating, and controlling
electronic devices solely relying on their gaze.

• Human-Robot Interaction

Gaze data also proves its competency in human-robot interaction (HRI). Studies
[Kle86; Mut09; SCV21] have verified that human gaze enhances the ability of
robots in HRI tasks. Precisely, it empowers robots to perceive and respond to human
social cues, visual intentions, and communicate attentional states. For instance,
using human-like gaze cues during human-robot handover events, i.e., for a robot
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to fetch and handover an object to a person, can improve the synchronization and
the perceived quality of the handover event [MTG+14].

• Medical Application

In psychological research [ACC+21; BSP+15; CST+22; LSP+23] and clinical
settings, gaze data is utilized to study cognitive processes and social interactions.
It provides researchers with valuable information about how individuals perceive
and respond to stimuli. By tracking these data, it is possible to assess neurological
disorders, such as autism spectrum disorder (ASD), attention deficit hyperactivity
disorder (ADHD), and Parkinson’s disease. It can also assist in rehabilitation
programs for patients with visual impairments or motor disabilities.

The extensive use-cases of human gaze demonstrate its potential to substantial advance-
ments in many research areas, contingent upon the utilization of gaze data. Thus, gaze
data of both high quality and quantity is an essential prerequisite for any application
that relies on this information. Particularly in systems powered by artificial intelligence,
it provides richer contextual information to understand the user’s intention and en-
gagement, thereby enhancing the system’s performance. To increase the robustness of
these systems under broader range of environmental conditions, gaze dataset should
encompass a variety of viewpoints, extreme gaze angles, lighting variation, and image
resolutions. Unfortunately, existing gaze datasets are quantitatively insufficient. They
are mostly constrained to frontal, stationary settings, covering a relatively narrow range
of gaze directions or obtained through well-defined lab environments, which lacks
generalization in real-world scenarios. To circumvent the data need, gaze redirection
technique can serve as a powerful tool to enhance the quantity and variability of gaze
data.

Gaze redirection is the process of modifying the eye gaze and its correlated facial regions
within an input image to a desired direction, while preserving the original identity
of the subject. This technique can synthesize gaze samples by artificially modifying
the gaze direction in existing images or video frames. As a result, it can generate
varied datasets that simulate how people look at different view points or objects under
various 3D conditions, eliminating the need to collect real-world data for every new
scenario. Gaze redirection can be further extended to a wider range of applications.
In video conferencing, it can simulate eye contact between the participants, creating a
more natural and engaging interaction. It also proves useful in photography and film
production. For instance, during group photo sessions, participants often do not look at
the camera simultaneously, and in film, the relocation of CGI characters might necessitate
changes in an actor’s gaze direction. Gaze redirection can resolve the common challenges
in these scenarios by efficiently adjusting the eye gaze toward a target direction.

14



1.1 Motivation

(a) Head Rotation [DE16] (b) Gaze Rotation [KAY08]

Figure 1.1: 3D nature of the gaze redirection task. Both eyes and the head respectively
have 3D coordinate system. (a) shows the pitch, yaw, and roll of the head’s
coordinate system. (b) describes the three-dimensional orientation of the
eye during rotation, typically within the concept of Listing’s Plane, which is
commonly used in theoretical studies of vision science.

Most of the existing approaches in gaze redirection deploy this as a 2D problem and are
not explicitly 3D aware. In fact, gaze and head redirection is inherently a 3D problem, as
both head and eyes move in three-dimensional space. The head can rotate around three
axes (yaw, pitch, and roll), and the eyes also have three degrees of freedom (vertical,
horizontal, and torsional rotations), illustrated in Figure 1.1. Accurately estimating and
redirecting these movements necessitates a thorough understanding and representation
in 3D. Furthermore, applications such as virtual environments, films, and video games
that utilize gaze and head redirection operate within a 3D space [DE16]. Thus, the task
of redirection is naturally 3D aware.

Being conscious of the 3D nature of the task, a recent study [RSW+23] proposed a novel
3D-aware method. While it outperforms the existing 2D approaches, the performance is
constrained to the images that were seen during the training process. That is, to perform
the redirection for a person who was not shown during the training, the model has to be
fine-tuned on one or more images of this person.

Therefore, this work aims to develop a method that can operate directly on any input
image while incorporating high degree of 3D awareness. We achieve this by redefining
the task as conditional image generation. Our approach introduces three significant
contributions to enhance 3D awareness:
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1. Adoption of a Viewpoint-Conditioned Diffusion Model: Originally used for novel
view synthesis, this model has proven effective at learning the transformations
within three-dimensional spaces, capturing extensive spatio-temporal information.

2. Explicit 3D Gaze Rotation: We calculate gaze rotations directly from the gaze
labels associated with each image.

3. Integration of 3D Facial Geometry Priors: To deepen the model’s understanding of
human facial structures, we incorporate 3D priors from latent facial parameters
into the training process.

Additionally, we introduce a novel loss function that targets gaze direction and head
orientation, designed to enhance the model’s task-specific learning capabilities. Through
these contributions, this thesis demonstrates the potential of our proposed method to
effectively address the gaze redirection task using an image generative approach.

1.2 Outline

This thesis is structured as follows:

Chapter 2 – Related Works introduces two streams of work, gaze redirection and novel
view synthesis, that are required for the task-driven formulation of this thesis.

Chapter 3 – Ground Works provides background knowledge and detailed formulas of
diffusion models, extending to conditional diffusion models, which are necessary
for the methodological formation of this thesis.

Chapter 4 – Method presents the proposed methodology of this work, building upon
the understanding of conditional diffusion models. Three distinct strategies and a
task-specific loss function are demonstrated to infuse the 3D-awareness, supported
by detailed algorithms for training and generating images.

Chapter 5 – Experiments accounts for an in-depth explanation of the experimental
setting, including the dataset, implementation details, and evaluation metrics.
This chapter further presents the results obtained from extensive experiments and
evaluate the effectiveness and performance of our proposed method.

Chapter 6 – Discussion&Limitations analyze and discuss our approach, examining
the three distinct methods we have proposed. It also discusses the hypothesized
limitations and outlines potential avenues for further improvements in future
work.
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2 Related Works

Our work integrates two distinct lines of research, addressing the task of gaze redirection
as an approach of novel view synthesis. By discussing these two lines of work in
depth, this chapter aims to establish a solid foundation and motivation for our proposed
method.

Section 2.1 provides a comprehensive overview of the existing research in gaze redi-
rection, including its background, key features, and limitations. It highlights the gaps
in the recent methods and establishes the basis of our proposed methodology. Section
2.2 delves into the concept of novel view synthesis, which our work adopts as a solu-
tion to enhance the gaze redirection task. This section outlines how synthesizing new
viewpoints can be applied to alter gaze direction in images.

2.1 Gaze Redirection

Conventional approaches to gaze redirection are formulated on a 3D graphics model,
which involves re-rendering the entire input region. Consequently, the output quality is
limited to its 3D modeling capabilities and requires expensive computation. For example,
GazeDirector [WBM+17] fits a 3D morphable model to restore the shape, pose, and
appearance of the eye region in 3D. A dense flow field that matches the eyelid motion
between the original and the target gaze directions is then derived from the fitted model.
Finally, the redirection is performed by warping the eyelids using the computed flow
field and compositing the newly redirected eyeballs into the output image. While the
results are aesthetically highly plausible, some components that are difficult to render or
induce distortions to the model are occluded, such as eyelashes, eyeglasses, or shadows
from hooded eyes.

Recent advancements in redirecting gaze and head orientation increasingly rely on deep
learning-based approaches. DeepWarp [GKSL16] utilizes a deep convolutional network
to predict a warping field, which is directly applied to the input image to produce a
redirected eye image. This method is simple but has several drawbacks. First, it often
struggles when the redirection angle between the source and target image is beyond a
specific range. Second, the pixel-wise minimization used during the training process
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does not accurately reflect the perceptual quality of the outputs. Lastly, the fundamental
weakness of warping-based methods is that the resulting image is merely a modified
version of the original input, unable to generate entirely new pixels out of the input
image. Therefore, these methods cannot synthesize extreme changes in gaze and head
directions or variations in lighting conditions.

To introduce generative powers to the gaze redirection task, He et al. [HSZH19]
proposed a framework based on generative adversarial networks (GANs). They integrate
a gaze estimator into the discriminator network to ensure photorealistic outputs and high
redirection accuracy. To maintain the perceptual consistency of the results, a perceptual
loss and cycle-consistency loss are also employed. Despite the efforts, the work is limited
to high-resolution images under well-paired head and gaze orientations and does not
generalize effectively to in-the-wild images.

These previous methods, unfortunately, have been restricted to using inputs from the
eye region, requiring high-quality images for training, but often fail to preserve gaze
accurately. The following two works, which will be introduced in more detail, generate
full-face images instead of eye patches alone. A notable difference from previous papers
is that they address the problem in a disentangled manner and explicitly simulate
redirection by exploiting a 3D rotation matrix.

2.1.1 Self-Transforming Encoder-Decoder

Zheng et al. [ZPZ+20] propose a self-transforming encoder-decoder architecture that im-
poses a disentanglement between the task-relevant (gaze, head) and the task-irrelevant
factors (e.g., lighting, hue, blurriness, etc.). They typically follow the initial transforming
encoder-decoder architecture from Hinton et al. [HKW11], where the encoder predicts
an embedding, and this embedding is transformed by pre-defined steps of transforma-
tion. STED [ZPZ+20] defines this transformation as rotations, which is the transition
from the canonical representation of the gaze and head system to the general world
representation. Given a pair of source and target images, the encoder estimates the
distinct pseudo-label conditions of gaze and head orientation along with the personal
embeddings. The embeddings from the source image are reverted to the canonical
representation by an inverse rotation matrix derived from the pseudo-labels. Then, the
embeddings are transformed back to the world representation through a rotation matrix
based on the target image’s pseudo-conditions. Finally, the discriminator collects the
embeddings and predicts a redirected output image. They demonstrate that this latent
space transformation with pseudo-condition labels allows the model to be capable of
learning the unknown peripheral factors, such as lighting, hue, shadow, and camera
distance. Additionally, a new functional loss is introduced to prioritize the minimization
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of task-relevant discrepancies between the generated and target images. At inference
time, the pseudo-target conditions are replaced with the target’s actual ground-truth
conditions to generate the final redirected face image.

