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Abstract
The application of the Petrov–Galerkin projection method in Cosserat rod
finite element formulations offers significant advantages in simplifying the
expressions within the discrete virtual work functionals. Moreover, it enables
a straight-forward and systematic exchange of the ansatz functions, specifically
for centerline positions and cross-section orientations. In this concise commu-
nication, we present a total Lagrangian finite element formulation for Cosserat
rods that attempts to minimize the number of required theoretical concepts.
The chosen discretization preserves objectivity and allows for large displace-
ments/rotations and for large strains. The orientation parametrization with
nonunit quaternions results in a singularity-free formulation.

1 INTRODUCTION

This article complements the two papers [1, 2] on Petrov–Galerkin rod finite element formulations for Cosserat rods.
The cross-section orientations are parameterized using nonunit quaternions instead of total rotation vectors, which for
dynamics require additionally the concept of the complement rotation vector for a singularity-free parametrization. To
keep the formulation as simple as possible, we opt for the ℝ12-interpolation for the ansatz functions, see Refs. [2–4].
The paper is structured as follows. In Section 2, the Cosserat rod theory is recapitulated very briefly; mainly to introduce

all quantities required for the further finite element formulation. For those interested in additional comments as well as a
thorough introduction and explanation of the chosen notation, we recommend reading Refs. [1, 2]. The Petrov–Galerkin
finite element formulation in terms of nodal nonunit quaternions is presented in Section 3. The last section on numeri-
cal experiments investigates the static analysis of a helical spring in line with Marino [5]. Additionally, the Wilberforce
example from Harsch et al. [6] with a helical spring with three coils is discussed.

2 COSSERAT ROD THEORY

Let 𝜉 ∈  = [0, 1] ⊂ ℝ be the centerline parameter and let 𝑡 denote time. The motion of a Cosserat rod is captured by
a time-dependent centerline curve represented in an inertial 𝐼-basis 𝐼𝐫𝑂𝑃 = 𝐼𝐫𝑂𝑃(𝜉, 𝑡) ∈ ℝ3 augmented by the cross-
section orientations 𝐀𝐼𝐾 = 𝐀𝐼𝐾(𝜉, 𝑡) ∈ 𝑆𝑂(3) = {𝐀 ∈ ℝ3×3|𝐀T𝐀 = 𝟏3×3 ∧ det(𝐀) = 1}. The subscripts 𝑂 and 𝑃 in the
centerline curve refer to the origin and the centerline point, respectively. The cross-section orientation 𝐀𝐼𝐾 can also be
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interpreted as a transformation matrix that relates the representation of a vector in the cross-section-fixed 𝐾-basis to its
representation in the inertial 𝐼-basis.
The derivatives with respect to time 𝑡 and centerline parameter 𝜉 are denoted by ̇(∙) and (∙),𝜉 , respectively. The vari-

ation of a function is indicated by 𝛿(∙). With this, we can introduce the centerline velocity 𝐼𝐯𝑃 = (𝐼𝐫𝑂𝑃)
⋅ and the virtual

displacement 𝐼𝛿𝐫𝑃 = 𝛿(𝐼𝐫𝑂𝑃). The angular velocity of the cross-section-fixed𝐾-basis relative to the inertial 𝐼-basis, in com-
ponents with respect to the𝐾-basis, is defined by 𝐾𝝎𝐼𝐾 ∶= 𝑗−1(𝐀T𝐼𝐾(𝐀𝐼𝐾)

⋅), where 𝑗 ∶ ℝ3 → 𝔰𝔬(3) = {𝐁 ∈ ℝ3×3|𝐁T = −𝐁}

is the linear and bijective map such that 𝝎𝐫 = 𝑗(𝝎)𝐫 = 𝝎 × 𝐫 for all 𝝎, 𝐫 ∈ ℝ3. Analogously, the virtual rotations and the
scaled curvature are defined as 𝐾𝛿𝝓𝐼𝐾 ∶= 𝑗−1(𝐀T𝐼𝐾𝛿(𝐀𝐼𝐾)) and 𝐾𝜿̄𝐼𝐾 ∶= 𝑗−1(𝐀T𝐼𝐾(𝐀𝐼𝐾),𝜉), respectively. For the reference
centerline curve 𝐼𝐫

0
𝑂𝑃
, the length of the rod’s tangent vector is 𝐽 = ‖𝐼𝐫0𝑂𝑃,𝜉‖. Thus, for a given centerline parameter 𝜉,

the reference arc length increment is d𝑠 = 𝐽d𝜉. The derivative with respect to the reference arc length 𝑠 of a function
𝐟 = 𝐟 (𝜉, 𝑡) ∈ ℝ3 can then be defined as 𝐟,𝑠(𝜉, 𝑡) ∶= 𝐟,𝜉(𝜉, 𝑡)∕𝐽(𝜉). The objective strain measures of a Cosserat rod are the
curvature 𝐾𝜿𝐼𝐾 = 𝐾𝜿̄𝐼𝐾∕𝐽, which measures torsion and bending, together with the measures for dilatation and shear
strains contained in 𝐾𝜸 = 𝐾𝜸̄∕𝐽 determined by 𝐾𝜸̄ ∶= (𝐀𝐼𝐾)

T
𝐼𝐫𝑂𝑃,𝜉 .

