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2. Introduction

At the fundamental level, ground state properties of materials depend only on elec-
tron density and hence are obtainable from first principles. However, a complete ab-initio
calculation by solving the Schrodinger equation is computationally ambitious for a wide
range of length scales involved in material modeling and thus separation of scales become
necessary. At the microscopic scale, one can aim at ab-initio electronic structure calcu-
lations in the framework of approximate theories developed over the last decades, the
most prominent being the density functional theory which was pioneered by [1, 2]. In the
Kohn-Sham approach (KS-DFT) the kinetic energy is computed by solving an eigenvalue
problem involving the wave-functions or orbitals of a material system. The computational
complexity associated with this calculation is high and thus limits the potential system
size to a few hundred atoms. This has inspired interest in orbital-free kinetic energy
functionals. This form of density functional theory where the kinetic energy is modeled
by orbital-free kinetic energy functionals is referred as Orbital-Free Density Functional
Theory (OF-DFT). This theory has its roots in the Thomas-Fermi model which finds
mention in the early papers of [3, 4, 5]

In the present work, we have implemented and developed numerical methods for
Orbital-Free Density Functional Theory. In Chapter 3, we have set up the OF-DFT
framework. Subsequently, we present the methodologies which we have developed and
implemented in Chapter 4. The numerical implementation and algorithmical controls are
detailed in Chapter 5. We have come up with very good and reasonably accurate numer-
ical results of our implementation in Chapter 6. Chapter 7 concludes our work giving
future directions to this research.

2.1. Relevance of Orbital-Free DFT in Multiscale Modeling of Materials

In the context of material science, the electronic structure of a material determines the
behaviour of the material at the macroscopic level, which is the length scale of interest
for engineering applications. Processes that occur at a certain length scale govern the
behaviour of the material at larger length scales. Hence, it becomes necessary to success-
fully bridge scales that can couple quantum mechanical, molecular mechanical (classical
atomistic) and continuum mechanics simulations in a unified theory. A feature of these
multiscale simulations is to use accurate and computationally complex techniques to treat
regions of small length scale and “coarse-grain” (use of less accurate but also less expen-
sive methods) the rest of the system. An important aspect of the multiscale treatment
is to have matching boundary conditions at the interface of two simulation methods, a
virtual boundary that arises due to the coupling technique. This boundary must not
introduce any physical consequences in order to correctly simulate the actual system.
While coupling a KS-DFT based quantum mechanical simulation method with a classi-
cal method, boundary conditions on the electron wave functions must be imposed at the
interface of the two simulation methods, which is complicated. A straight-forward and
simpler approach is to use OF-DFT as an input which only requires boundary conditions
to be imposed on the electron density. An efficient coupling method for simple metals
based on OF-DFT has been implemented in [6]. A quasi-continuum scheme based on
OF-DFT (QC-OFDFT) has been developed by [7] which concurrently bridges atomistic
and continuum length scales. [7] have used finite-element bases in their quasi-continuum
scheme which has the added advantage that there are no restrictions on boundary con-
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ditions, unlike plane-wave bases which represents problems only with periodic boundary
conditions. DFT based multiscale (QC) material modeling approaches have also been
discussed in [8, 9, 10]. It’s notable that [9] use OF-DFT as their sole input for calculation
of the energetics. Figure 1 represents a multiscale approach.

Figure 1: Multiscale Modelling of Materials

Figure from http://www.icams.de/content/research-at-icams/research-index.html
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3. Orbital-Free Density Functional Theory

In this chapter, the OF-DFT framework is set up. The OF-DFT energy functional is
described and different kinetic energy terms of the functional are discussed. In addition
to that, the relation with respect to Kohn-Sham DFT is presented. Different solution
procedures and basis functions used by other researchers solving OF-DFT are detailed.
Furthermore, the development of FEM based OF-DFT implementations in the last decade
is taken note of. Subsequently, the variational problem is presented followed by the
discrete formulation of the problem in finite element spaces.

3.1. The Orbital-Free Density Functional Theory Framework

The Orbital-Free Density Functional Theory is used to study atomic systems. An
atomic system consists of nuclei and surrounding electrons. A neutral atomic system
consists of equal amount of positive charge in the nuclei and negative charge as electrons.
The OF-DFT uses electron density as an input which is the number of electrons per unit
volume. The negative charge in the system is thus represented by a smeared and smooth
eletron density which has higher concentration around a nucleus or an atomic core. The
electron density is denoted as ρ which has the properties ρ ≥ 0 and

∫
ρ dr = N where N

is the total number of electrons. In this study, we use atomic units for our study of atomic
systems. In the atomic units, which is the conventional units used in atomic physics, the
four physical constants, namely the electron mass, the elementary charge, the Planck’s
constant and the Coulomb’s constant are defined as unity. The unit of energy we use is
Hartree, which is the atomic unit of energy.

The ground state energy functional in density functional theory is given by; [11]

E(ρ,R) = Ts(ρ) + Exc(ρ) + EH(ρ) + Eext(ρ,R) + Ezz(R) (1)

where ρ is the electron-density and R is the vector containing the nuclear positions in the
system.

Ts is the kinetic energy of non-interacting electrons. In orbital-free density func-
tional theory, Ts is modeled by orbital-free kinetic energy functionals. The first direct
approximations of the kinetic energy dates back to the Thomas-Fermi model; [4]. In the
Thomas-Fermi model, the kinetic energy is expressed as;

Ts(ρ) = CF

∫
Ω

ρ5/3(r) dr (2)

where CF =
3

10
(3π2)2/3

It is usual practice to write the energy functional for interacting electrons as a sum of
the kinetic energy and the interaction terms comprising of the electrostatic energy and the
exchange-correlation energy where the exchange-correlation term is a quantum correction
term. As the true form of the energy functional is unknown, approximations for Exc(ρ)
must be used. The most widely used approximation is the local-density approximation
(LDA), where the functional depends locally only on the electron density.

The Local Density Approximation (LDA) [12] used in the present work, is written in
the form by

Exc(ρ) =

∫
Ω

ϵxc(ρ(r))ρ(r) dr (3)
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where ϵxc = ϵx + ϵc is the exchange and correlation energy per electron given by

ϵx(ρ) = −3

4
(
3

π
)1/3ρ1/3 (4)

ϵc(ρ) =


γ

1 + β1
√
rs + β2rs

if rs ≥ 1

A log rs +B + Crs log rs if rs < 1

(5)

where rs =

(
3

4πρ

)(1/3)

. For unpolarized medium, the values of the constants are

γ = −0.1471, β1 = 1.1581, β2 = 0.3446, A = 0.0311, B = −0.048, C = 0.0014, D = −0.0108

The last three terms in the energy functional are electrostatic:

EH(ρ) =
1

2

∫
Ω

∫
Ω

ρ(r)ρ(r’)

|r− r’|
drdr’︸ ︷︷ ︸

electron−electron

(6)

Eext(ρ,R) =

∫
Ω

ρ(r)Vext(r)dr︸ ︷︷ ︸
electron−nuclei

, Vext =

∫
Ω

b(r′)

|r− r′|
dr′ (7)

Ezz(R) =
1

2

∑
I,J,I ̸=J

ZIZJ

|RI −RJ |︸ ︷︷ ︸
nuclei−nuclei

(8)

The point charge ZI is regularized with a smooth function ZIδ(r).

