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Abstract: We present a general analytical model for the calculation of the spatial distribution
of the grating period, enabling the unification of all configurations of classical laser interference
lithography (LIL) and scanning-beam interference lithography (SBIL) into one formalism. This
is possible due to the consideration of Gaussian beams instead of point sources which allow for
the accurate description of not only the laser’s far-field but also its near-field. The proposed
model enables the calculation of the grating period, the inclination and the slant of the grating
lines on arbitrarily shaped substrates, originating from the interference of arbitrarily orientated
and positioned Gaussian beams.
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1. Introduction

Interference lithography (IFL) is a common technique used for the generation of small periodic
structures. Depending on the arrangement and the number of interfering beams, various
patterns can be created. The most common variant comprising two interfering laser beams is
especially suited for the exposure of linear holographic gratings. Their wide range of applications
includes chirped pulse amplification (CPA) [1–3], spectroscopy [4], and polarization selection
or transformation [5–7], and their use as intracavity elements in laser oscillators [8–12] drives
the development of IFL and underline its importance. Two-beam IFL is mainly distinguished
into two types. The classical laser interference lithography (LIL) [13,14] employs the exposure
of the photo-resists using the laser’s far-field, as shown by the simplified sketch in Fig. 1(a). A
diffraction-limited spectrally narrow-banded laser beam is split up and its replicas are focused
through apertures and interfere on the substrate at an angle θ. The intrinsic non-planarity of the
laser’s wavefronts however creates an interference pattern exhibiting a spatial dependence of
the period, known as period chirp. This detrimental effect was already observed in 1977 [15]
and has been addressed in various publications [16–22]. To avoid the problems arising with the
period chirp and to allow for the patterning of larger substrates (up to one meter), a more recent
technique called scanning beam interference lithography (SBIL) was developed at the MIT by
Chen. et al. [23,24]. SBIL is based on the interference of the beams in the near-field, i.e. at
their waist where the wavefronts are plane. This is schematically shown in Fig. 1(b). Since the
area of the interference pattern is however much smaller than the one in LIL, the technique relies
on the scanning of the interference pattern over the substrate [25]. Although the period chirp
can widely be eliminated with SBIL, it can still occur here. Reasons might be focus shifts and
wavy substrates but it can also appear with perfect alignment due to poor choice of collimation
and laser parameters. This is because the wavefronts are only exactly plane at the beam’s waist
and thus at one point on the substrate (see green point in the insert of Fig. 1(b)). With deviating
positions from this point (see orange point), the wavefront’s curvature increases up to a maximum
curvature at a distance of one Rayleigh length.
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Fig. 1. Schematic representation of classical laser interference lithography (LIL) [21] (a),
of scanning beam interference lithography (SBIL) (b), where the insert shows the beams and
the curvature of their wavefronts at the waist, and of the unified model for Gaussian beams
(c), allowing for the description of both LIL and SBIL.

Various models and equations have been developed for the classical LIL to allow for the
calculation of the spatial distribution of the period in order to determine the period chirp [16–20].
All these models are based on the assumption, that the two laser beams can be described by
spherical waves, originating from two point sources, cf. point A and B in Fig. 1(a). This
assumption eases the modelling and the mathematical description is valid since the interference
pattern is created in the far-field of the beam. These point source models however need to be
adapted for different setups, depending on whether interference between convex, concave, or
convex and concave wavefronts is considered [20]. For SBIL, where the inference is created in
the beam’s near-field, cf. Figure 1(b), the point source assumption cannot be used. The spatial
dependence of the wavefront’s curvature makes the modelling and determination of the wavefront
vector more complex and to the best of our knowledge, no model for the description of the period
chirp – or the spatial distribution of the period– has ever been presented for SBIL yet.

The goal of this publication is therefore to provide a general model, covering both LIL and
SBIL. Case distinctions are no longer necessary with this unified model and it is no more restricted
to the laser’s near-field or far-field. We derive the description of the interference between two
arbitrarily positioned and arbitrarily orientated Gaussian beams on an arbitrarily shaped and
arbitrarily orientated substrate, cf. Figure 1(c). The model focuses on the calculation of the
obtained grating period, as well as the inclination and the slant of the grating lines.