The internal virtual work of a Cosserat rod is defined as

𝛿𝑊int ∶= −∫
{
(𝐼𝛿𝐫𝑃,𝜉)

T𝐀𝐼𝐾𝐾𝐧 + (𝐾𝛿𝝓𝐼𝐾,𝜉)
T
𝐾𝐦 − (𝐾𝛿𝝓𝐼𝐾)

T[𝐾𝜸̄ × 𝐾𝐧 + 𝐾𝜿̄𝐼𝐾 × 𝐾𝐦]
}
d𝜉 , (1)

where 𝐾𝐧 and 𝐾𝐦 denote the resultant contact forces and moments, respectively. For hyperelastic material models with
a strain energy density with respect to the reference arc length 𝑊 = 𝑊(𝐾𝜸, 𝐾𝜿𝐼𝐾; 𝜉), they can be determined by the
constitutive relations 𝐾𝐧 = (𝜕𝑊∕𝜕𝐾𝜸)

T and 𝐾𝐦 = (𝜕𝑊∕𝜕𝐾𝜿𝐼𝐾)
T.

Assume that the line distributed external forces 𝐼𝐛 = 𝐼𝐛(𝜉, 𝑡) ∈ ℝ3 and moments 𝐾𝐜 = 𝐾𝐜(𝜉, 𝑡) ∈ ℝ3 to be given as
densitieswith respect to the reference arc length.Moreover, for 𝑖 ∈ {0, 1}, point forces 𝐼𝐛𝑖 = 𝐼𝐛𝑖(𝑡) ∈ ℝ3 andpointmoments
𝐾𝐜𝑖 = 𝐾𝐜𝑖(𝑡) ∈ ℝ3 can be applied to the rod’s boundaries at 𝜉0 = 0 and 𝜉1 = 1. The corresponding external virtual work
functional is defined as

𝛿𝑊ext ∶= ∫
{
(𝐼𝛿𝐫𝑃)

T
𝐼𝐛 + (𝐾𝛿𝝓𝐼𝐾)

T
𝐾𝐜

}
𝐽d𝜉 +

1∑
𝑖=0

[
(𝐼𝛿𝐫𝑃)

T
𝐼𝐛𝑖 + (𝐾𝛿𝝓𝐼𝐾)

T
𝐾𝐜𝑖

]
𝜉𝑖
. (2)

In case, 𝐼𝐫𝑂𝑃 is the line of centroids, the inertial virtual work functional of the Cosserat rod can be written as

𝛿𝑊dyn ∶= −∫
{
(𝐼𝛿𝐫𝑃)

T𝐴𝜌0(𝐼𝐯𝑝)
⋅ + (𝐾𝛿𝝓𝐼𝐾)

T(𝐾𝐈𝜌0(𝐾𝝎𝐼𝐾)
⋅ + 𝐾𝝎𝐼𝐾 × 𝐾𝐈𝜌0𝐾𝝎𝐼𝐾)

}
𝐽d𝜉 , (3)

where 𝐴𝜌0 is the cross-section mass density and 𝐾𝐈𝜌0 the constant cross-section inertia tensor represented in the cross-
section-fixed 𝐾-basis.

3 PETROV–GALERKIN FINITE ELEMENT FORMULATION

The rod’s parameter space  is divided into 𝑛el linearly spaced element intervals  𝑒 = [𝜉𝑒, 𝜉𝑒+1) via  =
⋃𝑛el−1

𝑒=0  𝑒. For
a 𝑝th-order finite element, the closure of each of the intervals  𝑒 contains 𝑝 + 1 evenly spaced points 𝜉𝑒

𝑖
∈ cl( 𝑒) =

[𝜉𝑒, 𝜉𝑒+1] with 𝑖 ∈ {0, … , 𝑝} such that 𝜉𝑒0 = 𝜉𝑒 < 𝜉𝑒1 < ⋯ < 𝜉𝑒𝑝 = 𝜉𝑒+1. Note, for 𝑒 ∈ {0, … , 𝑛el − 2}, the points 𝜉𝑒𝑝 = 𝜉𝑒+10
denote the same point 𝜉𝑒+1, which is the boundary point of the adjacent element intervals. It is convenient to use both
indexations in the following. For a given element interval  𝑒 = [𝜉𝑒, 𝜉𝑒+1), the 𝑝th-order Lagrange basis function and
derivative of node 𝑖 ∈ {0, … , 𝑝} are

𝑁
𝑝,𝑒
𝑖
(𝜉) =

∏
0≤𝑗≤𝑝
𝑗≠𝑖

𝜉 − 𝜉𝑒
𝑗

𝜉𝑒
𝑖
− 𝜉𝑒

𝑗

and 𝑁
𝑝,𝑒

𝑖,𝜉
(𝜉) = 𝑁

𝑝,𝑒
𝑖
(𝜉)

