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Abstract: We present an easy-to-implement and low-cost setup for the precise measurement
of the period chirp of diffraction gratings offering a resolution of 15 pm and reasonable scan
speeds of 2 seconds per measurement point. The principle of the measurement is illustrated on
the example of two different pulse compression gratings, one fabricated by laser interference
lithography (LIL) and the other by scanning beam interference lithography (SBIL). A period
chirp of 0.22 pm/mm2 at a nominal period of 610 nm was measured for the grating fabricated
with LIL, whereas no chirp was observed for the grating fabricated by SBIL, which had a nominal
period of 586.2 nm.
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1. Introduction

Since its invention in 1985 [1] the technique of chirped pulse amplification (CPA), which
was awarded the Nobel prize 2018, is the driver of the scaling of the peak power of ultrafast
lasers [2,3]. High-quality diffraction gratings [4] are the key components of the typically used
Treacy-compressors [5] driving the technology to unprecedented peak powers. The crucial
lithography step in the production of the gratings defines the homogeneity and the quality of
their structure. When using optical techniques, lithography is typically based on either laser
interference lithography (LIL) [6,7] or scanning beam interference lithography (SBIL) [8,9]. The
main difference between the two technologies (and also the reason why SBIL was invented in the
first place [10]) is the achievable accuracy of the grating period over a large area. LIL suffers
from the period chirp [11,12], which means a spatial inhomogeneity of the grating period i.e.
a parabolic increase of the grating period from the center of the substrate to its edge which is
accompanied by an inclination of the grating lines [13]. Although the magnitude of the chirp
can be reduced by adapting the setup, such adaptions are limited by practical limitations, as they
require the operation in vacuum, powerful lasers, and large optics or large distances between the
source and the substrate. While the period chirp can largely be avoided with SBIL, the technical
implementation is more challenging. Since the interference pattern needs to be scanned precisely
over the entire substrate, the machines become significantly more expensive [8]. Depending on
the manufacturing technology (LIL or SBIL) and their specific implementations [4,14–18], the
change of the period from the substrate’s center to the edges can therefore range from fractions
of nanometers to a few nanometers. Especially the accurate measurement of small changes in the
sub-nm range is a challenging metrological task.

The most commonly used method for measuring the grating period is based on the measurement
of the Littrow-angle [19–22]. Thereby the grating is exposed to a laser beam and rotated such
that the radiation emitted into the -1st diffraction order (DO) is guided back to the incident
beam (Littrow-condition). The accuracy of the measurement strongly depends on the accuracy
of the used rotary stage and the involved optical distances (i.e. between the grating and the
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sensor). By employing additional improvements and by using multiple diffraction orders from
possibly multiple lasers, the most precise measurements can be achieved with this technique,
reporting uncertainties of only 7 pm [23]. The Littrow-approach is therefore used by many
national metrology facilities e.g. in Germany, Canada, Switzerland, and Taiwan [24]. A major
drawback of this technique is however the extremely long measurement time and the high costs
of the setup, especially for the rotary stage. Furthermore, the eccentricity effect [25], meaning
that the grating surface is not perfectly located on the axis of rotation, is a persistent problem.
This issue was solved by implementing an additional retro-reflector for the rotation [25–28].
Relative measurement errors of ∆N/N of 3.8× 10−5 (meaning ∆N= 58 pm for N= 1536 nm) [27]
and ∆N/N of 4.99× 10−5 (meaning ∆N= 42 pm for N= 833 nm) [26] were reported using this
adaption. While the eccentricity effect could be eliminated, the limitation by the trade-off between
the accuracy and the costs of the rotary stage remains present. Another common technique is
the so-called “Long Trace profiler” (LTP) which is based on the pencil-beam interferometer of
Von Bieren [29]. LTPs rely on the scanning of the grating surface and the sensitive detection of
angular changes of one or more DOs [30–33]. For this technique, the planarity of the gratings
and the tilt-free movement of the linear stages are of high importance. Both an eventual curvature
of the grating and tilting of the linear stages will otherwise influence the angle of incidence of
the beam on the grating. This in turn affects the angle of diffraction which leads to possibly large
errors in the determination of the grating period. To exclude measurement errors from these
sources, the scanning optics should be precisely monitored [33]. With this approach measurement
accuracies in the order of 0.3 nm were reported [30].

