Institute of Parallel and Distributed Systems
University of Stuttgart

Universitatsstraf3e 38
D-70569 Stuttgart

Master Thesis

Analysis and Evaluation of Data
Preprocessing Methods for
Clustering Analyses

Leonard Labes

Course of Study: Softwaretechnik

Examiner: Prof. Dr. rer. nat. habil. Holger Schwarz
Supervisor: Dennis Treder-Tschechlov, M.Sc.
Commenced: November 13, 2023

Completed: May 22, 2024

Abstract

Data is often used to extract knowledge from it and guide decisions in several areas. The knowledge
extraction process is usually done with a machine-learning model like clustering. However,
frequently, this data contains data imperfections such as missing values, outliers, or the data
has skewed distributions. These imperfections need to be addressed to extract knowledge from
the data because otherwise, machine-learning models can not be applied or achieve poor results.
This process is called preprocessing. Many different preprocessing methods and corresponding
hyperparameters exist. Therefore, finding a good selection of methods and hyperparameters to
improve the machine-learning model result is challenging, especially if the data imperfections
are unknown. In addition, more than one preprocessing method is often used, which increases
the search space and brings additional challenges as the order in which they are performed and
the interaction between the preprocessing methods is unclear. This may result in a lengthy trial
and error process, especially for inexperienced users, where different preprocessing pipelines are
evaluated until an acceptable pipeline is found.

Some recent advances have been made in the area of AutoML that cover the automation of this
selection as a small part of their approach. However, these are limited in the area of clustering, and
most approaches propose only a single preprocessing method or consider only a limited number
of methods in their configuration space. One reason for these limitations is that they focus on an
end-to-end approach where, besides an appropriate preprocessing pipeline, a clustering algorithm
and its parameters are suggested as well.

The AutoML approaches consider preprocessing to be a small part at best and focus primarily on
model building. In contrast, this work focuses mainly on addressing the challenges named in the
first paragraph and improving the results with appropriate preprocessing pipelines while using a
model, in this case clustering, to evaluate the pipelines.

To mitigate the challenges described in the first section, the overall goal is to make accurate
suggestions for preprocessing pipelines that improve the clustering result. In order to achieve
this, it is important to identify data imperfections and to understand the relationship between data
imperfections and preprocessing pipelines. This thesis contributes a first step in that direction
with the concept of how a knowledge base can be created that accurately measures the effects of
preprocessing pipelines on data with imperfections and can identify data imperfections of datasets.
In order to achieve the latter, meta-features are evaluated because they are a good way to describe
unseen datasets and their imperfections. Such a knowledge base needs to contain information
from many different datasets to be able to generalize. Because of that, synthetic data is used and
further manipulated with data imperfections to have an almost unlimited dataset available and to
make a precise evaluation of what data imperfection is handled by which pipeline well. These
manipulations skew the data distribution, remove parts of the data to create missing values, and
add outliers to the data. Because of the named challenges of section one, it is impossible to apply
all combinations of preprocessing methods and their hyperparameters to a dataset, even if the
selection of preprocessing methods is small. Instead, pipelines are generated and refined during
an optimization process. As optimization, Genetic optimization is used because it provides high
flexibility and can be well customized to address the named challenges.

The evaluation shows that for most datasets, a preprocessing pipeline is found by the optimizer,
which leads to a significant improvement in the clustering results compared to the results without
preprocessing. The improvement is most significant for skewed distribution data, while datasets
that have not been manipulated show the slightest improvement. Additionally, the evaluation of
the optimization process shows that a well-performing pipeline is found relatively quickly, while
the improvement afterward exists but is comparatively small. It is shown that the missing value
imputation works best with the KNN-Imputer compared to other imputation techniques. Other
data imperfections do not produce a preferred method or pipeline. Concerning the order of the
preprocessing methods within a pipeline, it could not be shown that there is a significant difference.
Additionally, it is demonstrated that meta-features correlate with data imperfections. Therefore, it
suggests that it is possible to determine the need for preprocessing and the identification of data
imperfections with the thesis used meta-features.

Kurzfassung

Daten werden héaufig dazu verwendet, um Wissen aus ihnen zu extrahieren und Entscheidungen
in verschiedenen Bereichen zu treffen. Der Prozess der Wissensextraktion erfolgt in der Regel
mit einem maschinellen Lernmodell wie Clustering. Hiufig enthalten diese Daten jedoch Fehler
wie fehlende Werte, Ausreiler oder eine schiefe Verteilung der Daten. Diese Fehler miissen
beseitigt werden, um Wissen aus den Daten zu extrahieren, da sonst die Modelle des maschinellen
Lernens nicht angewandt werden konnen oder schlechten Ergebnisse erzielen. Dieser Prozess
wird als Vorverarbeitung bezeichnet. Es gibt viele verschiedene Vorverarbeitungsmethoden
und entsprechende Hyperparameter. Daher ist es eine Herausforderung, eine gute Auswahl
an Methoden und Hyperparametern zu finden, um das Ergebnis des maschinellen Lernens zu
verbessern, insbesondere wenn die Fehler der Daten unbekannt sind. Dariiber hinaus wird hdufig
mehr als eine Vorverarbeitungsmethode verwendet, was den Suchraum vergroert und zusitzliche
Herausforderungen mit sich bringt, da die Reihenfolge, in der sie durchgefiihrt werden, und die
Interaktion zwischen den Vorverarbeitungsmethoden unklar sind. Dies kann zu einem langwierigen
Versuch und Irrtum Prozess fiihren, bei dem verschiedene Vorverarbeitungspipelines bewertet
werden, bis eine akzeptable Pipeline gefunden ist. Das ist insbesondere fiir unerfahrene Benutzer
hiufig der Fall.

In letzter Zeit wurden einige Fortschritte auf dem Gebiet AutoML erzielt, die die Automatisierung
dieser Auswahl als einen kleinen Teil ihres Ansatzes abdecken. Diese sind jedoch auf den
Bereich des Clustering begrenzt vorhanden, und die meisten Ansétze schlagen nur eine einzige
Vorverarbeitungsmethode vor oder beriicksichtigen nur eine begrenzte Anzahl von Methoden in
ihrem Konfigurationsraum. Ein Grund fiir diese Einschrinkungen ist, dass sie sich auf einen Ende
zu Ende Ansatz konzentrieren, bei dem neben einer geeigneten Vorverarbeitungspipeline auch ein
Clustering-Algorithmus und dessen Parameter vorgeschlagen werden.

Die AutoML-Ansitze betrachten die Vorverarbeitung bestenfalls als einen kleinen Teil und
konzentrieren sich hauptsichlich auf die Modellerstellung. Im Gegensatz dazu konzentriert sich
diese Arbeit hauptsdchlich auf die Bewiltigung der im ersten Absatz genannten Herausforderungen
und die Verbesserung der Ergebnisse durch geeignete Vorverarbeitungspipelines, wobei ein Modell,
in diesem Fall Clustering, zur Bewertung der Pipelines verwendet wird.

Um die im ersten Abschnitt beschriebenen Herausforderungen zu entschirfen, besteht das allgemeine
Ziel darin, genaue Vorschlége fiir Vorverarbeitungspipelines zu machen, die das Clustering Ergebnis
verbessern. Um dies zu erreichen, ist es wichtig, Fehler in den Daten zu identifizieren und die
Beziehung von deisen Fehlern zu Vorverarbeitungspipelines zu verstehen. Diese Arbeit leistet
einen ersten Schritt in diese Richtung mit einem Konzept, wie eine Wissensbasis geschaffen
werden kann, die die Auswirkungen von Vorverarbeitungspipelines auf Daten mit Fehlern genau
untersucht und Fehler von Datensitzen identifizieren kann. Um Letzteres zu erreichen, werden
Meta-Merkmale evaluiert, da sie eine gute Moglichkeit darstellen, ungesehene Datensétze und deren
Fehler zu beschreiben. Eine solche Wissensbasis muss Informationen aus vielen verschiedenen
Datensitzen enthalten, um verallgemeinern zu konnen. Aus diesem Grund werden synthetische
Daten verwendet und mit Fehlern versehen, um einen nahezu unbegrenzten Datensatz zur Verfiigung
zu haben und eine genaue Bewertung vornehmen zu konnen, welche Fehler von welcher Pipeline
gut verarbeitet werden. Durch diese Manipulationen werden die Daten verzerrt, Teile der Daten
entfernt, um fehlende Werte zu erzeugen, und Ausreifler zu den Daten hinzugefiigt. Aufgrund
der im ersten Abschnitt genannten Herausforderungen ist es unmoglich, alle Kombinationen von

Vorverarbeitungsmethoden und ihren Hyperparametern auf einen Datensatz anzuwenden, selbst
wenn die Auswahl an Vorverarbeitungsmethoden klein ist. Stattdessen werden Pipelines generiert
und wihrend eines Optimierungsprozesses verbessert. Als Optimierung wird eine genetische
Optimierung wird verwendet, weil sie eine hohe Flexibilitit bietet und gut an die genannten
Herausforderungen angepasst werden kann.

Die Auswertung zeigt, dass der Optimierer fiir die meisten Datensétze eine Vorverarbeitungspipeline
findet, die zu einer deutlichen Verbesserung der Clustering Ergebnisse im Vergleich zu den
Ergebnissen ohne Vorverarbeitung fiihrt. Die Verbesserung ist am signifikantesten fiir Daten mit
schiefer Verteilung, wihrend Datensitze, die nicht manipuliert wurden, die geringste Verbesserung
aufweisen. Dariiber hinaus zeigt die Auswertung des Optimierungsprozesses, dass eine gut
funktionierende Pipeline relativ schnell gefunden wird, wihrend die anschlieBende Verbesserung
zwar vorhanden, aber vergleichsweise gering ist. Es wird gezeigt, dass das Ersetzen von fehlenden
Werten mit dem KNN-Imputer am besten funktioniert. Andere Fehler in den Daten fiihren nicht zu
einer bevorzugten Methode oder Pipeline. Was die Reihenfolge der Vorverarbeitungsmethoden
innerhalb einer Pipeline betrifft, konnte kein signifikanter Unterschied nachgewiesen werden.
Dariiber hinaus wird gezeigt, dass Meta-Merkmale mit den Fehlern in den Daten korrelieren.
Dies legt den Schluss nahe, dass es moglich ist, die Notwendigkeit einer Vorverarbeitung und die
Identifizierung von Datenméngeln anhand der in dieser Arbeit verwendeten Meta-Merkmale zu
bestimmen.

Contents

1 Introduction

2 Background

2.1 Preprocessing e e e e e e e e e e e e
22 CIustering v v v it e e
2.3 Genetic Optimization v v e e e e
24 Meta-Learning
3 Related Work
3.1 AutoML and Metalearning for clustering
3.2 AutoML and Meta-Learning considering Preprocessing
33 Libraries
34 0 Summary e e e e e e e e

4 Challenges of Preprocessing and Knowledge Base Creation

4.1 Challenges of Preprocessing
4.2 Challenges of Knowledge Base Creation
5 Knowledge Base Creation for Preprocessing Pipelines
5.1 General Concept
5.2 Selection of Meta-Features
5.3 DataGeneration e e e e e e
5.4 Selection of Preprocessing Methods
5.5 Optimization of Preprocessing Pipelines
5.6 Summary L. e e e e e

6 Evaluation

6.1 Implementationand Setup
6.2 Evaluation of Preprocessing Effects
6.3 Evaluation of the Optimization Process
6.4 Baselines
6.5 Order of Preprocessing Methods
6.6 Meta-Features
6.7 Runtime e
6.8 Summary

7 Conclusion
7.1 Outlook s

Bibliography

17

21
21
22
23
24

27
27
30
36
37

39
39
40

43
43
44
45
48
50
53

55
55
59
64
70
71
73
77
79

81
82

85

A Evaluation

93

List of Figures

1.1 Steps of the KDD Process (image extracted from [FPS96]) 17
3.1 Workflow of AutoMLA4Clust (Figure created by [TFS+21]) 27
3.2 TPE-AutoClust Framework (Figure created by [PDK24]) 32
3.3 Methods used by Reed [Ree23] (Figure created by [Ree23]) 35
3.4 TPOT Overview (Figure created by [OBUMI16]). 37
5.1 General Approach 44
5.2 Different Possible Base Datasets 46
5.3 Data Manipulation Comparison it 47
6.1 ARI Not Preprocessed (Left), and Preprocessed (right) 59
6.2 Best and Worst ARI Score Comparison 62
6.3 Mean ARI per Generation 65
6.4 Additions of Method Groups per Data Manipulation Group 67
6.5 Method Groups per Data Manipulation Group 69
6.6 Comparison of mean ARI Between Not Preprocessed (Left), Baselines (Middle)

and Optimizer Results (Right) 71
6.7 Occurrences (> 5) of Preprocessing Method Pairs 72
6.8 Change in ARI After Order Change 73
6.9 Strong Correlation of Meta-Features 76
6.10 Runtimes of Data Manipulation Groups 77
6.11 Runtime by Sample Size M+S+O) 78
A.1 Correlation of Meta-Features 93

List of Tables

5.1 Selection of Meta-Features 45
5.2 Values of the Data Manipulation Methods 48
5.3 Preprocessing Methods and their Hyperparameters 49
6.1 Libraries Used in the Implementation 56
6.2 Datasets of the Evaluation, . 58
6.3 Parameters of the Optimization-Implementation 58
6.4 ARI Change During Preprocessing per Data Manipulation Group 60
6.5 Consistency of MultipleRuns 0 0oL 64
6.6 Evaluation of Pipeline Length 66
6.7 Occurrences of Imputation Methods per Data Manipulation Group 68
6.8 Overall Occurrences of Methods of the Main Optimization 70
6.9 Meta-Feature of the Not Preprocessed Data 75
6.10 Consistency of Multiple Runs 78

11

List of Algorithms

5.1 Optimization Process
52 Mutation e
5.3 CrOSSOVET o v v i i e e e e e e e

13

Acronyms

AMI Adjusted Mutual Info Score. 28

ARI Adjusted Rand Index. 23

CHI Calinski-Harabasz Index. 28

CJI Coggins-Jain Index. 29

CME Clustering-oriented Meta Feature Extraction. 28
CRISP-DM Cross Industry Standard Process for Data Mining. 17
CVI Cluster Validity Index. 22

DBCV density-based clustering validation. 29
DBI Davies-Bouldin Index. 28

DI Dunn Index. 29

FCPS Fundamental Clustering Problem Suite. 28
GMM Gaussian Mixture Model. 29

KDD Knowledge Discovery in Databases. 17
KNN K-Nearest Neighbor. 21

LR Linear Regression. 31

MAE Mean Absolut Error. 31

MLE Maximum Likelihood Estimation. 40

MSE Mean Squared Error. 31

NMI Normalized Mutal Information Score. 51
PCA Principal Component Analysis. 18

Rl Rand Index. 23

RL Reinforcement Learning. 33

RMSD Root Mean Squared Error. 31

SC Silhouette Coefficient. 28

SVM Support Vector Machines. 31

TPOT Tree-based Pipeline Optimization. 33

15

Acronyms

WEKA Waikato Environment for Knowledge Analysis. 36

16

1 Introduction

Data has become increasingly important in almost every aspect of today’s lives. In healthcare, for
instance, data can be used to improve patient outcomes or predict personalized treatments [RR14].
To leverage these benefits, it is crucial to first collect data and then extract knowledge from it. The
knowledge extraction can be accomplished with well-known processes like Cross Industry Standard
Process for Data Mining (CRISP-DM) [CCK+00] or Knowledge Discovery in Databases (KDD)
[FPS96]. The latter is depicted in Figure 1.1. Fayyad et al. [FPS96] divide the path from raw data
to knowledge into five steps (cf. Figure 1.1). The first step is the selection of data. Within this step,
the goal of the application is defined, and the target data is created by selecting a relevant subset
out of the overall available data [FPS96]. Afterward, the data is preprocessed and transformed.
The main objective here is to prepare it for the data mining algorithm. The exact implementation
of the sub-steps highly depends on the data and the target of the application. Usually, it includes
normalization, outlier removal, missing value imputation, feature selection, and transformation
[FPS96]. This part is followed by the selection and execution of a data mining algorithm(s) to find
patterns or relationships within the data. A variety of data mining algorithms are available, and the
selection is use-case-dependent. One example is clustering, which is used to find patterns in the
data. The last steps include interpreting the results acquired in the previous step. It is possible and
common in practice to go back to earlier steps and refine the decisions to improve the overall results
and insights gained [FPS96].

The preprocessing and transformation step is particularly crucial. Kirchner et al. [KZD16] conducted
a study where scientific researchers and users of preprocessing algorithms were asked about how
important they consider preprocessing in combination with clustering, and the results showed an
average rating of 4.5 (where one means not necessary and five highly important). Secondly, 85%
state that even when the clustering algorithm can handle some problems within the data, they would
instead use preprocessing in combination with clustering because they think it achieves better results
[KZD16].

While the KDD provides a good general overview and instruction on what to do from a high-level
perspective, the detailed implementation is still challenging. The main reason is the massive amount
of preprocessing methods available and the different options to use them [KZD16]. This variety
ranges from very particular methods designed for a single use case [ZB20] to well-established and

Sel Pre- f Trans- Data Interpretation/
election processing ormatlon Mlnlng Evaluatlon
== == EFE, i

I Target I Preprocessed Transformed Patterns I Knowledge

Data Data Data

>

Figure 1.1: Steps of the KDD Process (image extracted from [FPS96])

17

1 Introduction

widely used methods like Principal Component Analysis (PCA) (initially introduced by Pearson
[PeaO1]). Additionally, these methods often include parameters that must be selected and may
significantly affect the result. An example is the parameter specifying how many dimensions PCA
should reduce a dataset to. Choosing this parameter too high may result in a similar dataset to the
not-preprocessed one, making the preprocessing step needless. On the other hand, picking it too low
may result in too much information loss. Therefore, the wrong preprocessing method or parameter
choice can affect the clustering result significantly. An additional complicating factor is that certain
cases require several preprocessing methods. An example of that is a dataset that contains outliers
and missing values, resulting in a preprocessing pipeline instead of a preprocessing method. Within
these pipelines, it is unclear what combination of methods is the correct one and in which order
they should be executed. To summarize these challenges, it is hard to select suitable preprocessing
methods and parameters during the KDD process, especially if multiple preprocessing methods are
involved.

The users’ experience can partially compensate for the challenges. However, they remain, especially
for inexperienced users, and there is a risk of poor results or that finding good preprocessing
pipelines will take a long time. This motivates the idea of an automated concept to find suitable
preprocessing methods, parameters, and the correct order of execution. Such automation has been
developed and is currently being researched for the data mining step of the KDD process and is
called AutoML. However, AutoML focuses on finding a good model with its parameters and a good
evaluation score [THHL13], and only a few approaches deal with preprocessing. Despite the fact
that this thesis does not provide an AutoML approach but focuses on finding good preprocessing
method pipelines for clustering algorithms in an automated way, AutoML has some concepts that
can be transferred or borrowed to this process. These are the optimization of algorithms and
parameters, the use of meta-features, and the concept of a knowledge base.

This thesis does not provide an AutoML approach, including preprocessing, but is inspired by
the mentioned high-level concepts. However, some AutoML approaches [ES22; FEF+22; OM16;
Ree23] include preprocessing as a small part and are currently the possible solution to solve the
described problems in the search for well-performing preprocessing pipelines in an automated way.
Since their main focus is the data mining step of the KDD, the following weaknesses of AutoML
systems exist in the context of preprocessing: They all are designed to find an end-to-end approach
from a dataset to a full machine learning pipeline. This means the effect of preprocessing in this
process is not well-researched. Additionally, most are designed for supervised learning or include
only one preprocessor per pipeline, or the overall search space of preprocessors and parameters is
very limited. Additionally, they often use real-world datasets from sources like the UCI Machine
Learning Repository! or Kaggle?. These datasets are often created or collected for classification
tasks instead of clustering, and the class labels, usually considered as ground truth, do not have
to correspond with the found clusters [ZZY19]. Another point is that it is primarily unknown
what imperfections these datasets have, and therefore, it is hard to validate the effect of specific
preprocessing methods.

To mitigate the challenges described above and fill the gaps in the research, the overall goal is to
make accurate suggestions for preprocessing pipelines that improve the clustering result. In order
to achieve this, it is important to identify data imperfections and to understand the relationship

1ht'cps://archive. ics.uci.edu/
2https ://www.kaggle.com/datasets

18

https://archive.ics.uci.edu/
https://www.kaggle.com/datasets

between data imperfections and preprocessing pipelines. This thesis contributes a first step in that
direction with the concept of how a knowledge base can be created that accurately measures the
effects of preprocessing pipelines on data with imperfections and can identify data imperfections
of datasets. In order to achieve the latter, meta-features are evaluated because they are a good
way to describe unseen datasets and their imperfections. Such a knowledge base needs to contain
information from many different datasets to be able to generalize. Because of that, synthetic data is
used and further manipulated with data imperfections to have an almost unlimited dataset available
and to make a precise evaluation of what data imperfection is handled by which pipeline well.
These manipulations skew the data distribution, remove parts of the data to create missing values,
and add outliers to the data. Because of the named challenges of section one, it is impossible to
apply all combinations of preprocessing methods and their hyperparameters to a dataset, even if the
selection of preprocessing methods is small. Instead, pipelines are generated and refined during
an optimization process. As optimization, Genetic optimization is used because it provides high
flexibility and can be well customized to address the named challenges. Additionally, a single
clustering algorithm is used to evaluate the preprocessing pipelines, and the parameters of this
clustering algorithm are kept constant. The reason for that is that the effect of preprocessing can be
better evaluated with a single algorithm and constant parameters.

