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Abstract: Cutting simulations via the Finite Element Method (FEM) have recently gained more
significance due to ever increasing computational performance and thus better resulting accuracy.
However, these simulations are still time consuming and therefore cannot be deployed for an in situ
evaluation of the machining processes in an industrial environment. This is due to the high non-
linear nature of FEM simulations of machining processes, which require considerable computational
resources. On the other hand, machine learning methods are known to capture complex non-
linear behaviors. One of the most widely applied material models in cutting simulations is the
Johnson–Cook material model, which has a great influence on the output of the cutting simulations
and contributes to the non-linear behavior of the models, but its influence on cutting forces is
sometimes difficult to assess beforehand. Therefore, this research aims to capture the highly non-linear
behavior of the material model by using a dataset of multiple short-duration cutting simulations from
Abaqus to learn the relationship of the Johnson–Cook material model parameters and the resulting
cutting forces for a constant set of cutting conditions. The goal is to shorten the time to simulate
cutting forces by encapsulating complex cutting conditions in dependence of material parameters
in a single model. A total of five different models are trained and the performance is evaluated.
The results show that Gradient Boosted Machines capture the influence of varying material model
parameters the best and enable good predictions of cutting forces as well as deliver insights into the
relevance of the material parameters for the cutting and thrust forces in orthogonal cutting.

Keywords: machine learning; Finite Element Method (FEM); machining

1. Introduction

Ensuring the quality of produced metal parts in terms of surface integrity and geo-
metrical accuracy while simultaneously ensuring a long tool life are vital for the future of
subtractive manufacturing; thus, a more comprehensive understanding of cutting mechan-
ics is necessary to meet these evolving demands [1,2]. Therefore, the Finite Element Method
(FEM) of machining processes has received much attention by numerous researchers in the
last decades [3]. This method was successfully implemented to improve the understanding
of crater and flank tool wear in turning [4] and determination of residual stresses [5] or
interactions in the chip forming process with internal lubrication in sawing [6]. The un-
derlying idea of FEM is the discretization of the tool and the workpiece and employing a
stiffness structure [7]. Eulerian, Lagrangian, as well as arbitrary Lagrangian-Eulerian mesh
formulations are employed.

Besides these promising applications of FEM cutting simulations, a widespread appli-
cation of these simulations to real-time cutting processes in industry is not known due to
the required computational resources and time. Even for powerful computers, 3D cutting
simulations can take multiple hours to reach the force steady state. Although simplified
simulation approaches such as 2D cutting exist, the in situ adaption of this great basis of
knowledge cannot be exploited.
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Potential applications of the presented approach are the detection of anomalies by
comparing the predicted forces from FEM cutting simulations with the determined forces
in the cutting process and tracking for deviations. The presented approach is also suitable
to shorten tool development cycles as well as improve material property estimation using
cutting processes.

Key to a successful FEM cutting simulation is to apply correct models such as friction
models [8] or material models. The Johnson–Cook model (J-C) is the most widespread
to model machining operations [9] and relates flow stress with strain, strain rate, and
temperature [10]. The J-C model is stated in Equation (1), with the material dependent
parameters A, B, C, n, and m, where A is the initial yield stress at the reference strain rate
and temperature, B is the hardening modulus, C is the strain rate dependency coefficient, n
is the work hardening exponent, and m is the thermal softening component [11].

σ =
[

A + Bεn
p

][
1 + C ln

( .
εp

.
ε0

)][
1 −

(
T − T0

Tm − T0

)m]
(1)

Regarding the determination of the J-C parameters, two approaches are commonly
reported in the literature.

