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Abstract: Determination of the shear angle by experimental and analytical methods, as well as by
numerical simulation, is presented. Experimental determination of the shear angle was performed by
analyzing the chip roots obtained by the method of cutting process quick stop through purposeful
fracture of the workpiece in the area surrounding the primary cutting zone. The analytical determi-
nation of the shear angle was carried out using the chip compression ratio and was based on the
principle of a potential energy minimum. Measurement of the shear angle in the numerical simulation
of orthogonal cutting was performed using the strain rate pattern of the machined material at the
selected simulation moment. It was analyzed how the parameters of the Johnson–Cook constitutive
equation and the friction model affect the shear angle value. The parameters with a predominant
effect on the shear angle were determined. Then the generalized values of these parameters were es-
tablished with a software algorithm based on identifying the intersection of the constitutive equation
parameter sets. The use of generalized parameters provided the largest deviation between experi-
mental and simulated shear angle values from 9% to 18% and between simulated and analytically
calculated shear angle values from 7% to 12%.
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1. Introduction

Thermo-mechanical and geometrical characteristics of the cutting process, one of the
main methods of shaping various products, ensuring their necessary accuracy and manu-
facturing quality, have been the subject of research by numerous researchers for more than
150 years. Along with cutting force and temperature, chip morphology and chip compres-
sion ratio, and contact length of the tool rake face with the chip, the shear angle belongs to
the main characteristics of cutting that uniquely determine the machining process [1]. It is
difficult to overestimate the knowledge of the shear angle since it provides an opportunity
to determine such important characteristics of the cutting process as energy consumption
for chip formation, chip compression ratio and its thickness, kinetic characteristics of the
chip forming zone, etc.

The shear angle has been used very often in modeling and experimental studies of
the cutting process [2]. This cutting characteristic serves as a reference value of simulation
results for numerical cutting models [3]. The value of the shear angle can serve as a reference
point to assess the correctness of the constitutive equation parameters and of the friction
model parameters for their use in numerical cutting models. Thus, the determination of the
shear angle is an important aspect in the study of the cutting process mechanics, which will
improve the accuracy and reliability of the modeling results of various cutting processes.
This paper discusses experimental, analytical, and simulation studies on determining the
shear angle for further use in analytical and numerical cutting models.

The shear angle is the causal result of complex thermo-mechanical mechanisms and
a variety of influencing factors. An investigation of the shear angle can therefore only be
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carried out relatively. The methods and models developed in recent decades for determin-
ing the shear angle can be divided into three main areas: analytical models, experimental
study, and numerical simulation. As the cutting process is a process accompanied by large
plastic deformations, significant attention was paid to the analytical determination of the
size and position of the deformation zone, since many practically important characteristics
of the cutting process depend on these parameters. The basic dimensions and position
of the deformation zone for a single shear plane, shown in Figure 1, are characterized
by two main parameters: the inclination angle of the conventional shear plane φ and the
contact length of the tool rake face with the chip lC. However, to simplify this problem,
the theoretical definition of only one parameter was solved—the inclination angle of the
conditional shear plane φ.
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The first known solution to this problem was proposed by K. A. Zworykin [4]. Using
the scheme of the deformation zone with a single shear plane and applying the minimum
condition of the chip forming force, he obtained the following equation for determining the
shear angle:

φ =
π
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where γ is the rake angle, η is the average friction angle on the tool rake face, η1 is the
“internal friction” angle, taking into account the influence of normal stresses on tangential
stresses and ω is the action angle of the equipotential chip forming force.

Subsequently, solutions in Formula (1) and close solutions to this form were obtained
by other researchers. Ernst and Merchant [5], using the scheme of the deformation zone
with a single shear plane and the hypothesis about the minimum energy required to deform
the machined material, obtained the equation for calculating the shear angle φ as follows [6]:

φ =
π

4
+

γ

2
− η

2
=

π

2
− ω

2
. (2)

This hypothesis was subsequently used by many researchers. The chip forming power
minimum was investigated under the assumption that all parameters determining this
power were constant, except for the shear angle φ. In this case, the results of calculating
the shear angle using the hypothesis of chip forming power minimum and minimum chip
forming forces were very close.
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Lee and Shaffer used the sliding line method to determine the shear angle [7]. In this
case, one of the sliding lines was taken as a conventional shear plane, and a set of other
sliding lines was arranged perpendicular to the first line at the friction angle η to the tool
rake face. This assumption defined the geometry of the plastic region and allowed the
shear angle to be defined as:

φ =
π

4
+ γ− η =

π

4
−ω. (3)

De Chiffre also used the minimum energy principle to determine the basic charac-
teristics of the cutting process, in particular the shear angle, for dry and wet cutting [8].
Furthemore, De Chiffre further analyzed existing models for determining the main char-
acteristics of the cutting process. The steps that are reasonable to take for extending the
validity range of simple shear zone models was discussed [9]. The application of the analyt-
ical models considered for spatial processing was considered by Usui and colleagues [10].
Ueda and his colleagues examined machining at different states of the cutting process in
an experimental study of the machining equation compatibility [11]. As a result, the most
adaptive machining equation was proposed. The researches carried out at this stage al-
lowed to identify the main most promising areas for further developments in the analytical
determination of the main characteristics of cutting [12,13].

Improving some characteristics that were simplified or missed in previous models
was the next significant step in the development of analytical cutting models. Models
with a single conditional shear plane assumed uniform shear stress in the shear plane
and the absence of strain hardening. In addition, it was assumed that the friction in the
contact between the tool rake face and the chip is characterized by a constant friction
coefficient. More general cutting models were obtained by assuming the development
of machined material deformation in a narrow band along the shear plane. The effect
of yield strength varying with strain, and sometimes with strain rate and temperature,
was considered by Oxley [14]. Oxley determined the inclination angle of the conventional
shear plane by limiting the chip formation zone with parallel lines. As a result of this
constraint, the strain rate and strain at each point in the primary deformation zone could
be calculated. The strain rate was derived from the variation in velocity as a function of
position, and the strains were calculated by integrating the strain rate over time along
the flow line. Similar assumptions were made to calculate strain rates and strains in the
secondary deformation zone. Machining mechanics was further developed in Oxley’s
predictive machining theory [15,16]. Elements of this theory have found wide application
in analytical studies of cutting processes by extending Oxley’s mechanistic model, see
e. g., [17–21]. To characterize the mechanical properties of the machined material, these
studies generally use the Johnson–Cook constitutive equation [22].

Armarego and Brown noted that the simplest and most perfect solutions for determin-
ing the shear angle were obtained by using the deformation zone scheme as a single shear
plane [23]. This is also confirmed in the studies by Grzesik [24] and many other authors.
The question of whether a particular scheme can be applied is closely related to the other
assumptions used to solve the problem. This requires special justification in each case.
In the analytical solution of the chip zone slope problem, researchers have used various
principles: the variational principle or the energy minimum hypothesis, see e.g., [6,25], the
construction method of sliding line fields see e.g., [7], thermal and mechanical energy bal-
ance equation [26]. The possibility and validity of applying these principles were discussed
by Kobayashi and Thomsen [27]. They showed that the thermal and mechanical energy
balance equation is equivalent to the force equilibrium condition and is not sufficient to
determine the position of the chip formation zone. In addition to the conditions of force
equilibrium or the condition of balance, an additional principle is needed. Based on the
ideal plastic body theory, Kobayashi and Thomsen concluded that the slip line method is the
lower estimate of the work applied in deforming the machined material. The deformation
energy minimum method, on the other hand, is the upper estimate of this work [13].
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Variation principles have found wide application in solving problems of continuum
mechanics due to their relative simplicity [28,29]. Simplification has been achieved by the
fact that the possible velocities in the relative displacement of the contacted bodies should
be compatible only with the medium continuity equations. These velocities do not have to
be consistent with the equations of motion in stresses [28]. Tsekhanov and Storchak applied
the variational principle to develop an analytical cutting model, taking into account the
contact interaction conditions of the tool with the chip in the secondary cutting zone and of
the tool with the workpiece in the tertiary cutting zone [25].

A significant part of the studies on creating analytical models for determining the
shear angle has also been focused on taking into account different conditions of the cutting
process. Lee et al. studied the effect of the machined material anisotropy on the shear angle
value [30]. They proposed an analytical correlation for determining the shear angle using a
minimum of the Taylor factor. A determination of the shear angle by the generalization of
the Lee–Shaffer solution [7] was proposed by A. M. Kovrizhnykh [31]. A new model for
determining the shear angle for a special alloy GH4169 was suggested by Zou et al. [32].
An analytical calculation of the shear angle, taking into account the machined material
properties and cutting modes was proposed by Toropov and Ko [33]. The experimental
determination of shear angle on chip compression ratio during the machining of steel and
aluminum alloys showed a satisfactory agreement with the calculation results in this study.

