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Abstract
Consistent treatment of large rotations in common Reissner–Mindlin formula-
tions is a complicated task. Reissner–Mindlin formulations that use a hierarchic
parametrization provide an elegant way to facilitate large rotation shell anal-
yses. This can be achieved by the assumption of linearized transverse shear
strains, resulting in an additive split of strain components, which technically
simplifies implementation of corresponding shell finite elements. The present
study aims at validating this assumption by systematically comparing numeri-
cal solutions with those of a newly implemented hierarchic and fully nonlinear
Reissner–Mindlin shell element.
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1 INTRODUCTION

Plate and shell models including the effect of transverse shear deformation are commonly referred to as Reissner–Mindlin
models. This gives credit to the pioneering contributions of Eric Reissner1 and Raymond D. Mindlin,2 who were among
the first to explicitly address the effect of transverse shear deformation on the mechanical behavior of plates in bending.
Strictly speaking, there is no such thing as a unique Reissner–Mindlin theory, because both formulations differ in tech-
nical details. Nevertheless, the terms Reissner–Mindlin model and Reissner–Mindlin kinematics seem to be justified and
they are widely accepted. As an alternative, the term first order shear deformation theory is frequently used. The exten-
sion of the originally linear models to geometrically nonlinear problems is often associated with the name of Naghdi,3
particularly in the mathematical community. Today, geometrically (and materially) nonlinear analyses of shells using the
Reissner–Mindlin model are commonplace in both science and industry.

One of the reasons for the success of the concept is the fact that in the context of the finite element method as a solu-
tion scheme C0-continuous shape functions are sufficient, while the Kirchhoff–Love “thin” shell model,4,5 or the Koiter
shell model6 in its nonlinear version, requires C1-continuity. The notorious problem of transverse shear locking, coming
along with the independent parametrization of rotations of the shell director and displacements of the mid-surface, is a
drawback of shear deformation theories in comparison to the shear rigid Kirchhoff–Love model. However, in the mean-
time various methods are available to alleviate it, for example, reduced integration,7 assumed strains and mixed methods,
see Zienkiewicz and Taylor8 and Zienkiewicz, Taylor and Fox 9 for an overview.
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Nearly two decades ago, the introduction of isogeometric analysis (IGA) by Hughes et al.10 triggered a renaissance of
the Kirchhoff–Love model, because the usage of splines, particularly non-uniform rational b-splines (NURBS) promises
an easier construction of C1-continuous function spaces for discretization. Kiendl et al.11 where the first to exploit this
feature for a Kirchhoff–Love type IGA shell formulation.

Soon, however, it has been found that C1-continuity can also be beneficial for the Reissner–Mindlin model. Long
et al.12 presented a shell formulation based on subdivision surfaces, in which the total rotation of the shell director is split
into a contribution of the rotation of the surface normal and the transverse shear part. Before the development of IGA,
the same group had already presented a Kirchhoff–Love shell formulation based on subdivision surfaces in Cirak et al.13

as early as 2000. A concept similar to Long et al.12 was developed in Echter et al.14 for a hierarchic Reissner–Mindlin IGA
shell formulation. Because derivatives of the displacement field are involved in the construction of the rotated normal,
C1-continuity is required for discretization.

As the transverse shear part is described by distinct degrees of freedom, these formulations are intrinsically free
from transverse shear locking, without any additional measures. Indeed, a Kirchhoff–Love formulation can directly be
extracted by simply constraining the transverse shear degrees of freedom to zero. This particular feature is shared by the
mixed element formulation of Auricchio and Taylor.15,16 Therein, the specific construction of the underlying multi-field
functional allows to “switch off” the transverse shear part, thus combining the Reissner–Mindlin and the Kirchhoff–Love
model in one unique hierarchic formulation. It has been extended to shells by Bischoff and Taylor.17

The formulation of Echter et al.14 is limited to geometrically linear problems and uses a difference vector to represent
the change of direction of the director related to transverse shear deformation. The components of this difference vector
can be easily transformed into rotation angles and in fact this formulation is aptly characterized as a formulation with
hierarchic rotations. As already mentioned, it is intrinsically free from transverse shear locking. However, if equal order
interpolation is used for the mid-surface displacements and the components of the difference vector (a.k.a. hierarchic
rotations) oscillations of the transverse shear forces can be observed.