Material testing experiments can be conducted via standardized material tests. The J-C
parameters can be determined by means of quasi-static and dynamic uniaxial tests for high
tensile strength tendon steel [12]. The J-C constitutive model can describe the deformation
of low-carbon steel after determination of the parameters with compression and tensile
tests [13]. In other works, the J-C parameters A, B, and n were determined by means of
quasi-static tests, C was determined via SHPB test fitting, and m was obtained by high-
temperature compression tests [14]. The downside to this direct approach of determining
J-C parameters is the necessity to access expensive material testing devices. Furthermore,
the process conditions occurring in machining are hard to reach in material testing devices,
which could eventually lead to the determination of a material model not fitting to this
process [15]. During machining, high strain rates of up to 106 s−1 and temperatures of up
to 1200 ◦C occur. These are difficult to obtain through conventional tensile or compression
tests [16]. For high cutting speeds, strain rates of up to 107 s−1 can occur. That is why
special test setups, such as the Split Hopkins Pressure Bar (SHPB), are utilized where strains
up to 105 –106 s−1 can be reached [17].

The second approach to determine the J-C parameters is by means of cutting experi-
ments or material testing combined with FEM simulations. An initial set of parameters can
be obtained from comparable values in the literature to tune the FEM model by varying the
J-C parameters repeatedly to fit the simulations [18]. Simple compression tests combined
with cutting tests were applied to determine the J-C parameters for AISI 1045 heat-treatable
steel and Ti10V2Fe3Al (Ti-1023) titanium alloy [19].

To address the issue of saving computational time when determining constitutive
model parameters, few studies have been conducted. In [20], a Particle Swarm Optimization
(PSO) approach was presented to optimize the determination of the J-C parameters to
match the simulated cutting forces based on Oxley’s machining theory with experimentally
recorded cutting forces. It was demonstrated that this approach led to good agreement
of cutting forces in turning while significantly decreasing computational expenses. In a
subsequent study, PSO was utilized by the inverse re-identification of an initial parameter
set and a deviation of approximately 1% was found compared to the original values [21].
The Downhill Simplex algorithm was applied to data collected from cutting tests for AISI
1045 to determine the J-C material model parameters that delivered simulation results
in good agreement with the process observables such as temperature, cutting force, and
chip form [22,23]. The Efficient Global Optimization algorithm (EGO) was applied to
correlatively determine the J-C parameters as well as the Coulomb’s friction coefficients
by minimizing the error between the numerical and experimental results for Ti6Al4V
Grade 5 alloy [24].
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Besides these optimization approaches, some machine learning approaches in combi-
nation with FEM simulations in cutting are reported in the literature. The implementation
of a neural network to predict cutting force, power, and temperature depending on a
given set of J-C parameters for aluminum 6061-T6 and a cutting depth is known [25]. A
hybrid approach for the prediction of cutting forces by deep learning, which was trained
on experimental and simulation data, was presented [26]. However, the machine learning
model represents a black box, which does not offer any insights into its decision making.
By contrast, decision trees are known to additionally offer insight as to how they arrive at
their conclusion. Therefore, additional machine learning algorithms, among other things
decision trees, need to be investigated, which is the scope of this work.

2. Materials and Methods

To enable cutting simulations in FEM as a tool for in situ analysis of cutting conditions
in real industrial cutting processes, the complexity of a cutting simulation needs to be
encapsulated within a machine learning model in order to make quick predictions in
fractions of seconds. To achieve this, the trained machine learning model will aim to reduce
the time needed to solve for the cutting forces in a cutting simulation, limited solely to its
dependence of the J-C plasticity model parameters. Therefore, the J-C damage model and its
coefficients were not be investigated and were therefore omitted, and all other parameters,
such as the boundary conditions, contact, elastomechanic, thermic properties, and cutting
conditions, were held constant, so as to only train the dependence on the J-C model.
This was done to test the applicability of machine learning models to encapsulate FEM
cutting simulation results. Since a certain amount of parameter variations and subsequent
simulations were needed, keeping the other parameters constant was also necessary in
this first investigation to limit the numbers of simulations needed. The goal was to predict
the cutting and thrust forces (Fc, Ft) in the cutting simulation without performing the
simulation. Instead, the trained model was given the J-C material model coefficients
and determined the forces. Multiple machine learning approaches were investigated to
perform these predictions in order to find the most suitable model with regard to prediction
accuracy and explainability. The materials and methods applied in this study are described
in the following subchapter. As a first step, the fundamentals of the applied FE modelling
technique are described. Subsequently the design of a full factorial simulation plan with
varying J-C parameters is introduced. The resulting dataset serves as the basis for the
applied machine learning models, as described in Section 2.2, for cutting force prediction.