STED contributes to great advances in gaze redirection tasks, surpassing earlier models
in terms of achieving high-fidelity in gaze redirection. Nevertheless, it suffers from the
problem of maintaining the identity of the subjects. This includes difficulties in retaining
person-specific features like face shape or unusual facial expressions, as well as finer
facial details such as moles and freckles. Above all, it lacks 3D-awareness. The rotation
matrix, which represents the 3D transformation, is applied to the 2D latent embeddings,
mixed with the eyes and the rest of the face. Such operation does not take the inherent
characteristics of the non-flexible eyeball rotation and the flexible deformation of the
residual face regions into consideration.

2.1.2 GazeNeRF

GazeNeRF [RSW+23] proposes a novel 3D-aware gaze redirection method to realize
the actual 3D eyeball rotation. The underlying idea is that the physical face and eyes
are separate 3D structures: the deformable face without eyes and the eyeballs that
solely rotate during eye movement. To disentangle the eyes and the rest of the face
while incorporating a sense of three-dimensionality, it typically takes advantage of
the NeRF [MST+20] architecture. NeRF, an approach to novel view synthesis tasks,
deploys a single multilayer perceptron (MLP) network. The network is optimized to
learn the mapping of a 3D spatial point and view direction to an RGB color and volume
density. Eventually, the outputs from the network are used for volume rendering which
naturally enables NeRF-based architectures to learn the 3D volumetric information of
objects. Similarly, GazeNeRF employs two separate MLP streams for the eyes and face,
respectively. This ensures that the feature maps from the eyes stream already include
the eye information in a 3D manner, and directly applying the rotation matrix tackles
the problem of rigid 3D eyeball rotation. To render the redirected output image, the
respective feature maps of the two streams are merged in the end.

GazeNeRF outperforms STED in preserving the identity of the input image after redi-
rection. Yet, it struggles with generalizing to unseen or in-the-wild images that were
not present during training. Redirecting a new image of a person requires additional
fine-tuning, which is not practical for real-world applications and adds significant com-
putational load.

Our work aims to preserve the advantages of the 2D approach, where arbitrary directions
can be applied to any input image. At the same time, to infuse 3D awareness in a different
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way from the aforementioned approach, an alternative line of work is explored from the
novel view synthesis task.

2.2 Novel View Synthesis

Novel view synthesis (NVS) is the task of predicting the physical appearance of an
object in a 3D scene from new, unexplored viewpoints. The goal is to create realistic
and accurate 3D-consistent views, using the limited contextual information available
from 2D images to facilitate a natural transition from 2D to 3D mapping. Humans are
naturally able to infer and imagine how an object would be depicted from different
perspectives. We can even envision the 3D shape of objects that do not or cannot exist in
reality. This level of generalization is made possible by the extensive visual knowledge
that is accumulated over a lifetime. Approaches to NVS aim to encapsulate this visual
knowledge as known-priors in various forms, such as geometry priors, generative priors,
and language-guided priors.

2.2.1 Geometry-Prior

Most recently, the Neural Radiance Fields (NeRF) [MST+20] has achieved great ad-
vancements in geometry-prior-based methods. Given a set of multi-view images along
with their corresponding camera poses, it recovers the underlying 3D scene as a radiance
field parametrized by a neural network. To render a novel view from a particular view-
point, a series of 3D points are sampled along a ray that passes through the scene. These
spatial points, coupled with their viewing directions, are inputs to the model, which
then produces the corresponding colors and densities. Finally, these colors and densities
are compiled into a 2D image by classical volume rendering techniques. NeRF-class
models inherently guarantee 3D consistency due to their structural design. Yet, the
process itself is computationally intensive and requires precise camera calibration and
poses for training. Misestimation in camera poses can lead to significant inaccuracies in
the rendered images, making it vulnerable to errors in the input data. To reduce NeRF
inputs, follow-up works [JTA21; MCL+21; NBM+21] have focused on probing less
informative data, such as unposed images or sparse views, with various regularization
losses.
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2.2 Novel View Synthesis

2.2.2 Generative-Prior

As an alternative strategy to achieve 3D consistency, generative-based approaches rely
on diffusion models. It is inspired by the remarkable success of 2D diffusion models in
generative tasks, which have demonstrated the potential for establishing well-founded
priors of the physical world. Especially, so-called large-scale text-to-image diffusion
models like Imagen [SCS+22], Dall-E [RPG+21], and StableDiffusion [RBL+22] have
shown that stronger semantic and geometric priors can be learned, even though they
were purely trained on 2D images. Building upon this idea, it seems feasible to realize
3D diffusion models by training them on 3D data and capture robust priors of the real 3D
world. However, transforming or synthesizing vast amount of 3D structures into usable
data is yet another significant challenge and is non-trivial under current conditions
[LLW+23].

Recent works [CNC+23; LWH+23; WCM+22] integrate the 3D capabilities using a
conditional diffusion model and redefine the novel view synthesis task as a conditional
image-to-image translation task. These models are conditioned by an input image and
a particular viewpoint (R,T), i.e., rotation matrix R and a translation matrix T. They
demonstrate that their viewpoint-conditioned diffusion models learn the rotations and
translations of three-dimensional space and can have rich geometric information. These
lines of work also perform 3D reconstruction using the predicted images from novel
views. This once again verifies that viewpoint-conditioned diffusion models can learn
the 3D priors of the physical world.

Building on this approach, our work addresses the gaze redirection task as a novel
view synthesis task using a generative model. Precisely, a conditional diffusion model
is adopted, where the conditions include a reference image and specific viewpoints to
guide the diffusion process. The core idea is that generative novel view synthesis is
analogous to conditional image generation task. Essentially, all that is required is to
condition a 2D image diffusion model on the input image along with the corresponding
conditions.
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3 Ground Works

Building on the theoretical context provided in Chapter 2, this section develops the
mathematical and systematic foundations of our work. First, the origins to the diffusion
models are explored, introducing the scientific motivation behind their development
and the detailed mechanisms in terms of mathematical equations and a specific model
architecture integrating the diffusion process. Then, it is further extended to diffusion
models under specific conditions, known as conditional diffusion models. This con-
cept represents the core mathematical framework of our approach, enabling targeted
generation and manipulation within the model.

3.1 Diffusion Probabilistic Models

Diffusion Probabilistic Models (DPMs), commonly referred to as diffusion models,
was first introduced by Sohl-Dickstein et al. [SWMG15]. It uses a Markov chain to
gradually convert one distribution into another. The foundational concept comes from
the "diffusion process" within the context of non-equilibrium statistical physics. Diffusion
process describes the random movement of particles (such as molecules, atoms, or
photons) that change over time from areas of higher concentration to areas of lower
concentration, driven by the laws of statistical thermodynamics. In the absence of
external forces, this process continues until a state of equilibrium is reached, where the
particles no longer change in time and become uniform across the system.

Following this law of physics, the diffusion model consists of a forward process that
gradually transforms data distribution into Gaussian distribution (random noise) and
a reverse process that recovers the data from the noise. The reverse process is the
critical mechanism that empowers diffusion models with their generative capabilities,
allowing them to transform completely random noise into specific desired outputs, such
as images, speech, or text. This diffusion process formulated based on the methodologies
by Sohl-Dickstein et al. and He et al. [HJA20; SWMG15], forms the backbone of
subsequent research that broadens this concept.

In a nutshell, a diffusion model is a noise predictor parameterized as ϵθ (xt, t). For a
diffusion model of total T diffusion steps, t is the timestep index for t = 0, 1, 2, · · · , T .
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It starts with a fully random noise xT and aims to produce a slightly more "denoised"
sample xt−1 from the previous sample xt, until reaching the final image sample x0. The
noisy sample xt can be thought of as a linear combination of the random noise xT with
a predicted noise level ϵ, drawn from a Gaussian distribution at timestep t.

The forward (diffusion) process q operates as a fixed Markov chain that gradually adds
noise into the initial data distribution x0 ∼ q(x0) to produce increasingly noisy samples
from x1 to xT . A certain variance schedule, given by β1:T , defines how much noise is
added at each time step:

q (x1:T | x0) :=
T∏

t=1
q (xt | xt−1) (3.1)

q (xt | xt−1) := N
(

xt;
√

1− βtxt−1, βtI
)

(3.2)

Eventually when T →∞, xT becomes equivalent to an isotropic Gaussian distribution.
Under this property, sampling from an arbitrary time step xt ∼ q (xt | x0) can be reduced
to a closed form. Using the notation αt := 1− βt, ᾱt := ∏t

s=0 αs, and 1− ᾱt denoting the
variance of the noise for an arbitrary timestep:

q (xt | x0) = N
(
xt;
√

ᾱtx0, (1− ᾱt) I
)

(3.3)

xt =
√

ᾱtx0 +
√

1− ᾱtϵ, ϵ ∼ N (0, I) (3.4)

By reversing the above forward process from xT to x0, the noise can be gradually
subtracted by sampling from q (xt−1 | xt). This leads to regenerating the true data
sample from a Gaussian noise input xT ∼ N (0, I). Using Bayes theorem, the posterior
q (xt−1 | xt, x0) is also a Gaussian with mean µ̃t (xt, x0) and variance β̃t defined as
follows:

q (xt−1 | xt, x0) = N
(
xt−1; µ̃ (xt, x0) , β̃tI

)
(3.5)

β̃t := 1− ᾱt−1

1− ᾱt

βt (3.6)

µ̃t (xt, x0) :=
√

ᾱt−1βt

1− ᾱt

x0 +
√

αt (1− ᾱt−1)
1− ᾱt

xt (3.7)