With the presented concept, the following questions are answered:

Q1: Is there a general effect on the data?

Q2: Are there any patterns of preprocessing methods or hyperparameters?

Q3: Is there a difference in terms of the order in which the preprocessing methods are executed?
Q4: What meta-features are needed to reflect the data characteristics and imperfections

The overall contribution of this thesis can be summarized to (addressed questions provided in
brackets):

1. Concept of generating synthetic data and manipulating them have a ground truth with known
imperfections in the data

2. Define a large selection of preprocessing methods to assess their effect on the data (Q1)

3. Define a set of meta-features that are likely to reflect the imperfections and changes in the
created data (Q4)

4. Propose and optimization approach that focuses solely on preprocessing pipelines
5. Creation of a Knowledgebase that captures the results

6. Evaluate the approach concerning the general effect of preprocessing methods on the data
and meta-features (Q1, Q2, Q3, Q4)

The remaining work is structured as follows: Chapter 2 introduces general knowledge about
clustering, preprocessing, and meta-features. This is followed by an overview of the related work in
chapter 3. After that, the challenges of preprocessing and concept are described in chapter 4, and
the general concept of the knowledge base creation and the methodology are provided in chapter 5.
Chapter 6 evaluates the approach presented in chapter 5, followed by the conclusion and an outlook
for potential future research in chapter 7.

19

2 Background

In this chapter, helpful background knowledge is provided. It consists of an introduction to the
relevant parts of preprocessing (cf. Section 2.1), an explanation of the clustering algorithm used in
this thesis (cf. Section 2.2), and an overview of the optimization technique (cf. Section 2.3).

2.1 Preprocessing

Datasets often contain imperfections like missing values or outliers. Without handling these, the
result of the model can be significantly worse since low-quality data usually leads to low-quality
model results [HPT22, p. 23]. Within this section the preprocessing techniques used in this thesis
are explained.

2.1.1 Missing Value Impuation

Missing values are values of features that are not present in the data. A missing value is usually
reflected by a blank space or the value NaN (Not a number). The reasons why they are missing
are dependent on the domain and data collection process. An example is the manual data entry
procedures where some values are forgotten [GLH15, p. 59].

Different approaches exist to impute missing values. The most basic approach is to discard all rows
of a dataset that contain missing values or to fill them manually [HPT22, p. 57]. The first approach
can lead to significant data loss, while the second option may be time-consuming [HPT22, p. 57].
These options should only be considered if no others are available. Other options are divided by
Garcia et al. [GLH15] into methods that analyze the relationship between features and ones that
do not. For this work, only the ones that do not explore the deeper relationships between features
are relevant. Such methods can be relatively simple, like taking the mean of the feature where the
missing value is missing, or a bit more complex considering multiple features like the K-Nearest
Neighbor (KNN)-imputation technique [GLH15, p. 64].

2.1.2 Normalization

Data can often appear at different scales, and this can influence the result if it depends on distance
calculations. Features that have smaller scales tend to have a wide range of values and, therefore,
might have a greater weight for certain clustering algorithms [HPT22, p. 113]. To overcome this
problem, the data is often normalized to a fixed range (usually [—1, 1]) to give all attributes an equal
weight [HPT22, p. 113].

21

2 Background

2.1.3 Outlier Removal

Outliers are data points that are significantly different compared to the rest of the dataset [HPT22,
p. 544]. They can be further divided into three groups: global outliers, conditional outliers, and
collective outliers. In this work, only global outliers are relevant for a deeper explanation of the
other groups refer to Han et al. [HPT22]. Global outliers are outliers that are significantly different
compared to the majority of the dataset. One complex challenge is to define the border of this
significant difference [HPT22, p. 545]. Several approaches exist to remove outliers. Since this work
is restricted to unsupervised learning, only unsupervised outlier detection methods are applicable.
These unsupervised methods assume that the normal points of the data are somewhat distributed
such that the outliers stick out [HPT22, p. 550].

2.2 Clustering

Clustering is an unsupervised machine-learning concept that divides the data into subgroups
(clusters) based on their similarity [HPT22, p. 444]. There exist several different approaches that
measure the similarity in various ways, like distance-based, hierarchically based, or density-based
methods [HPT22, p. 448]. This work only uses K-Means [Mac+67], a distanced-based clustering
algorithm. In the following, the notation and description of Han et al. [HPT22] are used to describe
how K-Means works.

The algorithm takes a dataset O and the number of clusters & as input, and the output is a set of
labels indicating which row of the dataset corresponds to which cluster [HPT22, p. 452]. The
following steps are executed to obtain the output:

1. chose random k points of D and set them as initial cluster centers

2. Assign each element of D to the cluster where the center has the smallest distance to the
element

3. Update the center of the clusters based on the newly formed clusters

4. repeat steps two and three until there is no further change.

2.2.1 Adjusted Rand Index

To evaluate the clustering result, a score (Cluster Validity Index (CVI)) is needed. This score states
how good or bad a clustering result is. Since clustering is an unsupervised technique, class labels
are not available in the real world. Therefore, such scores often evaluate characteristics of the
clusters, such as how dense they are. However, in this work, ground truth labels are available due to
how the data is generated and, therefore, can be used to provide an accurate score. The score that is
used in this work is the Adjusted Rand Index introduced by Hubert and Arabie [HA85]. It is an
extension of Rand Index that eliminates the weakness that the random clusterings sometimes agree
by chance [HAS85]. The calculation takes two clustering results, U and V, as input. This can be a
result obtained by K-Means and the ground truth clusters.

22

2.3 Genetic Optimization

To calculate the Adjusted Rand Index (ARI), first, the Rand Index (RI) is calculated. In order to do
this, four types of results are defined among all distinct pairs ('2‘) [HASS], these are: (definition and
description taken from Hubert and Arabie [HAS85]):

1. Elements of the pair are in the same class in U and in the same class in V
2. Elements of the pair are different classes in U and in different classes in V
3. Elements of the pair are different classes in U and in the same classes in V

4. Elements of the pair are same classes in U and in different classes in V

Types one and two are interpreted as agreements (A) between the two results U and V, while types
three and four are considered disagreements (D) [HAS85]. The resulting RI is now

A
RI=—

()
Where an RI of 1 would state a complete similarity between the results U and V, and a score of 0
would state complete disagreement.

Thus, the RI can be high for a random clustering by chance [HA85]. To overcome this, Hubert
and Arabie [HAS85] provides an extension of the RI by including the expected RI. The expected RI
is calculated with the help of a contingency table of U and V and is the mean RI if the clustering
is assigned randomly (for a detailed mathematical explanation, please refer to Hubert and Arabie
[HAS85]). This results in the following formula for the ARI [HAS85]:

_ RI—-Expected RI
~ Max RI — Expected RI

RI

The ARI has the same upper bound as the RI (1) but is zero for completely random clustering and
can be below zero for clustering that is worse than random [HA85].

2.3 Genetic Optimization

Genetic optimization is a framework that is inspired by biology and applies the theory of evolution
by natural selection of Darwin to problems in computer science problems [Koz94]. Because of
that, the terms of elements and functions within this concept are often borrowed from the field of
biology. The terms are introduced on a high level since what they actually are is dependent on the
problem. For a mapping from these general terms to the problem solved in this thesis, refer to the
section 5.5.

The first term is called individual (sometimes chromosome) and represents a single possible solution
to a problem and consists of at least one gene [Mit98]. A gene is a subpart of the individual that can
be manipulated during the optimization process. All individuals together result in the population.
This population represents the current state of all individuals and, therefore, of the optimization
problem [Gre86]. The optimization happens through changes in the population during multiple
iterations. These iterations are called generations of the population. [Gre86]. A change can either
be a mutation or a crossover [Col99]. A mutation changes at least one gene of an individual,

23

2 Background

while a crossover combines two individuals and forms a new one [Col99]. How these changes are
implemented and how often they happen during a generation is problem-dependent. After that, the
new population is built for the next generation. This is called selection [Col99]. Several different
selection approaches exist, and they can be custom-implemented as well. However, this thesis
uses an out-of-the-box approach called tournament selection [MG+95]. This selection strategy is
described in section 2.3.1. To be able to select good individuals, a quality measure is necessary,
called the fitness of an individual. Again, how the fitness is evaluated depends on the problem. In
this work, the ARI is chosen as fitness.

An optimization process is finished after the maximum number of generations is reached or one
individual achieves the desired fitness.

2.3.1 Tournament Selection

The tournament selection performs multiple tournaments until a fixed size of individuals is selected
[CL18]. This fixed size is usually the population size. A tournament selects random k individuals
of the current population and chooses the one with the best fitness to be part of the new generation
[CL18]. k has to be defined by the user. This is done until the fixed size of individuals, e.g., the
population size, is reached [CL18]. It should be noted that an individual can appear in multiple
tournaments, and therefore, it might be more than once present in the new generations.

2.4 Meta-Learning

Meta-learning is usually described with the terms "learning how to learn” [Van19] or "learning
from the past” [TFSM23]. Like many solutions in machine learning, this idea is borrowed from
human learning, where we generalize from only a few sample experiences to accomplish new
tasks [TP98, p. 3]. It is typically in AutoML for Clustering to use meta-learning to generalize
from seen datasets to unseen [PDK24]. A meta-learning part consists of two essential parts. The
meta-features that are used to characterize a dataset and at least one evaluation measure to state the
performance of different solutions for this task [PDK24]. With these parts, a predictive Meta-learner
is trained to find suitable solutions for new datasets [PDK24]. This description implies two phases
of meta-learning: the offline and online (or application) phases. During the offline phase, datasets
are evaluated with different algorithms, hyperparameters, and meta-features are extracted, and
well-performing combinations are found [PDK24]. Then, a meta-learner is trained and can provide
potentially good configurations for new datasets during the online phase [PDK?24].

2.4.1 Meta-Features

Algorithms such as preprocessing methods make certain assumptions about the data [RGS+18].
For example, certain missing value imputation methods assume relationships between missing
values [GLH15, pp. 61ff]. Meta-features are used to differentiate between different datasets and
their characteristics. Rivolli et al. [RGS+18] state that meta-features are widely used and are often
separated into groups, but there is a lack of consistency throughout the literature. To overcome this,

24

2.4 Meta-Learning

the authors introduce six groups and these groups are used in this work to differentiate between
meta-feature types. These groups are (groups, descriptions, and examples strongly inspired or
extracted of Rivolli et al. [RGS+18]):

1.

Simple/General: Meta-features that are simple to understand and can be extracted without
high computational costs. Examples are the number of dimensions or the number of missing
values

. Statistical: These are meta-features that provide statistics about the data. An example is the

standard deviation.

. Information-theoretic: These are mostly for categorical features and classification problems

[RGS+18], and show how much information is in a dataset. One example would be the
entropy of the target class labels.

Model-based: A model is built on the training data for this meta-feature set. The model’s
characteristics are then considered meta-features and can provide assumptions about how
complex a certain dataset might be. These features are focused on supervised learning as
well. An example would be the number of leaves of a decision tree.

. Landmarking: As the two before, landmarking features are made for classification. Instead

of taking the model’s characteristics as features, the performance of a model is considered.
An example would be the best, a random, and the worst node of a decision tree. These may
indicate the boundary of classes.

Others: The authors put all remaining meta-features that appear in the literature in this
group. An example is the connectivity that captures nearest neighbor violations of a dataset.

25

3 Related Work

The following chapter provides an overview of the current research. It is divided into works that
apply AutoML or Meta-Learning to clustering only, works that apply AutoML or Meta-Learning
to supervised and unsupervised methods but consider preprocessing, and popular libraries in
AutoML/Metalearning.

3.1 AutoML and Metalearning for clustering

Poulakis et al. [PDK24] provides an up-to-date survey about current advances in AutoML for
clustering. Based on the focus of the work, the different approaches are categorized into three
groups by looking at the main features and differences of the papers, and some are further analyzed
to show the current state in this area.

3.1.1 AutoMLA4Clust

Tschechlov et al. [TFS+21] propose a generic approach for automating clustering analysis.

The generic framework is shown in Figure 3.1 and needs a dataset 9, an internal metric M and a
budget / as input. The dataset 9 only contains the data and no class labels. Instead of using class
labels, the internal metric M is used to evaluate the clustering result. Budget / determines how long
an optimization may take or how many optimization loops are allowed.

@

/ Selection:

c€ECS

Internal Metric Execution:
@0 R c(D)
i

Inputs Optimizer Loop Return Best Configuration

l exhausted?

Choose Best
Configuration Apply on D |

Figure 3.1: Workflow of AutoML4Clust (Figure created by [TFS+21])

27

3 Related Work

With these inputs, a config ¢ containing an algorithm and hyperparameter of the config space CS is
selected, executed, and evaluated until the budget is exhausted (cf. optimizer loop in Figure 3.1).
Afterward, the best config is chosen and applied to D.

Tschechlov et al. [TFS+21] evaluate four different optimizers as optimization techniques (cf.
optimizer loop Figure 3.1), namely Random [BB12], Bayes [THHL13], Hyperband [LID+18],
and BHOB [FKH18]. This evaluation is done with 24 synthetically generated datasets and five
real-world datasets [TFS+21]. The real-world datasets are a selection from the UCI Machine
Learning repository'. Due to the popularity and good runtime behavior, only k-centered clustering
algorithms are used [TFS+21]. These are K-Means [Mac+67], MiniBatch-K-Means [Scul0],
K-Medoids [RK87], and GMM [Bis06]. While optimizing with internal CVIs, they use the Adjusted
Mutual Info Score (AMI) to validate the results.

Their results show that no better results are achieved after 60 optimization loops, but during the 60
loops, a noticeable improvement is achieved with an AMI of over 90%. In addition, they achieve up
to 437 times better runtime for synthetic data sets and 276 times better runtime for real-world data
sets compared to exhaustive searches.

3.1.2 AutoCluster

Liu et al. [LLT21] propose an approach where they use Clustering-oriented Meta Feature Extraction
(CME) for meta-learning, in combination with multiple CVIs, hyperparameter optimization, and an
ensemble clustering to find the best algorithm and corresponding hyperparameters for a dataset.

The meta-features are a combination of five new meta-features proposed by Liu et al. [LLT21]
and 19 existing ones by Li et al. [LWWT19]. While the 19 features of [LWWT19] are statistical
meta-features (cf. Section 2.4.1), the five new proposed ones focus primarily on cluster structure
and support the algorithm choice. To measure the quality, they use three internal CVIs, namely
the Calinski-Harabasz Index (CHI), Davies-Bouldin Index (DBI), and Silhouette Coefficient (SC).
The data is split into 150 prior datasets and 33 new datasets. The prior datasets are used to
suggest better algorithms and CVIs. They use ground truth labels and the external CVI ARI to
measure the performance and ensure correct selection. With all the measures, meta-features, and
knowledge from prior datasets combined, a suggestion with promising algorithms is made, and the
hyperparameters of these algorithms are further tuned with a grid search. These results are then
taken to construct an ensemble model through Majority Voting [LLT21].

The datasets for evaluation of the described approach are taken from different places. The 150 prior
datasets are a selection of OpenML [VVBT14], with maximal 5000 samples and 50 features. The 33
benchmark datasets are an assembly of different clustering benchmark datasets from clustering basic
benchmark [FS18]%, the Fundamental Clustering Problem Suite (FCPS) [UIt05], and clustering
benchmarks from a widely used GithHub repository>. One out of six possible clustering algorithms
is suggested. The possibilities are: K-Means [Mac+67], Affinity Propagation [FD07], Mean Shift
[FH75], DBSCAN [EKSX+96], Agglomerative clustering, and BIRCH [ZRL96]. The scikit-
learn [PVG+11] library is used to implement the algorithms mentioned. Technically, they apply

1ht'cps://archive. ics.uci.edu/datasets
2ht'cp: //cs.uef.fi/sipu/datasets/
3https://github. com/deric/clustering-benchmark.

28

https://archive.ics.uci.edu/datasets
http://cs.uef.fi/sipu/datasets/
https://github.com/deric/clustering-benchmark.

3.1 AutoML and Metalearning for clustering

preprocessing before evaluating the datasets, but all preprocessing steps are applied to every dataset
and are not further discussed. Since the methods are removing missing values, one-hot encoding,
and z-score standardization, the main focus is to make every dataset runnable by the algorithms.

The evaluation compares the performance of the named algorithms with default parameters and for
K-Means with different numbers of clusters (ranging from 2 to 20). AutoCluster performs best at
15 of the 33 datasets and is often close to the best method while achieving an overall average ARI of
0.776 [LLT21].

3.1.3 ML2DAC

ML2DAC is an approach that uses meta-learning to select a CVI, a clustering algorithm, and suitable
hyperparameters [TFSM23].

Treder-Tschechlov et al. [TFSM23] divide the learning phase into five steps and require the
availability of ground truth labels. The first step calculates the meta-features. These have a wide
variety ranging from simple ones like the number of features, statistical meta-features, information
theory-based, and landmarking ones. The second step evaluates the given datasets. This is done
with a Bayesian optimizer. To decide which CVI is the best to evaluate similar datasets during
the application phase, the ground truth labels are used to calculate the ARI. Next, the best CVI
is selected by comparing it with the ARI and choosing the one that correlates most with it. The
correlation is calculated with the Spearman rank correlation coefficient. After that, they train a
classifier to predict suitable CVIs for unknown datasets. This is done by treating the meta-features
as input set and the CVIs as class labels, therefore a multi-class classification is done. [TFSM23].
Lastly, the gained knowledge is stored in a knowledge base. It consists of the meta-features, the
evaluations with their scores (ARI and CVIs), and the classification model described in step four.

In the application phase, a new dataset is given, and the goal is to provide a good configuration
consisting of an algorithm and hyperparameters. This process can be divided into five steps as
well. First, a CVI is selected with the trained model from the learning phase. Secondly, warmstart
configurations are chosen based on the knowledge base. The third step reduces the available
algorithms to the ones of the warmstart configurations. Multiple optimizer loops are performed to
get the best configuration based on the performance of selected CVI.

In their evaluation, they generate 76 synthetic datasets to build the knowledge base. This is achieved
by using different generation methods of the scikit-learn [PVG+11] library that generates Gaussian
distributed data, moon-shaped data, and circle-shaped data. They evaluate with samples sizes
n € {1000, 5000, 10000}, feature sizes f € {10, 30, 50}, and cluster k£ € {10, 30,50}. The moon-
and circle-shaped data have, per definition, only two features, but they apply additional noise to
them r € {0,0.01,0.05,0.1}. Additionally, 22 real-world datasets from a clustering benchmark?*
and the UCI repository® are used in the application phase. The selected CVIs are the DBI, SC,
CHI, Dunn Index (DI), Coggins-Jain Index (CJI), density-based clustering validation (DBCV),
and COP Index. They use nine clustering algorithms with different characteristics, for example,
K-Means [Mac+67], Gaussian Mixture Model (GMM) [Ras99], and DBSCAN [EKSX+96]. They

4ht'cps://github. com/deric/clustering-benchmark.
5https://archive. ics.uci.edu/datasets

29

https://github.com/deric/clustering-benchmark.
https://archive.ics.uci.edu/datasets

3 Related Work

evaluate ML2DAC against several other solutions, namely AutoCluster [LLT21], AutoML4Clust
[TES+21], and AutoClust [PDK20]. ML2DAC achieves better and more consistent accuracy while
needing fewer optimizer loops on most synthetic datasets compared to the named baselines. The
same results are achieved on the 22 real-world datasets.

3.2 AutoML and Meta-Learning considering Preprocessing

This section discusses different approaches that use preprocessing as part of their AutoML approach.
Since not much research is generally published in this area, in particular, there is only one work that
combines AutoML for clustering with preprocessing, and there is no work that focuses exclusively
on AutoML for preprocessing. Supervised methods are included as well as unsupervised methods.
The weight of the preprocessing part varies significantly across the papers.

3.2.1 Preprocessor Selection for Machine Learning Pipelines

Schoenfeld et al. [SGP+18] conduct an empirical study on a range of preprocessing methods
combined with supervised learning classifiers to evaluate if preprocessing improves the accuracy of
the ML Pipeline.

They select eight preprocessing algorithms: Min-Max-Scaler, Standard-Scaler, Select Percentile,
Principle Component Analysis, Fast Independent Component Analysis, Feature Agglomeration,
Polynomial Features, and Radial Basis Function. As classification algorithms, they test Random
Forest Classifier, Logistic Regression, K-nearest Neighbor Classifier, Perceptron, Support Vector
Machines, and Gaussian Naive Bayes. The hyperparameters are kept to their default values for all
algorithms. As pipeline construction approaches, they choose three-stage pipelines as a baseline
and four-stage pipelines as an experiment. The baseline consists of a missing value imputation
algorithm, one-hot encoding if needed, and a classification algorithm. The experiment pipelines
are built similarly but contain an additional preprocessing step before applying the classifier. All
combinations are tested, resulting in 1152 baseline pipelines of length three and 9216 pipelines of
length four, including the named preprocessing methods [SGP+18]. For the benchmark dataset,
192 datasets from the OpenML [VVBT14] are used. The results show that 79.1% of all benchmark
pipelines have a shorter runtime during training when preprocessing is applied, and 80.2% have a
shorter testing runtime [SGP+18]. The causes of this are the feature and dimensionality reduction
preprocessors. Accuracy-wise, they observe a reduction when applying the preprocessing overall,
with 69.4% of the pipelines performing worse. Still, if only pipelines with the best accuracy are
considered, 91.1% of them contain a preprocessor.