2.1. FEM Modeling

To generate a database quasi-2D cutting simulations were carried out in Abaqus. It has
been shown that cutting simulations can be carried out in 2D if the following geometrical
assumptions are met in the cutting process [3]: free machining is ensured where the tool
nose does not participate in the cutting process, the width of the workpiece is smaller than
the cutting tool width, the uncut chip thickness should be five times smaller than the width
of cut, and the cutting direction is perpendicular to the cutting edge.

The chosen method for simulating this approach was the coupled Eulerian-Lagrangian
(CEL) method. The approach combines a Eulerian definition for the workpiece and a La-
grangian definition of the tool. The CEL method stems from fluid–structure interaction
simulation approaches and is especially suitable to model processes with a high defor-
mation degree. This is achieved through the Eulerian mesh, which is fixed in space and
allows the material to flow through the mesh, in contrast to a Lagrangian mesh, which
deforms over time with the material. This circumvents issues with numerical instabilities
resulting from severely distorted meshes. The approaches also allow for an indefinitely
long simulation of the orthogonal cut since the material is resupplied where the boundaries
of the Eulerian mesh and the cutting velocity condition intersect. This is important, since
variation in the synthetic J-C model may result in chip morphologies that are numerically
unstable otherwise.
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It is shown in [27] that CEL enables good predictions of chip morphology and cutting
forces while ensuring better computation results than ALE. In addition, CEL does not
encounter problems due to mesh distortion that could lead to a failed simulation for both
ALE and Lagrangian simulation approaches [28].

Since 2D simulations cannot be modeled with the CEL approach in Abaqus [28], the
widely adopted quasi-2D approach was utilized, as shown in Figure 1. In this approach, 2D
orthogonal cutting conditions were enforced through rigid clamping conditions perpendic-
ular to the cutting plane. Through the definition of a workpiece geometry in the Eulerian
mesh, the initial Eulerian volume fraction could be defined. However, it should be noted
that the CEL approach is known to be computationally expensive, which is partly rooted in
its advection processes, where the material flow in the mesh is corrected per iteration. The
structure of the model can be seen in Figure 2.
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Figure 1. Exemplary results of von Mises flow stress at a total time of 0.0015 s (end of one simula-
tion). 
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Figure 1. Exemplary results of von Mises flow stress at a total time of 0.0015 s (end of one simulation).
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The elastomechanical and thermal properties of the model are depicted in Table 1. In
contrast to the J-C material coefficients, these parameters were also never varied to limit
the extent of the simulations needed to train a model with sufficient accuracy. The melting
temperature is one key parameter for the calculation of the flow stress with the J-C model,
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but it was not considered in this first iteration of the concept. The simulation employed a
Coulomb friction model with a coefficient of friction (µ) set at 0.3.

Table 1. Elastomechanical and thermal properties for the simulative DOE.

Material Property Tool Workpiece

Density kg
m3 14,450 7850

Young’s modulus GPa 580 201
Poisson ratio − 0.23 0.33
Specific heat J

kgK 250 460

Thermal conductance W
mK 110 40

Melting Temperature K 1811
Reference Temperature K 293

Meshing of the parts was focused toward the cutting region while keeping the model
as a whole as small as possible to cover as many simulations as possible in less time. The
meshes of the workpiece consisted of 8100 Eulerian elements with thermal coupling and
reduced integration (EC3D8RT) and 1032 Lagrangian elements for the workpiece (C3D8RT),
also with thermal coupling and reduced integration.