Oesterle et al.18 succeeded in overcoming this problem by proposing a completely rotation-free Reissner–Mindlin shell
formulation, in which the hierarchic part, describing the shear deformation, is obtained from derivatives of additional
displacement degrees of freedom that can be interpreted as “shear displacements.” This still geometrically linear formu-
lation is free from transverse shear locking and does not exhibit any oscillations. Henceforth, this type of model is denoted
as formulation with hierarchic displacements.

Eventually, Oesterle et al.19 presented geometrically nonlinear versions of the hierarchic rotation and hierarchic dis-
placement formulations. They are capable of dealing with large rotations and large membrane and bending strains. The
transverse shear part, however, is linear. In other words, total rotations can be large, but the shear angles are assumed
to be small. The reasons for this restriction are mostly technical. In particular, it dramatically simplifies linearization,
because there is an additive split of strains emanating from the bending and transverse shear parts. Unlike conventional
nonlinear Reissner–Mindlin shell elements, this concept does not require to deal with rotation tensors and algorithms
for large rotations.

Recently, Neunteufel and Schöberl20 adopted the hierarchic rotation approach to enhance their previously presented
nonlinear Kirchhoff–Love shell element by transverse shear strains to obtain a Reissner–Mindlin shell element. The
formulation is based on the mixed Hellan–Herrmann–Johnson method with a focus on membrane locking.

Quite naturally, the question arises, whether the restriction to small transverse shear angles would compromise the
predictive capabilities of the model in certain situations. It may well be possible that for relatively thick shells or very large
gradients of bending moments or composite shells with a soft core, large shear angles and corresponding geometrically
nonlinear effects are not negligible. Although this problem has already been mentioned to a certain extent,19,21 it is the
major motivation for the present study.

Interestingly, nonlinear Reissner–Mindlin shell elements with linearized shear rotations can also be encountered in
commercial finite element software, although this is barely noted in the literature. The Belytschko–Lin–Tsay element22 is
one of the workhorses in the commercial code LS-DYNA23 for explicit dynamic analyses, for instance in crash and metal
forming simulations. As described in Belytschko et al.,22 it uses the assumption that the angle between the director and
the normal remains small. For the shear deformable shell element SHELL181 in ANSYS, the underlying mathematical
formulation is not disclosed in the theory manual 24 and the authors are not aware of any detailed theoretical descrip-
tion of the element. The documentation indeed mentions that “SHELL181 includes the linear effects of transverse shear
deformation.”24 A simple numerical experiment, applying prescribed nodal rotations, while fixing all other degrees of
freedom, along with the option of a linear elastic material, reveals for both elements a linear relation between shear stress
and rotation, regardless of the magnitude of the rotations.
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The reasons or the motivation for these simplifications in commercial codes are, to the authors’ knowledge, not named.
It is, however, well known that consistent treatment of large rotations is an awkward task, because, unlike displacements,
large rotations do not live in a linear vector space, see Zienkiewicz, Taylor and Fox 9 for a concise theoretical summary and
Müller and Bischoff25 for a recent contribution and an overview of the state of the art in this area. At least for the concept
followed in LS-DYNA, it can be said that it successfully circumvents dealing with rotation tensors and corresponding
update algorithms for large rotations.

The present study provides a systematic investigation of the effect of linearized transverse shear parametrization
in the context of hierarchic shell elements by means of numerical experiments, devised to trigger potential nonlinear
phenomena associated with (large) transverse shear deformations.

2 TRANSVERSE SHEAR PARAMETRIZATION IN HIERARCHIC SHELL
FORMULATIONS

2.1 Differential geometry and shell kinematics

The presented shell formulations use a convective curvilinear coordinate system with in-plane coordinates 𝜉𝛼 , which span
the shell mid-surface, and a thickness coordinate 𝜉3 ∈

[
− t

2
,

t
2

]
with shell thickness t. Greek indices take on values of 1

or 2, while Latin indices run from 1 to 3. Partial derivatives w.r.t. the curvilinear coordinates are written as ( ),i = 𝜕( )
𝜕𝜉i .

Quantities of the reference configuration are represented by capital letters, whereas small letters refer to the current
configuration, compare Figure 1.

Using dimensional reduction and a total Lagrangian setting, the position of an arbitrary point of the shell body is
described by its mid-surface position and the director:

X(𝜉i) = R(𝜉𝛼) + 𝜉3A3(𝜉𝛼), x(𝜉i) = r(𝜉𝛼) + 𝜉3a3(𝜉𝛼). (1)

The reference director A3 is defined as the normalized cross product of the in-plane covariant base vectors A𝛼:

A3 =
A1 ×A2

||A1 ×A2||
with A𝛼 = R,𝛼. (2)

The definition of the current director a3 depends on the shell formulation and is given in Sections 2.2 and 2.3.

