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Abstract

In their natural habitats, bacteria are subject to interactions with

complex environments. Complexity can arise from, e.g., confine-

ment in porous media, nontrivial external flow conditions or from

other particles that bacteria interact with. This thesis reports the

development and application of a numerical model for swimming

bacteria in such complex environments

The bacterial model is based on coarse-grained molecular dy-

namics, resolving the trajectories of individual particles, but ab-

stracting physical interactions to the micrometer scale. Bacteria

are represented as rigid rods comprising multiple molecular dynam-

ics particles. Their dynamics are described by physical equations

of motion, including interactions with an underlying fluid, with

boundaries, or with other particles. When required, hydrodynamic

interactions are included using the lattice Boltzmann framework.

Biological detail beyond the physical parameters like shape and

mass is described in an equally coarse-grained fashion, seeking to

only capture the relevant mechanisms for each application. Swim-

ming is realised by a fictitious driving force counterbalanced by

a force on the underlying fluid that mimics the propulsion mech-

anism. Different motility patterns such as run-and-tumble, run-

and-reverse or run-reverse-flick are modelled by changes in propul-

sion force and steering torque. Attachment to surfaces via (non-

1
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)reversible binding is included through breakable bonds as used in

the study of polymers. Cell growth and division is modelled by

changes in the configuration of the individual particles that make

up the bacterial rod.

The model for bacteria is applied to answer relevant questions

in the field of research into motile bacteria: The first question

concerns the accumulation of cells and the formation of biofilms,

i.e., colonies of growing bacteria, in porous media. “How does

external flow influence the initiation and formation of biofilms?”

This question has two parts. Complex external flow influences

swimming bacteria and determines the locations where bacteria

accumulate and attach to surfaces. Once bacteria are attached and

start forming a colony by growth and division, external flow exerts

viscous forces on the colony that detemine the time evolution and

final shape of the biofilm. Both aspects will be covered with our

cell model.

The second question stays in the realm of porous media, but

concerns confinement that is so strong that it reaches the scale of

individual cells. “Which is the optimal motility strategy for a bac-

terium to efficiently explore a porous environment?” In nature,

bacteria use different motility patterns, i.e., temporal sequences

of forward swimming and (active) rotation, to explore their sur-

roundings. Depending on the level of confinement, we determine

which pattern is optimal for porous media exploration, quantified

in terms of an effective diffusion coefficient. Based on the insights

gained from this investigation, we propose a new, adaptive strategy

that outperforms the fixed patterns found in nature.

2
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The third question increases the level of detail even further,

delving into the hydrodynamic interactions on scales below the cell

size. “What is the influence of bacterial swimming on the infection

process between phages and bacteria?” Phages are viruses that kill

bacteria, but need physical contact with their prey to initiate the

infection. The flow-field generated by swimming bacteria has an

influence on the approach of phages to the cell, because phages are

advected by it. Following the footsteps of Berg and Purcell, we

use our detailed bacterial model to determine the phage infection

rate as a function of swim speed. Going beyond Berg and Purcell,

we also cover phages that attach to flagella, finding results that

are opposite to those for the cell body and highlight the special

importance of hydrodynamic interactions.

As an outlook, we show an example of the combination of

machine learning methods and our particle simulations to an-

swer a fundamental question about bacterial behaviour in non-

homogeneous environments. “What is the influence of size and

speed of bacteria on their ability to perform chemotaxis?” Chemo-

taxis is the directed motion towards the source of a chemical based

on sensory input. Bacteria use certain strategies to bias their swim-

ming motion to direct themselves to more favourable environmen-

tal conditions even in the presence of random thermal fluctuations.

Our reinforcement learning approach finds well known strategies

but also uncovers new ones that can inspire the design of artificial

microrobots. Furthermore, we find and physically interpret bound-

aries in parameter space that separate regions where chemotaxis

can be learned and regions where chemotaxis is impossible.

3
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In summary, by contributing to answering the aforementioned

questions, we demonstrate the applicability of our physics-rooted

model to biological systems. This gives us confidence that the tools

and methods developed and applied here can be used for further

research into motile bacteria in complex environments.

4
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Chapter 1

Introduction

1.1 Why bacteria?

1.1.1 From a physics perspective

This thesis about bacteria was written by a physicist at the insti-

tute for computational physics, part of the faculty of mathematics

and physics, and will be defended in front of a committee of physi-

cists. The main results were published in physics journals such as

the ones published by the American Physical Society. Why are all

these physicists interested in bacteria?

I think that anyone who has seen bacteria swimming under a

microscope or even in a video recording has felt interest towards

the fast moving bugs or has at the very least thought “wow, that

looks cool”. Beyond basic human curiosity, a more physics-inclined

observer in such a situation will immediately feel the urge to quan-

tify, to explain: “How fast do these cells swim?”, “By what mecha-

nism do they swim?”, “How long will they swim?”, “Why do they

swim?”, “What happens if I put many of them together?”, “Why

did that one just suddenly change direction?”. . .

9
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These are the questions that have motivated physics research

into bacteria for decades and will continue to puzzle physicists for

the decades to come.

▶ Statistical mechanics

Swimming bacteria, seen as abstract particles with interesting

properties, have sparked the attention of the statistical mechan-

ics community for a while because they behave fundamentally dif-

ferent from non-motile, “dead”, colloidal particles of similar size.

Colloids move about randomly due to thermal motion, but are ul-

timately on their way to equilibrium if their environment allows

them to. Bacteria on the other hand are living organisms that

take up energy from their environment, for example in the form of

nutrients, and use their metabolism to power the cell machinery

that can include self-propulsion. Because of the permanent energy

conversion in the cell, it will never reach an equilibrium state as

long as it is alive. The inherent out-of-equilibrium nature of living

matter thus poses a major challenge for its statistical description

but also opens new avenues of ongoing research.

The term “active matter” has been coined to cover systems

where the non-equilibrium state is not caused by external stimuli,

but at the scale of the particles that form the system. It includes

all living matter, but also artificial, catalytic systems where chem-

ical reactions provide the energy conversion needed to sustain the

inherent non-equilibrium nature of the particle. Of particular in-

terest is microscopic motile active matter, where the particles use

energy to fuel a self-propulsion mechanism, such that they perform

directed motion on top of thermal agitation.

10
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The ability to self-propel leads to unexpected and counterintu-

itive phenomena, some of which can be explained in surprisingly

simple terms.

Active particles are not bound to Boltzmann statistics, so they

can have a non-homogeneous distribution in a constant poten-

tial. For example, when confined, active particles accumulate at

boundaries, even when the potential in the “allowed” region is con-

stant [13, 14]. This is because their active propulsion drives them

forward along their internal direction until they hit a boundary.

The driving keeps them at the boundary until a torque or rota-

tional thermal motion orients them away from the surface.

An active Maxwell demon can be constructed from an array

of funnels, as experimentally verified with bacteria by Galajda et

al. [15]. Passive particles will have the same density on both sides

of the funnels, because the potential and therefore the position

probability density is the same on both sides of the funnels. When

active particles encounter a funnel “arm”, unlike passive particles,

they will glide along it due to their persistent motion. In the

forward direction, this will lead them to the funnel opening and

they transition to the other side. In the backward direction, they

will get stuck at the intersection with the next funnel arm, thus

staying on their side of the array of funnels. This leads to an

accumulation of active particles on one side of the funnels, showing

the non-equilibrium nature of the system.

Both of these examples, among many others (see Ref. [13] for an

excellent review), highlight the nontrivial outcomes of interactions

between active particles with confining geometries and complex

11
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environments. There are a plethora of other phenomena related

to the statistical mechanics of active particles that make bacteria

interesting to physicists – e.g., flux rectification [16, 17], motility

induced phase separation [18], energetics of active engines [19, 20]

and generalised thermodynamics concepts [21, 22] – but I will not

discuss them here because they are less relevant to the understand-

ing of the work presented in this thesis. This thesis puts emphasis

on the interplay between bacterial motility and complex environ-

ments, seeking to elucidate the influence that such environments

have on the single cells as well as on their collective behaviour.

▶ Hydrodynamics

Bacteria are not driven by external forces, instead they have to

generate the propulsion themselves. The most common propulsion

mechanism for bacterial swimming in bulk liquid uses flagella, fil-

amentous appendages connected to a molecular motor. Bacterial

flagella typically have a semi-rigid helical shape and are connected

to a rotating molecular motor, thus generating forward thrust. The

hydrodynamics involved in this mechanism are of great physical

interest, and many fundamental questions were tackled over the

years: How does the rotation of the flagellum lead to a propulsion

force [23, 24]? If there are multiple flagella, how do they coordinate

their rotation and not hinder each other [25]? Does the location of

the flagella matter [26]? How does motility and the flow-field gen-

erated by swimming bacteria influence their interactions with their

environment [27]? How does the flow-field generated by swimming

bacteria influence other particles or organisms suspended in the

same liquid [28]? How does an external flow influence the swim-

12
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ming of motile bacteria [29]?

All these questions fall in the realm of basic physics research

but have large implications for bacterial communities in nature and

in engineering and medical applications as outlined in the following

sections. This thesis will contribute to the last two of the ques-

tions posed above, focusing on hydrodynamic interactions between

bacteria and their complex environment. A detailed introduction

to the hydrodynamics of swimming bacteria will be provided in

Section 2.2.

1.1.2 From an engineering perspective

▶ Microscopic engineering

Human inventions take inspiration from nature and so it is not a

surprise that a masterpiece of evolution like microscopic motility

in the bacterial domain has sparked a lot of interest in the micro-

robotics community. The goal is to engineer microscopic swimmers

that are envisioned to perform tasks in, e.g., medical settings, go-

ing back to the idea of “swallowing the doctor” from the famous

“plenty of room at the bottom” lecture held by Feynman [30].

Other tasks might be removal of microplastics [31] or water reme-

diation and purification [32].

Artificial swimmers on the micrometer scale can be constructed

in many different ways [33]. A common way of classification is by

their energy source and propulsion mechanism.

Magnetic micro-swimmers are microscopic particles with a

magnetic moment that are driven by external magnetic fields. The

magnetic field typically rotates to provide a torque to a helical

13
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particle which then propels forward akin to propulsion of flagel-

lated bacteria [34]. This type of swimmer is technically not self -

propelled as it relies on the external driving, but this driving allows

for great control over the swimming trajectory [35]. This control

is crucial for microswimmers to perform their intended task.

There is a variety of artificial micro-swimmers that use chem-

ical energy to propel. In most cases, the swimmer is coated in

a catalyst that facilitates the reaction of some fuel on the swim-

mer surface [24]. The catalyst is typically deposited inhomoge-

neously on the surface, swimmers are then called “Janus” par-

ticles after the two-faced Roman god. The spatially asymmet-

ric reaction leads to an inhomogeneous distribution of (charged)

chemical species around the swimmer. A famous example is the

Janus particle of Paxton et al. [36] that is half-coated in plat-

inum to catalyse the decomposition of hydrogen peroxide. The

exact mechanism by which this inhomogeneous distribution leads

to propulsion is nontrivial and for some application still subject to

scientific debate, but species-specific short range interactions (⇝

self-diffusiophoresis [37]) and long range electrostatic forces (⇝

self-electrophoresis [38]) certainly play a role.

The concept of chemical inhomogeneity for propulsion is also

used for self-thermophoretic swimmers [39] and more exotic mech-

anisms that rely on demixing of binary mixtures [40]. All these

mechanisms have in common that they lead to true self-propulsion

generated by the swimmer itself, but that they are usually not

bio-compatible because of the fuels or external conditions that are

required to sustain directed motion. This limits their applicability

14
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in medical settings.

A type of engineered micro-swimmers that is very different from

the ones introduced above does not only imitate biological swim-

mers, but uses them directly. Genetically modified bacteria can be

equipped to use light instead of cellular respiration to generate the

power needed for self-propulsion [41]. This gives basic experimen-

tal control over the microorganisms, enabling researchers to make

bacteria perform tasks like cargo delivery [42], powering of micro-

scopic gears [43], or painting the Mona Lisa [44]. Bacteria can also

be combined with man-made objects and used as the motor of such

a vessel [45–48]. These approaches make the micro-swimmers ap-

plicable in all environments in which bacteria can survive, notably

the human body.

A better understanding of bacterial swimming and the inter-

actions between swimming particles and their complex environ-

ments can guide the design of future artificial micro-swimmers

and provide insights into possible applications in such environ-

ments. Therefore, bacteria in general and the basic physics re-

search on bacteria presented in this thesis are of interest to the

micro-engineering community.

▶ Macroscopic engineering

Bacteria, especially large agglomerates of them, pose a major chal-

lenge in many engineering applications. Porous systems such as fil-

ters and pipes are prone to contamination and clogging by bacterial

colonies. This causes problems for, e.g., irrigation [49], water pu-

rification [50], onsite sewage treatment [51], or ground source heat

pumps [52].

15



1 | introduction

However, there are also scenarios where bacteria are very ben-

eficial if not necessary for engineering applications. Probably

the largest and most established use of bacteria in engineering

is wastewater treatment [53, 54]. There, they are commonly em-

ployed to remove organic pollutants, which is especially relevant

for sewage treatment.

A newer and less established idea is the use of bacteria for

biomineralization in porous environments [55]. Precipitation of

Calcite from solution can be induced by enzymatic hydrolysis of

urea. Some bacteria like Sporosarcina pasteurii and Brevibac-

terium ammoniagenes secrete the enzyme urease that facilitates

this hydrolysis and leads to localised mineral deposition around

bacterial colonies, if a solution rich in calcium ions and urea is

provided [56]. Applications of this microbially induced calcite pre-

cipitation (MICP) are manyfold.

In the construction sector, self-healing concrete can be created

from a mixture of traditional concrete with bacteria, nutrients and

additional calcium [57]. The idea here is that as soon as cracks ap-

pear, water seeps into the now more porous concrete and wakes the

bacteria from their dry slumber. Then, MICP activity will repair

the cracks and restore concrete integrity. MICP can also be used

to repair cracks in fractured traditional concrete or other building

materials by injection of bacteria and nutrient/calcium/urea so-

lution into the cracks [58]. Visitors of the Forum Romanum can

see this technology being used to restore the arch of Septimius

Severus [59]. One more application in the construction sector is

bioconcrete made with bacteria as a tool for concrete 3D-printing.

16



introduction | 1

Here, complex structures are obtained by first depositing sand and

sand-bioconcrete-powder in a predefined manner, then flushing the

system with a cementation solution containing calcium ions and

urea, and finally removing the un-solidified sand [60].

In environmental settings, MICP is used for soil stabilisation,

dust suppression, reservoir sealing and remediation of leakage path-

ways near wellbores [61–63]. A less environmetally friendly ap-

plication is MICP for enhanced oil recovery, where precipitates

block the preferential flow paths of the injection fluid, causing it

to explore more of the porous matrix and thereby removing more

oil [64].

The study of bacterial colony growth under complex flow condi-

tions in porous media as presented in this thesis can be used to gain

a detailled understanding of the microscopic processes involved in

the initial stages of MICP and all other application above. Even

though the scope of these applications is at the macroscopic scale,

the microscopic dynamics play an important role for the success of

use of bacteria in engineering.

1.1.3 From a medical perspective

The group of people that are most interested in bacteria are prob-

ably patients and medical practicioners that deal with bacterial

infections. About one in eight human deaths are related to bac-

terial pathogens, making bacterial infections the second-leading

cause of death after heart diseases [65]. Therefore, research into

bacteria at any scale is relevant for mankind as a whole.

Starting from single (motile) cells entering the body and at-
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taching to surfaces, bacterial infections occur in complex, confined

environments under the influence of complex fluid flow. Many

pathogens form biofilms, i.e., colonies of bacteria, that are much

less susceptible to antimicrobial treatment because of the protec-

tive layer of extracellular polymeric substances [66, 67]. This is

particularly important if biofilms cause chronic infections [68] or

form on medical implants [69]. Much like single-cell motion, biofilm

formation is subject to constraints imposed by the geometry of the

surrounding tissue and potential flow of body fluids.

To better understand the process of infection and thus enable

better treatment of diseases, research into the physical mechanisms

underlying the interplay between bacteria and their host environ-

ment is needed.

1.2 Some biology

Before we delve into the physical, mathematical and numerical

tools used to describe and investigate the dynamics of motile bac-

teria in Chapter 2, we first have to lay a very basic biological

foundation. We will not go into details of the fascinating world

of microbiology concerned with biochemical processes and genet-

ics inside a cell. Instead, we will focus on the aspects that are

relevant to the physical modelling of cells as a whole, which will

be presented in the later chapters of this thesis.

18



introduction | 1

1.2.1 Bacterial motility

Bacterial motility comes in many forms and not all of them are

related to swimming through bulk liquid. Bacteria can attach to

surfaces using pili, cell appendages with adhesins on their ends that

bind to specific substrates [70]. These appendages are not fixed in

length, but are constructed from building block proteins at the

cell membrane to extend them further from the cell [71]. When a

pilus has attached (or after some predefined time), the bacterium

starts removing building blocks from base, leading to a retraction

of the appendage. This “grappling hook” mechanism pulls the

cell forward and can lead to sustained motion when the cycle of

extension and retraction is repeated. Because bacteria typically

have many pili that pull in different directions, this propulsion

mechanism leads to a “twitchy” trajectory with random direction

changes on the surface.

While surface-bound motility is certainly interesting and refer-

ence to pilus-mediated surface attachment is made in the modelling

section of this thesis, the main emphasis is on swimming motility

by flagellar rotation. Such swimming is common in bacteria and

extensively studied experimentally for model organisms like Es-

cherichia coli , Bacillus subtilis and Salmonella enterica.

Flagella are cell appendages much like pili, but to facilitate

propulsion, they have a semi-rigid, helical structure, see Fig. 1.1.

When rotated, the flagella self-organise to form a coherent bundle

which produces forward thrust [23, 72, 73]. They are connected to

a molecular motor in the cell membrane with the so called “hook”,

a flexible segment of the flagellum. The hook acts as a universal
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Figure 1.1. Fluorescence microscopy of E. coli with stained flagella. A)
Dead bacterium with four helical flagella protruding from the cell body.
B) Swimming bacteria, the flagella are bundled together behind the cell
body. Reproduced from Ref. [74] with permission from the American
Society for Microbiology.

joint, allowing the motor to exert a torque on the flagellum even

when the flagellar axis is perpendicular to the cell surface.

The flagellar motor is a molecular machine that utilises the

proton-motive-force to rotate at very high frequencys of the order

of 100 revolutions per second [71, 75–77], with peak rotation rates

of 1700 Hz reported in rare cases [78]1. The bacterium generates

an electrochemical gradient of ions (most commonly the namesake

H+, but sometimes also Na+ or K+) across its cell membrane such

that energy can be harnessed when the ions pass back through the

molecular motor. Whenever the ion passes through the stator part

of the motor, a torque is generated and the rotor part rotates the

flagellum [80, 81]. The energy conversion is estimated to have an

1That is a lot faster than the 250Hz of modern Formula 1 racecar en-

gines [79].
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efficiency of 90 % [82]. Usually, the rotor turns in the clockwise di-

rection, but signalling proteins can induce conformational changes

in the stator that lead to a reversal of the rotation direction [83].

Some bacteria use this motor reversal switch to achieve more

than forward propulsion. When the sense of rotation is reversed,

the thrust that the attached flagellum exerts on the cell body is

also reversed. If a bacterium has only one flagellum, this can be

used to reverse the direction of swimming. If a bacterium has many

flagella, the reversal of a single flagellum has more nuanced con-

sequences. When all motors turn in the same direction, hydrody-

namic coupling between flagella synchronises the rotation and the

flagella form a coherent bundle that produces forward thrust [25].

This mode of swimming is referred to as a “run”. When one flag-

ellum rotates in the other direction, it leaves the bundle, disturbs

the other flagella and produces thrust in the new direction that it

points to [74]. The cell body propels less efficiently and the un-

bundled flagella exert a torque on it. Thus, the cell rotates, a state

that is called “tumbling”. Bacteria like E. coli switch between the

two modes and perform a run-and-tumble motion that results in

zig-zag trajectories [84]. The direction of reorientation is random

and depends on the location of the counter-rotating flagellum as

well as the dynamics of the unbundling of flagella. Despite the

randomness, bacteria that can perform tumbing motion have some

steering capability and control over their trajectory.
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1.2.2 Chemotaxis

Chemotaxis is the directed motion of an organism towards or

away from an external chemical stimulus such as a nutrient or

a toxin gradient [85–87]. There are other forms of taxis, such as

phototaxis, aerotaxis, gravitaxis or thermotaxis, where the stimu-

lus is light, oxygen, gravity or temperature, respectively [88–90].

Chemotaxis is also not unique to bacteria, many other forms of life

tax towards chemical stimuli, e.g., sperm towards the egg [91] and

some algae towards pheromones [92].

In order to respond to a chemical gradient, bacteria must first

sense the gradient. Since relevant gradients are typically very shal-

low and noisy, and bacteria are very small, they cannot sense a

gradient via spatial comparison over their cell body. Therefore,

they must resort to temporal sensing and compare chemical con-

centrations along their trajectory [93].

Bacteria like E. coli use the signal of their chemoreceptors to

influence their run-and-tumble sequence in order to bias the overall

motion. When the signal is positive, run durations are increased,

when the signal is negative, run durations are shortened and tum-

bles become more frequent [94]. Using this strategy, bacteria can

navigate towards the source of a nutrient despite only making ran-

dom direction changes.

1.2.3 Biofilms

As hinted at earlier, biofilms are (sessile, surface-attached) colonies

of bacteria, see Ref. [95] for a detailled introduction. They can
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consist of a single species, but multi-species biofilms are very com-

mon in nature [96]. The colony of bacteria is held together by a

matrix of extracellular polymeric substances (EPS), secreted by

the bacteria. Bacteria in biofilms are often phenotypically differ-

ent from free swimming, planktonic bacteria of the same species,

where the switch is often related to changes in the environmental

conditions like temperature, pH level, nutrient availability or pres-

ence of antibiotics [97]. The “biofilm-mode” comes with changes

in cell shape, smaller growth rate, loss of motility and, of course,

production of EPS.

EPS give the biofilm shape and structural stability against

mechanical stresses from, e.g., fluid flowing over the biofilm or

attempted mechanical removal. The internal structure can be

complex with open channels penetrating the biofilm to give ac-

cess to nutrients and to enable removal of metabolic products [98].

Biofilms come in many different shapes and forms, and their visco-

elastic properties have been widely studied [99, 100].

The EPS matrix does not only provide structural integrity to

the biofilm, it also acts as a protective layer against chemical and

biological stresses such as antibiotics [67]. Antimicrobials need

to diffuse through the biofilm to reach cells deeper in the colony.

While doing so, they might get adsorbed to matrix components

or cells in the outer layers, reducing penetration. Throughout the

biofilm, antimicrobials might also encounter different environments

created by bacteria with different access to nutrients. For exam-

ple, cells on the surface can use an aerobic metabolism while cells

deeper in the colony might be anaerobic. The pH might be differ-
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ent in certain areas due to metabolic waste products. Cells might

be in different growth stages with some bacteria not growing at all.

An antimicrobial agent must be able to kill bacteria in all these

environments and conditions to fully eradicate a biofilm, making it

much easier for some bacteria to survive the antibiotic treatment

and regrow the full biofilm when the treatment is over.

1.2.4 Bacteriophages

Bacteriophages, often abbreviated to “phages”, are viruses that

infect and kill bacteria, making them immediately interesting in

medical applications [101–104] 2. As bacteria are ubiquitous in

nature, so are phages, with an estimated number of 1031 mak-

ing them the most abundant biological entity on Earth [106, 107].

Locked in an evolutionary arms race, phages have preyed on bac-

teria for billions of years, coevolving with them in an endless cycle

of resistance and counter-resistance [108].

Not technically alive, phages are little more than protein cap-

sules barely large enough to contain their genetic material in the

form of RNA or DNA, and a mechanism to bind to bacteria and in-

ject the phage genetic material in the cell (see Fig. 1.2 for an exper-

imental image of phages infecting a bacterial cell). Bacteriophages

do not have a metabolism or a means of reproduction on their own,

so they rely on hijacking their prey’s metabolism to enable the re-

production for them. There are two basic modes of phage infection

and reproduction [109]. Lytic phages insert their genetic material

2Phages are used in therapy to kill pathogenic bacteria, but some bacteria

only become pathogenic when infected by phages [105].
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Figure 1.2. T4 bacteriophages infecting an E. coli bacterium. A num-
ber of phages (small icosahedral capsids with tubular tails) have attached
to the cell (large, dark structure). Transmission electron micrograph, re-
produced from Ref. [111] with permission of the author.

into a bacterium and force it to produce many new phages be-

fore lysing, i.e., destroying their host cell. Lysogenic phages insert

their genetic material, but are not immediately harmful. Instead,

they integrate their genes into the bacterial chromosome and stay

there to be replicated during replication of their host. Some phages

even offer benefits to their hosts during this time like protection

from superinfection or other resistances against external stresses.

At some point however, the phage embedded into the bacterium

genome enters a lytic stage, destroying its host3.

Both replication mechanisms require infection of a host bac-

3There is a third mode where the phage does not kill its host in one burst of

new phages, but continually produces phage offspring while staying integrated

in the host. This “chronic” infection mode seems to be less common [110].
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terium, i.e., penetration of the bacterial cell membrane. In a first

step, the phage must recognise a suitable host and attach to its

surface. To this end, phages are typically equipped with a hollow

tail and tail fibers that contain receptor binding proteins which

bind specifically to the corresponding receptor on the bacterial

cell. These receptors include proteins, sugars and polymers found

on the outermost layers of the cell envelope, but also pili or even

flagella [112]. Binding can be immediately irreversible or undergo

an intermediate, reversible binding state [113]. The tail now pen-

etrates the cell envelope by depolymerising extracellular polysac-

charides, thus “drilling” its way to the bacterial cytoplasm [114].

During this process, the phage tail undergoes structural deforma-

tion, opening a channel to the capsid. The genetic material is

then injected into the cell using the enormous osmotic pressure

that the dehydrated DNA or RNA experiences when it is tightly

packed in the phage capsid [115]. Finally, phages must overcome

the internal defense mechanisms of bacteria such as the now fa-

mous CRISPR/Cas system [116] to infect the cell and hijack its

metabolism and replication machinery.

As mentioned above, flagella can be receptors for phages, such

phages are then called flagellotropic. Phages bind to flagella by

wrapping their tail fibers around the flagellum. For infection of the

cell, the phages need to reach the cell membrane and inject their

genetic material there. Flagella are to small to transport DNA or

RNA into the cytoplasm. The mechanism by which phages make

their way along the flagellum is akin to the movement of a nut

along a bolt [72, 117, 118]. Flagella have a surface structure that
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contains helical groves in which the phage’s tail fibers come to

lie. The phage tail and capsid extend away from the flagellum, so

when the flagellum rotates, the phage does not co-rotate at the

same frequency due to friction with the surrounding fluid. Like a

non-rotating nut on a rotating bolt, the phage is transported to the

flagellar base on the cell body where it can complete the infection

process.

The process of infection is very involved and much more com-

plex than the basic overview given here. However, it all starts with

the physical contact of the phage binding proteins with the recep-

tors on the cell, be it on the cell body or the flagellum. This very

fundamental requirement is influenced by the (hydrodynamic) in-

teractions between motile bacteria and the phages that come close

to them. A physical description and understanding of these in-

teractions is therefore paramount to an improved understanding

of infection of bacteria by phages and all the medical implications

that follow from it.
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Chapter 2

Theory

2.1 Stochastic dynamics

2.1.1 Introduction

Small particles like bacteria that are suspended in a liquid per-

form trajectories that appear random when observed through a

microscope. This fundamental observation by Robert Brown [119]

was explained to be the result of interactions between the invisible

molecules of the surrounding liquid and the larger, visible parti-

cle [120]. The motion appears random because the fluid molecules

cannot be observed and thus only a small subset of the total degrees

of freedom that make up the system is accessible to the experimen-

tal observer. Although the trajectories are random, we can find

a description of the system from which useful information can be

extracted. If there are many particles or if particles can be ob-

served over a long time, the specific behaviour of a single particle

or the short time dynamics are not the main quantities of interest.