Experimental methods for determining the shear angle can predominantly be divided
into three groups: measurement of chip thickness from microphotographs and subsequent
calculation of chip compression ratio; direct measurement from microphotographs of the
chip root using methods of the quick-stop cutting process; direct measurement of the
inclination angle on the conventional shear plane by means of high-speed filming of the
cutting process (imaging techniques).

To determine the shear angle based on the chip compression ratio (the first group),
a metallographic section of the chip is collected and prepared, its thickness is measured,
and the chip compression ratio is determined, see, e.g., [34–36]. In this case, the shear
angle is calculated according to the dependence known from the cutting process mechanics
(see Equation (4)). This method is mainly used when examining the cutting process of
ductile metals, which is accompanied by the formation of flow chips, as in the study of
the orthogonal cutting [37,38], and in the case of the spatial cutting processes study [39].
The application of this method in the case of shear band chip formation (serrated chips),
e.g., when machining hard-to-machine materials or titanium alloys, requires multiple
measurements of the chip thickness due to its significant variability [40,41].

In the case of interrupted cutting with the quick-stop method, the tool is abruptly
separated from the workpiece so that the deformations in the material caused by the cutting
process are maintained [42,43]. The chip root obtained in this way can be microscopically
analyzed after a metallographic preparation. However, it must always be considered that
the cutting interruption cannot proceed infinitely fast due to the masses being accelerated.
Therefore, the chip root obtained in this way does not present a stationary condition at a
given cutting speed, but rather a state that arises during the transient interruption of the
cut [23,24]. A quick stop of the cutting process is realized by moving the tool or workpiece
out of the cutting zone [44]. Various mechanisms are used to remove them from the cutting
zone, such as compression springs [45], potential masses [46], electromagnetic devices [47],
and others.

The method of high-speed filming of the cutting process, so-called imaging techniques,
which has appeared in recent decades, makes it possible to determine the shear angle quite
accurately and conveniently [48]. This method also provides a continuous measurement
of the shear angle during the cutting process [49]. A limitation of this method is that it is
mainly applicable to orthogonal and quasi-orthogonal cutting processes [50].

Recently, numerical cutting models, such as FEM models, have been a promising
and powerful tool for determining the main characteristics of the cutting process, in
particular the shear angle [1,3]. The determination of the shear angle by using finite
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element models of the cutting process has been performed according to two main scenarios.
Either the chip compression ratio has been used to measure the chip thickness during
simulation (see e.g., [36,51–54]) or the inclination angle of the conventional shear plane has
been directly measured on a photo of the cutting process simulation (see e.g., [32,55–58]).
Establishing the chip compression ratio from the results of the cutting simulation has been
usually performed with planar FEM cutting models. In this case, the chip thickness has
been measured both in the region around the contact between the tool rake face and the
chip [51,52,54] as well as outside the area of this contact [36,53]. If it has been necessary to
simulate spatial cutting processes, the FEM model has been linearized and reduced to a
planar model [51]. The shear angle has been directly measured at a pre-selected simulation
moment either from the stress pattern in the machined material [32,55] or from the strain
or strain rate pattern [56–58].

The current state of knowledge presented above indicates a long development of
research on determining the shear angle in the cutting process. Numerous influencing
parameters considerably complicate the imitation modeling of the shear angle. However,
the study of thermomechanical and kinetic processes by the numerical simulation of cutting
can only be performed by the correct determination of the shear angle. This paper shows
an approach for the analytical determination and inverse adaptation of the shear angle
value in the simulation to experimentally determined reference values when machining
AISI 1045 steel.

2. Materials and Methods
2.1. Materials

Experimental studies of the shear angle value were performed with the linear turning
and milling center CTX 420 by Gildemeister—Figure 2a. Heat-treatable AISI 1045 steel
was used as test material. The mechanical and thermal properties of this steel are listed in
Table 1.

Table 1. Mechanical and thermal properties of the steel AISI 1045 steel and carbide insert [59,60].