F I G U R E 1 Shell body in reference configuration and current configuration.
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Thus, the displacement field for a point of the shell body u is defined by the difference of position vectors in ref-
erence configuration and current configuration. With dimensional reduction, the deformation is split into mid-surface
displacements v and the difference between directors:

u = x − X = r + 𝜉3a3 −
(
R + 𝜉3A3

)
= v + 𝜉3(a3 −A3). (3)

The three-dimensional Green–Lagrange strain tensor is defined as

E = EijGi ⊗ Gj with Eij =
(
u,i ⋅Gj + u,j ⋅Gi + u,i ⋅ u,j

)
(4)

with the covariant base vectors of the shell body

G𝛼 = X,𝛼 = R,𝛼 + 𝜉3A3,𝛼 = A𝛼 + 𝜉3A3,𝛼 ,

G3 = X,3 = A3. (5)

Using Equation (3), utilizing orthogonality (A𝛼 ⋅A3 = 0 and a3,𝛼 ⋅ a3 = 0), and neglecting terms quadratic in 𝜉3, the strain
components read

E11 = v,1 ⋅A1 +
1
2

v,1 ⋅ v,1 + 𝜉3(a1 ⋅ a3,1 −A1 ⋅A3,1
)
,

2E12 = v,1 ⋅A2 + v,2 ⋅A1 + v,1 ⋅ v,2 + 𝜉3(a1 ⋅ a3,2 + a2 ⋅ a3,1 −A1 ⋅A3,2 −A2 ⋅A3,1
)
,

E22 = v,2 ⋅A2 +
1
2

v,2 ⋅ v,2 + 𝜉3(a2 ⋅ a3,2 −A2 ⋅A3,2
)
,

2E13 = a1 ⋅ a3,

2E23 = a2 ⋅ a3,

E33 = 0. (6)

The current covariant base vectors of the mid-surface can be constructed by

a𝛼 = r,𝛼 = R,𝛼 + v,𝛼 = A𝛼 + v,𝛼 . (7)

While constant parts of E𝛼𝛽 represent membrane strains, the parts linear in 𝜉3 represent curvatures. E𝛼3 are the shear
strains, which vanish in the case of shear rigid formulations, in which the current director a3 is orthogonal to the in-plane
base vectors a𝛼 .

2.2 Hierarchic shell formulation with linearized transverse shear parametrization

The shear rigid Kirchhoff–Love (KL) shell formulation with nonlinear kinematics, which serves as a basis for our hierar-
chic shear deformable shell in Oesterle et al.,19 describes the director in the current configuration as the current normal,
using the in-plane base vectors

aKL
3 = a1 × a2

||a1 × a2||
= a⊥3 . (8)

From the orthogonality of the normal and the in-plane base vectors a𝛼 ⋅ a⊥3 = 0, it follows by differentiation w.r.t. 𝜉𝛽 that
a derivative of the normal can be moved to the in-plane basis:

a𝛼 ⋅ a⊥3,𝛽 = −a𝛼,𝛽 ⋅ a⊥3 . (9)

Using the identity

a𝛼,𝛽 = a𝛽,𝛼, (10)
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F I G U R E 2 Mid-surface of the shell in reference configuration and current configurations for hierarchic shear deformable shell
formulations with different shear parametrizations.

which follows from differentiation of the definition in Equation (7) w.r.t. 𝜉𝛽 , the strain components for the Kirchhoff–Love
formulation simplify to

EKL
11 = v,1 ⋅A1 +

1
2

v,1 ⋅ v,1 − 𝜉3(a1,1 ⋅ aKL
3 −A1,1 ⋅A3

)
,

2EKL
12 = v,1 ⋅A2 + v,2 ⋅A1 + v,1 ⋅ v,2 − 𝜉32

(
a1,2 ⋅ aKL

3 −A1,2 ⋅A3
)
,

EKL
22 = v,2 ⋅A2 +

1
2

v,2 ⋅ v,2 − 𝜉3(a2,2 ⋅ aKL
3 −A2,2 ⋅A3

)
. (11)

For our geometrically nonlinear shear deformable Reissner–Mindlin shell formulation with linearized transverse
shear parametrization19 (RM-LS), the director is constructed in a hierarchic manner, by superimposing shear in form of
a shear difference vector w to the deformed normal, compare Figure 2:

aRM-LS
3 = a1 × a2

||a1 × a2||
+w = a⊥3 +w. (12)