For the measurement of the grating period also exotic techniques such as e.g. using a mode-
locked femtosecond laser [34] or a Talbot interferometer [35] were proposed. Besides these
passive approaches where the grating period is determined from the angles of diffraction, direct
measurements of the period are used as well. Atomic force microscopes (AFMs), scanning probe
microscopes (SPMs), or electron microscopes enable the determination of the grating period
without averaging over thousands to millions of grating lines (depending on the beam diameter
on the grating) and additionally allow for the determination of the grating depth and shape
[23,36,37]. While these techniques provide detailed information on the microscopic properties
of the grating, they are in general not suited to measure macroscopic objects on the order of
centimeters within a reasonable amount of time [38]. A good overview of some of these methods
as well as some other approaches can be found in the publication of Shimizu [39].

The comparison of the different setups shows that the resolution scales with the effort and
costs. When employing the widely-used period measurement based on the determination of the
Littrow angle, for example, the resolution scales with the accuracy of the rotation stage, and thus
the costs. Meanwhile, the speed of the measurement is inversely proportional to the resolution.
In this contribution, we present a simple, low-cost, and robust measurement technique that is
especially suited to accurately measure the period chirp of pulse compression gratings while
only using a few standard off-the-shelf components. It combines the best aspects of several other
setups to make it simple, fast (∼2 s per measured point), and precise (5 to 15 pm accuracy).
The underlying concept is an adaption of an LTP, since this technique generally allows for the
fastest measurements and is especially suited to measure relative changes in the period rather
than absolute values. Furthermore, it allows for the implementation of large samples while the
requirements on the mechanical implementation are comparatively low. As discussed in more
detail below, the high precision is obtained by exploiting the sensitivity of the angle of diffraction
on the grating period, while the high robustness is achieved by monitoring the 0th DO to eliminate
the influences of various errors. The setup, the data processing, and the accuracy are presented
and discussed on the example of two exemplary analyzed pulse compression gratings for the NIR
spectral range (1030 nm) whereby one grating was fabricated by means of LIL and the other
grating by SBIL. Originating from two different manufacturers, the first had a grating period
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of 610 nm and a size of 75 mm× 50 mm (width× height) while the latter grating had a grating
period of 586.2 nm and a size of 80 mm× 40 mm (width× height).

2. Measurement setup and methodology

The measurement is performed in two steps. The first measurement serves to determine the
absolute grating period at the center of the grating. The second measurement, which constitutes
the main part of the present publication, is a spatially-resolved measurement of the period’s
deviation from the value measured at the center of the grating in the first step. This deviation of
the period as a function of space directly translates to the period chirp.

The first measurement can be carried out with any of the established techniques described
above. For the measurements presented in this paper, we used the determination of the Littrow
angle [20] due to its simple implementation. The main measurement, executed in the second step,
was based on an LTP and is schematically shown in Fig. 1(a). The beam of a narrow-banded
fundamental-mode continuous-wave (cw) NIR laser illuminates the grating at a defined angle of
incidence (AOI) θinc. The beam of the -1st DO (shown in red) emerges under an angle θ−1 and is
propagated through a beam splitter and a lens onto a CCD-chip, cf. Figure 1(a). Additionally, the
beam of the 0th DO (shown in purple) is also guided to the beam splitter and fed through the lens
onto the CCD-chip but with a slight displacement with respect to the beam from the -1st DO.
This is shown by the two beam spots depicted in the small insert in the top left corner of the
figure. The elongation of the spot of the -1st DO in the direction of diffraction is attributed to the
beam’s spectral bandwidth.
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Fig. 1. LTP-based setup used for the determination of the spatial variation of the grating
period across the surface of the substrate. Linear stages are used to move the grating parallel
to its surface effectively scanning the beam over its surface. The beams of the 0th and the
-1st DO are focused on a CCD-chip by means of a lens. (a): In the first step the absolute
period of the grating is measured at a fixed position without moving the grating. The square
inserted in the top left corner represents the CCD-chip with the two spots originating from
the beams in the 0th and the -1st DO. (b): A movement of the period-chirped grating leads
to a change in the angle of the -1st DO (orange) with respect to the one measured in the
first step (red). The beam path of the 0th DO is greyed out as it is not directly needed for
this second measurement step. It is however used to detect potential tilting of the grating’s
surface and therewith increase the precision of the measurement.