Material
Strength (MPa) Elastic

Modulus
(GPa)

Elongation
(%) Hard-Ness Poisson’s

Ratio

Specific
Heat

(J/kg·K)

Thermal
Expansion
(µm/m·◦C)

Thermal
Conductivity

(W/m·K)Tensile Yield

AISI 1045 690 620 206 12 HB 180 0.29 486 14 49.8
SNMG-SM-1105 - - 650 - HRC 76 0.25 251 - 59

The workpiece made of annealed AISI 1045 steel, was a roll with a diameter of 80 mm
and an original length of 200 mm. Two predetermined fracture points, which were point-
symmetrical to the center of the workpiece, are used to obtain two chip roots for each test
round. This was achieved by drilling two holes parallel to the axis of the workpiece, the
wall of which was located close enough to the outer surface of the workpiece to ensure the
realization of fracture when the cutter passes through the area of these holes. Preformed
copper pins were pressed into the holes—Figure 2b,d. The workpiece was clamped in the
3-jaw chuck of the machine and additionally supported by a headstock (see Figure 2a). A
groove was turned into the workpiece for each test round to ensure a free quasi orthogonal
cutting. In this way, a 3 mm wide disc was formed, which was machined during the test
run. After each test cut of the disc, the remaining part of it was removed and a new disc
was prepared by turning a new groove.
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Figure 2. Experimental set-up for cutting forces measurement: (a)—experimental setup; (b)—basic
view of the workpiece with the tool to obtain the chip root; (c)—chip root; (d)—scheme of obtaining
the chip root.

The dry quasi orthogonal cutting process was carried out using the tool with a clamped
changeable cemented carbide insert SNMG-SM-1105 by Sandvik Coromant. The mechanical
and thermal properties of this carbide insert are listed in Table 1. The geometry of the
tool wedge necessary for cutting was guaranteed by positioning and grinding as well as
polishing the tool clearance face [61,62]. The tool clearance angle was 8◦, and the radius
of cutting-edge rounding was 20 µm in all tests. Experimental studies were carried out
for three values of the tool rake angle γ: −10◦, 0◦, and 10◦. The tool was clamped in a
3-component dynamometer, type 9121 by Kistler, for the measurement of cutting forces
(see Figure 2a). The cutting process of AISI 1045 steel was analyzed for varying cutting
speeds VC: 48 m/min, 72 m/min, 96 m/min, and 144 m/min. The cutting speed values
were chosen so that the Peclet similarity criterion (Peclet number) [63,64] was an integer
and varied from 20 to 60 at a cutting depth of 0.2 mm. The cutting depth a (undeformed
chip thickness) was 0.2 mm for all conducted studies.

To ensure the reliability of the obtained experimental values, each cutting test (for
each value of cutting speed and tool rake angle) was repeated at least 5 times. Error bars
were determined by the minimum and maximum experimental values of the shear angle
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and chip compression ratio. The confidence interval was chosen to be 0.9. The choice of
the confidence interval was based on a scatter analysis of the separate experimental values
of the shear angle and chip compression ratio. Since there were no significant differences
between the individual measured values of the shear angle and chip compression ratio, the
mean was used as a representative value of these measured data.

A schematic diagram of chip root formation is shown in Figure 2d. The chip roots
resulting from the workpiece fracture as the tool passes over the pin (see Figure 2c) were
collected for analysis after each test. Microphotographs of these chip roots were subjected
to morphological analysis [65,66]. To perform this analysis, the collected chip roots were
placed in a silicone box filled with a compound consisting of epoxy resin and hardener [66].
After the final curing of the compound, the samples were ground and polished with
abrasive tools and pastes [61,62]. To analyze the microstructure, the polished end surface
of the chip root was subjected to etching. Nitric acid with a concentration of 3% was
chosen as an etchant [66]. The optical microscope Carl Zeiss Axio Observer was used for
morphological analysis of the chip root, the determination of the shear angle, the chip
compression ratio, and the analysis of the chip structure after etching—Figure 2c.

2.2. Methods

In addition to the experimental method of determining the shear angle described
above, this cutting process characteristic was also established by analytical and numeri-
cal methods.

2.2.1. Analytic

To determine the shear angle with the analytical method, two basic approaches were
used here: the chip compression ratio [12,14,67] and the variational method using the
principle of minimum potential energy [25]. The determination of the shear angle φ
according to the first approach was carried out by means of the dependence known from
the mechanics of the cutting process [12,14,64]:

φ = arctan

( 1
Ka
· cos γ

1 − 1
Ka
· sin γ

)
, (4)

where, Ka—is the chip compression ratio.
The chip compression ratio was determined with one of the most common methods:

the ratio of chip thickness to the undeformed chip thickness a (cutting depth for the case of
the orthogonal cutting process) [12,14]:

Ka =
aCh
a

, (5)

where, aCh—is the chip thickness.
Establishing the shear angle φ according to the second approach was performed with

the analytical cutting model [25], in which the balance of the total cutting power was
taken into consideration. In this case, the total cutting power WC consisted of the plastic
deformation power in the shear plane WS, the power of the friction forces on the tool rake
face WFS and the power of the friction force on the tool clearance face WFC. The shear angle
value was determined by the minimum of the total cutting power according to the known
variation principle [25,28]:

∀
<

PC ∈ <
PC
∃
<

WC : WC = WS + WFS + WFC ⇒ 0 . (6)

The total cutting power WC and its components WS, WFS, WFC were calculated accord-
ing to the following dependences [25]:

WC = WS + WFS + WFC, (7)

WS = τS · a · w ·VC ·
cos γ

sin φ · cos (γ − φ)
, (8)
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WFS = τS · a · w ·VC ·
sin (arctan ( fr))

cos (γ − φ) · cos (φ − γ + arctan ( fr))
, (9)

WFC = 6 ·VC · τS · lC · fC, (10)

where w is the cutting width, τS is the tangential stress in the conditional shear plane, fr is
the friction coefficient on the tool rake face, fC is the friction coefficient on the tool clearance
face, lC is the wear mark value on the tool’s clearance face.

The flowchart of the software-implemented algorithm for determining the shear angle
according to principle (6) is shown in Figure 3a. Figure 3b illustrates the variation of the
total cutting power when determining the shear angle for one of the specific parameters set
for the studied cutting process.
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The main difficulties when calculating the total cutting power WC and its components
(WS, WFS, WFC) are caused by determining the tangential stress τS in the conditional shear
plane (see Figure 1) and determining the friction coefficient fr on the tool rake face. The
tangential stress τS was determined by the following dependence [12,68]:

τS =
(FX − FXC) · cos φ− (FZ − FZC) · sin φ

a · w · sin φ. (11)

where FX and FZ are the experimental cutting and thrust forces respectively (in the case of
orthogonal cutting), FXC and FZC are the cutting and thrust forces on the clearance face of
the tool wedge (in the tertiary cutting zone) respectively.

The cutting forces FX and FZ were determined by measuring during experimental
studies (see Figure 2a). The cutting forces on the tool clearance face FXC and FZC were
determined by extrapolating the relationship between the measured cutting forces and
the depth of cut a to zero depth of cut [12,64,68]. To calculate the tangential stress τS, the
preliminary value of the shear angle φ established from the chip compression ratio Ka (see
above) was used. The friction coefficient fr on the tool rake face was determined for the
selected experimental conditions according to the methodology [68].
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2.2.2. Simulation

The use of numerical simulation significantly reduces the effort to determine the
cutting process characteristics, especially for real spatial machining processes, such as
turning, drilling, milling, etc. A finite element model of the orthogonal cutting process was
developed for the numerical simulation to determine of the shear angle. This model was
developed based on an updated implicit Lagrangian formulation method. The workpiece
material was modeled as an isotropic plastic type material [69]. Tool wear and deformation
are not taken into account in the orthogonal cutting simulation to determine the shear
angle, so a rigid type of tool material type was chosen. The material model of AISI 1045
steel was described by the Johnson–Cook constitutive equation [22] with the initial values
of the model parameters presented in Table 2 [59,65].

Table 2. Initial parameters of the Johnson–Cook constitutive equation.

Constitutive Parameters

A [MPa] B [MPa] n C m

512.3 671.7 0.2905 0.01244 1.26

The contacts between tool and chip as well as between tool and workpiece were
reproduced separately using the Coulomb model in the secondary and tertiary cutting
zones according to the methodology [68,70]. In this case, the contact in the secondary
cutting zone was modeled separately for the plastic and elastic areas [68]. Chip formation
when machining AISI 1045 steel is a continuous process with the generation of a flow
chips [12,14], whereas, for example, the chip formation in the machining of titanium alloys,
which is characterized by the generation of the serrated chips [65,71]. Therefore, a special
damage model of the machined material [72] was not provided in the developed FE cutting
model. In this case, the damage occurred automatically, according to the algorithm used in
the software package [73].

An exemplary geometric model with a mesh and boundary conditions for a tool with
a rake angle γ of 0◦ is shown in Figure 4.
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The FE model was identical for tools with other rake angles taken into consideration
in this study. The boundary conditions were defined by fixing the tool in the direction of
the Z-axis, perpendicular to the cutting speed vector VC. The movements of the workpiece
were constrained in all directions. The initial thermal conditions Tr were defined by the
tool and workpiece boundaries not involved in the contact during simulation. The working
movement of the tool at a cutting speed VC was set so that the cutting process was at its
absolute movement in the negative direction of the X-axis. The depth of cutting (unformed
chip thickness) was determined by the value a (see Figure 4).