𝑝∑
𝑘=0
𝑘≠𝑖

1

𝜉 − 𝜉𝑒
𝑘

, (4)

where 𝜉𝑒
𝑖
, 𝜉𝑒

𝑗
, and 𝜉𝑒

𝑘
are the points contained in the set {𝜉𝑒0 = 𝜉𝑒, 𝜉𝑒1, … , 𝜉𝑒𝑝 = 𝜉𝑒+1}.
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The centerline curve 𝐼𝐫𝑂𝑃 and the cross-section orientations 𝐀𝐼𝐾 are approximated by interpolating nodal centerline
points 𝐼𝐫𝑂𝑃𝑒

𝑖
(𝑡) ∈ ℝ3 and nodal transformation matrices 𝐀𝐼𝐾𝑒

𝑖
(𝑡) ∈ 𝑆𝑂(3). For each node 𝑖 ∈ {0, … , 𝑝} within element

𝑒 ∈ {0, … , 𝑛el − 1}, it will hold that 𝐼𝐫𝑂𝑃𝑒
𝑖
(𝑡) = 𝐼𝐫𝑂𝑃(𝜉

𝑒
𝑖
, 𝑡) and 𝐀𝐼𝐾𝑒

𝑖
(𝑡) = 𝐀𝐼𝐾(𝜉

𝑒
𝑖
, 𝑡). In contrast to Refs. [1, 2], the nodal

transformation matrices

𝐀𝐼𝐾𝑒
𝑖
= 𝐀(𝐏𝑒

𝑖
) = 𝟏3×3 + 2

(
(𝐩𝑒

𝑖
)2 + 𝑝𝑒

0,𝑖
𝐩𝑒
𝑖

)
∕‖𝐏𝑒

𝑖
‖2 (5)

are parametrized by nodal nonunit quaternions 𝐏𝑒
𝑖
(𝑡) = (𝑝𝑒

0,𝑖
(𝑡), 𝐩𝑒

𝑖
(𝑡)) ∈ ℝ4 with the scalar part 𝑝𝑒

0,𝑖
(𝑡) ∈ ℝ and the vec-

torial part 𝐩𝑒
𝑖
(𝑡) ∈ ℝ3, see Rucker [7]. Note that Equation (5) is formulated in such a way to return orthogonal matrices

also for nonunit quaternions.
Accordingly, the 𝑁 = (𝑝𝑛el + 1) nodal generalized position coordinates 𝐪𝑒

𝑖
(𝑡) = (𝐼𝐫𝑂𝑃𝑒

𝑖
, 𝐏𝑒

𝑖
)(𝑡) ∈ ℝ7 are given by the

nodal centerline points 𝐼𝐫𝑂𝑃𝑒
𝑖
and the nodal nonunit quaternions𝐏𝑒

𝑖
resulting in 𝑛𝐪 = 7𝑁 positional degrees of freedom for

the discretized rod. The nodal quantities can be assembled in the global tuple of generalized position coordinates 𝐪(𝑡) =
(𝐪00, … , 𝐪0𝑝−1, … , 𝐪𝑒0, … , 𝐪𝑒𝑝−1, … , 𝐪

𝑛el−1
0 , … , 𝐪

𝑛el−1
𝑝−1 , 𝐪

𝑛el−1
𝑝 )(𝑡) ∈ ℝ𝑛𝐪 . Note, for 𝑒 ∈ {0, … , 𝑛el − 2}, the coordinates 𝐪𝑒𝑝 = 𝐪𝑒+10

refer to the same nodal coordinates. Introducing an appropriate Boolean connectivitymatrix𝐂𝑒 ∈ ℝ7(𝑝+1)×𝑛𝐪 , the element
generalized position coordinates 𝐪𝑒(𝑡) = (𝐪𝑒0, … , 𝐪𝑒𝑝)(𝑡) ∈ ℝ7(𝑝+1) can be extracted from 𝐪 via 𝐪𝑒 = 𝐂𝑒𝐪. Note that during
a numerical implementation, it is advisable to slice arrays instead of multiply them with Boolean matrices.
In the sense of Refs. [3, 4], both the nodal centerline points and the cross-section orientations are interpolated by 𝑝th-

order Lagrangian polynomials. Using the characteristic function 𝜒 𝑒 ∶  → {0, 1}, which is one for 𝜉 ∈  𝑒 = [𝜉𝑒, 𝜉𝑒+1)

and zero elsewhere, together with the 𝑝th-order Lagrange basis functions (4), the ansatz functions for centerline and
cross-section orientations are

𝐼𝐫𝑂𝑃(𝜉, 𝐪) =

𝑛el−1∑
𝑒=0

𝜒 𝑒 (𝜉)