To measure the period chirp, the grating is moved parallel to its surface with two motorized
linear stages for horizontal and vertical displacement. In the presence of a chirped period, a
change in the position on the grating leads to a change in the period affecting the laser beam.
This in turn leads to a change in the diffraction angle, as depicted by the orange beam in Fig. 1(b).
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Since the CCD-chip is located at a distance of the focal length f from the lens, the change in the
diffraction angle ∆θ−1 can be calculated from the shift s−1 of the beam on the CCD-chip. For a
precise determination of the local deviation of the grating period one however needs to take into
consideration the error that would be caused by any existing curvature of the grating’s surface
or possible angular errors introduced by the linear stage. To correct these errors, the 0th DO is
tracked to detect any changes in the AOI by measuring the shift s0 of the spot of the 0th DO on
the CCD-chip. With a fixed incident laser beam, a change of the AOI by ∆θinc results in a tilt of
2∆θinc of the beam reaching the lens and hence

∆θinc =
1
2

arctan
(︃
s0
f

)︃
. (1)

Taking this possible change of the AOI into account, the change of the angle of diffraction
∆θ−1 is given by

∆θ−1 = ∆θinc − arctan
(︃
s−1
f

)︃
. (2)

Adding this information to the generally known grating equation (for reflection)

sin(θm) = sin(θinc) + m ·
λ

Λ
, (3)

with θm being the diffraction angle of the mth diffraction order, the period of the grating is found
to be

Λ =
λ

sin(θ∗inc+∆θinc) − sin(θ∗
−1+∆θ−1)

, (4)

where θ∗inc is the nominal angle of incidence as set and θ∗
−1 the resulting diffraction angle

determined in the first reference measurement. By expressing θ∗
−1 with the period Λ∗ determined

in the first reference measurement, Eq. (5) is transformed to

Λ =
λ

sin(θ∗inc+∆θinc) − sin
(︁
sin−1 (︁sin(θ∗inc) −

λ
Λ∗

)︁
+ ∆θ−1

)︁ . (5)

In order to detect the smallest possible changes in the grating period, the measurements need to
be carried out for an AOI at which the diffraction angle depends very sensitively on the period. In
mathematical terms, this means that dθ−1/dΛ∗ should adopt a large value. This can be achieved
by suitably choosing either the wavelength or the AOI of the probe beam. To find a suitable AOI,
the grating equation (Eqn. (3)) may be solved for θ - 1 and its derivative

dθ−1
dΛ∗

=
λ

(Λ∗)2 ·

√︃
1 −

(︂
sin(θ∗inc) −

λ
Λ∗

)︂2
(6)

is calculated with respect to the nominal period Λ∗ measured in the reference measurement at the
center of the grating. Figure 2 shows the angle of diffraction θ - 1 of the -1st DO and its sensitivity
dθ - 1/dΛ∗ as a function of the angle of incidence θ∗inc for a nominal period of Λ∗ = 610 nm
(corresponding to the LIL-based grating) and a probing wavelength of λ= 1030 nm. Although
other wavelengths would also have been suitable for the measurement this wavelength was chosen
because such a laser was available. The two curves in Fig. 2 show that the operation of the grating
close to the cut-off angle of the -1st DO (|θ - 1 | >90◦) significantly increases the sensitivity. For
the experimental characterization of the chirped LIL grating an AOI of θ∗inc = 44◦ (θ−1= −83.65°)
was therefore chosen (see orange dash-dotted line) yielding a sensitivity of dθ - 1/dΛ∗ = 1.43
°/nm. This approach led to an increase of the sensitivity and thus of the accuracy by a factor
of approximately 5 compared to setups that operate under the Littrow-condition (see the black
dashed line, dθ - 1/dΛ∗=0.3 °/nm).
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Fig. 2. Dependence of the sensitivity dθ - 1/dΛ∗ on the AOI for the LIL grating with a
nominal period of Λ∗ = 610 nm. The configuration depicted by the yellow dash-dotted line
was chosen.