Ezz(R) =
1

2

∫
Ω

∫
Ω

b(r)b(r′)

|r− r′|
dr dr′ (9)

where b(r) =
∑M

I=1 ZIδ(r)

This differs from the earlier formulation by the self-energy of the nuclei. As the self-
energy of the nuclei is a constant, it does not affect the subsequent derivations.

EH is the Hartree energy, which is the interaction energy of electron-density. Eext is
the interaction energy with external field induced by nuclear charges. Ezz is the repulsive
energy between nuclei.
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The Thomas-Fermi model has several shortcomings; [13]. A major drawback of this
model is that it does not predict atomic binding to form molecules and solids, as proven in
the Teller non-binding theorem. In light of this, Weizsäcker introduced a correction to the
kinetic energy functional and the derived model is known as Thomas-Fermi-Weizsäcker
(TFW) model which has the form:

Ts(ρ) = CF

∫
Ω

ρ5/3(r) dr+
λ

8

∫
Ω

|∇ρ(r)|2

ρ(r)
dr (10)

where CF = 3
10
(3π2)2/3 and λ is a parameter. The Weizsäcker correction facilitates predic-

tion of atomic binding. λ = 1 is the Weizsäcker correction and is suitable for rapidly vary-
ing electron densities. λ = 1/9 is suitable for slowly varying electron densities. λ = 1/6
includes the fourth order effects and λ = 0.186 is determined from analysis of large
atomic-number limit of atoms; [12]. Weizsäcker type corrections include different values
of λ and the corresponding models are known as TFλW models. In the present work,
λ = 0.2 is used unless otherwise stated. This value of λ is the most optimum value; [14].
A comparative study (TFDW and HF models) of variation of relative deviation of ground
state energies with λ as a parameter has been presented in [14]. The relative deviation of
the total ground state energies has been studied with λ as a parameter and at λ = 0.2,
we find the least deviation. Hence we use λ = 0.2 for our computations. Unfortunately,
the kinetic energy given by the TFW model is not significantly better than the TF model
[13], the reason being the highly non-local nature of the exact kinetic energy functional.
There have been several attempts to accurately model the kinetic energy functional as
studied in [15, 16, 17, 18, 19, 20, 21]. The new kinetic energy kernels developed in the
aforementioned papers are non-local in nature and hence model the kinetic energy func-
tional more accurately. A prominent non-local kinetic energy functional is shown below,
taken from [22]:

Ts(ρ) = CF

∫
Ω

ρ5/3(r) dr+
λ

8

∫
Ω

|∇ρ(r)|2

ρ(r)
dr+ Tk(ρ) (11)

Tk(ρ) =

∫
Ω

∫
Ω

ρα(r)K(|r− r’|, ρ(r), ρ(r’))ρβ(r’) drdr’ (12)

where α and β are parameters. The kernels can be defined as Density Dependant (DD) or
Density Independent depending on whether K is dependant on ρ(r) or not, respectively
[22].

But the disadvantage of the newly developed kinetic energy kernels is that it’s com-
putationally expensive to evaluate the non-local terms. This computational expense bal-
ances out the computational simplicity inherent in the OF-DFT models when compared
with KS-DFT. To see the latest developments in this field interested readers can refer
[23, 24, 25, 26].

The energy components of Orbital-Free DFT are different to those of Orbital-Based
DFT, but sum up to a total energy that is same. This is due to the fact that OF-
DFT computations lead to a difference in the electron density, which does not show the
characteristic shell structure as shown in figure . It is this correctness of total energies
together with its numerical advantages, which makes the Orbital-Free DFT also interesting
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Figure 2: Electron Density of Argon for Various Models; [11]

for coupling to macroscopic scales, as was already shown in the quasicontinuum framework
[7]. The accuracies required in chemistry, e.g. for the evaluation of reaction paths, cannot
be met by the orbital-free DFT, however qualitative insights into the mechanical behavior
of materials are still possible. The absence of the orbitals makes the solution process
simpler and faster.

To discuss the properties of the Thomas-Fermi energy functional, we refer to [4]. The
uniqueness of the solutions of the Thomas-Fermi equations has been established in this
paper. These solutions also minimize the Thomas-Fermi energy functional. The Thomas-
Fermi functional is strictly convex which plays an important role in the uniqueness of the
solutions. The Thomas-Fermi functional is non-linear which poses the biggest challenge
in numerical solvability of the same.

3.2. The Variational Problem

The electrostatic interaction energy of the electrons and repulsive energy of the nuclei
are non-local terms. The evaluation of these terms is the most computationally intensive
part of the energy functional. Hence, the problem is reformulated into a local variational
problem; [12]; as follows:

EH(ρ) + Eext(ρ,R) + Ezz(R) = − inf
ϕ∈H1(R3)

{
1

8π

∫
R3

|∇ϕ|2dr −
∫
R3

(ρ(r) + b(r))ϕ(r) dr

}
(13)

where ϕ is the electrostatic potential and ρ is the electron density.

Now, we introduce Euler-Lagrange equations which are differential equations whose
solutions are functions for which the functional is stationary. Euler-Lagrange equation
corresponding to the variational problem above is,

−1

4π
∆ϕ = ρ+ b (14)

These have an unique solution:
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ϕ(r) =

∫
Ω

ρ(r′)

|r− r′|
dr′ +

∫
Ω

b(r′)

|r− r′|
dr′ =

∫
Ω

ρ(r′)

|r− r′|
dr′ + Vext (15)

where

Vext =

∫
Ω

b(r′)

|r− r′|
dr′ (16)

Substituting the above ansatz into the variational problem gives us back the euler-
lagrange equation.

The energy functional in the local form is then transformed to,

E(ρ,R) = sup
ϕ∈H1(R3)

L(ρ,R, ϕ) (17)

The complete expression then reads as a saddle-point problem which is thus given by,

E0(ρ,R) = inf
ρ∈Y,R∈R3

sup
ϕ∈H1(R3)

L

subject to ρ(r) ≥ 0 and
∫
ρ(r) dr = N

(18)

where the Lagrangian is given by:

L(ρ,R, ϕ) := CF

∫
Ω

ρ5/3(r) dr+
λ

8

∫
Ω

|∇ρ(r)|2

ρ(r)
dr+

∫
Ω

ϵxc(ρ(r))ρ(r) dr

− 1

8π

∫
(R)3

|∇ϕ(r)|2dr +

∫
R3

(ρ(r) + b(r))ϕ(r) dr

(19)

The constraint ρ(r) ≥ 0 can be imposed by substituting,

ρ = u2 (20)

The problem is re-stated as,

inf
u2∈H−1

0 ,R∈R3M
sup

ϕ∈H1(R3)

L(u,R, ϕ) (21)

subject to

∫
Ω

u2(r) dr = N (22)

Note that the above problem is equivalent to solving the TFW equations along with
the subsidiary condition of

∫
Ω
u2(r) dr = N
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3.3. Finite Element Formulation

There have been several implementations of the OF-DFT in plane-wave basis and
spline basis; [14]. But such implementations can only simulate systems with periodic
boundary conditions. To predict defects in materials such as, vacancies, cracks, disloca-
tions etc, plane wave basis sets are inadequate. In lieu of the same, in the present work a
finite element implementation of OF-DFT has been performed similar to the methodolo-
gies developed in [12, 27, 22]. Finite-element formulation of OF-DFT has been successful
in studying defects in materials as detailed in; [28, 10, 27, 29, 30]. Additionally, finite
element are local bases unlike plane wave bases. With finite elements the domain can be
adaptively refined which is an added advantage.