Instead, averaged observables are sought after. There are generally

two strategies to obtain such averages from a theoretical physicist’s
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point of view.

First, one can try to find a description where the evolution of

a system is described through the time evolution of probability

densities describing the state of the system, e.g., the probability

density p(r, t) of finding a particle around location r at time t. This

means averaging out individual particle trajectories to condense

the governing physics into a partial differential equation for p(r, t).

From the probability distribution, observables are then obtained

by integration [121].

A second approach embraces the stochastic nature of particle

motion and seeks to capture realisations of the random process

and obtain random trajectories. Observables are then calculated

by averaging over such stochastic trajectories. For this thesis, we

will focus entirely on the second approach, as it is – in the words of

its inventor1 Paul Langevin – “infinitely more simple“ [124, 125].

2.1.2 Langevin dynamics

2.1.2.1 Equation of motion

To describe the dynamics of the position ri and velocity vi of an

isotropic particle i, we use the stochastic Langevin equation of

1Louis Bachelier is credited with the invention of stochastic differential

equations [122, 123] but he applied them to the French stock market, choosing

to invent mathematical finance instead of analysing the motion of particles

released from pollen grains in a water droplet.
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motion

d

dt
ri(t) = vi(t), (2.1a)

mi
d

dt
vi(t) = Ftot

i = Fi(ri; {rj}) − γtivi(t) +
√︂

2γtikBTξ
t
i(t).

(2.1b)

Here, d/dt denotes a derivative with respect to time, m the particle

mass, Ftot the total force acting on the particle, Fi(ri; {rj}) a force

stemming from interactions between particle i and its environment

as well as with other particles j, γt the translational friction co-

efficient, kB ≈ 1.38 × 10−23 J K−1 the Boltzmann constant, T the

absolute temperature and ξt(t) a random noise term. We intro-

duce the superscript ()t for “translation” to avoid confusion when

rotational dynamics are introduced in Section 2.1.3.

Equation (2.1) is very similar to Newton’s third law, mak-

ing it the “natural” extension of deterministic dynamics towards

stochastic motion. Langevin made two additions to account for

interactions between the particles of interest and the unobserved

molecules around them.

The molecules make up a viscous liquid that surrounds the

particles which exerts a friction force when the particle moves. For

a spherical particle of radius a in a Newtonian fluid with dynamic

viscosity µ, the friction coefficient was worked out by Stokes [126],

who found

γt = 6πµa. (2.2)

This result was obtained using the continuum description of fluid

flow, to which we will return in Section 2.2. From a microscopic
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point of view, the friction against particle movement comes from

the fact that when the particle moves in one direction, the relative

velocity of colliding molecules is larger in the front of the particle

than in the back. Consequently, there is a net force resisting the

motion.

The second addition is that of the random force
√︁

2γtikBTξ
t
i(t),

which mimics the random impacts of fluid molecules2. On average,

this force must be zero, i.e.,⟨︁
ξt(t)

⟩︁
= 0. (2.3)

Here, the average ⟨·⟩ refers to an ensemble average, i.e., an average

over many realisations of the random process . The strength of the

random force is determined by the prefactor and the correlations

of ξt given by ⟨︁
ξti,α(t)ξtj,β(t′)

⟩︁
= δijδαβδ(t− t′). (2.4)

Here, ξti,α denotes component α of the noise of particle i. Equa-

tion (2.4) states that the random force is uncorrelated between

particles, that it is uncorrelated between directions and that it is

uncorrelated in time. The first condition is met if the particles

are far enough apart from each other that a molecule impacting

particle i does not feel the presence of particle j which might alter

2The noise term makes the equation of motion interesting and challenging

to physicists concerned with mathematical rigor. What is the noise term be-

yond the two commonly known properties of mean and correlation? How does

one define the derivative of a function that has kinks everywhere? We, how-

ever, will not worry about such questions and instead rely on using familiar

notation to convey the central physical ideas.
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the impact dynamics. The second condition is met if the motion

of the particle due to the impact from direction α does not change

the configuration of the surrounding molecules such that impacts

from direction β are affected. The third condition is met if the col-

lision time of the molecules is infinitely short. Of course, there is

a finite potential between the particle and the molecules, so there

is a finite time associated with the momentum transfer. However,

from the perspective of the larger particle, this time is so short

that it can be neglected.

The prefactor
√︁

2γtikBT is obtained from requiring that the

kinetic energy Ekin obey equipartition, i.e., ⟨Ekin⟩ = m
⟨︁
v2
⟩︁
/2 =

dkBT/2, where d denotes the number of dimensions (typically d =

3). The details to derive the expression for
⟨︁
v2
⟩︁

from Eq. (2.1) is

worked out in Ref. [127], here we just accept the result and move

on.

2.1.2.2 Examples

It is instructive to look at some solutions of Eq. (2.1) for very

simple cases (without actually calculating them).

▶ Free particle

For a single particle that isn’t subject to any interaction forces, i.e.,

F = 0, the mean velocity and mean position both remain zero be-

cause nothing breaks the symmetry of the system. However, both

velocity and position fluctuate around zero. Hence, mean abso-

lute values (or squares) are finite. The mean squared displacement
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(MSD) can be obtained analytically [127] and reads

MSD(t) =
⟨︁
r2(t)

⟩︁
= 2d

kBT

γt

[︃
t− m

γt

(︃
1 − exp

[︃
−γt

m
t

]︃)︃]︃
. (2.5)

For small γt

m t, we expand Eq. (2.5) around t = 0 and arrive at

MSD(t ≪ m/γt) ∼ d
kBT

m
t2. (2.6)

The quadratic scaling with t is a signature of ballistic (determin-

istic) motion like the one generated generated by Newtonian dy-

namics of a force free particle. There, the position reads r(t) = v0t

with the initial velocity v0. In our case, we can identify the “initial

velocity” with the thermal velocity vth =
√︂

dkBT
m of our randomly

moving particle.

For large γt

m t, the asymptotic behaviour of Eq. (2.5) is given by

MSD(t ≫ m/γt) ∼ 2d
kBT

γt
t. (2.7)

The linear scaling with t is a signature of diffusive motion known

from, e.g., the squared extent of a dye droplet in water grows

linearly with time. We identify the prefactor as the diffusion coef-

ficient

Dt =
kBT

γt
(2.8)

known from the Einstein-Smoluchowski relation [120, 128].

The time scale separating the ballistic from the diffusive regime

is τ t = γt

m . Below τ t, momentum plays an important role by carry-

ing a moving particle along its direction of motion. Above τ t, the

motion is determined by noise and friction (and external forces, as

we will see in the next example).
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▶ Force step

We consider a single particle which is initially at rest with no force

applied. At t = 0, we switch on a force with constant magnitude

F along ex. Here, we expect a nonzero average velocity along the

force direction. Indeed, by applying the ensemble average ⟨·⟩ to

Eq. (2.1), and solving the resulting ordinary differential equation

with ⟨v⟩ (0) = 0 as the initial condition, we arrive at

⟨v⟩ (t) =
F

γt

[︃
1 − exp

(︃
− t

τ t

)︃]︃
ex. (2.9)

This result shows how the particle approaches its terminal veloc-

ity ⟨v⟩ (t → ∞) = F
γtex exponentially on the time scale τ t = γt

m .

Again, for short times the velocity increases linearly as expected

from the Newtonian dynamics case, while at late times the qual-

itative physics changes. If the initial setup is reversed, i.e., the

particle is dragged by the force F for t < 0 and then at t = 0 the

force is switched off, the general form of the solution remains the

same, with the mean velocity decaying exponentially on the time

scale τ t.

2.1.2.3 Brownian dynamics

To get an intuition about what Eq. (2.9) means for bacteria, we

will plug in some typical numbers. The size scale of bacteria is

of the order a ≈ 1 µm. Their density is very close to the density

ρwater ≈ 1000 kg m−3. Assuming spherical cells and water with

µwater ≈ 1 × 10−3 Pa s, we can use Eq. (2.2) and get

τ t =
m

γt
=

4
3πa

3ρwater

6πµwatera
≈ 222 ns. (2.10)
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If the bacterium swims at a velocity of vswim = 25 µm s−1 and the

swim force is somehow stopped instantly, the momentum carries

the cell for another ∆x ∼ vswimτ
t = 5.55 pm or about one tenth

the atomic radius of hydrogen3.

This means that when the bacterium experiences a change in

force, its mean velocity adapts to the new terminal velocity on

an extremely short timescale that is much faster than any of the

timescales one is typically interested in when observing bacteria

through a microscope for seconds to hours. To reflect this separa-

tion of time scales between the change in force (∼ milliseconds to

seconds depending on the environment) and the relaxation to the

new terminal velocity, we simplify Eq. (2.1b) by setting m = 0.

This means removing momentum completely from the description

and changing τ t from negligibly small to exactly zero.

By removing the left hand side from Eq. (2.1b), we can di-

rectly solve for v and arrive at the equation of motion for so called

“overdamped Langevin” or “Brownian” dynamics

d

dt
ri = (γti )

−1Fi(ri; {rj}) +
√︂

2(γti )
−1kBTξ

t
i(t). (2.11)

To avoid confusion, Eq. (2.1) is then referred to as “underdamped

Langevin” dynamics.

Equation (2.11) preserves the long time behaviour of Eq. (2.1).

We can calculate the mean squared displacement of a single, force

free Brownian particle with less tedious math than in the under-

3Of course, on this length and time scale, a description of particle dynamics

using Eq. (2.11) must break down. Still, these extreme numbers show that

momentum is a non-factor for bacteria.
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damped case and obtain

MSD(t) = 2d
kBT

γt
t. (2.12)

Here, the MSD is always linear in time, as expected from setting

τ t = 0.

2.1.3 Rotational degrees of freedom

Most bacteria are not isotropic in shape, i.e., not spherical. Many

bacteria have rod-shaped cell bodies and even spherical bacteria

might have cell appendages that make them non-isotropic. For this

reason, anisotropy must be included in Eqs. (2.1) and (2.11), and

the rotational degrees of freedom must be explicitly tracked.

Particle anisotropy matters for the translational dynamics of

the particle because for nonspherical shapes, the friction along

different directions is not equal.4 Consider for example a cylin-

drical object in a viscous liquid, e.g., a very blunt knife in honey.

Pulling it in and out of the honey along its symmetry axis will

be much easier than stirring the honey by moving it in a perpen-

dicular direction where the cross section is much larger. To cap-

ture the direction-dependent friction, we replace the scalar friction

coefficient γt ∈ R+ by a tensorial friction coefficient γt ∈ Rd×d
+ .

The entries of the friction matrix can be obtained by measuring

anisotropic diffusion coefficients in experiments or by theoretical

4There are many cases in which the rotational dynamics is relevant even

for spherical particles where the friction coefficient is equal in all directions.

Think for example of particles with an internal magnetic dipole moment or

with an anisotropic density distribution.
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calculations in the framework of continuum hydrodynamics, see

Section 2.2.3.1. This is, however, not the only difficulty, since γt is

only a constant in the frame of reference of each particle. Because

the particle rotates, γt in the labratory frame, in which Eqs. (2.1)

and (2.11) are formulated, is now a function of time through its

dependence on the rotation state. The resulting difficulties for

solving Eqs. (2.1) and (2.11) numerically will be briefly discussed

in Section 2.1.5.

The rotation state of a general anisotropic particle in three di-

mensions is described with three degrees of freedom, e.g., the two

angles describing a main axis in spherical coordinates and an addi-

tional angle describing the rotation of the particle around that axis.

For this thesis however, we will focus only on particles that have

cylindrical symmetry around one axis, e.g., rod-shaped bacterial

cells. This symmetry decreases the number of relevant rotational

degrees of freedom from three to two. These can be either ex-

pressed as two angles or as a normalised vector ê pointing along

the symmetry axis. The particle direction ê takes a similar role to

the particle position r, but for its rotational state. In the under-

damped Langevin picture it evolves according to

d

dt
êi(t) = ωi(t) × êi(t), (2.13a)

d

dt
Iiωi(t) = Mtot

i

= Mi(ri, êi; {rj}, {êj}) − γriωi(t) +
√︁

2γrikBTξ
r
i(t),

(2.13b)

where ω denotes the angular velocity, I the moment of inertia

(tensor), Mi(ri, êi; {rj}, {êj}) the interaction torque that depends
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on all positions and directions of the particles5, γr the rotational

friction (tensor) and ξr a rotational noise term with the same prop-

erties as its translational counterpart ξt, see Eqs. (2.3) and (2.4).

For some simple shapes, the rotational friction coefficient γr

can be worked out analytically. For a sphere, one obtains [129]

γr = 8πµa3. (2.14)

As for the translational case, a rotational diffusion coefficient

Dr can be defined and linked to the rotational friction via the

Einstein-Smoluchowski relation

Dr =
kBT

γr
. (2.15)

The rotational diffusion coefficient has units of 1/[time]. Com-

paring to the translational friction coefficient with units of

[length]2/[time], we see that we implicitly ignore units of [angle].

All angles are to be measured in radians unless stated otherwise.

2.1.3.1 Examples

Equation (2.13) has the same structure as Eq. (2.1), except that ê

is a variable that only exists on the unit sphere instead of the entire

space. We will therefore skip the discussion of a “mean squared

rotation”. We can, however, discuss the

5When Eq. (2.1) is extended to anisotropic particles, the force also becomes

dependent on all particle orientations.
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▶ Torque step

Consider a single particle that has initially no angular velocity

and there is no torque applied. At t = 0, we switch on a torque of

magnitude M along ex. If the particle is isotropic, i.e., both I and

γr can be reduced to scalars, we can solve the differential equation

for ⟨ω⟩ analogous to the translational case and obtain

⟨ω⟩ (t) =
M

γr

[︃
1 − exp

(︃
− t

τ r

)︃]︃
ex. (2.16)

Here, τ r = I
γr is the crossover time between angular momentum-

driven motion and random rotational motion. It is also the

timescale on which particles adapt their angular velocity to a

change in torque acting on them.

2.1.3.2 Rotational Brownian dynamics

Using Eq. (2.14) with I = 2
5ma2 = 8

15πρ
watera5 for a solid sphere

with a = 1 µm and the density of water, we obtain τ r ≈ 75 ns for

µ = µwater. As for the translational case, this time scale is far re-

moved from the time scales we are generally interested in. It seems

natural to again simplify the equations of motion by neglecting the

inertial term proportional to the moment of inertia I:

d

dt
êi(t) =

[︃
(γri )

−1Mi(ri, êi; {rj}, {êj}) +
√︂

2(γri )
−1kBTξ

r
i(t)

]︃
× êi(t). (2.17)

However, some caveats with respect to Eq. (2.16) have to be

kept in mind, because they carry over to the validity of Eq. (2.17).
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Stable rotation around the axis along which the torque is applied

with terminal angular velocity M/γr is only possible when the dif-

ferent rotation axes do not couple. This is only the case when

both I and γr can be written as multiples of the unity matrix in

d dimensions, i.e., when the particle is spherical with an isotropic

density. In all other cases, torque along one axis will also result in

rotation around the other axes without a well-defined terminal an-

gular velocity, making the simplification of Eq. (2.13) to Eq. (2.17)

unjustified.

For free rotational Brownian motion (M = 0), the

(de)correlation

⟨ê(0) · ê(t)⟩ = exp

(︃
−2kBT

γr
t

)︃
(2.18)

of the particle direction can be obtained analytically [130]6. This

equation states that the correlation between the particle direction

at time t and its initial direction at t = 0 decays exponentially on

the time scale

τ rcorr =
γr

2kBT
=

1

2Dr
. (2.19)

This time scale τ rcorr is not to be confused with τ r. The latter relates

to the crossover from inertia-driven motion to noise-dominated mo-

tion, the former relates to the time that a particle keeps its direc-

6Equation (2.17) looks simple and the solution Eq. (2.18) looks very simple,

too. However, unlike in the translational case where one can get away with a lot

of “intuitive” application of stochastic calculus, themultiplication of ê and ξr in

Eq. (2.17) instead of addition like in Eq. (2.11) comes with a lot of mathematical

intricacy. Thus, in the stochastic dynamics framework, Eq. (2.18) can only be

obtained using the rigorous machinery of stochastic calculus [131, p. 104].

41



2 | theory

tion in the presence of rotational noise.

2.1.4 Active Brownian motion

As introduced in Section 1.2.1, the bacteria of interest for this the-

sis have the ability to self-propel. The propulsion mechanisms are

often complex and rely on hydrodynamic coupling to the underly-

ing fluid. Here however, as a first approximation, we treat bacteria

in the framework of Langevin dynamics without explicit consider-

ation of hydrodynamic effects. This picture will be extended in

the subsequent sections.

2.1.4.1 Equations of motion

Propulsion is modelled by the addition of a swim force Fswim that

implicitly captures self-propulsion. The underdamped Langevin

equation becomes

d

dt
ri(t) = vi(t), (2.20a)

mi
d

dt
vi(t) = Fi + Fswim(t)êi(t) − γtivi(t) +

√︂
2γtikBTξ

t
i(t)

(2.20b)

with its overdamped counterpart

d

dt
ri = (γti )

−1 [Fi + Fswim(t)êi(t)] +
√︂

2(γti )
−1kBTξ

t
i(t). (2.21)

Here, Fswim is the force that leads to a terminal swim velocity

vswim = (γt)−1Fswim. We keep an explicit time dependence of

Fswim(t), because later we will simulate bacteria that can turn off
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their swimming motion or reverse the swim direction. Versions of

Eqs. (2.20) and (2.21) are known as the equations of motion for

a so called Active Brownian Particle (ABP) [132]. In literature,

typically the two-dimensional overdamped equation of motion with

constant Fswim is applied.

Equations (2.20) and (2.21) show the necessity of considering

rotational degrees of freedom for active particles even if they are

isotropic in shape. Translational motion depends on the rotation

state because the particle propels along its internal direction êi(t),

breaking the isotropy.

Some bacteria cannot only self-propel but also self-steer, i.e.,

generate an torque that leads to active rotation. We will incor-

porate this form of activity in the same way as for translation by

extending Eqs. (2.13) and (2.17) to

d

dt
êi(t) = ωi(t) × êi(t), (2.22a)

d

dt
Iiωi(t) = Mi + Mact(t)n̂i(t) − γriωi(t) +

√︁
2γrikBTξ

r
i(t),

(2.22b)

for the underdamped case and

d

dt
êi(t) =

[︃
(γri )

−1 (Mi + Mact(t)n̂i(t)) +
√︂

2(γri )
−1kBTξ

r
i(t)

]︃
× êi(t). (2.23)

for the overdamped case. Here, Mact is the active torque that leads

to rotation with terminal angular velocity ωact = (γr)−1Mact and

n̂i(t) is a vector orthogonal to êi(t) that sets the direction of active

rotation.
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2.1.4.2 Mean squared displacement

To gain an intuition about the effect of swimming, we discuss the

mean squared displacement of a free, overdamped active Brownian

particle. Using Eq. (2.18) in d = 3 dimensions, one obtains [133]

MSDABP(t) = 6Dtt+2v2swim(τ rcorr)
2

[︃
exp

(︃
− t

τ rcorr

)︃
−
(︃

1 − t

τ rcorr

)︃]︃
.

(2.24)

On short time scales, it behaves as

MSDABP(t → 0) ∼ 6Dtt + v2swimt
2. (2.25)

This means that there is a linear regime for t ≲ 6Dt/v2swim in

which translational Brownian motion dominates7. This regime is

followed by a quadratic, i.e., ballistic, regime, in which the MSD is

characterised by motion along the particle direction ê with velocity

equal to the swim speed. For large t ≫ τ rcorr, ê decorrelates and

the MSD goes back to linear with

MSDABP(t → ∞) ∼ 2
[︁
3Dt + v2swimτ

r
corr

]︁
t. (2.26)

The form of Eq. (2.26) allows us to identify an effective diffusion

coefficient

Dt
eff = Dt +

v2swimτ
r
corr

3
(2.27)

that governs the long-time behaviour.

Plugging in values for a spherical bacterium with radius a =

7If we had solved for the MSD of an underdamped active Brownian particle,

we would have obtained a quadratic regime at even shorter timescales due to

particle inertia.
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1 µm swimming with vswim = 25 µm s−1 in water at room temper-

ature T = 300 K, we obtain

Dt = 0.22 µm2 s−1 ≪ 632 µm2 s−1 =
v2swimτ

r
corr

3
. (2.28)

The effective diffusion coefficient is dominated by the active contri-

bution and typically orders of magnitude larger than the thermal

diffusion coefficient. Active particles are thus very effective at ex-

ploring space due to their persistent motion.

The crossover between ballistic motion at intermediate

timescales and the effective diffusion coefficient at long timescales

are determined by the rotational correlation time τ rcorr, again high-

lighting the special importance of rotational degrees of freedom

for active particles. The crossover time τ rcorr separates the regime

where the particle moves along its director more or less ballistically

from the regime where it wanders around randomly, but still very

fast. The associated length scale

lp = vswimτ
r
corr (2.29)

is called the persistence length. Interesting, non-equilibrium be-

haviour is expected whenever a length scale in the system (mean

particle distance, size of confinement, . . . ) becomes comparable to

lp.

2.1.5 Numerical methods
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2.1.5.1 Solving Newton’s equation of motion: The velocity Verlet

algorithm

Since the Langevin equation is based on Newton’s equation of mo-

tion, we will start discussing numerical methods with a section on

how to solve the latter. Considering only translation, but already

including forces that depend on velocities (e.g., the Lorentz force

in a magnetic field, later the Langevin friction), the problem is

given by

mi
d2

dt2
ri = Fi(ri,vi, {rj ,vj}, t). (2.30)

There are many ways to solve this ordinary differential equation

numerically. Here, we will only describe the one that was used to

generate the results in this thesis: The velocity Verlet algorithm

as implemented in the ESPResSo [134] simulation package.

The algorithm applies the following steps repeatedly to an ini-

tial condition r(0) and v(0)

1. Calculate velocity at the half step

v(t + δt/2) = v(t) +
F(r(t),v(t− δt/2), t)

m

δt

2
(2.31)

2. Calculate new position

r(t + δt) = r(t) + v(t + δt/2)δt (2.32)

3. Calculate new velocity

v(t + δt) = v(t + δt/2) +
F(r(t + δt),v(t + δt/2), t + δt)

m

δt

2
(2.33)
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Here, δt is the time step of the numerical integration. In the algo-

rithm description, we have omitted the particle indices for clarity,

read r and v as the position and velocity coordinates of all parti-

cles.

The velocity Verlet algorithm is second order accurate in time,

i.e., the global truncation error scales as O
(︁
δt2
)︁

for small δt. There

are more accurate integration schemes readily available, but for

many-particle dynamics, integration speed is often more important

than integration accuracy. This is because usually the exact trajec-

tory of each particle is not the quantity of interest but rather an

average over many trajectories with random starting conditions.

Velocity Verlet is a common choice because it only requires one

force calculation per time step (the force calculated for Eq. (2.33)

can be reused for Eq. (2.31) in the next step). It also (almost) con-

serves energy [135, p.72], which makes it very attractive for long

simulations.

2.1.5.2 Including noise

The extension from Newtonian to Langevin dynamics does not

change the structure of Eq. (2.30), it just adds two terms to the

force on each particle. Friction is readily included because the

velocities are known. Incorporating the noise term ξt(t) is a bit

more tricky, because we can’t have delta distributions in the time-

discretised numerical algorithm. The problem is solved by realising

that the shortest time over which a force can act is δt, so we replace

the delta-correlation
⟨︂
ξtα(t)ξtβ(t′)

⟩︂
= δα,βδ(t− t′) by a rectangular
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correlation
⟨︂
ξtα(t)ξtβ(t′)

⟩︂
= δα,β

1
δtH(−|t− t′|/2 + δt). Here, H(·)

is the heaviside step function. The prefactor 1
δt makes sure that

the integral over the correlation is still unity.

The random force added to the particle in each time step then

becomes
√︁

2γtkBT/δt ξ
t
num, where ξtnum is a random number drawn

from a distribution with zero mean and unit variance. Some imple-

mentations use a Gaussian distribution, but since for the long time

behaviour only the two moments are relevant, we can use a uniform

distribution, which is the fastest one to sample from numerically.

2.1.5.3 Rotational degrees of freedom

Rotational degrees of freedom can in principle be numerically inte-

grated similarly to the particle translation using a velocity Verlet

scheme, because the equation of motion Eq. (2.13) is also a sec-

ond order ordinary differential equation. However, the constraint

|ê(t)| = 1 and the fact that I depends on the rotation state it-

self introduces additional complexity. To make the problem more

tractable, one can use Euler’s formulation of rigid body dynamics

which reads

Ibodyω̇ + ω × (Ibodyω) = Mbody, (2.34)

where Ibody and Mbody are moment of inertia and total torque in

the particle’s rotating frame of reference. The advantage of this re-

formulation is that now the moment of inertia is a constant. From

the cross-product in the second term we see that the price to pay

is a quadratic term in ω that mixes the components, making a

specialised treatment necessary. ESPResSo implements a numer-
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ical integrator for three-dimensional rotational motion based on

a quaternion representation of the rotation state, details can be

found in Ref. [136].

2.1.5.4 Why not Fokker-Planck?

In the introduction of this section on stochastic dynamics, I men-

tioned that we use an approach based on stochastic differential

equations (SDEs) rather than partial differential equations (PDEs)

for probability densities because it is more simple. After discussing

numerical methods, I can now give a less ambiguous justification

based on the memory requirements of the two approaches. At first

glance, the solution of a PDE seems much more efficient because

it has to be done just once, and quantities extracted from it are

exact. For the SDE approach, one needs to simulate many realiza-

tions of the random process to obtain averages, which will always

have some uncertainty associated with them due to the finite set

of trajectories used for the average.

However, the memory required to store the PDE solution scales

very unfavourably. For Npart particles in d dimensions, the solu-

tion to the PDE equivalent of Eq. (2.1) is a function of 2dNpart

variables (position and velocity of all particles, rotation not yet

considered). If finite, cubic, space and velocity domains with “vol-

umes” (L)d, (Lv)d are discretised into cells with side lengths ∆x,

∆v for numerical solution, we need

Ncells =

(︃
L

∆x

Lv

∆v

)︃d·Npart

(2.35)
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values to store the discretised probability density function at each

time step, a number that grows exponentially with the number

of particles. For a very moderate Npart = 100 and a really low

resolution of L
∆x = Lv

∆v = 10, we get Ncells = 10600 in d = 3. There

are only about 1080 atoms in the universe so it seems unlikely that

a memory device will be invented in the near future that can store

the solution of the PDE.

To hold a random trajectory, one needs Ndof = 2d ·Npart values

for each time step, which increases just linearly. We still need to

consider many of these trajectories to obtain satisfactory statistics,

but the total memory requirements can be handled by current

hardware.

50



theory | 2

2.2 Hydrodynamics

Hydrodynamics or fluid dynamics is the physics and engineering

branch that is concerned with the flow of fluids on a continuum

level. Liquids are made from particles (atoms, molecules, . . . ),

but if the number of particles approaches infinity, the fluid can be

considered a continuum. In practice, this infinite limit is reached

surprisingly fast, making the continuum description valid at scales

≳ 50 nm [137]8. Bacteria are significantly larger than that, so we

will use continuum hydrodynamics for all fluid modeling presented

in this thesis.