𝑝∑
𝑖=0

𝑁
𝑝,𝑒
𝑖
(𝜉)𝐼𝐫𝑂𝑃𝑒

𝑖
and 𝐀𝐼𝐾(𝜉, 𝐪) =

𝑛el−1∑
𝑒=0

𝜒 𝑒 (𝜉)

𝑝∑
𝑖=0

𝑁
𝑝,𝑒
𝑖
(𝜉)𝐀(𝐏𝑒

𝑖
) . (6)

The discretized version of the curvature strain is computed as

𝐾𝜿𝐼𝐾 = 𝑗−1
(
Skw(𝐀T𝐼𝐾𝐀𝐼𝐾,𝜉)

)
∕𝐽 , (7)

where the map Skw(𝐌) =
1

2
(𝐌 −𝐌T) ∈ 𝔰𝔬(3) extracts the skew-symmetric part of the matrix 𝐌 ∈ ℝ3×3. Hence, the

curvature can efficiently be computed using 𝑗−1(Skw(𝐌)) =
1

2
(𝑀32 −𝑀23, 𝑀13 −𝑀31, 𝑀21 −𝑀12).

At the same 𝑁 nodes as for the nodal generalized position coordinates, we introduce the nodal generalized virtual dis-
placements 𝛿𝐬𝑒

𝑖
(𝑡) = (𝐼𝛿𝐫𝑃𝑒

𝑖
, 𝐾𝑒

𝑖
𝛿𝝓𝐼𝐾𝑒

𝑖
)(𝑡) ∈ ℝ6 given by the nodal virtual centerline displacement 𝐼𝛿𝐫𝑃𝑒

𝑖
(𝑡) ∈ ℝ3 and the

nodal virtual rotation 𝐾𝑒
𝑖
𝛿𝝓𝐼𝐾𝑒

𝑖
(𝑡) ∈ ℝ3. In analogy to the generalized virtual displacements, we also introduce the nodal

generalized velocities 𝐮𝑒
𝑖
(𝑡) = (𝐼𝐯𝑃𝑒

𝑖
, 𝐾𝑒

𝑖
𝝎𝐼𝐾𝑒

𝑖
)(𝑡) ∈ ℝ6 given by the nodal centerline velocity 𝐼𝐯𝑃𝑒

𝑖
(𝑡) ∈ ℝ3 and the nodal

angular velocity 𝐾𝑒
𝑖
𝝎𝐼𝐾𝑒

𝑖
(𝑡) ∈ ℝ3. Similar to the generalized position coordinates 𝐪, the nodal generalized virtual displace-

ments and velocities are assembled in the global tuple of generalized virtual displacements 𝛿𝐬(𝑡) ∈ ℝ𝑛𝐮 and velocities
𝐮(𝑡) ∈ ℝ𝑛𝐮 . In contrast to the nodal position coordinates, there are only six nodal generalized virtual displacements
or velocity coordinates resulting in 𝑛𝐮 = 6𝑁 generalized virtual displacements or velocity degrees of freedom for the
discretized rod.
Consequently, we require a new Boolean connectivitymatrix𝐂𝐮,𝑒 ∈ ℝ6(𝑝+1)×𝑛𝐮 , which extracts the element generalized

virtual displacements 𝛿𝐬𝑒(𝑡) = (𝛿𝐬𝑒0, … , 𝛿𝐬𝑒𝑝)(𝑡) ∈ ℝ6(𝑝+1) and velocities 𝐮𝑒(𝑡) = (𝐮𝑒0, … , 𝐮𝑒𝑝)(𝑡) ∈ ℝ6(𝑝+1) from the global
quantities via 𝛿𝐬𝑒 = 𝐂𝐮,𝑒𝛿𝐬 and𝐮𝑒 = 𝐂𝐮,𝑒𝐮. By further introducing the Boolean connectivitymatrices𝐂𝐫,𝑖 ∈ ℝ3×6(𝑝+1), the
nodal virtual centerline displacements 𝐼𝛿𝐫𝑃𝑒

𝑖
and centerline velocities 𝐼𝐯𝑃𝑒

𝑖
can be extracted from the element generalized

virtual displacements 𝛿𝐬𝑒 and velocities 𝐮𝑒 via 𝐼𝛿𝐫𝑃𝑒
𝑖
= 𝐂𝐫,𝑖𝛿𝐬

𝑒 and 𝐼𝐯𝑃𝑒
𝑖
= 𝐂𝐫,𝑖𝐮

𝑒, respectively. Identical extraction opera-
tions hold for the nodal virtual rotations 𝐾𝑒

𝑖
𝛿𝝓𝐼𝐾𝑒

𝑖
= 𝐂𝝓,𝑖𝛿𝐬

𝑒 and angular velocities 𝐾𝑒
𝑖
𝝎𝐼𝐾𝑒

𝑖
= 𝐂𝝓,𝑖𝐮

𝑒, where𝐂𝝓,𝑖 ∈ ℝ3×6(𝑝+1).
The test functions are then given by interpolating the nodal generalized virtual displacements by 𝑝th-order Lagrangian
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basis functions (4) in agreement with