The electron density and the electrostatic potential are discretized using a finite-
element scheme using 4-noded tetrahedral elements with linear shapefunctions, as follows,

u =
∑

uiNi(x) (23)

ϕ =
∑

ϕiNi(x) (24)

Plugging in the above discretizations into the lagrangian, we obtain,

L(u,R, ϕ) := CF

M∑
e=1

∫
Ωe

( 4∑
i=1

uiNi(x)

)10/3

dr

+
λ

2

M∑
e=1

∫
Ωe

∣∣∣∣∣
4∑

i=1

ui∇Ni(x)

∣∣∣∣∣
2

dr

+
M∑
e=1

∫
Ωe

ϵxc

(( 4∑
i=1

uiNi(x)
)2)( 4∑

i=1

uiNi(x)

)2

dr

− 1

8π

M∑
e=1

∫
Ωe

∣∣∣∣∣
4∑

i=1

ϕi∇Ni(x)

∣∣∣∣∣
2

dr

+
M∑
e=1

∫
Ωe

(( 4∑
i=1

uiNi(x)
)2

+ b(r)

)
·
( 4∑

i=1

ϕiNi(x)

)
dr

(25)

where M in the above expression is the number of elements.

Thus L is a multi-dimensional function of the nodal-coefficients.

L = L(u1, u2, u3, ..., uN , ϕ1, ϕ2, ϕ3, ..., ϕN) = L({ui}, {ϕi}) (26)

where N in the above expression is the number of Degrees of Freedom (DOFs).

Multi-dimensional optimization algorithms are required to solve the above posed dis-
crete problem in finite element spaces. This is discussed in the next chapter.
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4. Optimization Methods for Orbital-Free Density Functional The-
ory

The discrete problem posed in earlier chapters, can be solved by carrying out a multi-
dimensional minimization of the energy functional. Several minimization algorithms can
be employed to this end, as detailed in [24]. A direct minimization algorithm to find the
energy minimum is by traversing the direction opposite to the gradient direction, which
is otherwise known as the steepest-descent method. In the present study though, we will
use a conjugate gradient (CG) method which has significant advantages over the steepest
descent method; [24, 31, 32].

4.1. Steepest Descent Method

The steepest descent method is a minimum finding method where the traversal di-
rection is the negative of the gradient direction. The gradient direction represents the
direction of maximum increase of the function and hence we move in the negative gradi-
ent direction. The iterative scheme is given by

x(k+1) = x(k) + α(k)r(k) (27)

where α(k) = − ⟨r(k),r(k)⟩
⟨r(k),Ar(k)⟩ , which is obtained by solution of a 1-D minimization problem.

⟨·⟩ represents an inner product and this notation for inner product is used throughout
this study.

Figure 3: Iterations of Steepest Descent Method for a Quadratic Problem; Figure from
CIMNE Virtual Center

Figure 3 shows the iterations of the steepest descent method for a quadratic prob-
lem. In the steepest descent method, the advance directions are often repeated and it
takes into account only the neighbourhood behavior of the function. In contrast, in the
conjugate gradient method each direction is constructed taking into account previous di-
rections which is why the CG method is more efficient than the steepest descent method.
Therefore, we use the conjugate gradient method in our implementation.

4.2. Conjugate Gradient Method

The conjugate gradient Method is a method to find the minimum of a function whose
gradient can be computed. In this method, the advance direction is always the conjugated
negative gradient direction. A key feature of this method is that the advance directions
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are never repeated. Two vectors u and v are said to be A-conjugate of each other if
uTAv = 0 where A is a symmetric positive definite matrix. In the CG method the
advance directions are chosen to be A-conjugate and are given by,

p(k) =


r(0) k = 0

r(k) + β(k)p(k−1) k > 0
(28)

where β(k) = − ⟨r(k),Ap(k−1)⟩
⟨p(k−1),Ap(k−1⟩ . Thus we see that, the new direction in the conjugate

gradient method is constructed from a linear combination of the new residual and the
previous direction. In the above equations, r is the residual or the gradient, p is the
direction vector and β is a scalar.

Figure 4: Iterations of Conjugate Gradient Method for a Quadratic Problem; Figure
from CIMNE Virtual Center

Figure 4 represents the iteration of a conjugate gradient Method applied to a quadratic
landscape. For a quadratic problem, if n is the system dimension, the CG method con-
verges in n iterations at the most. But usually, this method converges much before n
iterations. The convergence of the conjugate gradient method often depends on the con-
dition number of the system matrix which is given by k = λmax

λmin
where λmax and λmin are

the maximum and minimum eigenvalues of the system matrix. The use of a precondi-
tioner enables us to reduce the condition number which leads to faster convergence. A
preconditioned conjugate gradient method is given as follows; [32]:

r(0) = b−Ar(0), (29)

d(0) = M−1r(0), (30)

α(k) = −⟨r(i),M−1r(i)⟩
⟨d(i),Ap(i⟩

, (31)

x(i+1) = x(i) + α(i)d(i), (32)



Optimization Methods for Orbital-Free Density Functional Theory 12

r(i+1) = r(i) − α(i)Ad(i), (33)

β(i+1) = −⟨r(i+1),M−1r(i+1)⟩
⟨r(i+1),M−1r(i+1⟩

, (34)

d(i+1) = M−1r(i+1) + β(i+1)d(i). (35)

where M is the preconditioner matrix, r is the residual vector, d is the preconditioned
residual, α and β are scalars.

For application of the conjugate gradient method to our formulation, the problem
of solving the saddle-point formulation in finite element spaces is broken down into two
sub-problems, that is, the Poisson Problem and the Thomas-Fermi Problem. The energy
functional is a multi-dimensional function of the nodal-coefficients {ui} and {ϕi}. We
adopt a solution procedure wherein the Poisson Problem and the Thomas-Fermi Problem
are solved iteratively till self-consistency is achieved. The goal of the Poisson Problem is to
maximize the energy functional with respect to the {ϕi} and the goal of the Thomas-Fermi
Problem is to minimize the energy functional with respect to the {ui}. This is the way
to deal with the inf-sup OF-DFT problem. To this end, we apply the conjugate-gradient
method [32] to optimize each of the two sub-problems. The problem thus reduced to the
following form;

L(u,R, ϕ) := CF

∫
Ω

u10/3(r) dr+
λkin

2

∫
Ω

|∇u(r)|2dr+
∫
Ω

ϵxc(u
2(r))u2(r) dr

− 1

8π

∫
R3

|∇ϕ(r)|2dr +

∫
R3

(u2(r) + b(r))ϕ(r) dr+ µ

(∫
Ω

u2(r)dr−N

)2

︸ ︷︷ ︸
penalty−term

(36)

such that: ∇ϕL = 0, ∇uL = 0

In the above expression, µ is the penalty parameter to treat the constraint (
∫
Ω
u2(r)dr−

N) = 0. This parameter is adaptively handled in our implementation. We start with a
small value of penalty (of the order of 10) and increase the penalty parameter by a factor
after each self-consistency loop. This factor is arbitrarily chosen such that the we achieve
fast convergence. If the penalty parameter is too high at the start, the solution can either
diverge or lead to very slow convergence. The stricter treatment of the constraint with
high values of the penalty parameter towards the end makes sure that the constraint is
accurately satisfied.