Concerning the meta-learning, Schoenfeld et al. [SGP+18] extract 18 simple, eight statistical, one
information-theoretic, and 14 landmarking meta-features from all datasets. With these meta-features,
a random forest classifier is trained to predict if a given preprocessor improves the accuracy. They
achieve an accuracy of 62.6% with this approach.

30

3.2 AutoML and Meta-Learning considering Preprocessing

3.2.2 Auto-prep

Bilal et al. [BAI+22] provide an interactive and data-driven tool to help data scientists decide
what preprocessing method is effective for a given transformation task within a preprocessing
pipeline. Their approach covers specific areas of preprocessing, namely missing value imputation,
qualitative data encoding, feature selection, feature scaling, and feature extraction. Instead of
generating full pipelines, they choose a step-by-step approach where every preprocessing area is
handled individually and in a fixed order. They approach each area with three steps: show the
user what is wrong with the data (e.g., missing value percentage), evaluate specific methods (e.g.,
mean imputation), and then show all results to the user while suggesting the best one. The user
can overrule the choice and can select the final method per area but can not control the methods
evaluated or the order in which they are evaluated. These methods are mean, median, most frequent,
KNN, and Multiple Imputation for missing values. Qualitative data encoding uses label encoding
and one hot encoding. For feature selection, they use the backward elimination procedure; for
scaling, the user can choose between normalize, standardize, or nothing, and feature extraction wise,
the user can choose if they want to use PCA or not.

Bilal et al. [BAI+22] verify their approach on the most used datasets from different collections
like UCI®, OpenML [VVBT14]’, and Kaggle 8, this results in a total of six classification and five
regression datasets with different characteristics. A detailed list can be found in the original paper
[BAI+22]. As machine learning models, Linear Regression (LR), Support Vector Machines (SVM),
and decision trees are evaluated. They always compare their approach to fully manual preprocessed
data. The results of these algorithms are then measured with a confusion matrix and an f1 score
for the classification algorithms and R Squared, Mean Absolut Error (MAE), Mean Squared Error
(MSE), and Root Mean Squared Error (RMSD) for the regression algorithms.

In most cases, they achieve higher scores with the Auto-prep approach than with manual preprocess-
ing, sometimes similar scores, and on rare occasions, they perform worse. Additionally, they claim
that they make the whole process less tedious, especially for novelist data analysts [BAI+22].

3.2.3 TPE-AutoClust

ElShawi and Sakr [ES22] propose a framework for automated clustering. Their approach consists
of three phases: meta-learning, optimization, and clustering ensemble construction, and tries to find
the optimal solution considering different CVIs, clustering algorithms, and preprocessing methods
[ES22]. The hyperparameters of the clustering and preprocessing methods are optimized as well.

Figure 3.2 shows the general concept and flow of TPE-AutoClust. They are starting with a
meta-feature extraction to find similar datasets, going over to do a warmstart genetic optimization,
and ending with a clustering ensemble that evaluates the solution with three internal CVlIs.

A knowledge base is needed to exploit meta-features and build warmstart configurations. EIShawi
and Sakr [ES22] build them by extracting 28 different meta-features. These are from the areas of
statistics, information theory, and landmarking. For data collection, they choose a combination of

6https://archive.ics.uci.edu/datasets
7openml.org
8https://www.kaggle.com/datasets

31

https://archive.ics.uci.edu/datasets
openml.org
https://www.kaggle.com/datasets

3 Related Work

E Meta-learning and optimization : Clustering ensemble construction phase !
: phases b :
a genetic-based optimization i | optimized solutions optimized solutions optimized solutions :
technique for optimizing tree- : ' based on SC based on CHI based on DBI '

based pipelines based on

. multiple internal CVis . X1 (X3 @
' A i !

well-performing tree-based o
pipelines to warmstart the - x>
optimization o ; T T

A :

N

| similarity between the new |
dataset and the prior ones

consensus |
function

‘ Majority voting: COjj = Cji/(nsc + Ncwi +NDBI)

| meta-features extraction |

1
...i é @ @ optimal data

partition

prior datasets ~ new dataset i

Figure 3.2: TPE-AutoClust Framework (Figure created by [PDK?24])

synthetic and real-world datasets, and their knowledge base contains information from 118 datasets.
To find out which configurations are best, each of the 118 data sets is optimized with a genetic
optimizer, and the results are compared with the external CVI ARI. This is done until the time
budget of 15 hours is exhausted [ES22].

For a new dataset, the 50 most similar datasets of the knowledge base are selected and then further
optimized with a genetic tree-based optimization technique [ES22]. This is done with the Python
package DEAP [FDG+12]. The optimizer runs for every CVI (CHI, DBI, and SC) separately and
minimizes the CVI and the number of operators in the pipeline at the same time. After that, they
select the best five pipelines per CVI and apply a majority voting to obtain the best clustering results
(cf. Figure 3.2).

ElShawi and Sakr [ES22] evaluate this approach on 12 real-world datasets and 15 synthetic datasets
obtained from OpenML [VVBT14]° and the well-known clustering benchmark set!®. As clustering
algorithm, they use K-Means [Mac+67], Affinity Propagation [FDO7], Agglomerative clustering,
DBSCAN [EKSX+96], Mean Shift [FH75], and Spectral clustering, and as preprocessing methods
the use StandardScaler, SimpleImputer, KNNImputer and PCA. They compare their approach to
an approach where they only optimize one CVI and keep the default parameters of the methods,

9openml.org

10https://github. com/deric/clustering-benchmark.

32

openml.org
https://github.com/deric/clustering-benchmark.

3.2 AutoML and Meta-Learning considering Preprocessing

to an exhaustive search approach using grid search, and to other AutoML Frameworks namely
cSmartML by [ELS21] and AutoML4Clust [TFS+21], the latter one is presented in Section 3.1.1.
TPE-AutoClust and the other frameworks were evaluated with a 10- and 30-minute budget.

Out of the 12 synthetic datasets, TPE-AutoClust performs best on 10, while the cSmartML performs
best on two. On real-world datasets, the result is a bit more mixed. For one dataset, several
algorithms achieve an ARI of 1.0 (perfect score). Of the remaining 14, TPE-AutoClust achieves ten
times the best core, two times the exhaustive search is best, and the other two are best handled by
cSmartML [ES22].

3.2.4 Auto-FP

Qi et al. [QPHW24] conduct an experimental study on automated feature preprocessing for tabular
data in the context of supervised learning [QPHW24]. Their main contributions are the indication
of the importance of feature preprocessing, the categorization of optimization algorithms, and
different experiments that focus on the selection of optimization techniques in varying settings.
Finally, they compare their work to existing AutoML approaches.

They choose seven preprocessing methods from the Scikit-learn library [PVG+11], where all the
chosen methods can be added to the group of scaling methods. Namely, these are StandardScaler,
MaxAbsScaler, MinMaxScaler, Normalizer, PowerTransformer, QuantileTransformer, and Binarizer.
To explore whether preprocessing is important in general, they generate 2800 pipelines with a length
of up to four, evaluate them on four datasets with a linear regression model, and compare them to
non-processed results. No information has been given on how the pipelines are constructed and
how the parameters are chosen. They show that there always exists a pipeline that outperforms
the case with no preprocessing, but several preprocessing pipelines perform similarly or even
worse. Secondly, they compare their best-performing pipelines against the AutoML tool Tree-based
Pipeline Optimization (TPOT) [OM16] and can show that they perform better on every dataset as
well while producing longer pipelines, which is an indication that longer pipelines improve the
accuracy [QPHW24].

The second experiment tries to clarify if any meta-features indicate the need for preprocessing. To
evaluate that, they extract 40 meta-features that are used in Auto-Sklearn [FKE+15b] and are from
the areas of basic, statistical, information-theoretic, and landmarking [QPHW24]. The binary label,
which indicates that preprocessing is promising, is created by first evaluating the dataset without
preprocessing (by the authors defined as approach A) and then with 200 randomly selected pipelines
(by the authors defined as approach B). If B — A > 1.5% the label is 1 (preprocessing helps) and if
B — A < —1.5% the label is O (preprocessing does not help) [BAI+22]. With these labels gathered,
they train a decision and try to obtain characteristics or rules that may imply preprocessing or
certain preprocessing methods. However, they could not find any reliable meta-features to predict
the effectiveness of preprocessing [QPHW?24].

The evaluation of the optimization techniques (by Qi et al. [QPHW?24] called search algorithms)
first groups all algorithms into five groups. These are: traditional algorithms like random
search, surrogate-model-based algorithms like SMAC [HHL11], evolution-based algorithms like
tournament evolution [RAHL19], Reinforcement Learning (RL)-based algorithms like REINFORCE
[Wil92], and bandit based algorithms like BHOB [FKH18], this results in 15 optimizers that are

33

3 Related Work

evaluated. They are all evaluated with 45 datasets from an AutoML challenge site'!, Kaggle '2,
and an AutoML Benchmark collection [GLT+19]. As classifiers, they chose Logistic Regression,
XGBoost, and Multi-layer Perceptron. Additionally, different time budgets are defined: 60, 400,
600, 1200, 1800, and 3600.

The first evaluation keeps all default parameters of the preprocessing methods and solely focuses
on which optimization technique works best. For this, all 45 datasets are evaluated with all 15
optimizers. The results show that evaluation-based algorithms generally perform better than others,
while others struggle because of complexity or bad initialization [QPHW?24]. Additionally, no
frequent pattern of preprocessors has been found. The other experiments perform hyperparameter
optimization. They differentiate between a relatively small and big configuration space and two
approaches to initializing the pipelines. The first approach considers every preprocessor with
different parameters as whole different preprocessor and initializes every possible combination, these
are then evaualuted (called one-step by Qi et al. [QPHW24]. The second variant (called two-step by
Qi et al. [QPHW?24)) initializes every preprocessor with a random parameter, evaluates them with a
short time limit (60s), and then repeats these two steps until the budget is exhausted [QPHW?24].
The results show that the one-step approach is better for a small configuration space because it
does more exploration. For a larger configuration space, the two-step approach is more successful
[QPHW24]. They also note that the pipeline initialization needs more investigation. Lastly, they
compare their approach with the existing TPOT [OM16] tool but turn off every optimization in
TPOT that is not preprocessing related. The results are close, but Auto-FP is often better by a small
margin.

3.2.5 Meta-Learning Based Approach for Automated Preprocessing for clustering

Tanvir [Tan22] extends in their master-thesis the existing cSmartML [ELS21] approach with
preprocessing. Their approach consists of the two typical phases for building a knowledge base.
Within the offline phase, they extract meta-features, then apply clustering and calculate a score of
multiple CVIs. They use DEAP [FDG+12] to optimize the clustering algorithm and hyperparameter
selection during this phase. After that, they store the three best-performing configs per dataset.
The optimization step without preprocessing is done to have a baseline and validate whether the
preprocessing improves the accuracy. Secondly, they build preprocessing pipelines of one and
two lengths. So, each preprocessor is applied once to every dataset and every combination of two
preprocessors. Afterwards, the clustering is applied again. Every result is stored in the knowledge
base. In the online phase, the meta-features are extracted from a new dataset, the nearest neighbors
are calculated, and the algorithm and hyperparameters are suggested.

To build the knowledge base, they use 112 datasets from a clustering benchmark collection '*. They
use seven different techniques, preprocessing method-wise: KBin, L1, L2, MinMax, Z-score, mean
imputation, and median imputation.

11ht'cps ://automl.chalearn.org/data
12ht'cps ://www.kaggle.com/datasets
13https://github. com/deric/clustering-benchmark

34

https://automl.chalearn.org/data
https://www.kaggle.com/datasets
https://github.com/deric/clustering-benchmark

3.2 AutoML and Meta-Learning considering Preprocessing

AM4PC

A

[Preprocessing J Clustering
I I
p—
Feature Feature Categorical
ransformation Extraction 9
—
- - - fetieens Specrm’ fetiodes
™y 's
Mini-Batch
- - - K-Moans s K-Pmmtypes
A _
Aggiome@t:ve Mean-Shift
Clustering @ scaiing
Affinit O Discretization
. finity
Birch "
Quantile - Propagation . Dimensionality Reduction
Binarizer Transformer
O Feature Combining
No
Transformation 5 res

Figure 3.3: Methods used by Reed [Ree23] (Figure created by [Ree23])

The result of the offline phase is that only one out of the 112 datasets performs better without
preprocessing being applied. Secondly, they compare their approach directly to cSmartML [ELS21]
and show that the described approach performs better for 10 out of 16 datasets.

3.2.6 Analysis and Integration of Data Preprocessing Steps in AutoML for
clustering

The AutoMLA4Clust [TFS+21] (see Section 3.1.1) is extended with preprocessing by the Bachelor
Thesis of Reed [Ree23]. They extend the work by adding a benchmarking framework, data
formatting steps, preprocessing methods, a categorical clustering algorithm, and an option for
multi-objective optimization and sampling Reed [Ree23].

They use 14 preprocessing and eleven clustering methods, as depicted in Figure 3.3. These methods
are evaluated on synthetic and real-world datasets. To create the synthetic datasets, they use
Scikit-learn [PVG+11] methods make_blobs, make_circles, and make_moons, with a sample size
between 100 and 1000, a feature size from 2 to 50, a standard deviation between 0 and 2, and the

35

3 Related Work

number of clusters are between 2 and 50. Additionally, 14 datasets of the UCI repository '* are
evaluated. Every dataset is cleaned before being handed over to the framework. This includes
imputation of missing values and one-hot encoding or label encoding.

The pipelines are built with the restriction that no more than one preprocessing step can be involved,
and the budget per optimization is limited to 100 loops. The external measure AMI is calculated to
ensure the evaluation reflects the ground truth.

Applied to the synthetic datasets, the approach performs 2.05% worse than without preprocessing
(just AutoMLA4Clust). On the other hand, the real-world dataset benefits significantly from
preprocessing, and the AMI improves by 24.6% on average [Ree23]. They also show that the
preprocessing methods are relatively evenly distributed apart from the binarizer. That suggests an
extensive selection of preprocessing methods is reasonable [Ree23].

3.3 Libraries

Besides the named published research, libraries exist to automate machine learning and sometimes
preprocessing. They often have a paper as their origin but are grouped in this section because
they have matured into widely used libraries. This section introduces them while mentioning their
shortcomings for the described tasks.

3.3.1 Auto-Weka

Auto-Weka is based on Waikato Environment for Knowledge Analysis (WEKA) [HFH+09]
and provides an optimization framework that helps find good algorithms and corresponding
hyperparameters. It only works for classification and regression and provides no preprocessing
option. Internally, Bayesian Optimization is used to find a good configuration for a given dataset.
While WEKA and Auto-Weka have been written in Java, there exists a Python wrapper '°; however,
it does not seem well maintained.

3.3.2 Auto-SKlearn

Auto-SKlearn is based on Scikit-learn Pedregosa et al. [PVG+11]. The library was initially presented
by Feurer et al. [FKE+15a], later Feurer et al. [FEF+22] then presented extensions for version 2.0.
They support classification and regression algorithms and preprocessors. They support more than
20 preprocessors, but not all are applicable for every type of data since some solely focus on text or
categorical data. A complete list can be found in the GitHub Repository '®. All preprocessors can
be divided into two groups: data preprocessors and feature preprocessors. A data preprocessor
can be missing value imputation or one-hot encoding, while a feature preprocessor could PCA.
Again, a complete list is provided here !”. It should be noted that although there can be several data

14ht'cps ://archive.ics.uci.edu/datasets
15 https://github.com/automl/pyautoweka
16ht'cps ://github.com/automl/auto-sklearn/tree/master/autosklearn/pipeline/components
17https ://github.com/automl/auto-sklearn/tree/master/autosklearn/pipeline/components

36

https://archive.ics.uci.edu/datasets
https://github.com/automl/pyautoweka
https://github.com/automl/auto-sklearn/tree/master/autosklearn/pipeline/components
https://github.com/automl/auto-sklearn/tree/master/autosklearn/pipeline/components

3.4 Summary

Automated by TPOT

Feature
Selection

Raw Data

Model
Selection

Model
Validation

Parameter
Optimization

Feature

Data Cleaning Preprocessing

Feature
Construction

Figure 3.4: TPOT Overview (Figure created by [OBUM16])

preprocessors per pipeline, only one feature preprocessor per pipeline is supported. The order in
which the preprocessors are executed can not be changed. Besides the preprocessor, these pipelines
contain a single classifier or a regression algorithm and are optimized with SMAC [LEF+22].

3.3.3 TPOT

TPOT [OBUMI16] is a tree-based genetic optimization approach that supports multiple preprocessors
in combination with classification or regression tasks.

As depicted in Figure 3.4, the automated part can consist of several different preprocessing kinds,
like feature selection, feature preprocessing, and feature construction. After that, they are evaluated
with a model like SVM.

Under the hood, they use the DEAP [FDG+12] library to implement their optimization process.
The result is a highly customizable library that can be altered to specific needs. The most important
decisions that still need to be made are the choices of hyperparameters for the genetic optimizer.

3.4 Summary

No research focuses solely on optimizing preprocessing pipelines for supervised or unsupervised
learning. Existing work contributes to optimizing a model with its corresponding hyperparameters
or building a combination of preprocessing and model optimization. Due to the even larger search
space, related work often contains a limited selection of preprocessing methods and limits the
number of preprocessing steps per pipeline. In addition, there is usually no focus on the order of the
preprocessing steps.

37

4 Challenges of Preprocessing and
Knowledge Base Creation

Finding an exemplary configuration of preprocessing methods and hyperparameters for a given
dataset is hard. Additionally, creating a knowledge base that reflects the effect of preprocessing
includes difficulties. This chapter introduces the challenges that arise during these processes.

4.1 Challenges of Preprocessing

This section describes the challenges that arise during preprocessing in general.

4.1.1 Selection of Preprocessing Methods

There is a wide variety of different preprocessing methods ranging from particular techniques that
are only applied to single-use cases to very popular ones like PCA for dimensionality reduction
[MRO3]. Finding the correct preprocessing methods for a given dataset may be difficult.

4.1.2 Selection of Hyperparameters

Almost every preprocessing method has hyperparameters that change its behavior. The differences in
impact on the method and options available vary a lot. An example of the effects of hyperparameters
is the parameter n_components of PCA. Choosing this parameter too big may result in an almost
unaffected dataset. On the other hand, defining it as too small may result in too much information
loss and worsen the result. The different options include parameters with infinite values like the
tolerance of the internal solver of PCA or only a limited selection, as with PCA, the number of
components to which a data set is reduced. Selecting the best or even well-functioning parameters
is a difficult task, especially for inexperienced users.

4.1.3 Defining the Order of Preprocessing Methods

It is unclear what effects the preprocessing methods have on each other. Therefore, the order of
preprocessing methods is another part that extends the search space. An example is that scaling
and dimensionality reduction might affect each other, but there is no clear evidence of what to do
first. Additionally, there might be some restrictions because some preprocessing methods have to
be executed before others work. An example would be the missing value imputation. Several other
preprocessing methods can not handle missing values, and therefore, this has to be executed first.
This adds another layer of complexity.

39

4 Challenges of Preprocessing and Knowledge Base Creation

4.2 Challenges of Knowledge Base Creation

The challenges 4.1.1, 4.1.2, and 4.1.3 also apply to the knowledge base creation at a larger scale.
Instead of finding the correct set of preprocessing methods with their hyperparameters for a given
dataset, this has to be done for various datasets with different characteristics. Finding a suitable
restriction for a good set of preprocessing methods, hyperparameters, and hyperparameter values is
difficult. Additionally, the following challenges arise:

4.2.1 Risk of Invalid Pipelines

The named problems of challenge 4.1.2 introduce the additional challenge of producing invalid
pipelines in the offline phase of knowledge base creation. The more hyperparameters and
hyperparameter values are added, the higher the potential to create an invalid pipeline. The
first reason for that is the implementation of preprocessing methods from Scikit-learn [PVG+11].
An example is the n_components parameter of PCA. It can be set to mle (Maximum Likelihood
Estimation (MLE)) to use an automatic way presented by Minka [Min0O0] to guess this parameter.
If this is the case, the parameter svd_solver is restricted [PVG+11]. Such restrictions need to be
defined in the logic of the creation process to prevent invalid pipelines. The second reason for
potentially invalid pipelines is the value range of hyperparameters. If, for example, an outlier
removal method is defined with parameters that are too aggressive, the preprocessed datasets may
result in too few samples to cluster.

4.2.2 Challenge of Data Selection
The offline phase must include a variety of datasets to create a knowledge base that provides good

suggestions for preprocessing. It is not clear how different these datasets should be or how many
should be included to achieve a good generalization.

4.2.3 Large Search Space
Challenge 4.1.1, 4.1.2, and 4.1.3, combined results in a huge search space. Considering the
selection of preprocessors, the different hyperparameters, and the order, even a small selection of,

for instance, three different preprocessors, two different hyperparameters with five different values
per hyperparameter results in:

5%=25
possible configurations per preprocessor and considering three unique preprocessors:

(3x25)" = 75"

for a pipeline with a max length of n. If the max length of the pipeline is 3 and the minimal length
is 1, the number of all possible pipelines is:

40

4.2 Challenges of Knowledge Base Creation

3
Z 75" = 427.575

n=1

In reality, there are more preprocessors with more hyperparameters, making an exhaustive search
impossible. Even with more sophisticated optimization algorithms, finding an optimal pipeline is
very hard to accomplish.

4.2.4 Meta-Feature Selection

Different meta-feature groups and within these groups, different meta-features exist (cf. Section
2.4.1). There is no clear indication of which meta-features should be included or excluded to find
the right balance between a good description of the datasets and preprocessing methods and too
many meta-features that extend the calculation process and may blur the resulting representation of
a dataset.

