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inspection of simulations and experimental results. This procedure is not only

Hence, the design process stems from subjective criteria while only a limited
number of structurally different mechanisms can be considered. In contrast, a
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objective optimization to retrieve optimal designs for the given task. Due to the

ual experience, the assistant allows a more transparent development of optimal
problem-specific mechanisms compared to the conventional process. Experts
can then fine-tune and analyze the proposed designs to compose the final system.
In recent years, neural networks have been utilized to directly learn the inverse
mapping from a trajectory to a mechanism design. This requires some parame-
terization of the trajectory to be fed into the network. In this work, we evaluate
various preprocessing methods for the trajectory on a simple mechanism design
model problem. We assess multiple configurations such as different neural net-
work sizes, applying input-output normalization, and varying the number of
features. Consequently, we investigate and compare the trends and robustness
of the implemented methods.

1 | INTRODUCTION

General-purpose robots can perform a variety of tasks and are widely employed. For example, a 3R manipulator (e.g., a
robotic arm) can follow a variety of trajectories with its end effector within its workspace. However, to be precise and
robust against low-frequency vibrations they are typically constructed in a stiff and heavy manner. This not only requires
the use of expensive actuators but those robots are also more dangerous in shared human-robot work environments.
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Yet, a lot of tasks only require the execution of a certain trajectory. Here, special-purpose robots can be tailored to the
specific problem. Hence, they can be designed to withstand particular vibrations and be made lighter and cheaper. Due
to a specialized design, these robots may also be easier to control. However, nowadays, this requires a domain expert to
design the system which makes this process expensive and the outcome is based on the expert’s experience. Automated
design assistants could bridge this gap and consider a vastly broader range of mechanisms while being based on objective
and transparent performance criteria. Ideally, an intelligent design assistant could already incorporate control properties
in the design phase.

A core challenge when designing a special-purpose robot is the design synthesis. This includes how many joints
should be used, what types of joints, the number of degrees of freedom (DOFs), and much more. Finding optimal
designs constitutes a discrete optimization problem that exhibits a non-smooth objective function and does not offer
gradient information.

In recent years, neural networks have been utilized to directly learn the inverse task of proposing a mechanism design
given a specified trajectory. The first work to simultaneously optimize the mechanism design and the dimensional syn-
thesis using neural networks is by Yim et al. [1]. In their work, a neural network predicts the parameters of a spring-block
model given a preprocessed trajectory. As input features, they use the coefficients of a Fourier series which is applied
to a centroid distance function of the trajectory. The same procedure is also used in the literature [2-6]. In general, data
preprocessing (i.e., the way how the data is presented to a neural network) is a crucial aspect of accurate and robust neu-
ral network performance. While their work produced satisfactory results, there are several other potential procedures
how to extract features from a trajectory. However, there exists no extensive evaluation comparing different preprocessing
methods in the context of automated design assistants for mechanism design using neural networks.

In this work, we introduce various approaches how to extract features from a trajectory which can then be used as
inputs for a neural network. To this end, the neural networks learn the inverse problem of mapping a (preprocessed)
trajectory to mechanism parameters. We investigate the different procedures and evaluate their performance on a simple
model problem. Additionally, different network sizes, the effect of normalization, and varying the feature vector length are
investigated. The idea is to outline methods that exhibit decent and robust performance without the need for expert-guided
hyperparameter tuning.

This work is structured as follows; In Section 2, the model problem is introduced alongside ways to parameterize dif-
ferent trajectory representations. Additionally, details about the neural network setup are given. In Section 3, the results
of some analyses are presented. Section 4 discusses these results and Section 5 concludes the work.

2 | METHODS

In this section, the model problem is introduced that we use to evaluate the different preprocessing methods. We then
detail various representations of a trajectory and ways to parameterize them to feed them into a neural network. Lastly,
details about the neural network setup are presented.

2.1 | Model problem

For the comparison of preprocessing methods, we use the four-bar linkage as a model problem as shown in Figure 1 (left).
We keep all parameters fixed and only vary the link length r; (blue) of the mechanism. The revolute joint O is actuated
with a constant velocity and for every degree the location of the coupler point C is measured. Hence, 360 discrete points
are sampled from the trajectory. Examples of trajectories for different values of r; can be seen in Figure 1 (right). The task
of the neural networks is the inverse problem of predicting the value r; given a (preprocessed) trajectory of the coupler
point C. To be able to feed a trajectory into a neural network we have to extract features from it. In the following, we will
look at different representations of a trajectory and ways to parameterize them.

2.2 | Representation of trajectories
Subsequently, the different approaches examined in this paper for representing the coupler point trajectories are intro-

duced. Later, when comparing all approaches, we use the same number of features #n; for all approaches, which specifies
the length of the input vector to the neural networks.
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FIGURE 1 Left: Four-bar linkage where all parameters are fixed apart from r; (blue). Trajectories of the coupler point C are computed
for one mechanism revolution. Right: Trajectories of the coupler point C for different values of r.
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FIGURE 2 Distance functions for different values of r;. Left: centroid distance function. Right: origin distance function.