However, it is not trivial to compute q (xt−1 | xt), especially when the data distribution is
unknown. As an alternative, a neural network can be utilized to approximate q (xt−1 | xt)
as:

pθ (xt−1 | xt) := N (xt−1; µθ (xt, t) , σθ (xt, t)) (3.8)

In the initial approach of Sohl-Dickstein et al. [SWMG15], the network is trained in a
way that predicts the mean µθ and the variance σθ. Ho et al. [HJA20] optimize this by
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3.1 Diffusion Probabilistic Models

training the model ϵθ (xt, t) to predict the noise ϵ in Equation 3.4. They ignore the fact
that the variances are learnable and instead fix them to constants βtI or β̃tI, for every
step t. This leads to a simplified training objective as a mean-squared error loss between
the true noise and the predicted noise:

Lsimple := Et∼[1,T ],x0∼q(x0),ϵ∼N (0,I)
[
∥ϵ− ϵθ (xt, t)∥2

]
(3.9)

During sampling, the mean µθ (xt, t) can be calculated from ϵθ (xt, t) as:

µθ (xt, t) = 1
√

αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)
)

(3.10)

3.1.1 Diffusion process in continuous time

Since the foundational works on diffusion model was established by Sohl-Dickstein et
al. and He et al. [HJA20; SWMG15], there have been several significant follow-up
works that build upon and extend this original concept. These enhancements include a
variety of improvements such as adjusting the variance schedules, reducing the number
of sampling steps, refining the denoising function, modifying network architectures,
enabling conditional generation, and expanding to cross-modal applications. Specifically,
works from Kingma et al., Saliman et al, Chen et al., Song et al. [CZZ+20; KW13;
SH22; SSK+21] consider the diffusion process to be performed over a continuous time
variable, in contrast to the discrete Markov chain approach described in the original
works [HJA20; SWMG15]. This thesis follows the parametrization of the diffusion
process in these works.

A diffusion model has latent variables z = {zt | t ∈ [0, 1]}, which represent noisy images.
These are generated by adding a specific amount of noise to images from the training
dataset x ∼ p(x). A noise scheduler consisting of differentiable functions αt and
σt is defined in a way that the log signal-to-noise ratio, λt = log[α2

t /σ2
t ], decreases

monotonically over time t. These components define the forward process q(z | x) as a
Gaussian process satisfying the following Markovian structure:

q (zt | x) = N
(
zt; αtx, σ2

t I
)

(3.11)

In the diffusion model, the purpose of function approximation is to denoise the latent
variable zt, sampled from the conditional distribution q(zt | x), with an estimated
noise value ϵθ(zt, λt) so that it closely approximates the original clean data x. It is also
possible to express the variable z as a deterministic variable z = fθ(ϵ, x), where ϵ is
an auxiliary variable with independent marginal p(ϵ), and fθ(·) is some vector-valued
function parameterized by θ, i.e, the neural network in our case.
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During sampling, the mean from Equation 3.10 and the variance estimate each denoising
step as:

xt−1 = 1
√

αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, λt)
)

+ σtz (3.12)

3.1.2 UNet Architecture

UNet [HJA20; RFB15] is the standard architecture exploited in diffusion models, primar-
ily due to its structural features that are suitable for iterative image denoising, which
is essential for the diffusion process. The “U” shaped architecture comprises a series
of convolutional layers in two networks: the encoder and the decoder. The encoder
encodes an input image into a compressed representation by reducing the spatial dimen-
sions while increasing the depth of the feature maps. The decoder then reverses this
process to transform the compressed information back to an image. This progressive
downsampling in the encoder and upsampling in the decoder makes it particularly
efficient in reconstructing images from noisy data.

A pivotal feature of the UNet is the skip connections that directly connect corresponding
layers between the encoder and decoder. At each level of the encoder, feature maps are
generated from the convolutional and pooling operations. These feature maps are stored
and subsequently concatenated to the matching layers in the decoder of same spatial
levels. The concatenated data is then jointly processed in the decoder. Skip connections
facilitate a smoother flow of gradients through the model, effectively addressing the
issue of vanishing gradients. They provide direct access to detailed information from
the encoder side to be connected to the decoder side of the network, adding crucial
details or high-resolution information that might be lost during the downsampling. Skip
connections greatly improve the quality of the reconstructed image, ensuring that fine
details crucial for precise image denoising and reconstruction are preserved.

3.2 Conditional Diffusion Models

Endowed with strong generative powers, diffusion models have achieved significant
advancements in the field of image synthesis. The development of these models has
been particularly accelerated by the introduction of techniques that can incorporate
specific conditions into traditional noise-to-image models. Specifically referred to as
conditional diffusion models, they are designed to integrate targeted guidance into their
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3.2 Conditional Diffusion Models

generative process. With the conditions denoted as c, the task then becomes training a
neural network to learn:

pθ (xt−1 | xt, c) := N (xt−1; µθ (xt, t, c) , σθ (xt, t, c)) (3.13)

The first approach to gaining control over the diffusion model was using class-labels to
produce images of a specific class [DN21]. It trains a separate classifier to distinguish
between different classes or features in the data. Then, the trained classifier fits into the
model during the reverse diffusion process. The gradients from the classifier penalize the
deviations from undesired attributes or directly guide the generation process towards
higher probabilities of desired outputs. This can be expressed as:

pθ(xt−1|xt, y) ∝ pθ(xt−1|xt) · pϕ(y|xt) (3.14)

where pϕ(y|xt) is the probability of class y given the noisy data xt, from the classifier.
For example, if generating images of dogs, the classifier guides the diffusion steps to
ensure that the characteristics of the generating image match those of dogs. While this
method can gain control over the outputs, a severe drawback is the need to train a
separate classifier.

Classifier-free guidance[HS22] enhances this approach by directly embedding the classi-
fier into the model. By applying the Bayes rule to the gradient of the separate classifier
∇ log p(y|xt), it is divided into two score functions:

∇ log p(y|xt) = ∇ log p(xt|y)−∇ log p(xt) (3.15)

∇ log p(xt|y) is the score of the data xt conditioned on class y and ∇xt log p(xt) is the
score of all the data xt. As this divided formation can leverage both the conditional and
unconditional information, it alleviates the need for a separate, pre-trained classifier.
Specifically, in training time, the model learns a shared representation of both condi-
tioned and unconditioned data. It also zeros out the conditioning information, teaching
the model to generate high-quality unconditioned samples as well. At the inference
stage, the model can be used either conditionally or unconditionally. The strength
of conditioning can be adjusted by a hyperparameter that scales the influence of the
condition during the generation process. This flexibility allows the model to generate
a wide range of outputs. A higher guidance scale adheres more to the condition with
reduced diversity, whereas a lower guidance scale allows more varied and rich samples
to be generated.

State-of-the-art diffusion models build on this approach and extend the conditioning
control to include text, additional image, or latent information. They have demonstrated
remarkable success across a diverse range of tasks including text-to-video, text-to-image,
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image-to-image translation, super-resolution, inpainting, colorization, uncropping, and
artifact removal. For example, the recent explosion of language-guided 2D image
generators like DALL-E[RPG+21], Imagen[SCS+22], and Stable Diffusion[RBL+22]
can solve highly-ambiguous generation tasks, obtaining photo-realistic 2D images from
strong semantic correlation with the given text-prompt inputs, textual descriptions,
semantic maps, partially-complete images, or simply unconditionally from random
noise.
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4.1 Problem Setting

The main idea of our approach is to develop a method where the 3D-aware model
generates a 2D face image, with the gaze adjusted to any direction of our desire. To this
end, we redefine the task of gaze redirection as a novel view synthesis task, by using
a conditional diffusion model that can learn the 3D priors of the facial geometry. The
intuition is that this is similar to any other conditional image generation task.

Given a pair of images xinput and xtarget, along with the relevant conditions c that we
propose to incorporate the 3D awareness, our goal is to sample the redirected target
image from the conditional distribution:

p (xtarget | xinput, c) (4.1)

4.2 Incorporating 3D-Awareness

To achieve 3D awareness, we integrate this concept through three distinct approaches:

1. First, we employ a model that is inherently 3D-aware in its structure, enabling it
to intuitively understand and interpret 2D data within the 3D context.

2. Second, we apply 3D transformations, which adapt the spatial orientation of
the eye gaze, allowing the model to handle and analyze input from multiple
perspectives accurately.

3. Third, we capitalize on the 3D priors of the facial geometry. By leveraging an
existing model that already has advanced priors of the human face topology, we
aim to extract relevant information that will enhance our model’s capability to
generate and manipulate faces images in three-dimensional space.
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4.2.1 3D-aware diffusion model architecture

This thesis builds on the works of novel view synthesis that introduce 3D generative
models. These models are typically conditional diffusion models, conditioned on images
and their corresponding poses. A significant advancement in this field is the X-UNet
architecture introduced in 3DiM [WCM+22]. It has demonstrated remarkable effective-
ness in generating 3D-consistent frames for novel view synthesis using only 2D images
for training. Unlike other state-of-the-art methods [LWH+23; MRLV23], it doesn’t rely
on any pre-existing knowledge from large-scale diffusion models, and the architecture is
claimed to be naturally 3D-aware. Inspired by these capabilities, we have adopted the
X-UNet architecture to integrate 3D awareness into our gaze redirection task.

The architecture of X-UNet differs from the original UNet [HJA20; SWMG15] in several
aspects. First, unlike DDPM[HJA20] which denoises multiple frames simultaneously
at a single noise level, X-UNet assigns a unique noise level to each frame. Second,
the poses conditions are encoded as pose embeddings, which are formatted to match
the dimensionality of the images. These pose embeddings are subsequently combined
with noise-level positional encodings to produce the final format of the embeddings.
This contrasts the DDPM approach, which uses noise-level encodings alone. Lastly,
X-UNet defines a cross-attention layer, allowing the feature maps of each frame to
be interchangeable with other frames. This cross-attention mechanism, which shares
parameters between the two views, enhances the learning of complex, nonlinear image
transformations. Conversely, DDPM uses successive self-attention layers, processing
sequences over time. These modifications collectively improve 3D consistency and better
alignment with the conditioning image.