This construction technically violates the inextensibility condition ||A3|| = ||a3||, since solely a⊥3 is normalized, that is,
only ||A3|| = ||a⊥3 || holds. However, the hypothesis in Oesterle et al.19 is that in many problems shear rotations are rela-
tively small compared to total rotations. Thus, the idea is to consider shear rotations in a linearized way, while bending
and membrane parts of the deformation can be large, that is, they fully include geometrically nonlinear effects. A ben-
efit of the proposed construction is that simplifications due to the orthogonality of a𝛼 and a⊥3 , that were made for the
components of the strains in Equation (11), can be reused for this formulation. These membrane and bending related
strain components are complemented by additional parts, responsible for transverse shear contributions. Consequently,
the strain components show an additive structure:

ERM-LS
11 = v,1 ⋅A1 +

1
2

v,1 ⋅ v,1 − 𝜉3(a1,1 ⋅ a⊥3 −A1,1 ⋅A3
)
+ 𝜉3(w,1 ⋅ a1

)
,

2ERM-LS
12 = v,1 ⋅A2 + v,2 ⋅A1 + v,1 ⋅ v,2 − 𝜉32

(
a1,2 ⋅ a⊥3 −A1,2 ⋅A3

)
+ 𝜉3(w,1 ⋅ a2 +w,2 ⋅ a1

)
,

ERM-LS
22 = v,2 ⋅A2 +

1
2

v,2 ⋅ v,2 − 𝜉3(a2,2 ⋅ a⊥3 −A2,2 ⋅A3
)
+ 𝜉3(w,2 ⋅ a2

)
,

2ERM-LS
13 = a1 ⋅w,

2ERM-LS
23 = a2 ⋅w. (13)

The additive structure of the strain components nicely visualizes the ability of this formulation to avoid transverse shear
locking a priori, that is, before discretization, compare also Section 2.4. Furthermore, it is beneficial for the derivation of
finite elements, as described in Section 2.5.
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2.3 Hierarchic shell formulation with nonlinear transverse shear parametrization

A fully nonlinear description of the director of the shear deformable Reissner–Mindlin formulation (RM-NL) using a
difference vector is proposed by Long et al.,12 compare Figure 2:

aRM-NL
3 = a1 × a2 +w

||a1 × a2 +w||
. (14)

By normalization of the total director, the inextensibility condition is fulfilled, that is, ||A3|| = ||aRM-NL
3 ||. However, the

additive structure of the director is lost, and simplifications are impeded. The strain components remain similar to the
ones described in Equation (6):

ERM-NL
11 = v,1 ⋅A1 +

1
2

v,1 ⋅ v,1 + 𝜉3
(

a1 ⋅ aRM-NL
3,1 −A1 ⋅A3,1

)
,

2ERM-NL
12 = v,1 ⋅A2 + v,2 ⋅A1 + v,1 ⋅ v,2 + 𝜉3

(
a1 ⋅ aRM-NL

3,2 + a2 ⋅ aRM-NL
3,1 −A1 ⋅A3,2 −A2 ⋅A3,1

)
,

ERM-NL
22 = v,2 ⋅A2 +

1
2

v,2 ⋅ v,2 + 𝜉3
(

a2 ⋅ aRM-NL
3,2 −A2 ⋅A3,2

)
,

2ERM-NL
13 = a1 ⋅ aRM-NL

3 ,

2ERM-NL
23 = a2 ⋅ aRM-NL

3 . (15)

Although the director and the strain components do not show a purely additive structure, as opposed to Equations (12)
and (13), the formulation is free from transverse shear locking, as explained in the following Section 2.4.

2.4 Parametrization of the hierarchic shear difference vector

The shear difference vector for both linearized and nonlinear shear parametrization is constructed using the in-plane
base vectors and the primary variables w𝛼 , which are characterized as hierarchic rotations:

w = w1a1 + w2a2. (16)

