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Abstract
In multiscale modeling, the response of the macroscopic material is computed
by considering the behavior of the microscale at eachmaterial point. To keep the
computational overhead low when simulating such high performance materi-
als, an efficient, but also very accurate prediction of the microscopic behavior
is of utmost importance. Artificial neural networks are well known for their
fast and efficient evaluation. We deploy fully convolutional neural networks,
with one advantage being that, compared to neural networks directly predicting
the homogenized response, any quantity of interest can be recovered from the
solution, for example, peak stresses relevant for material failure. We propose a
novelmodel layout, which outperforms state-of-the-artmodelswith fewermodel
parameters. This is achieved through a staggered optimization scheme ensur-
ing an accurate low-frequency prediction. The prediction is further improved
by superimposing an efficient to evaluate U-net, which captures the remaining
high-level features.

1 INTRODUCTION

When considering the size effect [1] for larger structures, a safety factor of up to 2 has to be adopted in order to ensure the
material of a component will not break. This safety factor arises due to effects occurring on the microscale of the material,
that is, due to accumulated damage on the microstructured material. In multiscale modeling, the material response on
the macroscopic scale is obtained by considering the effects occurring on the microscale. Thus, enabling the engineering
of high-performance materials suitable to effectively and efficiently fulfill the requirements of the deployed structure. In
a multiscale simulation, at every material point on the macroscale, the microscopic behavior of the material is considered
and modeled [2, 3], leading to prohibitively high computational cost. To circumvent the costly and repetitive simulation
of the microscale, machine learning models are deployed to obtain an efficient, yet accurate prediction of the micro-
scopic material behavior [4]. Artificial neural networks are a popular choice to predict the quantity of interest [5, 6], often
being the homogenized response of the microstructured material, either obtained via a feature transform with a subse-
quent machine learning model [4, 5], or via the direct prediction using convolutional neural networks (Conv Net) [6]. The
microstructured material is often represented as image data, for example, obtained via a CT-scan, making it suitable for
Conv Nets to directly operate on the image input and efficiently yield an accurate prediction.
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A subtype in the field of Conv Nets, that is, fully convolutional neural networks, yield another image as their predic-
tion, which can be used to predict the full field solution in the context of microstructure modeling [7, 8]. An additional
advantage of the predicted full field solution is that any quantity of interest can be extracted a posteriori, such that one
is not constrained to the homogenized response, but one could also recover, for example, the peak stresses, which are
relevant for material failure. The proposition of the U-net by Ronneberger et al. [9] surged the interest in the image to
image prediction, which has an encoder–decoder structure, and first compresses the spatial resolution of the input image,
before increasing it again to recover the prediction at the original resolution. Since the fully Conv Net operates on multi-
ple resolutions, various approaches have emerged to utilize an approximation of the solution in a lower resolution, which
contributes to the loss/model optimization and can be trivially obtained through coarse graining during training [10, 11].
Another approach simulates the material at the microscale in coarse resolution and uses the solution as input to the
model while upsampling [7]. A different layout has also been considered, which incorporates information of the image on
multiple spatial resolution levels [11, 12], starting at a very coarse resolution, on which the convolutional layers can con-
sider large features within the image, and increasingly refining the prediction on each level when recovering the original
resolution for its prediction.
This article diverts its attention to fully Conv Nets. We utilize the U-net structure and coarse grained solutions during

the training for optimization. The model is designed to have comparatively few parameters to optimize, while being sig-
nificantly more accurate than recent state-of-the-art models. This is achieved through a model layout, which ensures very
accurate predictions on lower resolutions. To further refine the prediction of a model, a second efficient to evaluate U-Net
is superimposed to capture high-level features. Due to the nature of themultiple interdependent prediction contributions,
a staggered training scheme is proposed. The code of the model’s implementation is made freely available in Lissner [13].

2 MULTISCALEMODELING

In multiscale modeling, the behavior of each point at the macroscopic scale 𝒙 is governed by its underlying microscale
with the domainΩ. For arbitrarily different length scales, that is, 𝐿micro ≪ 𝐿macro, a separation of length scale can be safely
assumed. Further, it is assumed that the micro- and the macroscale follow the same material laws, which is described in
more detail in Leuschner [14]. Thus, wewill focus on themicroscale and consider amicrostructural unit cellΩ tomotivate
the materials behavior. For the sake of brevity, consider the equilibrium condition for the steady state heat equation

div(𝒒(𝒙)) = 0 (𝒙 ∈ Ω) , (1)

with the heat flux 𝒒. The constitutive equation relating the heat flux 𝒒 to the temperature gradient 𝒈 = ∇𝜃 is given as