4.2.2 Pose embeddings from 3D gaze rotations

One of the core elements that outline 3DiM [WCM+22] as a 3D-aware method is the use
of 3D transformations as conditions within its conditional diffusion model. Specifically,
the 3D pose information is encoded as pose embeddings for the images. To incorporate
this approach, we utilize the gaze label g = (θ, ϕ) from the images. The gaze labels,
pitch θ and yaw ϕ, are angles of the spherical coordinate systems of head orientation
and gaze direction [ZSB18]. A rotation matrix can be derived from these gaze labels
as:

R =


cos ϕ 0 sin ϕ

0 1 0
− sin ϕ 0 cos ϕ




1 0 0
0 cos θ − sin θ

0 sin θ cos θ,

 (4.2)
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This rotation formulates the transformation from the canonical space to the world(target)
space [RSW+23; ZPZ+20]. The zero-representation indicates a frontal direction, where
the face is oriented directly to the camera. In the original work, 3D transformations are
utilized within their ray construction framework to create pose embeddings. However,
due to the incompatibility of this approach with our setup, we replace it with a fully-
connected layer. The rotation matrix R ∈ R3×3 is encoded to rotation embedding
R ∈ R128×128×3, that match the dimensionality of the images. Then, we stack the
rotation embedding from the input and target images along a new dimension, resulting
in R ∈ R2×128×128×3. This approach is in parallel with 3DiM, which stacks input and
target images along a new dimension to facilitate its cross-attention mechanism that
enables weight sharing across frames.

Rotation embeddings are further augmented by its positional encodings, as detailed
in [MST+20; WCM+22]. For a given number of frequency levels L, the positional
encoding function PE(·) maps each coordinate values x to 2L features and applies a
series of sinusoidal function, represented as follows:

PE(x) =
(
sin(20πx), cos(20πx) . . . , sin(2L−1πx), cos(2L−1πx)

)
(4.3)

The intuition behind this positional encoding is to transform each input coordinate
into a higher-dimensional space, thereby enhancing the model’s ability to capture the
details and subtle complexities in the data. As this encoding strategy originates from
NeRF [MST+20], it significantly aids the reconstruction and rendering of 3D objects by
providing richer spatial information.

4.2.3 3D Priors of the facial geometry

As we adapt a model initially designed to predict novel views of objects, there exists a
fundamental difference between the goal of this task and ours of generating novel gaze
directions of humans. Compared to standard 3D objects in the world, modeling human
facial geometry is significantly more complex and demands a higher level of understand-
ing from the model. For instance, human faces exhibit a vast range of expressions and
subtle movements from facial muscles, offering nearly limitless degrees of freedom in
manipulating the details. This complexity is greater than that found in static objects,
where the range of potential variations is typically more constrained and predictable.
Although 3DiM [WCM+22] is capable of performing 3D object reconstruction based
on their predicted views, demonstrating their ability of learning 3D priors, 3D face
reconstruction from 2D image is yet another specialized field of research [ZTB+18].

To bridge this gap between the task, the model should be provided with additional
information of the face. Thus, we utilize established models known for their ability
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to conduct 3D face modeling, where detailed facial parameters can be extracted. One
such model is the Detailed Expression Capture and Animation (DECA) [FFBB21], an ani-
matable displacement model capable of synthesizing realistic geometric details through
varying expression parameters. DECA takes a single two-dimensional image as input and
outputs person-specific details that can be used for realistic animation. It demonstrates
exceptional robustness in reconstructing extreme geometric details, including common
occlusions, wide pose variations, and significant illumination changes.

In our work, we specifically use the encoder architecture of DECA, which generates
a latent code representing shape, expression, pose, texture, and lighting parameters
from a 2D face image. This results in a 233dimensional latent vector. We transform this
latent code into a latent matrix and integrate it with the input image x ∈ RC×H×W , as
additional information. H and W denote the height and width of the input image, re-
spectively, both set at 128, while C represents the channel dimension of 3, corresponding
to the RGB color space. We have developed two methods for this integration:

• First, we expand the latent code l ∈ R236 to l ∈ R1×128×128, and concatenate it
along the channel dimension, resulting in x ∈ R4×128×128.

• Second, we extend the latent code l ∈ R236 to l ∈ R3×128×128, and stack it to a new
dimension, resulting in x ∈ R2×3×128×128.

The first method is inspired by the Concat-UNet [SHC+21] architecture, where it
concatenates the input and target image along the channel axis, as it does not share
weights across frames. In constrast, 3DiM stacks these images along a new dimension,
as it uses a cross-attention mechanism that shares weights across frames. The second
method draws inspiration from this approach. As the initial operation in our model is a
convolutional layer that expands the channel dimensions from 3 to a feature dimension
of 128, these variations in image size are straightforwardly manageable.

By integrating these strategic approaches, which differ in three distinct ways, we aim to
infuse 3D awareness into our methodology. This enhancement is expected to significantly
improve the fidelity and accuracy of our generative outputs of human face. As a result,
our conditional diffusion model is designed to process a noisy target image z, using a set
of complex conditioning information. These include a conditioning input image xinput,
rotational data from both the input and target Rinput, Rtarget, and latent codes for the
input image linput, as well as a specified noise level λt.
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4.3 Objectives

Given a data distribution q (x1, x2) of image pairs from a common person and the
relevant conditions c from the images, we define an isotropic Gaussian process. It
incrementally adds noise to data samples as the signal-to-noise-ratio λt decreases.

Following the methodology described by Saliman et al.[SH22], we employ a cosine
scheduler where αt = cos(0.5πt). This is based on a standard variance-preserving
diffusion process, where α2

t + σ2
t = 1. Under this configuration, the log signal-to-noise

ratio λt = log[α2
t /σ2

t ] breaks down to αt = s (λt)
1
2 and σt = s (−λt), with s(·) denoting

the sigmoid function s(x) = 1/(e−x + 1). We omit the t in λt for simpler notation.

The forward process from 3.11 comes down to:

q
(
z

(λ)
k | xk

)
:= N

(
z

(λ)
k ; σ(λ) 1

2 xk, σ(−λ)I
)

(4.4)

where σ(·) is the sigmoid function. By applying the reparametrization trick from [KW13],
z can be further expressed as a deterministic variable sampled from these marginal
distributions as:

z
(λ)
k = σ(λ) 1

2 xk + σ(−λ) 1
2 ϵ, ϵ ∼ N (0, I) (4.5)

Then, the task of our neural network is to reverse this process in one of the two frames.
That is, the network learns the conditional distribution outlined in 4.1 to approximate
the correct noise that was injected in the forward process.

4.3.1 Noise Loss

Following the simplified training objective of Ho et al. [HJA20], we minimize the loss
between the predicted noise and true noise to recover the data distribution of the target
image. Here, the l2 loss is used:

Lnoise = Eq(x1,x2)Eλ,ϵ

∥∥∥ϵθ

(
z

(λ)
2 , x1, c, λ

)
− ϵ

∥∥∥2

2
(4.6)

The neural network ϵθ is tasked with denoising the noisy frame z
(λ)
2 , using the clean

conditioning frame x1 and the feature-specific conditions c from the frames, along
with the logarithmic signal-to-noise ratio λ as guidance. To enhance the clarity of our
notation, we will simply use ϵθ

(
z

(λ)
2 , x1

)
to denote the noise predicted by the model.
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4.3.2 Gaze and Head loss

While Lnoise leads the overall diffusion process for image generation, a more task-specific
guidance is required to ensure the accuracy of gaze and head redirection. A novel
functional loss is proposed in STED [ZPZ+20] which prioritizes the minimization of
task-relevant inconsistencies between the generated and target images. Inspired by this
work, we adopt gaze and head loss to gain control over the redirection task.

To accomplish this, it is necessary to first extract the gaze direction and head orienta-
tion from the target images. However, direct access to the generated target image is
unavailable during the training phase. As an alternative, we reverse the the sampling
process in Equation 4.5 to simulate the target image. During the sampling process, a
certain amount of noise is added to the target image, resulting in a noisy target image.
The model then predicts this injected noise. By reverting this process, it is possible to
approximate the ground truth target image x̂k using the predicted noise ϵ̃ and the noisy
target image z

(λ)
k :

x̂k = 1
σ(λ) 1

2

(
z

(λ)
k − σ(−λ) 1

2 ϵ̃
)

(4.7)

Gaze direction and head orientation can be determined from the recovered target image
using a external estimator, denoted as F . As these measurements are initially extracted
as pitch (θ) and yaw (ϕ) angles of the head’s coordinate system, converting these angles
into a 3D vector simplifies the computation of loss functions. With rotation matrix R

from Equation 4.2 and a unit vector (0, 0, 1) denoting the frontal direction of the head’s
coordinate system, the vector can be computed as:

v =


x

y

z

 = R ·


0
0
1

 =


sin ϕ cos θ

− sin θ

cos ϕ cos θ

 (4.8)

A useful method to measure the similarity between two vectors is cosine similarity. This
method evaluates the cosine of the angle between the vectors, indicating whether they
are pointing in the same direction. By simply calculating the inverse cosine similarity,
the angle between the vectors can be derived.

Eang(v, v̂) = arccos v · v̂
∥v∥∥v̂∥

(4.9)

Gaze and head loss is formulated as the angular error between the gaze direction and
head orientation estimated from the reconstructed x̂k and ground truth xk.

Lgaze = Eang (F g (x̂k) , F g (xk)) (4.10)
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Lhead = Eang

(
F h (x̂k) , F h (xk)

)
(4.11)

F g and F h denote the gaze and head vector from the estimator, respectively. Finally, the
training objective becomes:

Ltotal = LFnoise + λFgazeLFgaze + λFheadLFhead . (4.12)

Algorithm 4.1 summarizes the training phase.