𝐼𝛿𝐫𝑃(𝜉, 𝛿𝐬) =

𝑛el−1∑
𝑒=0

𝜒 𝑒 (𝜉)

𝑝∑
𝑖=0

𝑁
𝑝,𝑒
𝑖
(𝜉)𝐼𝛿𝐫𝑃𝑒

𝑖
and 𝐾𝛿𝝓𝐼𝐾(𝜉, 𝛿𝐬) =

𝑛el−1∑
𝑒=0

𝜒 𝑒 (𝜉)

𝑝∑
𝑖=0

𝑁
𝑝,𝑒
𝑖
(𝜉)𝐾𝑒

𝑖
𝛿𝝓𝐼𝐾𝑒

𝑖
. (8)

Note that the interpolation of the virtual rotationsmust be understood in the sense of a Petrov–Galerkin projection, where
the virtual rotations are not obtained from a consistent variation of the ansatz functions (6).
To obtain a constant and symmetric mass matrix in the discretized formulation, see Equation (13) below, the velocities

are considered as independent fields and are interpolated with the same interpolation as the virtual displacements and
rotations as

𝐼𝐯𝑃(𝜉, 𝐮) =

𝑛el−1∑
𝑒=0

𝜒 𝑒 (𝜉)

𝑝∑
𝑖=0

𝑁
𝑝,𝑒
𝑖
(𝜉)𝐼𝐯𝑃𝑒

𝑖
and 𝐾𝝎𝐼𝐾(𝜉, 𝐮) =

𝑛el−1∑
𝑒=0

𝜒 𝑒 (𝜉)

𝑝∑
𝑖=0

𝑁
𝑝,𝑒
𝑖
(𝜉)𝐾𝑒

𝑖
𝝎𝐼𝐾𝑒

𝑖
. (9)

The independent introduction of velocity fields (9) demands an additional relation defining the coupling between position
coordinates 𝐪 and velocity coordinates 𝐮. This coupling is given by the nodal kinematic differential equations

𝐪̇𝑒
𝑖
=

(
𝐼 𝐫̇𝑂𝑃𝑒

𝑖

𝐏̇𝑒
𝑖

)
=

(
𝟏3×3 𝟎3×3
𝟎4×3 𝐐(𝐏𝑒

𝑖
)

)(
𝐼𝐯𝑃𝑒

𝑖

𝐾𝑒
𝑖
𝝎𝐼𝐾𝑒

𝑖

)
= 𝐅(𝐪𝑒

𝑖
)𝐮𝑒

𝑖
, where 𝐐(𝐏) =

1

2

(
−𝐩T

𝑝0𝟏3×3 + 𝐩

)
, (10)

compare [7]. The nodal kinematic equations (10) can easily be assembled to a global kinematic differential equation of
the form 𝐪̇ = 𝐁(𝐪)𝐮. Note that the kinematic differential equation is linear in 𝐪 too. This allows to write the relation also
in the form 𝐪̇ = 𝐃(𝐮)𝐪, see Rucker [7] for more details.
Inserting the test functions (8) together with the corresponding approximations for centerline, cross-section orienta-

tions (6), and strain measures into Equation (1), the continuous internal virtual work is approximated by 𝛿𝑊int(𝐪; 𝛿𝐬) =

𝛿𝐬T𝐟 int(𝐪), where the internal generalized forces are computed element-wise by

𝐟 int(𝐪) =

𝑛el−1∑
𝑒=0

𝐂T𝐮,𝑒𝐟
int
𝑒 (𝐂𝑒𝐪) ,

𝐟 int𝑒 (𝐪𝑒) = −∫ 𝑒

𝑝∑
𝑖=0

{
𝑁
𝑝,𝑒

𝑖,𝜉
𝐂T
𝐫,𝑖
𝐀𝐼𝐾𝐾𝐧 + 𝑁

𝑝,𝑒

𝑖,𝜉
𝐂T
𝝓,𝑖𝐾

𝐦 − 𝑁
𝑝,𝑒
𝑖
𝐂T
𝝓,𝑖(𝐾𝜸̄ × 𝐾𝐧 + 𝐾𝜿̄𝐼𝐾 × 𝐾𝐦)

}
d𝜉 .