An iterative minimization procedure is defined by the sequence u
(n+1)
i = u

(n)
i +λ(n)h′(n)

where h′ is normalized h, i.e h′ = h
||h|| . The residual r = −∇uL is substituted into the CG

routine. For the scalar β(k) in equation X, several approximations have been researched.
Two prominent substitutions for β(k) are the Fletcher-Reeves formula β(k) = r(k+1).r(k+1)

r(k).r(k)

and the Polak-Ribiere formula β(k) = r(k+1).(r(k+1)−r(k))

r(k).r(k)
. In our current implementation, we

use the Polak-Ribiere formula for efficiency purposes.

The above steps are followed to minimize L with respect to the coefficients {ui}. A
similar CG method is also adopted to maximize L with respect to {ϕi}.
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4.2.1. Poisson Problem. As formulated earlier, the Lagrangian can be expressed
as a multi-dimensional function of {ui} and {ϕi}:

L = L(u1, u2, u3, ..., uN , ϕ1, ϕ2, ϕ3, ..., ϕN) = L({ui}, {ϕi}) (37)

The Poisson Problem is equivalent to solving the supremum part of the inf-sup saddle-
point OF-DFT problem, that is maximizing the Lagrangian with respect to {ϕi} while
keeping the {ui} fixed. This involves computing the partial derivatives of the Lagrangian
with respect to {ϕi} as below and using this gradient in the conjugate gradient method.

∂L

∂ϕi

∣∣∣∣
ui=const.

=
−1

4π

∫
R3

∇ϕ(r)∇Ni(x) dr+

∫
R3

(u2(r) + b(r))Ni(x) dr (38)

4.2.2. Thomas-Fermi Problem. The Thomas-Fermi problem involves solving the
infinimum part of the inf-sup saddle-point OF-DFT formulation, that is, minimizing the
Lagrangian with respect to {ui} while keeping the {ϕi} fixed. The partial derivative of
the Lagrangian with respect to the {ui} is computed as below and is used in the conjugate
gradient algorithm for minimizing the Lagrangian.

∂L

∂ui

∣∣∣∣
ϕi=const.

=
∂Ts

∂ui

+
∂Exc

∂ui

+
∂(ES)

∂ui

+
∂(Penalty)

∂ui

(39)

where Ts is the kinetic energy functional, Exc is the exchange-correlation functional, ES
is the electrostatic part and Penalty is the penalty term.

Since the Thomas-Fermi problem is a non-linear problem, during it’s conjugate gra-
dient minimization, a line-search technique is introduced during the CG iterations. For
every new direction, we take a step in the descent direction. But, we do not know, where
is the minimum in that small step. This would not have been the case had the problem
is quadratic. So, unlike the Poisson Problem, in the Thomas-Fermi problem, we need to
find the minimum on that line for every new CG direction. The goal here is to obtain the
µ, as computed below:

L can be expressed as a function of µ as L is minimized by a one-dimensional line
search; [32].

f(µ) = L(u
(n)
i + µ(n)h(n)) (40)

For L to be minimum, f ′(µ) = 0. To find the root of the equation f ′(µ) = 0, secant
method is used, as below:

µ(k+1) = µ(k) − f ′(µ(k))

f ′′(µ(k))
(41)

The second order derivative is approximated by,

f ′′(µ(k)) =
f ′(µ(k))− f ′(µ(k−1))

µ(k) − µ(k−1)
(42)

Substituting, we get,

µ(k+1) = µ(k) − (µ(k) − µ(k−1))f ′(µ(k))

f ′(µ(k))− f ′(µ(k−1))
(43)
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where f ′(µ) = (h(n))T∇uL(u
(n)
i + µ(k)h(n)). The line search is stopped when abs(µ(k) −

µ(k−1)) < tol. µ for a particular line is thus determined as, µ(n) = µ(k)

The above line search is embedded into the conjugate gradient method presented in
the previous section.

4.3. Root-Finding Newton Method

The Newton method is used to find the stationary point of a function. It assumes
a quadratic curvature in the vicinity of the optimum which is why it is also important
to start the iterations close enough to the real solution. A Taylor series approximation
around the iterate neglecting higher order terms is used in this method, as shown below:

f(xk +∆x) = f(xk) +∇f(xk)
T∆x+

1

2
∆xTB∆x (44)

where B is the Hessian matrix of the second derivatives of f and ∇f(xk) is the gradient
of f at the iterate.

∇f(xk +∆x) = ∇f(xk) +B∆x (45)

Setting the gradient to zero, we get the Newton step:

∆x = −B−1∇f(xk) (46)

Figure 5: Quadratic Energy Landscapes

Figure 5 shows the quadratic approximations of multi-dimensional energy landscapes.
The multi-dimensional root-finding Newton method is a method developed in the present
work, which is identical to the staggered solution procedure adopted in [22]. In this
method, we use the hessian of the lagrangian, that is the matrix of the second derivatives
of the lagrangian with respect to the nodal coefficients, to locate the minimum of the
functional. A lagrange multiplier is introduced in the energy functional to perform con-
strained optimization. If L has an extremum for the original constrained problem, then
there exists λ which maps to a stationary point for the Lagrange function (stationary
points are those points where the partial derivatives of L are zero).The functional is at
an extremum point when the gradient is zero. What we need to do is to find the roots of
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the equation that equates the gradient to zero. The problem formulation of this method
is presented below,

L(u,R, ϕ) := CF

∫
Ω

u10/3(r) dr+
λkin

2

∫
Ω

|∇u(r)|2dr+
∫
Ω

ϵxc(u
2(r))u2(r) dr

− 1

8π

∫
R3

|∇ϕ(r)|2dr +

∫
R3

(u2(r) + b(r))ϕ(r) dr+ λ(

∫
Ω

u2(r)dr−N)︸ ︷︷ ︸
lagrange−term

(47)

such that: ∇{ϕi}L = 0, ∇{ui}L = 0 and ∇λL = 0 where λ in the above expression and
subsequently in this chapter is the lagrange multiplier introduced to handle the constraint
(
∫
Ω
u2(r)dr−N) = 0.

Thus, the energy functional is a multi-dimensional function of {ui}, {ϕi} and λ as
shown below,

L = L(u1, u2, u3, ..., uN , ϕ1, ϕ2, ϕ3, ..., ϕN , λ) = L({ui}, {ϕi} (48)

It’s important to discuss the above treatment of the OF-DFT problem. First of all,
what we have done is to approximate the non-linear Thomas-Fermi functional in a quaratic
form. The Poisson Problem is already in the quadratic form, so that is straight-forward
to solve. But, that is not the case with the Thomas-Fermi part. So, we expand this
Thomas-Fermi part of the functional as a Taylor series expansion and then neglect the
higher-order terms. This treatment is being dealt with in the subsequent sections.