Algorithmus 4.1 Training

Require: Gaze estimator F t for training phase
Require: Model ϵθ (·) to be trained
Require: Noise scheduler logsnr_cosine(·)
Require: Conditioning mask mcond for classifier-free guidance approach

while not converged do
(x1, c1), (x2, c2, g, h) ∼ D ▷ Query data and relevant conditions
ϵ ∼ N(0, I) ▷ Sample random noise
t ∼ U [0, 1] ▷ Sample time
λt = logsnr_cosine(t) ▷ log-SNR
x̃ = x1 + mcond ▷ Randomly discard conditioning to train unconditioned
z = σ(λt)

1
2 x2 + σ(−λt)

1
2 ϵ ▷ Add noise to target image

ϵ̃ = ϵθ (x̃, z, c1, c2, λt, mcond) ▷ Predict noise
x̂2 = (z − σ(−λt)

1
2 ϵ̃)/σ(λt)

1
2 ▷ Recover target image with predicted noise

g̃, h̃ = F t(x̂2) ▷ Predict gaze and head vector from the gaze estimator
Lnoise = ∥ϵ̃− ϵ∥2

2 ▷ Noise loss
Lgaze = Eang(g̃, g) ▷ Gaze angular loss
Lhead = Eang(h̃, h) ▷ Head angular loss
Lθ = Lnoise + λFgazeLgaze + λFheadLhead ▷ Total loss
θ ← θ − γ∇θLθ ▷ Optimization

end while

4.4 Generating Redirected Image at Inference

The power of diffusion models becomes evident during the inference phase. Once
the model has been effectively trained, it is capable of generating a redirected face
image starting from completely random noise. During the sequence of time steps in
λmin = λT < λT −1 < . . . < λ0 = λmax, the random noise is gradually removed until it
reaches a complete clean image. Detailed notation is provided in Algorithm 4.2.
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The model predicts the conditional noise ϵθ(z(λt), x) at timestep t, where x is the
conditioning image. Incorporating the classifier-free guidance [HS22], the model also
predicts the unconditional noise ϵθ(z(λt), x̃). In this case, the positionally encoded pose
is zeroed out and the conditioning image is replaced with randomly sampled image
x̃ from the standard Gaussian noise. Then, the final noise level is determined by a
linear combination of both conditional and unconditional noise, where the parameter w

controls the strength of the conditioning effect:

ϵ̂ = (w + 1)ϵθ(z(λt), x)− wϵθ(z(λt), x̃) (4.13)

This integration allows for a precise manipulation of how much the conditioning image
will influence the final output. It is further possible to denoise z(λt) at timestep t using
the final predicted noise ϵ̂ :

x̂ = 1
σ (λt)

1
2

(
z(λt) − σ (−λt)

1
2 ϵ̂)

)
(4.14)

This equation is analogous to Equation 4.7, where we reverse the sampling process to
recover the ground truth target image. The noisy target image for the next timestep
z(λt−1) can be sampled from the following distribution, until it becomes completely
noiseless.

z(λt−1) ∼ q
(
z(λt−1) | z(λt), x̂

)
(4.15)

In practice, z(λt−1) is computed as a linear operation of the computed mean from the
predicted noise and the variance value from the noise schedule, with the fully noisy z(λT )

from the random Gaussian distribution. The variance σθ (xt, λt) is determined using a
fixed value from the noise schedule for the current timestep λt and the next, less noisy
timestep λt−1. The mean µθ (xt, λt) is derived using the denoised x̂ and noisy z(λt) at
timestep t.

z(λt−1) = µθ (xt, λt) + σθ (xt, λt) · z(λT ) (4.16)

µθ (xt, λt) = σ (−λt)
1
2

z(λt) (1− c)
σ (λt)

1
2

+ c · x̂

 (4.17)

σθ (xt, λt) = σ(−λ) · c (4.18)

where c = 1− exp (λt − λt−1) (4.19)
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Algorithmus 4.2 Inference

Require: Conditioning mask mcond for classifier-free guidance approach
z ∼ N(0, I) ▷ Sample random noise
x, cx, cz ∼ D ▷ Query data
for t = T, ..., 1 do

x̃ ∼ N(0, I) ▷ Random sample conditioning image
ϵ̃cond = ϵθ (x, zt, cx, cz, λt, mcond) ▷ Predict conditioned noise
ϵ̃uncond = ϵθ (x̃, zt, cx, cz, λt, mcond) ▷ Predict unconditioned noise
ϵ̂ = (w + 1)ϵ̃cond − wϵ̃uncond ▷ Final noise
x̂t = (zt − σ(−λt)

1
2 ϵ̂)/σ (λt)

1
2 ▷ Recover z at timestep t

if t > 1 then
zt−1 ∼ q (zt−1 | zt, x̂t) ▷ Sample z at timestep t+1

else
zt−1 = x̂t ▷ The final denoised z

end if
end for
return x̂0
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This chapter details the experiments conducted to evaluate the effectiveness of our
approach. We focus on two primary objectives:

1. Demonstrate that using pose embeddings as conditions for the diffusion model can
successfully perform gaze redirection.

2. Incorporating latent parameters of the face can provide additional geometric priors
of the facial structures, ultimately improving the results.

Initially, our experiments utilized the ETH-XGaze dataset. However, subsequent tests led
us to conclude that this dataset was not compatible with our experimental framework.
Section 5.1.1 provides a brief overview of these extensive experiments, discussing the
points of failure and the reasons for shifting to an alternative dataset. The remaining
sections focus on the experiments conducted using the GazeCapture dataset, which we
selected as a more suitable alternative. These sections include details for the implemen-
tation, along with both qualitative and quantitative evaluations of the results, providing
a comprehensive overview of the performance and applicability of our approach using
this dataset.

5.1 Datasets

5.1.1 ETH-XGaze

ETH-XGaze [ZPB+20] is a large-scale gaze estimation dataset featuring high-resolution
images that capture wide range of gaze variation under extreme head poses. This dataset
was collected from 110 subjects using a multi-view setup with 18 cameras and varying
lighting conditions.

Recently, GazeNeRF[RSW+23] achieved state-of-the-art results in novel view synthesis
with this dataset. Their preprocessed format contains the rotation (R), translation
(T), and camera intrinsic (K) matrices, which can be used for the ray construction
framework in 3DiM, to embed the pose conditions. It also includes the latent facial
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Figure 5.1: Comparison of the results in accordance with the change in intrinsic matrix.
In both cases, the conditions are (R,T,K). (a) shows the results using the
original intrinsic matrix from the preprocessed dataset, i.e., image size of
512. (b) shows the results after changing the intrinsic matrix to our image
size setting of 128. The labels denoted as w is the hyperparameter that
controls the strength of the conditioning information.

parameters achieved from the 3D morphable model (3DMM), such as shape, expression,
and texture of the face and the illumination of the image. 3DMM is a pre-trained
parametric model that transforms the face image into vector space representations. In
the original implementation of GazeNeRF, these latent parameters are the ingredients
for reconstructing a face mesh in their post-processing steps. Adapting to our settings,
we use them as additional feature information of the images to provide the model
with deeper insights into complex facial features and three-dimensional structures.
Although the raw dataset is not publicly available, the preprocessed formats are readily
accessible from our GPU servers. For these reasons, we initially utilized the preprocessed
version of the ETH-XGaze dataset for training. Our model, containing approximately 141
million parameters, could only support an image resolution of 128 due to GPU memory
constraints, despite employing data parallelism. Consequently, we resized the images
from 512×512 pixels to 128×128 pixels and conducted various experiments. At this
stage, we are yet to adopt the task-specific head and gaze loss discussed in Section 4.3.2
and solely rely on the noise loss. A timestep of 1000 is used during training, and 256
sampling steps are used during inference.

In our experiments, we made two main observations. Here we only provide qualitative
evaluation of the results, without delving into detailed error metrics. To enhance
diversity in the visualizations, different samples are presented for each comparison. First,
acknowledging the discrepancy in image size between the preprocessed dataset and
our experimental settings, we made necessary adjustments to the structures where the
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Figure 5.2: Comparison of the results within the incorporation of latent parameters.
Respectively, conditions are (R,T, fixed K) in (a) and (R,T, fixed K, latent
code) in (b). The labels denoted as w is the hyperparameter that controls
the strength of the classifier-free guidance.

resolution of 512 is reflected. One such adjustment is the intrinsic matrix, which was
initially defined based on an image size of 512 and distinct camera calibration values.
Upon manually modifying the intrinsic matrix to our resized image resolution of 128,
we observed improvements in facial structures compared to results before changing the
intrinsic matrix. Figure 5.1 shows the comparison of the sampled results.

Second, incorporating latent information about the face images yielded improvements.
Figure 5.2 shows the enhancements achieved with the latent codes. A particularly
effective method was extending the latent codes into a matrix matching the height and
width of the images and appending these to the channel dimension of the input image,
which is visualized in Figure 5.3. Additional clamping of the latent codes to the range
[-1, 1], consistent with the normalized image values, produced more plausible results
than when clamping was not applied. In fact, this concatenation expands the image
channels from RGB to RGBA. The alpha channel signifies the opacity level of each pixel,
allowing images to be layered over each other through alpha compositing. Thus, we
hypothesize that the latent codes embedded in the alpha layer can provide more precise
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Figure 5.3: Comparison of the results with different methods to integrate the latent
code. In both cases, the conditions are (R,T, fixed K, latent code). Results
in (a) expands the latent vector l to l ∈ R128×128×3 and stacks to a new
dimension. Results in (b) expands the latent vector l to l ∈ R128×128 and
concatenates to the channel dimension. The labels denoted as w is the
hyperparameter that controls the strength of the classifier-free guidance.

control over the representation of complex facial features. The disappearance of the
green background in (b) of Figure 5.2 and 5.3 illustrates the effect of integrating the
latent codes to the alpha channel. A fully-connected layer was used to map the latent
codes into a matrix of the image size. Since the static green background is common
to every input image from the dataset and has no feature related to the face, we can
assume that it resulted in zero gradients. Consequently, this led to zero opacity, moving
out the background color to be fully transparent.