For the RM-LS formulation, they are directly related to linearized shear angles, if the in-plane base vectors in Equation (16)
are additionally normalized. For the RM-NL formulation, such geometrical relations for w𝛼 are more cumbersome to
establish, due to the non-additive construction of the director in Equation (14). With hierarchic rotations as distinct pri-
mary variables for transverse shear contributions at hand, it is obvious that bending deformations without transverse
shear can easily be achieved (cf. Appendix A). Thus, in contrast to standard Reissner–Mindlin formulations, the hierar-
chic RM-LS and RM-NL formulations are intrinsically free from transverse shear locking, that is, transverse shear locking
is avoided on formulation level instead of removing its effects after discretization on element level. However, as described
in depth for the model problem of a Timoshenko beam in Oesterle et al.,18 structural element formulations with hierar-
chic rotations still show an imbalance of function spaces in the kinematic equations for every equal order interpolation.
While shear strains are fully balanced and, thus, shear locking is avoided, curvatures show different derivatives of the pri-
mary variables. The effect of this, herein called, bending locking in hierarchic rotation formulations for static analyses is
that shear stress resultants still show some oscillations at the domain boundaries for low slenderness. Consequently, an
alternative construction of the shear difference vector (16) was introduced in Oesterle et al.18 and applied to large rota-
tions in Oesterle et al.19 It uses so called hierarchic displacements vs𝛼 instead of hierarchic rotations as primary variables.
With these, the hierarchic rotation angles are described by derivatives of the hierarchic displacements w𝛼 = vs𝛼

,𝛼 , which
removes all imbalances from the kinematic equations and further improves the quality of stress resultants. However,
since the RM-NL formulation of Long et al.12 is originally parametrized by hierarchic rotations, we use the same for the
RM-LS formulation to consistently compare the two formulations regarding the effects of linearized transverse shear.

2.5 Derivation of element vectors and matrices

Thinking further in derivation of displacement based finite shell elements, the vector of internal element forces is built
from the gradient of the strain energy, and the tangent stiffness matrix is the Hessian of the strain energy. Thus, first and
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second derivatives of the strain components w.r.t. the five degrees of freedom ur are needed: ( ),r = 𝜕( )
𝜕ur

and ( ),r,s = 𝜕2( )
𝜕ur𝜕us

with r = 1 … 5 and s = 1 … 5. Due to the construction of the director or, respectively, the normal in Equations (8), (12),
and (14), this involves the use of the quotient rule. Comparing the strain components in Equations (11), (13), and (15),
it is seen that the RM-NL formulation is the only one that needs derivatives of a quotient at this stage. So, while for KL
and RM-LS formulations the highest needed derivative of the director or, respectively, of the normal, is a⊥3,r,s, which then
already consists of five quotients (cf. eq. (5.32) in Kiendl26), the RM-NL formulation needs one further derivative aRM-NL

3,𝛼,r,s .
Therefore, manual derivation of the element vectors and matrices is more complex and error-prone for the RM-NL for-
mulation. As an alternative, automatic differentiation can be used, as recently done by Oberbichler et al.27 or Vigliotti
and Auricchio28 for other elements.

3 NUMERICAL STUDIES

3.1 Overview

In this section, we investigate three geometrically nonlinear shell problems in order to study the effect of transverse shear
deformation on the structural behavior. In particular, we scrutinize the assumption of small shear rotations. In the follow-
ing, the shear deformable Reissner–Mindlin shell element with linearized transverse shear parametrization is denoted as
RM-LS (in Oesterle et al.19 this element is found with the abbreviation RM-hr). The newly implemented, geometrically
fully nonlinear Reissner–Mindlin shell element on the basis of Long et al.12 is abbreviated as RM-NL. To verify its correct
implementation, we compare solutions to another fully nonlinear Reissner–Mindlin shell element RM-PBFE,25 which is
parametrized by total rotations, and which is available in our in-house research code Ikarus29 (“PBFE” is for “projection
based finite elements”). To contextualize any difference between the two shear deformable elements RM-LS and RM-NL,
we add solutions for a shear rigid Kirchhoff–Love shell element (KL) on the basis of Kiendl et al.11 Furthermore, in the
third example we draw comparisons with 2D elements. All elements use NURBS-based shape functions and an equal
order interpolation of all primary variables with polynomial degrees p and q for the two dimensions. All problems assume
linear-elastic, isotropic material behavior using a St. Venant–Kirchhoff material law. The zero transverse normal stress
condition S33 = 0, applied for Kirchhoff–Love and Reissner–Mindlin shell formulations, is incorporated into the material
law as usual by elimination of the transverse normal strain E33 via static condensation. We compute internal force vectors
and tangent stiffness matrices of the shear deformable elements RM-LS and RM-NL with automatic differentiation from
the implemented strain energy using the C++ library autodiff.30

3.2 Uniaxial bending

The first problem examines uniaxial bending of a beam-like structure. The problem setup is shown in Figure 3.
We choose different thicknesses t, which result in different slenderness ratios L

t
. In addition to L

t
= 10 and L

t
= 100

from Oesterle et al.,19 we include a very thin beam with L
t
= 1000 and a very thick beam with L

t
= 4. For the latter, the

F I G U R E 3 Uniaxial bending, problem setup.
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T A B L E 1 Uniaxial bending, maximum vertical displacement for various slenderness ratios.