41

5 Knowledge Base Creation for Preprocessing
Pipelines

This chapter presents the general concept, and its sub-parts while addressing the challenges of
chapter 4.

5.1 General Concept

A general concept is needed to research how preprocessing affects the clustering result, what
meta-features could be used to capture these effects, and how a knowledge base could be created.
This conception is introduced in this section, and the single steps are described in detail in the
following sections.

The whole process is divided into five steps to achieve the named objectives while handling the
presented challenges (cf. Chapter 4). These steps are depicted in Figure 5.1. The process starts
with meta-feature selection to form the meta-feature space. This space consists of a selection of
meta-features potentially helpful in achieving the goals (Step 1 Figure 5.1). This step has to come
first because the meta-features are needed in the following steps. The second step is the generation
of data. Afterward, the data is modified to introduce data imperfections in a controlled way (Step 3
Figure 5.1) such that it can be clearly evaluated what meta-features indicate what data imperfections
and which preprocessing pipelines may help reduce these imperfections. Fourthly, the configuration
space is defined. It includes all available preprocessors with their hyperparameters and the possible
values of these hyperparameters. The most significant step is step five. Here are preprocessing
pipelines created and refined during optimization cycles to collect well-functioning pipelines.

As depicted in Figure 5.1, the knowledge base is created in such a way that it can reflect all changes
during the mentioned steps. This creation includes general characteristics of the dataset, such as a
unique ID, the sample size, the number of clusters, the number of features, the standard deviation of
the clusters and what imperfections exist in the data. Additionally, for steps two to five, the change in
the data, the meta-features, and a score is saved, and after step five, the best-performing pipeline.

A clustering algorithm is needed to calculate a score. This work focuses on preprocessing, and a
single clustering algorithm is used. Due to its high popularity and wide use, the decision for the
clustering algorithm is K-Means [Mac+67].

43

5 Knowledge Base Creation for Preprocessing Pipelines

1. Selection of Meta-
Features

3. Adding Data | 4. Selection of Preprocessing 5. Optimization of
Manipulations e Methods ”| Preprocessing Pipelines

A

»| 2. Data Generation

A 4

)
Calculate Scores and |
Meta-Features [~
—
—
Data
Characteristics

Scores

Preprocessing
Pipelines

Meta-
Features

v

Knowledge Base

Figure 5.1: General Approach

5.2 Selection of Meta-Features

This section covers the first step of the general concept (cf. Figure 5.1), the meta-feature selection.
As described in challenge 4.2.4 (cf. Section 4), many different meta-features exist. However, not all
are applicable for clustering analysis. The main exclusion criterion is if the meta-features require
class labels. Additionally, they should be widely used and are already implemented.

Alcobacga et al. [ASR+20] present a paper that aims to standardize meta-feature extraction. This
paper has matured into a library ! that conforms to all requirements and provides many possible
meta-features. A selection from this library is used for this thesis and is presented in Table 5.1. The
names and descriptions are taken from the official documentation 2. The selection mainly focuses
on statistical meta-features and some from the general and complexity groups (cf. Section 2.4.1).
Some examples of these are the number of features for the general group, the standard deviation as a
statistical meta-feature, and the average number of features per dimension for the complexity group.
Other groups like model-based or landmarking are excluded because they either require class labels,
are expensive to compute, have additional hyperparameters, or do not fit the data. Additionally,
one custom meta-feature is added, the indication if missing values exist (has_missing_values).
This meta-feature is needed to identify datasets that contain missing values. The value of this
meta-feature is calculated by checking if NaN or blank spaces occur in a dataset.

1 https://pymfe.readthedocs.io/en/latest/
2https ://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_description.html

44

https://pymfe.readthedocs.io/en/latest/
https://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_description.html

5.3 Data Generation

Group Name Description

General nr_attr Total number of attributes

General nr_inst Number of rows

Statistical cor Absolute value of correlations of distinct dataset column pairs

Statistical cov Absolute value of the covariance of distinct dataset column pairs

Statistical eigenvalues Eigenvalues of the covariance matrix

Statistical iq_range The interquartile range of each attribute

Statistical kurtosis The kurtosis of each attribute

Statistical mad The median absolute deviation

Statistical max Maximum value of each attribute

Statistical mean Mean value of each attribute

Statistical median Median value of each attribute

Statistical min Minimal absolute deviation

Statistical nr_cor_attr Number of distinct highly correlated pair of attributes

Statistical nr_norm Number of attributes normally distributed

Statistical nr_outliers Number of attributes with at least one outlier

Statistical range Range of each attribute

Statistical sd Standard deviation of each attribute

Statistical skewness The skewness of each attribute

Statistical sparsity The sparsity of each attribute

Statistical t_mean The trimmed mean of each attribute

Statistical var The variance of each attribute

Complexity 2 Average number of samples per feature

Complexity t3 Average number of PCA dimensions per points

Complexity t4 Ratio of PCA dimensions to original dimensions

Complexity wg_dist The weighted distance that captures how dense or sparse is the
example distribution.

Other has_missing_values Indication if missing values exists

Table 5.1: Selection of Meta-Features

Most meta-features can be calculated per attribute. However, calculating them per attribute would
result in an inconsistent number of meta-features across different datasets. To prevent this, the mean
and the standard deviation are calculated instead for these meta-features. This restriction does not
apply to nr_attr, nr_inst, nr_cor_attr, nr_outliers, nr_missing_values, t2, t3, and t4 because they are
calculated for the whole dataset by design.

5.3 Data Generation

This section describes the second step of Figure 5.1, the data generation, in more detail. Additionally,
challenge 4.2.2 is addressed. The first decision is to only use synthetic data. There are several
different reasons for this decision. There is no limit regarding data availability. Secondly, the
generation is much more controllable than when using real-world datasets. To control the generation
the characteristics sample size, number of features, and how the data is distributed exist. All this
makes it easier to research the effect and associate certain data imperfections with data characteristics.

45

5 Knowledge Base Creation for Preprocessing Pipelines

[]] ® Cluster0 ® Cluster 0
5.0 1 ° 22®, Cluster 1 1.00 Cluster 1
v ® Cluster2
2571 o 0.75
00{ & @ 0.50
=251 0.25
4 ® 4
-5.0 .00 oo 0.00
1 o ¢ —~0.25
-75 F) .
-10.0 1 ° { . ~0.50
—7‘.5 —5‘.0 —2‘.5 UTO 2t5 5?0 7?5 —1‘.0 —6.5 UTO 015 1?0 1?5 ZtO
(a) Gaussian Distributed Data (b) Moon Shaped Data

Figure 5.2: Different Possible Base Datasets

Another option would be to use benchmark datasets or datasets from collections like the UCI
Machine Learning Repository * or Kaggle #. These datasets are often used in the works presented
in Chapter 3. Still, they would introduce the significant drawback that it is usually unknown what
data imperfections exist, such that the effectiveness of specific preprocessing methods is more
challenging to validate. The second point is that most of these datasets are primarily made for
classification, and the use of clustering analysis might not be without its effects [ZZY19].

Within the area of synthetic data generation, many different approaches exist to generate differently
structured data. Since K-Means uses the Euclidean distance as a disimilarity measure [HTFF09], it
may work differently on certain types of these data.

Depicted in Figure 5.2 are two different types of base data, both generated with Scikit-learn
[PVG+11] Figure 5.2a shows a more Gaussian-distributed dataset (created with make_blobs’), while
the Figure 5.2b shows moon-shaped clusters (created with make_moons®). K-Means is expected
to perform poorly on the moon-shaped datasets due to the structure of the clusters. To evade
this problem, this thesis focuses only on Gaussian-distributed datasets. Within the generation
of Gaussian-distributed datasets, there are still many options for creating different datasets. The
difference is primarily controlled by the data characteristics sample size, number of features, number
of clusters, and the standard deviation of the cluster.

5.3.1 Adding Data Manipulations

The data is manipulated to add data imperfections (cf. Figure 5.1 step 3). This is done to validate
the effect of specific preprocessing methods on certain data characteristics. There are two main
reasons for that. First, Reed [Ree23] shows that automated preprocessing is not that successful on

3ht'cps ://archive.ics.uci.edu/

4ht'cps ://www.kaggle.com/datasets

5ht‘cps ://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
6https ://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

46

https://archive.ics.uci.edu/
https://www.kaggle.com/datasets
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

5.3 Data Generation

(a) Base Data (b) Data With Outliers (c) Skewed Data

Figure 5.3: Visual Comparison of Base Data (a), Data with Outlier (b), and Skewed Data (c)

not modified synthetic data. This is most likely because the synthetic data generation used (same
for Gaussian-distributed data as in this work) is made for clustering and does not include any data
characteristics that require preprocessing. Secondly, other related work mainly uses real-world
datasets from various benchmark collections with the described drawbacks (cf. Section 5.3). To
start with this new approach, three data manipulations are chosen: removing data to create missing
values, adding outliers, and skewing parts of the data (cf. Figure 5.3).

Creating Missing Values: Missing values are created by randomly removing a percentage of the
data. The only restriction is that no empty instances (rows) are made, which means eliminating all
features of a data row is impossible.

Adding Outlier: The outlier generation is oriented on the approaches presented in the survey
of Steinbuss and Bohm [SB21]. The generated data of step one (cf. Section 5.3) is used to
approximate a hypersphere around the center of every cluster containing all points of the respective
cluster. Afterward, the range for every feature is calculated and extended by 20%. Random
points are generated within this extended range and the hypersphere boundary. The idea behind
this is that outliers appear outside a cluster but not too far away from the real points. Figure
5.3b depicts the result, including the spheres. Additionally, ground truth labels are needed for
evaluation but are unavailable for the newly generated outliers. To resolve this, a KNN-Classifier
with k£ = 5 is applied on every outlier to obtain the labels based on the closest points around. For
this, the K-Neighbor Classifier’ of Scikit-learn [PVG+11] is used and all parameters besides the
n_neighbors= 5 parameter are kept to their default values.

Skewed Data: The data is skewed in three ways, but always for one feature per dataset. It is only
done for one feature because the change of this feature is significant, and introducing this change to
many features could make the data too obscure. All data points of a feature x can be multiplied with
a factor z (x X z), squared x?, or exponentially transformed e*. A dataset with a squared feature is
depicted in 5.3c.

All manipulation procedures are implemented with different options about the strength of the change
in the data. These options are presented in Table 5.2

7https ://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

47

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

5 Knowledge Base Creation for Preprocessing Pipelines

Paramater Description Possible Values

p_missing_values The percentage that is removed from {0%, 10%, 20%, 30%}
the dataset

p_outlier The percentage of outliers relative to {0%, 10%, 20%, 30%}

the sample size
skewness method The method that is applied to a fea- factor (z = 10), squared (sqaure),
ture exponential (exp)

Table 5.2: Values of the Data Manipulation Methods

5.4 Selection of Preprocessing Methods

This work’s approach to selecting preprocessing methods is to evaluate many different well-known
and widely used preprocessing methods. It is step four of the general concept (cf. Figure 5.1).
The focus on this kind of method is justified by the described challenges 4.1.1 and 4.1.2, and the
reason that current research about automated preprocessing for clustering is limited. Therefore,
which methods may be more suitable than others is not yet well known. The process of selecting
actual methods can be divided into three steps. First, a classification of the preprocessing method is
introduced. The popular techniques are researched and classified, this selection is further reduced
to a reasonable amount of methods, and lastly, the parameter ranges for the hyperparameter space
are defined.

A classification of preprocessing methods that clearly separates them into distinguishable groups
does not exist. Throughout the literature, different names exist for similar preprocessing groups,
or some groups of a definitions are contained in the definition of others. An example of this is
Han et al. [HPT22] include normalization within data transformation where Garcia et al. [GLH15]
consider them as separate groups of preprocessing methods. Oriented on Garcia et al. [GLH15],
Han et al. [HPT22], the Scikit-learn library [PVG+11], and the data manipulation methods (cf.
Section 5.3.1), four groups have been identified that are relevant for this thesis. These are missing
value imputation, normalization (sometimes called scaling), outlier removal, and dimensionality
reduction. The relevance of the first three groups is derived from the created data imperfections (cf.
Section 5.3.1), while the dimensionality reduction is used due to its general capability of reducing
complexity and may be runtime and being able to reduce outliers in some cases [NH19].

The second decision is to focus on widely used preprocessing methods already implemented. This
limits the risk of errors or inefficient implementations. Scikit-learn [PVG+11] provides an extensive
collection of preprocessing methods for various use cases and is used by many people. One
indication is the 58.100 stars on GitHub 3.

The preprocessing methods are then selected based on three criteria:
1. Applicable for unsupervised learning

2. Fit in one of the mentioned groups

8https://github. com/scikit-learn/scikit-learn

48

https://github.com/scikit-learn/scikit-learn

5.4 Selection of Preprocessing Methods

Group Method Parameter Options Source besides Scikit-learn
Missing Value Imputation Mean None

Missing Value Imputation Median None

Missing Value Imputation Most Frequent None

Missing Value Imputation KNN-Imputer {n_neighbors: [1, 16)} Troyanskaya et al. [TCS+01]
Outlier Removal LocalOutlierFactor {p_neighbors*: {0.01, 0.05, 0.1, 0.2, 0.3, 0.5}, Breunig et al. [BKNS00]

algorithm: {auto, ball_tree, kd_tree, brute},

p_leaf_size: {1, 5, 10, 20, 30, 50},

p: {1,2,5,10},

contamination: {auto, 0.05, 0.1, 0.2, 0.3, 0.4}
Outlier Removal IsolationForest {n_estimators: {10,50,100,200,500}, Liu et al. [LTZ12]

max_features: {2, 5, 10, 25, 35},

bootstrap: {True, False},

warm_start: {True, False}
Outlier Removal OneClassSVM {kernel: {linear, poly, rbf, sigmoid},

gamma: {scale, auto},

nu: {0.3,0.5,0.7},

shrinking: {True, False},

max_iter: {100, 500, 1000}

Outlier Removal EllipticEnvelope {assume_centered: {True, False}, Rousseeuw and Driessen
contamination: {0.1,0.2,0.3,0.4, 0.5} [RD99]
Outlier Removal SGDOneClassSVM {learning_rate: {constant, optimal, invscaling, adaptive},

warm_start: {True, False},

nu: {0.3,0.5,0.7},

max_iter: {100, 500, 1000},

eta0: {0.1,0.2,0.3}
Scaling PowerTransformer {standardize: {True, False} Yeo and Johnson [YJOO]
Scaling RobustScaler {with_centering: {True, False},

with_scaling: {True, False},

with_variance: {True, False}

Scaling StandardScaler {with_mean: {True, False},
with_std: {True, False}

Scaling MinMaxScaler {None}

Scaling QuantileTransformer {p_quantiles: {0.3,0.5,0.7, 1},
output_distribution: {uniform, normal}

Scaling MaxAbsScaler {None}

Dimensionality Reduction PCA {n_components: special treatment, Minka [Min00], Tipping and
whiten: {True, False}, Bishop [TB99], and Halko et
svd_solver: {auto, full, arpack, randomized}, al. [HMT11]

power_iteration_normalizer: {auto,QR, LU},
max_iter: {100, 500, 1000}

Dimensionality Reduction GaussianRandomProjection {n_components: special treatment,
eps: {0.01,0.1,0.3}

Dimensionality Reduction LocallyLinearEmbedding {n_components: special treatment, Roweis and Saul [RS00],
p_neighbors*: {0.01, 0.05, 0.1}, Donoho and Grimes [DG03],
eigensolver: {auto, arpack, dense}, Zhang and Wang [ZWO06],
max_iter: {50, 100, 500, 1000}, and Zhang and Zha [ZZ04]

method: {standard, hessian, modified, ltsa},
neighbors_algorithm: {auto, brute, kd_tree, ball_tree}

Table 5.3: Preprocessing Methods and their Hyperparameters

3. Are promising for the type of synthetic data

This results in four missing value imputation methods, five outlier removal methods, six scaling
methods, and three-dimensionality reduction methods. Most of these methods come with additional
hyperparameters. The possible configurations for them are oriented on the default values. Some
hyperparameters are not changed to prevent the configuration space from exploding. The unchanged
parameters are expected to have a low impact or one where an auto value is available, which means
a good parameter can be found automatically. The auto means an algorithm can adaptively choose a
promising value for a given dataset. A detailed list of the selected methods, their parameter options,
and the source is provided in Table 5.3. The source is the Scikit-learn documentation and, in some
cases, a reference paper mentioned in the documentation.

All parameters marked with an * are changed from absolute to relative values. This means instead of
an absolute number, a percentage is defined. This is more adaptive and fits some parameters better.
An example is the LocalOutlierFactor with the parameter n_neighbors. In Table 5.3 p_neighbors is
given, which would result in 1000 - 0.1 = 100 n_neighbors for a dataset with n_samples = 1000 and
the value 0.1 for p_neighbors.

49

5 Knowledge Base Creation for Preprocessing Pipelines

Secondly, all dimensionality reduction algorithms have a special treatment for the parameter
n_components. This parameter is highly sensitive to the data characteristic n_features and can not
be higher than it. Otherwise, the algorithms would crash. That is why this parameter is always
chosen dependently on the characteristic n_features. Please refer to section 5.5.1 for a detailed
definition.

5.5 Optimization of Preprocessing Pipelines

The fifth step of the concept is the optimization (cf. Figure 5.1) and addresses challenges 4.1.3,
4.2.1, and 4.2.3. A genetic optimizer is used to find well-performing pipelines. Some terms have to
be mapped from the general terms of genetic programming (cf. Section 2.3) to transfer the concept
of evolutionary optimization to the task of preprocessing pipeline optimization. An individual
translates to a preprocessing pipeline. Such a pipeline must have at least one preprocessing method.
An individual’s genes are the methods, parameters, and the order in which they are executed. A
population consists of multiple individuals and goes through the typical steps of an evolutionary
algorithm. These are initialization, evaluation, crossover, mutation, and selection [SDB+93]. Due
to the general tasks of the thesis, all steps except the selection process can not be chosen from
out-of-the-box concepts, and they are designed and implemented customarily. This is a standard
approach in genetic programming since, at its core, it is a framework or collection of concepts. The
selection process is the tournament selection (cf. Section 2.3.1).

A particular consideration must be made concerning missing values since most preprocessing
methods can not handle missing values. Therefore, these are optimized in a separate optimization
loop. This means if a dataset contains missing values, a smaller optimization process is executed to
impute them, and afterward, they are given to the main optimization. Both procedures contain the
same steps but differ in mutation and initialization behavior. A pseudocode of the main procedure
is provided with Algorithm 5.1. The optimizer itself has parameters. These are the number of
generations (n_generations), the population size (population_size), the probability that an individual
is selected for a mutation (MUTPB), the probability that an individual is chosen for crossover
(CXPB), and the probability that an attribute is mutated within the mutation process (INDPB). Due
to the already large search space (cf. Table 5.3), these values are kept unchanged and are selected
by orienting on existing work and some smaller tests.

5.5.1 Initialization

The primary approach to initializing pipelines (Line 2) is based on data characteristics. Depending
on these, the pipeline is created with random preprocessing methods and parameters from the groups
of preprocessing methods that address the data characteristic. This means that besides the fact that
a dataset that contains missing values has to be optimized with missing value imputation, a dataset
that contains outliers is initialized with an outlier removal method. A dataset that contains outliers
and is skewed is initialized with a pipeline of length two, containing an outlier and a normalization
method. Which methods out of the groups, which parameters, and the order in which they are
executed are generated randomly based on the configuration space CS (cf. Table 5.3) with some
restrictions. Some parameters are dependent on the data characteristics. For example, the parameter

50

5.5 Optimization of Preprocessing Pipelines

Algorithm 5.1 Optimization Process

1: procedure Optimize(data, n_generations, population_size, MUTB, INDPB)
2 population « In1T_PopruLaTiON(data, population_size)

3 fitness «— EvaLuaTE(population)

4: while g < n_generations and max(fitness) < 1 do

5: for child;, child, € population, child; # child, do

6 if random(0, 1) < CXPB then Crossover(child, child,)
7 end if

8 end for

9: for child € population do
10 if random(0, 1) < MUTPB then MuTtaTe(child)
11: end if
12: end for
13: fitness « UppaTe_Frrness(population)
14: population «— SeLEcT(population, fitness)
15: end while

16: end procedure

max_features of the method IsolationForest can not be larger than the maximal features of the
dataset. These parameters are chosen based on data characteristics such as the number of features
to prevent such invalid pipelines.

The fitness of a population (Line 3) is evaluated by calculating the score for every pipeline, resulting
in a list. As a score, the ARI is used because it is more suited to balanced clusters than other
measures like the AMI or Normalized Mutal Information Score (NMI) [RVBV16]. For a detailed
description of the ARI, compare section 2.2.1. ARI has a range from —0.5 to one, where one
indicates perfect clustering. Thus, the general optimization process aims to maximize the fitness of
a population.

5.5.2 Mutation

The mutation differs more between the two cases of missing values or no missing values. Compare
the Algorithm 5.2 for the pseudocode of the main mutation.

During the missing value optimization, a pipeline can only consist of one method. Therefore, only
the method or parameters can mutate, not the order. Additionally, a method cannot be removed
or added to a pipeline. It can only be changed. During the main optimization process, more
mutations are possible. Three key mutations are derived from the characteristics of a preprocessing
pipeline. These are the mutations of the methods, the parameters, and the execution order. To
avoid overcomplicating the process, this work restricts itself to one of these options per mutation
step, and the probability for each option is equally distributed. Other options are available, like
letting multiple mutations happen per step, but this has the risk of introducing too much change per
mutation and, therefore, eliminating promising pipelines.