Despite making various adjustments, the outcomes remained unsatisfactory and poten-
tially misleading. Upon deeper examination and empirical observations, we conclude
that the main reason for these shortcomings is the mismatch in image resolution settings
between the preprocessed dataset and our experimental framework. The preprocessed
images were initially normalized for a setting of 512×512 pixels. This normalization
process corrects the distortion caused by minor angular disparities during photography,
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aligning the images to a common perspective and size for training purposes. The compu-
tation involves using 3D landmarks from the images, camera calibration settings (such
as focal length and distance to the camera), and the image size. However, some image-
specific information is stored in the individual annotation files from the raw ETH-XGaze
dataset, making it impracticable to re-normalize the images to fit our adjusted resolution
of 128. Thus, this necessitates a change to a dataset where direct access to raw data is
possible and/or the image resolution is consistent with our setup.

5.1.2 Gaze Capture

GazeCapture [KKK+16] is selected as the primary dataset for our training and evaluation,
replacing ETH-XGaze. It is a large-scale eye-tracking dataset used in wide range of gaze
related research, featuring utmost 2.5 million images from more than 1,450 participants.
Data was collected in unconstrained settings, through a mobile app that utilizes the
front-facing camera to take selfies, resulting in significant variations in illumination, head
pose, appearance, and background. This diversity in participants and environmental
conditions make it highly applicable to real-world scenarios, allowing the learning of
robust models that generalize well to novel faces.

We preprocess the GazeCapture dataset analogously to STED [ZPZ+20]. That is, we use
the code provided by Park et al. [PMM+19] with additional changes made by Zheng
et al. [ZPZ+20]. Here, the face images are normalized in 128×128 pixels, along with
camera callibration settings, which fits our image resolution settings to accommodate
GPU capacity. One preprocessed sample includes a normalized image, normalized gaze
direction, normalized head pose, and normalized gaze directions for both the left and
right eyes. Additionally, we extract latent facial codes from the images, along with gaze
direction and head orientation, using an external estimator.

5.2 Implementation Details

5.2.1 Training

We adhere our training configuration to that of 3DiM [WCM+22], as their proposed
method in combination with their novel architecture have demonstrated high 3D con-
sistency and scalability across numerous scenes, without relying on hyper-networks
or test-time optimization. The training subset of GazeCapture dataset is used for the
training phase, which has 1,379,083 samples. To enable classifier-free guidance [HS22],
each batch element is trained with 10% of unconditional example. This is done by
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defining a boolean matrix as a conditioning mask and overriding the conditioning frame
with a random Gaussian noise (maximum noise level) at 10% of time. The model is
optimized using the Adam optimizer [KB17] with β1 = 0.9 and β2 = 0.99. For the noise
schedule λt, a cosine-shaped log signal to noise ratio is used, monotonically decreasing
from λmax = 20 to λmin = -20.

θmax = arctan (exp (−0.5 ∗ λmax)) (5.1)

θmin = arctan (exp (−0.5 ∗ λmin))− θmax (5.2)

λt = −2 log (tan (t ∗ θmax + θmin)) (5.3)

A batch size of maximum 4 fits within a single Tesla V100-SXM2-32GB GPU. Using
distributed data parallelism with batch size of 16 (4 GPUs), it takes around 1 full day
with timesteps of 500, and 1.5 days with timesteps of 1000 to train a single epoch. To
generate samples that are at least qualitatively plausible, we found that a minimum
of 7 epochs are needed in both cases. In this limited situation, conducting extensive
experiments to empirically determine the optimal coefficients was impractical. As an
alternative, we focused on monitoring individual losses while keeping a fixed total loss.
We prioritized penalizing the noise loss most heavily, as it serves as the primary guide
for model learning, and treated the remaining losses equally:

L = Lnoise

Lnoise.detach() + 0.5 Lgaze

Lgaze.detach() + 0.5 Lhead

Lhead.detatch() (5.4)

5.2.2 Sampling

As the input images are normalized to the range [−1, 1], we clip each predicted x̂ at each
denoising step to the this range. We have incorporated classifier-free guidance [HS22]
and varied the hyperparameter w in our sampling process to control the strength of the
conditioning. The predicted noise for the sampling phase is computed as a combination
of conditional and unconditional noise, as outlined in Equation 4.13. Empirical testing
revealed that values of w above 6 tend to introduce more noisy artifacts. Consequently,
we have restricted the range of w to [0, 1, 2, 3, 4, 5, 6] to maintain the quality of the
generated outputs. While 3DiM deploys denoising steps of 256 under the training
timesteps of 1000, we use 128 steps to generate the samples, in our reduced training
steps of 500. Under this situation, we empirically found that the qualitative results
between 128 and 256 steps does not differ significantly.
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5.2.3 Gaze direction and Head orientation estimator

To enforce a more task-relevant loss for training, we adopt an external gaze direction and
head orientation estimator from STED [ZPZ+20]. When provided with a full-face image
of 128×128 pixels, this estimator outputs a 4-dimensional vector, representing pitch
and yaw values in spherical coordinates of the head system. During the training phase,
we use an estimator based on the VGG-16 architecture, while another estimator network
based on ResNet50 is employed for evaluation. They are both ImageNet pre-trained
models, fine-tuned on gaze and head orientation estimation tasks. STED fine-tunes
both of the estimator on the same training subset of the GazeCapture dataset for 100k
iterations with a batch size of 64, using the Adam optimizer with momentum values β1
= 0.9, β2 = 0.95. The initial learning rate is 10−4 and is decayed by a factor of 0.5 after
50k iterations. Table 5.1 and 5.2 shows the architecture of the estimators.

Table 5.1: Architecture of the external gaze direction and head orientation estimation
network based on VGG-16 used during training phase.

Nr. layers / blocks
0 VGG-16 convolutional layers
1 FC(512, 64, w/bias), LeakyReLU()
2 FC(64, 64, w/bias), LeakyReLU()
3 FC(64,4, w/bias), 0.5 π· Tanh()

Table 5.2: Architecture of the external gaze direction and head orientation estimation
network based on ResNet50 used during evaluation phase.

Nr. layers / blocks
0 ResNet convolutional layers, stride of MaxPool 2d=1
1 FC(2048, 4, w/bias)

5.2.4 Evaluation metrics

We evaluate our model with 4 different metrics. The redirection error specifically
measures the accuracy of gaze and head direction, targeting the model’s effectiveness
in this particular task. The other three metrics—LPIPS, SSIM, and PSNR—evaluate the
image quality between the ground truth and generated images by the model.

Redirection Error
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To verify the task-explicit performance of our approach, we report the gaze and head
redirection error as angular errors using the external estimator outlined in section 5.2.3.
As the estimator used for evaluation differs from the one employed during training, it
ensures an unbiased means of assessment. The computation is analogous to computing
Lgaze and Lhead during the training phase, in Equations 4.10 and 4.11. We estimate the
reverse cosine similarity between the vectors from the predicted target sample and the
ground truth target sample.

LPIPS

Learned Perceptual Image Patch Similarity (LPIPS) [ZIE+18] is a commonly used metric
in image generation models, as it measures the perceptual similarity in a way that
human vision would interpret them. It uses high-level features that are extracted from
pre-trained convolutional neural networks (CNNs), to compare images at a feature
level rather than just pixel by pixel. This allows LPIPS to capture complex patterns and
textures, closely mirroring human visual perception. Lower values signify that generated
image and ground truth image are perceptualy similar. Given two images I1 and I2, and
a set of layers L from a pretrained network, with the learned weights wl it is computed
as the squared Euclidean distance between the normalized feature maps ϕ̂l(I) from the
corresponding layers of each image:

LPIPS(I1, I2) =
∑
l∈L

wl · ∥ϕ̂l(I1)− ϕ̂l(I2)∥2 (5.5)

SSIM

Structural Similarity Index Measure (SSIM) [WBSS04] evaluates image similarity by a
comprehensive comparison of the brightness, contrast, and structural information be-
tween the images. It is an approach that aims to mimic human visual perception, similar
to LPIPS. Higher SSIM values denote greater accuracy in maintaining the structural
integrity of the original image. SSIM is defined as:

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

(5.6)

µx and µy are the mean intensities, σ2
x and σ2

y are the variances of images x and y, and
σxy is the covariance of x and y. C1 and C2 are constants to stabilize the division with
weak denominator, to avoid the case when the denominator becomes 0.

PSNR

Peak Signal-to-Noise Ratio (PSNR) is a traditional metric used to assess the pixel-wise
quality of reconstructed images. It is commonly used in image compression, video
compression, and other fields where maintaining image quality is essential. Although
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PSNR may not directly correlate with human visual perception, it can serve as an effective
tool for monitoring the quality of image reconstruction from our generative model across
different timesteps. Higher PSNR values indicate a higher quality of reconstruction,
showing that the generated image retains the details from the original. The computation
follows:

PSNR = 10 log10

(
MAX2

MSE

)
(5.7)

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (5.8)

MAX is the maximum possible pixel value of the image. MSE is the Mean Squared Error
between the images where m and n are the dimensions of the images, and I(i, j) and
K(i, j) are the pixel values at position (i, j), respectively.

5.3 Results

During the evaluation phase, we utilize the test subset of the GazeCapture dataset and
conduct both quantitative and qualitative analyses to provide a comprehensive overview
of our proposed approach. We present results where the conditions are solely pose
embeddings from the rotation matrix, and shift the discussion of using the latent facial
parameters to Chapter 6. These results were obtained after training the model for 9
epochs with a reduced timestep of 500. For the quantitative evaluation, we employ
the STED [ZPZ+20] model as our baseline to compare the performance of our method
against a recognized benchmark in the field, shown in Table 5.3.

Gaze

Redir.

Head

Redir.
LPIPS PSNR SSIM

STED 4.242 1.466 0.260 12.942 0.422

Ours 7.717 14.792 0.543 9.882 0.129

Table 5.3: Evaluation of our results with STED [ZPZ+20]. Our results are taken from
the guidance weight w = 4 for the classifier-free guidance approach, as it
has the lowest gaze redirection error. Redirection error and LPIPS are better
when lower in value, whereas SSIM and PSNR are better when values are
higher.