According to the distribution of strain or strain rates of the machined material, the
most precise determination of the shear angle φ could be obtained when simulating the
cutting process with the developed FE model—Figure 5. To establish the shear angle
based on the deformation of the machined material, the conditional shear plane must be
located parallel to the lower boundary of the essential deformation distribution of the
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machined material (see Figure 5a). In order to establish the shear angle from the strain
rate of the machined material, the conditional shear plane must be located in the area of
the highest strain rate values and parallel to the upper and lower boundaries of this strain
rate distribution (see Figure 5b). The results of the shear angle determination for different
conditions of the cutting process showed that the smallest scatter of shear angle values was
achieved when it was established by the strain rate distribution of the machined material.
This method was used to determine the shear angle value later on.
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chined material.

3. Results and Discussion
3.1. Experimental and Analytical Determination of the Shear Angle

The experimental determination of the shear angle was performed according to the
methodology described in Section 2.1. Figure 6 shows the experimental dependence of the
shear angle on the cutting speed for different values of the tool rake angle. The shear angle
increased monotonically with rising cutting speed and decreased almost proportionally
with increasing tool rake angle. The largest scatter of the measured values for the shear
angle does not exceed 11% (see Figure 6).
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Determination of the shear angle using the analytical method by the first approach
(see Section 2.2) involves using the chip compression ratio. The chip compression ratio was
determined experimentally by analyzing chip root microphotographs (see Section 2.1) as a
ratio of chip thickness and depth of cut (undeformed chip thickness)—Equation (5). The
dependence of the chip compression ratio on the cutting speed for different values of the
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tool rake angles is shown in Figure 7. The chip compression ratio decreases monotonically
with increasing cutting speed and grows proportionally with decreasing tool rake angle
(see Figure 7). The scatter of measured chip compression ratio values does not exceed 12%.
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The experimental values of the chip compression ratio shown in Figure 7 were used
to determine shear angles (see Equation (4)). At the same time, the shear angles were
calculated according to the developed algorithm (see Figure 3a) of the second approach
(see Section 2.2.1) using the developed algorithm (see Figure 3a). The results of comparing
experimentally and analytically determined shear angle values for different tool rake angles
as well as the results of numerical simulations are shown in Figure 11.

A comparison between experimental and calculated values showed that the calculated
values of shear angle were a little bit overestimated for all examined cutting speeds and
tool rake angles, in contrast to the experimental values.

The shear angles determined by the first approach, i.e., by using the chip compression
ratio, were insignificant (up to 1◦–1.5◦) greater than the values of the shear angles deter-
mined experimentally, which does not exceed 5%. This difference is well within the margin
of error provided by the chip thickness measurement methods obtained in the experimental
studies. In addition, this difference is explained by some variability in the cutting depth
(undeformed chip thickness) resulting from the vibrations of the technological system links
during cutting. It should also be noted the effect of inertia stopping the cutting process
to obtain the chip root on the shear angle measurement results. Since the cutting process
cannot be stopped instantly due to a certain mass value of the workpiece, tool, and other
technological system links, the resulting chip root is somewhat different from the chip root
in a non-stop cutting process. All of these factors inevitably cause differences between the
experimental values of the shear angle and the values determined from the experimental
chip compression ratio.

The shear angles determined by the second method, i.e., using the analytical cutting
model, exceed the experimental values of shear angles by up to 3◦, which is about 12%.
Thus, it will be possible in future to establish the shear angle with the considered analytical
methods instead of time-consuming experimental studies. The exceeding of the shear angle
values determined by the second method (using the developed cutting model [25]) over its
experimental values is due primarily to the well-known fact that the deformation energy
minimum principle gives the upper estimate of this energy [12,13], and hence the upper
estimate of the cutting forces determined based on this principle. Based on this principle,
an analytical cutting model used to determine the shear angle was also developed. It can be
reasonably assumed that the calculation of other cutting characteristics, such as shear angle,
calculated by this model also gives an overestimate. Differences between the experimental
values of the shear angle and those determined by the analytical model are also due to
the fact that this model does not take into account real thermomechanical phenomena
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in the cutting zones. Thus, this model takes into account friction in the secondary and
tertiary cutting zones, defined as Coulomb friction. In the real process, however, the
contact phenomena in the cutting zones are significantly more complicated than their
representation as Coulomb friction. In addition, the used analytical friction model does not
provide for adiabatic hardening of the machined material, its isothermal softening (see, for
example, [29]), and the hardening of this material due to the strain rate. Of course, taking
these all phenomena and factors into account is a very difficult task, which has not yet
been solved even for a relatively simple orthogonal cutting process. Therefore, it is quite
reasonable to observe differences between the experimental values of the shear angle and
those determined by both analytical methods and numerical simulations.