2. Modeling

Three objects need to be considered in the proposed model: the two Gaussian beams, GA and GB,
and the substrate’s surface S, as shown in Fig. 2(a). All objects are defined at arbitrary positions
and with arbitrary orientations in a superior coordinate system. Each of the beams is defined by
a positional vector h⃗ describing the waist position with respect to the origin O of the superior
coordinate system, a directional vector a⃗ indicating the propagation direction on the axis of the
beam, the radius w00 of the waist, the Rayleigh length zR, and the wavelength λ. In Fig. 2(a)
these parameters are highlighted on the example of the Gaussian beam GA (red). The beams are
assumed to be symmetric. For their description of their electric field

E00(r, z, t) = E0
zR√︂

z2 + z2
R

· e
− r2

w2
00(z) · e−

ikr2
2R(z) · e−i(kz−ωt) · ei·arctan

(︂
z

zR

)︂
(1)
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we use the formalism for paraxial beams [26], where z and r are the local coordinates along
and perpendicular to the beam’s optical axes, E0 is the amplitude at the origin z = r = 0, R the
wavefront’s radius of curvature, k the wave number, and ω the angular frequency.

Fig. 2. Arrangement of the objects considered in the proposed model. The interference
between two arbitrarily defined, positioned, and orientated Gaussian beams on an arbitrarily
shaped substrate is considered. (a): Parameters used for the description of the Gaussian
beam, exemplarily shown on beam GA. (b): Parameters of the substrate at a defined point P.

The surface S is defined by an arbitrary function whereby each point P in it is described by its
position and a normal vector n⃗S, being perpendicular to the surface at the point P. This is shown
at an exemplary point in Fig. 2(b).

The derivation of the equations for the determination of the grating parameters is divided into
two steps. The first, described in section 2.1, is the determination of the wavefront vectors k⃗A and
k⃗B of the two beams at a given point P on the substrate S. The second step, which is discussed in
section 2.2, is the determination of the grating parameters that results from the interference of
the two wavefronts near the point P.

2.1. Determination of the wavefront vectors

To begin, a plane is defined, incorporating the point P and the axis of the Gaussian beam. This
plane is shown in Fig. 3, including the caustic of the beam and its local coordinate system given
by the coordinates z and r, together with several additional points which are required for the
derivation. The point P is located on the spherical wavefront W (orange). The center of the
wavefront W is located at the point Q. In the depicted situation the wavefront vector k⃗A (red)
of the wave incident at the point P is therefore parallel to the vector −−→QP (green). If the point P
is however located in front of the beam’s waist (see insert with P∗) the wavefront vector k⃗A is
anti-parallel to −−→

QP. Respecting these two cases the wavefront vector k⃗A can be defined as

k⃗A =

−−→QP

|
−−→QP|

· kA ·
zA

|zA |
(2)



Research Article Vol. 31, No. 4 / 13 Feb 2023 / Optics Express 5337

where kA is the wave number and the last term of Eq. (2) defines the correct sign of the wavefront
vector. The value zA thereby describes the distance between the intersection of the wavefront W
with the beam’s optical axis and the point A at the waist of the beam. The point Q is located on
the beam’s optical axis at a distance zQ from the point A. With the origin of the global coordinate
system O, the point Q can be described as

−−→OQ = −−→OA +
a⃗A

|a⃗A |
· zQ. (3)

Global coordinate system

Fig. 3. Cross-section of the caustic of the Gaussian beam GA showing the parameters
required for the derivation of the wavefront vector k⃗A at the point P.

The value of zQ can be determined using the beam’s local coordinate system, where it is given
by

zQ = zA − RW (4)

with RW being the radius of curvature of the wavefront W. This curvature in turn is given by

RW = zR

(︃
zA

zR
+

zR

zA

)︃
. (5)

Furthermore, it can be stated that

R2
W = (zP − zQ)

2 + r2
P (6)

where the values zP and rp are the coordinates of the point P in the beam’s local coordinate
system. By inserting Eq. (5) into (6) one finds
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Solving this for zA (e.g. using a symbolic solver) yields

zA(rP, zP, zR) =
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(8)

In order to derive the local coordinates zP and rp from the global coordinates of the point P we
project P onto the beam’s optical axis, leading to the point V given by [32]

−−→OV = −−→OA +
−→PA · a⃗A

|a⃗A |
2 · a⃗A. (9)

The distance zP is then given by

zP = |
−→
AV | ·

a⃗A ·
−→
AV

|a⃗A | · |
−→AV |

(10)

where the first term determines the length and the second term is used to define the correct sign,
depending on whether the point P is located in front or behind the beam’s waist. Due to the
beam’s rotational symmetry the value rp can be defined without sign distinction and is thus given
as

rP = |
−−→
PV |. (11)