2.21 | Coordinate function (CF)

One possibility is to represent each coordinate dimension as a separate function, which we will subsequently refer to as
coordinate functions (CFs). Thus, we have a periodic function for x(¢t) and for y(t), where ¢ € [0, 1] describes one mech-
anism revolution around joint O. However, when we parameterize the CFs, we may only use n;/2 features to represent
each CF.

2.2.2 | Centroid/origin distance functions (CDF, ODF)

The distance functions compute the distance of each two-dimensional point on the trajectory to a reference point. The
periodic distance function is given by d(t) = \/ (x(t) = x.)? + (y(t) — y.)?, where for the centroid distance function (CDF),
we set x. and y, as the centroid of the contour, that is, the mean of the CFs. For the origin distance function (ODF), we set
X. =y, = 0. A visualization for different values of r; can be seen in Figure 2. Both of these distance functions condense
the two-dimensional paths into one-dimensional periodic functions. Hence, they essentially reduce the dimensionality
of the trajectory information. Compared to CF we can use twice as many features to approximate the function. However,
there is a loss of information due to the distance computation. In conclusion, there is a trade-off between the accuracy to
which one can recover the original function and the information contained within that signal.

2.3 | Parameterization of trajectories

Next, we describe various approaches how features can be extracted from the trajectory representations such that they
can be used as input vectors for a neural network.
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2.3.1 | Sparse data points (Coarse)

This method extracts a set of points from the trajectory so that they are equally spaced in the rotation angle of one rev-
olution. This implicitly contains information about the speed of the end effector as points further away from each other
correspond to regions with higher velocity while points closer together indicate regions of slower movement. However,
this approach does not include any further preprocessing as it uses raw data points from the trajectory.

2.3.2 | Fourier coefficients (FC)

A Fourier series can approximate periodic functions by summation of sine and cosine functions of increasing frequency.
The series is given by f(x) = ay + Z:;l(an cos( 27anx) +b, sin(zﬂ%)), where L is the period of the function. The fitted
coefficients ay, a;, and b; for i € {1, ..., n} can then be used to describe the approximated function, where n is the n-th
harmonic. We apply a Fourier series to the centroid distance function (CDF-FC), the origin distance function (ODF-FC),
and the coordinate functions (CF-FC). The CDF-FC representation has previously been used in the literature [1-6] for the

description of closed-loop trajectories.

2.3.3 | Elliptical Fourier descriptors (EFD)

This method is based on the elliptical Fourier analysis method, see [7]. It is an extension of Fourier series to two-
dimensional closed contour lines. Hence, this method is closely related to CF-FC and the major differences are within
the implementation details. Additionally, the elliptical Fourier descriptors (EFD) can be normalized in the calculation
and adapted such that they parameterize the shape in a manner invariant to orientation, scaling, and translation. The
implementation used in this work is provided in the literature [8].

2.3.4 | Polynomial regression coefficients (Poly)

We fit a polynomial with monomial basis of degree d to the data points from the (preprocessed) trajectory. The polynomial
is given by f(x) = o + Z?:o B; x', where the regression coefficients ; are obtained by least-squares optimization. The
regression is applied on the centroid distance function (CDF-Poly), the origin distance function (ODF-Poly), and the coor-
dinate functions (CF-Poly). In the case of the coordinate functions, one polynomial is fitted for each coordinate function
with degree d /2.

2.4 | Training setup

For the data set, 201 trajectories are generated with r; € [2.5, 5.5] equally spaced in the interval, using a train-validation-
test split of [0.7,0.2,0.1]. Each trajectory is preprocessed by one of the presented methods while varying the number
of features (number of extracted points, number of Fourier coefficients, number of regression coefficients) that are fed
into the neural network. For a Fourier series this equates to adding more sine and cosine terms and for polynomials it
constitutes using monomials of higher order. We use fully connected feed-forward neural networks with ReLU activation
in all hidden layers. Different network sizes are examined (e.g., one hidden layer, two hidden layers, and three hidden
layers), where each hidden layer contains 40 neurons, and the analysis is conducted without normalization and with
unit normalization. When applying unit normalization, each input feature is normalized individually to the [—1, 1] range
using the entire data set. The same procedure is applied to the output r; values. For each configuration (e.g., preprocess-
ing method, number of input features, neural network size, normalization type), 20 independent neural networks are
trained using randomly sampled training data sets. Overall, this amounts to training 12360 individual neural networks.
The Adam optimizer is used with a learning rate of 0.001. The mean performance of the networks is reported in the
following.
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FIGURE 3 Mean squared errors for the prediction of r; values on unseen test data for different neural network sizes. Left column:
neural networks without normalization. Right column: applying unit normalization on the inputs and outputs.