2.2.1 The Navier-Stokes equation

The Navier-Stokes equation governing the evolution of the velocity

field u(r, t) and pressure field p(r, t) of an incompressible Newto-

nian fluid at density ρ(r, t) = ρ = const. is given by

ρ [∂tu + (u · ∇)u] = −∇p + µ∇2u + f ext, (2.36a)

∇ · u = 0, (2.36b)

where f ext is an external force density acting on the fluid, e.g.,

gravity9. The left hand side of Eq. (2.36a) expresses the momen-

tum change of an infinitessimal fluid volume at r caused by the

8With careful extension of the Navier-Stokes results and determination of

fit parameters, continuum hydrodynamics can be valid at even smaller scales,

down to a few molecule diameters [138].
9For the rest of this thesis, particle velocities will be denoted by v and fluid

velocities by u.
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forces (stresses) given on the right hand side of Eq. (2.36a). The

left hand side can be derived rigorously [139], the right hand side

follows from modelling assumptions. Forces on the infinitessimal

fluid volume come from a change in pressure (∇p), external forces

(f ext) and from internal, viscous friction with the surrounding fluid.

The assumption for the Newtonian fluid is that the stress σ asso-

ciated with viscous friction is linear in the rate-of-strain tensor E,

i.e.,

σ = µ2E, E =
1

2

[︂
∇⊗ u + (∇⊗ u)T

]︂
, (2.37)

where ⊗ denotes the dyadic product. The force density that acts

on the fluid is then given by ∇ · σ.

Equation (2.36b) is an expression of incompressibility of the

fluid. It is a short form of the continuity equation ∂tρ = −∇ · (ρu)

using ∂tρ = ∇ρ = 0 for the constant density.

2.2.1.1 Boundary conditions

No differential equation is complete without boundary conditions.

In the field of hydrodynamics, there are a number of boundary con-

ditions that are frequently used and deserve a short introduction.

We use ΩB to denote the surface at which a boundary condition

acts. The fluid domain can be bounded by a number of different

boundaries that can each have different conditions associated with

them.

▶ No-slip

Typically used to model the boundaries with a solid surface, the

no-slip boundary condition requires no fluid flow into or along a
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surface ΩB, i.e.

u(r ∈ ΩB, t) = 0. (2.38)

The normal component encodes the impermeability of the solid

surface, the tangential component the interactions of fluid

molecules with the (nanoscopic) roughness of the surface.

▶ Constant velocity

A time-constant velocity

u(r ∈ ΩB, t) = uB(r ∈ ΩB) (2.39)

can be employed along a boundary. This is typically used to model

moving solid surfaces (⇝ no-slip in the comoving reference frame

of the surface), or inlets and outlets, e.g., syringes driving fluid at

constant velocity through a microfluidic channel.

▶ Constant pressure

A time-constant pressure

p(r ∈ ΩB, t) = pB(r ∈ ΩB) (2.40)

can be employed along a boundary. This is typically used to model

inlets and outlets connected to pressure control systems or “open”

boundaries of experimental setups, e.g., an effluent pipe ending in

a container at atmospheric pressure.

▶ Periodic

If the system under consideration is periodic with some periodicity

L, the boundary condition

u(r, t) = u(r + L, t) (2.41)
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for r ∈ ΩB connects two boundaries of the fluid domain. Despite

being a purely theoretical construct, periodic boundary conditions

are useful to model porous media which are periodic over some

length, or small sections of a very large domain that cannot be

treated in full.

▶ Slip

At small length scales, the no-slip boundary condition is not a

good approximation of the interaction between a liquid and a solid

anymore, because fluid molecules can slide along the particles that

make up the solid surface. In this case, one often uses the slip

boundary condition [140]

u(r ∈ ΩB, t) = lslip2En̂, (2.42)

Where n̂ is a vector normal to the surface. Equation (2.42) relates

the fluid velocity on the boundary to the viscous stress that acts

on the infinitessimal layer of fluid in contact with the solid. The

prefactor lslip is called the slip length. It is connected to a fictional

surface penetration length that is calculated by extrapolating the

velocity field into the solid boundary until it reaches zero.

There are many more boundary conditions, but they are irrel-

evant to the results presented in this thesis so they are not covered

here.

2.2.2 The Stokes equation

Using a characteristic length L of flow features and a characteris-

tic velocity scale U , we can nondimensionalise the Navier-Stokes
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equations using r∗ = r/L, u∗ = u/U , t∗ = tU/L, p∗ = pL/(µU),

f ext
∗

= f extL/(µU) and obtain

ρUL

µ
[∂t∗u

∗ + (u∗ · ∇∗)u
∗] = −∇∗p

∗ + ∇2
∗u

∗ + f ext
∗
. (2.43)

The dimensionless prefactor

Re =
ρUL

µ
(2.44)

on the left hand side is called the Reynolds number and quantifies

the relative importance of inertial forces (enumerator) to viscous

forces (denominator).

If we plug in the typical velocity scale U = vswim = 25 µm s−1

for swimming bacteria, a flow length scale of L = 100 µm, and use

water as the fluid we arrive at Re = 2.5 × 10−3≪1. This means

that very similar to the arguments made for particle inertia in

Section 2.1.2.3, fluid inertia can also typically be neglected10.

Setting Re = 0 and reintroducing the variables with their phys-

ical dimensions, we arrive at the time-independent Stokes equation

−∇p + µ∇2u + f ext = 0, (2.45a)

∇ · u = 0. (2.45b)

10The “smallness” of fluid inertia in this example is less extreme than for

the particle inertia in Section 2.1.2.3. By considering a bacterium in external

flow with U = 10vswim in a porous environment with L = 1mm, we can easily

increase the the Reynolds number by two orders of magnitude to 0.25. This is

still “small”, but not small enough to immediately discard fluid inertia in all

investigations of bacterial swimming.
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Neglecting the left hand side of Eq. (2.36a) leads to two significant

simplifications:

▶ Time reversal symmetry

There is no explicit time dependence anymore because the time

derivative dropped out. This does not necessarily mean that all

flows must be stationary, because the boundary conditions might

be time dependent. It does however mean that all flows must in-

stantaneously adapt to any change in boundary condition. All

low-Re flows must therefore be time-reversible upon time reversal

of the boundary conditions. This simplifies the analytical or nu-

merical solution of hydrodynamic problems, but also has important

physical implications for swimming microorganisms: They cannot

use a propulsion mechanism based on one, finite degree of free-

dom. To sustain motion for an extended time, the swimmer has

to do some type of cyclic actuation of the degree of freedom. It

can vary the actuation with time (e.g., slow in the first half of the

cycle, fast in the second half), but at some point it has to return to

the initial configuration to start the next cycle. Because the flow

fields generated by the actuation are time reversible, the forces

on the swimmer are also time reversible. Consequently, when the

swimming degree of freedom has returned to its initial value, the

time-integrated force on the swimmer over a full cycle comes out

to be zero and the total displacement vanishes. This is usually

exemplified by the single hinge between the upper and lower shell

of a scallop that opens and closes, coining the term “(no) scal-
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lop theorem“ [141]11. There are two main mechanisms by which

microswimmers circumvent this constraint.

Some swimmers use more than one degree of freedom for their

propulsion. For example, Chlamydomonas reinhardtii uses two

flexible cilia that open and close in a breast stroke like man-

ner [143]. Unlike the rigid shell of a scallop, the cilia bend in

response to actuation, making it possible to define distinct recov-

ery and power strokes based on the shape of the cilia when they

are driven fast or slow. The different shape of the cilia in the two

halves of the beating cycle makes the propulsion asymmetric with

respect to time reversal and thus enables net movement of the cell

body.

Other swimmers use one infinite degree of freedom. For exam-

ple, bacteria such as E. coli use rotational motors to power flagella.

Since the actuated degree of freedom is an angle that can increase

to infinity (or is reset mathematically to 0 when one rotation is

completed), the bacterium never has to reverse the motor to com-

plete one period of motor driving. Consequently, it can just keep

on moving forward.

▶ Linearity

All terms proportional to u2 dropped out of Eq. (2.36b) and the

resulting equation is linear in u and p. This means that Eq. (2.45)

11Scallops are unaffected by the no scallop theorem not only because they

swim at larger Reynolds numbers, but mainly because they do not swim by just

opening and closing the hinge. Instead, they also open and close membrane

valves to suck in fluid from the front and then push it out from the back. With

this, they move forward when closing the shell [142, p. 6]
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is a lot more amenable to analytical treatment than Eq. (2.36),

examples being shown in the next sections.

2.2.3 Multipole expansion

The Stokes equation being linear, we can look for fundamental

solutions (the Green’s function) of Eq. (2.45), considering f ext as

the inhomogeneity. For f ext(r) = Fδ(r−r0), where F is a constant

and r0 the location at which the point force acts, and the boundary

condition u(|r− r0| → ∞) = 0, one obtains [144]

uFM(r; r0) =
1

8πµ
G(r; r0)F, (2.46a)

pFM(r; r0) =
1

4π|r− r0|3
F · (r− r0), (2.46b)

where

G(r; r0) =
1

|r− r0|

[︃
1 +

(r− r0) ⊗ (r− r0)

|r− r0|2
]︃

(2.47)

is known as the Oseen tensor. Equation (2.46) is called the

“Stokeslet” or “force monopole”. Notably, the velocity magnitude

decays as 1/|r− r0| for large distances, showing the long-ranged

effect of flow disturbations.

The solution Eq. (2.46) is not enough to describe all flow fields,

as it contains only the contributions that can be produced by point

forces. Analogous to electrostatic multipoles, there are infinitely

many hydrodynamics multipoles describing the fluid flows that re-

sult from point dipoles, point quadrupoles, etc. Source dipoles,

source quadrupoles, etc. add another family of fundamental so-

lutions. These are fundamental solutions related to δ-like sources
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and sinks of fluid that are infinitely close together. There cannot

be a source monopole because we use the incompressible Stokes

equation where the total amount of fluid has to be conserved.

All fundamental solutions in the force and source family can be

obtained from Eq. (2.46) and the Oseen tensor by derivation with

respect to r0 [145, 146], e.g.

uFD(r; r0) = −
[︁
∇r0 ⊗ uFM(r, r0)

]︁
F (2.48)

for the force dipole. The resulting expression is lengthy (for details,

see the appendix of Ref. [145]), but from the |r− r0| dependence of

the force monopole, it is clear that the dipolar flow field must scale

as |r− r0|−2. In general, all fundamental solutions of Eq. (2.45)

scale as |u|(|r− r0| → ∞) ∼ 1/|r− r0|α with α ≥ 1 and α = 1

only for the force monopole.

Any flow field can be decomposed into the fundamental so-

lutions, and the far-field will be dominated by the lowest order

multipole. For bacteria swimming in bulk fluid, this is always a

dipole and never the force monopole. A force monopole can only

be created when a net external force is applied to the fluid, for

example when a particle sediments under the influence of gravity

or a charged colloid is driven through the fluid electrostatically.

Bacteria, however, are not externally driven. They produce the

swimming force themselves, so by Newton’s third law, any forward

force on the cells must be countered by an equal and opposite force

that the swimmer’s propulsion mechanism exerts on the fluid. In

total, the system is therefore force free and the flow field generated

by swimming microorganisms decays in leading order as |r− r0|−2.
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2.2.3.1 Friction coefficients

The friction force that a particle experiences when dragged through

a fluid at velocity v can be obtained from the flow field around the

swimmer. The force on a surface Ω is calculated by integrating the

stress contributions from pressure and viscous dissipation as

Ffrict =

∫︂
Ω

(σ − p1)n̂dS , (2.49)

where n̂ denotes the surface normal. For a Newtonian fluid, the

viscous stress tensor σ was introduced in Eq. (2.37). In the low

Reynolds number world, this force is always linear in the driving

velocity v, because time reversal symmetry must be upheld. This

allows us to define the friction coefficient via Ffrict = γtv. Note

that γt does not follow from simple division of the velocity and

force norms because the particle might be anisotropic and the two

vectors are not necessarily parallel. Rotational friction coefficients

can be obtained analogously by integration of torques via

Mfrict =

∫︂
Ω
r× [(σ − p1)n̂] dS , (2.50)

and Mfrict = γrω.

For a sphere, the results were introduced in Eqs. (2.2)

and (2.14). Having simulations of rod-like bacteria in mind, we

also need friction coefficients for elongated particles. For spheroids,

the friction coefficients are a bit more lengthy, but can be worked

out analytically, too. Because of the rotational symmetry of the

spheroid, the friction tensors have only two independent entries:

The axial component γtax, γ
r
ax for translation along or rotation
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around the symmetry axis, and the equatorial component γteq, γ
r
eq

for translation along or rotation around all axes perpendicular to

the symmetry axis. For a prolate ellipsoid with long (axial) semi-

axis a and short (equatorial) semiaxis b, one obtains [147]

e =

√︄
1 −

(︃
b

a

)︃2

, (2.51a)

γtax =
16πe3a

(1 + e2) ln[(1 + e)/(1 − e)] − 2e
µ, (2.51b)

γteq =
32πe3a

2e + (3e2 − 1) ln[(1 + e)/(1 − e)]
µ (2.51c)

and [148]

p =
a

b
, ξ =

√︁
p2 − 1

p
, S =

2 atanh (ξ)

ξ
, (2.52a)

F perrin
ax =

4

3

p2 − 1

2p2 − S
, F perrin

eq =
4

3

p−2 − p2

2 − S(2 − p−2)
, (2.52b)

γrsphere = 8πµab2, (2.52c)

γrax = F perrin
ax γrsphere, γreq = F perrin

eq γrsphere. (2.52d)

2.2.4 Numerical methods: Lattice Boltzmann

Most hydrodynamic problems cannot be solved analytically due

to the complexity of the Navier-Stokes Eq. (2.36) and the end-

less possibilities for the choice of boundary conditions. Complex

hydrodynamic problems are highly relevant in many fields of theo-

retical science and practical engineering, and thus many numerical

schemes exist to obtain solutions from computer simulations. Here,
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we review the lattice Boltzmann (LB) method because it is used

in the research presented in this thesis. It is a very efficient, easy

to implement, easy to parallelize Navier-Stokes solver that is very

popular in the porous media community due to the straightfor-

ward implementation of complex boundary shapes. It is also very

useful for the study of swimming microorganisms because schemes

have been developed to couple continuum hydrodynamics to mov-

ing particles.

This section seeks to give an overview over the basic concepts

of the LB methods as well as its strengths and weaknesses without

going into detail about advanced methods and implementation. It

borrows heavily from the lattice Boltzmann graduate textbook by

Krüger et al. [149].

2.2.4.1 The Boltzmann equation

The lattice Boltzmann algorithm is based on a mesoscopic descrip-

tion of fluids using kinetic theory of gases and the Boltzmann equa-

tion that lends its name to the algorithm. The main quantity

of interest is the distribution function f(r, ξ, t) which is the joint

probability density to find a particle at position r with momentum

ξ at time t. The time evolution of f is governed by the Boltzmann

equation

∂tf + ξ · ∇rf +
1

ρ
F · ∇ξf = Ω(f). (2.53)

Here, ∇r and ∇ξ denote partial derivatives with respect to the

components of r and ξ, respectively, and Ω denotes the collision

operator. Quite similar to the Navier-Stokes Eq. (2.36), the Boltz-
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mann Eq. (2.53) describes the change in momentum due to inter-

nal momentum transfer and external forces. It is this connection

through the fact that both equations represent a continuum version

of the conservation laws for mass and momentum that will lead us

from an equation for gas particle statistics to a hydrodynamics

solver12.

The collision operator is not known for many types of particle

interaction, but there exist some expressions that can be derived

using simplifying assumptions. One of them is the Stoßzahlansatz

by Boltzmann himself which involves integrals over the distribu-

tion function f and kernels that take the details of the molecular

interactions into account. This is not the form of Ω that is used

in the lattice Boltzmann method, instead a much greater simplifi-

cation is applied. The Bhatnagar, Gross, Krook (BGK) collision

operator [152]

ΩBGK(f) = − 1

τBGK
(f − f eq) (2.54)

captures only the most essential, coarse-grained physics of the par-

ticle interactions: that – by whatever mechanism – they bring the

distribution function towards the equilibrium distribution function

f eq, and do so on a time scale τBGK. Since the equilibrium distri-

12One can think of a lot of equations or kinetics that obey mass and mo-

mentum conservation, notable examples being smoothed particle hydrodynam-

ics [150] and multi-particle collision dynamics [151]. All of them will lead to

some version of the Navier-Stokes equation on a macroscopic scale. The ques-

tion is then “only” how to relate the parameters of the microscopic desciption

to the macroscopic parameters of the fluid that one wants to simulate.
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bution is the well known Maxwell-Boltzmann distribution

f eq(r, ξ, t) = ρ

(︃
m

2πkBT

)︃3/2

exp

(︄
−(ξ − ⟨ξ⟩)2

2mkBT

)︄
, (2.55)

around the mean momentum ⟨ξ(r, t)⟩ at that location, we now

have a closed form to solve Eq. (2.53).

2.2.4.2 The lattice Boltzmann algorithm

For a numerical implementation, the continuous spaces of r, ξ, t

must be discretised. The time stepping is done with a constant

time step ∆t. For the spatial coordinates, usually a regular grid

with grid constant agrid is chosen. For the momentum coordinates,

only a small number of distinct directions and magnitudes are in-

cluded: lattice velocities ci that upon multiplication by ∆t lead

from one grid cell to its neighbours. The number of neighbours

that are considered in the discrete velocity set varies with accu-

racy requirements, but in 3D usually the lattice point itself (zero

velocity) and 18 neigbours are chosen. These are the six nearest

neighbours and the twelve next-nearest neighbors located on the

edges of the cube of side length 2agrid with the central position in

the middle. In conclusion, the continuum f(r, ξ, t) is replaced by

fi(rj , n∆t), i ∈ {0, 18}. The discretised probabilities fi at each

location are referred to as “populations”.

Numerical integration of the Eq. (2.53) is typically split into

two steps.
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▶ Collision

First, the discretised collision operator is applied at each node

f⋆
i (r, t) = fi(r, t) −

∆t

τBGK
[fi(r, t) − f eq

i (r, t; fi)] . (2.56)

The dependence of f eq
i on fi comes from the fact that the mean

momentum must be known to calculate Eq. (2.55).

▶ Streaming

After applying the collision, the populations are moved to the

neighboring nodes according to

fi(r + ci∆t, t + ∆t) = fi(r, t). (2.57)

Here, we have only discussed the most simple lattice Boltzmann

algorithm. While the generic principles of collision and stream-

ing remain the same among the LB variants that are used in re-

search, usually more complex algorithms are used. For example,

many relevant implementations are based on two- or multirelax-

ation time (STR, MRT) algorithms with more elaborate collision

operators that offer more parameters than the single relaxation

time τBGK [134, 153]. Typically, they use a moment representa-

tion of the populations (see also Section 2.2.4.3 for the relevance

of moments of f) to simplify the calculations.

Thermal fluctuations of a microscopic fluid can be relevant on

the length scales of bacteria. These can be taken into consideration

in the framework of stochastic hydrodynamics [154]. Analogous to

the particle momentum fluctuations modelled with a stochastic

force the Langevin equation 2.1, fluctuating hydrodynamics are
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obtained by introducing a stochastic stress in addition to the de-

terministic contributions from pressure and dissipation. Lattice

Boltzmann extensions are available to include these fluctuations in

the discretised algorithm [155].

One of the main advantages of the LB method is that only dur-

ing the streaming step information is passed between lattice nodes.

Since only a few neighboring nodes are considered, nodes far from

each other do not have any explicit interaction. This makes par-

allelisation of the numerical algorithm very straightforward. Each

computational unit (CPU thread or GPU) performs streaming and

collision on a subdomain of the fluid. During streaming, informa-

tion between computational units must only be shared in the very

thin layer of nodes that “touches” neighbouring subdomains. Be-

cause the surface of the subdomain typically contains much fewer

nodes than the volume contained in it, only a small fraction of in-

formation has to be shared between computational units, making

parallelisation very efficient.

2.2.4.3 Recovering macroscopic quantities

The lattice Boltzmann algorithm – Eqs. (2.56) and (2.57) – solves

the discretised version of the Boltzmann equation, giving us the

time evolution of the discretised probability function f . However,

we are interested in a solution of the macroscopic Navier-Stokes

Eq. (2.36). To obtain the macroscopic quantites of interest, we use

the definition of f and find that they are calculated as moments
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of the probability function

ρ(r, t) =

∫︂
R3

f(r, ξ, t) d3ξ , (2.58a)

u(r, ξ, t) =
1

ρ(r, t)

∫︂
R3

ξf(r, ξ, t) d3ξ . (2.58b)

For the discretised algorithm, the integrals are replaced by sum-

mations over the velocity set {ci}.

The connection of the mesoscopic quantities f and τBGK to

other macroscopic quantities like pressure or viscosity is much more

difficult to find. The mathematical formalism is known as the

Chapman-Enskog analysis [156]. For the BGK collision operator

in Eq. (2.54), it leads to

p = c2sρ (2.59)

and

µ = ρc2s

(︃
τBGK − ∆t

2

)︃
, (2.60)

where cs =
√︁

1/3
agrid
∆t is the lattice speed of sound. The lattice

speed of sound does not correlate with the physcial speed of sound.

The equation of state (2.59) is therefore only to be used to calculate

p, and the results can only be trusted if the resulting pressure

differences are small.

2.2.4.4 Application of forces

There are different ways to include the (position dependent) ex-

ternal force f ext of Eq. (2.36) (or equivalently F in Eq. (2.53)) into

the lattice Boltzmann algorithm. A popular one is the so called

Guo forcing which corresponds to the inclusion of an additional
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momentum source term in the collision step and a modification of

the velocity calculation [157].

2.2.4.5 Boundary conditions

To implement the hydrodynamic boundary conditions mentioned

in Section 2.2.1.1 into the lattice Boltzmann framework, different

algorithms have to be applied for each condition. For the pur-

poses of this thesis, only two hydrodynamic boundary conditions

were used in simulations: No-slip and periodic boundary condi-

tions. Other types of boundary conditions are approximated by

interactions with particles, see Section 2.2.4.6.

Periodic boundary conditions are implemented by simply con-

necting the lattice nodes at the edge of the computational domain

to their periodic couterparts on the other side of the domain in the

streaming step. Populations get communicated between these two

layers of nodes as they get communicated everywhere else in the

system.

No-slip (and constant velocity) boundary conditions are often

implemented using the “halfway bounce-back” scheme. As the

name suggests, fluid populations that try to enter a lattice node

that is marked as a boundary get streamed back to the node they

originated from. The velocity vector ci of the reflected popula-

tion is inverted such that the fluid node receives a population

just as if there was another fluid node adjacent. This scheme

leads to a “physical” boundary approximately halfway between the

nodes that are marked as boundaries and the adjacent fluid nodes.

“Physical” is to be understood in the sense that if one extrapolates

68



theory | 2

the fluid velocity from the fluid domain, it will reach zero inbetween

nodes and not on the boundary nodes. Because solid boundaries

are defined on the level of lattice nodes, all boundary surfaces

are represented as a set of cubes. This “staircase” or “LEGO”

approximation of curved boundary surfaces is a limitation of the

bounce-back method and has its roots in the regular grid used

for discretisation. It is also one of the advantages of bounce-back

and lattice Boltzmann in general, because any boundary shape,

no matter how geometrically complex, can be approximated as a

LEGO model and then included in the hydrodynamic simulations

without any more difficulty than a flat wall. The bounce-back

boundary condition is also popular because it acts only on local

populations during the streaming step, so the ease of parallelisa-

tion is not impeded and the collision step is agnostic of boundaries.

Furthermore, the populations are reversed and not altered in any

other way, so the total amount of fluid mass is conserved exactly.

2.2.4.6 Particle coupling

To couple particle based methods like the ones introduced in Sec-

tion 2.1 to a continuum description of liquids in the lattice Boltz-

mann framework, different methods exist. We will not discuss mov-

ing boundary methods [155], even though they are certainly a valu-

able tool for many applications, including microswimmers [158].

To obtain the results presented in this thesis, we instead employ a

friction coupling scheme originally developed for polymer simula-

tions [159]. It is based on an extension of the Langevin Eq. (2.1)
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to moving carrier fluids. Here, the friction force on particle i reads

Ffrict
i (t) = −γti [vi(t) − u(ri(t), t)] (2.61)

and replaces the original −γtivi(t). In this sense, the Langevin

equation can be seen as a simplification where u(r, t) = 0.

Since ri(t) does not have to coincide with a lattice lattice node,

u(ri(t), t) needs to be obtained by interpolation. Usually, we use a

linear interpolation that takes the eight nearest nodes into account.

If the friction force is only applied to the particle, the total

system comprising particles and fluid is not momentum conserving

and the particle has no influence on the fluid, i.e., no hydrodynamic

interation between particles is possible. Hence, the friction force

must also be applied to the fluid, but in the opposite direction.

To this end, −Ffrict is interpolated back linearly to the same eight

nodes that the velocity was interpolated from. The force on the

fluid is then applied according to Section 2.2.4.4.

When thermal fluctuations are considered, one cannot treat the

stochastic forces on the particles and on the fluid as independent.

Both the deterministic dissipative and the random forces stem from

the same nanoscopic interactions between fluid and particle. New-

ton’s third law demands that the force on the fluid be the negative

force on the particle. Therefore, a thermal coupling must not only

apply Ffrict to the fluid, but also the same random force propor-

tional to ξti(t) that appears in Eq. (2.1).

The frictional coupling and Eq. (2.61) in combination with lat-

tice Boltzmann simulations is a good model for the interaction of

“small” particles with larger volumes of fluid or particles at large
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distances. Equation (2.61) does not resolve the shape of the parti-

cle beyond its (anisotropic) friction coefficient. From the perspec-

tive of the fluid, the force originates form a point particle some-

where inside a single lattice cell. Therefore, this coupling cannot

resolve near-field hydrodynamic interactions between particles or

between particles and surfaces. It also cannot handle particles with

a size that approaches the size of a lattice cell, since the friction

force is only applied to nodes in that cell.

Both problems can be alleviated by constructing rigid bodies

out of point particles, such that the combined particle collection

can span multiple lattice cells and interact with all of them [160–

162]. These rigid bodies are often called “raspberries” because of

their similarity to the fruit when the individual particles are visu-

alised with spheres. The constronstruction of raspberry particles

to model bacteria will be discussed in more detail in Section 3.1.1.

The finite size of lattice cells already leads to deviations from

the expected dissipative and diffusive behaviour even when par-

ticles are still small, but not very small compared to the lattice

size. In this case however, there is an approximate correction to

the friction coefficient, such that γt is replaced by

γt⋆ =

[︃
1

γt
− 1

gagridµ

]︃−1

, (2.62)

where g ≈ 25 is the numerical correction factor [159].
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2.3 Porous media

In this short section, we will revise some of the fundamentals of

the description of flow in porous media.

In the most simple terms, a porous medium is by definition

divided into two domains13: the solid domain, also called the “ma-

trix”, and the void space. The former comprises sand grains, soil

particles, fibers, or any other rigid structure that is impermeable

to fluid flow. The latter comprises the pores that can be filled with

some fluid like air or water.

The porosity

ϕ =
V void

V void + V solid
(2.63)

of a porous medium describes the ratio of the void space volume

V void to the total volume V void +V solid, where V solid is the volume

of the solid domain.

Many relevant porous media are highly disordered at the pore

scale and fluid flow is very complex due to the complex geometry.

However, there are descriptions on a continuum scale, where the

pore scale details are averaged out into a “resistance” that the

porous medium imposes against fluid flow driven through it.

On the macroscopic scale, for a porous medium with cross sec-

tional area A and length L, Darcy’s law [163, note D, p. 570]

Q =
KA

µ

[︃
∆p

L
+ f ext

]︃
(2.64)

13We will not discuss porous media made from heterogenious materials or

multiphase flow.
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describes the relationship between an applied pressure difference

∆p and external force density f ext, and the resulting volume flux

Q of fluid through the porous medium.

The proportionality factor K is called permeability and quan-

tifies the “resistance” of the porous medium. By factoring out the

fluid’s dynamic viscosity µ, K is a property solely of the porous

medium and once determined can be used to calculate fluxes of

different fluids. One can analytically calculate K for a number of

simple geometries such a bundle of tubes or stacked parallel plates

where the pore scale flow field governed by Eq. (2.45) with the re-

spective boundary conditions is known. In most cases however, K

needs to be determined by numerical simulation or experiments.