The wave number kA being the length of the wavefront vector k⃗A depends on the wavelength
of the beam. The gouy phase however leads to an effective change of the wave number and thus
also of the wavelength [27] near the beam’s waist, making kA a spatially dependent quantity.
From Eq. (1) the phase φ(z) on the axis of a Gaussian beam at a given time t is given by

φ(z, zR, λ) =
2π
λ

z − arctan
(︃

z
zR

)︃
− ωt + ϕ0 (12)

where ϕ0 is an arbitrary phase shift. The wave number at the location z = zA can be defined by
the derivative of Eq. (12) resulting in

kA(z = zA) = |k⃗A | =
dφ(z = zA, zR, λ)

dz
=

2π
λ0

−

(︄
z2
A

zR
+ zR

)︄−1

(13)

2.2. Determination of the grating properties

In this section we derive the period, the inclination and the slant of the grating lines. These
three parameters arise from the intersections between the substrate and the so-called planes of
constructive interference (POCIs) [20]. They result from the interference of two Gaussian beams
as introduced above. The physical meanings of the three grating parameters are shown in Fig. 4.

The grating period Λ is the distance between two grating lines as shown in Fig. 4(a). It is
typically described by a scalar Λ, but may be expressed as a vector Λ⃗ to additionally convey the
orientation of the lines. The spatially varying inclination of the grating lines, i.e. their bending,
is coupled to the period chirp. This property is best analyzed with the help of the vectors g⃗ given
by the tangents to the grating lines. With reference to another vector (typically the grating vector
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(a) (b)

Substrate

Plane of constructive interference (POCI)

Resist

POCI

Fig. 4. (a): Top view of the grating lines on a substrate illustrating the physical meanings of
the grating period Λ and the inclination α of the grating lines. The inclination is defined by
the angle between the tangential vector g⃗ and another line, e.g., the dash-dotted line which
represents the vector g⃗ for the un-chirped case. (b): Front view of grating lines on a substrate
illustrating the physical meaning of the slant β of the grating lines, originating from the
tilted exposure of the resist. The slant is defined by the angle β between the normal vector of
the POCI and the normal vector of the substrate.

for the un-chirped case), it can be transformed into an angle describing the local inclination of
the grating line, cf. α in Fig. 4(a). The third parameter, the slant of the grating lines, is shown
in Fig. 4(b). The tilt of POCIs results in a slanted exposure of the resist. Depending on the
subsequent etching processes this tilt is transferred to the grating lines [28]. The slant is defined
by the angle β between the normal of the tangential plane to interference pattern and the normal
vector of the substrate. This parameter is especially important for the exposure of tilted and
curved substrates [21,22,29].

The calculation is started by considering the tangential plane (magenta) to the substrate’s
surface at the point P as illustrated in Fig. 5. This tangential plane is specified by the normal
vector n⃗S as schematically shown in Fig. 5(c) and (d). In a local approximation very close to the
point P the incident wavefronts of the two beams GA (red) and GB (blue) may also considered to
be plane and specified by the local wavefront vectors k⃗A and k⃗B. The wavefronts are moving in
the direction of the wavefront vectors with time t, creating the POCIs which are constant in time.
As already introduced in Fig. 4, the POCIs are schematically illustrated by the orange planes.
The determination of their orientation and periodicity occurs by considering the illustration in
Fig. 5(b) where the drawing plane is the plane which is spanned by the wavefront vectors k⃗A and
k⃗B. The wave vector of the periodic POCIs is given by

k⃗I = k⃗A − k⃗B. (14)

The distance between adjacent POCIs is then given by

ΛI =
2π
|k⃗I |

. (15)

The three exemplary POCIs and the substrate are shown in Fig. 5(c). Their intersectional lines
are the grating lines whose tangential vector g⃗ was already introduced above and which is given
by

g⃗ = n⃗S × k⃗I. (16)

Looking at the arrangement in direction of the grating vector g⃗ as shown in Fig. 5(d) allows to
identify the slant of the grating lines, given by the angle