3. Data processing and results

Figure 3 shows the grayscale image recorded by the CCD-chip during the reference measurement
at the center (x = y = 0) of the LIL grating. The upper and lower white spots correspond to
the beams of the -1st DO and 0th DO, respectively. The horizontal elongation of the -1st DO is
attributed to the spectral bandwidth of the laser beam which was measured to be ∆λ= 166 pm
(FWHM).

to higher period to lower period

Fig. 3. Picture obtained on the CCD-chip (grayscale) with the spot of the 0th DO (bottom)
and the one of the -1st DO (top) overlayed by the measured centers of gravity of these spots
(in color) obtained when scanning the grating as depicted in Fig. 1.

When the chirped grating is moved perpendicular to the grating lines as depicted in Fig. 1, the
spot of the -1st DO moves on the CCD-chip due to the spatially varying grating period. This is
shown by the colored dots, which represent the centers of gravity (COG) of the spots on the chip
for different measurement points during the scan along the grating’s surface. The color scale
indicates their positions (x= 0 at the center corresponding to green color). The movement of the
COG to the left indicates that the period increases with increasing distance from the reference
point at the center of the grating. Both spots are also shown in Fig. 4 but with higher resolution.
The vertical displacement of the COGs of the -1st DO (cf. white arrow in Fig. 4(a)) is attributed
to a slight local change in the orientation of the grating lines (as e.g. illustrated by Fig. 9 in
Ref. [13]). The smaller displacement of the COGs of the 0th DO (cf. Figure 4(b)) is attributed
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to the (unwanted) mechanical tilting of the stage upon movement and an eventual waviness of
the grating’s surface. For the measurement, the beam was collimated with a diameter of 2 mm.
Since the position of the beam is obtained by the COG via the momentum method the divergence
and beam diameter are of low importance.

(a) (b)

Fig. 4. (a): Enlarged excerpt of the spot of the -1st DO from Fig. 3. (b): Enlarged excerpt
of the spot of the 0th DO from Fig. 3.

Figure 5(a) shows the spatially resolved period of the two different (LIL and SBIL) pulse
compression gratings along two different lines through their center, i.e. once along a direction
perpendicular (⊥) and once parallel (∥) to the grating lines. The measurements were obtained

(a) (b)

(c)

Fig. 5. (a): Measured period of the two gratings along the direction perpendicular (⊥) and
parallel (∥) to the grating lines through the center. (b): Measured period of the LIL grating
across the whole surface. The black arrow indicates the orientation perpendicular to the
grating lines. (c): Magnified presentation of the measured period of the SBIL grating. The
black arrow in the insert in the bottom left corner shows the orientation perpendicular to the
grating lines with respect to the lines along which the measurements were carried out on the
grating surface.
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using equations Eqn. (1), (2), and (5) and inserting the values s−1 and s0 corresponding to the
displacements of the COG of the spots recorded on the CCD chip.