An obvious question that arises here is, why did not we treat the constraint using a
penalty term as we did in the conjugate gradient method presented earlier. The technical
reason behind it is that, if we take the second derivative of the penalty term, we obtain
a non-sparce term which makes the whole hessian non-sparce. Thus, it becomes compu-
tationally impractical for us to store and solve this non-sparce hessian. Hence, we have
reformulated here the optimization problem to make use of a lagrange multiplier instead.
The mathematical explanation is presented below,

Penalty := µ(

∫
Ω

u2(r) dr−N)2 (49)

∂(Penalty)

∂ui∂uj

= 8µ

(∫
Ω

uNi(x) dr

)+

4µ

(∫
Ω

u2(r) dr−N

)∫
Ω

Ni(x)Nj(x) dr︸ ︷︷ ︸
non−sparce

(50)

4.3.1. Poisson Problem. The Poisson part is a quadratic problem, that is a quadratic
function of the Φ = {ϕi}. The Lagrangian is expressed as a Taylor series expansion of
which neglecting the higher order terms, we get,

L(Φ0 +∆Φ) ≈ 1

2
∆ΦTA∆Φ+ bT∆Φ+ c
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The system Ax = −b is solved in every Newton iteration and the nodal coefficients
are updated as {ϕi} = {ϕ0}+ {x}, where the Poisson Hessian is given as,

∂L

∂ϕi∂ϕj

= Aij =
−1

4π

∫
Ω

∇Ni(x)∇Nj(x) dr︸ ︷︷ ︸
Stiffness−Matrix

(51)

A linear potential mixing scheme is also incorporated to achieve convergence.

4.3.2. Thomas-Fermi Problem. An approach similar to the Poisson Problem is
adopted for the Thomas-Fermi Problem. The important difference here is that, the
Thomas-Fermi problem is a non-linear problem unlike the Poisson Problem. Hence, we
need to model the non-linear part into a quadratic form by neglecting the higher order
terms of it’s Taylor series expansion as below,

The lagrangian can be approximated as a Taylor Series Approximation (neglecting
higher order terms)

L(u0 +∆u) ≈ 1

2
∆uTA∆u+ bT∆u+ c (52)

Taking the gradient,

∇L(u0 +∆u) = A∆u+ b !=0 (53)

Setting ∆u = 0, we get,

∇L(u0) = b (54)

The system A∆u = −b is solved in every newton iteration and the nodal coefficients
are updated as u = u0 +∆u, where the Thomas-Fermi Hessian is given by,

∂L

∂ui∂uj

∣∣∣∣
ϕi=const.

=
∂Ts

∂ui∂uj

+
∂Exc

∂ui∂uj

+
∂(ES)

∂ui∂uj

+
∂(Lagrange)

∂ui∂uj

(55)

The Thomas-Fermi hessian is now,

R(N+1)×(N+1) ∋ A =

[
B c
c 0

]
.

where Bij =
∂L

∂ui∂uj

∣∣∣∣
ϕi=const

and c =
∂L

∂ui∂λ

The lagrange multiplier λ is considered here as another coefficient, that is, λ = uN+1.
The system Ax = −b is solved in every newton iteration and the nodal coefficients are
updated as {ϕi} = α{ϕ0} + x. α is initially chosed to be 1, which implies that the full
newton step is taken. If the gradient computed is higher than the old gradient, then α is
halvened. This process is repeated till calculated gradient is less than the old gradient.
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5. Numerical Implementation

In the present work, the numerical implementation of the Orbital-Free Density Func-
tional Theory has been carried out in a finite-element basis using the DUNE Numerics
package; [33, 34, 35, 36, 37, 38, 39].

5.1. Mesh Generation

The meshes that we use have been created using C programs. We have created tailor-
made meshes for the problems that we intend to solve. We apply our OF-DFT imple-
mentation to individual atoms, di-atomic molecules and small aluminium clusters.

The 3-D meshes for single atoms are generated such that the mesh is highly refined
around the center of the domain where the atom will eventually be placed. There is a
node at the center of the domain at which the atom is placed. The mesh coarsens away
gradually as we go away from the center. Figure 6 shows a single atom mesh.

Figure 6: Single Atomic Mesh

Special meshes are also created for di-atomic molecules such as CO and N2. For
generation of these meshes, the inter-atomic distance and the domain size are taken as
modifiable parameters. The mesh is refined around the atom positions and gradually
coarsened away towards the boundary. Figure 7 represents a typical mesh for a di-atomic
molecule.

The meshes for aluminium clusters are made up of two parts, the inner atom part and
the basic larger grid which is of the order of the lattice constant. The lattice constant and
the number of atoms are the modifiable parameters for generation of these meshes. The
meshes are so created that the region around the atom is highly refined and new nodal
points are placed such that the mesh coarsens away as we move farther from the atom
positions. Figure 8 shows the mesh for a small aluminium cluster.
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Figure 7: Di Atomic Mesh

Figure 8: Mesh for Aluminium Clusters
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5.2. Implementation with DUNE Numerics

As mentioned in the previous section, we use linear 3D 4-noded tetrahedral finite
elements for our implementation. Subsequently, the domain is discretized using these
finite elements.

The optimization procedures are applied on the Grid Function Space (GFS) of the FE
mesh. Dirichlet boundary conditions are enforced such that {ui} and {ϕi} are zero on the
boundary.

For numerical integration, 4th order quadrature rule has been used. A domain integral
is broken down into sum of integrals over the elements. Each element integral is computed
by iterating over the shape-functions of that element. In case of linear elements, the
number of shapefunctions of the element is same as the number of vertices of that element.
To sum it up, a domain integral is computed by nested iterations over the elements and
then over the quadrature rule and then over the shapefunctions of the element.

It is important to figure out how the local node numbering for each element is mapped
to global node numbers. This is achieved by using the subindex functionality of DUNE.
The subindex function takes the local node number, the element and the co-dimension of
the entity as input and returns the global nodal number of that particular vertex.

The complete picture of our algorithm is shown in figure 9. The algorithm starts with
an initial value of the {ρi} vector as the input. The initial guess of {ρi} is such chosen
that, it resembles the final {ρi} the most, that is a gaussian distribution over the domain.
In particular, {ρi} is chosen to be e−αr at the start of the algorithm where r is the radial
distance from the center of the domain. The algorithm is then taken through the conjugate
gradient optimization procedures for both the Poisson problem and the Thomas-Fermi
problem. With conjugate gradient, we obtain a configuration of {ρi} which is in the
vicinity of the real solution. The output {ρi} from the CG method is used as the input
for the Newton method which solves the Poisson problem and the Thomas-Fermi problem
more efficiently to reach the real minimum of the energy functional with respect to the
{ρi}. The final configuration of {ρi} is stored and the energies at that point gives us the
ground state energy of the system.

5.2.1. Conjugate Gradient Method. This method uses the gradients of the energy
functional to carry out optimizations. The Poisson Problem requires the gradients with
respect to {ϕi} whereas the Thomas-Fermi Problem asks for gradients with respect to
{ui}. The {ui} vector is initialized to a gaussian distribution over the domain. The
gradients are preconditioned to speed-up the conjugate gradient iterative procedure. The
preconditioner used for the Poisson Problem is the inverse of the Poisson Hessian Diagonal
Matrix with all the non-diagonal elements set to zero. The preconditioner used for the
Thomas-Fermi problem is the inverse of the Thomas-Fermi Diagonal Matrix with all non-
diagonal elements set to zero. The standard conjugate gradient method is operated on
the preconditioned gradients to obtain updates of {ui} and {ϕi}.