51

5 Knowledge Base Creation for Preprocessing Pipelines

Algorithm 5.2 Mutation

1: procedure Murate(individual, hall_of_fame)
mutation_objective « seLeEcT_osecTiveE({method, parameters, order})

2
3 /| Can either be, method, parameters, or order
4 if mutation_objective == method then

5 method_mutation_objective « seLeEct_ossective({add, change, remove})

6: // Can either be, add, remove, or change
7: if method_mutation_objective == add then

8 new_method « ranpoM_METHOD(M \ current_methods)

9 parameters «— GET_BEST_PARAMETERS(new_method, hall_of_fame)

10: if parameters == @ then

11: parameters « GET_RANDOM_PARAMETERS(new_method)
12: end if

13: individual «<— new_method, paramaters

14: end if

15: if method_mutation_objective == change then

16: current_method « ranpoMm_METHOD(individual)

17: new_method < ranpom_MmETHOD(M \ current_methods)
18: parameters «— GET_BEST_PARAMETERS(new_method, hall_of_fame)
19: if parameters == @ then

20: parameters «<— GET_RANDOM_PARAMETERS(new_method)
21: end if

22: individual « ExcHAaNGE_METHOD(new_method, curren_method)
23: end if

24: if method_mutation_objective == remove then

25: if pipeline_length > 1 then

26: current_method « ranpom_mETHOD(individual)

27: individual « removE_METHOD(individual, current_method)
28: end if

29: end if

30: end if

31: if mutation_objective == paramater then

32: for paramater € individual.paramaters do

33: if random(0, 1) < INDPB then

34: parameter <« MUTATE_PARAMETER(H P)

35: end if

36: end for

37: end if

38: if mutation_objective == order then

39: if pipeline_length > 1 then

40: method; < rRaNnpom_mETHOD(individual)

41: method, < ranpom_METHOD(individual \ method;)

42: individual < swap_mEeTHODS(method;, method,)

43: end if

44. end if

45: end procedure

The method mutation (Lines 4-31) is again split into different mutation options: adding a method,
removing a method, or replacing a method with another. The only constraint when adding a method
is that the method is not currently present in the pipeline (Line 8). The parameters of the newly
added method are taken from the top 50 pipelines (Hall of Fame, Line 18). If this method does not
occur within the Hall of Fame, the parameters are initialized randomly from the hyperparameter
space (Line 20). Exchanging methods (Lines 15-23) follow the same constraints and logic as adding
a method. The last part is removing a method (Lines 24-28). Here is the only constraint a pipeline
can mutate to an empty pipeline.

The parameter mutation iterates over every parameter of the pipelines and replaces with the
probability INDPB (Lines 32-37). The replacement is randomly drawn from the corresponding part
of hyperparameter (cf. Table 5.3).

52

5.6 Summary

Algorithm 5.3 Crossover
1: procedure Crossover(individual, individual,)
2 methods_in_both « methods € individual; N individual,
3 for method € methods_in_both do
4 for parameter € method do
5 if random(0, 1) < CXPB then
6: individualy, individual, < swap_parRaMETERs(individual;, individual,, parameter)
7 end if
8 end for
9 end for
10: end procedure

The last option is swapping two methods (Lines 38-44) of the existing pipeline to mutate the order.
Again, this is not possible if the pipeline has the length 1.

5.5.3 Crossover

Due to the more complex mutation step and the many different options that can happen during the
mutation, the crossover step is kept relatively simple (cf. Algorithm 5.3). The main restriction is that
only parameters can be crossed, not whole methods. To prevent invalid pipelines, only parameters
of the same methods are swapped. To do this, a list of methods that occur in both pipelines is first
created (Line 2), and then each parameter is exchanged with the probability CXPB (Lines 3-9).

5.6 Summary

This section serves as a brief summary of the general concept and decisions.

Synthetic data is generated to evaluate the effect of preprocessing methods on clustering analysis.
This synthetic data is further modified to introduce imperfections like outliers or missing values.
This datasets are then preprocessed. Since it is tough to find good working pipelines, a genetic
optimization approach is used to refine existing pipelines. During this process, the pipelines
are evaluated by clustering with K-Means and calculating the ARI. The changes arising from
introducing data imperfections and the preprocessing optimization are captured by calculating a set
of meta-features. All this information, like the data characteristics, the meta-features, the scores,
and the best-performing pipelines, is stored in a knowledge base to provide the possibility of further
evaluation.

53

6 Evaluation

This chapter evaluates the presented concept of chapter 5. The goals of this evaluation are to find
out what effects the preprocessing optimization has concerning the data manipulation, how the
optimizer finds promising preprocessing pipelines, and if the data manipulations can be reflected
with meta-features.

The following chapter is structured as follows: Section 6.1 provides an overview about the
implementation and the setup of the experiments. Section 6.2 covers the effects of the data
manipulation and primarily how the clustering results are changed after the application of the
best-performing pipeline of the optimization. In Section 6.3, the optimization process is further
analyzed in terms of pipeline evolution. Section 6.4 compares the achieved results of Section 6.2
against two baselines. In Section 6.5, it is investigated if the order of preprocessors is relevant
in terms of the achieved score. Section 6.6 analyzes if the data manipulation is reflected in the
meta-features and what meta-features are necessary for this type of data. After that, the runtime of
the different datasets is evaluated in Section 6.7, and Section 6.8 concludes with a summary.

Throughout all sections, the preprocessors are evaluated with K-Means clustering and the ARI
as an accuracy measure. Since optimizing a Clustering Algorithm is beyond the scope of this
work, the true number of clusters is provided to K-Means, and all other parameters are kept to their
default values (cf. Scikit-learn [PVG+11]"). The datasets containing missing values need to be
handled specially. The missing values have to be imputed before other preprocessing methods, or
clustering can be applied. Therefore, the missing value imputation is dealt with in a separate small
optimization called the missing value imputation optimization before the other optimization process
(called the main optimization) starts. For a more detailed explanation, refer to Section 5.5.

6.1 Implementation and Setup

This section covers the used software (cf. 6.1.1), the characteristics of the hardware on which the
experiments were performed (cf. 6.1.2), the data characteristics of the evaluated datasets (cf. 6.1.3),
and the parameters of the optimization (cf. 6.1.4).

6.1.1 Software

The entire concept is implemented with Python [VD09]? in version 3.11.8. Additionally, some
packages are used to facilitate the implementation. The packages, the version of the package, and
why they are used are listed in Table 6.1

1 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
2https ://www.python.org/

55

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://www.python.org/

6 Evaluation

Library Version Usage

Scikit-learn [PVG+11]? 1.2.2 Used for the data generation, preprocessing, cluster-
ing, and score calculation

SciPy [VGO+20]* 1.11.4 Used for outlier generation

DEAP [FDG+12]° 1.4.1 Evolutionary computation framework used for the
optimization

NumPy [HMW+20]° 1.26.1 Used for basic calculations (like the mean) and for

generating random numbers
Jupyter Notebook [KRP+16] 7 7.0.8 Used for quick testing and the evaluation of the

experiments
Matplotlib [Hun07] 3.8.0 Used for generating graphics
Pandas [McK10] ° 2.1.4 Used for general data preprocessing and evaluation

Table 6.1: Libraries Used in the Implementation

6.1.2 Hardware

The evaluations are performed on different machines with the following hardware configurations
and operating systems:

1. Server 1:

* Processor: AMD EPYC 7763

e Threads: 75 (more available but not used)

* RAM: 1 Terabyte

* QOperating System: Ubuntu 20.04.6 LTS
2. Server 2:

* Processor: AMD Ryzen 5 3600

* Threads: 16 Threads

* RAM: 64 Gigabyte

* Operating System: Ubuntu 22.04.4 LTS
3. Virtual Machine

3https://scikit—learn.org/stable/index.html
4https://scipy.org/
5https://deap.readthedocs.io/en/master/
6https://numpylorg/

7https://jupyter.org/
8https://matplotlib,org/stable/
9https://pandas.pydata.org/

56

https://scikit-learn.org/stable/index.html
https://scipy.org/
https://deap.readthedocs.io/en/master/
https://numpy.org/
https://jupyter.org/
https://matplotlib.org/stable/
https://pandas.pydata.org/

6.1 Implementation and Setup

* Processor: AMD EPIC Milan

* Threads: 8 Threads

RAM: 32 Gigabyte

* Operating System: 22.04.1 LTS.

6.1.3 Datasets

The Scitkit-learn method make_blobs!? is used to generate the basis of the synthetic data. This
method generates Gaussian distributed data that can be varied with parameters. These parameters
are the sample size (n_samples), the number of features (n_features), the number of clusters
(centers), and the standard deviation of the cluster (cluster_std). The parameter ranges for the
data generation of this work are:

¢ Number of Samples: {500, 1000, 5000}
e Number of Features: {10, 30,50}

¢ Number of Clusters: {10, 30,50}

¢ Cluster Std: {3,5,10}

These generated datasets are further manipulated to add data imperfections (cf. Section 5.3.1). The
values of these manipulations are:

» Missing Values: {0%, 10%, 20%, 30%}
* QOutlier: {0%, 10%, 20%, 30%}
¢ Scaling: {none, factor (= 10), square, exp}

With these parameter ranges defined, the datasets are created such that every combination of all
parameters exists. The names for these datasets, further used in this evaluation, are derived from
the data manipulations they contain. Overall, this results in the data manipulation groups described
in Table 6.2.

10https ://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html

57

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html

6 Evaluation

Name Description Number of Datasets
N Contains no data imperfections 81

M Has missing values 243

o Contains outlier 243

S Contains skewed data 243

S+0 Contains skewed data and outlier 729

M+O Has missing values and contains outlier 729

M+S Has missing values and contains skewed data 729
M+S+0O Has missing values, contains skewed data and outlier 2187

Total 5184

Table 6.2: Datasets of the Evaluation

6.1.4 Paramater of the Optimization

DEAP [FDG+12] is used for the implementation of the evolutionary optimization. It has parameters
that can influence the general behavior (cf. 5.5). This evaluation keeps these parameters constant to
not further increase the search space. Two differences must be made between the missing value and
the main optimization. Fewer generations are executed since the missing value optimization has a
smaller configuration space. The parameter values are as follows:

Paramater Description Value

Generations Missing Value Optimization The number of generations executed per 10
dataset

Generations Main Optimization The number of generations executed per 50
dataset

Population Size The size of the population (number of initial 20
pipelines)

MUTBP The probability that an individual (a 20%
pipeline) is selected for a mutation

CXPB The probability that an individual (a 50%
pipeline) is chosen for crossover

INDPB The probability that an attribute (hyperpa- 70%
rameter of a preprocessor method) is mu-
tated within the mutation process

Tournsize The size of the tournament of the tourna- 5

ment selection process

Table 6.3: Parameters of the Optimization-Implementation

Additionally, a time budget of ten minutes per dataset is defined to prevent pipelines from running
too long. If this time limit is reached, the current generation can finish its optimization, and

afterward, the optimization is stopped.

58

6.2 Evaluation of Preprocessing Effects

There is no general rule of thumb or standard values for the parameters mentioned, as they depend
heavily on how the mutation and crossing are implemented. However, a broad evaluation of
these parameters is beyond the scope of this thesis. Therefore, different values were tested with a
small part of the datasets, and the above-mentioned parameters turned out to be suitable for this
approach.

6.2 Evaluation of Preprocessing Effects

This section covers the overall effect of the preprocessing pipeline optimization, including measuring
if the processing improves the clustering score, if there are any differences between different data
manipulations in terms of the achieved score, and if the scores are consistent. To accurately measure
the impact of preprocessing, K-Means clustering is applied, and the quality of the result is measured
with the ARI. This is done for every dataset once before any preprocessing is applied to achieve
a result without preprocessing and during optimization to assess the fitness of the preprocessing
pipelines. Afterward, the best-performing pipeline per dataset is considered to measure the effect
of the preprocessing optimization. It is impossible to cluster datasets containing missing values
because they can not be executed with K-Means. To still get a score, all missing values are replaced
with 0.

6.2.1 Evaluation of Optimization Results

This part describes the general effect of the preprocessing optimization.

0.8 A1

0.6

0.4 A

0.2 1

0.0 A J_

ARI: Not Preprocessed ARI: Preprocessed

Figure 6.1: ARI Not Preprocessed (Left), and Preprocessed (right)

59

6 Evaluation

Figure 6.1 shows the ARI before the optimization is started (left boxplot) in comparison to the data
where preprocessing pipelines are applied (right).

Key Finding: Preprocessing leads to a significant ARI increase.

Before optimization, a median ARI of 0.08 is achieved (cf. Figure 6.1). After the optimization, this
improves significantly to a median of 0.89. The high increase indicates that the optimization is able
to find well-performing pipelines and is able to significantly reduce the effect of the applied data
manipulations.

Table 6.4 shows the median ARI per data manipulation group, where column two shows the median
ARI before optimization, columns three and four the ARI after the missing value imputation
optimization (MVI) and the difference to the median ARI before preprocessing, column five, six
and seven the median ARI after the main optimization, the difference to the ARI after the missing
value imputation optimization and the difference to median ARI before preprocessing. Only the
data manipulations groups M, M+S, M+0, and M+S+O contain missing values and run through
both optimizations, one for the missing value imputation and one for the rest (cf. Section 5.5). The
rest is only preprocessed with the main optimization. Therefore, there are no median ARI and
difference after the missing value imputation (columns three and four) and no difference compared
to the missing value imputation (column 6). This is indicated by a in the respective cells.

Data Before After Missing After
Manipulations Preprocessing Value Imputation (MVI) Preprocessing
Name Median Median Difference) Median ARI Difference Difference -
ARI ARI (vs. Before Preprocessing) (vs. MVI) (vs. Before Preprocessing)
N 0.87 - - 0.97 - 0.1
M 0.75 0.87 0.12 0.89 0.02 0.14
S 0.05 - - 0.96 - 0.91
(6] 0.68 - - 0.96 - 0.28
M+S 0.04 0.05 0.01 0.84 0.79 0.8
M+O 0.52 0.64 0.12 0.88 0.24 0.36
S+0O 0.04 - - 0.92 - 0.88
M+S+0 0.04 0.07 0.03 0.83 0.76 0.79

Table 6.4: ARI Change During Preprocessing per Data Manipulation Group

Key Finding: Skewed datasets achieve the lowest score without preprocessing optimization,
and datasets without manipulation achieve the best.

The data manipulation group without imperfections (N) has overall the best results without
preprocessing with a median ARI of 0.87, while the preprocessing for the M, O, and M+0O datasets
performs worse with a median ARI between 0.52 and 0.75. All data manipulation groups containing
skewed data (S, M+S, S+0O, M+S+0) perform significantly worse with a median ARI between
0.04 and 0.05. Within the data manipulation groups, the percentage of outliers, the percentage of
missing values, and the type of skewed data influence the ARI as expected. For the missing values
and outliers, the higher the value is, the worse the clustering result. For example, preprocessing for
datasets with 30% outliers performs worse than for those with 10%. Additionally, preprocessing for
datasets that are skewed with the parameter exp performs significantly worse than datasets skewed
with the other methods.

60

6.2 Evaluation of Preprocessing Effects

Key Finding: Skewed datasets benefit the most from preprocessing, and datasets without
imperfection the least.

The effects are inverse to the effects described without optimization. The group without data
manipulations (N) improves only by 0.1 to a median ARI of 0.97, and the group only containing
missing values (M) increases by 0.14. This is most likely because the ARI is already high before
preprocessing, a constant replacement of missing values is good enough (used to calculate the ARI
of not preprocessed data with missing values), or the datasets without imperfections do not benefit
from the preprocessing methods. The most significant increase of the ARI can be observed by the
scaling datasets (S, M+S, S+0, M+S+0) and ranges between 0.79 and 0.91. The datasets containing
outliers but are not skewed (O, M+0) have a moderate increase between 0.28 and 0.36.

Key Finding: Datasets containing missing values benefit more from the main optimization
compared to the missing value imputation optimization. One Exception is the M data group.

All data manipulation groups that contain missing values (M, M+S, M+0O, M+S+0) run through
two optimizations, one for the missing value imputation and one for the rest (cf. Section 5.5).
Within these two optimizations, the missing value imputation contributes the smaller portion with
an improvement between 0.01 and 0.12, while the main optimization provides the more significant
part for the two groups M+0O and M+S+0O with an improvement between 0.24 (M+0O) and 0.76
(M+S+0). The exception is dataset M, where the main optimization only contributes a small part
of 0.02. The reason for the minor improvement by the missing value imputation part is that the
comparison is made against a constant replacement with zero. Therefore, an imputation has already
happened, even if it might not be a good one. The difficulties for the clustering algorithm arise more
through skewed data and outliers than missing values (replaced by a constant). An influence for the
poorer scores of O and M+O compared to S and M+S might be that the outliers are given class
labels of their nearest neighbors (cf. Section 5.3.1). This might favor the clustering algorithm in
such a way that they are added to the closest cluster and, if no close clusters are nearby, are clustered
correctly.

Key Finding: Datasets that have high clustering results without preprocessing are from the N
and M data manipulation group and have a smaller number of clusters and a smaller cluster
standard deviation compared to others.

There are still datasets that can be clustered quite well with an ARI > 0.8 (cf. Figure 6.1 left).
These are mainly datasets with a low number of clusters (10), a low cluster standard deviation (3-5),
and either no data imperfections (N) or only missing values (M). The reasons for the good results
without preprocessing are most likely that the basic data generation is designed for clustering and
K-means works well as expected with these datasets, that constant replacement by zero works well
enough for some missing values datasets, and that the small number of clusters and the low standard
deviation compensate for the introduced data manipulations.

6.2.2 Best and Worst Scores

This section covers those datasets that achieve a particular high or low ARI to investigate whether
there are manipulation groups that benefit particularly much or particularly little from preprocessing.
To make the numbers more comparable, they are provided in percent, where 100% is the number

61

6 Evaluation

of all datasets of the respecting manipulation (cf. Section 6.1.3). For example, 100% of the M
manipulation group are 243 datasets. If an overall comparison is made, the 100% is the sum of all
manipulation groups, which is 5184.

Key Finding: 17.28% of the preprocessing pipelines achieve an perfect ARI score of 1 and
7.21% a ARIT if <= 0.1

Overall, a perfect score of 1.0 on the ARI is achieved 896 times, which constitutes 17.28% of all
datasets (5184), and a ARI of <= 0.1 is achieved 374 times (7.21%). This shows that, in general,
more datasets reach a perfect score than there are ones that achieve a very bad one. The datasets have
similar characteristics to the ones that achieve good or bad clustering results without preprocessing
(cf. Section 6.2.1). Therefore, the reason lies most likely within the data characteristics.

Figure 6.2 shows the percentage per group for achieving a perfect score (6.2a), achieving a score
below or equal to 0.1 (6.2b) after the missing value imputation, and after the main optimization
(6.2¢).

60

501

40

1 27.16%

Perfect ARI (%)

750/22,63"020 03%
.75% .03% 0
16.74"/0:'"3'66/u

N M S o MS MO SO MSO
Data Manipulation Groups

(a) Percentage of Datasets that Achieve a Perfect
ARI

60.63% 58.66% 60 -
50 A
S £ a0
— —
o o
v v 30
z z
< <
20
101 10.29% 9.29%
3.70%4.12%%35% 4.25%4.94%
ol 1.23%
M MS MO MSO N M S [e] MS MO SO MSO
Data Manipulation Groups Data Manipulation Groups
(b) Percentage of Datasets that Have an ARI (c) Percentage of Datasets that Have an ARI <=
<= 0.1 After Missing Value Imputation 0.1 After Main Optimization

Figure 6.2: Percentage of datasets that achieve a perfect score (a), a score below 0.1 after the
missing value imputation optimization (b), and after the main optimization (c)

62

6.2 Evaluation of Preprocessing Effects

Key Finding: Datasets with perfect results after preprocessing are mostly datasets from the
data manipulation groups N and M

The datasets without data manipulations (N) achieve the highest rate of perfect results with
27.16%, followed by the outlier manipulation group (O) with 22.63%. Data manipulation groups S,
M+S, M+0, S+O M+S+0 achieve between 19.75% and 14.31%, where M+S+O has the smallest
percentage of perfect ARI scores (cf. Figure 6.2a). The missing value imputation optimization of
the groups M+S, M+0, and M+S+O do not produce any ARI of 1.0. The good scores in N are
probably because these datasets do not contain any imperfections. The reasons for that are most
likely similar to those mentioned before. The preprocessing for the N dataset performs well because
it has no data imperfections and is easier to cluster. The M dataset is firstly well immutable and
secondly compared against a constant replacement. The fact that the missing value imputation is
not able to produce a perfect score if other data imperfections exist (M+S, M+0, M+S+0) indicates
that every data flaw contributes to the clustering result.

There is also a difference in data characteristics: datasets with fewer clusters, a high number of
features, and a small standard deviation per cluster tend to perform better than others. This is most
likely because a smaller standard deviation leads to fewer overlapping clusters, and fewer clusters,
in general, leave more points per cluster and make it, therefore, easier to find by K-Means.

Key Finding: Datasets with an ARI <= 0.1 after preprocessing are mostly datasets that are
skewed.