The flux density q = Q/A with units [volume]/[time · area] =

[velocity] measures the throughput of fluid per cross sectional area.

It is also a velocity in the sense of a spatial average in which the

solid domain contributes with zero velocity. This means that the

average of the actual velocity of the fluid at the pore scale vpore is

related to the flux density q via ⟨vpore⟩ = q/ϕ.

The proportionality between Q and ∆p
L + f ext is a result of the

low Reynolds number nature of flow for the same reason that the

velocity of a particle driven through a fluid must be proportional

to the driving force. Therefore, Darcy’s law can only be applied in

situations where the typical pore size and the typical flow velocity

are small enough to ensure Re ≪ 1. The continuum picture of

fluid flow is only justified when L not only exceeds the typical

pore size, but also exceeds the length scale of geometry variation

between pores, leading to the notion of a representative elementary
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volume (REV). Within the REV all pore scale details must be

contained, such that beyond the REV, the permeability K captures

all properties of the porous medium.

Most of the theoretical research on flow in porous media at the

continuum scale is done using a PDE version of Eq. (2.64), in which

∆p/L is replaced by a pressure gradient ∇p and q is allowed to be

space and time dependent to cover various boundary conditions.

For the purposes of this thesis however, the macroscopic version

presented here is sufficient so I will not go into more detail.
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Methods: Modeling of bacteria

This chapter outlines the bacterial model that is developed and

used in this thesis. It contains the modeling aspects that are

common to the models used to obtain the results presented in

Chapters 4 to 7. In each of these chapters, a different flavour of

the bacterial model will be used. Thus, they will have their own

“methods” sections going into more detail and describing the mod-

ifications and extensions to the basic model outlined here.

3.1 Modeling the cell body

3.1.1 Rigid body dynamics: Raspberries

As mentioned in Section 2.2.4.6, coupling of particle based molec-

ular dynamics algorithms to a continuum description of hydrody-

namics in the lattice Boltzmann framework can be achieved via

a two-way friction force. However, the basic point-friction cou-

pling does not allow simulations of particles larger than a lattice

Boltzmann grid cell. This limitation needs to be overcome for

simulations of bacteria, because the flow fields generated by swim-
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lbody

rbody

e, vswim

n, ωact

Figure 3.1. Schematic representation of the geometry of the rigid body
agent with the definition of geometric parameters rbody, lbody. Black

points show the location of r
(j)
i , grey spheres indicate the extent of re-

pulsive interactions. Reproduced from Ref. [4] with permission from the
American Physical Society.

ming bacteria have features on the same length scale as the cell

length, which need to be resolved by a finer LB grid. For the

bacterial model presented in this thesis, we consider the extended,

rod-like cell body of many relevant bacterial species such as E.

coli or Pseudomonas aeruginosa. To construct the in silico coun-

terpart, we use an algorithm for rigid body dynamics based on

previous work [164]. Here, a rigid body is assembled from a num-

ber of spherical particles (“beads”) connected to a central particle

as shown in Fig. 3.1. Only the central particle’s position and ori-

entation are governed by Eqs. (2.1) and (2.13), the other, “virtual”

particles are rigidly connected to the central particle. This means

that they have a fixed relative position and orientation relative to

the central particle. The virtual particles contribute to the dy-

namics of the overall rigid body via the forces they are subject to.

The force Fi and torque Mi on the central particle i that enters
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Eqs. (2.1) and (2.13) is the sum of the forces and torques on all

particles j of the rigid body according to

Fi =

Nbead∑︂
j=1

Fj , (3.1a)

Mi =
Nbead∑︂
j=1

(r
(j)
i − ri) × Fj . (3.1b)

Here, Nbead is the number of particles that comprise the rigid

body, r
(j)
i the position of particle j associated with rigid body i

and Fj the total force that this particle j experiences from, e.g.,

interactions with other particles or a lattice Boltzmann fluid. Since

r
(j)
i depends both on the position and the orientation of the rigid

body, Fi and Mi are a function of position and orientation of all

particles in a given system.

The rigid bodies used to model bacteria in Chapters 4 to 7 have

different levels of geometric detail and a different numbers of beads

per raspberry, depending on the application. The details will be

given in the respective chapters.

3.1.2 Interaction potentials

3.1.2.1 Lennard-Jones and WCA

In this thesis, interactions between bacteria and their environment

are usually modeled by the Lennard-Jones potential [165, 166]

V LJ(r) = 4ϵLJ

[︄(︃
σLJ

r

)︃12

−
(︃
σLJ

r

)︃6

+ cshift

]︄
H(rcut − r), (3.2)
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where r denotes the distance between bacterial beads or the dis-

tance between a bacterial bead and a solid surface, ϵLJ denotes the

potential strength parameter, σLJ the potential range parameter,

rcut the cutoff radius and cshift a shift parameter that makes V LJ

continuous at rcut. The potential is not derived from any physi-

cal interactions between bacteria and their environment but rather

seeks to capture some very generic features of a possible interac-

tion. For r < 21/6σLJ the potential is repulsive and diverges for

r → 0 with a zero crossing at r = σLJ. This gives the bacterial

bead a notion of a radius that contains an excluded volume. For

bacteria-bacteria interactions, 21/6σLJ = 2rbody defines the radius

of the cell body. For 21/6σLJ < r < rcut the potential is attractive

with an attraction well depth ϵLJ. We will later use this generic

attraction to model bacterial cohesion in biofilms in Chapter 5.

The finite cutoff radius rcut limits the range of the potential which

is necessary for efficient computations.

The choice rcut = 21/6σLJ can be used to remove the attractive

part of the potential entirely, which we will use to model steric

repulsion. The potential is then known as the Weeks-Chandler-

Anderson potential [167].

3.1.2.2 Gay-Berne

Sometimes it is convenient to encode particle anisotropy directly

in the interaction potential without having to resort to raspberry

methods. A popular choice for anisotropic but spheroidal particles

is the Gay-Berne potential [168, 169]. It extends the Lennard-Jones

potential by also including the directors êi of the two interacting
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particles when determining the interaction force. For, e.g., prolate

particles, the head-to-head interaction potential has a longer range

than the side-to-side potential. The potential reads

V GB (êi, êj , rij) = ϵGB (êi, êj , rij)

×
[︄(︃

σ0
rij − σGB (êi, êj , rij) + σ0

)︃12

−
(︃

σ0
rij − σGB (êi, êj , rij) + σ0

)︃6
]︄

×H(|rij | − rcutGB), (3.3)

where rij = rj − ri is the vector distance between the center of

mass of each particle and ϵGB (êi, êj , rij), and σGB (êi, êj , rij) are

additional functions depending on the orientations of the particles.

We use the parametrisation

ϵGB (êi, êj , rij) = ϵ0GB

[︁
1 − χ2(êi · êj)

]︁−1/2
(3.4)

and

σGB (êi, êj , rij)

= σ0
GB

(︃
1 − χ

2

[︃
(r̂ij · êi + r̂ij · êj)2

1 + χêi · êj
+

(r̂ij · êi − r̂ij · êj)2
1 − χêi · êj

]︃)︃−1/2

(3.5)

for these functions. Here, χ = (l2GB − 1)/(l2GB + 1) encodes the

particle aspect ratio lGB.

3.2 Bacterial swimming
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3.2.1 “Dry” swimming

In simulations where the hydrodynamics of swimming bacteria are

neglected, we use Eqs. (2.20) and (2.22) to model swimming motil-

ity. The swim force Fswimê is applied to the central particle of

the rigid body to obtain the desired swim velocity vswim. All

“virtual” raspberry particles experience forces from interactions,

but not from friction or thermal noise. Dissipative and random

forces are instead only applied to the central particle, where the

anisotropic friction tensors γt and γr with components obtained

from Eqs. (2.51) and (2.52) capture the elongated shape.

3.2.2 “Wet” swimming

In simulations where hydrodynamics of swimming bacteria are con-

sidered, we still use Eqs. (2.20) and (2.22) for particle dynamics,

but also couple the swimmer to a lattice Boltzmann fluid as de-

scribed in Section 2.2.4.6. All beads of the swimmer interact with

the fluid through a “bare” friction coefficient γ̃. This friction co-

efficient is not related to the size rbody of a bead in the raspberry

model. Instead, the combined effect of all the friction coupling

points that make up the rigid body leads to an effective friction

coefficient for the whole cell. Usually, γ̃ is chosen as large as nu-

merical stability permits in order to “bind” the fluid of the LB cells

to the swimmer that encompasses them as strongly as possible to

reduce artefacts of fluid moving through the swimmer volume.

As described in Section 2.2.3, the hydrodynamics of bacte-

rial swimming are not equivalent to the hydrodynamics of a cell
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body being driven through the fluid by external forces. Instead,

the propulsion mechanism and its effect on the fluid need to be

taken into account. Our modeling approach for propulsion follows

refs. [164, 170] for the introduction of a force on the fluid that

mimics the effect of a flagellum or flagellar bundle. However, we

add more geometric detail to the description.

The basic idea of the propulsion model is that the forward force

Fswimê that drives the cell forward must be generated by the flag-

ella. Flagella generate forward thrust by pushing fluid backwards

and Newton’s third law demands that the total force on the fluid

must be −Fswimê. Therefore, we introduce a special new type of

particle to the rigid body, that implicitly captures this effect of

the flagella. This new type is still rigidly connected to the central

particle of the cell body, but unlike the other beads, it does not

experience friction or random forces. Instead, it applies a force

−Fswimê/N
bead
flag to the fluid that is interpolated to nearby lattice

nodes like the other coupling forces. Here, Nbead
flag is the number of

beads that make up the flagellum. A graphical representation will

be shown in Section 7.2, Fig. 7.1.

3.2.3 Run-and-tumble dynamics

Many bacteria cannot only self-propel, but also self-steer to some

degree. We capture both modes of active motion in the framework

of Eqs. (2.20) and (2.22) with time-dependent Fswim and Mact or,

equivalently, time-dependent vswim and ωact.

As mentioned in Section 1.2.1, a swimming pattern often found

in bacteria such as E. coli is the so-called run-and-tumble pattern.
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Other patterns, i.e., sequences of propulsion and steering, exist and

will be discussed in Chapter 6.

During a run, the bacterium swims along its body axis ê with

approximately constant speed. During a tumble, the bacterium

stops propelling forward, and instead rotates to a new direction.

Because the duration of the molecular motor reversal that triggers

the tumble is random and the flagellar dynamics during tumbling

appear chaotic, the angle of reorientation Θtumble does not have a

fixed value, but rather follows a broad distribution [84].

The algorithm we use to model run-and-tumble behaviour seeks

to capture the essential features of this stochastic reorientation

by random torques. It follows previous models for bacterial tum-

bling [171] and their implementation into the framework of our

rigid body cells [172].

The durations trun and ttumble of runs and tumbles are both

exponentially distributed as

p(t⋆) =
1

⟨t⋆⟩
exp(−t⋆/ ⟨t⋆⟩), (3.6)

where p denotes the probablility density and ⋆ ∈ {run, tumble}.

The respective means ⟨trun⟩ and ⟨ttumble⟩ are adjustable parameters

of the model.

For numerical implementations with large time steps or for

comparison with experiments that have limited time resolution,

the geometric distribution can be used instead. It represents a

discrete version of the exponential distribution and reads

P (k; q⋆) = (1 − q⋆)
k−1 q⋆. (3.7)
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Here, P (k; q⋆) is the probability that after k “steps” the current

state (run or tumble) is terminated and the bacterium switches

to the next state. The mathematical “step” mentioned here is

identified with the numerical model evaluation time step ∆t or

with the experimental time step. The assumption of the geometric

distribution is that for all steps, the probability of leaving the

current state is constant. The termination rates q⋆, where again

⋆ ∈ {run, tumble}, are related to the respective mean times via

⟨t⋆⟩ = ∆t ⟨k⟩ =
∆t

q⋆
. (3.8)

To obtain the tumble angle distribution, we approximate the

directional change as a diffusive rotation process with diffusion

coefficient Drot, tumble. For random, unbiased diffusion of the bac-

terial director ê = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) we have in

spherical coordinates

∂tp(θ, ϕ, t) = Drot, tumble∇2p(θ, ϕ, t) (3.9)

for the probability density p of orientation (θ, ϕ) after time t. With

p(θ, ϕ, 0) = δ(θ) as the inital condition, this equation has an ana-

lytical solution given by

p(θ, ϕ, t) =

∞∑︂
l=0

2l + 1

2
exp[−l(l + 1)Drot, tumblet]Pl (cos θ) sin(θ),

(3.10)
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where Pl denotes the Legendre polynomial of order l.1

In our model, we draw a tumble time ttumble from Eq. (3.6) or

Eq. (3.7) and then insert it into Eq. (3.10) to generate a distribu-

tion of tumble angles Θtumble. From this tumble angle distribution,

we draw an angle and apply a steering torque with associated an-

gular velocity ωact = Θtumble/ttumble to the cell center of mass for

the duration of the tumble to rotate it to the new direction. The

direction n̂ of rotation is kept constant during the tumble. It is

chosen at random (Eq. (3.10) does not depend on ϕ), but fulfills

n̂ · ê = 0 at the beginning of the tumble. The mean tumble angle

can be calculated as

⟨cos(Θtumble)⟩ =
1

2Drot, tumble ⟨ttumble⟩ + 1
(3.11)

in the time-continuous version and

⟨cos(Θtumble)⟩ =
∆t/ ⟨ttumble⟩

exp(2Drot, tumble∆t) + ∆t/ ⟨ttumble⟩ − 1
(3.12)

in the discrete formulation [172]. From these results, we tune

Drot, tumble such that ⟨Θtumble⟩ coincides with experimentally ob-

served values.

For “dry” swimming, the application of the rotating torque

γrωactn̂ is enough to describe tumbles. For “wet” swimming how-

ever, the torque applied to the cell must be counterbalanced by

1This framework of treating rotational diffusion with continuum equations

can be used to derive Eq. (2.18) in a much simpler way than by invoking

stochastic calculus. Noting that ⟨ê(0) · ê(t)⟩ = ⟨cos(θ)⟩ (t) we can use the

solution given in Eq. (3.10) to calculate the mean on the right hand side by

using orthogonality relations of the Legendre polynomials.

84



methods: modeling of bacteria | 3

a torque on the fluid to mimic hydrodynamic self -rotation analo-

gous to self-propulsion: The tumble rotation is not generated by

an external torque, but by a torque that the bacterium gener-

ates through flagellar actuation and fluid interaction. The coun-

tertorque is realised be two opposing forces on the fluid that act

perpendicular to the cell orientation, in the plane of rotation. To

achieve this, we use the “flagellar” particles introduced in Sec-

tion 3.2.2. Here however, instead of connecting them to the cell

body in a straight line behind the cell body pointed backwards, we

connect one of them to the first bead of the raspberry and one to

the last bead (see Ref. [172] for more detail). The flagellar particles

are pointed perpendicularly outward from the cell’s symmetry axis

to apply a torque to the fluid but no net force. Since the flagellar

particles are connected rigidly to the cell raspberry, they follow the

rotation of the cell body, maintainng the correct orientation.

3.2.4 Application in simulations

3.2.4.1 Time discretisation

The Langevin equations of motion for the particle position and

orientation as well as the Navier-Stokes equations for the fluid are

discretised in time according to Sections 2.1.5 and 2.2.4.2 with a

time step δt. The algorithms for bacterial control (e.g., changes to

Fswim(t) or Mact(t)) are evaluated with the model time step ∆t.

Necessarily, ∆t is an integer multiple of δt, but they do not have

to be the same. Typically, we choose ∆t five to one hundred times

larger than δt. This reflects the difference in timescale between
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particle momentum relaxation (fast) and changes in the cell state

(slow). It also greatly increases the computational efficiency of the

bacterial control algorithms.

3.2.4.2 Density scaling

As outlined in Section 2.1.2.3, the natural description of the

stochastic motion of micrometer-sized particles such as bacteria

is the Brownian or “overdamped” equation of motion due to the

extremely short momentum relaxation time τ t = m/γt of such par-

ticles. However, the hydrodynamic Navier-Stokes equations that

the lattice Boltzmann method solves are based on a description

of the fluid motion that contains momentum. Furthermore, the

coupling between particles and fluid outlined in Section 2.2.4.6 is

based on velocities, which are not well defined in the Brownian

dynamics picture.

Therefore, to have consistency in the inclusion of momentum as

well as to facilitate the fluid coupling, we must use the Langevin,

“underdamped” Eqs. (2.20) and (2.22) to obtain particle trajecto-

ries2. The extremely short (angular) momentum relaxation time

scales τ t and τ r now pose a problem for numerical integration, be-

cause the numerical time step δt must be smaller than min(τ t, τ r)

to resolve the adaption of the particle (angular) momentum to a

2The introduction and discussion of (rotational) Brownian dynamics in

Chapter 2 were not in vain, despite the fact that they are not used in the

numerical scheme. The motion of bacteria is overdamped on any timescale

that we are interested in for the purposes of this thesis. The analytical results

obtained from the overdamped equations of motion stay valid, and we will

make reference to them when discussing our results.
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change in forces or torques.

To alleviate this problem, we artificially increase τ t = m/γt

and τ r = I/γr in simulations by increasing the particle mass and

rotational moment of inertia, or equivalently, the particle mass

density ρ. Of course, we must take care not to increase τ t so much

that it becomes comparable to any timescale of interest. The mass

increase must be small enough to have no impact on any observ-

able that we extract from simulations. For example, if we simulate

a system in which the mean tumble time ⟨ttumble⟩ = 0.1 s is the

smallest time scale of physical relevance and the rotational momen-

tum time scale is τ r = 75 ns as in the example in Section 2.1.3.2,

we would choose a bacterial density ρ = 104ρwater to bring τ r to

around 1 ms ≪ ⟨ttumble⟩. This would leave the results we obtain

from simulations virtually unchanged, but allows us to speed up

simulations by a factor of 104 by increasing the numerical time

step δt.

3.3 Implementation

The bacterial model described in this chapter as well as the exten-

sions that will be introduced in Chapters 5 to 7 are implemented in

a python package. This package is employed in all simulations that

were used to obtain the results presented in the aforementioned

chapters. Different versions of the code are publicly available in

the datasets [173–175] that accompany the publications [3–5] on

which the chapters are based.

The implementation is based on ESPResSo [134] as the simula-
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tion engine to solve the stochastic equations of motion, Eqs. (2.20)

and (2.22). ESPResSo also handles the rigid body dynamics (Sec-

tion 3.1.1), the lattice Boltzmann algorithm (Section 2.2.4), the

particle coupling (Section 2.2.4.6) and the “wet” swimming algo-

rithm (Section 3.2.2).

My custom code on top of ESPResSo is centered around the

Swimmer class. It wraps the ESPResSo particles that comprise the

rigid body we use to model bacteria. It provides an intuitive inter-

face to create the rigid bodies based on the geometrical parameters

rbody, lbody, N
bead and to add them to an ESPResSo simulation sys-

tem. It also takes care of the calculation of particle properties like

mass, moment of inertia and friction coefficients.

During a simulation, various class methods implement the

(time-dependent) motility patterns such as run-and-tumble, or the

growth and cell division algorithm detailed in Chapter 5. This

makes it easy to perform simulations of motile and/or growing bac-

teria in complex environments, because the basic physical entity,

the cell, is represented by the basic software entity, the Swimmer.

The custom package also offers a variety of utility functionality to,

e.g., set up complex boundary shapes, interactions or deal with

logging and parameter handling.

In a typical simulation, ESPResSo does most of the “heavy

lifting” in terms of computational expense, meaning that the exe-

cution time is dominated by solving the equations of motion rather

than evaluating the bacteria-related algorithms. There are some

performance relevant algorithms, for example the calculation of

the tumble angle distribution Eq. (3.10) or the neighbour search
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needed to simulate phage infection in Chapter 7. In these cases,

the code is optimised for speed using, e.g., function return caches

or reformulation of the problem into set operations with constant

execution time. This ensures that the execution time footprint of

the bacterial modeling always stays low.

The python package is built in a modular way following coding

best practices. It is version controlled and well tested, ensuring

that all components continue to work well whenever the software

or its dependencies change. Versions of the package used to per-

form the research presented in the following chapters are publicly

available at Refs. [173–175], the development version will be pub-

lished on GitHub. At the time of writing this thesis, the software

is under continued development. If you are interested in learning

or using or contributing to the package, feel free to contact me.
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Chapter 4

The influence of motility on

bacterial accumulation in a

microporous channel

This chapter contains in large parts text that is taken verbatim

from M. Lee, C. Lohrmann, K. Szuttor, H. Auradou, and C.

Holm, “The influence of motility on bacterial accumulation in a

microporous channel”, Soft Matter 17, 893 (2021), a publication

to which I contributed preparation of figures and co-writing of the

manuscript draft.

4.1 Introduction

The first complex environment we consider for our motile bacteria

is the one that most surface-based microorganisms on our planet

face: Porous confinement with external flow. Many relevant habi-

tats such as soil, aquifers, larger host organisms like humans or

man-made environments like filtration systems fall in this cate-
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gory.

On a large scale, confinement and flow determine the dispersion

behaviour of bacteria [176], but the underlying mechanisms can

only be understood by considering the scale of single pores. Even

in simple systems consisting only of basic geometries such as flat

walls or straight channels, the interplay between bacterial swim-

ming, confinement and external flow can lead to interesting and

sometimes counterintuitive phenomena [29]. These include, e.g.,

upstream swimming [177–179], drift trajectories on surfaces [180,

181] or helicoidal trajectories [182, 183]. The distribution of bacte-

ria is also affected in nontrivial ways, exemplified by shear-induced

depletion [184], or accumulation of bacteria on the rear ends of sur-

faces in flow [185–187]. The distribution of bacteria, especially in

the vicinity of surfaces, is very relevant for the formation of biofilms

and therefore of interest in a wide area of engineering and medical

applications.

In this chapter, we seek to use our bacterial model to repro-

duce and explain the experimental results of Miño et al. [187]. In

their study, they use a rectangular channel with a single cylindrical

obstacle to study the influence of external flow on the distribution

of motile bacteria and find an accumulation behind the obstacle.

The scale of their experiment is perfectly suited for our numeri-

cal model as we are able to recreate their experimental setup and

explicitly model individual swimming bacteria. Going beyond the

experimental design, we also investigate the influence of swimming

parameters as well as the choice of geometry.

92



the influence of motility on bacterial accumulation in a

microporous channel | 4

Figure 4.1. The simulation set-up consists of a rectangular fluid-filled
channel of size (L,W,H) = (500 µm, 200 µm, 20 µm) with a cylindrical
obstacle of radius 80 µm placed at the center of the box. Inside the
channel are up to 159 swimmers, each consisting of five interaction sites
with the lattice-Boltzmann fluid, that are capable of performing run-and-
tumble as indicated on the inset. The fluid is driven by an external force
density. The stream lines and the colormap represent the driven flow-
field projected on to the xy-plane normalized by the swimming speed
vswim. Reproduced from Ref. [2] with permission from the Royal Society
of Chemistry.

4.2 Methods

4.2.1 Geometry and flow

The boundary geometry for the fluid and the bacteria is set

up according to the experimental design in Ref. [187] as shown

in Fig. 4.1. It comprises a rectangular channel of size L×W ×H

and a cylindrical obstacle of radius R in the center of the channel,

which we define as the origin of our coordinate system. The frame

of reference is the laboratory frame. Fluid flow is simulated using
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the lattice Boltzmann method with bounce back boundary condi-

tions on the solid surfaces as introduced in Section 2.2.4. Along the

x-direction, i.e., along the channel, we employ periodic boundary

conditions.

The flow is driven through the channel by applying a constant

force density onto each lattice-Boltzmann node.

The system’s geometry and the resulting flow field are depicted

in Fig. 4.1. We characterize the flow strength by the average value

⟨|u|⟩ := 1
W×H

∫︁ H/2
−H/2

∫︁ W
2

−W
2

|u|(x = 250 µm, y, z) dy dz, measured at

the outlet of the channel. For all simulations, the Reynolds number

of the flow is very small Re ∼ 10−2. This is manifested through

the spatial symmetries of the flow field with respect to the center

of the box. Note that from now on, we always normalize the flow

strength by the swimming speed vswim of our model bacteria unless

otherwise stated.

4.2.2 Swimmer model

We use the Nbead = 5 cell model with lbody ∼ 5 µm and rbody =

0.5 µm as introduced in Section 3.1. The purely repulsive WCA

potential (see Section 3.1.2.1) captures steric interactions among

swimmers and between swimmers and surfaces. The fluid cou-

pling follows the principles of of “wet” swimming with Nbead
flag = 1,

as described in Section 3.2.2. Cells perform run-and-tumble dy-

namics according to the algorithm outlined in Section 3.2.3. The

swimmers’ motion can thus be characterized by the mean run and

tumble durations ⟨trun⟩ , ⟨ttumble⟩ as well as the swimming speed

vswim.
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The numerical parameters (listed in Appendix A.1) are chosen

such that vswim = 24 µm s−1, which is very close to the average

velocity of the bacteria used in Ref. [187].

We introduce N = 159 swimmers to the system to achieve the

same low density of bacteria that is used in the experiment. In the

following we analyze the swimmer distribution in the channel in

various situations. We hence define the swimmer distribution ρ(r)

as

ρ(r) =
1

T
N∑︂
i=1

∫︂ T

0
δ3(ri(t) − r) dt , (4.1)

where ri(t) is the ith swimmer’s position at time t, and T the total

simulation duration. It is a time-averaged one-particle distribu-

tion. The projection onto the xy-plane is then done by taking the

average over the z-direction: ρ(x, y) = 1
H

∫︁ H/2
−H/2 ρ(r) dz. We make

the swimmer distribution ρ(r) dimensionless by normalizing it with

the homogeneous swimmer density ρh = N/Vbox, where Vbox is the

volume of the simulation box that is accessible to swimmers, i.e.,

excluding the volume occupied by the obstacle.

Next, we define some quantities that will be useful for describ-

ing our observations. The swimmer distribution around the ob-

stacle ρobs(θ) as a function of polar angle θ is given by ρobs(θ) =
1

850µm2

∫︁ 90µm
80 µm ρ(r, θ)r dr . Similarly, the swimmer distribution on

the lateral walls ρwall(x) at y = −W/2 and y = W/2 as a func-

tion of lateral position x is ρwall(x) = 1
2×10 µm(

∫︁ −90µm
−100µm ρ(x, y) dy +∫︁ 100µm

90 µm ρ(x, y) dy). Consequently, we calculate the swimmer den-

sity behind the obstacle using ρbehindobs = 1
π

∫︁ 2π
π ρobs(θ) dθ and on

the lateral walls using ρwall = 1
L

∫︁ L/2
−L/2 ρwall(x) dx.
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Figure 4.2. The swimmer distribution ρ(x, y) normalized with the ho-
mogeneous swimmer density ρh in the channel for various external flow
inputs. The dashed lines are contours, separating the regions where the
magnitude of flow velocity |u|(x, y), averaged in the z-direction, is greater
than the magnitude of the swimming velocity vswim. Reproduced from
Ref. [2] with permission from the Royal Society of Chemistry.

4.3 Results

4.3.1 Accumulation behind the obstacle

Figure 4.2 shows the spatial distribution of swimmers calculated

using Eq. (4.1) inside the channel for different flow conditions.