3 | RESULTS

For a fixed number of features n;, one of the described preprocessing methods was run and 20 individual neural net-
works of the same size have been trained on randomly sampled data. These networks were tested on unseen test data and
had to predict the r; value given preprocessed trajectories. Figure 3 shows the mean squared error (MSE) between the r;
prediction and the ground truth value, averaged across the 20 trials. The left column of the figure refers to using neural
networks with one, two, and three hidden layers. The plots in the right column show the same setup but applying unit
normalization on the inputs and outputs. Notice that the preprocessing methods which used polynomials did not work
robustly across every evaluated feature vector length (i.e., the brown, pink and grey lines). The plots also show that unit
normalization has a significant impact on the prediction accuracy of the networks. It improves the prediction error by
almost two orders of magnitude as can be seen on the vertical scale. We also see that no method consistently outperforms
all others. However, Coarse, EFD, and CF-FC perform robustly across all feature lengths and neural network configura-
tions. CDF-FC performs robustly over all input vector sizes but when applying unit normalization it does not benefit as
much as the previously mentioned methods. The same plots have been generated for the standard deviation across the 20
trials for each configuration. They show a similar behaviour and, thus, are omitted here.
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4 | DISCUSSION

In general, training neural networks exhibits a large number of different hyperparameters such as network architecture,
optimizer choice, learning rate, initialization strategy, activation function and more. For this evaluation, no hyperparam-
eters have been extensively tuned. This means that for all methods there is possibly margin for improvement. Hence,
the error plots should not be taken as absolute performance measures but only as an indication of the robustness and
relative performance of the preprocessing methods. Generally, for the usage in automated design assistants, preprocess-
ing methods with decent out-of-the-box performance should be preferred over methods where the performance is highly
sensitive to the hyperparameters. After all, expert-guided hyperparameter tuning conflicts with the idea of automated
design assistants.

In the plots of Figure 3, the number of features n; are varied along the x-axis. This corresponds to varying the length of
the input vectors and as such the number of features used to describe the trajectories. A suitable prepocessing methods
should exhibit low MSEs independent of the specific choice of ns. Hence, preprocessing methods that consistently achieve
a low MSE across the entire x-axis in all plots can be regarded as robust. These methods are preferred in the use of an
automated design assistant.

The Coarse method performed robustly across different numbers of extracted points and led to good results. This is
surprising since it does not compress information from the entire trajectory. Especially for very few extracted points the
complete trajectory information is rather scarce. One possible explanation could be that, since we only vary one parameter,
the corresponding trajectories change rather smoothly as can be seen in Figure 1 (right). Thus, we have a bijective mapping
from extracted points to the value of r3, which seems to give a very clear learning signal. However, this only holds due to
the simplicity of the problem. For more complex problems like varying multiple parameters at once, different trajectories
could have very similar points extracted. In these instances, the neural networks could fail to recover the ground truth
parameters and the performance of Coarse could worsen.

On the other hand, EFD seems to be particularly suitable for representing closed-loop trajectories due to the fact that the
coefficients are invariant to translation, rotation, and dilation of the contour. This is a useful property as these variations do
not correspond to structurally different mechanisms but only to a different mounting and sizing of the same mechanism.
Hence, it makes the inverse learning task easier as it removes unnecessary complexity.

The evaluation showed that the input-output normalization to the [—1, 1] range had significant impact on the prediction
accuracy. The overall MSE was improved by almost two orders of magnitude. However, to be able to normalize the inputs
and outputs, the minimal and maximal values have to be computed using the entire preprocessed data set. This might
not always be possible, especially in scenarios when the test set is not previously known. In these cases, lower and upper
boundaries can be estimated and used for normalization. Another approach would be to only use the training set for
normalization meaning that the networks would potentially have to extrapolate on some of the unseen test data.

It is important to note that the studied model problem is rather simple since it consists of just predicting a single mech-
anism parameter given a (preprocessed) trajectory. Future work will investigate how the preprocessing methods compare
when being applied to more complex problems. This can be the prediction of multiple parameters at once for a given
mechanism or predicting coefficients of a meta model that can capture different mechanism designs simultaneously. In
these instances, a good representation of the trajectory will be crucial as the design space is significantly larger and data
points may only be sparsely distributed. It will be interesting to see if the difference between the preprocessing methods
becomes more apparent.

5 | CONCLUSION

In this work, an evaluation of different preprocessing methods for the inverse learning task of predicting a mechanism
parameter given data from its trajectory is presented. Different representations and parameterizations for the trajectories
are shown. Furthermore, different neural network sizes and the influence of normalization are examined. We showed that
no method signficantly outperforms all other methods across all configurations. The CDF-FC method, which has been
used widely in the literature, performs robustly across all feature lengths but methods like EFD and Coarse robustly lead
to better results. The analysis indicated that polynomials are not suitable to parameterize trajectories in the context of an
automated design assistant as they are sensible to the choice of the regression order, where the optimal regression order
for a given trajectory is generally not known a priori. Normalizing the inputs and outputs to the [—1, 1] range significantly
improves the prediction accuracy on the test data by almost two orders of magnitude.
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