Element L
t
= 4 L

t
= 10 L

t
= 100 L

t
= 1000

KL 2.39820014 2.30316331 2.28637586 2.28620934

RM-LS 2.51315632 2.32381396 2.28658662 2.28621145

RM-NL 2.51799762 2.32394373 2.28658664 2.28621145

RM-PBFE 2.51799762 2.32394373 2.28658664 2.28621145

Note: Element names highlighted in color for better recognition.

ratio of the analytical solutions for the midpoint displacement by a Timoshenko beam theory w.r.t. Bernoulli beam theory

is
((

L
t

)2
+ 1.6

)(
L
t

)−2
= 1.1, so the difference between shear rigid and shear deformable theory in the geometrically lin-

ear case is 10%. For the given geometrically nonlinear case, containing the membrane deformation, which is not triggered
in a linear analysis of this problem, this difference is expected to be smaller. However, the chosen statically determinate
support keeps membrane effects as small as possible.

For all shell elements, sufficiently fine meshes are ensured with the help of mesh convergence studies. For this pur-
pose, a variable number of cubic NURBS elements in x-direction is used for discretization, while in y-direction only one
quadratic NURBS element is used. The mesh density is considered sufficient, if further refinement does not change the
displacement solution with nine digits precision, as shown in Table 1. Effects from overstiff structural behavior due to
transverse shear locking for the RM-PBFE element, bending locking for the RM-LS and RM-NL elements and mem-
brane locking for all elements are thereby excluded. In x-direction the number of required elements is 80, 120, 160, or
200, depending on the type of shell element and the slenderness ratio. With 160 elements, the RM-PBFE element needs
a finer mesh than RM-LS and RM-NL (80 elements) for the low slenderness ratio of 10. For the more slender geometry
with L

t
= 100, a coarser mesh with 80 elements is sufficient for RM-PBFE, while RM-LS and RM-NL need 120 and 160

elements. For the more extreme slenderness ratio values of 4 and 1000, the number of required elements is in the same
range for all shell elements.

Table 1 shows the maximum vertical displacement for the various slenderness ratios. For the very thin beam, solutions
of all shear deformable elements are in perfect agreement, since transverse shear deformations are practically insignifi-
cant for the displacement response. The identical results of RM-NL and RM-PBFE for all slenderness ratios verifies correct
implementation of RM-NL. Comparing solutions of the KL element to all RM elements, it is seen that with lower slen-
derness ratios, that is, with larger thicknesses, transverse shear shows a greater influence on the solutions. The difference
between shear rigid and shear deformable solutions for L

t
= 4 with theoretically 10% for the linear case is reduced to 5%

in the nonlinear setting here between KL and RM-NL elements. Compared to this, the difference between RM-LS and
RM-NL with 0.2% for the very thick beam can be considered as negligible. Thus, in this range, linearization of transverse
shear in the RM-LS formulation is legitimized by these results.

3.3 Snap-through of a ring

The second problem deals with large total rotations. A closed ring is subject to a prescribed rotation about the z-axis at
its top point while the bottom is fixed, so that after snap-through at a rotation of 2𝜋, a deformed configuration with three
overlapping rings results.31 Figure 4 shows on the left a perspective view of the problem setup with the ring in y-z-plane
and its width in x-direction. The concrete definition of the applied Dirichlet boundary conditions at the top and bottom
control points is shown in Figure 4 on the right with a view onto the shell mid-surface, where the z-axis is placed at the
shell boundary.

The ring is discretized by two patches with 50 × 1 elements each. In circumferential direction, a polynomial degree
of p = 3 is chosen, whereas in width direction q = 2. Coupling of the two patches is realized using the bending-strip
method.32 Due to the pronounced imperfection sensitivity of this problem, the choice of stiffness for the bending strip
crucially influences numerical stability of the iterative solution process. For the shear rigid KL element, the directional
bending stiffness for the bending strip is set to Es = 5C11 with C11 being the entry of the linear-elastic material matrix C
that relates curvature Elin

11 to stress S11 for the given material parameters. For the shear deformable elements RM-LS and
RM-NL, directional bending stiffness is set to Es = 4C11. Different values may lead to solutions on secondary branches,
which do not show symmetric snap-through but rather a lateral evasion of the ring.
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F I G U R E 4 Snap-through of a ring, problem setup.