The flowchart in figure 10 depicts the conjugate gradient implementation order. The
Poisson problem is solved first and then the Thomas-Fermi problem till gradients for both
these problems are below a certain tolerance. The tolerance criteria is slightly loose for
this method unlike the Newton method. This is because, we employ the CG method just
to get closer to the real solution whereas in the Newton method, we actually need to
converge at the real solution.
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Initial {ρi}

Conjugate Gradient Method

Update {ρi} and {ϕi}

Root Finding Newton Method

Final {ρi}

Figure 9: Complete Algorithm

5.2.2. Root-Finding Newton Method. The crux of this method is in assembling
the right hessian matrices and solving them. The hessian matrix for the Poisson Problem
and Thomas-Fermi Problem are assembled first. To this end, sparcity patterns for both
the matrices are worked out. All codim-1 entities of the current element are traversed
and all pairs of vertices are stored. The sparcity pattern of the assembler is set with the
information gained during the storage of the adjacency data. An index is added to the
hessian matrix for each non-zero element and later these indices are used while assembling
the hessian. The hessian matrices are assembled in the standard procedure by iterating
over the elements, then over the quadrature rule and then over the shapefunctions. The
boundary conditions for these matrices are set such that diagonal elements are set to
unity and the rows corresponding to the boundary are set to zero.

The right-hand side vectors of the systems to be solved are also assembled and assigned
the appropriate values. Thereafter, the Ax = b systems are solved using DUNE solvers.
To ease and hasten the solving process DUNE preconditioners are used before solving the
systems. For the Poisson Problem, SeqSOR preconditioner is used and BiCGSTABSolver
is used for solving the system. For the Thomas-Fermi Problem, the preconditioner used
is SeqILUn and again we use the BiCGSTABSolver to solve the system.

The control of the Newton algorithm is reversed as compared to the conjugate gradient
method, that is, the Thomas-Fermi problem is solved first and then the Poisson problem.
This is because, for the Newton method, the initial solution should always be in the
vicinity of the actual solution. When we switch from the CG method to the Newton
method, we have {ρi} from the CG which is in the vicinity of the real solution. Hence,
we input that {ρi} into the Thomas-Fermi Newton algorithm unchanged. The figure 11
provides an overall picture of the Newton method.
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CG Poisson’s Algorithm

Start

Initialize ϕi vector

Set L1 = −L

Compute −∇ϕiL1

Calculate h(n) (Conjugate Direction)

Compute λ(n)

Update ϕi vector

Compute L
(n+1)
1

If
∇ϕiL1 < tol

Yes

No

No

1

CG Thomas-Fermi Algorithm

1

Initialize {ui} to a Gaussian distribution

Compute ∇ui
L

Calculate h(n) (Conjugate Direction)

Update {ui} vector

Compute L(n+1)

∇ui
L < tol

Yes

Store Energies. Stop CG

No

No

Figure 10: CG Algorithm
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Input {ρi} from CG Method

Assemble Thomas-Fermi Hessian Matrix No

Assemble b = ∇L

Solve (TF )x = b

Update {ui} = {ui}+ {x} vector

Use the assembled Poisson Matrix P

Use the assembled RHS b1

Solve Py = b1

Update {ϕi} = {ϕi}+ {y} vector

Self
Consistency?

Yes

No

Stop

Figure 11: Overall Sketch of Newton Algorithm
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6. Numerical Examples

In the previous chapter, two different methods of solving the saddle-point formula-
tion of OF-DFT have been discussed. The first method is basically a conjugate-gradient
method which treats the constraint in the optimization problem with a penalty param-
eter. In the second method, the constraint is handled by a lagrange multiplier. For
convenience, in the following sections the two methods have been denominated as the
‘conjugate-gradient method’ and the ‘Newton method’ respectively. A coupled approach
which combines the conjugate gradient method and the Newton method is used to obtain
the final saddle-point configuration and the corresponding energy minimum. This is done
by passing the final {ui} and {ϕi} configuration of the conjugate-gradient method into
the Newton method. The Newton method requires the starting density, that is, the ini-
tial solution to be in the vicinity of the actual solution. The conjugate-gradient coupled
Newton method achieves the same, as the conjugate-gradient method brings down the
gradients low enough to pass on values to the Newton method which are close to the real
minimum configuration. This approach of solving the OF-DFT problem is validated by
the simulations presented in the next sections.

6.1. Atoms

The test case is the neon atom, which is the largest atom in our simulations. We
are going to do a comparative study of our results with previous OF-DFT studies. To
this purpose, we compare with the FE-OFDFT work by [12] who use λ = 2/9 as against
λ = 2/10 used by us for the Weizsäker term. We also compare our results with [14] who
use spline basis in their work. [14] use a slightly different functional than us as they do
not have the correlation term in the energy functional. They employ though the same λ
value of 2/10 as we do for the Weizsäcker term.

In the present study, we use λ = 0.2, which is the optimal value of the parameter λ;
[14]. The ground-state energies of various atoms computed in our simulations have been
tabulated in Table 1. The energies are compared with OF-DFT studies by [12] & [14]
and Kohn-Sham-DFT values of NIST. We observe excellent agreement of the results of
our simulations with literature.

Table 1: Energies of atoms, in atomic units

Present Stich et al. [14] Gavini et al. [12] NIST
He -2.704 -2.818 -2.91 -2.834
Li -7.218 -7.323 -7.36 -7.335
C -37.967 -38.033 - -37.425
N -54.881 -54.943 - -54.025
O -74.637 -75.577 - -74.473
Ne -128.700 -128.80 -123.02 -128.233

Figure 12 shows the electron density around the neon atom in a 2-D mid-plane cut.
Electron density is highest at the nucleus. This simulation of the neon atom is run with
a polygonal mesh as shown in figure 13.

Figure 14 and figure 16 shows the convergence of our finite-element appoximation. We
compare the convergence of the ground-state energy of the neon atom with two different
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meshing schemes. The meshing schemes are shown in figure 13 and figure 15. Figure 13
represents a polygonal mesh, where we start with a mesh of 277 DOFs and uniformly refine
it three times to obtain the final mesh. The intermediate meshes used in the convergence
plot in figure 14 contain 277, 2025, 15729 and 124513 DOFs respectively. The second
meshing scheme is shown in figure 15, which is a cubical mesh. In the second scheme,
we start with a mesh of 183 DOFs and uniformly refine it three times to obtain the final
mesh. The intermediate meshes used in the convergence plot in figure 16 contain 183,
1301, 9993 and 78737 DOFs respectively. It seems to us that the polygonal 3-D mesh
is more suitable for our calculations as it converges faster, although a strong inference
cannot be drawn on this because it has more elements for each uniform sub-division.

We have made a good observation in Table 2, where we compare the energy components
of neon in our orbital-free calculations and Kohn-Sham DFT calculations obtained from
NIST. The energy contributions are different to those of Kohn-Sham DFT, but sum up to
a total energy that is similar again. The reason for this behavior is explained in previous
theory chapters.