3.2. Determination of Shear Angle Using Numerical Simulation

To determine the effect of the material model and friction model parameters on the
shear angle value, simulations of the orthogonal cutting process were carried out for
changing values of individual parameters were performed. Figure 8 presents an example
of these numerical analyses for a cutting speed of 96 m/min is shown in. The same
trend was obtained for the other studied cutting speeds. The friction model parameter—
friction coefficient—shows practically the absence of any influence on the shear angle value
(Figure 8f). Thus, it would be quite logical to use constant, previously defined, values of
these parameter in further simulations of the studied cutting process. The power coefficient
of thermal softening m has some influence on the shear angle (see Figure 8e). However, the
effect of this coefficient on the shear angle is insignificant compared to the influence of other
parameters of the constitutive equation on this studied cutting characteristic. Especially this
influence is insignificant within the change limits of the coefficient m, which is possible and
acceptable to use in the numerical simulation of the cutting process (from about 0.8 to 1.3).
In this regard, in further modeling of the studied cutting process, a constant, previously
determined value of the coefficient m is used.

The values of the material model parameters that had a significant effect on the shear
angle were determined by the method of repeated DOEs (design of experiments) [59,65].
The first iteration of determining the previously selected material model parameters
(Johnson–Cook constitutive equation parameters) is shown in Figure 9. For this itera-
tion, the parameter limits of the constitutive equation were specified in a wide range of
values established by estimating the influence of individual parameters (see Figure 8).

A few constitutive equation parameter sets are within the confidence interval of the
experimental shear angle (marked in grey) indicated in the diagram. These simulations
with their corresponding parameter sets are marked with red circles in the diagrams. Such
a small number of parameter sets in the confidence interval of the experimental shear
angle indicated that the parameter interval of the constitutive equation, which provides
shear angle values corresponding to its experimental value, was quite narrow. In this case
the small number of parameter sets ensured that the experimental and simulated values
of the shear angle corresponded only to the specific cutting conditions under which the
experimental studies and calculations were performed. Increasing the number of these
sets could ensure that the experimental and simulated shear angle values correspond to
a wide range of cutting conditions, such as cutting modes, tool geometry, etc. In order
to increase the number of parameter sets of the constitutive equation that lay within the
confidence interval of the experimental shear angle values, it was necessary to limit the
variation interval for individual parameters of the constitutive equation. Based on the
analysis of how the effect of individual parameters of the constitutive equation affected the
shear angle value and on the results obtained in the first DOE iteration, the limits of these
parameters variations were specified.
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The specified parameter variation limits are shown in Table 3. The limits of individual
parameters variation specified in Table 3 were used for the second iteration of the DOE.

Table 3. Variation limits for the constitutive equation parameters.

A [MPa] B [MPa] n [−] C [−]

Upper limit Lower limit Upper limit Lower limit Upper limit Lower limit Upper limit Lower limit

1000 600 1200 800 0.27 0.08 0.1 0.05
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Figure 9. The first iteration of the simulated shear angle distribution relative to its experimental values
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The results of the second iteration are shown in Figure 10. When these specified limits
were used, a much larger number of constitutive equation parameter sets were within the
confidence interval of the experimental shear angle values.
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When so many constitutive equation parameter sets lay within the confidence interval
of the experimental shear angle values it was possible to find generalized parameters
of the constitutive equation. In order to find the generalized values of the constitutive
equation parameters, a previously developed software algorithm was used [59]. According
to this algorithm, the generalized values of the constitutive equation parameters were
found as the intersection of these parameter sets determined as a result of the second
and, if necessary, subsequent DOE iterations. Table 4 presents generalized values of the
parameters determined by means of this algorithm.

Table 4. Generalized values of the constitutive equation parameters.