β = arccos

(︄
n⃗S · k⃗I

|n⃗S | · |k⃗I |

)︄
(17)
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Fig. 5. Illustrations for the determination of the grating parameters at the point P. (a):
Interference of the wavefronts of the two Gaussian beams on the substrate. The time-
dependent wavefronts can be replaced by time-independent planes of constructive interference
(POCIs). (b): Representation of the interference shown in (a) in a different orientation. (c):
Derivation of the intersection lines, i.e. grating lines, from the POCIs and the substrate. (d):
View of (c) in the direction along the tangential vector g⃗ of the grating lines.

between the POCIs and the substrate. The grating period ΛS resulting on the surface of the
substrate finally is found to be

ΛS =
ΛI

sin(β)
. (18)

Combining this with Eq. (17) leads to

ΛS =
ΛI

sin
(︂
arccos

(︂
n⃗S ·k⃗I

|n⃗S | · |k⃗I |

)︂)︂ . (19)

By replacing the numerator with Eqs. (14) and (15) and by rearranging the denominator using
trigonometrical simplifications this yields

ΛS =
2π

|k⃗A − k⃗B |
·
⎛⎜⎝1 −

(︄
n⃗S · (k⃗A − k⃗B)

|n⃗S | · |k⃗A − k⃗B |

)︄2⎞⎟⎠
− 1

2

. (20)

The wave vector of the grating is given by

Λ⃗S = ΛS ·
g⃗ × n⃗S

|g⃗ × n⃗S |
. (21)

The presented model allows for the calculation of the period, the inclination and the slant of
the grating originating from the interference of arbitrarily orientated gaussian beams. Due to a
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possible inhomogeneous overlap, caused by this arbitrary placement of the beams and due to
their intrinsically inhomogeneous intensity distribution the contrast must be considered as well.

Although the formalism allows to calculate the three grating parameters for arbitrary points on
the substrate’s surface, without contrast (and also without intensity) they are meaningless. For
this reason, a simple formalism of the intensity and the contrast is given in the following. For the
sake of simplicity, it is assumed that the beams are perfectly coherent and ideally s-polarized.
The average intensity at a point P is simply defined as the sum of the intensities given as

Iaverage = IA + IB, (22)

where IA is defined as

IA = I0,A · e
−r2P

w2
00,A(zP) (23)

with I0 being the maximum intensity. IB is defined correspondingly. The values zP and rP are
given by Eqs. (10) and (11). This definition of the intensity clearly neglects the interfering
E-fields of the two beams. However, since no fixed phase relationship is defined between the two
beams and since the intensity is considered on a macroscopic scale, this definition simplifies the
calculation and is identical to the averaged intensity between multiple lines of the interference
pattern around the point P. The contrast M is defined as [30]

M =
2
√︁

IA/IB

IA/IB + 1
(24)

considering only the averaged intensities of the beams at the point P. When coherence, polarization,
and pointing stability should be considered as well, the publication of Miller et. al. [30] is
recommended, allowing for a simple extension of the presented model.

3. Simulation examples

Figure 6 shows an exemplary exposure configuration, simulated with a numerical code using the
derived equations. Figure 6(a) shows the arrangement of the two Gaussian beams interfering
on a wavy substrate, whose topography can be deducted from the color scale. The parameters
of the beams and the surface function of the substrate are given in the description of the figure.
Figure 6(b) and (c) show the spatial distribution of the grating period and the inclination of the
grating lines (with respect to the vector [0 1 0]) on the substrate, indicated by the colormap. In
Fig. 6(c) the additional black lines represent the grating vectors g⃗ at the corresponding points. The
colormap in Fig. 6(d) shows the spatial distribution of the slant of the grating lines. Figure 6(e)
and (f) show the calculated spatial distribution of the average intensity and the contrast.

Figure 7 shows the exemplary simulation of an exposure in classical LIL configuration. The
parameters of the exposure are given in the description of the figure and the arrangement is the
same as shown in [20]. This allows for a direct comparison between the point source model used
in [20] and the gaussian model used in the present publication. When comparing the calculated
distributions of the grating period and the inclination of the grating lines the high agreement
between the two models becomes apparent when far-field exposure is considered.