Additionally, Fig. 4.3(a) and Fig. 4.4 quantitatively present the

spatial distribution of the swimmers around the obstacle and on

the lateral walls, respectively. Notice first that, in the absence of

flow, a significant fraction of swimmers (i.e., ρ > ρh) is distributed
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Figure 4.3. The normalized swimmer distribution around the obstacle
ρobs/ρh in (a) the simulation and (b) the experiment (Ref. [187]) as a
function of the polar angle around the center of the obstacle. θ = 0
and 180 correspond to the lateral sides, and θ = 90◦ and θ = 270◦ to
the upstream and downstream sides, respectively. The blue, orange and
red lines in (a) stand for the velocity ratios ⟨|u|⟩ /vswim = 0.0, 0.4, and
1.2. Reproduced from Ref. [2] with permission from the Royal Society of
Chemistry.

both on the lateral walls and around the obstacle. The maxima of

the blue curve in Fig. 4.3(a) at θ = 0◦ and 180◦, as well as that

of the blue curve in Fig. 4.4 at x = 0 show a small enhancement

of the accumulation at places where the obstacle and the lateral

walls are closest. We refer to these regions as constrictions. The

homogeneous swimmer accumulation on the surfaces, i.e., both on

the lateral walls and on the obstacle, is to be expected [188–191],

since at the chosen running duration, the persistence length lp =
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Figure 4.4. The normalized swimmer distribution along the lateral
walls ρw/ρh for different flow velocities. The blue, orange and red lines
stand for ⟨|u|⟩ /vswim = 0.0, 0.4, and 1.2, respectively. Reproduced from
Ref. [2] with permission from the Royal Society of Chemistry.

24 µm is comparable to the length scale of the channel. Because

the swimmers tumble and swim in all possible directions with equal

probability, at some point they will touch a surface and stay there

until tumble events orient their swimming directions away from

the surface.

Additionally, we observe that more swimmers are accumulated

on the lateral walls than around the obstacle. This can be ex-

plained by the geometric characteristics of the surfaces. The ob-

stacle is a convex surface, and not capable of containing swimmers

for as long as the flat walls can do, as observed in other studies

as well [192, 193]. We attribute this to the simple fact that the
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swimmers will depart from any convex surface merely by swimming

straight in any direction that was initially tangent to the surface.

The influence of the convexity will become more significant with

increasing running duration trun.

Introducing an external flow, we measure an inhomogeneous

distribution of swimmers on the surfaces. A larger number of swim-

mers accumulates on the downstream side of the obstacle while

the density of swimmers on the upstream side of the obstacle is

reduced, falling below the homogeneous swimmer density ρh. For

⟨|u|⟩ /vswim = 0.2 nearly three times more swimmers per unit of

volume are located at the rear of the obstacle than anywhere else in

the fluid. This finding is in agreement with the observation made

in the experiment [187].

We find that stronger flow velocities reduce the extension of

the regions where the accumulation is observed. Consequently,

the swimmer densities ρbehindobs behind the obstacle and ρwall on

the lateral walls reduce with increasing external flow strength, as

indicated by the solid lines in Fig. 4.5. To further explain this, we

mark the regions where the magnitude of the local flow velocity

|u| is higher than the swimming velocity vswim in Fig. 4.2. For

⟨|u|⟩ /vswim < 1.0, the regions where |u| > vswim are localized in the

constrictions. At the strongest external flow (⟨|u|⟩ /vswim = 1.2),

the region covers the entire channel apart from two small domains

located at the rear and front of the obstacle, and parts of the lateral

walls located away from the constrictions.

Higher local flow speed regions act as one way streets; all swim-

mers are moving down-stream regardless of their swimming direc-
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Figure 4.5. Main: The average swimmer density ρbehindobs behind the
obstacle (blue solid line), and ρwall on the walls (orange solid line) as a
function of the external flow strength ⟨|u|⟩ /vswim in the presence of the
lateral walls, as well as the average swimmer density behind the obstacle
in the absence of the lateral walls (red dashed line). Top inset: the
flow velocity u(θ, r = 34σ)/ ⟨|u|⟩ around the obstacle as a function of
polar angle θ for both cases, with (blue), and without (red) the lateral
walls. Reproduced from Ref. [2] with permission from the Royal Society
of Chemistry.
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tion, since they cannot compete with the flow. In regions with

lower local flow speed, bacteria can swim in all directions, includ-

ing upstream. The borders of the stronger flow regions therefore

act as an additional boundaries to upstream swimmers. Just like

the “real” boundaries, swimmers cannot cross so they accumulate

there until they are oriented away by shear or tumbles. This effect

leads to an asymmetric distribution of swimmers, with a higher

density in the right half of the channel.

Our argument implies that many swimmers that accumulate

behind the obstacle are swimming against the local flow direction.

To support this idea we calculate, as shown in Fig. 4.6, the ratio

of the number of events where a swimmer enters the accumulation

region by swimming upstream Eup to the total number of entering

events E . This ratio stays roughly constant at a high value of about

70% irrespective of the increasing external flow. This is in contrast

to the ratio of upstream swimming bacteria in the whole system

(Nup/N), which decreases monotonically with increasing external

flow. From the two curves we can conclude that the smaller num-

ber of accumulated swimmers behind the obstacle at large external

flow speeds is due to the fact that the total number of swimmers

that are capable of accumulating is reduced. The mechanism of

accumulation itself (upstream swimming into niches bordering a

surface or a strong flow region) remains unaltered despite the in-

creasing external flow.

The accumulation behind the obstacle (blue curve in Fig. 4.5)

displays a non-monotonic behavior which can be explained as fol-

lows. With a very weak external flow, the available space for the
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Figure 4.6. Blue solid line: The ratio of the number Eup of events
where upstream swimmers enter behind the obstacle to that of E events
where swimmers enter behind the obstacle regardless of their swimming
directions. Orange: The time averaged ratio of the number Nup of swim-
mers that swim upstream in the whole system to the total number N
of swimmers. A swimmer is counted as upstreaming if the x-component
of its velocity in the laboratory frame is negative. Inset: A schematic
visualization of events counted by E and Eup. Reproduced from Ref. [2]
with permission from the Royal Society of Chemistry.

swimmers to accumulate is relatively large. The number of swim-

mers reaching the rear is thus reduced, because a large fraction is

accumulated elsewhere. The accumulation exhibits a maximum

around ⟨|u|⟩ /vswim = 0.2. This value coincides with the flow

strength at which the local flow speed at the constriction becomes

larger than the bacterial swimming speed. The one way street

mechanism now leads to the maximum accumulation because the

constrictions effectively block the upstream swimmers but the over-

all flow speed is not yet strong enough to flush the swimmers. With

a further increase of the external flow strength, the size of the small

flow niche shrinks, as can be observed in Fig. 4.2. Naturally, this
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limits the accessible surface area, and therefore the accumulation

decreases.

4.3.2 Role of lateral walls on accumulation

In this section we will analyze in detail the effects that the lat-

eral walls play in the bacterial accumulation. Looking back again

into Fig. 4.2, we note the preferential accumulation of the bacte-

ria in the right half of the channel. Moreover, a significant num-

ber of bacteria accumulate on the walls regardless of external flow

strength. We argue that these accumulated swimmers on the walls

can potentially migrate to the obstacle.

Due to the geometry, the lateral walls orient the swimmers to

the ±ex directions as they slide along. The upstreaming fraction

can travel along the channel even under strong external flow, as the

no-slip boundary condition provides niches of low flow velocities.

Using this route, a swimmer can move up to the constriction with a

high probability. Behind the constriction, the streamlines fan out

and depart from the wall. This flow away from the walls causes

the bacteria to reorient and turn towards to the cylinder.

To quantify our argument, we also performed a new set of sim-

ulations in which the lateral walls were removed and replaced by

a periodic boundary condition in the y direction. To make the

new system as comparable to the one with walls, the system size is

also changed to (L,W,H) = (500 µm, 500 µm, 20 µm). In addition,

we adjusted the force densities, such that the flow velocity and

profile around the obstacle are as close as possible to the original

geometry (see the top right inset in Fig. 4.5). The total number of
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swimmers is changed from 159 to 248 to obtain better statistics.

Notice that the change in the total number of swimmers does not

affect the overall dynamics of the total system since we remain in

the low density limit.

In the absence of lateral walls, a smaller accumulation behind

the obstacle is found, except for the first two smallest external flow

conditions as represented by the red dashed line in Fig. 4.5. This

is because with a very weak external flow strength, the swimmers

can accumulate on any surface. Without the lateral walls, it is thus

natural that more swimmers accumulate at the cylinder. With a

stronger external flow strength, however, the swimmers without a

lateral confinement will only end up behind the obstacle if a tumble

happens at the right time with the right angle to allow them to

come close to the surface of the obstacle. Therefore, for most of

the time, the bacteria just follow the fluid flow.

4.3.3 Influence of swimming characteristics

In order to elucidate the influence of bacterial parameters on don-

wstream accumulation, we now vary the running duration trun. We

keep the external flow strength fixed at ⟨|u|⟩ = 0.6vswim.

In Fig. 4.7 we display the swimmer densities behind the obsta-

cle and on the lateral walls as a function of ⟨trun⟩ ∈ [0.16 s, 21 s].

Intriguingly, the swimmer accumulation behind the obstacle peaks,

and then decreases, whereas the bacterial density on the walls

monotonically increases.

When ⟨trun⟩ is very small, the behavior of the swimmers is sim-

ilar to Brownian motion of passive particles. As they change their
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Figure 4.7. The normalized swimmer density ρbehindobs /ρh behind the
obstacle (blue solid line) and ρwall/ρh on the lateral walls (orange solid
line) as a function of the swimming Péclet number Pes. Reproduced from
Ref. [2] with permission from the Royal Society of Chemistry.

direction rapidly, their swimming only leads to enhanced diffusion,

but not to persistent motion. The lack of persistent motion yields

a very small accumulation density on the boundaries.

As ⟨trun⟩ increases, the swimmers start showing an increasingly

persistent and directed motion that allows them to swim for a

sufficient amount of time to reach the boundaries.

With a large ⟨trun⟩ > 7 s, however, the situations on the walls

and behind the obstacle start diverging. This is primarily due

to the shape of the boundaries as mentioned in Section 4.3.1.

The swimmers with very high ⟨trun⟩ rarely change their directions.

Therefore, the walls can trap swimmers much longer than the con-

vex obstacle.

Fixed by the system’s geometry, we can find the optimal run-

ning duration for the accumulation behind the obstacle around
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⟨trun⟩ ∼ 4 s from Fig. 4.7. It is worth noting that the swimming

Péclet number, the ratio of the persistence length to the body size,

is not a dimensionless parameter that can capture the essential as-

pects of bacterial accumulation in porous media. This is because

the ratio of local fluid flow speed to the swimming speed also affects

the accumulation as discussed above.

4.3.4 Limits of the coarse-grained bacterial model

Our bacterial model and the simulation could reproduce qualita-

tively the preferred accumulation behind the obstacle as observed

in the experiment of Miño et al. [187], but there remains a quan-

titative discrepancy. The simulations overall yielded a smaller ac-

cumulation density around the obstacle than found in the experi-

ment. In the simulation, the swimmers were mostly washed away

when the average flow speed exceeded ⟨|u|⟩ = 1.2vswim, whereas in

the experiment, the bacteria managed to accumulate even under

a stronger external flow of ⟨|u|⟩ ∼ 2.2vswim. The difference in ac-

cumulation density was found particularly pronounced in front of

the obstacle.

We present two reasons for this discrepancy. First, the swim-

ming speed of our bacterial model was kept constant in the simu-

lation in order to achieve a better understanding of the interplay

between the local flow field and the swimmers’ motility. In the

experiment, the bacterial swimming speed distribution follows a

half-normal distribution with a standard deviation that is as large

as the mean vswim [187]. This means that numerous bacteria are

able to swim faster than vswim and therefore more of them can
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accumulate behind the obstacle at large ⟨|u|⟩.
Second, we neglected the rotation of the bacterial body around

its main axis and the counter-rotation of the flagella that causes

the bacteria to swim in circular trajectories on surfaces [180]. Cirle

swimming results in a lower effective diffusivity, and can cause the

bacteria to explore less space in a given time compared to straight

swimming. In front of the obstacle, bacteria escape the region of

small flow by swimming in any direction (except straight into the

cylinder), so only circular swimming could cause the prolonged

residence time in this area.

4.4 Conclusions

Our simulations demonstrated that motile microorganisms prefer-

ably accumulate at the downstream side of surfaces. The reason

why these surfaces are preferred over upstream oriented surfaces is

linked to upstream swimming of motile bacteria. Unlike passively

advected partcicles such as colloids, swimming bacteria can swim

against the flow until they either reach a downstream surface or

a region where the local flow speed is larger than the swimming

speed. There, they accumulate. Downstream swimming bacteria

also accumulate on upstream surfaces to some extent, but because

the flow drags them along the surface into regions with larger local

flow speed where they get washed away, this accumulation is less

pronounced.

This result is in line with the recent results reported by Alonso-

Matilla et al. [194]. In their study, they investigated the dispersion
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of swimmers in a matrix of obstacles, whose shape is systemati-

cally altered from a circle to an ellipsoid and to a triangle. They

showed that, as long as an external flow is moderate, an upstream

swimming pattern can be observed not only with circular obstacles

but also with triangular obstacles, the edges of which are pointing

to the downstream direction. This suggests that the downstream

accumulation is not restricted to a specific obstacle shape.

In the present study, the confinement by lateral walls plays a

substantial role on the swimmer accumulation behind the obstacle.

The walls generate additional zones of small fluid velocity due to

the no-slip boundary condition which provide a pathway for the

bacteria to swim upstream. This mechanism is an important ele-

ment since it allows swimmers to come closer to the constrictions,

from which the swimmers can migrate to the obstacle. The migra-

tion of bacteria from the walls to the cylinder surface is triggered

by the local shear that reorients the bacteria toward the cylinder.

This effect can only be captured by models like ours that have suf-

ficient resolution of the bacterial shape and do not reduce them to

point particles. Finally, we observe that an optimal bacterial ac-

cumulation can be achieved when the running duration is around

4 s for our geometry.

Our observations can help to design and optimize strategies to

sort and trap microorganisms. They can also reveal insights into

the physical mechanisms governing the filtration of motile bacteria

in porous media on a larger scale.
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Chapter 5

A novel model for biofilm

formation in porous media flow

This chapter contains in large parts text that is taken verbatim

from C. Lohrmann and C. Holm, “A novel model for biofilm

initiation in porous media flow”, Soft Matter 19, 6920 (2023), a

publication to which I contributed the modelling, simulations, data

analysis and writing of the manuscript draft.

5.1 Introduction

After having elucidated the intricacies of the interplay between

bacterial motility and porous media flow in the previous chap-

ter, we now continue the investigation beyond the planktonic, i.e.,

freely swimming, stage of bacterial life. A significant fraction of

bacteria in surface habitats live in biofilms [195]. As mentioned

in Chapter 4, these habitats are often porous and external flows

are relevant. This does not only affect the swimming of bacteria,

but also the initiation and formation of biofilms. They have to
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withstand the shear forces but they also benefit from flows since

they provide nutrients.

Biofilms can have profound positive and negative impact in

medical and engineering settings, see Sections 1.1.2 and 1.1.3. It is

therefore paramount to understand how fluid flow impacts biofilm

formation, and what the qualitative and quantitative consequences

are for the properties of the porous medium.

Experiments show interesting and nontrivial behaviour of bac-

teria and biofilms in porous media flow: Biofilms do not form ho-

mogeneously on all surfaces, but preferentially on the downstream

side of obstacles or corrugated surfaces [185, 187]. There can be

(visco-) elastic deformation [196] and a change of the internal struc-

ture of the biofilm [197]. Under the right conditions, streamers, i.e.,

filamentous biofilms suspended in flow, form and can cause rapid

clogging of porous structures [198, 199]. All these effects are rel-

evant in the early stages of bacterial colony formation and have

an influence on the growth of biofilms in porous media on a larger

scale [200, 201]

On the theoretical side, many models exist for bacteria and

biofilm formation with different levels of detail, e.g., individual

bacteria [202–205], cellular automata [206–209] and continuum ap-

proaches [210–213]. Often, the assumption is that the biofilm is

rigid and there is only a one-way mechanical coupling between flow

and biofilm via boundary conditions for the fluid. Also, in indi-

vidual based models, the initial positions of biofilm formation are

commonly assumed to be randomly distributed.

In this chapter, we propose a novel model that explicitly
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takes into account the influence of complex flow environments on

the initial stages of biofilm formation. In the planktonic phase, we

capture the interplay between external flow, bacterial motility and

surface adhesion, and in the biofilm growth phase we include the

influence of a flow on a soft biofilm and vice versa. Our results on

selected applications show that in both of the two bacterial phases

flow leads to nontrivial, and sometimes even counterintuitive be-

haviour.

5.2 Methods

5.2.1 Cell model

We use the bacterial cell model described in Section 3.1 with

Nbead = 5 and no explicit modelling of the flagellum as shown

in Fig. 3.1. The following sections detail the extensions of the ba-

sic cell model that enable simulations of biofilm forming bacteria

which adhere to surfaces, grow and divide.

5.2.2 Surface attachment

For simulations of biofilm formation in porous media, surface in-

teractions are crucial. For the fluid, confining surfaces are built

by using the standard bounce-back boundary condition that en-

sures no slip of fluid. The ability of lattice Boltzmann to discretise

arbitrary boundary shapes on its regular grid is one of its main

advantages and one of the reasons for its popularity in porous me-

dia research [214]. Bacteria interact with surfaces through a force
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that acts perpendicular to the surface, with magnitude depending

on the minimum distance between a particle and the boundary. We

use the short-ranged, purely repulsive Weeks-Chandler-Anderson

potential (see Section 3.1.2.1) to mimic steric repulsion. Addition-

ally, we employ a model for reversible surface attachment based on

dynamic bond creation and deletion.

In our algorithm we represent surface binding via, e.g., pili, by

bonds like the ones used in coarse-grained simulations of polymers,

i.e., distance dependent potentials between only two particles [215].

When a bacterium is attached to a surface, a “virtual” particle is

placed on the surface with which the bond is formed. The virtual

particle is fixed in space and does not interact with any other

component of the simulation. This type of anchoring is preferred

over a purely distance dependent interaction between the surface

itself and the bacteria, because the latter would allow the bacteria

to slip along the surface.

For the bond potential we have chosen a harmonic potential of

the form

V attachment(ri, ranchor,i) = kharm(|ri − ranchor,i| − rbond)2, (5.1)

where ranchor,i is the position of the anchor particle associated

with the bacterium bead i, rbond the equilibrium extension of the

bond and kharm the stiffness of the interaction. Other bonds that

resemble the experimentally measured force-elongation curve of a

pilus [216] can easily be included if that level of detail is required

or desired.

The decision of whether to form a bond is based on a stochastic

distance criterion. When a bead of a bacterium is within a certain
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range rattach of a surface, there is a probability pattach for attach-

ment and bond formation within the time step ∆t. This means

that the time to attachment, tattach, is exponentially distributed

and characterised by its mean

⟨tattach⟩ = ∆t/pattach. (5.2)

Setting pattach = 1 leads to a deterministic bond formation upon

surface contact.

The maximum number of bonds, Nanchor, formed by a single

bacterium can be chosen up to the number of beads Nbead, but at

least two are necessary to not only bind the bacterium to a surface

but also to fix its orientation.

Note that our attachment to a surface is reversible. We use a

model for detachment where the bond and the anchor particle is

removed if the distance of the bacterium bead to its anchor point

reaches a certain threshold rdetach. The distance can be reached if

viscous drag forces from a surrounding fluid act on the cell, or if

cells push each other. The maximum distance criterion is equiv-

alent to a maximum force criterion if the bacterium gets pulled

from the surface. For the harmonic potential, the maximum force

follows simply from Fdetach = kharm · (rdetach − rbond). It can be

tuned to experimental values for the attachment strength of pili to

capture the attachment capabilities of the species under consider-

ation.
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5.2.3 Cell growth and division

Once the bacteria are attached to a surface, the biofilm will grow by

growth and division of the individual cells. Assuming a sufficient

supply of nutrients, growth is exponential with a constant rate

rgrowth such that the cell length lbody follows

lbody(t) = lbody(0) exp(rgrowtht). (5.3)

The doubling time (or “generation time”) τ2 can be calculated as

τ2 = ln(2)/rgrowth.

To adapt a bacterium to a new length in the simulation, the

rod is extended by placing the beads successively further apart

from the central bead, and keeping the centre of mass fixed. This

”unphysical” movement of particles requires that the simulation

time step is small compared to the relaxation time of particles in

a dense biofilm. Only then the displacements of bacterial beads

are small enough so that there is sufficient time for the biofilm

configuration to adapt to the new length of cells before their size

is changed again.

When a bacterium grows while being attached to a surface with

an anchor as described in Section 5.2.2, the bonds will break at

some point. However, since the beads are still close to the surface,

new bonds can reform with a high probability and therefore keep

the bacterium attached. The same applies to cells at the edge of a

growing colony that get pushed by their growing neighbours.

When the bacterium size lbody reaches a threshold length

lbody, max, a division event is triggered. Upon cell division, the

parent cell is replaced by two daughter cells that together occupy
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Figure 5.1. Snapshots illustrating the growth and division algorithm.
Reproduced from Ref. [3] with permission from the Royal Society of
Chemistry.

the same space as the parent cell, see Fig. 5.1. The daughter cells

do not have exactly the same length, instead the point of division is

selected from a narrow distribution around the centre of the parent

cell. We use a uniform distribution with a width of 0.05lbody, max.

This not only represents bacterial cell division closer than an equal

splitting, but also remove the unnatural synchronisation of all sub-

sequent division events of the cell lineage.

When a cell is attached to a surface while dividing, the daughter

cells inherit the surface anchor sites at the beads that are closest

to the parent binding sites.
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5.2.4 Cell-cell interaction

Having many bacteria closely packed in a colony gives special im-

portance to the interactions between them. Obviously bacteria

repel each other at very short distances due to their excluded

volume. In colonies, bacteria secret extracellular polymeric sub-

stances (EPS) that act as an effective binder between cells and

stabilise the biofilm. With our model, we aim to find an interac-

tion potential for the bacteria that captures macroscopic proper-

ties such as the cohesive strength of the biofilm. For simplicity

we have chosen the truncated shifted Lennard-Jones potential as

introduced in Section 3.1.2.1. With σLJ fixed by the cell diam-

eter 2rbody, we can use the only free parameter ϵLJ to match a

macroscopic biofilm property as illustrated in Section 5.3.3.

5.3 Results

5.3.1 Surface attachment in flow

As a first step of surface colonisation and biofilm formation, we

simulate the attachment of bacteria to surfaces in flow. To model

the porous geometry we have chosen a staggered regular array

of cylindrical obstacles with periodic boundary conditions in all

three dimensions. The radii are Rcyl = 20 µm, and the distance

of the cylinders is 60 µm in both x− and y-direction. Figure 5.2

shows the unit cell we have simulated and the flow-field that re-

sults from requiring the mean flow velocity ⟨|u|⟩ to be twice the

swimming velocity of vswim = 25 µm s−1. Since the flow-field al-

116



a novel model for biofilm formation in porous media flow | 5

Figure 5.2. Set-up of the porous model geometry for the simulations of
cell attachment in flow. The mean (Darcy) velocity is chosen as |⟨u⟩| =
2vswim = 50 µm s−1. Solid, grey lines show flowlines, the dashed, orange
line marks where |u| = vswim. We use the angle θ to describe where
bacteria are attached on the cylinders. Reproduced from Ref. [3] with
permission from the Royal Society of Chemistry.

terations induced by planktonic bacteria are negligible compared

to the external flow, we do not run the lattice Boltzmann fluid

dynamics during the whole simulation. Instead, we calculate the

flow-field once in the beginning without added bacteria and then

keep it constant when simulating bacterial attachment.

The model parameters of the bacteria are chosen as lbody =

3 µm, rbody = 0.5 µm, Nbead = 5, ⟨trun⟩ = 1 s, ⟨ttumble⟩ = 0.1 s,

⟨cos(Θtumble)⟩ = 0.5. Since the flow-field is set constant, the to-

tal friction of the rod is additive in the number of coupling points

Nbead. Using this, the friction coefficient γ̃ is calculated such that
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the total friction of the five-bead rod matches the longitudinal

friction of a spheroidal particle (see Section 2.2.3.1) with half-axes

corresponding to lbody/2 and rbody in water with dynamic viscosity

1 × 10−3 Pa s. To investigate the low-density limit of few bacteria,

we do not consider interactions between bacteria and only focus on

their interaction with the fluid and the surfaces. We set the attach-

ment, bond and detachment range to rattach = rbond = 1 µm and

rdetach = 1.5 µm, respectively. The maximum attachment strength

is set to 200 pN, as observed for E. coli [216]. We choose pattach = 1

corresponding to instant attachment upon surface contact. In-

creasing the average attachment time up to ⟨tattach⟩ = 10 s yields

qualitatively the same results (see Appendix A.2) Note that for

the flow rate considered here, the viscous forces are not strong

enough to cause a detachment of cells.

As a starting point for the attachment simulation we choose

the steady state formed after a warm-up period of twarmup =

10Lx/vswim, where Lx is the length of the simulation domain along

the flow direction. The simulation ends when all cells are attached

to a surface. We simulated 20000 trajectories of motile bacte-

ria and the same number of trajectories for non-motile bacteria

(vswim = 0 and no tumbling) with otherwise identical parameters.

Figure 5.3 shows the distribution of attachment points on the

cylinder surface parametrized by the angle θ. The distribution for

non-motile bacteria is peaked at the side of the cylinder (θ ≈ π/2)

and at the front (θ ≈ π). It is very unlikely that they can approach

the cylinder from the downstream side, because that requires diffu-

sion against the external flow. Instead, the attachment probability
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Figure 5.3. Normalized histogram of the angular position of attach-
ment for motile and non-motile bacteria. Reproduced from Ref. [3] with
permission from the Royal Society of Chemistry.

is highest where the least amount of cross-streamline diffusion is

required to reach the surface, which is the narrow constriction be-

tween the cylinders. The same effect is observed in experimental

studies of similar geometries, but only when the flow velocity is

much larger than the bacterial swim velocity and swimming can

therefore be neglected [217]. There is also a peak of attachment

probability in the front of the obstacle. Here, the flow velocity is

low in a larger region, allowing the cells to diffuse to the surface

without being carried away by the flow.

The distribution for motile bacteria looks qualitatively differ-

ent: In accordance with the results presented in the previous chap-
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ter1 , there is a large probability for attachment on the downstream

side of the obstacles (θ < π/2) and a peak around θ = 0. Motile

bacteria can cross streamlines due to their forward propulsion and

active reorientation during tumbles, which is much more efficient

than translational and rotational Brownian motion. They can also

reach the cylinder surface from the downstream side when they

swim against the local flow. On both, the upstream and down-

stream end of the cylinders, bacterial swimming is faster than the

external flow, so given the correct orientation, they can easily reach

the surface and attach. The effect is more pronounced at the down-

stream end, because here the local flow helps the cells to stay in

the vicinity of the surface: A bacterium swimming parallel to the

cylinder away from θ = 0 is slowed down and pushed back towards

θ = 0. On the upstream side, a bacterium swimming parallel

to the cylinder away from θ = π is accelerated by the flow and

transported towards the region of high local flow, where it will

consequently be washed away. The probability of attachment is

smallest around θ = π/2, because here the local flow is high, so

that bacteria are fast and have the least amount of time to tumble

and swim to the surface.

5.3.2 Qualitative biofilm morphologies

To showcase the capabilities of our model to reproduce different

biofilm morphologies, we simulate biofilm growth in a very sim-

1It is not a priori clear that these results must be the same. In Chapter 4,

we investigated a particle density, whereas here we are interested in a first-

passage problem that can in principle yield very different outcomes.
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Figure 5.4. Biofilm morphologies obtained in different parameter re-
gions determined by maximum fluid shear rate γ̇wall, surface adhesion
strength kharm and cell-cell attraction strength ϵLJ. Only qualitative
results are shown here, exact values are listed in Appendix A.2. a)
γ̇wall = 0, intermediate kharm, intermediate ϵLJ. b) Intermediate γ̇wall,
intermediate kharm, small ϵLJ. c) Intermediate γ̇wall, small kharm, in-
termediate ϵLJ, d) Intermediate γ̇wall, intermediate kharm, intermediate
ϵLJ. Reproduced from Ref. [3] with permission from the Royal Society of
Chemistry.

ple geometry. We confine cells and fluid in z-direction between

two parallel plates with periodic boundary conditions along the x-

and y-direction. The biofilm starts from one founder cell initially

located in contact with the bottom surface. Additionally, we im-

pose a constant force f ext on the fluid along x, which results in

a parabolic flow profile in the empty channel. By varying f ext,

the biofilm cohesiveness parameter ϵLJ and the adhesive strength

determined by kharm, different morphologies are obtained. In the
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following, we discuss qualitative results in certain general param-

eter regimes, the exact parameters to obtain the results are listed

in Appendix A.2.