The design of experiments (DOE) was built by systematically varying the J-C param-
eters from a base model for AISI1045 [29], as can be seen in Table 2. Steel was chosen as
an initial material due its widespread applications across various sectors. Through the
implementation of a python script, the processes of submitting the input jobs as well as
the evaluation of means for Fc and Ft were automated. The DOE was conducted fully
factorial, which resulted in a total of 1024 simulations. One simulation took 35 min and 24 s
to simulate on a workstation, totaling a complete simulation time for the DOE of approx.
587 h. All simulations were conducted until an in-simulation total time of 1.5 ms was
reached. This was sufficient to reach a steady state for the cutting forces.

Table 2. Design of experiments for the J-C material parameters.

J-C Parameter −40% 0% +40% +80%

A MPa 369.48 615.8 862.12 1108.44
B MPa 400.62 667.7 934.78 1201.86
n - 0.153 0.255 0.357 0.459
m - 0.6468 1.078 1.5092 1.9404
C - 0.00804 0.0134 0.01876 0.02412

2.2. Machine Learning Approaches

Multiple approaches were compared with regard to their performance on the test set.
Since the dataset was still comparatively small, special care was taken to use common
regularization techniques for each approach to avoid overfitting (the training data were
learned well, but the generalization to unseen data failed [30]). The individual approaches
were tested and the best hyperparameters were selected. At the end, all approaches were
compared in terms of their Mean Squared Error (MSE) and their Mean Average Error (MAE)
performances on the test set. The approaches were selected due to their prominence for
regression tasks or for their training performance improvements, such as Light GBM.

2.2.1. Data Preparation

The data were tabularized and prepared for training. For building a training envi-
ronment, Python (v. 3.11) was used. The following common libraries were used for data
preparation or machine learning itself: NumPy, Pandas, Scikit, TensorFlow, and Keras. Data
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were split into training and test data using an 80–20% ratio (80% for training and validation
((70–30%), 20% for testing). For all approaches, the training data were standardized using:

z =
x −

σ
, (2)

µ =
1
n∑n

i=1 xi, (3)

σ =

√
1
n∑n

i=1(xi − )2, (4)

with n being the number of samples, x being an observation of data, µ being the mean
of all observations, and σ being the standard deviation. Standardization is beneficial
in machine learning for faster convergence. Standardization was also necessary since
our input parameters were in different ranges and would otherwise be overestimated or
underestimated in importance during training.

For all tree-based approaches, the machine learning framework enables the option to
initialize the initial state at a defined random state for reproducibility. Using this option,
hyperparameter tuning was performed.

2.2.2. Random Forest for Regression

The random forest algorithm is a supervised machine learning approach that uses an
ensemble of decision trees and combines them to a strong learner. It does so by creating
multiple trees and splitting the nodes with a random selection of features and a random
selection of datapoints (also known as bootstrapped sampling). Preventing the trees from
growing indefinitely prevents overfitting. The trees vote for the most popular class [31].
The random forest algorithm for regression and classification is explained in detail in [32].

Manual hyperparameter tuning was performed. It was found out that, with 20 estima-
tors (“n_estimators”) and a maximum depth of 15, the MAE and the MSE could no longer
be lowered on the test dataset. It has to be noted that setting the maximum depth to high
could lead to overfitting.

2.2.3. Support Vector Regression (SVR)

Support vector machines (SVMs) are trained to separate data through a set of hy-
perplanes in high-dimensional parameter spaces. They can be used for classification and
regression. Coupled with a soft margin hinge loss, data that are not linearly separable
can still be fitted by allowing for some flexibility and a degree of errors in classification
or regression. SVRs are an extension of SVMs and allow handling of continuous targets.
This is done by expanding the hyperplane to a tube with radius ε and defining the loss
function [33]:

L =

{
0 i f |yi − F2(xi, ŵ)|< ε

|yi − F2(xi, ŵ)| − ε otherwise
(5)

This penalizes every point outside of ε and allows for the fitting of non-linear, mul-
tidimensional regression tasks. In the work presented here, default hyperparameters
were used.