The data manipulation group with the largest number of worse-performing datasets are the M+S
(10.29%) and M+S+0 (9.82%) groups (cf. Figure 6.2c. For the M+S dataset, the cause may be that
some skewed data is not well imputed, and then the scaling afterward can further improve it. That
some data from the M+S+O manipulation group do not perform well is not surprising since all
data manipulations combined may produce data where it is harder to find a good preprocessing
pipeline. A second reason might be that these datasets have a very high percentage of bad results
after the missing value imputation (60.63% and 58.86%, cf. Figure 6.2b). That shows that the
missing value imputation barely improves the clustering results, and an imperfect imputed dataset
might be challenging to preprocess correctly further. The other data manipulation groups have a
percentage between 4.94% and 1.23%. Again, these percentages are most likely due to unlucky
initialization or data that is generally too messed up.

6.2.3 Consistency of Scores

To calculate the consistency and reproducibility of the scores, the M, O, and S data manipulation
groups are run five times, and the best scores per dataset are considered. The results are presented
in Table 6.5. Column one shows the name of the data group, column two the mean ARI of each run,
and columns three and four the overall mean and standard deviation.

Key Finding: Overall, the results are highly similar, and the overall standard deviation is zero.
This indicates a strong consistency in terms of the ARI scores achieved.

It should be noted that there are differences that vanish through the rounding, but these are
insignificant.

63

6 Evaluation

.D ata . Mean ARI of Each Run Overall Mean ARI Standard Deviation
Manipulations
M {0.68,0.68,0.67,0.68,0.68} 0.68 0
S {0.75,0.75,0.75,0.75,0.75} 0.75 0
(0] {0.76,0.77,0.77,0.77,0.76} 0.77 0

Table 6.5: Consistency of Multiple Runs

6.3 Evaluation of the Optimization Process

This section covers the evaluation of the optimization process, including the missing value imputation
optimization and main optimization. First, the performance of the generations of both optimizers is
compared, and the effects of the time limit are investigated (cf. 6.3.1). Section 6.3.2 researches
how the pipeline length changes during the main optimization, and Section 6.3.3 evaluates if there
are any prominent preprocessing pipeline patterns that occur more often than others within the
best-performing pipelines.

6.3.1 Evaluation of Generations

The goal of this part is to investigate how the mean fitness (the ARI) within the generations of
both optimizers evolves. This is done to further check if the length of the optimization process is
reasonable or if there is more potential with a different configuration of the optimizers.

Figure 6.3 shows the mean of the best fitness (ARI) of all datasets per generation, combining the
missing value optimization and the main optimization. Since some datasets have missing values
M, M+S, M+0, and M+S+0), the missing value imputation needs to be executed before the main
optimization. This takes place in the first ten generations. Afterward, the main optimization with
50 generations starts, indicated by a grey dashed line (cf. Figure 6.3). If a pipeline is stopped
prematurely due to the time limit being reached, the last available score is transferred to all further
generations.

64

6.3 Evaluation of the Optimization Process

0.70

0.65 - //
0.60 A
0.55 A

0.50 A

Mean ARI

0.45 -

0.40 1 /_] —— Mean ARI per Generation
1 - -~ Start of Main Optimization
0.35 - }

0 10 20 30 40 50 60
Generations

Figure 6.3: Mean ARI per Generation

Key Finding: A well-performing pipeline is found relatively quickly but improves further.

As depicted in Figure 6.3, a good-performing pipeline for the respective tasks is found within the
first generations of the two optimizers. This means that the missing value imputation optimization
quickly finds a good imputation, and the main optimizer finds a good pipeline in relation to the
other preprocessing methods.

After that, there is still a measurable increase, but it is significantly smaller than the first generations.
The reason for that is most likely the initialization phase (cf. Section 5.5.1). The pipelines are
initialized depending on the data manipulations (cf. Section 5.5.1). Therefore, a good-performing
pipeline is found relatively fast. Additionally, it should be noted that there are cases where the curve
has a slower slope at the end but does not reach an apparent plateau. This indicates that there might
still be a slight improvement if the optimizers are run for more generations, but this automatically
includes longer runtime.

Effect of Time Limit

Key Finding: The time limit is reached with data records that have 5000 samples. On average,
more than half of the generations are executed.

A time limit of ten minutes per dataset is applied (cf. Section 6.1.4). Combining the missing
value imputation and main optimization, 9072 optimizer runs are executed. Out of these, 3888 are
missing value imputation optimization runs for the datasets M, M+S, M+0O, and M+S+0, and 5184
runs are the main optimization that is applied to all datasets. Out of these 9071 runs, 1085 (11.96%)
have been stopped by the time limit. During the missing value, imputation 189 (4.86%) are stopped,
and 896 (17.28%) are stopped during the main optimization during the main optimization. Datasets
that are stopped during the missing value imputation optimization have a sample size of 5000 and
have a high missing value percentage (30%). The mean generation length of all pipelines that

65

6 Evaluation

are stopped during the missing value imputation is seven (ten are maximal possible). This means
most datasets have run over half of the optimization, and the overall impact should not be that
drastic. The main optimization observes a similar trend. Most datasets have 5000 samples and are
from the M+S+0 data manipulation group, which contains the most data imperfections. The mean
generation length of all stopped pipelines is 38.76 (50 are maximal possible). This indicates that
most datasets achieved several optimization cycles as well.

This time limit has been applied to reduce the experiments’ runtime and stop generations stuck with
long-lasting pipelines. Considering the presented numbers and the general trend depicted in Figure
6.3, it can be assumed that an optimization without a time limit would lead to better scores in some
cases. However, the effect might be small.

6.3.2 Pipeline Evolution

This part covers whether there are changes in the pipeline length and the type of method during the
optimization process to investigate whether the pipelines tend to shrink or grow and, if they grow,
whether there are any patterns in relation to the method groups (see section 5.4).

Pipelines are initialized depending on the data manipulation groups (cf. Section 5.5.1). This means
a dataset of the O manipulation group contains only outliers and, therefore, every pipeline of the
population is only initialized with a single randomly chosen outlier method.

Data Initial Mean Minimal Maximal
Manipulations Pipeline Length Pipeline Length Pipeline Length Pipeline Length

N 1 1.36 1 3
M 1 1.37 1 4
o 1 1.46 1 4
S 1 1.51 1 4
M+S 2 2.55 2 4
M+O 2 2.45 2 4
S+0 2 2.27 2 5
M+S+0 3 3.39 3 6

Table 6.6: Evaluation of Pipeline Length

Key Finding: Pipelines tend to grow during the main optimization but not by much.

Table 6.6 shows the minimal, mean, and maximal pipeline length of the best performing per data
manipulation group. Generally, there is always a growth of average pipeline length compared to
the initialized length, but the growth is relatively small. While there exist some outliers, like the
pipeline of length 6 for the M+S+O manipulation group, most of the datasets stick to their initialized
length or add one method. Regarding data characteristics, all datasets with a large cluster standard
deviation (10) or smaller number of features (10-30) have longer pipelines than others. Since only
the best-performing pipelines are considered, there is an indication that, generally, harder-to-cluster
datasets benefit from additional preprocessing methods.

66

6.3 Evaluation of the Optimization Process

Emm Outlier Methods 373
B Scaling Methods 354

3501 I Dimensionality Reduction Methods

300

250
233

200
176

Method Count

156

150 139

129

1004 102

72 71

% o Q\f’ V“xo 2 2

Data Manipulation Groups

Figure 6.4: Additions of Method Groups per Data Manipulation Group

Figure 6.4 shows the overall number of methods that were added during the main optimization per
method group and data manipulation group. The term “added” in this context refers to the fact that
these methods were added to the pipeline after initialization during the optimization process. The
figure shows the main addition is often a scaling method and, slightly less often, an outlier method.
In contrast, the addition of a dimensionality reduction is extremely rare. This indicates that scaling
generally can support clustering, even if the data is not additionally skewed. Adding outlier methods
to the pipeline for datasets where no outliers have been added can be useful from the point of view
of the optimization pipeline, especially in cases where there is a high cluster standard deviation and
the points are widely scattered because these points can be considered as outliers and removal of
them can improve the clustering result.

6.3.3 Patterns of Methods

This part examines whether there are any patterns of preprocessing methods that are selected
particularly frequently. Its purpose is to explore whether it is possible to reduce the search space of
preprocessing methods for the data used in the work.

Again, the missing value imputation optimization is differentiated from the main optimization
because of the different structure. The missing value imputation part only consists of a single
method per pipeline (cf. Section 5.5). Additionally, the missing value imputation is only the
datasets that contain missing values (M, M+S, M+0O, and M+S+0). This is a total of 3888 datasets
(cf. Section 6.1.3).

67

6 Evaluation

Data . Most-Frequent-
Manipulations KNN-Imputer Mean-Imputer Median-Imputer Imputer
M 220 16 7 0
M+S 556 77 77 19
M+O 667 37 25 0
M+S+0 1628 360 80 119
Total 3071 490 198 138

Table 6.7: Occurrences of Imputation Methods per Data Manipulation Group

Key Finding: The KNN-Imputer appears significantly more often than other imputers.

Table 6.7 shows the distribution of imputation methods per data group. Out of these 3888 datasets,
3071 (78.99%) have the KNN-Imputer as the best method, 490 (12.6%) the Mean-Imputer, 189
(5.1%) the Median-Imputer, and 138 (3.55%) the Most-Frequent Imputer. The preference of the
KNN-Imputer over the others is most likely caused by the fact that all other imputation techniques
consider all features individually, while the KNN-Imputer considers all features of the nearby points.
This results in a better approximation. The imbalance between the Mean-Imputer compared to the
Median-Imputer and Most-Frequent imputer shows that the mean does approximate the missing
value better than the others for this type of data. Concerning method parameters, there is no clear
indication of when to use which parameter besides the fact that the KNN-Imputer tends to be
selected more often with a higher number of k compared to a lower number. In addition, there is no
indication concerning data characteristics as to when which imputer is selected.

The main optimization shows a more diverse picture since many more methods are available, a
pipeline can contain more than one method, and the optimization process is more complex (cf.
Section 5.5).

68

6.3 Evaluation of the Optimization Process

B Outlier Methods 25607541
25001 Scaling Methods
B Dimensionality Reduction Methods

2000

15001

Method Count

1000+
885 905

800 831

500 1

288 298

233
158 150 139 129

Data Manipulation Groups

Figure 6.5: Method Groups per Data Manipulation Group

Key Finding: Dimensionality reduction methods do not occur often in pipelines.

Figure 6.5 depicts the number of methods per method and data manipulation group. One
prominent pattern that can be observed is that the dimensionality reduction methods are heavily
underrepresented compared to the scaling and outlier methods. The reason for that is probably the
initialization phase. Since pipelines are initialized based on the dataset’s data imperfections, and
the dimensionality reduction methods are added as a supporting group and do not have explicit
data imperfections where they are initialized, the optimizer only adds them through mutation (cf.
Section 5.5.2.

Additionally, Figure 6.5 shows that there is a clear connection between the data manipulation group
and the preprocessing method groups, e.g., datasets that contain outlier have mostly outlier methods
in their corresponding best-performing pipeline. The reason why the number of methods is greater
than the number of data records from the corresponding group is that many pipelines contain more
than one method.

69

6 Evaluation

Method Group Method Number of Occurences
Outlier Isolation Forest 978
Outlier Local Outlier Factor 713
Outlier One Class SVM 407
Outlier SDG One Class SVM 88
Normalization Power Transformer 572
Normalization Robust Scaler 279
Normalization Standard Scaler 382
Normalization Min Max Scaler 475
Normalization Quantile Transformer 624
Normalization Max Abs Scaler 510
Dimensionality Reduction PCA 45
Dimensionality Reduction = Gaussian Random Projection 31
Dimensionality Reduction Locallaly Linear Embedding 30

Table 6.8: Overall Occurrences of Methods of the Main Optimization

Key Finding: Isolation Forest and Local Outlier Factor are the preferred outlier methods,
and the Robust Scaler is less often selected as a normalization method than others.

Within the method groups, the selection differs on some occasions, as listed in Table 6.8. For the
outlier removal, the Isolation Forest and Local Outlier Factor methods occur significantly more often
than the other methods. The causes for that could be that due to how the methods work, Isolation
Forest and Local Outlier Factor are better in outlier detection for these kinds of data and randomly
added outliers or that the other methods contain hyperparameters that are harder to fine-tune since
they drastically change the behavior and a mutation can more easily ruin a particular configuration.
An example of that is the OneClassSVM method !! that is sensitive to the selected kernel and v
parameter.

Only the robust scaler is less often chosen among the scaling methods. This is surprising since it
should handle scaling with outliers better than the others and, therefore, is expected to occur more
often, especially if a dataset is skewed and has outliers.

The dimensionality reduction methods are selected almost equally often.

6.4 Baselines

This part compares the presented concept against two baselines. Since there is no comparable
approach or library that makes a direct comparison possible (cf. Chapter 3), two basic and relatively
weak baselines are chosen. The first generates a random pipeline per dataset. In contrast, the second
creates a random baseline based on the data imperfections, e.g., a dataset with a skewed dataset gets
initialized with a random normalization method.

1 https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html

70

https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html

6.5 Order of Preprocessing Methods

Key Finding: The presented concept with its optimizers outperforms the baselines signifi-
cantly.

The results are depicted in Figure 6.6. For a better comparison, the not preprocessed mean ARI
(left) and the mean results after the optimization (right) are provided as well. Compared to the not
preprocessed mean ARI of 0.21, there is a slight increase to 0.27 for the baseline with random
preprocessing and 0.37 for the baseline where pipelines are generated based on the data imperfections
of the dataset. However, the optimizer outperforms both baselines significantly. Regardless of
the outperformance, some datasets still achieve a high ARI with both baseline approaches. These
datasets already achieved good results without preprocessing and have a small cluster standard
deviation and fewer clusters (cf. Section 6.2).

1.0 - —_ —_

0.8 A

0.6 -

0.4 -

0.2 A

0.0 - J_

—0.2 1 p——

Not Preprocessed Random Pipeline By Data Flaw Optimizer

Figure 6.6: Comparison of mean ARI Between Not Preprocessed (Left), Baselines (Middle) and
Optimizer Results (Right)

6.5 Order of Preprocessing Methods

The sequence of preprocessing methods is an aspect that has been particularly little studied.
Therefore, this section evaluates whether there are patterns in the order preprocessing method
groups (cf. Section 5.4) and secondly checks if this order is significant regarding the ARI score.

To analyze the order, all pipelines longer than two are evaluated. The missing value imputation part
is also excluded because it always has to happen first. Therefore, a pipeline containing a missing
value imputation, a normalization method, and an outlier removal method is considered a pipeline
of length two.

71

6 Evaluation

1400
1200 -
n 1000 4
(9]
1)
c
[0
=
3 800 -
o
(o]
°
o
5 600 -
Qo
£
=]
4
400
200 A
O.
N Q QO D XD QX N0 N0 00D 0 XRND03R0333R23RRX(3RDAADAD
S INTEANENS L L L LL LSS S Q Q OO
R I R I R S R A A R A O N e a
I S PN PN N O I P N N T i N OO, S S S S S S S S P
L OO PP OO0 00 00 0 0 P IO 0O
R N S S O O S S U N S PG P R P S QS
FFEE F o & & 00 00 0 0 0 & K FEFE LS SFLELL
FEE e ARG N FEEEESFSP
N R O O G IR R R R S SN N S S SIS SN S SIS SIS
VNS EEEEEEE TSI S
N IS NN SN NN NEQEOEOEOEOEOERY
NN & ¢
NEN

Figure 6.7: Occurrences (> 5) of Preprocessing Method Pairs

Key Finding: In the overall results, it stands out that normalization is more often applied
before outlier removal than the other way around.

Figure 6.7 shows the occurrences of preprocessing method group combinations. For better
readability, only pipelines of length two and combinations that occur more than five times are
depicted. In addition, the dimensionality reduction group is abbreviated to Dim. Red.

The results show that 1358 pipelines of length two apply a normalization method first and then an
outlier removal method, compared to 838 pipelines that do it the other way around. This result
shows no clear picture of what to do first, but there is a tendency towards scaling. No difference
could be found concerning data characteristics or data manipulation methods. For pipelines of
length two that contain dimensionality reduction or for longer pipelines, there is no clear pattern of
what method group should come first.

To evaluate if the order makes a difference, pipelines of length two or longer are further investigated.
They are divided into groups according to their pipeline length, which results in five groups ranging
from two to six. For all groups, 100 random samples are selected. If a group contains fewer samples,
all are selected. For every one of these samples, 20 permutations are built. The high number is
chosen because of the longer pipelines. If fewer permutations are possible, all possible permutations
are created.

72

6.6 Meta-Features

20 A

-
v
L

Ak
i

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2
Mean Difference

Frequency

=
o
L

Figure 6.8: Change in ARI After Order Change

Key Finding: The order does not influence the results of the preprocessing pipeline by much.

Figure 6.8 shows mean the difference of all permutations compared to the corresponding best
pipeline of the optimization result. The results make the statements from the previous paragraph
seem much weaker. While the pipelines do worsen sometimes, the change of the ARI is usually
around -0.1. That indicates no significant difference in terms of clustering results, and therefore, the
order does not matter too much.

6.6 Meta-Features

This section covers the evaluation of meta-features, with a focus on how the data imperfections are
reflected in the meta-features (cf. Section 6.6.1), whether the general meta-feature space can be
reduced, and how the optimization is reflected in the meta-features.

6.6.1 Effect of Data Manipulations

To obtain a uniform number of meta-features per dataset, the mean and standard deviation are
calculated across the features for most meta-features (cf. Section 5.2). Table 6.9 now shows the
mean of the mean and the mean of the standard deviation per meta-feature and data manipulation
group. For the groups that contain missing values (M, M+ S, M+ O, M + S + O), all missing values
are replaced with zero because otherwise most of the meta-features could not be calculated.

Key Finding: All data manipulations correlate with parts of the meta-features

73

6 Evaluation

The results of Table 6.9 are shown to assess what meta-features are relevant and how the data
imperfections are reflected in the meta-features. The latter is observed by taking the dataset without
data imperfections (IN) as a baseline and asses which meta-features have a significant difference
compared to the datasets without manipulations (N). A considerable difference is assumed if the
mean or standard deviation differs by 50% or more. The threshold is set relatively high at 50%
to ensure that only the meta-features with the most significant change stick out. These values are
marked with an underline in Table 6.9.

Some meta-features do not change significantly across all datasets. These are the number of
features (nr_attr), the number of rows (nr_inst), the correlation between data pairs (cor), the number
of correlations between features (nr_cor_attr), the number of features with at least one outlier
(nr_outliers), and the average number of features per row (t2). Some of these are expected not to
change drastically or not change at all because of how the data imperfections are added (cf. Section
5.3.1). Within this group fall nr_attr, nr_inst, and t2. The mean number of features does not change
because of the data generation (cf. Section 6.1.3). The mean number of rows differs only slightly
because the only occasion where rows are added is during the addition of outliers, and this addition
is at max 30% of the number of rows (cf. Section 5.3), and t2 does not change because all rows
contain the same number of features. The other two (cor, nr_cor_attr) are expected to correlate
because of their dependence and most likely do not change that drastically because the initial data
generation with SKlearn [PVG+11] most likely does not produce correlated features, and the data
imperfections do not change the data to create them. The meta-features nr_outlier changes even if
there are no outliers added because the data is not perfectly distributed due to the change in the
cluster standard deviation, and some parts of skewed data could be considered outliers as well. It is
higher for datasets that contain outliers compared to those that do not, so there is a small indication
that this meta-feature might help, but others might better identify outliers. In general, most of these
meta-features might help in scenarios where the data is generated differently or if it’s real data, but
they do not contribute to this type of data and generation method.

The evaluation of whether missing values can be detected is overshadowed by the fact that
missing values are replaced with a constant value. However, this is not true for the meta-feature
has_missing_values, which clearly indicates if missing values exist in the datasets. Additionally,
the meta-features are often similar to the dataset without data imperfections (N), only the median
and the number of features that are normally distributed (nr_norm). Both are more likely to change
due to the replacement with a constant value than because of missing values.