If there is no external flow, rotational symmetry is not broken

and a biofilm simulated on a flat surface will grow into a shape that

resembles a spherical cap as shown in Fig. 5.4a). If, however, there

is a very strong flow, or the biofilm is very soft, bacteria adhere

only to the surface and any cells that get pushed from the surface

are washed away with the flow. In this case, the biofilm consists

only of a single layer of cells, see Fig. 5.4b), but is still able to cover

the surface. The shapes shown in Fig. 5.4a) and b) bear strong

resemblance to the shapes of Vibrio cholerae biofilms grown un-

der conditions of varying levels of shear [197]. For strong flow and

cohesion but weak adhesion, the colony detaches from the surface

as a whole and grows into a sphere while being transported with

the flow, see Fig. 5.4c). The biofilm then rolls along the surface as

observed in experiments [218]. In the simple geometry considered

here, the rolling will continue until the biofilm fills the entire chan-

nel. In a more complex environment, the detached biofilm could

reach a region of smaller flow and attach to a surface there. In

the intermediate regime, where the parameters are balanced, we

can see the two-way coupling between particles and fluid as shown

in Fig. 5.4d). The biofilm grows into a slanted shape dictated by

the forces exerted from the flow. At the same time the fluid has to

flow around the biofilm that constricts the channel until it is finally

fully clogged. On the upstream end of the biofilm one can see that

the cells become ordered with a common direction perpendicular
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Figure 5.5. a) Z-cooridinate of the cylinder during retraction from
the biofilm. The color-code shows the applied stress at each iteration.
b) A circular segment detaches from the main biofilm as yield stress
is reached (cylinder not shown). c) Normalized histogram of the yield
stress. Reproduced from Ref. [3] with permission from the Royal Society
of Chemistry.

to the surface, indicating a local nematic ordering that was also

observed experimentally [197, 219].

5.3.3 Determination of model parameters

Most model parameters such as the size of the bacterium, the

growth rate, or even the maximum surface attachment force can

be obtained directly from experiments. The cell-cell interaction

strength ϵLJ, however, is a very coarse-grained quantity that im-

plicitly models complex interactions mediated by EPS. Therefore,

we need to match coarse-grained biofilm properties between ex-

periment and simulation to determine ϵLJ for the bacterial species

under consideration.

Since we want to model biofilms in environments with potential

strong local flow, rupture and detachment of biofilm parts must be
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well represented. Therefore, we propose to use the biofilm yield

stress σyield for parameter calibration. We obtain the yield stress by

performing a simulation that recreates the experiments performed

by Aggarwal et al. [220, 221].

First we simulate biofilm growth between two parallel plates.

We choose the size of the simulation domain and the distance be-

tween the plates in a way that the volume can contain approxi-

mately 1000 bacteria. This is the order of magnitude for cells in a

cohesive biofilm section we aim for in later simulations in porous

media. To ensure a flat biofilm, multiple bacteria are initially

placed on the surface. Since the experiment is performed without

external flow, we do not use the lattice Boltzmann method to sim-

ulate a flow field and instead assume a quiescent background field

with a constant friction coefficient. As soon as the volume between

the plates is filled with bacteria, the top surface is removed.

We then introduce a cylindrical boundary from the top such

that bacteria can attach to it. Its size is chosen such that around

50 cells can anchor on its base. Once the bacteria have attached,

we apply a force on the cylinder perpendicular to the surface (i.e.,

a tensile stress) and thereby pull on the biofilm. The force is in-

creased in small steps until failure is reached and the cylinder with

some broken off pieces of biofilm retracts fully. An example tra-

jectory of the cylinder position and the final state with retracted

cylinder are shown in Fig. 5.5a) and b), respectively. The expan-

sion at zero applied stress is due to the fact that the cylinder was

kept fixed during biofilm growth.

Performing this simulation for 360 random starting positions,
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we obtain the tensile strength of σyieldr
3
body/ϵ

LJ = 1.26±0.01. The

uncertainty reported here is the standard error of the mean. The

distribution of tensile strength values follows a broader distribution

with a standard deviation of around 0.21, see Fig. 5.5a). This is

because of the randomness of the length of the bacteria attached

to the cylinder: Many small (i.e. young) bacteria have a stronger

attraction to neighboring cells than few large (i.e. old) bacteria

since the density of force coupling points is bigger for small bacteria

(Nbead is constant but lbody increases with cell age).

Assuming a value of 3000 Pa for Pseudomonas aeruginosa

biofilm tensile strength [220] and a cell radius of rbody = 0.5 µm,

we determine ϵLJ ≈ 3 × 10−16 J .

5.3.4 Simulation of biofilm formation in porous media

To demonstrate the applicability of our model in a porous media

setting we simulate biofilm growth on a porous geometry similar

to the one used in Section 5.2.2. Here, we additionally confine the

computational domain with flat walls at the top and bottom of the

channel. We also simulate a larger segment of the periodically re-

peated staggered grid, because when bacteria grow and divide, the

biofilm exceeds the minimal repeating unit. Along the x-direction

we apply a force to the fluid, resulting in a flow from left to right.

We employ the full, two-way particle-fluid coupling.

In order to simulate such a system with vastly different time

scales (fast motion of the fluid, slow growth of the biofilm), we

need to scale some input parameters: Since from the perspective of

the fast-moving fluid the biofilm is always approximately at rest,
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it does not matter exactly how much slower the biofilm growth

is than the fluid flow, as long as the time scales are separated.

To bring the time scales closer, we reduce the fluid velocity in

our simulation by a factor f . This affects the Reynolds number

Re = ρ|⟨u⟩|h/µ, where ρ is the fluid density, |⟨u⟩| the average fluid

velocity, h the channel height and µ the dynamic viscosity. To

keep Re at its original value and thereby recover the original fluid

physics up to scaling, we also reduce the viscosity by the factor f .

This means that according to Eq. (2.37), the force the fluid exerts

on boundaries and the bacteria is reduced by f2. Reflecting this

change in fluid properties, we scale down ϵLJ and kharm by f2 to

recover the original physics of the biofilm-fluid interaction.

Using the parameter set listed in Appendix A.2, we show the

qualitative behaviour of the growing biofilm in porous media flow.

In the starting phase, we initialize a layer of bacteria attached to

the downstream end of a cylindrical obstacle (see Fig. 5.6, top row),

according to our observations in Section 5.2.2. While the biofilm

remains in the region of small local flow velocities, the growth is

approximately spherical. However, when the biofilm grows further

away from the surface, it encounters stronger flows which cause the

sphere to deform into an elongated filament, a process very sim-

ilar to the experimentally observed transition from bioaggregates

to streamers [217]. This filament extends downstream and upon

further growth, covers the fluid constriction between the cylinders

of the next column in the staggered grid. As the fluid cannot

penetrate the biofilm with considerable velocity, this flow path is

blocked by the biofilm. Driven by the growth pressure from in-
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Figure 5.6. Top row: Evolution of biofilm formation for downstream
seeding of the initially attached bacteria. Bottom row: Evolution for
uniform seeding. For both simulations, we use the same biofilm yield
stress σyield = 3000 Pa and initial Re = 0.6. Reproduced from Ref. [3]
with permission from the Royal Society of Chemistry.

side the biofilm that is firmly attached to the cylinders and the

top and bottom wall, bacteria now also extend into the remaining

open flow path and eventually clog the whole porous geometry.

On a qualitative level, the clogging of flowpaths and thereby redi-

rection of fluid to new flowpaths matches well with experimental

investigations [222, 223]. It is this mechanism that makes microbes

well suited for enhanced recovery of substances trapped in porous

media such as oil or contaminants.

For very soft biofilms, the dynamics are markedly different, be-

cause the shear forces do not only deform the colony, but can also

rupture it. Figure 5.7 shows an event where a piece of biofilm origi-

nally grown on the left cylinder gets detached by the flow and trans-

ported downstream to the next cylinder, where there is already a

sizeable colony formed by previous biofilm transport events. To

our knowledge, our biofilm model is the only computational model

127



5 | a novel model for biofilm formation in porous media flow

Figure 5.7. Snapshot of biofilm formation for soft (σyield = 500 Pa)
biofilm. Inbetween the central cylinders a section of biofilm is being
advected to the right. Reproduced from Ref. [3] with permission from
the Royal Society of Chemistry.

that can predict such events.

To quantify the clogging behaviour, we show in Fig. 5.8 the re-

duction of permeability K/K(0) = |⟨u⟩|/|⟨u(0)⟩|, see Section 2.3.

We keep the initial fluid velocity corresponding to Re = 0.6 for

all simulations. For comparison, we also show the permeability

reduction over time for the case where we initialize the biofilm

not on the downstream end of a cylinder, but uniformly around

the whole surface, with the same number of initial bacteria (see

Fig. 5.6, bottom row). A single bacterium as well as the total

colony grow exponentially, so the clogging behaviour is expected

to be slow in the beginning and fast in the end. For soft biofilms

(σyield = 500 Pa), there is no qualitative difference between the

two initialization methods. In both cases, biofilm growth is char-

acterised by events where sections of the biofilm detach from the

initial cylinder, get transported with the flow and attach on down-

stream obstacles, Clogging happens late, because rather than be-

ing concentrated around a few critical flowpaths, the biomass is
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more evenly distributed throughout the whole geometry.

The difference between the two initialization methods manifests

itself when stiffer biofilms are considered. Here, the permeability

curves for downstream seeding show two inflection points that are

absent for uniform seeding. In the beginning, clogging is slower for

the downstream initialized colony, because unlike the uniformly-

seeded biofilm, it grows in a region of small fluid velocity where

clogging does not have a large overall effect. The faster clogging in

the following regime is the consequence of the filament extending

into the central flow path and blocking it. Around the second

inflection point, clogging is slower again. This is due to the fact

that while the central flow path is being blocked, it will take a

longer time until the biofilm extends into the second flow path. In

the final clogging regime, the seeding method does not have a large

influence anymore, since in both cases the biofilm is well connected

to the neighbouring cylinders and the top and bottom wall. Here,

only the total volume of clogging biofilm is relevant, which is the

same for both seeding methods. Overall, clogging gets faster the

harder the biofilm is, but the effect is rather small once σyield is

large enough to keep the bacteria attached to the initial cylinder

as one cohesive colony.

The permeability does not go exactly to zero because of our

method for fluid-particle coupling: The coupling is realised by a

finite friction, so a non-moving biofilm slows down the fluid signif-

icantly, but does not constitute a perfect non-slip boundary condi-

tion as the geometrical surfaces do. In our case, we stop the simu-

lations when K/K(0) < 0.05, because after this, the permeability
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Figure 5.8. Permeability reduction as a function of time. The line color
corresponds to the biofilm stiffness quantified by the yield stress σyield,
see color bar. Solid and dashed lines indicate downstream and uniform
initial seeding of the biofilm, respectively. The shaded region denotes the
standard error of the mean over 5 statistically independent simulations,
all simulations start with Re = 0.6. Reproduced from Ref. [3] with
permission from the Royal Society of Chemistry.

does not reduce significantly anymore. Moreover, the simulations

become unstable due to the exponentially increasing number of

particles.

5.4 Conclusions

We have developed an agent-based model of bacteria for biofilm

initiation and showed how porous media flow affects all stages of

130



a novel model for biofilm formation in porous media flow | 5

colony formation. For the first stage of biofilm initiation, that is the

initial attachment of planktonic bacteria to a surface, we demon-

strate the importance of bacterial motility when determining the

likely locations of surface adhesion: Unlike passive particles, motile

bacteria can cross streamlines easily and even swim against an ex-

ternal flow. This leads to the counterintuitive phenomenon that

bacteria attach on the downstream end of obstacles rather than on

the upstream end or the narrow constrictions between obstacles,

as explained in Chapter 4.

In the biofilm growth stage, where bacteria are attached to a

surface, grow and divide, we first show the capability of our model

for soft, deformable biofilms to capture qualitative behaviour of

biofilm growth under shear conditions. We explore the different pa-

rameter regimes and find distinct morphologies: spherical growth

when there is no shear in the surrounding fluid, flat, monolayer

growth when shear is very strong, detachment of the entire biofilm

when shear is strong and adhesion weak and finally an asymmetric

growth when the biofilm and fluid parameters are balanced.

To connect our model parameter for biofilm cohesion to exper-

imentally accessible, macro-scale quantities, we perform biofilm

rupture simulations and obtained the yield stress of a bacterial

colony. For this, we let the top layer of bacteria in a biofilm attach

to a cylinder and apply an increasing force to the cylinder until it

detaches from the main biofilm. Using the parameters from these

simulations, we perform a full biofilm growth simulation in a model

porous medium with external flow. Here we show how the fluid

influences the colony shape, forming an elongated filament extend-
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ing from the surfaces into the flow. We further observe how in turn

the biofilm influences the fluid, blocking flow paths and eventually

clogging the entire porous geometry. We also show how the initial

seeding of the biofilm (uniform around an obstacle or located on

the downstream end) quantitatively changes the evolution of the

permeability over time.

All the different applications of our model show the importance

of the interplay between bacterial motility, biofilm softness and ex-

ternal flow, especially in a porous media context. With our model,

investigations of this interplay are possible because it explicitly

includes particle motility as well the possibility of biofilm defor-

mation by viscous forces applied to the colony boundary. This

represents a large step forward in biofilm modelling, where many

models do not consider the initial surface attachment at all and

treat the biofilm as a rigid boundary with only a one-way coupling

to the fluid. We thus expect that our model can be applied beyond

the cases we have shown in this article and facilitate further insight

into the rich phenomenology of biofilm growth in porous media.

We have applied our model for swimming, attaching, and grow-

ing bacteria to geometries where the typical length scale is much

larger than the size of a single cell. This is a very relevant length

scale, as many pores in the soil or the human body are big enough

to accomodate many bacteria. They have to be large enough for

biofilm formation to occur on non-metabolisable substrates, be-

cause supply of nutrients from a (larger) body of fluids is necessary

to sustain growth. However, in the planktonic stage, single bacte-

ria in their search for new, nutrient rich surfaces to colonise, might
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face much tighter confining geometries. The efficiency of different

motility strategy to facilitate this search in porous environments

with very small pores will be the focus of the next chapter.
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Chapter 6

Optimal motility strategies for

self-propelled agents to explore

porous media

This chapter contains in large parts text that is taken verbatim

from C. Lohrmann and C. Holm, “Optimal motility strategies for

self-propelled agents to explore porous media”, Phys. Rev. E 108,

054401 (2023), a publication to which I contributed the modelling,

simulations, data analysis and writing of the manuscript draft.

6.1 Introduction

For bacteria to colonise new terrain and for micro-robots to prop-

erly fulfill their (medical) function, it is important that both types

of micro-swimmers are able to traverse a highly confining, disor-

dered porous environment before reaching their target.

Self-propulsion is a necessary ingredient for the efficient ex-

ploration of such an environment, however, self-steering can im-
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prove the performance significantly. Microorganisms achieve di-

rectional control by changing the beating patterns and synchroni-

sation of their propelling cilia [224] or flagella [225, 226]. Many

basic artificial microswimmers on the other hand are unable to

steer, especially if their propulsion mechanism relies on chemi-

cal reactions [36, 227, 228]. However, progress has been made in

the control of individual artificial swimmers that are actuated by

light [229–231] or magnetic fields [232–234], endowing them with

a steering feature.

Biological microswimmers are known to possess various motil-

ity patterns [235, 236], i.e., strategies to use a combination of self-

propulsion and self-steering to navigate through their environment:

P. Aeruginosa and many marine bacteria can reverse their locomo-

tion and perform a run-and-reverse pattern in which they alternate

between forward and backward swimming [235]. Bacterium E. coli

interrupts its forward swimming mode (”run”) with reorientation

events (”tumble”), where the bacterium rotates before continuing

to swim in a new direction [84]. V. alginolyticus alternates between

swimming forward, swimming backward and flicking its orientation

by 90◦, a pattern called run-reverse-flick [237]. In the following we

will use these motility patterns as a starting point to investigate

optimal strategies for porous media exploration and navigation.

The spreading behaviour of active particles with different motil-

ity patterns has been well studied in unconfined fluids [238] and

weakly confined environments [13]. Diffusive properties under

strong confinement have also been the subject of a number of

experimental and theoretical works: Zeitz et al. investigated in
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detail the mean-squared displacement of disk-like active Brownian

particles in a porous environment close to the percolation thresh-

old [191]. Bhattacharjee & Datta tracked E. coli cells in three-

dimensional porous media and found that the bacterial trajecto-

ries cannot be identified as run-and-tumble anymore. Instead, they

identified a sequence of hopping events through the channels, with

the bacteria being intermittently trapped in small pores [239, 240].

Theoretical studies of run-and-tumble-swimmers in porous media

find a maximal effective diffusivity by optimizing the duration of

runs for specific pore configurations [241–244]. Similarly, numeri-

cal simulations of run-and-reverse-swimmers show that the optimal

run length can be inferred from the distribution of the lengths of

straight paths in a porous medium [245].

While the aforementioned works have optimized the parame-

ters of specific patterns for porous media exploration, in this chap-

ter, we will attempt to optimize the motility pattern itself. We

study the qualitative features of different patterns when used by

otherwise identical agents in various three-dimensional, disordered

environments. We cover the range of all relevant pore sizes from

bulk fluid to confinement ranging down to the size of the micro-

swimmer. Using the insights gained from our analysis of biologi-

cally inspired motility patterns, we develop a new pattern which

requires the agents to be capable of sensing whether they are

trapped or not. This pattern, which can be deployed by artificial

autonomous self-propelled agents, performs best across all inves-

tigated environments, and can be a basis for developing further

optimal navigation strategies.
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6.2 Methods

6.2.1 Agent model

We use the bacterial cell model described in Section 3.1 with

Nbead = 5 as shown in Fig. 3.1 to represent the agents. In the

following, we refer to the micro-swimmers as “agents” because our

results apply to bacteria as well as to artificial swimmers. For this

study, we do not consider hydrodynamic fields because the agents’

dynamics in tightly confining geometries are dominated by steric

interactions rather than hydrodynamic interactions. As such, we

do not use any lattice Boltzmann or particle-fluid coupling and

instead apply the “dry” model outlined in Section 3.2.1. We want

to investigate the single-swimmer, low density limit behaviour of

active agents and therefore do not consider interactions between

agents. Agents do however interact with their environment as de-

tailled in Section 6.2.3.

6.2.2 Motility patterns

We create motility patterns by combining phases of self-propulsion

and self-rotation, prescribing the durations of the phases and their

temporal sequence. In the following, we list the algorithms of

the patterns used in this study, example trajectories are shown

in Fig. 6.1.

▶ Straight swimming

A constant force along the symmetry axis is applied, there is no

active rotation. The only source of randomness in the trajec-

138



optimal motility strategies for self-propelled agents to

explore porous media | 6

0 200 400 600 800 1000 1200
x [µm]

−400

−200

0

200

y
[µ

m
]

a) straight swimming

−50 0 50 100 150 200
x [µm]

−50

0

50

y
[µ

m
]

b) run-and-reverse

−100 0 100 200 300 400
x [µm]

−100

0

100

y
[µ

m
]

c) run-and-tumble

−100 −50 0 50 100
x [µm]

0

25

50

75

100

125

y
[µ

m
]

d) run-reverse-flick

0

10

20

30

40

50

60

t
[s

]

Figure 6.1. Two-dimensional projections of example trajectories with-
out confinement for the four biologically inspired motility patterns. The
pictograms (not to scale) show the phases involved in the respective pat-
tern, i.e., forward swimming, backward swimming and rotation. The
trajectory for reverse-when-stuck is not depicted, as this pattern reduces
to straight swimming if there are no pores to get trapped in. For eas-
ier distinction, the temperature is reduced by a factor of 60 compared
to the simulations used in our analysis. Reproduced from Ref. [4] with
permission from the American Physical Society.

tory is the translational and rotational diffusion. Aside from the

anisotropic shape of the self-propelled agent, this pattern is an

implementation of a 3D active Brownian particle (ABP).

▶ Run-and-reverse

With this motility pattern, agents swim at constant speed vswim

(”run”) but can reverse their swimming direction, realised by a

change in sign of the self-propulsion velocity vswim → −vswim. The
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reversal algorithm thus implies that agents reverse their swimming

propulsion and not the direction of their body, in accordance with

observations in nature [246, 247]. No active torques are applied.

The durations trun of runs are commonly found to be exponentially

distributed for bacteria [248, 249], therefore we draw them from an

exponential distribution, Eq. (3.6). The only adjustable parameter

of the run-and-reverse pattern is ⟨trun⟩.

▶ Run-and-tumble

We implement run-and-tumble according to Section 3.2.3.

▶ Run-reverse-flick

This motility pattern can be found in marine bacteria V. algi-

nolyticus [237] and combines elements from run-and-reverse and

run-and-tumble. Here, runs (of exponentially distributed dura-

tions trun) are interrupted by both, reversals and flicks. A flick is

a tumble with a constant angle Θflick = π/2 and duration tflick.

Reversals and flicks occur in alternating fashion.

▶ Reverse-when-stuck

Leaving the realm of motility patterns that occur in nature, we pro-

pose a hypothetical optimal pattern for porous media navigation

that combines straight swimming and reversals. For this pattern,

the agent must be endowed with sensing capabilities, a way to store

a memory over a limited amount of time, and an intelligence unit

to make simple decisions. Together, these capabilities enable smart

reactions to the environment beyond following a predetermined or-

der of self-propulsion and -rotation. Using a position sensor, the

agent constructs a memory of its trajectory within a time frame
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tmemory. If it did not move more than one body length lbody in that

time, a reversal is triggered. Upon reversal, the memory is reset.

This algorithm is used as a representative of the whole class of

motility patterns in which the agent is able to sense if it is stuck in

a pore. A position sensor is not necessarily required, agents could

also obtain this information from a sensor for swimming speed.

Mechanical sensors on the agent body or propulsion mechanism

such as the ones found in bacteria [250] could determine a trapped

state as well.

6.2.3 Porous media model

Inspired by the experimental setup of Bhattacharjee & Datta [239],

we model the porous environment with overlapping spheres of ra-

dius Rsphere = 15rbody. The spheres are placed randomly through-

out the simulation box and fixed in space for the entire duration

of the simulation. An example is shown in Fig. 6.2.

As an approximation of hardcore repulsion, all individual par-

ticles of the swimmer rods interact with all spheres with a shifted

WCA potential

V (r) =4ϵLJ

[︄(︃
σLJ

r −Rsphere

)︃12

−
(︃

σLJ

r −Rsphere

)︃6

+ ϵLJ

]︄
×H(Rsphere + rbody − r), (6.1)

where r is the distance between the particle and the sphere cen-

ter, σLJ = 2−
1
6 rbody and all other parameters have an inter-

pretation analogous to the “standard” Lennard-Jones potential.
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Figure 6.2. A two-dimensional slice through a typical randomly gen-
erated porous geometry with mean pore radius rp ≈ 2.6 µm. The colors
indicate the local thickness, a measure for the pore size, see main text.
Reproduced from Ref. [4] with permission from the American Physical
Society.

The reason we do not use the unmodified WCA potential intro-

duced in Section 3.1.2.1 is that with the distance offset introduced

here, the stiffness of the potential is independent of the sphere

radius Rsphere. Because Rsphere ≫ rbody, a comparatively large

σLJ ≫ rbody would be required in the unmodified Lennard-Jones

potential which would make the interaction “soft” on the scale of

an agent. All simulations are performed in a cubic, L × L × L

domain with periodic boundary conditions, where L denotes the

simulation box size. The control parameter for the porous geom-

etry is the number of spheres. To analyse the porous geometry,
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we first use the positions of the spherical obstacles to generate a

binary image of the pore space at a resolution of ∆x = 0.25 µm.

Then we use the porespy [251] python package to obtain quanti-

tative measures such as porosity ϕ, local thickness τ(r), and the

pore size distribution. The local thickness represents the radius of

the largest sphere that contains the point r and fits entirely in the

void space between the obstacles as seen in Fig. 6.2. The mean

pore radius rp is determined by calculating the mean of τ(r) in the

regions where it is non-zero.

6.2.4 Parameter choice

To compare the motility patterns against each other, we choose

the same physical parameters for all simulations: lbody = 2 µm,

rbody = 1/3 µm, vswim = 28 µm s−1, T = 300 K, µ = 8.9×10−4 Pa s,

Rsphere = 5 µm, ϵLJ = kBT and L = 80 µm. In Appendix A.3 we

report effective diffusivities for Rsphere = 10 µm. The results are

in very good agreement with Fig. 6.4, hinting at the independence

of our conclusions from the details of the porous medium model.

Unless noted otherwise, we set the average run times for run-and-

reverse, run-and-tumble and run-reverse-flick to ⟨trun⟩ = 1 s, the

average time of rotation for run-and-tumble and run-reverse-flick

to ⟨ttumble⟩ = tflick = 0.1 s and the memory time for reverse-when-

stuck to tmemory = 1 s. For run-and-tumble, we set Drot, tumble =

5 s−1, which results in ⟨Θtumble⟩ ≈ 56◦, close to values observed in

E. coli [84]. These might not be the optimal parameters for each of

the patterns for all pore sizes, but they serve as a common ground

for the evaluation of the pattern performance.
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For agents of this size at the density of water ρwater = 1 ×
103 kg m−3, the diffusive relaxation time τ t = m/γt ≈ 7× 10−8 s is

very small compared to all other timescales of the system. Follow-

ing Section 3.2.4.2, we choose ρ = 105ρwater, allowing time steps

∆t = 15δt = 5×10−3 s. Simulations are performed with N = 100

agents and run for T = 6000 s to collect a sufficient amount of

stochastic data, with an additional 600 s warm-up phase before

data collection starts. They are repeated Nensemble times with

different random seeds, i.e., different geometries, particle starting

positions and noise realisations. Error quantifications shown in

the following sections represent the standard error of the mean

over different simulations.

6.3 Results

6.3.1 Effective diffusivity

From the scale of the different trajectories in Fig. 6.1 one can

already get a qualitative understanding of how efficient agents can

explore unconfined spaces depending on the strategy they employ.

To quantify the efficiency of exploration in both, unconfined space

and porous media, we calculate the mean-squared displacement

(MSD)

MSD(t) =
1

N

N∑︂
i=1

1

T − t

∫︂ T −t

0

⃓⃓
ri(t

′ + t) − ri(t
′)
⃓⃓2

dt′ , (6.2)
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Figure 6.3. Mean-squared displacement of the run-and-reverse pattern
at various mean pore sizes rp. The black lines indicate different scaling
behaviours as a guide to the eye. Reproduced from Ref. [4] with permis-
sion from the American Physical Society.

where T is the duration of the simulation, and ri the center of

mass position of agent i1.

An example for run-and-reverse is shown in Fig. 6.3. It con-

tains the qualitative features that are present in the MSDs for all

motility strategies: For short timescales it is super-diffusive with

MSD(t) ∼ t2, where the ballistic contribution of self-propulsion

dominates over random motion and interactions. For intermediate

timescales there is a sub-diffusive regime, i.e., MSD(t) ∼ tα with

α < 1. This is a result of trapped agents that spend significant

time not moving in narrow pores, waiting for a random event to

1To approximate the ensemble average of the theoretical MSD definition

from Section 2.1, we use an average over time and different trajectories.
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allow them to escape. For long timescales, the motion is diffusive,

i.e., MSD(t) ∼ 6Dt
efft with an effective diffusion coefficient Dt

eff.