The grating fabricated by LIL shows the typical parabolic spatial dependence [13] of the
period. The asymmetry of the spatial period variation furthermore indicates that the interference
pattern used to fabricate the grating, cf., Refs. [13,40], was not perfectly centered on the sample.
This can be seen in more detail in Fig. 3(b) where a full scan of the sample is shown. To quantify
the observed chirp, we consider the quadratic period chirp as defined by the second derivatives
χ⊥ = d2Λ/dx2 for the perpendicular direction (⊥) and χ∥ = d2Λ/dy2 for the parallel direction
(∥). This definition is advantageous since the distribution of the grating’s period typically follows
a parabolic spatial dependence [13,40]. By applying quadratic fits and extracting the quadratic
terms, period chirps of χ⊥ =0.22 pm/mm2 and χ∥ =0.077 pm/mm2 were determined for the
respective directions. As shown in Fig. 5(a) and with a larger magnification in Fig. 5(c) no
apparent spatial variation of the period is observable for the grating fabricated with SBIL. The
shaded areas shown both in Fig. 5(a) and Fig. 5(c) represent the calculated accuracy of the
measurement as discussed in the following section.

4. Measurement accuracy

The measurement accuracy of our setup is discussed exemplary for the case of the grating that
was fabricated by LIL. The measurement of the spatial dependence of the grating’s period in
the direction perpendicular to the grating lines through the center of the sample (depicted in
blue in Fig. 5(a)) is considered for the following analysis. This analysis is performed on this
measurement since it exhibits the largest change of the period and since its raw data was already
shown in Fig. 3 and Fig. 4. In order to determine the uncertainty of our measurement, we
first analyze the uncertainty of the determination of the angles α0 = 2∆θinc = arctan (s0/f )
and α−1 = arctan (s−1/f ), cf equation Eqn. (1) and (2). To calculate the error propagation, we
consider the whole optical setup comprising the grating, the propagation distance l′ along the -1st

DO to the lens, the lens with the focal length f and the length l from the lens to the CCD chip.
Table 1 lists the values of these parameters and their assumed uncertainties used for the error
propagation to determine the resulting overall uncertainty of α0 and α−1. The values of the shifts
s0 and s−1 correspond to the maximum values observed on the CCD-chip, as depicted in Fig. 4.
The error in the determination of their COG (e.g., due to eventual camera noise) was derived to
0.1 pixel from repeated measurements. However, it was rather conservatively specified to be
about half a pixel to also include effects originating from the collimation of the beam, i.e. beam
diameter and divergence, as well as the movement of the beam on the lens. The latter creates an
astigmatism of the beam and could lead to an error in the determination of the beam’s COG.
Since this movement is in the range of 1 mm at max, the error is considered to be minor and is
included in the specified error of half a pixel. For the lens, the uncertainty in the focal length
was accounted to 1 mm. Eventual astigmatism and spherical aberrations of the lens were not
measured and are therefore simply included in both the uncertainty of the determination of the
beam’s COG and the focal length of the lens.

The lower part of Table 1 shows that the calculated relative errors of α0 and α−1 amount to 6%
and 0.7%, respectively. The higher (relative) uncertainty for the 0th DO results from the small
movement of the spot with respect to the unchanged absolute uncertainty of the half pixel. The
calculation of the error propagation for the grating period was then performed in a second step
using the uncertainty of α0 and α−1 together with the equations Eqn. (1), (2), and (5). The values
and uncertainties of the used parameters are listed in Table 2.

Assuming a perfectly known period resulting from the first reference measurement (Case A)
the maximum uncertainty of the determined period (which occurs when the diffracted beam
experiences its maximum shift on the CCD-chip (x= –35 mm, y= 0 mm) was determined to be
15 pm (see lower part of Table 2). Although smaller errors occur for points with lower period
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Table 1. Parameters and their uncertainties (upper part) used to calculate the
expected uncertainties of α0 and α−1 (lower part).