74

6.6 Meta-Features

Meta Features N M S (0] M+S M+O S+0 M+S+0
nr_attr 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30
nr_inst 2166.67 2166.67 2166.67 2600.00 2166.67 2600.00 2600.00 2600.00
has_missing_values 0 1 0 0 1 1 0 1
cor mean 0.10 0.08 0.09 0.06 0.08 0.05 0.06 0.05

sd 0.07 0.06 0.07 0.04 0.06 0.04 0.04 0.04
cov mean 5.70 398 l.lle+l4 6.46 8.14e+13 4.84 1.54e+16 1.10e+16
sd 4.27 3.00 4.7le+14 4.87 3.82e+14 3.66 6.78e+16 4.83e+16
cigenvalues mean 75.58 6229 3.99e+32 138.85 3.92e+32 11428 3.19e+35 2.72e+35
sd 38.52 2721 2.15e+33 4549 2.10e+33 34.63 1.72e+36 1.47e+36
iq_range mean 11.96 9.08 55.62 13.60 20.77 10.27 6.23e+07 1.55e+05
- sd 0.95 0.86 228.76 0.98 62.22 0.89 4.03e+08 8.99e+05
Kurtosis mean -0.37 0.18 26.63 0.73 26.80 1.54 0.74 2.83
sd 0.18 0.22 115.31 0.34 112.60 042 0.49 5.63
mad mean 8.82 6.83 10.83 10.05 8.21 7.71 14.21 9.62
sd 0.69 0.66 9.50 0.71 6.83 0.68 19.73 9.20
max mean 25.20 2484 2.80e+16 34.84 2.70e+16 3474 336e+16 3.37e+16
sd 2.36 238 14le+l7 2.88 1.34e+17 291 1.69e+17 1.69e+17
mean mean -0.14 -0.11 6.49e+12 -0.16 6.24e+12 -0.13 5.0le+15 4.12e+15
sd 1.15 095 3.16e+13 1.16 2.99e+13 096 2.52e+16 2.07e+16
. mean -0.19 -0.05 0.58 -0.20 0.35 -0.04 1.81 0.61
median
sd 1.38 0.32 4.50 1.36 2.00 0.26 10.82 3.05
min mean -25.28 -24.89 -28.21 -35.02 -27.78 -34.93 -39.08 -38.44
sd 2.56 2.59 19.81 3.15 19.53 3.16 27.60 27.24
nr_cor_attr 0.01 0.0 0.01 0.0 0.0 0.0 0.0 0.0
nr_norm 11.67 0.97 11.39 4.32 0.95 0.14 4.25 0.12
nr_outliers 19.89 27.65 20.05 27.83 27.69 29.82 27.65 29.18
range mean 50.48 49.73 2.80e+16 69.86 2.70e+16 69.67 3.36e+16 3.37e+16
sd 3.42 348 14le+l7 4.80 1.34e+17 4.83 1.69e+17 1.69e+17
mean 0.03 0.02 0.64 0.0 0.63 -0.0 0.08 0.11
skewness
sd 0.14 0.13 2.64 0.21 2.63 0.23 0.37 0.54
¢ mean mean -0.18 -0.13 13.12 -0.19 3.33 -0.13 4.88e+14 4.62e+13
- sd 1.27 0.92 70.94 1.25 18.85 090 245e+15 2.33e+14
var mean 75.58 6229 3.99e+32 138.85 3.92e+32 11428 3.19e+35 2.72e+35
sd 7.08 599 2.15e+33 14.85 2.10e+33 12.54 1.72e+36 1.47e+36
2 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02
t3 0.03 0.03 0.01 0.02 0.01 0.02 0.01 0.01
t4 0.90 0.92 0.36 0.93 0.37 0.94 0.24 0.25
. mean 1.25 1.15 1.23 1.11 1.14 1.01 1.13 1.03
wg_dist
sd 0.07 0.08 0.07 0.26 0.08 0.24 0.30 0.27

Table 6.9: Meta-Feature of the Not Preprocessed Data

All data manipulation groups with skewed data (S, M + S, S+ O, M + S + O) show a high change
for many meta-features. The most extreme ones are the covariance (cov), the eigenvalues, the
maximum, the mean, range, and variance (var). All indicate highly skewed data, and that matches
the expectation.

The meta-features changes introduced by outliers are best shown in columns O and M + O of
Table 6.9 because for other data manipulation groups containing outliers, they are most likely
overshadowed by the changes introduced when skewing the data. The changes are at best shown in
the meta-features eigenvalues, kurtosis, variance (var), and the weighted distance (wg_dist). These
meta-features indicate a higher variance or that the data has longer tails compared to a normal
distribution. Therefore, they are likely to indicate the presence of outliers.

75

6 Evaluation

6.6.2 Correlation of Meta-Features

1.00
0.75
cohesiveness.mean -
cov.mean -
-0.50
eigenvalues.mean -
kurtosis.mean -
max.mean - -0.25
mean.mean -
nr_attr - . .
-0.00
nr_inst
nr_outliers - m
range.mean - --0.25
sd.mean -
skewness.mean -
--0.50
var.mean -
wg_dist.mean -
-0.75
é‘”& Y
g ¢
&
)
@
o -1.00

Figure 6.9: Strong Correlation of Meta-Features

Many meta-features are selected and calculated for all datasets. However, it is not clear if all are
necessary for abstracting the data well. In order to evaluate this, the Person Correlation Coefficient
[Pea95] is calculated between all meta-features. Because of the high number of meta-features and
the fact that a mean and a standard deviation value exist for most meta-features, only a subset is
presented. This subset is depicted in Figure 6.9 and contains only mean values of the meta-features
and only those pairs that have a correlation coefficient of > 0.8 or < —0.8. A full correlation matrix
is provided in the Appendix (cf. Figure A.1)

Key Finding: The meta-feature space could be further reduced since some meta-features
strongly correlated with each other.

76

6.7 Runtime

The correlation matrix indicates that some meta-features strongly correlate with each other. This
shows that not all meta-features are necessary, and maybe some could be left out. An example of that
is that the mean meta-feature is positively correlated to the max meta-features because if the overall
maximum is higher, the mean is higher as well. However, since this is a reduced selection and there
might still be special cases where a meta-feature or a combination of meta-features provides helpful
insights, these meta-features should not be removed without further validation.

6.7 Runtime

This section covers the runtime analysis of the evaluation to show, in general, which runtime the
approach requires (cf. Section 6.7.1) and how consistent the runtime is across multiple runs (cf.
Section 6.7.2).

6.7.1 Runtime of Data Manipulation Groups

Key Finding: All datasets require a total of 20 days for optimization, whereby the main factor
for the runtime is the sample size

The overall runtime for all data manipulation groups is around 20 days. These 20 days include only
the optimization process for the datasets. Other parts, like reading and writing files, are excluded.
Figure 6.10a depicts the overall runtime per dataset. The two different colors indicate the two
different optimization processes where blue is the time of the missing value imputation, and orange
is the time needed for the main optimization. The M + S + O manipulation group sticks the most
out due to the huge amount of datasets within this group (2187).

222h 13m1 Optimizer

Missing Vale Imputation
Main

Optimizer
Missing Vale Imputation
Main

._.
©
S
B
N
o
3

wow

S o

S o

166h 40m-

N
u
o

138h 53m |

N
o
o

111h 6m-

-
v
o

83h 20m

=
o
o

55h 33m-

Average Runtime per Dataset
Average Runtime per Dataset (s)

v
o

27h 46m+

Oh Om

o

N M S [0} M+S M+0O S+0 M+S+0 N M S S+0 M+S+0
Data Manipulation Groups Data Manipulations Groups

(a) Overall Runtime per Data Manipulation Group (b) Average Dataset Runtime per Data Manipulation
Group

Figure 6.10: Runtimes of Data Manipulation Groups

To provide a better overview, Figure 6.10b shows the average runtime per dataset. The O, M + S,
M + O datasets are excluded in this comparison because they have been run on different servers,
and a fair comparison is not possible due to the hardware differences (cf. Section 6.1.2). The
differences in the average runtime compared across the data manipulation groups can be explained
by three reasons. First, every dataset that contains missing values is optimized twice, once for the

77

6 Evaluation

missing value imputation and once for the other preprocessing methods. Second, the N and M data
manipulation groups are randomly initialized within the main optimization because they do not
contain data manipulations that would allow a tailored initialization. This means they may take
longer to find a good solution and explain the difference between those two groups and the S group
regarding runtime. The last reason is the length of the pipeline. The S + O and M + S + O have a
longer runtime because they are initialized with two preprocessors during the main optimization
and, therefore, each generation needs longer to evaluate. Besides that the most influential factor of
the runtime is the sample size. Figure 6.11 showcases this exemplarily for the M+S+O manipulation
group, where the datasets with 5000 samples take almost five times longer than the ones with 1000
samples. All other data characteristics, like the number of features or the standard deviation of the
cluster, do not impact the runtime drastically.

800 -
700 -
600 -

me (s)

500 -
400 +

age Runt

< 300 1

Ave

200 -
100 -

500 1000 5000
Number of Samples

Figure 6.11: Runtime by Sample Size (M+S+0O)

6.7.2 Consistency of the Runtime

Data Manipulation

Group Mean Runtime of Each Run (s) Overall Mean Standard Deviation
M {65.17,65.4,52.1,64.41,66.2} 62.66 0
S {107.83,104.53,106.03,98.74, 108.04 } 105.03 0
(@) {233.21,241.85,214.18,190.83,237.53} 223.52 0

Table 6.10: Consistency of Multiple Runs

Key Finding: Runtimes vary a little but is overall consistent

78

6.8 Summary

To calculate the consistency of the runtime, a similar approach as in Section 6.2.3 is applied. The
M, O, and S data manipulation groups are run five times on the same hardware. The results are
presented in Table 6.10. Column one shows the name of the data manipulation group, column two
is the mean runtime in seconds of each run, and columns three and four are the overall mean and
standard deviation. All results are rounded to the second decimal place.

The runtimes are not as consistent as the ARI (cf. Section 6.2.3). The likely origin of that is that
there are preprocessing pipelines that take longer than others, and while only the best is reflected in
the final score, others have to be evaluated and, therefore, influence the runtime. However, besides
an outlier in the M and O group, the runtime lies within 5% of the mean of all runtimes and,
therefore, can be considered relatively consistent.

6.8 Summary

This section serves as a brief summary of the previous sections. It is overall shown that the presented
concept significantly improves the clustering result from a median ARI of 0.08 to 0.89, while the
datasets that are manipulated with a skew benefit the most. Those datasets that were processed
with the missing value imputation optimization and the main optimization benefit more from the
main optimization, with the exception of the datasets that are only manipulated with missing values.
Perfect scores of ARI = 1 are achieved mainly by the manipulation groups that already have a high
ARI without preprocessing. These are the groups without data manipulations and the ones that
contain missing values. Datasets with a low ARI of < 0.1 are all skewed. Repeated runs for a
subset of all data indicated that the scores are consistent and well reproducible.

The evaluation of the optimization process shows that well-performing pipelines are found within
the first few generations of the respective optimizer. Afterward, the pipelines still improved but with
a much smaller increase. A clear plateau is not reached, which indicates that with more generations
a small increase might be possible. The applied time limit of ten minutes stops 11.96% of the
pipelines during their optimization process. All of them have the highest here evaluated sample
size of 5000. Before the pipelines were stopped, it was possible to run over half of the maximum
generations (50). This means a preprocessing optimization has happened, but there still might be
some improvement possible with a longer time limit. The analysis of the lengths of the pipelines
shows that they do not shrink the main optimization process but rather keep their initial length or
grow by a method.

Analyzing the patterns that occur in pipelines, it is shown that the KNN-Imputer is the preferred
method for missing value imputation. The reason for this is that it includes all features at the
same time for imputing while only considering the feature where the value is missing. Such a
clear observation could not be made for the rest of the preprocessing methods groups. In general,
dimensionality reduction is significantly underrepresented. This is due to the fact that there are no
specific data manipulations for dimensionality reduction.

Two baselines are evaluated: one where a random pipeline is provided as a preprocessing pipeline
and one where a pipeline based on the data manipulations of the dataset is initialized. Both improve
the ARI result compared to no preprocessing but are significantly outperformed by the concept of
this thesis.

79

6 Evaluation

The order in which the preprocessing methods are executed within pipelines has been specially
analyzed. The results show that there are patterns if all the best pipelines of all datasets are
evaluated. However, a further permutation test with pipelines could not confirm that the order
makes a significant difference. The results worsen around 0.1 in terms of ARI.

The meta-feature analysis shows that every data manipulation can be clearly identified by meta-
features. Additionally, correlations between meta-features are found, suggesting that the overall
meta-feature space for this concept could be further reduced.

The optimization process for all datasets runs for 20 days. Additionally, consistency is evaluated for
a subset of the data. Some variation is shown, but overall, the runtime is rather consistent if an
optimization process is run multiple times.

80

7 Conclusion

Preprocessing plays a crucial role in extracting knowledge from data. However, several challenges
arise during this process. A user is confronted with a large selection of preprocessing methods, and it
is often unclear which one to choose because this depends on the general data characteristics and the
data imperfections. Secondly, these preprocessors have parameters that can influence the behavior,
and it is unclear which parameter values are suitable for a given dataset. To complicate matters
further, multiple preprocessing methods can often be applied, resulting in a preprocessing pipeline.
Therefore, the effect of the preprocessing methods on each other and the order of preprocessing
methods within a pipeline may play a role as well. All these challenges lead to a huge search space,
and it can be really challenging to find a good preprocessing pipeline for a given dataset, especially
for inexperienced users.

To mitigate the challenges described above, the overall goal is to make accurate suggestions for
preprocessing pipelines that improve the clustering result. In order to achieve this, it is important
to identify data imperfections and to understand the relationship between data imperfections and
preprocessing pipelines. This thesis contributes a first step in that direction with the concept of how
a knowledge base can be created that accurately measures the effects of preprocessing pipelines on
data with imperfections and can identify data imperfections of datasets. In order to achieve the
latter, meta-features are evaluated because they are a good way to describe unseen datasets and their
imperfections. Such a knowledge base needs to contain information from many different datasets to
be able to generalize. Because of that, synthetic data is used and further manipulated with data
imperfections to have an almost unlimited dataset available and to make a precise evaluation of
what data imperfection is handled by which pipeline well. These manipulations skew the data
distribution, remove parts of the data to create missing values, and add outliers to the data. Because
of the named challenges of section one, it is impossible to apply all combinations of preprocessing
methods and their hyperparameters to a dataset, even if the selection of preprocessing methods is
small. Instead, pipelines are generated and refined during an optimization process. As optimization,
Genetic optimization is used because it provides high flexibility and can be well customized to
address the named challenges. Additionally, a single clustering algorithm is used to evaluate the
preprocessing pipelines, and the parameters of this clustering algorithm are kept constant. The
reason for that is that the effect of preprocessing can be better evaluated with a single algorithm and
constant parameters.

The evaluation shows that for most datasets, a preprocessing pipeline is found by the optimizer,
which leads to a significant improvement in the clustering results compared to the results without
preprocessing. Therefore, the presented concept works for this type of dataset and data imperfections.
The improvement is most significant for skewed distribution data, while datasets that have not
been manipulated show the slightest improvement. Additionally, the evaluation of the optimization
process shows that a well-performing pipeline is found relatively quickly, while the improvement
afterward exists but is comparatively small. It is shown that the missing value imputation works
best with the KNN-Imputer compared to other imputation techniques. Other data imperfections do

81

7 Conclusion

not produce a preferred method or pipeline. Concerning the order of the preprocessing methods
within a pipeline, it could not be shown that there is a significant difference. The concept is
evaluated against two baselines, one that performs a random preprocessing pipeline and one that
performs a preprocessing pipeline that is initialized based on the data manipulation methods applied
to this dataset. The presented concept outperforms both baselines significantly. However, the
baselines achieve better scores than applying clustering without preprocessing. Additionally, it is
demonstrated that meta-features correlate with data imperfections. Therefore, it suggests that it is
possible to determine the need for preprocessing and the identification of data imperfections with
the thesis used meta-features.

The evaluation shows that overall, a significant improvement of the ARI is obtained, and t The
datasets that are skewed benefit the most from the optimization, while datasets without data
manipulation the least. Further analysis of the development of the ARI during the optimization
process shows that a well-performing pipeline is found relatively fast, and afterward, the ARI
improves slightly.

The evaluation of the meta-features shows that meta-features can be identified for each data
manipulation method, which gives a clear indication of which preprocessing is necessary and which
manipulations may be present.

7.1 Outlook

This thesis presents a concept for finding good-performing preprocessing pipelines with the help of
an optimizer to improve the overall clustering result for synthetically generated data with known
data imperfections. While this work analyses different data characteristics, meta-features, and
preprocessing methods, there are still points that could be further investigated or changed.

The main result of this work is a knowledge base that contains meta-features, preprocessing pipelines,
and ARI scores. The next step could be to use this knowledge base to apply meta-learning and
make suggestions for preprocessing pipelines for unseen datasets. Such a meta-learning approach
could be calculating the distance between the meta-features of not preprocessed data and the ones
from the unseen dataset and providing the closest pipeline as a suggestion. Another approach
would be to train a model like a decision tree that predicts a preprocessing pipeline based on the
meta-features.

Another approach could include different data to provide a more robust knowledge base that may
generalize better. For example, different data manipulations could be introduced, like imbalanced
clusters or completely different datasets like real-world and benchmark data from sources like the
UCI Machine Learning Repository' could be included to achieve a wider variety of datasets.

The optimizer plays a crucial part in finding good-performing pipelines. This work presents one
implementation for how such an optimizer could be realized. However, several changes could be
further researched. First, the parameters of the optimizer can be changed to investigate the influence
of those. Second, there may be other strategies related to initialization, mutation, and crossover that
impact clustering or are able to find better pipelines. One example is that the crossover swaps whole

1https://archive. ics.uci.edu/

82

https://archive.ics.uci.edu/

7.1 Outlook

methods of a pipeline and not only the parameters. Apart from that, a multi-objective optimization
with a second goal besides the ARI, like the pipeline length or runtime, could be realized. This
could lead to a more efficient optimization process. However, it may reduce the quality of the
pipeline in terms of achieved ARI. In addition, different types of optimizers, such as Bayesian-based
optimizers, could also be implemented to better be able to compare the presented approach.

83

Bibliography

[ASR+20]

[BAI+22]

[BB12]

[Bis06]

[BKNSO00]

[CCK+00]

[CL18]

[Col99]

[DGO3]

[EKSX+96]

[ELS21]

[ES22]

E. Alcobaga, F. Siqueira, A. Rivolli, L. P. Garcia, J. T. Oliva, A. C. De Carvalho.
“MFE: Towards reproducible meta-feature extraction”. In: Journal of Machine
Learning Research 21.111 (2020), pp. 1-5 (cit. on p. 44).

M. Bilal, G. Ali, M. W. Igbal, M. Anwar, M. S. A. Malik, R. A. Kadir. “Auto-prep:
efficient and automated data preprocessing pipeline”. In: IEEE Access 10 (2022),
pp- 107764-107784 (cit. on pp. 31, 33).

J. Bergstra, Y. Bengio. “Random search for hyper-parameter optimization.” In:
Journal of machine learning research 13.2 (2012) (cit. on p. 28).

C. M. Bishop. “Pattern recognition and machine learning”. In: Springer google schola
2 (2006), pp. 645678 (cit. on p. 28).

M. M. Breunig, H.-P. Kriegel, R. T. Ng, J. Sander. “LOF: identifying density-based
local outliers™. In: Proceedings of the 2000 ACM SIGMOD international conference
on Management of data. 2000, pp. 93—-104 (cit. on p. 49).

P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, R. Wirth,
et al. “CRISP-DM 1.0: Step-by-step data mining guide”. In: SPSS inc 9.13 (2000),
pp. 1-73 (cit. on p. 17).

D. Corne, M. A. Lones. “Evolutionary Algorithms”. In: Handbook of Heuristics.
Springer International Publishing, 2018, pp. 1-22. 1sBn: 9783319071534. por:
10.1007/978-3-319-07153-4_27-1. URL: http://dx.doi.org/10.1007/978-3-319-
07153-4_27-1 (cit. on p. 24).

D. A. Coley. An introduction to genetic algorithms for scientists and engineers. World
Scientific Publishing Company, 1999 (cit. on pp. 23, 24).

D. L. Donoho, C. Grimes. “Hessian eigenmaps: Locally linear embedding techniques
for high-dimensional data”. In: Proceedings of the National Academy of Sciences
100.10 (2003), pp. 5591-5596 (cit. on p. 49).

M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. “A density-based algorithm for
discovering clusters in large spatial databases with noise”. In: kdd. Vol. 96. 34. 1996,
pp- 226-231 (cit. on pp. 28, 29, 32).

R. ElShawi, H. Lekunze, S. Sakr. “csmartml: A meta learning-based framework
for automated selection and hyperparameter tuning for clustering”. In: 2021 IEEE
International Conference on Big Data (Big Data). IEEE. 2021, pp. 1119-1126
(cit. on pp. 33-35).

R. ElShawi, S. Sakr. “TPE-AutoClust: A Tree-based Pipline Ensemble Framework
for Automated Clustering”. In: 2022 IEEE International Conference on Data Mining
Workshops (ICDMW). IEEE. 2022, pp. 1144—-1153 (cit. on pp. 18, 31-33).

85

https://doi.org/10.1007/978-3-319-07153-4_27-1
http://dx.doi.org/10.1007/978-3-319-07153-4_27-1
http://dx.doi.org/10.1007/978-3-319-07153-4_27-1

Bibliography

[FDO7]

[FDG+12]

[FEF+22]

[FH75]

[FKE+15a]

[FKE+15b]

[FKH18]

[FPS96]

[FS18]

[GLH15]

[GLT+19]

[Gre86]

[HAS8S]

[HFH+09]

[HHL11]

86

B.J. Frey, D. Dueck. “Clustering by passing messages between data points”. In:
science 315.5814 (2007), pp- 972-976 (cit. on pp. 28, 32).

F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, C. Gagné. “DEAP:
Evolutionary Algorithms Made Easy”. In: Journal of Machine Learning Research
13 (July 2012), pp. 2171-2175 (cit. on pp. 32, 34, 37, 56, 58).

M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, F. Hutter. “Auto-sklearn 2.0:
Hands-free automl via meta-learning”. In: Journal of Machine Learning Research
23.261 (2022), pp. 1-61 (cit. on pp. 18, 36).

K. Fukunaga, L. Hostetler. “The estimation of the gradient of a density function, with
applications in pattern recognition”. In: IEEE Transactions on information theory
21.1 (1975), pp. 3240 (cit. on pp. 28, 32).

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter. “Efficient
and Robust Automated Machine Learning”. In: Advances in Neural Information
Processing Systems 28 (2015). 2015, pp. 2962-2970 (cit. on p. 36).

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter. “Effi-
cient and robust automated machine learning”. In: Advances in neural information
processing systems 28 (2015) (cit. on p. 33).

S. Falkner, A. Klein, F. Hutter. “BOHB: Robust and efficient hyperparameter
optimization at scale”. In: International conference on machine learning. PMLR.
2018, pp. 1437-1446 (cit. on pp. 28, 33).