F I G U R E 5 Snap-through of a ring, load-displacement diagram for scaled reaction moment over rotation angle (left) and five stages of
the deformation process (right).

The load-displacement diagram in Figure 5 (left) shows the scaled reaction moment plotted versus the rotation
angle �̂�z. The reaction moment M is calculated from the pair of reaction forces of the control points at the bottom. Its
scaling MR

EI3
with the ratio of radius to bending stiffness is taken from the literature, where this example is studied using

beam elements. The value EI3 = 1
12

EtL3
x describes the bending stiffness w.r.t. the axis in thickness direction 𝜃3. The dif-

ference between the solutions of KL and the shear deformable elements makes clear that considering transverse shear in
this problem is relevant. We suspect that this difference is related to different ability of the models to represent the tor-
sion of the beam-like structure. However, whether transverse shear is considered in a nonlinear manner or in a linearized
manner, appears to be irrelevant here, as displayed by the perfectly coinciding solutions of RM-LS and RM-NL elements.
Figure 5 (right) shows snapshots of the deformation process for five different angles of rotation.
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3.4 Simple shear

The motivation for the third problem is to trigger significant shear deformations. The idea is based on a flat shell with
its upper bounding surface subject to horizontal static traction while the lower bounding surface is fixed to a rigid base,
compare Figure 6.

Since the solution of the problem is homogeneous in x-direction, a discretization with one single shell element is
sufficient. A representative element with in-plane dimensions Lx = 2 and Ly = 2, compare Figure 6, is chosen. The effect of
static traction is applied by inhomogeneous Dirichlet boundary conditions on the shear degrees of freedom w1 = ŵ1 while
all mid-surface displacement degrees of freedom are fixed, compare Figure 7 (left). Consequently, any cross-sectional
rotation of the element is a pure shear rotation.

Figure 7 (right) shows the geometrical relation between the relative displacement urel between the upper and lower
bounding surface of the shell and the rotation of the cross section 𝜑y. For the RM-LS element this geometrical relation is
described by the tangent function, whereas for RM-NL it is the sine function. For a relative displacement of urel ≈ 0.6, the
solutions of RM-LS and RM-NL elements begin to significantly differ from each other. The assumption of linearization
of transverse shear can therefore be assumed to be invalid for shear rotations larger than approximately 15◦. However, in
this deformation range, the underlying assumption of the Reissner–Mindlin shell model, namely cross-sectional fibers
remaining straight during deformation, has to be questioned.

In order to study a possible warping of the cross section, we follow the concept of using a cubic ansatz in thickness
direction, as it is used for a higher order 3D shell element in Willmann et al.33 The problem is discretized by one sin-
gle 2D NURBS element in the x-z-plane, using linear shape functions in x-direction and a cubic ansatz in z-direction. To
isolate the warping effects from additional transverse strain effects (thickness change), inhomogeneous Dirichlet bound-
ary conditions are applied in such a way that the cross-sectional length remains unchanged, compare Figure 8 (left). The
deformation plot in Figure 8 (right) clearly shows the cross-sectional warping already for shear deformations smaller than
urel = 0.6. Qualitatively similar results for the deformations can also be obtained by a discretization with bi-linear 2D
elements when using multiple elements in z-direction. Hence, it can be concluded that during this deformation process

F I G U R E 6 Simple shear, motivation.

F I G U R E 7 Simple shear, problem setup for shells (left) and relative displacement over cross-sectional rotation (right).
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F I G U R E 8 Simple shear, problem setup for 2D element (left) and deformations at various stages (right).

the basic assumption of straight cross sections becomes invalid before the assumption of linearized transverse shear leads
to deviations from the three-dimensional solution. In other words: It does not seem to be sensible (or necessary) to take
into account geometrical nonlinearity for transverse shear if at the same time the assumption of cross-sectional fibers
remaining straight is maintained.

4 CONCLUSIONS AND OUTLOOK

In this article, we critically questioned the assumption of small shear angles, which was made earlier for geometri-
cally nonlinear hierarchic Reissner–Mindlin shell formulations in Oesterle et al. 19 This assumption leads to an additive
split of strains in Equation (13), where parts related to shear deformation can be added to the strain components of a
Kirchhoff–Love formulation. This simplifies the derivation of nonlinear finite shell elements compared to using a non-
linear representation of transverse shear. We have studied the effect of linearized transverse shear compared to nonlinear
shear using NURBS based elements on the basis of hierarchic rotation formulations. We emphasize that the same con-
clusions hold for the hierarchic displacement Reissner–Mindlin formulation also derived in Oesterle et al.,19 which also
utilizes the assumption of linearized transverse shear.