2.2.4. Feed Forward Neural Network (FFNN)

Neural networks have gained widespread acknowledgement in the field of image
recognition tasks; however, their usage in regression tasks is also well known. Depending
on the task at hand, multiple different kinds of layers can be introduced to build a specific
neural network. For example, dropout layers are a popular regularization scheme to avoid
overfitting [34]. The main component of FFNNs are perceptrons, which are connected
to each other. These connections have weights, which are shifted during training [30].
The output is sent through an activation function, which enables the network to capture
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non-linear behavior [35]. A prominent activation function for non-linear behaviors is the
rectified linear unit, short ReLU.

As displayed in Figure 3, three hidden layers were used, two with dropout layers.
Manual hyperparameter tuning was performed. Different learning rates, in the range
0.01–0.001, as well as dropout probabilities for both dropout layers were systematically
varied (0.3–0.5–0.7). The lowest scores of MAE and MSE were taken for comparison.
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2.2.5. Extreme Gradient Boosting (XGBoost)

XGBoost is a scalable tree boosting system, which is known for its performance for
many different kinds of problems. The approach uses tree boosting as well [36]. The most
defining aspect that contributes to its success is its scalability, which is derived from new
algorithmic advances for handling sparse data as well as parallel computing approaches.
However, since gradient boosting decision trees have to scan all of the available data,
they can be computationally intensive, especially for large datasets, which may limit their
practicality in real time or in resource-constrained environments.

The model was implemented using the XGBoost package (v. 1.4.2). The defining
hyperparameters for the XGBoost model (n_estimators, max_depth, and learning_rate) were
also varied. Again, the lowest MAE and MSE scores were taken for further consideration.

2.2.6. Light Gradient Boosting Machine (LightGBM)

LightGBM (v4.3.0) improves upon the training performance of gradient boosted trees
by implementing two novel techniques: Gradient-based One-Side Sampling (GOSS) and
Exclusive Feature Bundling (EFB) [37]. GOSS aims to prioritize the observations in the data
with a larger information gain and selects some observations with a relatively low gain and
removes them from the training. Through GOSS, the observations and their targets that are
difficult to match gain more attention more efficiently. LightGBM also employs leaf-wise
growth of the trees, which can work well with high-dimensional data.

3. Results
3.1. Generated Dataset

The mean of the cutting forces was calculated after the initial chip forming process
was completed (after 0.225 ms). The means of Fc and Ft was the training target for the
presented machine learning approaches. The upper half of Figure 4 shows the results of
the simulation. The simulation runs were sorted on the x-axis. This was done to show the
effects of varying the J-C coefficients in cutting. At first, the runs were sorted with a focus
on parameter m in ascending order. Subsequently, each of the resulting sub datasets with
the same m parameter value were sorted with respect to parameter A. This scheme was
continued for parameters C, n, and m.
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Figure 4. Simulated cutting force Fc and simulated thrust force Ft for constant cutting conditions.
Each data point represents a different J-C material model.

The cutting and thrust forces were assumed to be proportional to the maximum of the
flow stress, since the chip height and width were fixed across all simulations. This trend
was noticeable when taking into account the maximum and the minimum of the thrust
force for each of the four values of parameter A. Since the value of parameter A affects the
first term of the flow stress linearly, the influence of this parameter was noticeable. The
encircled region in Figure 3 represents a parameter combination where m and A equaled
1.9404 and 1108.4 MPa, respectively. To better show the impact of changing parameters C
and n on the forces, this region was zoomed in in the lower part of Figure 4. Here, except for
the minimum B, a trend could be seen regarding the impact of a larger C value. However,
the impact of changing the value of n by the same factor was greater according to the DOE
mentioned above.

3.2. Regression Models

The performance metrics for the best individual model for each approach are listed
in Table 3. As can be seen, the tree-based approaches performed generally better than the
SVR and the FFNN. XGBoost and LightGBM were very similar and performed nearly the
same. However, LightGBM was slightly ahead, and with its leaf-wise growth mechanism
for capturing high-dimensional dependencies, it was selected as the final model in further
analysis. This was also desirable, since decision trees offer feature importance, which
offers explainability.
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Table 3. Mean absolute error and mean squared error for the examined approaches.