As we adopt the classifier-free guidance to our approach, we provide a comparison
between different w values, the weight that controls the influence of conditioning
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Figure 5.4: Qualitative comparison of different w values that control the strength of the
conditioning information. As the weight w increases, the target image is
generated more conditionally.

w=0 w=1 w=2 w=3 w=4 w=5 w=6

Head Redir. 10.979 20.817 17.842 16.923 12.202 12.958 15.228

Gaze Redir 13.307 18.687 14.869 7.963 8.344 10.783 10.822

Table 5.4: Quantitative results corresponding to the sample from the second row in
Figure 5.4. The head redirection direction error is at lowest in weights 4 or
5, while gaze redirection direction error is lowest in weights 3 or 4. This
clarifies our selection of the weight w = 4 to be the best sample results.

information during the generation process. When w is set to a higher value, the model
emphasizes the conditioning information more strongly, making the output more closely
aligned with the specific conditions. Conversely, a lower w value makes the model behave
more like an unconditioned generative model, where the output is less dependent on
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the conditions. These effects are illustrated in Figure 5.4. It is noticeable that from the
weight w = 2, the generated sample begins to adopt the color range of the target image.
Subsequently, when the weight reaches w = 3, the sample starts to more closely match
the head pose alignment of the target image, evidenced quantitatively in Table 5.4. With
increasing weight, the adaptation to the target’s characteristics becomes more apparent.
Nonetheless, excessively high weights tend to introduce noisy artifacts, suggesting that
there is a threshold beyond which additional increases in weight can negatively impact
image quality.

The sample results from the third and fourth rows indicate that the model struggles to
capture task-irrelevant details, such as eyeglasses. However, it is also noteworthy that
in the fourth row, despite the presence of obstacles that partially cover the face, the
model is able to predict the covered parts of the face using its learned knowledge. This
demonstrates the model’s capability to infer and reconstruct occluded facial features.

We hypothesize that the presence of noisy artifacts in the results may be attributed to
the reduced number of timesteps during training. Initially, the standard DDPM model
recommends 1000 timesteps, which we reduced to 500 in an effort to accelerate the
training process. This adjustment likely compromised the model’s ability to fully learn
the data’s complexities, resulting in less refined outputs.

Table 5.5 presents the quantitative results with varying weights for w. We selected
results from the guidance weight w = 4 for detailed comparison with STED, as this
yielded the lowest gaze redirection error, aligning closely with the main objective of

Gaze

Redir.

Head

Redir.
LPIPS PSNR SSIM

w=0 9.370 16.413 0.692 9.146 0.111

w=1 8.537 15.143 0.654 9.457 0.123

w=2 7.933 14.709 0.603 9.740 0.128

w=3 7.850 15.549 0.567 9.877 0.128

w=4 7.717 14.792 0.543 9.882 0.129
w=5 8.224 15.687 0.541 9.826 0.122

w=6 8.351 15.888 0.535 9.757 0.118

Table 5.5: Evaluation with different w values that control the strength of the condition-
ing information. The respective metrics in each row is the averaged value
across the entire test samples. Redirection error and LPIPS are better when
lower in value, whereas SSIM and PSNR are better when values are higher.
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our task. We observe that the LPIPS score decreases as w increases, reinforcing that
integrating more conditioning information into the generation process tends to produce
samples that resemble more closely to the target image, in a way that human perceives
the image. Conversely, PSNR and SSIM scores hover at similar range across different w

values. When comparing these metrics with those from STED, it shows that our model
tends to produce images of fundamentally lower quality in terms of standard image
quality metrics.
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To integrate 3D awareness into the gaze redirection task, we developed three distinct
approaches focusing on model architecture, 3D gaze rotation, and latent facial param-
eters. In this chapter, we will thoroughly analyze and discuss the effectiveness and
limitations of each proposed method, providing a comprehensive overview of their
respective contributions to the task. Moving forward, we will outline future research
directions to address the limitations and demonstrate the significant potential of our
theoretic approach for performing 3D-aware gaze redirection as a conditional image
generation task.

6.1 Latent Facial Parameters

In Chapter 5, we conducted a series of experiments to extensively explore and demon-
strate the two specific goals we aim to achieve. Initially, we investigated the effectiveness
of pose embeddings derived from gaze rotation matrices. However, we have yet to ad-
dress the impact of latent facial parameters within the GazeCapture [KKK+16] dataset.
In this section, we will provide a detailed summary of these findings and engage in a
more in-depth discussion about the role and influence of latent parameters within our
study.

In our experiments with the ETH-XGaze [ZPB+20] dataset, we found that the incorpora-
tion of latent codes significantly enhanced outcomes, particularly in terms of achieving
more precise facial structures, as illustrated in Figure 5.2. Concatenating the latent
code to the channel dimension produced better results compared to stacking it into a
new dimension. Based on these empirical findings, we apply this approach to the Gaze-
Capture dataset. We transformed the latent code l ∈ R233 from the DECA encoder into
l ∈ R1×128×128, and concatenated it along the channel dimension of the input image. The
quantitative results, presented in Table 6.1, show a notable decrease in gaze redirection
error compared to the results where only pose embeddings were used as conditions.
Remarkably, the gaze redirection error was comparable to the STED model at weight
w = 4.

51



6 Discussion&Limitations

Gaze

Redir.

Head

Redir.
LPIPS PSNR SSIM

pose embeddings 7.717 14.792 0.543 9.882 0.129

pose+latent code 4.250 16.034 0.824 9.885 0.081
STED 4.242 1.466 0.260 12.942 0.422

Table 6.1: Comparison of results using pose embeddings alone, pose embeddings with
latent code, and STED model. As the weight w = 4 resulted in the lowest
gaze redirection error in both cases, we present this specific result for more
practical comparison.

Figure 6.1: Results shown for conditions that include pose embeddings and latent codes.
Alongside the quantitative results, we specifically present cases where the
weight is set at w = 4.

With the latent vector encompassing information on shape, expression, texture, pose,
and illumination, improvements in facial expression, apparent colors, and distinct facial
features are evident in Figure 6.1. This contrasts with the results shown in Figure 5.4,
which relied solely on pose embeddings. These outcomes confirm that incorporating
latent parameters enhances the model’s capacity to interpret and reproduce facial
features, compared to using pose embeddings alone.

Despite these partial improvements, the generated images were qualitatively misleading
and diverged significantly from the ground truth images, contradicting our initial expec-
tations. This is reflected in the increased LPIPS and the decreased SSIM scores, as both
metrics assess perceptual similarity in a manner consistent with human visual interpre-
tation. We had hypothesized that embedding the latent codes into the alpha channel of
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the input mage would allow for more sophisticated control over the representation of
complex facial features through adjustments in opacity. Unfortunately, this approach did
not yield the anticipated subtle controls, leading to outcomes that did not align with our
hypothesized effectiveness of this technique.

We attribute the qualitative discrepancies in the generated images to significant differ-
ences in image quality between the two datasets. The ETH-XGaze dataset was collected
in a controlled lab environment, resulting in very high-quality images with uniform
backgrounds and clear facial outlines, which make it easy to distinguish human subjects
from the background. Additionally, the dataset lacks complicating factors that could
obscure facial features, such as obstacles, blurry images, or extreme lighting conditions.
This allows the model to focus on learning the distribution of the human face.

In contrast, the GazeCapture dataset consists of selfies taken in uncontrolled environ-
ments, exhibiting severe challenges. These include obstacles partially covering faces,
extreme illumination conditions (e.g., colored lights or high contrast from flashes),
blurriness, and some images being cropped such that edges are depicted as black. These
factors lead to significant degradation in image quality and considerable variation in the
backgrounds. Such variability complicates the model’s learning of the data distribution
of the human figure, as it also needs to discern between the main subject and a noisy,
inconsistent background. Furthermore, the original 3DiM model, which we adapted for
our task, was trained on the SRN ShapeNet[SZW19] dataset, characterized by its clean
white backgrounds and centrally positioned objects. This consistency in background set-
tings supports our hypothesis that the variability in the GazeCapture dataset introduces
significant challenges to the learning process, impacting the performance of the 3DiM
model.

Due to the constrained timeframe and the restricted number of GPUs available, we were
unable to conduct additional experiments involving the latent code, as further training
for a single adjustment would require at least a week. Nevertheless, our extensive
experiments with the ETH-XGaze dataset, supplemented by partial experiments with
the GazeCapture dataset, provided valuable insights. Specifically, we verified that
incorporating latent facial parameters enhances the model’s structural understanding
of the human face. These latent parameters help capture the intricate geometric and
texture details, thereby improving the model’s ability to generate more accurate face
images with apparent gaze direction. While our findings indicate a positive impact, we
recognize the need for further experiments to fully exploit the potential of latent code
integration in enhancing model performance.
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6.2 3D Gaze Rotation

The viewpoint-conditioned diffusion model we have adopted from the novel view
synthesis task relies on viewpoints, specifically the 3D transformations for creating
the pose embeddings. In the original 3DiM approach, pose embeddings are created
within their ray construction methodology. Specifically, the global 3D rotation and
translation matrices, which define the object’s offset relative to the camera, along with
the intrinsic parameters of the camera setup, are utilized to construct a ray. This concept
was adopted from a previous study by Sajjadi et al. [SMP+22], which is a geometry-free
approach (i.e., methods without explicit geometric assumptions compared to those used
in volume rendering) that achieved competitive results in novel view synthesis. The
ray construction process takes the relative rotation and translation between two views,
generating a camera ray that captures the 3D scene from these perspectives. The ray’s
origin and direction vectors are then aggregated and transformed into positional-pose
encodings, which serve as the final pose embeddings.

To leverage their structured approach, we initially utilized the preprocessed ETH-XGaze
dataset [ZPB+20], where the rotation matrix (R), translation vector (T), and camera
intrinsic matrix (K) were readily available. However, the 512-pixel settings in the
preprocessed dataset didn’t match our GPU capacity and simply resizing the images to
our setting of 128 pixels resulted in misleading outcomes. It necessitated access to the
raw ETH-XGaze dataset for further adjustments, which was unavailable. Consequently,
we switched to using the GazeCapture dataset [KKK+16], which has images naturally
sized at 128.