(11)

Similarly, the external virtual work (2) is discretized by 𝛿𝑊ext(𝑡, 𝐪; 𝛿𝐬) = 𝛿𝐬T𝐟 ext(𝑡, 𝐪) with

𝐟 ext(𝑡, 𝐪) =

𝑛el−1∑
𝑒=0

𝐂T𝐮,𝑒𝐟
ext
𝑒 (𝑡, 𝐂𝑒𝐪) + 𝐂T𝐮,0

[
𝐂T𝐫,0𝐼𝐛0+𝐂

T
𝝓,0𝐾

𝐜0

]
𝜉=0

+ 𝐂T𝐮,𝑛el−1

[
𝐂T𝐫,𝑝𝐼𝐛1+𝐂

T
𝝓,𝑝𝐾

𝐜1

]
𝜉=1

,

𝐟 ext𝑒 (𝑡, 𝐪𝑒) = ∫ 𝑒

𝑝∑
𝑖=0

{
𝑁
𝑝,𝑒
𝑖
𝐂T
𝐫,𝑖𝐼

𝐛 + 𝑁
𝑝,𝑒
𝑖
𝐂T
𝝓,𝑖𝐾

𝐜
}
𝐽d𝜉 . (12)

Finally, inserting Equations (8) and (9) into the inertial virtual work functional (3) yields the discrete counterpart
𝛿𝑊dyn(𝐮; 𝛿𝐬) = −𝛿𝐬T(𝐌𝐮̇ + 𝐟 gyr(𝐮)), where we have introduced the symmetric and constant mass matrix

𝐌 =

𝑛el−1∑
𝑒=0

𝐂T𝐮,𝑒𝐌𝑒𝐂𝐮,𝑒 , 𝐌𝑒 = ∫ 𝑒

𝑝∑
𝑖=0

𝑝∑
𝑘=0

𝑁
𝑝,𝑒
𝑖
𝑁
𝑝,𝑒

𝑘

{
𝐴𝜌0𝐂

T
𝐫,𝑖
𝐂𝐫,𝑘 + 𝐂T

𝝓,𝑖𝐾
𝐈𝜌0𝐂𝝓,𝑘

}
𝐽d𝜉 , (13)

and the gyroscopic forces

𝐟 gyr(𝐮) =

𝑛el−1∑
𝑒=0

𝐂T𝐮,𝑒𝐟
gyr
𝑒 (𝐂𝐮,𝑒𝐮) , 𝐟

gyr
𝑒 (𝐮𝑒) = ∫ 𝑒

𝑝∑
𝑖=0

𝑁
𝑝,𝑒
𝑖

{
𝐂T
𝝓,𝑖
(𝐾𝝎𝐼𝐾 × 𝐾𝐈𝜌0𝐾𝝎𝐼𝐾)

}
𝐽d𝜉 . (14)
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Element integrals of the form ∫ 𝑒 𝑓(𝜉)d𝜉 arising in the discretized external and gyroscopic forces, as well as in the mass
matrix, are subsequently computed using a Gauss–Legendre quadrature rule with ceil[(𝑝 + 1)2∕2] quadrature points. To
alleviate locking, the internal generalized forces (11) are integrated by a reduced 𝑝-point quadrature rule.
Applying the principle of virtual work, which requires the total virtual work functional to vanish, we readily obtain the

system dynamics in the form

𝐪̇ = 𝐁(𝐪)𝐮 ,

𝐮̇ = 𝐌−1
(
𝐟 gyr(𝐮) + 𝐟 int(𝐪) + 𝐟 ext(𝑡, 𝐪)

)
,

(15)

where the two lines correspond to the global kinematic differential equation and the equations of motion, respectively.
Even though deviations from unit length of 𝐏𝑒

𝑖
do not affect the kinematic differential equation, to avoid numerical issues

due to quaternion magnitudes near zero or floating point overflow, the nodal quaternions are normalized after each time-
step, that is, 𝐏𝑒

𝑖
= 𝐏𝑒

𝑖
∕‖𝐏𝑖‖. For static problems, the 𝑛𝐮 = 6𝑁 nonlinear generalized force equilibrium equations

𝟎 = 𝐟 int(𝐪) + 𝐟 ext(𝐪) (16)

must be augmented by the 𝑁 constraint equations

𝟎 = 𝐠(𝐪) = (‖𝐏00‖2 − 1,… , ‖𝐏𝑛el−1𝑝 ‖2 − 1) (17)

to ensure solvability.

4 NUMERICAL EXPERIMENTS

In the following, the quadratic strain energy density

𝑊(𝐾𝜸, 𝐾𝜿𝐼𝐾; 𝜉) =
1

2

(
𝐾𝜸 − 𝐾𝜸

0
)T
𝐊𝜸

(
𝐾𝜸 − 𝐾𝜸

0
)
+
1

2

(
𝐾𝜿𝐼𝐾 − 𝐾𝜿

0
𝐼𝐾

)T
𝐊𝜿

(
𝐾𝜿𝐼𝐾 − 𝐾𝜿

0
𝐼𝐾

)
(18)

is used. The superscript 0 refers to the evaluation in the rod’s reference configuration. Moreover,𝐊𝜸 = diag(𝐸𝐴,𝐺𝐴,𝐺𝐴)

and 𝐊𝜿 = diag(𝐺(𝐼𝑦 + 𝐼𝑧), 𝐸𝐼𝑦, 𝐸𝐼𝑧) denote the diagonal elasticity matrices with constant coefficients given by Saint-
Venant’s relations from linear elasticity. Therein, 𝐸 and 𝐺, respectively denote the Young’s and shear modulus. The
cross-sectional surface is denoted 𝐴 and 𝐼𝑦 , 𝐼𝑧 are the respective second moments of area.