Metric Random Forest SVR FFNN XGBoost LightGBM

MAE 2.145 2.593 3.053 1.717 1.692
MSE 8.654 16.448 15.573 5.93 5.753

Two separate models were trained to predict the cutting force and the thrust force sep-
arately. Since LightGBM is a tree-based algorithm, feature importance metrics are available.
In this way, the most important features for decision making during the inference can be
displayed. Using two models will allow a certain explainability for the interdependence of
the J-C coefficients and their influence on cutting forces.

Light GBM Training

Using Gridsearch for systematic parameter tuning, we found the optimal hyperpa-
rameters of the model. The parameters used in the grid search as well as the selected
parameters are depicted in Table 4.

Table 4. Gridsearch in LightGBM model.

Parameter Level 1 Level 2 Level 3 Level 4

n_estimators 100 500 750 1000
max_depth 3 5 8 10
num_leaves 8 16 24 32

learning_rate 0.01 0.025 0.05 0.1

Both LightGBM regression models for the thrust force and the cutting force were
trained. In Figure 5, the results of both individual models on the test set are depicted. The
predicted forces Fc and Ft are plotted against their simulated targets. The performance of
the Ft model was generally better since the scatter area was smaller and closer to the true
target values, which was reflected in the accuracy metrics for M2 (MSE: 2.17; MAE: 1.12),
in contrast to the Fc model (MSE: 8.39; MAE: 2.14). It was harder for the model to predict
Fc based on the presented training data. The outliers encircled in red for the Fc model in
Figure 5 were data points that were on the edge of the DOE parameter set with regard to
the most important features for the Fc model: the B and m coefficients. Further expanding
the parameter space beyond the −40% to 80% thresholds could alleviate these increased
errors at the edges. Otherwise, 75% of the predicted forces lay within an error band of +4%
to −5%.

Figure 6 displays the individual feature importance for both the Fc model and the Ft
model. The feature importance of the Fc model and Ft model differed. This is a positive
aspect of gradient boosted trees: the feature importance map displayed the importance of
each feature for the cutting force and thrust force predictions based on the J-C parameters
and allowed for conclusions about their meaning for the cutting process. The most impor-
tant factor for both models was the B coefficient, which denoted the hardening constant.
B relates to the effect strain hardening has on the total plastic yield stress, so finding this
coefficient to be very important for the prediction was expected. However, the coefficient
was valued differently for both models; for the Ft model, over 50% of the decision-making
process of the model depended strongly on the B coefficient. By contrast, the Fc model
model relied more heavily on the B and m coefficients, meaning that thermal softening
played an equal crucial role for the prediction of the cutting forces.

To further test the performance of the trained model, two additional datasets were
tested. One was synthetically inferred through adding 20% to the coefficients A, B, n, m, and
C, and the other through picking a set from the literature. In this case, a Ti6Al4V coefficient
set was taken for further validation of the models. Simulation as well as prediction results
are depicted in Table 5. A comparison of the simulated and predicted forces with respect to
cutting time is depicted in Figure 7.
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Figure 6. Feature importance for the final LightGBM model: importance of the J-C parameters for the
individual models and therefore the cutting and thrust forces.

Table 5. Comparison of simulated and predicted forces for J-C models outside the original dataset.

A[MPa] B[MPa] n m C

+ 20% 738.96 801.24 0.306 1.2936 0.01608
Ti6Al4V [38] 860 683 0.47 1 0.036

Fc,sim [N] Fc,pred [N] Ft,sim [N] Ft,pred [N]

+ 20% 80.24 74.67 32.12 30.79
Ti6Al4V [38] 81.14 83.49 34.97 36.55

The prediction errors lay within the ranges of 3.0–7.0% (20%) and 4.0–4.5% (Ti6Al4V).
Overall, the prediction was close to the target; however, prediction of the cutting force for
the synthetic dataset could be improved further. Since the synthetic dataset was within
the parameter space spanned by the DOE, it could be indicative that further training data
were needed.
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4. Discussion