𝒒(𝒙) = −𝜿(𝒙) 𝒈(𝒙) (𝒙 ∈ Ω) , (2)

when following Fourier’s law. Here the heterogeneous thermal conductivity tensor 𝜿 is introduced. The investigated
microstructuredmaterial is subsided to periodic and antiperiodic boundary conditions with the fluctuating terms ∙̃, being
expressed as

𝜃+ = 𝜃− �̃� ⋅ 𝒏|+ = −�̃� ⋅ 𝒏|− , (3)

where each quantity ∙± belongs to the periodic point set of the boundary 𝜕Ω±, respectively. The loading on themicroscale is
prescribed by its macroscopic counterpart. Once the materials response on the microscale is calculated, the homogenized
quantity of interest ⟨∙⟩ is recovered by the homogenization operation

⟨∙⟩ = 1|Ω| ∫
Ω

∙ dΩ . (4)

The Hill–Mandel condition is expressed as

𝒒 = ⟨𝒒⟩ 𝒈 = ⟨𝒈⟩ 𝒒 ⋅ 𝒈 = ⟨𝒒 ⋅ 𝒈⟩ , (5)
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F IGURE 1 A schematic illustration of the U-Net is shown. The operations between the connections are typically modularized on the
down/up path, such that each connecting arrow reflects the same operations. Each blue rectangle represents one channel at current spatial
resolution.

which completes the scale transition frommicro- tomacroscale. Considering thematerial at themicroscale for eachmate-
rial point of the macroscopic body leads to a prohibitive computational cost. Machine learning surrogates are deployed
to efficiently predict the microstructural behavior. There are numerous studies, which directly predict the homogenized
quantity via machine learning [4–6], and others which predict the full field solution [11, 15], and recover the quantities of
interest thereof, for example, via Equation (4). This study falls into the latter subcategory, where the full-field solution of
the heat flux 𝒒 is predicted.

3 CONVOLUTIONAL NEURAL NETWORKS

3.1 Introduction

Convolutional neural networks (Conv Nets) are originally inspired by dense feed forward neural networks and devel-
oped to handle high-dimensional input data. This is realized by replacing the dense connection between two layers by a
convolution operation, such that the forward propagation reads as

𝐴𝑙+1 = 𝑓𝑙+1(𝑘𝑙+1 ∗ 𝐴𝑙 + 𝑏𝑙+1) (6)

where generally square kernels 𝑘 of size 3 × 3 are deployed to globally operate on the previous layer’s output𝐴𝑙. After the
addition of the bias term 𝑏, an activation function𝑓 is deployed to introduce nonlinearity between layers. To improve infor-
mation processing between two layers, channels are introduced (represented asmultiple rectangles in Figure 1), which are
comparable to the number of hidden neurons in dense neural networks. Here, a brief motivation for convolutional neural
networks is given to familiarize the reader with the relevant notion for the effective design of Conv Nets. Basic algorithmic
operations are nicely illustrated in Dumoulin and Visin [16].
The forward pass via a convolution operation implies that each data point in the input image is processed by the same

machine learnedweights 𝑘. The underlying feature transform between layers is a global convolution operation, affected by
the spatially local neighborhood. Therefore, we introduce the notion of the receptive field, that is, the number of adjacent
pixels, which are atmost considered by a single convolution operation. Since each 3 × 3 convolution increases the receptive
field for all subsequent layers by two pixels, a prohibitive number of convolution operations would be required to achieve
large receptive fields. When reducing the spatial resolution, which is implemented by evaluating the kernel each stride
increment, the receptive field is virtually increased. After applying an operation with a stride of two, every subsequent
operation has virtually doubled the receptive field with respect to the original spatial resolution of the input image. After
resolution reduction, the number of feature channels can be increased while keeping memory usage constant. In terms of
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F IGURE 2 The VVE-net is illustrated in a simplified manner. The two different model contributions in dark and light blue are evaluated
independently and the final prediction is given via summation. Each arrow represents one module of convolution operations given in Table 1.
The predicting module on each coarse grained level is graphically illustrated to the right.

fully convolutional neural networks, the spatial resolution of the ConvNets output has tomatch the resolution of the input
image. To increase the resolution, either upsampling, or transpose convolutions[16] are used. In this end to end setting,
Ronneberger et al. [9] proposed the U-net (Figure 1), which reuses the feature channels from the leftwhile decreasing the
resolution, and concatenates them to later layers on the right at the respective spatial resolution. This improves information
processing in the model and provides low-level information to latter layers of the model.
Recent research has progressed in the direction of improved information processing [17–19], where shortcuts are used

between two modules/layers. For the design of Conv Nets, modular blocks are generally used, which replace a single
convolution operation between two layers by multiple operations. In Szegedy et al. [17], multiple parallel convolutions
of differently sized kernels are deployed as inception modules. The ResNet [18] deploys blocks of two 3 × 3 convolutions,
augmented by an identity mapping, which adds the previous features to the module’s output, improving the gradient flow
[19] and enabling deeper models to reliably converge.
In the field of fully convolutional neural networks, additional improvements have been found by infusing some knowl-

edge of the approximate solution on lower resolutions into the model while the U-net structure increases the resolution.
A popular option to infuse the knowledge is to assist the neural network during training by fitting the solution on mul-
tiple resolutions [11] to the coarse grained (average pooled) solution. Another interesting approach has been proposed
by Zhou et al. [7], evaluating the simulation on a very coarse resolution, serving as a feature input on the respective
spatial resolution.