Since the GazeCapture dataset does not include the T and K parameters, we have
manually set T to a zero vector to denote no translation, and K to an identity matrix,
following the original authors [SMP+22] setting the intrinsic matrix to identity when
the information is not available. However, our empirical findings indicate that this
approach introduced irrelevant information, adding unnecessary noise during training.
This was evident as the noise loss failed to converge below 1.3721 after 7 epochs for
one week of training, whereas ideally, it should fall below 0.1 to generate outputs that
are distinctly non-noisy. Consequently, we replaced the ray constructing framework with
a fully connected layer. To further leverage the cross-attention mechanism suggested by
the 3DiM model, we stacked the rotation embeddings from the fully-connected layer in a
similar manner to how images are stacked in the 3DiM framework. Moreover, to enhance
the model’s performance in task-specific learning, we introduced a novel gaze and head
loss. These efforts successfully guided the model toward better convergence in noise
loss to produce non-noisy images and improved performance in gaze redirection, as
evidenced by our quantitative results. Nevertheless, the qualitative outcomes concerning
the redirected gaze and head images do not meet the expected standards.
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We hypothesize that the discrepancy between our method of deriving pose embeddings
and the original technique used in 3DiM is contributing to the generation of qualitatively
inferior images compared to the ground truth. Concerning that the 3DiM model is a
novel architecture proven effective only when all components are correctly aligned with
their initial settings, our modified method of embedding pose conditions has adversely
impacted the model’s understanding of spatial representation, resulting in images that
are qualitatively less intuitive and lack 3D-consistency.

6.3 3D-Aware Conditional Diffusion Model

To integrate a 3D-aware model into our work, we adopted the viewpoint-conditioned
diffusion model designed for novel view synthesis tasks. Specifically, we utilized the
3DiM [WCM+22] model, which is a novel architecture that understands 3D geometry
without relying on any pre-trained 3D priors. Since the model learns from scratch, it
is light-weight compared to other state-of-the-art approaches, making it more accom-
plishable to implement. Their proposed cross-attention and weight-sharing mechanism
exploit symmetries between frames and poses, significantly aiding the alignment with
the content of the conditioning view and resulting in highly consistent 3D outputs.

Although our methodological approach, based on this model, has achieved some success
in conducting gaze redirection, there are inherent limitations in the image quality of
the outputs. Upon closer examination, we hypothesize that the fundamental differences
between the original intent of the 3DiM model and its adaptation for our specific task
have led to a degradation in performance.

The 3DiM model was originally developed for the novel view synthesis and 3D recon-
struction of general objects, having less complexity compared to our task that target
gaze redirection for human faces. Human faces present a significantly higher level of
complexity due to their exclusive person-specific features, which are far more intricate
than static objects that exhibit predictable symmetries, colors, and shapes. In general,
objects have limited degrees of freedom and can be broadly categorized into single
classes making them somewhat predictable and static. For example, objects categorized
as "chairs" have a common predictable structure, e.g., legs supporting a seat. While
details can differ in terms of the number of legs, the shape of the seat, or whether it has
back support, human faces exhibit greater unique characteristics and expressions. Even
basic facial structures like eyes, noses, mouths, and ears are combined with subtle details
such as eyelashes, eyebrows, and the details of skin features (e.g., wrinkles, freckles,
moles). These are further complicated by dynamic facial expressions, ranging from
subtle to highly distinct, making each human face uniquely complex. This fundamental
difference in tasks means that the unique architecture of the 3DiM model, which excels
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with general 3D objects, might not be as effective for the highly variable and detailed
domain of human faces. Moreover, the original 3DiM model’s performance is assessed us-
ing the ShapeNet dataset, both for training and evaluation, without cross-dataset testing.
Despite it demonstrates examples using additional image sources from the internet, the
image must correspond to specific ShapeNet classes, requiring white backgrounds and
minimal shadows. Consequently, the model’s performance on noisy, real-world images
remains unexplored, highlighting a potential gap when adapting it to more dynamic and
complex scenarios such as human faces.

6.4 Future Works

6.4.1 Modification of pose embeddings

In the original 3DiM methodology, pose embeddings are generated using the global
rotation and translation matrices extracted from pairs of images. These matrices are
then used to construct rays based on the relative rotations and translations between the
image pairs. In contrast, our approach modifies this method by stacking the rotation
matrices, as the way the images are processed.

To further refine this technique, we propose using the relative rotation between the
two matrices as R = Rtarget · R−1

input, subsequently transforming these into rotation
embeddings. This adjustment aims to shift the learning focus of the fully-connected layer
from absolute rotations to relative rotation embeddings. By doing so, the model can
better understand and adapt to the relative differences in gaze direction between various
images. This methodology not only aligns with our ideal objective of performing gaze
redirection on any input image, regardless of whether it was included in the training set,
but also facilitates redirection in scenarios where explicit pose data is unavailable.

6.4.2 Loss functions for latent facial parameters

In our experiments, directly associating latent codes with images resulted in discrep-
ancies between the generated and target images. To address this, we propose utilizing
latent parameters within a loss function framework instead.

Our empirical experiments demonstrated that incorporating task-specific gaze and head
losses significantly improved outcomes within the GazeCapture dataset, compared to the
ETH-XGaze dataset where only noise loss was employed. Despite lower image quality in
GazeCapture, we observed that the gaze in the generated images closely resembled that
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6.4 Future Works

of the target images to a certain degree. This underscores the importance of targeted
loss functions in steering model learning towards specific objectives.

Following the methodology of DECA [FFBB21], we can incorporate similar loss functions
from their work. Given our existing algorithm 4.7 that reproduces the target image using
the predicted noise, integrating additional losses by using this recovered image as input
to the DECA model is feasible. We noticed these losses adaptable to our approach:

• Identity Loss: This measures the cosine similarity between the embeddings of
the generated and target images. It encourages the model to capture essential
attributes of a person’s identity, ensuring that the rendered image resembles the
input subject.

• Shape Consistency Loss: The latent parameters from the DECA encoder include
data on shape, expression, texture, pose, and illumination settings. The shape
parameter, in particular, should remain consistent if the images are from the same
subject. DECA’s approach involves swapping the shape parameter between the
generated and ground truth images and further using this in their loss calculations.
The intuition is that if the model has accurately estimated the face shape, then
swapping these parameters between images of the same person should yield
indistinguishable results. In our work, we can simply employ the MSE loss between
the ground truth and the predicted shape parameters to enforce shape consistency.

• Landmark Re-projection Loss: DECA’s framework also includes a decoder that
uses the shape, expression, and pose parameters to predict 2D landmarks, 3D
landmarks, and vertices for 3D face reconstruction. The landmark loss evaluates the
discrepancy between the ground-truth 2D face landmarks and those projected onto
the face image by an estimated camera model. Implementing this loss in our model
would facilitate the learning of the face’s 3D structure, enhancing the accuracy of
our gaze redirection. Figure 6.2 illustrates the predicted landmarks from the DECA
decoder to our GazeCapture dataset. It is noticeable that DECA, with its robust
3D priors of human facial geometry, predicts landmarks that generally align well
with the facial features, even on unseen datasets. This confirms our decision of
incorporating DECA to extract latent facial parameters.

By adopting these advanced loss functions, we aim to refine our model’s ability to more
accurately interpret and reconstruct complex facial features, ultimately enhancing the
quality of the gaze redirection.
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6 Discussion&Limitations

Figure 6.2: Predicted landmarks from the DECA [FFBB21] decoder. First column is the
original input image, second column is the predicted 2D landmarks, third
column is the predicted 3D landmarks projected to the input image.

6.4.3 Adopting pre-trained models with high 3D priors

Recognizing the limitations of the 3DiM [WCM+22] model, we explored alternative
viewpoint-conditioned diffusion models to enhance our approach. Notably, Zero-1-to-3
[LWH+23] is another state-of-the-art method in novel view synthesis, leveraging the
capabilities of large-scale pre-trained diffusion models. In particular, it utilizes Stable
Diffusion [RBL+22], a groundbreaking model in the field of AI image generation. Stable
Diffusion is a text-to-image model trained on billions of images, leading to a robust
understanding of the 3D properties of the physical world. By fine-tuning on Stable
Diffusion, we can benefit from their pre-trained prior knowledge of 3D geometrical
information and better fulfill our gaze redirection as 3D-aware image generation.
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7 Conclusion

This thesis began by identifying the limitations of existing gaze redirection approaches
and aimed to address these limitations with a fully 3D-aware approach. We redefined the
task of gaze redirection as a generative approach using conditional diffusion models, cap-
italizing on their well-documented strengths in producing detailed and diverse images.
Specifically, we employed viewpoint-conditioned diffusion models that have previously
been utilized in novel view synthesis tasks and can leverage 3D transformations as
conditions, conducting image-to-image translations.

Taking advantage of this model, we introduced explicit 3D gaze rotations derived from
gaze labels to enable the model to simulate the complex interactions between gaze
directions across different images. Additionally, we extracted latent facial parameters
using an existing framework designed for 3D face reconstruction from 2D images,
which provides a deeper understanding of facial geometry. This was crucial as human
faces present a higher level of complexity than standard 3D objects, requiring rich,
feature-specific information to enhance model performance.

Through extensive experiments with our proposed method on both the ETH-XGaze and
GazeCapture datasets, we demonstrated that using 3D transformations as conditions
effectively addresses the task of gaze redirection. Furthermore, the incorporation of
latent facial codes enhances the model’s ability to understand and manipulate the 3D
structure of the human face, resulting in images with improved clarity and accuracy
of facial structures. However, acknowledging the inherent limitations of our proposed
methods, we also suggest practical enhancements that could further refine this approach.
In conclusion, our conceptual idea of interpreting the gaze redirection task as a 3D-
aware conditional image generation task has proven to be valid and shows substantial
potential for further refinement and development.
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