Table 2: Comparison of orbital-free and orbital based methods, energy components of
neon

Ne OF-DFT KS-DFT
Etotal -128.700 -128.233
Ekin +123.713 +127.738
Exc -10.209 -11.710
Ecoul +54.204 +65.726
Eenuc -296.409 -309.988

At the end of this section, we would like to make a note that, we obtained the ground-
state energy of neon from our calculations as -128.80 Hartree, which is as accurate as
possible. That said, we also observed an extremum point at -127.414 Hartree. If we
switch from the conjugate-gradient method to the Newton method earlier than needed,
we end up getting trapped in this extremum point. At this moment, we cannot really
comment if this is a local minimum, a maximum or a saddle-point at an excited state.
We have two methods in the present work, first a conjugate-gradient method, which is
really searching for a minimum in the functional and a ‘Newton method’, which finds
zeros of the gradient, which can therefore also end up in saddle points or (local) maxima
of the functional. To be sure one would have to calculate the hessian and see whether its
positive or not, something we have not investigated in the scope of the present work. An
alternative is to run the conjugate- gradient method again after the Newton method, so
that we have a ‘conjugate-gradient coupled Newton coupled conjugate-gradient’ method.
This method should find the minimum. We ran this simulation on the neon atom and
found that the ground-state energy of -128.80 Hartree is really a minimum, nevertheless
we have not been able to identify if the extremum at -127.414 Hartree is a local minimum,
maximum or a saddle-point. This makes the energy landscape of neon quite interesting
though and calls for further analysis.
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Figure 12: Electron density around a neon atom calculated with 124513 DOFs with the
mesh in figure 13

Figure 13: Polygonal mesh with 124513 DOFs
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Figure 14: Convergence plot of Neon atom with polygonal mesh

Figure 15: Mesh with a cubical domain Shape with 78737 DOFs
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6.2. Molecules

The next application of our OF-DFT implementation is to simulate binding in molecules.
It should be mentioned here that, the Thomas-Fermi model is poor at predicting bind-
ing, refer Teller non-binding theorem mentioned in earlier chapters; [5]. It is the Weiz-
sacker correction in the OF-DFT functional which helps us predict binding of CO and
N2 molecules in the present study. Figure 17 shows the mesh for a di-atomic molecule.
Figure 18 and figure 19, show the electron density around CO and N2 molecules respec-
tively and we can clearly visualize the binding between atoms. It’s important to point
out that the meshes for these molecules are so designed that the regions near the atoms
and between the atoms are highly refined compared to the outer regions. This helps us
capture binding. Figure 20 shows the plot over line of a mid-plane section of the CO
contour of electron density. This figure depicts the assymetry of the CO molecule, where
C is a smaller atom compared to O and hence the electron density at the center of C atom
is lower compared to the electron density at the center of O atom.

Figure 21 shows the convergence of our meshing scheme for 2-atom molecules. The
convergence of ground-state energies of CO at uniform subdivisions of the initial mesh is
plotted in figure 21. The initial 2-atom mesh has 305 DOFs and it’s uniformly refined
three times to obtain the final mesh. The intermediate meshes used in the convergence
plot in figure 21 contain 305, 2217, 17201 and 136161 DOFs respectively.

In Table 3, we report the ground state energies of CO and N2 molecules. We find that
the ground state energies of these molecules at sample interatomic distances are in good
agreement with ground state energies of the open source Kohn-Sham DFT code ORCA,
applying the VWN-5 functional; [11]. These calculations have been made with a mesh of
136131 DOFs which is obtained by 3 uniform subdivisions of the initial mesh.

Table 3: Ground state energies of CO and N2 molecule [136131 DOFs]

Molecule Present [Eh] ORCA [Eh]
CO[2.6 a.u.] -112.047 -112.391
N2[2.4 a.u.] -106.542 -108.636

We then do a series of calculations of total energies of N2 at different interatomic
distances. This is done with a mesh of 17201 DOFs, which is obtained by 2 uniform
subdivisions of the same initial mesh as used for comparison with ORCA. As the mesh
is not highly refined, we can expect the total energy values to be not so accurate. These
values are tabulated in Table 4. Using these values, we compute the bond length of
N2 as the interatomic distance where the total energy is minimum, see figure 22. We
also observe strong repulsive energy at interatomic distance of 1.0 a.u. The minimum
energy configuration corresponds to interatomic distance 2.0 a.u., which is the most stable
configuration of N2. The binding energy of N2 is also calculated using the results of these
computations which is tabulated in Table 5. Binding energy is calculated as, binding
energy = EAB - EA - EB, where EAB is the ground-state energy of the molecule and EA

& EB are the ground-state energies of the single atoms. The same mesh used for ground-
state energy calculations of N2 molecule is used for energy calculations of single atom N.
It’s assumed that the errors will cancel out due to the low-refinement of the mesh [17201
DOFs] during binding energy calculations. The conversion of 1 Hartree = 27.2107 eV
is used for calculation of binding energy. It’s important to note that orbital-free kinetic



Numerical Examples 28

Figure 16: Convergence plot of Neon atom with a mesh with a cubical domain shape

Figure 17: Di-Atomic Mesh
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Figure 18: Electron density around a CO molecule

Figure 19: Electron density around a N2 molecule
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Figure 20: Plot over line for CO

Figure 21: Convergence plot of CO
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energy functionals have strong limitations in the presence of covalent bonds; [?] and the
orbital-free theory is not suitable for molecules like N2 and CO. It’s just a demonstration
of our methodology which we have presented here.

Figure 22: Bond Length of N2

Table 4: Ground state energies of N2 molecule [17201 DOFs]

Dist.[a.u.] Ground-state energy [Eh]
1.0 -101.492
1.2 -103.733
1.4 -104.922
1.6 -105.529
1.8 -105.778
2.0 -105.833
2.2 -105.735
2.4 -105.524
2.6 -105.303
2.8 -105.051

To conclude this section, we try to point out a few possible inadequacies of our method-
ology which might lead to discrepancies and something one should always be careful about.
Firstly, we have used a conjugate-gradient coupled Newton method in our calculations.
It’s important to point out that the Newton method is not a minimum finding algorithm
but rather an extremum finding method. We cannot therefore guarantee that the ground-
state energy values that we obtain are real minima. Rather, they can be excited state
saddle points. This eventuality can be ruled out by checking for the positive definiteness
of the hessian matrix. Secondly, for the binding energy and bond length calculations
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Table 5: Binding energy and bond length of N2 molecule [17201 DOFs]

Property Present Gavini. et al. [12] Experiments [12] HF [12] KS-LDA
Binding energy (eV) -6.6 -12.6 -11.2 -7.9 -9.6
Bond length (a.u) 2.0 2.7 2.07 2.01 2.16

of molecules, we have done a series of computations with meshes specifically designed
for 2-atom molecules at different interatomic distances. This can get tricky, because in
our solution procedure, we solve for the minimum of the OF-DFT functional in the GFS
(Grid Function Space). So, if the meshes generated for 2-atom molecules at different
interatomic distances are not refined enough or are not similar enough, then there can be
discrepancies in the binding energy vs interatomic dist. curve and deviations from the
original nature of this curve. For us, it has not been easy to reproduce the exact binding
energy vs interatomic dist. curves presented in [12]. We attribute these discrepancies to
the 2-atom meshes we have used.

6.3. Aluminium Clusters

We have applied our OF-DFT implementation to simulate the electron density around
small aluminium clusters. Figure 23 and figure 24 shows the mesh for a 2×2×2 aluminium
cluster and the electron density around a 2 × 2 × 2 aluminium cluster respectively. The
mesh is highly refined near the atoms. Similarly, figure 25 and figure 26 represents the
mesh for a 3× 3× 3 aluminium cluster and the corresponding electron density countour
plot respectively.

Figure 23: Mesh for 2× 2× 2 Aluminium cluster

Similar to the binding energy calculations of molecules in the previous section, binding
energy per atom of aluminium clusters can be computed from the ground-state energy
values of these alumnium clusters. Binding energy can be calculated as, binding energy
= (E(n) − nE0)/n where E(n) is the energy of the cluster per unit cell consisting of n
atoms and E0 is the energy of a single atom. However, it’s pertinent to point out that,
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Figure 24: Electron density around a 2× 2× 2 Aluminium cluster

Figure 25: Mesh for 3× 3× 3 Aluminium cluster
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aluminium clusters have covalent bonds and OF-DFT is not the best method for systems
with covalent bonds.