3.2 Model proposition

The general structure of theU-net [9] is adopted, and the data usage of themodel is optimized to reduce the computational
overhead of the model while retaining/increasing accuracy. A main idea of the model is to have two prediction contribu-
tions, where the blue part, the -net, aims to predict a good low-frequency field, while the lightblue part, the -net,
is superimposed to capture the remainder of the high-level/frequency features.
The structure and information flow of the proposed layout is illustrated in Figure 2 (left), where each arrow indicates

one module. The multiple feature types, which contribute to the prediction in the proposed U-net structure, are denoted
as

∙ I—the input image, also coarse grained to each spatial resolution.
∙ II—features obtained after decreasing the spatial resolution in the down path.
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TABLE 1 Each repeated module in the -net is shown. The “conv” keyword before each layer has been omitted for readability. Each
operation is read as “(conv) kernel size/stride.” “Max” refers to Max-pooling. Operations displayed in parallel are evaluated in parallel as an
inception module.

-net -net
Down path: II𝐕𝐄 Up path III𝐕𝐄 Predictor𝐕𝐄 Down path II𝐕 Up path III𝐕 Predictor𝐕

3/2–5/2–Max 3/2 2/2𝑇–4/2𝑇 2⋅3/1–1/1 ⋅2𝑛out 3/2–5/2–Max/2 Add← IIV 3⋅3/1
Concat Concat Add Concat 2/2𝑇- 4/2𝑇 1/1
1/1 1/1 1/1 ⋅𝑛out 1/1 Concat

Concat← 𝑔(𝑥, 𝐿𝑖−1) 3⋅3/1 1/1
3⋅3/1

∙ III—features while increasing the spatial resolution in the up path (III* + the upsampled prediction of the previous
level).

∙ IV—the prediction at current spatial resolution.

The model reuses modular blocks of convolutions on each operation in the same path, shown in Table 1, where the more
intricate predictor on each spatial resolution of the -net is shown in Figure 2 (right). Note that the coarse grained pre-
diction (IV) is not directly added to the next levels prediction, but combinedwith the feature channels used for upsampling
and followed by a few convolution operations. This improved themodels prediction quality significantly, since a Conv Net
struggles to remove the introduced upsampling artifacts with a single convolution, or by adding a correction term after
each upsampling operation. Such upsampling artifacts can be spotted by a critical eye in Marcato et al. [11].
The final prediction of the model is given as

𝑓(𝑥) = 𝑔(𝑥) + Δℎ(𝑥) . (7)

Since the two contributions do interact with each other, a multistage training scheme is proposed. First, the -net is
optimized, and frozen thereafter. As a next step, the -net is activated and trained to refine the prediction. In a final
step, both predictors of the -net are optimized in a combined manner.
When optimizing the -net, the prediction 𝑔(𝑥) on each level 𝐿∗ = {1, 2, … , 𝑛levels} contributes to the total loss Φ̃, that

is,

Φ̃(𝑔(𝑥), 𝑦, 𝐿∗) =
∑
𝑖∈𝐿∗

𝑐𝑖 ⋅ Φ(𝑔(𝑥, 𝑖), pool(y, i)) , (8)

wheremultiple contributions of the lossΦ areweightedwith predefined constants 𝑐𝑖 . The solution 𝑦 is coarse-grainedwith
the average pooling operation to match the current levels spatial resolution. In general, the smaller the spatial resolution,
themore channels are used. Using the base number of channels of 𝑠0 = 15, the number of channels per level are scaled as

𝑠𝑖 =

(
1 +

𝑖

3

)
⋅ 𝑠0 . (9)

In addition to the training split of the -net and -net, the -net is optimized in a staggered manner, while
increasing the levels and the number of active modules, during a pretraining loop. One pretraining loop consists of a first
optimization loop where the constant 𝑐𝑗 is zero for all but the current levels, that is,

𝑐𝑗 = 0 ∀𝑗 ≠ 𝑖 𝑖, 𝑗 ∈ 𝐿∗ (10)

optimized in an incremental manner for each level 𝑖 in 𝐿∗. Since the unconstrained optimization only ensures that the
current level is a good approximation of the solution, in a second step, the approximation on each level is ensured with