U. Fayyad, G. Piatetsky-Shapiro, P. Smyth. “The KDD process for extracting useful
knowledge from volumes of data”. In: Communications of the ACM 39.11 (1996),
pp- 27-34 (cit. on p. 17).

P. Frinti, S. Sieranoja. “K-means properties on six clustering benchmark datasets”.
In: Applied intelligence 48 (2018), pp. 4743-4759 (cit. on p. 28).

S. Garcia, J. Luengo, F. Herrera. Data preprocessing in data mining. Vol. 72. Springer,
2015 (cit. on pp. 21, 24, 48).

P. Gijsbers, E. LeDell, J. Thomas, S. Poirier, B. Bischl, J. Vanschoren. “An open
source AutoML benchmark”. In: arXiv preprint arXiv:1907.00909 (2019) (cit. on
p. 34).

J.J. Grefenstette. “Optimization of control parameters for genetic algorithms”. In:
IEEE Transactions on systems, man, and cybernetics 16.1 (1986), pp. 122—-128
(cit. on p. 23).

L. Hubert, P. Arabie. “Comparing partitions”. In: Journal of classification 2 (1985),
pp- 193-218 (cit. on pp. 22, 23).

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, 1. H. Witten. “The
WEKA data mining software: an update”. In: ACM SIGKDD explorations newsletter
11.1 (2009), pp. 10-18 (cit. on p. 36).

F. Hutter, H. H. Hoos, K. Leyton-Brown. “Sequential model-based optimization
for general algorithm configuration”. In: Learning and Intelligent Optimization:
5th International Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected
Papers 5. Springer. 2011, pp. 507-523 (cit. on p. 33).

Bibliography

[HMTI11]

[HMW+20]

[HPT22]

[HTFF09]

[HunO7]

[Koz94]

[KRP+16]

[KZD16]

[LEF+22]

[LID+18]

[LLT21]

[LTZ12]

[LWWT19]

N. Halko, P.-G. Martinsson, J. A. Tropp. “Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions”. In:
SIAM review 53.2 (2011), pp. 217-288 (cit. on p. 49).

C.R. Harris, K. J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Rio, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
T.E. Oliphant. “Array programming with NumPy”. In: Nature 585.7825 (Sept. 2020),
pp- 357-362. por1: 10.1038/541586-020-2649-2. URL: https://doi.org/10.1038/
$41586-020-2649-2 (cit. on p. 56).

J. Han, J. Pei, H. Tong. Data mining: concepts and techniques. Morgan kaufmann,
2022 (cit. on pp. 21, 22, 48).

T. Hastie, R. Tibshirani, J. H. Friedman, J. H. Friedman. The elements of statistical
learning: data mining, inference, and prediction. Vol. 2. Springer, 2009 (cit. on
p. 46).

J.D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science &
Engineering 9.3 (2007), pp. 90-95. por: 10.1109/MCSE. 2007.55 (cit. on p. 56).

J.R. Koza. “Genetic programming as a means for programming computers by natural
selection”. In: Statistics and computing 4 (1994), pp. 87-112 (cit. on p. 23).

T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,
K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing.
“Jupyter Notebooks — a publishing format for reproducible computational workflows”.
In: Positioning and Power in Academic Publishing: Players, Agents and Agendas.
Ed. by F. Loizides, B. Schmidt. IOS Press. 2016, pp. 87-90 (cit. on p. 56).

K. Kirchner, J. Zec, B. Delibasié. “Facilitating data preprocessing by a generic
framework: a proposal for clustering”. In: Artificial Intelligence Review 45 (2016),
pp- 271-297 (cit. on p. 17).

M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins,
T. Ruhkopf, R. Sass, F. Hutter. “SMAC3: A versatile Bayesian optimization package
for hyperparameter optimization”. In: Journal of Machine Learning Research 23.54
(2022), pp. 1-9 (cit. on p. 37).

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar. “Hyperband: A novel
bandit-based approach to hyperparameter optimization”. In: Journal of Machine
Learning Research 18.185 (2018), pp. 1-52 (cit. on p. 28).

Y. Liu, S. Li, W. Tian. “Autocluster: Meta-learning based ensemble method for
automated unsupervised clustering”. In: Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer. 2021, pp. 246-258 (cit. on pp. 28-30).

F.T. Liu, K. M. Ting, Z.-H. Zhou. “Isolation-based anomaly detection”. In: ACM
Transactions on Knowledge Discovery from Data (TKDD) 6.1 (2012), pp. 1-39
(cit. on p. 49).

Y.-F. Li, H. Wang, T. Wei, W.-W. Tu. “Towards automated semi-supervised learning”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019,
pp. 4237-4244 (cit. on p. 28).

87

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55

Bibliography

[Mac+67]

[McK10]

[MG+95]

[Min00]

[Mit98]
[MRO93]

[NH19]

[OBUMI16]

[OM16]

[PDK20]

[PDK24]

[PeaO1]

[Pea9ds]

[PVG+11]

88

J. MacQueen et al. “Some methods for classification and analysis of multivariate
observations”. In: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability. Vol. 1. 14. Oakland, CA, USA. 1967, pp. 281-297 (cit. on
pp- 22, 28, 29, 32, 43).

W. McKinney. “Data Structures for Statistical Computing in Python”. In: Proceedings
of the 9th Python in Science Conference. Ed. by S. van der Walt, J. Millman. 2010,
pp- 56-61. por: 10.25080/Majora-92bf1922-00a (cit. on p. 56).

B.L. Miller, D. E. Goldberg, et al. “Genetic algorithms, tournament selection, and
the effects of noise”. In: Complex systems 9.3 (1995), pp. 193-212 (cit. on p. 24).

T. Minka. “Automatic choice of dimensionality for PCA”. In: Advances in neural
information processing systems 13 (2000) (cit. on pp. 40, 49).

M. Mitchell. An introduction to genetic algorithms. MIT press, 1998 (cit. on p. 23).

A. Mackiewicz, W. Ratajczak. “Principal components analysis (PCA)”. In: Computers
& Geosciences 19.3 (1993), pp. 303-342 (cit. on p. 39).

L. H. Nguyen, S. Holmes. “Ten quick tips for effective dimensionality reduction”. In:
PLoS computational biology 15.6 (2019), e1006907 (cit. on p. 48).

R.S. Olson, N. Bartley, R.J. Urbanowicz, J. H. Moore. “Evaluation of a Tree-
based Pipeline Optimization Tool for Automating Data Science”. In: Proceedings
of the Genetic and Evolutionary Computation Conference 2016. GECCO ’16.
Denver, Colorado, USA: ACM, 2016, pp. 485-492. 1sBN: 978-1-4503-4206-3. por:
10.1145/2908812.2908918. URL: http://doi.acm.org/10.1145/2908812.2908918
(cit. on p. 37).

R.S. Olson, J.H. Moore. “TPOT: A tree-based pipeline optimization tool for
automating machine learning”. In: Workshop on automatic machine learning. PMLR.
2016, pp. 6674 (cit. on pp. 18, 33, 34).

Y. Poulakis, C. Doulkeridis, D. Kyriazis. “Autoclust: A framework for automated
clustering based on cluster validity indices”. In: 2020 IEEE International Conference
on Data Mining (ICDM). IEEE. 2020, pp. 1220-1225 (cit. on p. 30).

Y. Poulakis, C. Doulkeridis, D. Kyriazis. “A Survey on AutoML Methods and
Systems for Clustering”. In: ACM Transactions on Knowledge Discovery from Data
(2024) (cit. on pp. 24, 27, 32).

K. Pearson. “LIII. On lines and planes of closest fit to systems of points in space”. In:
The London, Edinburgh, and Dublin philosophical magazine and journal of science
2.11 (1901), pp. 559-572 (cit. on p. 18).

K. Pearson. “VII. Note on regression and inheritance in the case of two parents”. In:
proceedings of the royal society of London 58.347-352 (1895), pp. 240-242 (cit. on
p. 76).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, E. Duchesnay. “Scikit-learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12 (2011), pp. 2825-2830 (cit. on pp. 28,
29, 33, 35, 36, 40, 4648, 55, 56, 74).

https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1145/2908812.2908918
http://doi.acm.org/10.1145/2908812.2908918

Bibliography

[QPHW24]

[RAHL19]

[Ras99]

[RD99]

[Ree23]

[RGS+18]

[RK87]

[RR14]

[RS00]

[RVBV16]

[SB21]

[SculO]

[SDB+93]

[SGP+18]

[Tan22]

[TB99]

D. Qi, J. Peng, Y. He, J. Wang. “Auto-FP: An Experimental Study of Automated
Feature Preprocessing for Tabular Data”. In: (2024) (cit. on pp. 33, 34).

E. Real, A. Aggarwal, Y. Huang, Q. V. Le. “Regularized evolution for image classifier
architecture search”. In: Proceedings of the aaai conference on artificial intelligence.
Vol. 33. 01. 2019, pp. 4780—4789 (cit. on p. 33).

C. Rasmussen. “The infinite Gaussian mixture model”. In: Advances in neural
information processing systems 12 (1999) (cit. on p. 29).

P.J. Rousseeuw, K. V. Driessen. “A fast algorithm for the minimum covariance
determinant estimator”. In: Technometrics 41.3 (1999), pp. 212-223 (cit. on p. 49).

C. Reed. “Analysis and Integration of Data Preprocessing Steps in AutoML for
Clustering”. Bachelor’s Thesis. University of Stuttgart, 2023 (cit. on pp. 18, 35, 36,
46).

A. Rivolli, L. P. Garcia, C. Soares, J. Vanschoren, A. C. de Carvalho. “Characterizing

classification datasets: a study of meta-features for meta-learning”. In: arXiv preprint
arXiv:1808.10406 (2018) (cit. on pp. 24, 25).

L. Rdusseeun, P. Kaufman. “Clustering by means of medoids”. In: Proceedings of

the statistical data analysis based on the L1 norm conference, neuchatel, switzerland.
Vol. 31. 1987 (cit. on p. 28).

W. Raghupathi, V. Raghupathi. “Big data analytics in healthcare: promise and
potential”. In: Health information science and systems 2 (2014), pp. 1-10 (cit. on
p.- 17).

S.T. Roweis, L. K. Saul. “Nonlinear dimensionality reduction by locally linear
embedding”. In: science 290.5500 (2000), pp. 2323-2326 (cit. on p. 49).

S. Romano, N. X. Vinh, J. Bailey, K. Verspoor. “Adjusting for chance clustering
comparison measures”. In: Journal of Machine Learning Research 17.134 (2016),
pp. 1-32 (cit. on p. 51).

G. Steinbuss, K. Bohm. “Generating artificial outliers in the absence of genuine
ones—A survey”. In: ACM Transactions on Knowledge Discovery from Data (TKDD)
15.2 (2021), pp. 1-37 (cit. on p. 47).

D. Sculley. “Web-scale k-means clustering”. In: Proceedings of the 19th international
conference on World wide web. 2010, pp. 1177-1178 (cit. on p. 28).

W. M. Spears, K. A. De Jong, T. Bick, D. B. Fogel, H. De Garis. “An overview of
evolutionary computation”. In: European conference on machine learning. Springer.
1993, pp. 442459 (cit. on p. 50).

B. Schoenfeld, C. Giraud-Carrier, M. Poggemann, J. Christensen, K. Seppi. “Prepro-
cessor selection for machine learning pipelines”. In: arXiv preprint arXiv:1810.09942
(2018) (cit. on p. 30).

H. M. Tanvir. “Meta-Learning Based Approach for Automated Pre-processing for
Clustering”. Master’s Thesis. University of Tartu, 2022 (cit. on p. 34).

M. E. Tipping, C. M. Bishop. “Probabilistic principal component analysis”. In:
Journal of the Royal Statistical Society Series B: Statistical Methodology 61.3 (1999),
pp. 611-622 (cit. on p. 49).

89

Bibliography

[TCS+01]

[TFS+21]

[TFSM23]

[THHL13]

[TP98]

[U1t05]

[Van19]

[VDO09]

[VGO+20]

[VVBT14]

[Wil92]

[YJOO]

[ZB20]

[ZRL96]

90

O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Bot-
stein, R. B. Altman. “Missing value estimation methods for DNA microarrays”. In:
Bioinformatics 17.6 (2001), pp. 520-525 (cit. on p. 49).

D. Tschechlov, M. Fritz, H. Schwarz, Y. Velegrakis, D. Zeinalipour-Yazti, P. Chrysan-
this, F. Guerra. “AutoML4Clust: Efficient AutoML for Clustering Analyses.” In:
EDBT. 2021, pp. 343-348 (cit. on pp. 27, 28, 30, 33, 35).

D. Treder-Tschechlov, M. Fritz, H. Schwarz, B. Mitschang. “ML2DAC: Meta-
Learning to Democratize AutoML for Clustering Analysis”. In: Proceedings of the
ACM on Management of Data 1.2 (2023), pp. 1-26 (cit. on pp. 24, 29).

C. Thornton, F. Hutter, H. H. Hoos, K. Leyton-Brown. “Auto-WEKA: Combined
selection and hyperparameter optimization of classification algorithms”. In: Proceed-
ings of the 19th ACM SIGKDD international conference on Knowledge discovery
and data mining. 2013, pp. 847-855 (cit. on pp. 18, 28).

S. Thrun, L. Pratt. “Learning to learn: Introduction and overview”. In: Learning to
learn. Springer, 1998, pp. 3—17 (cit. on p. 24).

A. Ultsch. “Clustering with som: U™* ¢”. In: Proc. Workshop on Self-Organizing
Maps, 2005. 2005 (cit. on p. 28).

J. Vanschoren. “Meta-learning”. In: Automated machine learning: methods, systems,
challenges (2019), pp. 35-61 (cit. on p. 24).

G. Van Rossum, F.L. Drake. Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace, 2009. 1sBN: 1441412697 (cit. on p. 55).

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson,
C.J. Carey, 1. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perk-
told, R. Cimrman, I. Henriksen, E. A. Quintero, C.R. Harris, A. M. Archibald,
A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0 Contributors. “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python”. In: Nature Methods
17 (2020), pp. 261-272. por: 10.1038/541592-019-0686-2 (cit. on p. 56).

J. Vanschoren, J. N. Van Rijn, B. Bischl, L. Torgo. “OpenML: networked science in
machine learning”. In: ACM SIGKDD Explorations Newsletter 15.2 (2014), pp. 49-60
(cit. on pp. 28, 30-32).

R.J. Williams. “Simple statistical gradient-following algorithms for connectionist

reinforcement learning”. In: Machine learning 8 (1992), pp. 229-256 (cit. on p. 33).

L.-K. Yeo, R. A. Johnson. “A new family of power transformations to improve
normality or symmetry”. In: Biometrika 87.4 (2000), pp. 954-959 (cit. on p. 49).

K. Zhang, J. S. Bloom. “deepcr: Cosmic ray rejection with deep learning”. In: The
Astrophysical Journal 889.1 (2020), p. 24 (cit. on p. 17).

T. Zhang, R. Ramakrishnan, M. Livny. “BIRCH: an efficient data clustering method
for very large databases”. In: ACM sigmod record 25.2 (1996), pp. 103—114 (cit. on
p. 28).

https://doi.org/10.1038/s41592-019-0686-2

Bibliography

[ZW06] Z. Zhang, J. Wang. “MLLE: Modified locally linear embedding using multiple
weights”. In: Advances in neural information processing systems 19 (2006) (cit. on

p. 49).

[2704] Z. Zhang, H. Zha. “Principal manifolds and nonlinear dimensionality reduction via
tangent space alignment”. In: SIAM journal on scientific computing 26.1 (2004),
pp- 313-338 (cit. on p. 49).

[22Y19] T. Zhang, L. Zhong, B. Yuan. “A critical note on the evaluation of clustering
algorithms”. In: arXiv preprint arXiv:1908.03782 (2019) (cit. on pp. 18, 46).

All links were last followed on Mai 21, 2024.

91

A Evaluation

conesenessmean 011 011 009 009 -001 001 034 032 007 053 033 033 032 011 002 4 023 009 02 o [P 003 034 013 013 022 012 03 uai..ﬁnu—nux 004 004 009 008 034 01
conesuenesssa 012012 0 0 -008-.08 032 007 034 035 035 038 008 003 026 003 00t 0ce[I 002 02 016 015 016 016 009 nn—nnau.a;s 01 007 007 032 032 011 0da
cormean 028 038 002 002 004 034 015 01 01 mmmm.m 002047024 005 031 01 01 009 003 008 007 006 011 021 015 005 003 003 006 006 019 039

corsa--0.27 038 002 008 0.08 034 015

o1 mmmm.m. 001045 025005 033 01 -01 009003 011 012 006 011 021 014 002 003 003 006 006 018 039

.04 .08 -0.08 -0.04 .05 048 048 001 007

aigenuates mean- 009 012

clgeniaues s4-009 012 00 008 002 004 006002 0 001 008 004 001 .04 .08 -0.08 -0.04 .05 048 048 001 007

larongemean-001 0 001021 039 001 001 002 002 032 042 0.02-001 002 -0 -001 001 003 001 001 001 001 -D01 001 0.02-002 003 0.02 003 004 004 001 001 003 005

larongesd-001 © 0 02 03 001 001 001 001 03 041002001 003 -0 -001 001 003 001 001 001 001 -001 001 0.02-002 003 0.02 003 003 004 001 001 003 005

as0
magimean-007 012 034034 007 008 004 004 021 02 01 604 021034 004 004 006 006 033015031 025 013 016 021 01 011 004 004 017 02
madsa-003 007 04 047 01 003 003 011 003 001 002 003 004 D1 012 015013 008 016038 013 035 02 002 007 015
medansa- 9 008 003009 007 009 003 004 042 0L 002 014 001 003 004 005 006 .04 006 017 015 002 D15 027 015 017 003 004 005 023
insa-008 003 037 018 002 002 002 002 01 001 m.m 00002 002 012 01 0 018002 003 002 002 011 012 002 003 014 008 009 001 001 02 002 025 008
“om0
oot 02 004 002 001001001 4 0 002 063 01 008017 01 002 0 o1 O o mﬂm o om0 o101 00 nmﬁmnnn o 0 0 o na.
o coratr- 0 006 Q47 048 001 001 001 001 © 0 004 008 -D08 003 001 -D01 001 001 004 001 012 004 005 Q001 002 032 001 001 01 001 007 007 008 005 002 002001 @ -0 001001 0 035
m,mm“. 025 011 011 008 008 001001 03 011 004 083 032 032 031 011 003 062 017 003 o oo 0 005 012 012 012 011 0oe m.ﬁm o 003 005 oos 008 014 038
souers-036 01 11033 0 001 O G0l 003 003 009006 014 008 D01 001 001 001 008 001 002 “.Hm 005 01¢ [Jl001 001 001 001 038 01 003 002 a7 035 022
angemean-013 014 01 012 013 00s oor [R 003 008 002 002 01 012 00 01 Loz
angesa-013 015 01 01 012 004 02 oot o000 o 001 012 08 000
00
spMmm.{m 006 006 .05 003004 .08 002 002 008 007 031 015 006 006 005 005 012 017 012 002 002 rms. as 008 002 -002 002 004 001 001 038
oarstyso 1081043 011 011005005 004 004 02 002 007 008 025 013 008 006 005 005 0.1 015 013 003 001 005 o6 006 005 005 002 002 001 004 02 019
a 021 021 .08 006004 .04 003 003 012 011 013 008 008 007 008 006 007 012 02 m.m o 007 nuzﬂuzouamﬁnns
31048 033 015 014 .05 .05 0.0 .08 002 002 013 012 016 016 006 006 005 005 017 015 034 008 042 002 os 008 002 002 001 004 048 008
e mean-001 007 0.3 mﬂlm 948 001 003 © 0 01 o1 03 mﬂ.m 01 om e o o o7
49 dsmean 1034 011 013 018 002 001 001 0.1 03 003 0.1 -D08 017 007 D08 003 003 002 006 005 mmﬂ o nn}ﬂnn oz o o oo o0
v tc0- 01 048 039 038 008 009 007 007 006 003 -02 D28 02 015 003 005 003 009 019 023 023 006 038 013 018 003 043 005 005 008 009 026078 018 019 003 008 018 04 005 007 07 027
o 100

p—
cousd
minsa-

£
H

medtansa-,

H
H
2

a_rangesa-
. utiers |
Py

prem—
g dstmesn-|

conesiveness mean -
conesiveness |
o range.mean-.

Figure A.1: Correlation of Meta-Features

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Background
	2.1 Preprocessing
	2.2 Clustering
	2.3 Genetic Optimization
	2.4 Meta-Learning

	3 Related Work
	3.1 AutoML and Metalearning for clustering
	3.2 AutoML and Meta-Learning considering Preprocessing
	3.3 Libraries
	3.4 Summary

	4 Challenges of Preprocessing and Knowledge Base Creation
	4.1 Challenges of Preprocessing
	4.2 Challenges of Knowledge Base Creation

	5 Knowledge Base Creation for Preprocessing Pipelines
	5.1 General Concept
	5.2 Selection of Meta-Features
	5.3 Data Generation
	5.4 Selection of Preprocessing Methods
	5.5 Optimization of Preprocessing Pipelines
	5.6 Summary

	6 Evaluation
	6.1 Implementation and Setup
	6.2 Evaluation of Preprocessing Effects
	6.3 Evaluation of the Optimization Process
	6.4 Baselines
	6.5 Order of Preprocessing Methods
	6.6 Meta-Features
	6.7 Runtime
	6.8 Summary

	7 Conclusion
	7.1 Outlook

	Bibliography
	A Evaluation