Parameter Symbol Nominal Value Uncertainty

Distance lens and grating for 0th DO l′0 250 mm 10 mm

Distance lens and grating for -1st DO l′
−1 745 mm 10 mm

Distance lens and CCD-Chip l 185 mm 1 mm

Focal length f 185 mm 1 mm

Shift of the beam on the CCD-Chip for 0th DO so 15·4.65 µm 0.5·4.65 µm

Shift of the beam on the CCD-Chip for -1st DO s−1 300·4.65 µm 0.5·4.65 µm

Results

Angular change of the 0th DO α0 0.38 mrad 23 µrad= 6%

Angular change of the -1st DO α−1 7.5 mrad 53 µrad= 0.7%

Table 2. Parameters and their uncertainties (upper part) used to calculate the
expected uncertainties of the period Λ and the chirp χ⊥ (lower part). Three

different uncertainties of the reference period Λ∗ are considered, described by the
cases A, B and C

Parameters Symbol Nominal Value Uncertainty

Wavelength 1030 mm 0.1 nm

Nominal angle of incidence θ∗inc 44° 12°·10−3

Angular change of the 0th DO α0 0.38 mrad 23 µrad= 6%

Angular change of the -1st DO α−1 7.5 mrad 53 µrad= 0.7%

Nominal period (Case A - Ideal) Λ∗
A 610 nm 0 pm

Nominal period (Case B - PTB [23]) Λ∗
B 610 nm 10 pm

Nominal period (Case C - Our setup) Λ∗
C 610 nm 100 pm

Results

Period at max point (Case A - Ideal) ΛA 610.41 nm 15 pm

Period at max point (Case B - PTB [23]) ΛB 610.41 nm 26 pm

Period at max point (Case C - Our setup) ΛC 610.41 nm 124 pm

Period Chirp at max point (Case A, B and C) χA,B,C 0.22 pm/mm2 0.015 pm/mm2

change (closer to the vertex of the parabola) the uncertainty of 15 pm was adopted to all points
shown in Fig. 5(a).

Since in practice the period Λ∗ determined by the first reference measurement is also uncertain
its influence needs to be considered too using Eqn. (5). Essentially, however, this uncertainty of
Λ∗ merely leads to a shift of the determined parabola while the opening of the parabola (i.e. the
quadratic coefficient and thus the chirp χ) is nearly unaffected. The following simulated example
shows this in a quantitative matter. It is supposed the substrate has a nominal period of 610.1 nm
at the center and a period of 610.4 nm at the edge. This results in an actual period difference of
0.3 nm from the center to the edge. By incorrectly assuming that the nominal period is 610 nm
(at the center) and by applying the presented equations Eqn. (1), (2) and (5) the period at the
edge would be determined to be 610.294 nm. This means that the change is found to be 0.294
nm instead of the nominal 0.3 nm, creating an error of only 6 pm, while the nominal period
was wrongfully determined by 100 pm (610 nm instead of 610.1 nm). This small influence of
the nominal period is reflected in the error propagation for the period for cases B and C. For
case B it is assumed that the nominal period is determined with an uncertainty of 10 pm, as it
could be achieved by the PTB [23]. This uncertainty results in an absolute error of 26 pm for the
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outermost point (x= –35 mm y= 0 mm), which is mainly the sum of the general error of 15 pm
with the additional error of 10 pm from the nominal period. For case C it is assumed that the
nominal period is determined with an uncertainty of 100 pm, as our Littrow-Setup is specified.
The resulting absolute error of 126 pm is again only slightly higher than the sum of the general
error of 15 pm with the additional error of 100 pm.

Since the presented method is designed to measure the period chirp, the uncertainties in
the determination of the quadratic coefficients χ⊥ = d2Λ/dx2 and χ∥ = d2Λ/dy2 is of great
importance. They can be determined from the influence of the uncertainties of the period
measurements of the individual points onto the fit of the parabolas. For all three cases the
uncertainty of the chirp χ⊥ was determined to be 0.015 pm/mm2, cf. Table 2. This value also
includes the positional error of the stage specified by the supplier as <2 µm for the bidirectional
repeatability at a single point and by <16 µm/100 mm for the overall positional error. The
independence of the uncertainty of the period chirp from the first reference measurement Λ∗

can already be concluded from the simulated example described above. The uncertainty of Λ∗

mainly results in the shift of the obtained parabolic spatial distribution of the period while it’s
opening (defined by the quadratic coefficients) is nearly unaffected.