Constitutive Parameters

A [MPa] B [MPa] n C m

853.5 925.6 0.19565 0.0657 1

These generalized values were used to simulate orthogonal cutting at different cutting
speeds and tool rake angles. The shear angles established in these simulations are shown in
Figure 11. By comparison, these diagrams also show the corresponding experimental values
of the shear angles and their values determined analytically. The largest variation between
the experimental data of shear angles and their simulated values were observed at cutting
speeds of 48 m/min and tool rake angles of −10◦ and 0◦. These variations are 18% and
12%, respectively. The variations for the other studied cutting speeds and tool rake angles
did not exceed 9%. The variation of simulated shear angles from analytically calculated
values was no more than 7%. The only exception equal to 12% was the corresponding
deviation at a cutting speed of 48 m/min and a tool rake angle of −10◦.
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The shear angle values determined by numerical simulation using generalized values
of the constitutive equation parameters retain the tendency to increase with increasing
cutting speed and tool rake angle. However, the proportions of these trends differ from
the corresponding proportional changes in shear angles with increasing cutting speed and
the tool rake angle determined experimentally and by analytical methods. The shear angle
values determined by numerical simulation mainly depend on the parameters of the triad
models that constitute the numerical (in this case, finite-element) model of cutting: the
material model, the friction model and the fracture model of the machined material. The
friction model parameter, the Coulomb friction coefficient, was assumed constant. The
fracture model of the machined material was not included in the calculation algorithm.
In the used software product, fracture for ductile machinable materials, to which steel
AISI 1045 belongs, is realized by penetrating the tool into this material and the subsequent
remeshing [73]. Therefore, the main influence on the shear angle was caused by the
parameters of the Johnson–Cook constitutive equation [22] as a model of the machined
material. This model is well-established and used in the vast majority of numerical cutting
models due to its relative simplicity and clarity. However, despite the significant advantages
of this model as a model of the machined material, it does not describe the deformation and
fracture mechanisms of the machined material during cutting. This constitutive equation
does not take into account the mutual influence of temperature, strain, strain rate and yield
stress. This equation also does not describe the conditions of transition from the hardening
of the deformed material to its softening, and, ultimately, does not provide the maximum
values of the yield strength in the primary cutting zone (chip formation zone) and in the
secondary cutting zone (at the tool rake face) [29]. This is, in this case, the reason for the
difference between the experimental and simulated values of the shear angle. Thus, a
significant excess of the shear angle determined as a result of cutting process simulation
over its experimental value at low cutting speeds and especially at a tool rake angle of
−10◦ indicates insufficient consideration in the used constitutive equation of the machined
material hardening as a result of its deformation during cutting. At the same time, these
differences at high cutting speeds and all studied tool rake angles indicate both insufficient
consideration of the machined material softening in the material model and insufficient
consideration of the influence of the strain rate of the machined material on the interaction
of its hardening and softening process.

However, despite the above disadvantages of the used material model, the greatest
difference between the experimental, calculated, and simulated values of the shear angle
obtained in these studies is only 18%. Thus, the generalized parameter set of the constitu-
tive equation, determined by means of the previously developed software algorithm [59],
provided a satisfactory variation of the simulated shear angle values both from the experi-
mental data and the analytically calculated values, when changing cutting conditions and
tool geometry within a relatively wide range.

4. Conclusions

The present study deals with the experimental and analytical determination as well as
the numerical simulation of the shear angle during orthogonal cutting for a wide range of
cutting speeds and tool rake angles. The following conclusions could be drawn from the
conducted studies:

1. Based on the use of the chip compression ratio and the minimum potential energy
principle, analytical methods for determining the shear angle produced insignificantly
greater values than experimentally established shear angle values for the studied
range of cutting speeds and tool rake angles:

â The shear angles determined by the chip compression ratio were insignificantly
lower (up to 1◦–2◦) than the shear angles determined by the minimum potential
energy principle.

â The greatest variation between the values of shear angles determined experi-
mentally and analytically was no more than 12%.
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â Thus, the examined analytical methods for determining the shear angle can be
used instead of time-consuming experimental studies.

2. The shear angle value in the numerical simulation of the orthogonal cutting process
was mainly influenced by the constitutive equation parameters: initial yield stress
A, coefficient of strain hardening B, power coefficient of hardening n, and strain rate
coefficient C.

3. The generalized values of these parameters for simulating the cutting process at a wide
range of machining conditions were determined by means of a software algorithm
based on finding the intersection of the constitutive equation parameter sets.

4. Using these generalized parameters produced the largest deviation between experi-
mental and simulated shear angle values of 9% to 18% and between simulated and
analytically calculated shear angle values of 7% to 12%.
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