4.1 Helical spring

Following Marino [5], we investigate the elongation of an initially curved helical rod due to an applied external force at
its tip, pointing in positive 𝐞𝐼𝑧-direction. The rod has a Young’s modulus 𝐸 = 1011 N∕m2 and Poisson’s ratio 𝜈 = 0.2, that
is, a shear modulus 𝐺 = 𝐸∕2(1 + 𝜈) = 41.7 ⋅ 109 N∕m2. It has an undeformed shape of a perfect helix with 𝑛c = 10 coils,
coil radius 𝑅 = 10 mm, wire diameter 𝑑 = 1 mm, and unloaded pitch 𝑘 = 5 mm, that is, a total height of ℎ = 50 mm.
In the simulation, the spring was discretized using 75 elements of the presented finite element formulation with 𝑝 = 2.

Reduced integration was performed with 2 quadrature points, while 5 points were used for all other integrals. The rod’s
curved initial configuration was obtained by solving the following minimization problem. Let 𝜉𝑗 =

𝑗

𝑚−1
∈ [0, 1] for 𝑗 ∈

{0, 1, … ,𝑚 − 1} denote the𝑚 linearly spaced evaluation points of the reference helix curve

𝐼𝐫(𝜉) = 𝑅
⎛⎜⎜⎝
sin 𝜑(𝜉)

− cos 𝜑(𝜉)

𝑐𝜑(𝜉)

⎞⎟⎟⎠ , with 𝑐 =
𝑘

2𝜋𝑅
and 𝜑(𝜉) = 2𝜋𝑛c𝜉 . (19)

Hence, the evaluation of the reference curve (19) at all 𝜉𝑗 ’s leads to 𝑚 target centerline points 𝐼𝐫𝑗 = 𝐼𝐫(𝜉𝑗). Similarly,
the corresponding cross-section orientations are given by evaluating the Serret–Frenet basis 𝐀𝐼𝐾𝑗

= (𝐼𝐞
𝐾𝑗

𝑥 𝐼𝐞
𝐾𝑗

𝑦 𝐼𝐞
𝐾𝑗

𝑧 ) with
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F IGURE 1 Force–displacement diagram and deformed configurations of the helical spring.

𝐼𝐞
𝐾𝑗

𝑥 = 𝐼𝐫,𝜉(𝜉𝑗)∕‖𝐼𝐫,𝜉(𝜉𝑗)‖, 𝐼𝐞𝐾𝑗

𝑦 = 𝐼𝐫,𝜉𝜉(𝜉𝑗)∕‖𝐼𝐫,𝜉𝜉(𝜉𝑗)‖, and 𝐞
𝐾𝑗

𝑧 = 𝐼𝐞
𝐾𝑗

𝑥 × 𝐼𝐞
𝐾𝑗

𝑦 for the individual 𝜉𝑗 ’s. Following Harsch
et al. [1], the centerline positions and cross-section orientations can be assembled in the Euclidean transformations

𝐇𝑗 =

(
𝐀𝐼𝐾𝑗 𝐼𝐫𝑗
𝟎1×3 1

)
and 𝐇(𝜉𝑗) =

(
𝐀𝐼𝐾(𝜉𝑗) 𝐼𝐫𝑂𝑃(𝜉𝑗)

𝟎1×3 1

)
, with 𝐇−1

𝑗
=

(
𝐀𝑇
𝐼𝐾𝑗

−𝐀𝑇
𝐼𝐾𝑗

𝐼𝐫𝑗

𝟎1×3 1

)
. (20)

Using the 𝑆𝐸(3)-logarithmmap Log𝑆𝐸(3) introduced inHarsch et al. [1], the optimal initial generalized position coordinates
𝐪0 results from the nonlinear least squares problem

𝐪0 = argmin
𝐪∈ℝ𝑛𝐪

𝐾(𝐪) , with 𝐾(𝐪) =
1

2

𝑚−1∑
𝑗=0

‖𝜽𝑗(𝐪)‖2 and 𝜽𝑗(𝐪) = Log𝑆𝐸(3)

(
𝐇−1

𝑗
𝐇(𝜉𝑗)

)
, (21)

in terms of the metric of relative twists. The minimization problem (21) can efficiently be solved using a Levenberg–
Marquardt algorithm. The unity constraints of the nodal quaternions (17) can be incorporated into the optimization
problem as equality constraints, albeit at the expense of employing a complex constrained nonlinear least squares solver.
To simplify the process,we initially solved the unconstrainedminimization problemand subsequently applied a projection
step to normalize all nodal quaternions.
Starting from 𝐪0, the maximal force of 100 N was applied within 500 linearly spaced force increments. During each

iteration, the nonlinear equations (16) and (17) were solved up to an absolute error of 10−8. As can be seen in Figure 1, the
helical spring initially elongates proportional to the applied load. This is in line with classical helical spring theory [8],
which assumes a linear force–displacement relationwith linear equivalent stiffness𝐺𝑑4∕(64𝑛c𝑅3) ≈ 65.1 N∕m. When the
elongation exceeds a certain value (approx. 10 N), the linear theory does not longer agree with the numerically obtained
nonlinear solution. This observation was also made by Marino [5] and can be explained as follows. The helical spring
unwinds gradually and approaches slowly a straight line with an altered linear stiffness 𝐸𝐴. For comparison, we also
solved the problem with the two-node 𝑆𝐸(3)-interpolation strategy proposed in Harsch et al. [1], using the same number
of unknowns. As depicted in Figure 1, the results are in line with the proposed quaternion formulation.