For the numerical problem of uniaxial bending, we concluded that even for a very thick beam the influence of lin-
earization of transverse shear is negligible when compared to the difference between shear deformable and shear rigid
solutions. The problem of a ring snapping through showed that in a large total rotation problem, in which transverse
shear deformations are in general relevant, there is no visible difference between solutions of the linearized transverse
shear elements and the fully nonlinear ones. The simple shear problem, motivated by a static surface traction, showed
that the assumption of linearized transverse shear is justified for problems with transverse shear deformations that are in
a range where the assumption of cross-sectional fibers remaining straight during deformation is met.

In summary, we conclude that linearization of transverse shear strains in large rotation shell elements based on the
Reissner–Mindlin model is a valid method.

When larger cross-sectional deformations evolve, which are in particular due to nonlinear constitutive behavior, for
example, in large strain elasto-plasticity, further investigations are necessary extending the kinematics to shells with thick-
ness changes, here named as 3D shells, or to shells including cross-sectional warping, here named as higher order 3D shells,
as presented for example by Willmann et al. 33 for sheet metal forming. Linearization of transverse shear inside a 3D shell
formulation leads to a consequent continuation towards nonlinear kinematics of the hierarchic family of isogeometric
shell finite elements, which was introduced in Echter et al.14 for linear kinematics. The application of 3D shells or higher
order 3D shells to laminated composites or sandwich structures with stiff outer layers and soft cores potentially gives also
rise to large transverse shear deformations. Building on the results from the simple shear problem in Section 3.4, how-
ever, the authors assume that warping effects will be more relevant than the representation of nonlinear transverse shear
also in these cases.
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APPENDIX A. BENDING WITHOUT TRANSVERSE SHEAR

For vanishing primary transverse shear variables, that is, w1 = w2 = 0, the shear difference vector of Equation (16)
vanishes as well:

w = 0. (A1)

For the RM-LS formulation, the Green–Lagrange strain components from Equation (13) reduce to

2ERM-LS
𝛼𝛽

= v,𝛼 ⋅A𝛽 + v,𝛽 ⋅A𝛼 + v,𝛼 ⋅ v,𝛽 − 𝜉32
(
a𝛼,𝛽 ⋅ a⊥3 −A𝛼,𝛽 ⋅A3

)
, (A2)

which is recognized as the part of the KL formulation in Equation (11). With Equation (A1) it follows directly that the
transverse shear strain components from Equation (13) vanish:

2ERM-LS
𝛼3 = 0, (A3)

which proves that the RM-LS formulation can display bending deformation without artificial transverse shear contribu-
tions.

For the RM-NL formulation, inserting Equation (A1) into the director definition of Equation (14) yields

aRM-NL
3 = a⊥3 , (A4)

showing that the RM-NL director reduces to the KL-type director from Equation (8). Inserting this into the
Green–Lagrange strain components of Equation (15) gives:

2ERM-NL
𝛼𝛽

= v,𝛼 ⋅A𝛽 + v,𝛽 ⋅A𝛼 + v,𝛼 ⋅ v,𝛽 + 𝜉3
(

a𝛼 ⋅ a⊥3,𝛽 + a𝛽 ⋅ a⊥3,𝛼 −A𝛼 ⋅A3,𝛽 −A𝛽 ⋅A3,𝛼

)
. (A5)

According to Equations (9) and (10) the derivative can be shifted from the normal vector to the in-plane base vectors and
symmetry holds. This results in simplified expressions for the Green–Lagrange strain components:

2ERM-NL
𝛼𝛽

= v,𝛼 ⋅A𝛽 + v,𝛽 ⋅A𝛼 + v,𝛼 ⋅ v,𝛽 − 𝜉32
(
a𝛼,𝛽 ⋅ a⊥3 −A𝛼,𝛽 ⋅A3

)
, (A6)
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which is, again, recognized as the part of the KL formulation from Equation (11), and

2ERM-NL
𝛼3 = a𝛼 ⋅ a⊥3 = 0 (A7)

holds due to orthogonality. As a consequence, bending deformations without transverse shear are possible as well with
the RM-NL formulation.
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