This holds true without confinement, and also in porous media as

long as the confinement is not strong enough to prohibit agents

from moving altogether. We use Dt
eff as the key metric to rank the

different motility patterns.

Figure 6.4 shows Dt
eff as a function of mean pore radius rp of

the confining geometry. Without confinement (mean pore radius

rp → ∞), straight swimming leads to a larger effective diffusion

than any of the other patterns, but only by a factor of about 2

to 3. This ratio is quite small considering that there are active

reorientations in the other motility patterns while for the straight

swimmers the rotational diffusion is the only source of deviation

from ballistic motion. Due to the small size of the particles, rota-

tional diffusion has a strong effect on swimming regardless of the

specific pattern: From the rotational friction coefficient γr follows

the typical timescale τ rcorr for rotational diffusion via the Einstein-

Smoluchowski relation

τ rcorr =
1

2Dr
=

γr

2kBT
, (6.3)

see Section 2.1.2.3. For the parameters of the agents simulated

here, we obtain τ rcorr ≈ 0.7 s. This timescale is comparable to

the typical time ⟨trun⟩ = 1 s between active reorientations in non-

straight swimming patterns, causing the relatively small ratio of

Dt
eff between the patterns when there is no confinement. For bigger

agents or flagellated bacteria, where τ rcorr is typically much larger

than ⟨trun⟩, the difference in free-space diffusivity between straight
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Figure 6.4. Solid, colored lines, left axis: Effective diffusion coefficient
Dt

eff as function of average pore size for all motility strategies. Dashed,
grey line, right axis: Connectedness of the accessible void space mea-
sured as the fraction of the void space occupied by the largest connected
region with local thickness τ(r) > rbody. The shaded areas denote one
standard error of the mean over Nensemble = 7 statistically independent
simulations. Reproduced from Ref. [4] with permission from the Ameri-
can Physical Society.

swimming and the other patters would be greater.

In the absence of obstacles, the effective diffusion coefficient

of the straight swimmer can be calculated analytically, see Sec-

tion 2.1.4.2, and reads

Dt
eff, ABP =

kBT

γt
+

1

3
τ rcorrv

2
swim. (6.4)

Here, we obtain Dt
eff, ABP ≈ 183 µm2 s−1 as confirmed in Fig. 6.4.
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Without confinement, the other patterns show a smaller effec-

tive diffusivity than the straight swimmers, because in addition

to rotational diffusion, they use active reorientations. Since for

run-and-tumble the average reorientation angle is ⟨Θtumble⟩ ≈ 56◦,

it results in more persistent motion than run-and-reverse with a

reorientation angle of 180◦. Run-reverse-flick performs slightly bet-

ter than run-and-reverse because the flicks lead to less retracing of

the trajectory compared to reversals.

For decreasing pore size, i.e., stronger confinement, agents that

employ straight swimming are the first to become ineffective at

navigating through their environment. Even though the porous

geometry is made of spheres, i.e., convex surfaces, overlap between

them can generate concave pore shapes in which elongated swim-

mers get stuck. Straight swimmers have to rely on thermal motion

to randomly reorient themselves away from such pores to escape.

Escapes are additionally hindered by the constant forward propul-

sion that drives them into the pore, such that translational dif-

fusion is very unlikely to lead to a displacement out of the pore.

The occurrence of concave, trapping pores happens at porosities

where the average pore radius is still much larger than the size of

the swimmer. Only a few of such pores significantly decrease the

effective diffusivity because straight swimmers can get trapped for

long durations.

The next pattern to become ineffective is run-and-tumble, but

there is a range of pore sizes where run-and-tumble outperforms

straight swimming. Here, tumble events make it possible to escape

from pores where rotational diffusion is not strong enough to lead
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to sufficient reorientations. Since the tumble angle is drawn from

a distribution over [0, π], there is a probability for tumbles with

Θtumble > π/2, pointing the swimmer out of the pore and back

to an open channel. Yet, the pore size at which run-and-tumble

becomes ineffective is still significantly larger than that of run-

reverse-flick or run-and-reverse. This is because swimmer reorien-

tation and pore escape requires rotation of the elongated swimmer

body in space, which can be suppressed by confinement. To il-

lustrate this point, we show the probability density of attempted

tumble angles Θtumble and the actual angle Θ∗
tumble between start

and finish of a tumble in Fig. 6.5 for one typical simulation.

Without rotational Brownian motion or obstacles, there would

only be non-zero values on the angle bisector of the coordinate

axes with magnitude according to the distribution of attempted

tumble angles. However, in porous confinement, the deviation

from Θtumble = Θ∗
tumble is strongly asymmetric with the majority

of actual tumble angles happening close to zero. Most tumbling,

especially for larger angles, is suppressed by confinement, leaving

agents trapped in pores despite their attempts to escape. To quan-

tify this effect, we show the average actual tumble angle ⟨Θ∗
tumble⟩

for different mean pore sizes in Fig. 6.6. The suppression of tum-

bles with decreasing mean pore radius starts around rp ≈ 5 µm,

the same value where Dt
eff begins to drop significantly for run-

and-tumble agents. We note that at this mean pore size, only a

relatively small fraction of pores has a smaller diameter than the

length lbody of an agent (orange curve). It is enough to cause a sig-

nificant deviation of Θ∗
tumble from the target tumble angle Θtumble
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Figure 6.5. Joint probability density of attempted tumble angle Θtumble

and actual tumble angle Θ∗
tumble between start and end of a tumble at

mean pore radius rp ≈ 2 µm. The black line indicates Θ∗
tumble = Θtumble.

Reproduced from Ref. [4] with permission from the American Physical
Society.

because self-propelled agents are much more likely to encounter

the small, trapping pores than passive particles would be: Active

agents tend to be in contact with surfaces over long periods of time

and slide along the pore walls due to their persistent motion. This

increases the chance of entering a location of strong confinement.

Run-and-reverse and run-reverse-flick swimmers can explore

environments with average pore sizes ranging down to the size of

a single agent. This is not only because of the large probability of

reversal events (certainty for run-and-reverse, 50% for run-reverse-

flick), but also because they lead to a guaranteed pore escape,
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Figure 6.6. Two dimensionless quantities as a function of the mean
pore size. Blue: The mean actual tumble angle ⟨Θ∗

tumble⟩ normalized
by the mean attempted tumble angle ⟨Θtumble⟩. Orange: The fraction
of pores smaller than the agent size, i.e., with τ(r) < lbody/2. The
shaded areas denote one standard error of the mean over Nensemble = 7
statistically independent simulations. For further explanations, see the
main text. Reproduced from Ref. [4] with permission from the American
Physical Society.

unlike large tumble angles with run-and-tumble. For example, a

tumble with Θtumble = π is not equivalent to a reversal event in

run-and-reverse. In the former, there needs to be enough space to

allow the rotation of the swimmer body whereas in the latter, the

propulsion is reversed without affecting the swimmer orientation.

Run-reverse-flick reduces to run-and-reverse because flicks are geo-

metrically suppressed just as tumbles are. Its effective diffusivity is

slightly larger than that of run-and-reverse because the smaller fre-

quency of reversals allows the agents to move faster through open
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channels inbetween trapping pores. Both patterns become inef-

fective at porous media exploration only when the available void

space becomes disconnected and motion is only possible within a

finite volume. To quantify this, we calculate the volumes of con-

nected regions with local thickness τ(r) > rbody. The dashed grey

line in Fig. 6.4 shows the ratio between the volume of the largest

of these regions and the total void space Vvoid = ϕL3, where ϕ is

the porosity of the porous geometry and L the length of the cubic

simulation domain. There is only one such region for rp ≳ 2 µm,

but around rp ≈ 1.5 µm the void space splits into many smaller

regions such that even for the larger ones there can be no more

percolating motion through the simulation box.

Kurzthaler et al. [245] find that there is no significant difference

between the effective diffusivity of run-and-tumble and run-and-

reverse in porous media. However, their implementation of run-

and-tumble includes a 50% chance of reversing when tumbling,

so we would classify that pattern as run-and-tumble-or-reverse.

According to our observation of suppressed tumbles, this pattern

will reduce to run-and-reverse when sufficiently confined, at which

point our results are in agreement with theirs.

Run-and-reverse and run-reverse-flick are the best biologically

inspired patterns for porous media exploration at very small pore

sizes, but they do not perform well for larger porosities, where

straight swimming is optimal. This inspired the creation of

the reverse-when-stuck pattern, combining the best features of

straight swimming and run-and-reverse, especially propulsion re-

versal without rotation of the swimmer body. As expected, it
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results in the largest effective diffusivity and therefore best ex-

ploration efficiency over the whole range of pore sizes. At very

small pore sizes, reverse-when-stuck performs better than run-and-

reverse and run-reverse-flick, because the agent only performs re-

versals when they are needed for pore escape. When it has found

an open channel through the porous medium, it follows that chan-

nel until it gets stuck at the end without being interrupted by a

randomly triggered reversal event.

6.3.2 Run time variation

While the previous section focused on the influence of confinement

on the dynamics of agents with fixed parameters, we now explore

the influence of motility strategy parameters with fixed level of con-

finement. We assume the agents’ shape and propulsion speed to be

given and vary only the internal parameters that are directly linked

to the strategy. We choose the run time parameter ⟨trun⟩ for com-

parison as it is common amongst the biologically inspired patterns

run-and-reverse, run-and-tumble and run-reverse-flick. We do not

change tumble or flip parameters, because they interpolate between

straight swimming and run-and-tumble as well as between run-and-

reverse and run-reverse-flick, and we want to preserve the essen-

tial features of each motility strategy. Simulations are performed

at three levels of confinement rp ∈ {2 µm, 4 µm, 6 µm} where we

expect to see the most geometry-related differences between the

motility strategies. The results are shown in Fig. 6.7.

All motility strategies perform very badly with ⟨trun⟩ → 0, as

in this limit, agents reduce to particles without active propulsion
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Figure 6.7. Effective diffusion coefficient as a function of mean run
time. Colors denote the motility stategy. Solid, dashed and dotted lines
correspond to different mean pore sizes. The shaded areas denote one
standard error of the mean over Nensemble = 5 statistically independent
simulations. Reproduced from Ref. [4] with permission from the Ameri-
can Physical Society.

that rely solely on thermal diffusion for exploration of their envi-

ronment.

For the largest mean pore radius rp = 6 µm, run-and-tumble is

most efficient for short mean run times ⟨trun⟩ ≲ 7 s. In this regime,

agents perform active reorientations frequently, so they spend more

time swimming through open channels in the porous medium than

being trapped. Here, run-and-tumble agents benefit from larger
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persistence than the patterns with reversals. However, tumbles are

less likely to lead to an escape from narrow pores than reversals.

This is why with increasing ⟨trun⟩, the effective diffusivity for run-

and-tumble reaches its maximum earlier and at a lower value than

the effective diffusivity of the other two patterns. For long mean

run times, swimmers spend more time trapped than swimming

freely due to less frequent escape attempts. Pore escape efficiency

becomes more important than large persistence in open channels,

so run-and-reverse and run-reverse-flick perform best. In the limit

⟨trun⟩ → ∞, all motility patterns reduce to straight swimming

and must have the same Dt
eff. In our simulations, this limit will

be reached only at mean run times ⟨trun⟩ ≫ 2000 s, far beyond

biologically reasonable timescales.

For intermediate and tight confinement (rp = 4 µm, 2 µm), the

same qualitative behaviour is observed. However, because open

channels are fewer and shorter, and trapping pores are encoun-

tered more often, pore escape by motility reversal becomes more

relevant at smaller ⟨trun⟩. At rp = 4 µm, run-and-tumble shows

only a marginally larger effective diffusivity than run-and-reverse

and run-reverse-flick for ⟨trun⟩ ≲ 0.7 s. For larger mean run times,

the performance is significantly worse. This mean pore size coin-

cides with the rp at which tumbles are still possible, but begin to

be suppressed, see Fig. 6.6, reducing the efficiency of pore escape.

At rp = 2 µm, run-and-tumble agents are not able to explore the

medium at any mean run time, as tumbling is completely sup-

pressed.

The nonmonotonic behaviour and shift in the maximum of Dt
eff
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for all motility patterns was observed and explained for run-and-

reverse in Ref. [245]: When the length of free paths in the porous

medium coincides with the average run length lrun = ⟨trun⟩ vswim,

the effective diffusivity is optimal. Deviations lead to a decrease in

Dt
eff, either due to premature cancellation of a run phase that could

have followed a free path for a longer time or due to long trapping

times that could have been avoided by more frequent reversals.

In general, these observations support the qualitative conclu-

sions drawn from the simulations performed at fixed ⟨trun⟩. For

all three levels of confinement, the ranking of motility strategies

remains the same for small ⟨trun⟩. However, by tuning the run

length, run-and-reverse agents can outperform run-and-tumble

agents. We therefore suggest that if manufacturing or genetically

creating a reverse-when-stuck agent is not feasible, optimizing a

run-and-reverse swimmer is the best choice when creating an agent

for porous media exploration.

6.4 Conclusions

We have performed Langevin dynamics simulations of rod-shaped,

self-propelled and self-steered agents with various motility patterns

in porous model geometries spanning a large range of porosities and

pore sizes. By quantifying their long-time, effective diffusivity, we

evaluated their ability to explore these porous environments: At

high porosity, i.e., large pore sizes, straight swimming performs

best due to the absence of active rotation. At intermediate pore

sizes, run-and-tumble has the largest effective diffusivity. Here, the
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agents can escape the pores by tumbling, which straight swimmers

cannot, and they can explore the larger pore spaces with a more

persistent motion than run-and-reverse or run-reverse-flick. At

very small pore sizes, rotation of the rods is suppressed by confine-

ment, causing run-and-tumble swimmers to get stuck and prevent-

ing run-reverse-flick swimmers from flicking. In this regime, run-

and-reverse and run-reverse-flick swimmers can still escape small

pores because their reversal mechanism enables them to reverse

propulsion without rotation of the agent itself, making them the

only viable strategies in tight confinement. By optimizing the run

length of the different motility strategies and thus exhausting the

full potential of each pattern, we find that in all geometries inves-

tigated, run-and-reverse can surpass the other strategies, making

it the optimal biologically inspired motility pattern considered in

this study.

These results prompted us to develop a motility pattern that

outperforms the biologically inspired patterns by endowing the ac-

tive agents with memory and the ability to sense position (or ve-

locity) for some time span, and an intelligence feature that makes

a decisions based on this memory: If the agent only reverses when

it is stuck, defined as not moving more than its own length in its

memory time, it can optimally explore open channels in the porous

geometry while still being able to escape trapping pores.

With or without intelligence, we suggest that being able to re-

verse propulsion without rotation of the agent itself should be a

high priority when designing active micro-agents for medical and

engineering applications in confined spaces. Only with this ability
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they can efficiently navigate the inevitably porous geometries in

which they are deployed. After all, the need for miniaturisation of

agents in these applications arises from the highly confined envi-

ronments in which their tasks are to be performed. Furthermore,

our results can serve as a basis for developing other optimized nav-

igation strategies for specific environments.
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Chapter 7

Influence of bacterial swimming

and hydrodynamics on infection

by phages

This chapter contains in large parts text that is taken verbatim

from C. Lohrmann, C. Holm, and S. S. Datta, “Influence of bacte-

rial swimming and hydrodynamics on attachment of phages”, Soft

Matter 20, 4795 (2024), a publication to which I contributed the

modelling, simulations, data analysis and writing of the manuscript

draft.

7.1 Introduction

For the next investigation of motile bacteria in complex environ-

ments we turn to an environment where the complexity does not

stem from confining geometries, but rather from other particles

suspended in the same fluid as the bacteria. As introduced in

Section 1.2.4, bacteriophages play an important role in bacterial
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ecology in nature, but also have a great prospect for medical use.

Extensive research has focused on documenting various bio-

logical and chemical factors that influence interactions between

bacteria and phages; nevertheless, the basic physical processes un-

derlying how bacteria encounter and thereby become infected by

phages in the first place remain poorly understood. For example:

How does swimming influence the rate at which bacteria en-

counter and become infected by phages, if at all? Despite its

apparent simplicity, this question still does not have a clear an-

swer [252]—even for the illustrative, idealized case of a cell swim-

ming at a constant velocity vswim in an unbounded, uniform,

Newtonian fluid at low Reynolds number. One might expect

that the rate at which the cell is infected by phages simply in-

creases proportionately with its swimming speed as it explores

more space [253]; however, this expectation does not consider the

complex flow field generated by the bacterium around itself as

it swims, which can advect surrounding phages in a non-trivial

manner [254]. The importance of these hydrodynamics is high-

lighted by examining the Péclet number comparing the character-

istic rates of phage transport by fluid advection and thermal diffu-

sion, Pephage ≡ vswimrbody/D
t
P, which exceeds unity for typical val-

ues of the bacterial swimming speed vswim ∼ 10−100 µm s−1, size

rbody ∼ 1 µm, and phage diffusivity Dt
P ∼ 1−10 µm2 s−1. Hence,

the rate at which a bacterium encounters and becomes infected by

phages is likely highly sensitive to the nature of the flow field it

generates by swimming.

In a classic study [255], Berg and Purcell examined the in-
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fluence of these hydrodynamics by treating the swimming bac-

terium as an externally-driven sphere. Building on prior calcula-

tions [256, 257], the authors concluded that because the cell pushes

fluid around it as it moves, “motility cannot significantly increase

the cell’s acquisition of material”, and the phage infection rate

only increases sublinearly with swimming speed. However, while

instructive, this analysis neglects two crucial features of flagellated

bacteria—which are not uniform spheres, but are typically com-

prised of an elongated cell body driven by an adjoined elongated

flagellar propeller. First, it is now well known that many such

bacteria (including E. coli, Bacillus subtilis, and Salmonella en-

terica) are force-free “pushers”: Each cell pushes on surrounding

fluid with an equal and opposite force to the one generated by its

flagella as it swims [254, 258, 259]. As a result, the fluid boundary

conditions are distinct for the cell body and the flagella, and phage

infection rates may thus differ considerably between the two. Sec-

ond, the flow field away from a swimming bacterium has a dipolar

shape with a fluid velocity magnitude |u| that decays with distance

r away from the cell as ∼ 1/r2, see Section 2.2.3. This qualitatively

different from the longer-ranged |u(r)| ∼ 1/r decay characteristic

of a driven sphere. How these two features influence the man-

ner in which swimming bacteria encounter and become infected by

phages is as yet unknown.

Here, we address this gap in knowledge using simulations of

a “pusher”-type bacterium swimming through a fluid containing

uniformly-dispersed phages. We use particle-resolved molecular

dynamics to explicitly treat the cell body, flagellar propeller (here-
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after referred to as the flagellum for convenience), and individual

phages, all of which are coupled to and interact via an underly-

ing fluid which we simulate using a lattice Boltzmann algorithm.

We find that while swimming increases the rate at which the cell

body is infected by phages, the dipolar flow thereby generated ad-

vects phages away from the forward-facing “head” of the cell body,

thereby suppressing this increase by as much as twofold—as sug-

gested by Berg and Purcell. However, this dipolar flow field also

pumps phage-containing fluid to the flagellum. As a result, the

phage infection rate at the flagellum is appreciable and increases

nearly linearly with swimming speed, in stark contrast to the find-

ings of Berg and Purcell. Altogether, our work suggests that while

the fluid flow generated by swimming helps to protect the bac-

terial cell body from phages, it promotes phage infection at the

flagellum—an effect that, to the best of our knowledge, has been

overlooked in previous work. This effect may be exploited by flag-

ellotropic phages, i.e., phages that initiate infection by attaching

to the host flagellum, which are increasingly being recognized as

key constituents of natural microbial communities and potentially

useful therapeutics against pathogenic bacteria [117, 260]. More

broadly, our findings highlight the pivotal influence of hydrody-

namics on the interactions between bacteria and phages, as well as

other diffusible species in microbial environments.

7.2 Methods
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7.2.1 Model for phages and bacteria

▶ Phages

For simplicity, we treat phages as uniform spherical particles with

radius rP. Their motion in three spatial dimensions is described by

Langevin dynamics. Phages do not swim actively, so we use the

equation of motion 2.1 for passive particles. Furthermore, since

they are assumed to be spherical, their rotational dynamics can be

neglected. Phages are coupled to an underlying lattice Boltzmann

fluid according to Section 2.2.4.6 and thus interact hydrodynami-

cally with other phages and bacteria. Our focus here is on phage-

bacteria encounters, and we therefore do not consider any explicit

phage-phage interactions.

▶ Bacterium

The model for the cell body is a geometric refinement of the basic

model described in Section 3.1. We use the basic model and a WCA

potential for interactions with phages, i.e., σLJ = 2−1/6(rbody+rP).

In addition, we introduce fluid coupling points on the surface of the

cell body as shown in Fig. 7.1, increasing the number of raspberry

particles with respect to the model used in the previous chapters.

These additional coupling points do not interact with phages, but

are coupled to the underlying lattice Boltzmann fluid to better

represent the surface of the cell. The addition is necessary because

we will consider fine lattice Boltzmann grids to accurately resolve

the flow field generated by bacterial swimming.

We model the volume of the flagellar bundle by particles

that interact with phages through a WCA potential with σLJ =
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Figure 7.1. Rendering of our rigid-body, coarse-grained molec-
ular dynamics model of a swimming bacterium. Large green and
medium blue spheres comprise the cell body and flagellum, respectively.
Small, darker green spheres mark the locations of particle-fluid coupling
points. Small gray spheres represent phages dispersed in the surrounding
fluid. Reproduced from Ref. [5] with permission from the Royal Society
of Chemistry.

2−1/6(rflag+rP), where rflag denotes the radius of the flagellar bun-

dle. The fluid coupling of the flagellar particles follows the mod-

elling principles for “wet” swimming as outlined in Section 3.2.2.

This model represents a coarse-grained picture of a swimming

bacterium that does not take into account the helical geometry of

a flagellum or the intricate inner structure of a flagellar bundle.

Rather, it seeks to capture four essential features of the bacterial

flagellar bundle: it is permeable to fluid, exerts a force on the fluid,

occupies a non-zero volume, and crucially, phages can attach to it.

164



influence of bacterial swimming and hydrodynamics on

infection by phages | 7

7.2.2 Model of phage infection

We consider a phage as being in contact with the bacterium (ei-

ther the cell body or flagellum) if the surface-to-surface distance

is smaller than a prescribed encounter distance denc. Once it con-

tacts the bacterium, the phage attaches and infects the cell at a

rate katt, which is a lumped parameter that describes the complex

process of binding to specific receptors [261, 262]. As we show

below, the overall qualitative insights that result from our simula-

tions are insensitive to the specific choice of katt. In our model, this

attachment step completes the infection; because our focus is on

the purely physical processes underlying phage encounter and in-

fection, we do not consider the subsequent biological steps needed

for the phage to actually insert its genetic material into the cell.

In our time-discretised numerical implementation, we check for

phages in contact with the bacterium after every successive time

interval ∆t. For such contacting phages, we calculate the attach-

ment probability pattach = ∆tkatt. Based on this probability, using

a random number generator, we choose whether the phage remains

free or it successfully attaches and infects the cell. If infection

happens, we register the time and relative position of the phage

encounter on the bacterium surface. We then move the phage to

a random position outside the encounter region defined by denc to

prevent double-counting; this procedure mimics the case of a bac-

terium swimming in an infinite fluid reservoir with constant phage

number density.

We apply the same model for phage infection to both the cell

body and the flagellar bundle. We thus use contact with the flag-
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ellar bundle as the criterion for attachment instead of contact to

individual flagella, which are not explicitly resolved in our coarse-

grained approach. This simplifying assumption is justified because

the fast motion of individual flagella, the complex flow field in-

side the bundle and the large surface-to-volume ratio of flagella all

promote contact with phages once they have entered the bundle,

making the approach to the bundle the limiting step.

We determine the overall infection rate J = limt→∞
Natt(t)

t from

a linear fit to the computed number of phages that have infected

the cell at time t, Natt(t), see Appendix A.4.3. For the case of

katt → 0 (pattach → 0), the number density of phages in the en-

counter region is asymptotically independent of katt. Hence, J

scales linearly with katt, and we only need to determine the num-

ber density of phages in the encounter region. Therefore, for sim-

ulations of katt → 0, we compute J by tracking the trajectories of

phages in the contact region to obtain their number density.

7.2.3 Continuum modelling

To compare the results of our particle-based simulations to those

of Berg and Purcell [255], we follow their approach and solve the

continuum advection-diffusion equation

Dt
P∇2c(r) + uStokes(r) · ∇c(r) = 0 (7.1)

for the phage concentration c, where Dt
P is the phage diffu-

sion coefficient. As in their work, we model the bacterium as

a perfectly-absorbing volume-equivalent sphere of radius req =
3

√︂
3r2bodylbody/4 in an infinite reservoir of phages, with boundary
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conditions c(|r| = req) = 0 and c(|r| → ∞) = c0. The Stokes flow

field is given by

uStokes(r) = urer + uΘeΘ, (7.2)

ur = −vswim cos(Θ)

(︄
1 − 3req

2r
+

r3eq
2r3

)︄
, (7.3)

uΘ = vswim sin(Θ)

(︄
1 − 3req

4r
−

r3eq
4r3

)︄
(7.4)

in the comoving frame of reference; here, r and Θ denote the ra-

dius and polar angle in spherical coordinates, and er, eΘ the cor-

responding basis vectors. The infection rate is then given by the

flux of phages into the absorbing sphere surface Ωs; we compute it

directly from the solution of the concentration field via the relation

JBerg = −Dt
P

∫︂
Ωs

er · ∇cdS . (7.5)

.

In practice, we solve Eqs. (7.1)–(7.4) using a finite element al-

gorithm [263] with the boundary condition c(|r| = R) = c0 with

R = 50 µm ≫ req. The finite size effects from restricting the sim-

ulation domain to this radius are negligible, and the infection rate

for vswim = 0 obtained with finite R deviates from the analytical

solution for R → ∞ only by ≈1 %.

7.2.4 Choice of numerical parameters

For the phages, we choose rP = 50 nm, which is comparable to the

size of many commonly-studied phages, including T4 [264] and the
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flagellotropic phages χ and PBS1 [260]. We calculate the phage

friction coefficient from Eq. (2.2).

The numerical friction coefficient then follows from the lattice

correction given by Eq. (2.62).

The phage diffusion coefficient is given by the Einstein-

Smoluchowski relation Dt
P = kBT/γ

t
P ≈ 4.4 µm2 s−1 at our choice

of T = 300 K, which is in good agreement with experimental mea-

surements [253, 265].

Assuming water density for phages, the time scale for momen-

tum relaxation τ tP = mP/γtP ≈ 5.6 × 10−10 s is much smaller than

any time scale of interest in our system. Anologous to the argu-

ments made in Section 3.2.4.2, we choose ρP = 105ρwater, which

leaves the dynamics still overdamped but allows us to use a larger

numerical integration time step δt = 3.33 × 10−5 s.

To mimic the commonly-studied flagellated bacterial species

E. coli [225] and S. enterica [266], we choose lbody = 3 µm and

rbody = 0.5 µm, with Nbead
body = 9 and Nbead

coupl = 62 to ob-

tain a sufficiently well-resolved cell surface. The bacterial mass is

approximated by mB = ρBπr2bodylbody; as detailed above for the

phages, the diffusive time scale for bacteria is very small and the

dynamics are overdamped, so we choose ρB = 5 × 103ρwater.

For simulations without hydrodynamics, we calculate friction

coefficients according to Section 2.2.3.1, using lbody/2 and rbody as

the long and short semiaxis, respectively.