4.2 Wilberforce pendulum

More than 100 years ago, Lionel Robert Wilberforce did investigationsOn the Vibrations of a Loaded Spiral Spring [9]. The
experimental setup can be described as follows.While one end of a helical spring is clamped, at the other end, a cylindrical
bob is attached, see Figure 2. When the cylinder in the gravitational field is displaced vertically, it starts oscillating up and
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F IGURE 2 Vertical position 𝑧 of the cylinder’s center of mass and rotation angle 𝛼 corresponding to the first Euler angle with sequence
“𝑧𝑦𝑥” over time. Snapshots of the Wilberforce pendulum are attached to the corresponding time instants.

down. Due to the coupling of bending and torsion of the deformed spring, an additional torsional oscillation around the
vertical axis of the cylinder is induced. When the cylinder’s moment of inertia is properly adjusted, a beat phenomenon
can be observed. In that case, the envelope of the vertical and torsional oscillations possess an almost perfect phase shift
of 𝜋∕2, that is, the maximal amplitude of the vertical oscillations coincides with a zero torsional amplitude and vice versa.
Tohave a benchmark example that can be reproducedwith reasonably computational effort, we introduce here aWilber-

force pendulum consisting of a spring with three coils modeled as a precurved rod. The rod has the properties of steel with
mass density 𝜌0 = 7850 kg∕m3, shear modulus 𝐺 = 81 ⋅ 109 N∕m2, and Poisson’s ratio 𝜈 = 0.23, that is, a Young’s mod-
ulus 𝐸 = 2𝐺(1 + 𝜈) = 199 ⋅ 109 N∕m2. The undeformed shape is given by a perfect helix with 𝑛c = 3 coils, coil radius
𝑅 = 16 mm, wire diameter 𝑑 = 1 mm, and an unloaded pitch of 𝑘 = 1 mm. The bob is modeled as a cylindrical rigid body
with radius 𝑟 = 23 mm and height ℎ = 36 mm also having the mass density of steel.
In the simulations, the rod was discretized using 18 elements of the presented Cosserat rod finite element with 𝑝 =

2. Gravitational forces for the rod were neglected. Again, reduced integration was performed with 2 quadrature points,
while for all other integrals 5 points were used. The bob was parameterized by the inertial position of the center of mass
𝐼𝐫𝑂𝑆 together with a nonunit quaternion 𝐏 for the orientation. The bob was subjected to gravity with gravity constant
𝑔 = 9.81 m∕s2. For the governing equations describing such a parameterized rigid body under the influence of gravity,
we refer to model 4 in Sailer et al. [10]. Cylinder and rod were rigidly connected by perfect bilateral constraints [11].
Again, the optimal helical initial configuration 𝐪0 was found by solving the minimization problem (21). The system was
initialized at rest with initial velocity 𝐮0 = 𝟎. The resulting differential algebraic equations were solved using a first-order
generalized-alpha method [12] for constrained mechanical systems of differential index 3, similar to the implementation
found in Arnold and Brüls [13]. A constant step-size Δ𝑡 = 5 ⋅ 10−3 s was chosen and the governing equations were solved
up to a final time of 𝑡1 = 8 s. Since the example includes high-frequency oscillations, we chose a spectral radius at infinity
of 𝜌∞ = 0.8. The internal Newton–Raphson method satisfied a tolerance of 10−8 with respect to the maximum absolute
error. In Figure 2, the vertical position and the torsional angle of the rigid cylinder are plotted clearly showing the beat
phenomenon of the Wilberforce pendulum.

5 CONCLUSIONS

This brief communication presents a total Lagrangian Petrov–Galerkin finite element formulation for Cosserat rods. A
singularity-free parametrization of the rod’s orientations is given in terms of nonunit quaternions. To keep the formulation
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as simple as possible, we have opted for the ℝ12-interpolation strategy, which was independently introduced by Betsch
and Steinmann [3] and Romero and Armero [4].
Despite this choice, the versatility of the applied Petrov–Galerkin method enables to apply diverse interpolation strate-

gies. Therefore, an ℝ3 × 𝑆𝑂(3)- or 𝑆𝐸(3)-interpolation strategy can be seamlessly incorporated into the formulation,
without changing the discrete virtual work contributions nor the parametrization, see Refs. [1, 2].
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