0 ≤ 𝑐𝑗 ≤ 𝑐𝑖 ∀𝑖 ∈ 𝐿𝑖 with 𝑗 < 𝑖 , (11)
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F IGURE 3 The predicted distribution of the heat flux 𝒒𝑥𝑥 is compared using the models best predicting -net and the U-ResNet for
one random sample of the test set (left). The red bars denote the overestimation of the model in the current bin, and the orange bars denote
the under estimation, respectively. On the right, the relative cumulative bin errors are shown, for the plotted sample (on the left) in dashed
lines, and averaged over the entire test set in full lines, where the colors associate to each model shown on the left.

such that the current level isweighted as themost important. After one complete pretraining loop, that is, both incremental
optimization schemes (10), (11), the -net is frozen except for the final predicting level, and the remainder of the -net
is optimized as described above.

4 RESULTS

The proposedmodel is applied for the full-field prediction of themicrostructuredmaterial characterized by representative
volume elements (RVE), which is subsided to periodic boundary conditions (3). Thus, a single frame, that is, the input
image to the fully convolutional neural network (ConvNet), suffices to fully characterize thematerial at themicroscale.We
consider the stationary heat equation outlined in Section 2 in a linear setting under constant loading conditions. Through
superpositioning, the effective heat conduction tensor �̄� from Equation (2) can be recovered and generalized to arbitrary
loading conditions.
The proposedmodel is compared to theU-ResNet used in Santos et al. [15]. It has also been compared to themore recent

models [11, 12], which have significantly underperformed the presented models. We deploy a data augmentation scheme
during runtime outlined in Lißner and Fritzen [20], which utilizes the periodic boundary conditions to artificially generate
new samples. In total, 1500 samples have been used for training, where the validation set contained 300 samples thereof.
For optimization, all models have been trained using the mean squared error (MSE) as loss and the adam optimizer,
with constant initial learning rate of 10−3 and early stopping. Each model is set out to predict all four components of the
heat flux 𝒒, that is, 𝑥 and 𝑦 response under 𝑥 and 𝑦 loading, respectively. The RVE image is the input to the model of
fixed resolution of 128 × 128 voxels, where different input features following [15] did not improve the prediction. All error
measures below refer to a test set consisting of 500 samples.
The effectiveness of the proposed optimization scheme of Section 3.2 has been investigated in an ablation study, where

the results are summarized in Table 2. The table outlines statistical moments of the resulting heat flux distribution 𝒒𝑥𝑥,
as well as global MSE metrics. There it can be observed that the -net significantly outperforms the UResNet when
utilizing the optimization scheme. Adding the -net on top of the -net significantly improves the prediction, espe-
cially the errors on the peak values of the heat flux, which supports the design purpose of the -net, delivering a good
field prediction.
In the subsequent figures, the U-ResNet, which has been reimplemented from Santos et al. [15], is compared to the

previously best performing model, that is, the -net pretrained multiple times. In Figure 3, it is quantified how well
the machine learned model recovers the actual distribution of the heat flux. As can be seen, the proposed -net miss-
classifies only ≈6% of the pixels, whereas the comparable U-ResNet has more than ≈12% of pixels wrongly predicted over
the entire test set. The -net captures the underlying physics of the problem, delivers a smooth field prediction as well
as accurate peak value predictions.
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F IGURE 4 The empirical discrete density function as well as the cumulative density function of pixel errors are shown for the entire test
set over all components of the heat flux.

An increasingly strict error measure is considered in Figure 4, since Figure 3 disregards the position of the pixels, for
example, a randompermutation of the predicted pixels would not be reflected in the errormetric. The pixel error compares
each pixel with the solution at its position. Once again, a distribution over the entire test set and all components of 𝒒 is
presented. Every prediction error larger than 𝑒 ≥ 0.25 is capped and summarized to 0.25, which hides the long tail of the
U-ResNet’s prediction errors and ignores the single pixel maximum prediction error. In general, the left skew of the error
distribution of the -net implies that most of the pixels have a very low prediction error, which is also reflected in the
cumulative pixel error distribution, where more than 80% of pixels have a lower absolute error than 5 ⋅ 10−3.

5 CONCLUSION

Wedeveloped a new efficientmodel layout of fully convolutional neural networks, which significantly outperforms recent
state-of-the-art models while having fewer model parameters. There is multiple contributions improving the model, one
being a staggered optimization scheme to ensure an excellent low-frequency prediction. The other improvement is found
by superimposing aU-Net to refine the low-level prediction, reducing the errors on the peak values by 70%. The code of the
model implementation is made freely available in Lissner [13]. The model has been applied in microstructure modeling
under thermal boundary conditions, achieving a homogenization error of 0.2%. The model could be easily adopted to
different physical boundary conditions once the data are readily available.
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