6.4. Computational Time

We now have a look at the computational time of our simulations using the Valgrind
program. The code has been profiled and we have run a test simulation on the neon atom
with a mesh of 131 DOFs. We find that the conjugate gradient method is much slower
than the Newton method for our test case. This is noted by running both the methods
separately till convergence and measuring the time for each run. It’s also observed that
the majority of the simulation time is taken by gradient calculations, see figure 27. It is
interesting to note that, solving the poisson problem is considerably less expensive than
the Thomas-Fermi problem; figure 27. The gradient calculation by the conjugate gradient
method takes up around 53% of the total time which is the most expensive function. This
is because, for every iteration of the conjugate-gradient gradient calculation function,
there is a line-search loop embedded in it. This line-search includes another gradient
calculation, thus making the outer function quite expensive. 35% of the time is taken
by the gradient computation done by the Newton method. Also, computational time
significantly depend on the size of the hessian matrix which is proportional to the number
of DOFs. Figure 28 and figure 29 shows the percentage break-up of the conjugate-gradient
gradient calculation and the Newton gradient calculation functions respectively. It should
be noted that the pow functions (in the exchange-correlation terms) take the bulk of the
time in these gradient calculations. It is important to note that the above observations
are specific to our test case.

With our experience of these simulations, we have seen that the use of preconditioners
in the penatly method has significantly reduced computational time. In our study, the
Newton method seems to converge faster than the conjugate-gradient method, but we
cannot draw a definite conclusion on this. If the initial guess is a good one, the method
will achieve convergence faster. Also, for the conjugate-gradient method, we use the
simplest preconditioner now, which is the digonalized hessian matrix. Moving to better
preconditioners can reduce the computational time of the conjugate-gradient method.
Additionally, parallelizing the code is strongly recommended as a future work of this
study.
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Figure 26: Electron density around a 3× 3× 3 Aluminium cluster

Figure 27: % break-up of the main function



Numerical Examples 36

Figure 28: % break-up of the conjugate-gradient gradL function

Figure 29: % break-up of the Newton gradL function
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7. Conclusion and Future Directions

To sum up the present work, two different methods of solving the OF-DFT problem
have been implemented. Both methods are compared and the results are found to be
matching. Excellent agreement with literature has been achieved for the energies of single
atoms. The ground-state energies of the molecules have been found to be in reasonable
agreement with other DFT codes. Additionally, good contour plots for electron densities
of atoms, molecules and small aluminium clusters have been obtained. Furthermore, the
computational time of calculation by both the methods is studied and it is found that
the Newton method is significantly faster than the conjugate gradient method. We also
infer that the problem is highly mesh dependant because the optimization routines are
performed on the Grid Function Spaces (GFS). We have achieved significantly good results
compared with past FE-OFDFT work [12], with far less number of finite elements and
without parallelization.

To obtain more accuracy, use of higher order elements is recommended. Parallelization
of the code is required for simulating larger aluminium clusters with good accuracy. It is
important to appreciate that, the finite element method is an approximate technique and
to obtain good accuracies we need higher refinements of the meshes we have used and
hence parallelization is important. Use of higher order elements is an intelligent solution
to this end.
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Appendix

A. Required Derivatives

L(ρ,R, ϕ) := CF

∫
Ω

u10/3(r) dr+
λ1

2

∫
Ω

|∇u(r)|2 dr+
∫
Ω

ϵxc(u
2(r))u2(r) dr− 1

8π

∫
R3

|∇ϕ(r)|2 dr

+

∫
R3

(u2(r) + b(r))ϕ(r) dr+ λ(

∫
Ω

u2(r) dr−N)

(56)

such that: ∇ΦL = 0, ∇uL = 0 and ∇λL = 0

∂Ts

∂ui

= CF

(
10

3

)∫
Ω

u7/3(r)Ni(x) dr+ λ

∫
Ω

∇u(r)∇Ni(x) dr (57)

=⇒ ∂Ts

∂ui∂uj

= CF

(
10

3

)(
7

3

)∫
Ω

u4/3(r)Ni(x)Nj(x) dr+ λ

∫
Ω

∇Ni(x)∇Nj(x) dr (58)

∂(ES)

∂ui

= 2

∫
R3

u(r)ϕ(r)Ni(x) dr (59)

=>
∂(ES)

∂ui∂uj

= 2

∫
R3

ϕ(r)Ni(x)Nj(x) dr (60)

∂(Lagrange)

∂ui

= λ

∫
Ω

2uNi(x) dr (61)

=>
∂(Lagrange)

∂ui∂uj

=

∫
Ω

2Ni(x)Nj(x) dr (62)

=>
∂(Lagrange)

∂λ∂ui

=

∫
Ω

2uNi(x) dr (63)
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∂Exc

∂ui

=

∫
Ω

(
∂ϵxc
∂u

u2 + 2ϵxcu)Ni(x) dr (64)

=⇒ ∂Exc

∂ui∂uj

=

∫
Ω

∂2ϵxc
∂u2

u2Ni(x)Nj(x) dr+

∫
Ω

∂ϵxc
∂u

(4u)Ni(x)Nj(x) dr+

∫
Ω

2ϵxcNi(x)Nj(x) dr

(65)

∂2ϵxc
∂u2

=
∂2ϵx
∂u2

+
∂2ϵc
∂u2

(66)

ϵx = −3

4

(
3

π

)1/3

u2/3 (67)

=⇒ ∂ϵx
∂u

= −1

2

(
3

π

)1/3

u−1/3 (68)

=⇒ ∂2ϵx
∂u2

=
1

6

(
3

π

)1/3

u−4/3 (69)

ϵc(ρ) =


γ

1 + β1
√
rs + β2rs

A log rs +B + Crs log rs +Drs

(70)

for rs ≥ 1 and rs < 1 respectively.

=⇒ ∂ϵc
∂u

=


−γ

(1 + β1
√
rs + β2rs)2

(
β1

2
√
rs

+ β2

)
∂rs
∂u(

A

rs
+ C + C log rs +D

)(
∂rs
∂u

) (71)
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for rs ≥ 1 and rs < 1 respectively and where

rs =

(
3

4πu2

)1/3

and
∂rs
∂u

=

(
3

4π

)1/3(−2

3

)
u−5/3

∂2ϵc
∂u2

= (72)


−γ

(1+β1
√
rs+β2rs)2

( β1

2
√
rs
+ β2)

∂2rs
∂u2 + −γ

(1+β1
√
rs+β2rs)2

( −β1

4r1.5s
)(∂rs

∂u
)2 + 2γ

(1+β1
√
rs+β2rs)3

( β1

2
√
rs
+ β2)

2(∂rs
∂u

)2

( A
rs
+ C + C log rs +D)(∂

2rs
∂u2 ) + (−A

r2s
+ C

rs
)(∂rs

∂u
)2

(73)

for rs ≥ 1 and rs < 1 respectively.

∂L

∂ui∂uj

∣∣∣∣
ϕi=const.

= Cij|u0 =
∂Ts

∂ui∂uj

+
∂Exc

∂ui∂uj

+
∂(ES)

∂ui∂uj

+
∂(Lagrange)

∂ui∂uj

(74)
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