By applying the presented error propagation on the data of the SBIL grating, an uncertainty of
5 pm was determined. This unprecedented small uncertainty is mainly attributed to the small
movement of the beams due to the substrate’s high planarity and the extremely homogeneous
period.

The obtained deviations of the measurements were observed to be on a much smaller scale than
the absolute errors. For the 40-times repeated measurement of a single point (without moving
the stage) a standard deviation (STD) of 0.4 pm and a peak-to-valley deviation (PV) of 2 pm
were determined which indicates the low errors arising from camera noise and from spectral and
pointing fluctuations of the laser.

5. Discussion and outlook

The method presented in this paper combines an absolute measurement of the period with the
measurement of a relative period change. The accuracy of the measurements, therefore, needs to
be discussed in two parts. The absolute accuracy of our measurement is defined by the accuracy
of our Littrow-setup and cannot compete with the state-of-the-art period measurements. For the
application (i.e. pulse compression) however, the period chirp i.e. the change of the grating
period, is much more important. In the proposed approach this quantity is measured with much
higher accuracy, as it exploits the high sensitivity of dθ−1/dΛ∗ and uses the 0th DO to correct
errors associated with any changes in the AOI.

For the measurement, the beam was collimated with a diameter of 2 mm. As specified in the
previous section, the position of the beam is obtained by the COG via the momentum method.
Therefore, the beam’s divergence and diameter have only minor influence on the determination of
the beam’s position on the CCD-chip. However, the beam size results in an averaged measurement
of the periods of all grating lines that lie within the diameter of the beam on the grating. When a
fine spatial resolution should be obtained, smaller beam diameters are required.

Besides the characterization of pulse compression gratings, our setup is also well-suited for
the characterization of other grating-based optics such as phase masks used for the inscription
of chirped fiber Bragg gratings [41,42]. Also, other objects that are not initially designed for
diffraction can be characterized as long as they show certain periodicity [43] and some power
contained in a diffraction order when exposed to a laser beam. Thereby the diffraction efficiency
of the sample, as well as the absolute intensity of the beam, are only of minor importance since
the position of the beam is obtained by the COG. Because the exposure time of the camera can
be adapted for every image, respectively position of the grating, even spatial dependencies of the
diffraction efficiency can therefore easily be compensated. This also enables a measurement of
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the grating period during the fabrication, i.e. after the lithography/development and before the
etching process. Depending on the wavelength used for the measurement, the exposed photoresist
grating already allows for the diffraction of a few percent of the incident radiation.

Concerning our existing setup several improvements are planned and will be part of future
efforts. Among others, the focus will be on a full automatization and the real-time processing of
the obtained data which should additionally increase the measurement speed. Furthermore, the
determination of the inclination of the grating lines is pursued, whose effects were already visible
in our measurements. Finally, we will investigate the advantages of using a different laser source
with a shorter wavelength to excite more DOs. This can increase both accuracy and precision in
two ways. First, the choice of the wavelength influences the sensitivity dθ−1/dΛ as shown in
Eqn. (6) and can therefore further enhance the signal-to-noise ratio. Second, the measurement
of the spots of more DOs on the camera will lead to a further reduction of the uncertainty as
reported in Ref. [22].

6. Conclusion

In summary we presented a low-cost, robust, and easy-to-implement metrological setup based
on a long trace profiler (LTP) that is especially suited for the precise and fast measurement of
the period chirp. The underlying principle, the theory, and the data treatment of the setup were
shown on the example of a period-chirped grating fabricated with LIL and an unchirped grating
fabricated with SBIL. The operation of the setup at a condition where the angle of diffraction is
very sensitive to the grating period and the simultaneous monitoring of the 0th DO to correct for
changes in the AOI allowed for a measurement of period changes with high precision. For the
grating fabricated with LIL uncertainties of only 15 pm (period change) for a single point and
0.015 pm/mm2 (with respect to χ⊥ =0.22 pm/mm2) for the period chirp were achieved. For the
grating fabricated with SBIL, no chirp was observed, and an uncertainty of unprecedented 5 pm
(period change) was achieved.
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