The final models chosen were two separate models for the cutting force and the thrust
force that were able to infer accurate force predictions. Their validity was proven on the
test set of the initial dataset as well as in separate data points that were computed to
prove the validity outside the synthetic data variation. A total of 819 data points were
taken for training and 205 + 2 for testing. It has to be noted that this number could be
lower for future models, since the accuracy of the models may not significantly decrease.
However, other aspects of cutting simulations, such as thermomechanical field outputs,
chip morphology and contact length, friction and contact, and different workpiece and tool
geometries may increase this value. Using LightGBM, which is a form of a decision tree,
we could use the resulting feature map (Figure 6) to infer conclusions about the optimal
material properties for cutting processes (for the cutting parameter set that was described
in Section 2.1), since the model accurately captured the behavior of the cutting forces within
the training parameter space.

Grey Box Modeling for J-C Parameters and the Cutting Process

Grey box modeling is the fusion of machine learning algorithms (black box models)
with analytical or empirical models for increased explainability of the results [39]. In this
work, the grey box model was made up of an initial white box model (FE cutting simulation)
for determination of the cutting forces to generate a dataset. This was succeeded by a black
box model, which aimed to capture the non-linear behavior of the simulations to make
meaningful predictions for not yet simulated material parameter combinations to eliminate
the need for further numerical simulations.

An analysis of the obtained dataset yielded insight into the dependency of the material
parameters on the simulated cutting forces. This basis of knowledge was further increased
by considering the feature importance of the trained model. The initial yield stress at a
quasi-static strain rate (parameter A) was generally deemed of low importance for the
orthogonal cutting process with a positive rake angle since both models evaluated the
feature importance to be rather low. However, the importance of Ft was twice as high as
that of Fc, which could be explained by the chip morphology, where, combined with the 8◦

rake angle, the chip acts as a spring on the tool. This effect could be exasperated through
higher values of A and B, which could also be seen by the importance of B for the feature
importance of Ft in comparison to that of Fc.
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By contrast, the strain rate hardening coefficient n and the thermal softening coefficient
m had greater impacts on the cutting force than on the thrust force. This could be traced
back to thermal softening and subsequent higher strains and strain rates in the shear
plane, which are more aligned with the cutting force direction. Resulting from the feature
importance investigation, it could be determined that for a decrease in cutting force, the
thermal softening coefficient and the strain hardening coefficient of the machined material
are crucial.

5. Conclusions

It could be shown that, through machine learning, single aspects of FE modeling can
be predicted with good precision. Among the compared models of random forest, SVR,
FFNN, XGBoost, and LightGBM, the latter showed the best regression performance. This
offers multiple opportunities for speeding up tool development as well as process parallel
simulations for process monitoring, since model inference is much faster than numerical
simulations. Further research has to be conducted regarding how more parameters can be
included (such as friction coefficients and mechanical properties) as well as how different
tool geometries can be incorporated. A way to incorporate the geometric dimensions
of tools could be to introduce a standardized mesh, where field outputs are sampled
and predicted. To limit the simulations needed to build a sufficient database, sensitivity
analyses with regard to the training of tree-based models have to be conducted. These
sensitivity analyses will also include the dependence of the forces on the coarseness of the
mesh. The usage of tree-based models with their explainability offers new possibilities
for understanding the main key features of different cutting tool geometries paired with
different tools. This has an immediate impact on tool development cycles and offers
opportunities for fast-process individual tool development. Furthermore, by incorporating
chip thickness, contact length, and temperature in the presented models, inverse parameter
identification of the J-C coefficients can be improved and results can be determined from
only a few cutting tests, eliminating the need for additional simulations. In future studies,
the authors plan to increase the dataset and introduce more input parameters to the model.
In order to decrease the amount of input parameters in the regression models, and therefore
reduce the required dataset for efficient training of these models, an autoencoder will be
utilized to reduce the multidimensional input data to a latent space. In this way, more
input parameters can efficiently be compressed.
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