Figure 8 shows the exemplary simulation of an exposure in SBIL configuration. The two
beams are focused on a plane substrate and the parameters, which are given in the description of
the figure, are based on the publication of Chen et al. [24]. The results of the simulation show that
the SBIL still creates a period chirp, although it is very minor. When comparing the distribution
of the inclination of the grating lines to the one arising from the LIL exposure (compare Fig. 8(b)
with Fig. 7(b)) it becomes apparent that their sign is exactly opposite. This means that while
the grating lines that arise from LIL incline away from the center (see also [20]), they incline
towards the center in SBIL. This behavior can be explained using Fig. 1. While every point P is
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Fig. 6. Exemplary simulation of an arbitrary interference arrangement. (a): Geometrical
arrangement showing the beams and a wavy substrate. The parameters of the beams are
zR,A = 6 mm, w00,A = 1.5 mm, zR,B = 8 mm, w00,B = 4 mm. Their focuses are located
at A= (6.8 mm, 0 mm, 18.8 mm) and B= (3 mm, 1 mm, 0.0001 mm), their wavelengths
are λ= 415 nm and their directional vectors are a⃗A =[0.34 mm, 0 mm, -0.94 mm] and
a⃗B =[-0.34 mm, 0 mm, -0.94 mm]. The function of the substate’s surface is indicated
by the color scale and given as z(x, y) = −0.6 · sin(0.3 · x) − 0.7 · sin(0.4 · y). (b): Spatial
distribution of the period. (c): Spatial distribution of the inclination of the grating lines
between the grating vector g⃗ and the vector [0 1 0]. The black lines represent the grating
vector g⃗. (d): Spatial distribution of the slant of the grating lines. (e): Spatial distribution of
the intensity. (f): Spatial distribution of the contrast.
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Fig. 7. Simulation of a LIL arrangement aiming for a period of Λaim = 610 nm on a
plane substrate. Both beams are defined with λ= 415 nm, zR = 189.3 µm and w00 = 5 µm.
Their focuses are located at A= (-340.16 mm, 0 mm, 940.37 mm) and B= (340.16 mm, 0
mm, 940.37 mm) and their directional vectors are a⃗A =[-0.34 mm, 0 mm, -0.94 mm] and
a⃗B =[-0.34 mm, 0 mm, -0.94 mm]. (a): Geometrical arrangement between the beams and
the plane substrate located at z= 0 mm. (b): Spatial distribution of the period. (c): Spatial
distribution of the inclination of the grating lines between the grating vector g⃗ and the vector
[0 1 0]. The black lines represent the grating vector g⃗. (d): Spatial distribution of the slant
of the grating lines. (e): Spatial distribution of the intensity. (f): Spatial distribution of the
contrast.
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exposed by two convex wavefronts in LIL (cf. Figure 1(a)), for SBIL every point P experiences
the interference between one concave and one convex wave (cf. Figure 1(b)), effectively making
SBIL a type of the mixed interference case, cf. Reference [20].

Fig. 8. Simulation of a SBIL arrangement presented in [24] aiming for a period of
Λaim = 200 nm on a plane substrate. Both beams are defined with λ= 351.1 nm, zR = 89.48
µm and w00 = 0.1 mm. Their focuses are located at A= (0 mm, 0 mm, 0 mm) and B= (0
mm, 0 mm, 0 mm) and their directional vectors are a⃗A =[0.88 mm, 0 mm, -0.48 mm] and
a⃗B =[-0.88 mm, 0 mm, -0.48 mm]. (a): Geometrical arrangement between the beams and
the plane substrate located at z= 0 mm. (b): Spatial distribution of the period. (c): Spatial
distribution of the inclination of the grating lines between the grating vector g⃗ and the vector
[0 1 0]. The black lines represent the grating vector g⃗. (d): Spatial distribution of the slant
of the grating lines. (e): Spatial distribution of the intensity. (f): Spatial distribution of the
contrast.

4. Conclusion

A general model for two-beam interference lithography was introduced unifying all possible
cases of LIL without the need of adapting the mathematical equations to each case, as it is
required for the typically used point source models [15–20]. Furthermore, it can also be used for
the modelling of SBIL without any adaptations, which is presented here for the first time. The
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interference of arbitrarily orientated and defined Gaussian beams on arbitrarily defined surfaces
can be calculated with this model, while even the beam’s gouy phase is respected. By defining
two Gaussian beams by their position, direction, waist diameter, and Rayleigh length, equations
were derived to determine their two wavefront vectors incident on a point P on an arbitrarily
shaped substrate. Further equations were derived enabling the determination of the grating
period, the inclination of the grating lines, and the slant of the grating lines from these wavefront
vectors. Finally, the given equations were implemented in code and three different exposure
examples (i.e., an arbitrary, a LIL, and a SBIL arrangement) were calculated and presented.
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