For simulations with hydrodynamics, we set γ̃ = 2.4 ×
10−9 kg s−1, which represents the largest value that we can use

without impeding numerical stability to most closely approxi-
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mate a no-slip boundary condition. The relation between Fswim

and vswim is nontrivial because of the complex flow field and

the many coupling points; however, empirically, we find that us-

ing Fswim = γeffvswim with an effective friction coefficient γeff =

Nbead
bodyγ̃/0.825 yields good agreement between the desired and

actual swimming velocity, as detailed further in Appendix A.4.

The flagellum is lflag = 5 µm long with a radius of rflag = 0.25 µm

at a distance ldipole = 5 µm, and we take Nbead
flagellum = 41. For

comparison to other kinds of microswimmers, we also perform all

our simulations with a puller-type swimmer with ldipole = −5 µm.

Those results are presented in Appendix A.4.

The lattice Boltzmann fluid has a dynamic viscosity µ = µwater

and is discretised on a grid with lattice spacing agrid = rbody. Since

all velocities are interpolated between lattice nodes, this resolution

is fine enough to resolve the flow near the bacterium surface. To

keep simulations stable, we choose a fluid mass density of ρ =

1200ρwater. This choice does not change the flow behaviour with

respect to water since the Reynolds number Re ≡ ρvswimrbody/µ ≈
0.017 for a typical swimming velocity vswim = 25 µm s−1 is much

smaller than unity, even for this increased density.

Our simulations consider one bacterium and NP = 1000

phage particles in a fully periodic, cubic simulation domain with

box length L = 16 µm. The volume fraction of phages ϕ =

NP4π(rP)3/3L3 ≈ 10−4 is very low, so we expect any hydrody-

namic interactions between them to be negligible. Moreover, in

Appendix A.4 we present evidence that there are no appreciable

finite-size effects associated with the size of the simulation domain.
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We set the encounter distance denc = rP = 50 nm; the time scale for

phage diffusion across this distance is τcross ∼ d2enc/D
t
P ≈ 6×10−4 s,

so we choose ∆t = 1× 10−4 s to adequately register phage encoun-

ters.

Each simulation is repeated Nensemble times with different seeds,

i.e., different initial conditions and noise realisations, to obtain the

standard error of the mean of the quantities reported below. We

choose Nensemble ≥ 5, the exact numbers for each reported result

can be found in the data set [175] that accompanies this work.

7.3 Results

7.3.1 Flow field

Before considering interactions with phages, we first verify that our

simulation approach recapitulates the far-field dipolar flow field

characteristic of swimming flagellated bacteria [254, 258]. This is

indeed the case, as shown in Fig. 7.2, which shows the fluid flow

field u(r) in the laboratory frame of reference. In Appendix A.4 we

further show that the far field decay of the dipolar flow field is in

close agreement to the theoretical expectation. Importantly, while

the bacterium moves in the positive z-direction, our model for the

flagellum-fluid interaction leads to fluid motion in the negative

z-direction inside the flagellum, with swimming being force-free

overall.

Having established that our simulations reproduce this charac-

teristic dipolar flow field, we next investigate what its implications

are for infection by phages. As described below, we use our simu-
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Figure 7.2. Cross-section through the dipolar flow field gen-
erated by a swimming bacterium, in the stationary lab frame
of reference. This representative example is for the case of vswim =
20 µm s−1 in the absence of thermal noise in the lab frame. Color scale
and arrows show the magnitude and orientation of the local fluid velocity,
respectively. The upper and lower black outlines show the cell body and
flagellum, respectively; the cell is swimming in the +z direction. Repro-
duced from Ref. [5] with permission from the Royal Society of Chemistry.

lations to examine phage interactions first with the cell body, then

with the flagellum.

7.3.2 Phage infection of the cell body

To characterize how bacterial swimming and the associated hy-

drodynamic interactions (HI) influence how phages infect the cell

body, we compute the infection rate J over a broad range of rep-
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resentative swimming speeds vswim, for a broad range of katt, with

or without HI included. Our results are presented in Fig. 7.3 for

the limiting cases of katt → 0 and katt → ∞ for clarity; the in-

termediate values of katt monotonically interpolate between these

cases, as shown in Appendix A.4.5.

We first consider the case of rapidly-attaching phages (katt →
∞). In the absence of HI, J increases approximately linearly with

vswim (blue ×, Fig. 7.3), as suggested previously [253]. Indeed,

without HI, we expect that J/c0 ≈ 4πDt
Preq +πr2eqvswim; Here, the

first term on the right hand side describes the flux of a diffusive

species into a spherical, stationary, perfect absorber [267] and is

given by the solution of Eq. (7.1) with vswim = 0, and the second

term takes the motion of the absorber into account by calculating

the rate at which its cross section explores the volume filled with a

constant number density of phages that are absorbed upon contact.

As shown by the dashed green line in Fig. 7.3, this prediction agrees

well with our simulation results.

Incorporating HI strongly suppresses infection by phages, how-

ever. While J still increases monotonically with vswim, the mag-

nitude of this increase is considerably lessened by hydrodynamics

(blue ◦, Fig. 7.3)—indeed, by as much as twofold at the largest

swimming speed tested. Why is this the case?

Close inspection of the flow field around the cell body provides

a clue: As shown in Fig. 7.2, the no-slip boundary condition on the

cell body surface causes a region of fluid in its immediate vicinity

to be dragged along with it as it swims. We expect that this region

also advects surrounding phages along with the cell, pushing them
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Figure 7.3. Hydrodynamic interactions (HI) suppress the in-
crease in phage infection rate on the cell body with swimming
speed. The infection rate J integrated over the cell body is computed
from our simulations and normalized by its value when the bacterium
is not swimming. Blue and orange points show the cases of rapidly- or
slowly-attaching phages, respectively. Error bars represent the standard
error of the mean over statistically independent simulations, blue and
orange lines are polynomial fits to guide the eye. The dashed green line
corresponds to a model of rapid phage infection through diffusion and
uptake by the cell body cross section, neglecting HI. The solid green line
shows the prediction of Berg and Purcell from a more simplified contin-
uum model of a driven spherical bacterium. Adapted from Ref. [5] with
permission from the Royal Society of Chemistry.
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away from its forward-facing “head”; Consequently, these phages

must rely primarily on passive thermal diffusion to cross this re-

gion and successfully infect the cell, independent of the bacterial

swimming speed.

This effect is more clearly visualized in the reference frame that

moves along with the bacterium. The relative flow field given by

u∗ = u−vswimê, where the asterisk denotes quantities measured in

this comoving frame, is shown in Fig. 7.4. We quantify the relative

importance of phage advection and diffusion using the local Péclet

number

Pe∗phage(r) ≡ |u∗(r)|rbody/Dt
P (7.6)

defined in this comoving frame; the iso-line of Pe∗phage(r) = 1 is

shown by the dashed line. As expected, within the region bor-

dered by the dashed line, the fluid is nearly at relative rest and

Pe∗phage(r) < 1—confirming that any phages contained therein

must rely primarily on thermal diffusion to infect the cell body.

Any enhancement in the phage infection rate arising from bacte-

rial swimming is therefore suppressed by this “protective shield”

of fluid that surrounds the cell body.

This hydrodynamic effect manifests at smaller phage attach-

ment rates (katt → 0), as well. When HI are not included, the

swimming bacterium is not protected by the “shield” of quiescent

fluid discussed above. Instead, as it swims, the cell collects and

accumulates phages at its head, and J again increases approxi-

mately linearly with vswim, as shown by the orange × in Fig. 7.3.

In this case, the swimming bacterium does not appreciably remove

contacting phages from the fluid, whereas in the case of katt → ∞,
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Figure 7.4. Cross-section through the dipolar flow field gener-
ated by a swimming bacterium, in the cell’s moving frame of
reference. The image shows the same flow field as in Fig. 7.2, but in
the comoving frame. The cell is swimming in the +z direction. The blue
dashed line marks Pe∗phage = 1. Reproduced from Ref. [5] with permis-
sion from the Royal Society of Chemistry.

phages are locally depleted from the vicinity of the cell upon con-

tact and infection. Therefore, the dependence of J on vswim is

more modest for poorly-attaching phages; Indeed, when HI are in-

cluded, there is no measurable dependence of J on vswim (orange

◦, Fig. 7.3).

The protective influence of the hydrodynamic “shield” is also

apparent in the spatial distribution of phage infection over the cell

body, shown for the example of vswim = 100 µm s−1 and katt → 0

in Fig. 7.5. As expected, without HI (left panel), infections occur
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Figure 7.5. Hydrodynamic interactions cause phages to be
advected away from the head of the cell. Color scale shows the
probability density of phage infection over the surface of the cell body,
for the example of vswim = 100 µm s−1 and katt → 0. The cell is swim-
ming in the +z direction. Without hydrodynamics, phages accumulate
at its head, whereas when hydrodynamics are incorporated, the flow field
established by swimming makes the distribution of infection sites more
uniform along the cell body. Reproduced from Ref. [5] with permission
from the Royal Society of Chemistry.

preferentially at the head of the cell. However, HI push phages

away from the head of the cell, causing infections to be distributed

more uniformly around the cell body (right panel). Figure 7.6

quantifies this difference for all the simulation conditions tested

using the average z-position of phage infection relative to the cell

body center of mass, i.e., the first moment of the infection prob-

ability density. Again, as shown by the difference between × and

◦ symbols, HI reduce the asymmetry of phage infection for both

katt → 0 and katt → ∞ over all swimming speeds tested.
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Figure 7.6. Hydrodynamic interactions cause phages to be ad-
vected away from the head of the cell. Symbols show the average
position of phage infection positions along the bacterial symmetry axis
relative to the cell body center. An average of z > 0 means the infec-
tion probability density is shifted towards the head of the cell. Blue and
orange points show the cases of rapidly- or slowly-attaching phages, re-
spectively. The lines are exponential fits to guide the eye. Error bars
represent the standard error of the mean over statistically independent
simulations, and are sometimes smaller than the symbol size. Adapted
from Ref. [5] with permission from the Royal Society of Chemistry.

In their classic paper [255], Berg and Purcell did not consider

the elongated shape of a swimming bacterium, the distinction be-

tween the cell body and flagellum, or the dipolar flow field estab-

lished by swimming. Nevertheless, using a more simplified contin-

uum model of an externally-forced sphere, they intuited the pro-

tective hydrodynamic effect uncovered by our simulations, noting

that “The molecules [or in our case, phages] in front of the cell are

carried out of its way along with the fluid it must push aside to

move. The cell carries with it a layer of liquid that is practically
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stationary in its frame of reference. Every molecule [or phage] that

reaches the surface of the cell must cross this layer by diffusion.”

Remarkably, despite the simplifications made in their work, Berg

and Purcell’s prediction for the infection rate (solid green curve,

Fig. 7.3) shows excellent agreement with the results of our more de-

tailed simulations (blue ◦). One may not expect this agreement a

priori given the marked difference between the actual dipolar flow

field established by the swimming cell and the approximation used

by Berg and Purcell. However, our results show that the essential

qualitative feature of the low Pe∗phage region are independent of the

shape and propulsion mechanism of the bacterium, justifying their

simplifying assumptions a posteriori—but only for the case of the

cell body. As we show in the next section, we find dramatically

different behavior for the bacterial flagellum.

7.3.3 Phage infection of the flagellum

While the cell body drags a protective region of fluid with it, the

flagellar bundle does not. Instead, because it is permeable to and

exerts a force on the fluid, Pe∗phage ≫ 1 especially in the immediate

vicinity of the flagellum, as seen by the dark red region of Fig. 7.4.

As a result, we expect that hydrodynamic interactions are not

protective as for the cell body, but instead, promote infection of

the flagellum. Our simulations confirm this expectation, as shown

in Fig. 7.7.

Unlike the case of the cell body, HI greatly increase the flag-

ellar infection rate, as seen by comparing the ◦ and × points in

Fig. 7.7—indeed, by nearly twofold at the largest swimming speed

178



influence of bacterial swimming and hydrodynamics on

infection by phages | 7

0 20 40 60 80 100

Swimming speed vswim [µm/s]

1.0

1.5

2.0

2.5

J
/J

(v
sw

im
=

0)
[−

]

katt →∞, w/o HI

katt →∞, w/ HI

katt → 0, w/o HI

katt → 0, w/ HI

Figure 7.7. Hydrodynamic interactions promote phage infec-
tion of the flagellum. The infection rate J integrated over the flagel-
lum is computed from our simulations for varying vswim and normalized
by its value when the bacterium is not swimming. Lines are polynomial
fits to guide the eye. Error bars represent the standard error of the mean
over statistically independent simulations. Adapted from Ref. [5] with
permission from the Royal Society of Chemistry.

tested. In the absence of HI, J only increases marginally with

vswim for katt → ∞. It even decreases with vswim for katt → 0, due

to the cell body pushing phages radially outward upon contact.

However, when HI are taken into account, the flagellum pumps

in phage-laden fluid from the sides of the cell body and moves it

through the space occupied by the flagellar bundle. Therefore, the

volume of fluid coming in contact with the flagellum, and thus

phage infection, increases with vswim. Moreover, because the fluid

is pumped along the −ê direction, we expect that phage infection

is more likely to occur at the forward end of the flagellum with

increasing vswim. This expectation is confirmed quantitatively in
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Figure 7.8. Hydrodynamic interactions increase dependence
of infection location on swimming speed. Average position of phage
infection positions along the bacterial symmetry axis relative to the flag-
ellum center. An average of z > 0 means the infection probability density
is shifted towards the forward end of the flagellum. For katt → ∞, the
attachment is shifted into the negative direction at vswim = 0 because the
cell body depletes the region in front of the flagellum of phages. Lines
are exponential fits to guide the eye. Error bars represent the standard
error of the mean over statistically independent simulations. Adapted
from Ref. [5] with permission from the Royal Society of Chemistry.

Fig. 7.8.

7.3.4 Total infection rate

Hydrodynamic interactions reduce phage infection of the cell body

and promote phage infection of the flagellum. Figure 7.9 shows how

for the total rate, these effects nearly cancel out the influence of

hydrodynamics. For rapidly-attaching phages (katt → ∞), there is

no appreciable difference in infection rate for all swimming speeds
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Figure 7.9. Hydrodynamic interactions have a small influence
on the total infection rate if phages are flagellotropic. The in-
fection rate J integrated over the entire bacterium comprising cell body
and flagellum is computed from our simulations for varying vswim and
normalized by its value when the bacterium is not swimming. Blue and
orange points show the cases of rapidly- or slowly-attaching phages, re-
spectively. Error bars represent the standard error of the mean over
statistically independent simulations.

considered, and for slowly-attaching phages, the difference is less

than 20 %.

Considering the flow field in the comoving frame (see Fig. 7.4),

we can explain why the the hydrodynamic effects cancel almost

completely for katt → ∞ rather than only partially: The two

hydrodynamic effects — shielding of the cell body and pumping

through the flagellar bundle — are not independent, because they

affect the same material points of the fluid and thus the same

phages. Following the stream lines starting in front of the bac-

terium, we see that they bend around the cell body and then
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become focused inside the flagellar bundle. The phage popula-

tion that leads to an increase of infection at the flagellum is thus

the exact same phage population that previously was prevented

from infecting the cell body because it was advected around it.

For katt → ∞ this means that every phage that would have in-

fected the cell body if there were no hydrodynamic interactions

now infects the flagellum instead, leaving the total infection rate

unaffected. This mechanism is robust with regard to the specific

geometrical parameters of the cell body and the flagellar bundle

as long as every streamline that passes through the flagellum cor-

responds to a location in front of the cell body that is covered by

its cross section.

For katt → 0 the cancellation of hydrodynamic effects is less

complete because here it is more relevant how long the phages

stay in contact and not just if they make contact. Thus, the spe-

cific relative length and surface area difference between cell body

and flagellar bundle determines the extent to which the total at-

tachment rate is influenced by the inclusion of hydrodynamics.

7.4 Conclusions

Using coarse-grained molecular dynamics simulations of a swim-

ming bacterium that explicitly treat its cell body and flagellum

separately, with hydrodynamic interactions incorporated via cou-

pling to a lattice Boltzmann fluid, our work has shed new light on

the influence of swimming on infection by phages. We find that

while swimming increases the rate at which both the cell body and
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flagellar propeller are infected by phages, hydrodynamic interac-

tions strongly suppress this increase at the cell body, but conversely

enhance this increase at the flagellar bundle. This difference in in-

fection arises from the characteristic dipolar flow field generated

by a swimming bacterium, which advects phages away from the

cell body, but pumps phage-laden fluid into the flagellum. The

total infection rate, combining infections of the cell body and the

flagellum, is almost independent of the inclusion of hydrodynamic

effects because it’s the very same phages that get advected around

the cell body which get pumped into the flagellar bundle. Hence,

while our results corroborate the findings of Berg and Purcell for

the cell body, our work provides a counterpoint to their conclusion

that “in a uniform medium motility cannot significantly increase

the cell’s acquisition of material [in our case, phages].” Experimen-

tally testing these predictions—i.e., by combining direct visualiza-

tion of phage infection [268] with optical trapping of swimming

cells [269]—will be an important direction for future work.

Altogether, our findings highlight the pivotal influence of hy-

drodynamics on the interactions between bacteria and phages, as

well as other diffusible species—i.e., nutrients, toxins, or signalling

molecules—in microbial environments. They also provide a new

perspective on the biophysical tradeoffs associated with bacterial

swimming. While swimming can be beneficial by enabling bacte-

ria to escape from harmful environments, find new resources, and

colonize new terrain, it can also be costly—not only because of

the additional energy it requires of the cell, but also because it

is often thought to increase the probability of encountering sur-
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rounding phages. Our results demonstrate that this latter cost is

not appreciable for the cell body, due to the protective “shield” of

fluid established by hydrodynamics, but is appreciable for the flag-

ellar bundle, which pumps surrounding phages in. We conjecture

that this may in part be why many phages have, over billions of

years of evolution, developed ways to exploit bacterial swimming

for their benefit by targeting the flagellum [117, 260]. Swimming

bacteria may, in turn, have evolved localised defence countermea-

sures against phage infection such as through modification of spe-

cific surface receptors or production of outer membrane vesicles as

decoys [270]. Investigating how these biological and chemical pro-

cesses, combined with the hydrodynamic effects illuminated by our

work, influence phage-bacteria interactions will be a useful avenue

for future research.
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Chapter 8

Emergence of chemotactic

strategies with multi-agent

reinforcement learning

This chapter contains in large parts text that is taken verba-

tim from S. J. Tovey, C. Lohrmann, and C. Holm, “Emer-

gence of Chemotactic Strategies with Multi-Agent Reinforcement

Learning”, Machine Learning: Science and Technology, accepted

manuscript (2024), a publication to which I contributed the physics

aspects of the simulations, data interpretation and co-writing of the

manuscript draft.

8.1 Introduction

For the last results chapter, we will take a step back from the now

familiar bacterial model and explore how the framework of stochas-

tic active dynamics as a model for bacterial motion can be used

in combination with new numerical tools like reinforcement learn-
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ing (RL). This chapter introduces the scientific field of machine

learning and its application to the control of active agents such as

bacteria or artificial microrobots. As an exemplary use case, we

will study what kinds of strategies (in the sense of motility pat-

terns akin to the ones presented in Chapter 6) can be learned such

that the agent achieves chemotaxis, i.e., directed motion towards

the source of a chemical, see Section 1.2.2.

Previous reviews have discussed the function of biological mi-

croswimmers in great detail [189, 271], elucidating the mechanisms

and strategies behind their movement. However, understanding

the emergence of this behaviour and judging its optimality is crit-

ical as scientists strive to construct the artificial counterparts of

biological microswimmers. Learning chemotaxis in silico has been

the focal point of several research papers aimed at reproducing or

better understanding biological microswimmers through the use

of reinforcement learning [272–275]. In their 2021 study, Hartl et

al. [274] applied a genetic algorithm to the problem of learning

shape deformations for navigation in static and dynamic environ-

ments. They found that the neural networks learned a movement

closely resembling that of run-and-tumble motion. In another 2021

study, Muiños-Landin et al. [275] applied Q-learning to navigation

strategies in self-thermophoretic particles from which they again

see the emergence of run-and-tumble motion. They further inves-

tigated the effects of temperature on the learning process, identi-

fying that models trained at higher temperatures took longer to

learn their emergent strategy. Finally, our previous work [9] di-

rectly addressed the role of temperature in the emergent strategy of
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RL-driven microswimmers by studying chemotaxis learning by the

actor-critic reinforcement learning algorithm. It was found that,

while the efficacy of chemotaxis changed with different tempera-

tures, the same run-and-tumble strategy arose from the majority

of agents trained at different temperatures. While it is clear that

RL algorithms can and, in fact, seemingly often do learn run-and-

tumble type patterns for chemotaxis problems, what impact this

has on our understanding of biological microswimmers and even

optimal design of artificial swimmers is not clear. In this chap-

ter, we study the natural limitations on emergent chemotaxis by

training actor-critic RL models using prolate, oblate, and spherical

agents of different sizes and with different swim speeds in environ-

ments subject to translational and rotational Brownian motion. In

this way, we hope to identify how optimal RL algorithms are for

the learning task and to identify, if any exist, optimal size/speed

combinations of microswimmers in these environments, which may

guide our interpretation of biological microswimmers as well as

advise the design of artificial ones. Furthermore, by investigating

the deployment of the RL algorithms close to conditions where

agents will be dominated by rotational and translational Brown-

ian motion, we can explore the emergence of different navigation

strategies that may be leveraged in the treatment of biological or

artificial swimmers, essentially peering into the minds of bacteria

as they navigate environments.

8.2 Theory
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8.2.1 Actor-critic reinforcement learning

Reinforcement learning concerns itself with the interactions be-

tween an agent and its environment within which the agent grad-

ually learns to achieve a desired task [276]. The agent is typically

provided with a set of actions {a} it may perform and uses a policy,

π(at|st) to decide at time t, based on its current state, st, what the

best action at will be such that it maximises a reward, r(st). Over

the course of one or many simulations, this policy will be updated

so that the agent becomes more efficient at accomplishing this task

and maximises its reward, yielding the optimal policy

π′ = arg max
π

⟨r(st|π)⟩. (8.1)

Deep reinforcement learning accomplishes this task using deep neu-

ral networks as the policy π [277]. For our investigations, the actor-

critic approach to deep reinforcement learning has been adopted

due to its flexibility and efficacy [278, 279]. In actor-critic rein-

forcement learning, the actor takes on the role of the policy πθ,

parameterized by θ, taking as input the current state of the agent

and returning a distribution over possible actions from which one

is selected. The critic takes on the role of a value function, Cπθ
ω ,

the objective of which is to describe the expected return of an

agent starting in state st and following policy π. During training,

the actor is tasked with maximising the finite-horizon return of its

policy

J(πθ) =

⟨︄
T∑︂

t=0

log πθ(at|st) · Aπθ(st, at)

⟩︄
τ

, (8.2)
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where T is the episode length as explained below, ⟨·⟩τ an average

over trajectories, and Aπθ the so-called advantage. The advantage

Aπθ
t = Rt(st, at) − Cπθ

ω (st) (8.3)

combines the critic’s value function and the actual rewards mea-

sured from the simulation that is used as training input. In our

studies, we use simple decay function

Rt =
T∑︂

t′=t

ϵt
′−tr(st′), (8.4)

with a decay factor ϵ < 1. Unlike traditional supervised learning

schemes, where training is performed on each data point individu-

ally, here, the policy is applied T times and data is collected over

this episode. Then, using the trajectory segment and the reward

function r, the return J of the policy over the entire episode is

calculated.

J(πθ) is maximised by way of gradient ascent on the actor pa-

rameters with updates taking the form

θ′ = θ + η · ∇θJ(πθ), (8.5)

where θ′ is the new set of parameters after the training step and η

the learning rate.

Recalling that the actor output is a distribution over actions,

should the advantage A be negative, i.e., the critic believes a better

trajectory could have been chosen, the log probability of these

actions will be discouraged. If this number is positive, the actor

has outperformed the expectation of the critic and the policy is

reinforced.
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The critic network Cω is trained directly on the chosen expected

returns function via the Huber loss L(Rt,Cω(st)), where

L(x, y) =

⎧⎨⎩1
2 · |x− y|2 , for |x− y| ≤ δ,

δ · (|x− y| − 1
2δ) , otherwise,

(8.6)

with δ = 1 in this study. Such an update procedure is referred

to as simple or vanilla policy gradient [280]. More sophisticated

approaches exist, e.g., proximal policy optimization [281], but for

this study, the simpler approach sufficed.

8.2.2 Multi-agent reinforcement learning

In our simulations, we work with not one, but many agents si-

multaneously, moving from the general concept of reinforcement

learning into multi-agent reinforcement learning (MARL) [282].

Here, all agents share a single actor and critic network and at the

update time, also the experience that they have gathered. During

the simulations, each agent asks the actor for an action to take in-

dividually and collects its own reward. At the time of the update,

J(πθ) becomes,

JMARL =
1

N

N∑︂
i

Ji(πθ), (8.7)

where i sums over the agents in the system and Ji is simply

Eq. (8.2) for a single agent. In this way, the experience of each

agent is accumulated and updated together.

The field of MARL has a a vast set of definitions with respect

to how individual agents interact and share knowledge in order to
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achieve the problem they are training on [283]. In this work, a

decentralized Markov decision process is used to describe how the

agents in the system interact. The system is considered decen-

tralized as each agent receives only local information regarding its

environment and a local reward for its own actions. During train-

ing, these rewards and local states are summed over and in doing

so, the agents share the knowledge with one another.

8.3 Methods

8.3.1 RL implementation

All reinforcement learning and all simulations have been han-

dled through the open-source software package SwarmRL [10].

SwarmRL is a Python library built to combine molecular dynam-

ics engines or real-world experiments with classical control and

reinforcement learning algorithms. All machine learning uses the

JAX [284] and Flax [285] libraries.

8.3.2 Agent model

Because the focus of this chapter lies more on reinforcement learn-

ing and the interpretation of the learned strategies, the bacterial

model is much simpler than the one used in the previous chapters.

Agents are represented by just one coarse-grained molecular dy-

namics particle, which follows the overdamped, active Brownian

equations of motion 2.21 and 2.23 in d = 2 dimensions without hy-

drodynamic interactions. The simulation domain is a 1 mm×1 mm
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periodic domain and we consider 10 interacting agents. We choose

a time step δt = 0.005 s, the active forces and torques are updated

every ∆t = 0.1 s. In all cases, unless otherwise specified, when

referring to time in this investigation, we refer to the number of

times an action is computed for each agent in the simulation.

For spherical agents, we use the WCA potential as intro-

duced in Section 3.1.2.1 with ϵLJ = kBT and varying particle size

σLJ = 2rbody. Particle anisotropy is captured by anisotropic fric-

tion coefficients, see Section 2.2.3.1, and an anisotropic interaction

between agents. We use the Gay-Berne potential V GB as intro-

duced in Section 3.1.2.2 with aspect ratio lGB = 3 for the prolate

particles and lGB = 1
3 for the oblates. We choose σ0

GB = σLJ and

ϵ0GB = ϵLJ.

The study consideres three agent shapes: oblate, prolate, and

spherical. Figure 8.1 displays renderings of these agents for “ra-

dius” 1 µm constructed using the Vedo Python package [286]. To

make the radii comparable between spherical and anisotropic par-

ticles, we use the radius of a volume-equivalent sphere as the “ra-

dius” rbody of the spheroids.

To quantify the relative importance of active and passive mo-

tion, we define translational and rotational Péclet numbers

Petrans, rot =
τdifftrans, rot

τacttrans, rot

. (8.8)

Here,

τdiffrot =
1

2Dr
=

γr

2kBT
, τactrot =

2π

ωact
, (8.9)

are the timescale of decorrelation of the particle director through

rotational diffusion and the timescale for one active rotation, re-
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Figure 8.1. Graphical representation of the three agent shapes con-
sidered in this study: spherical (left), prolate (center), and oblate (left).
They all have the same volume. Reproduced from Ref. [6] with permis-
sion from IOP Publishing..

spectively. For the translational degrees of freedom we have

τdifftrans =
r2body
Dt

=
r2bodyγ

t

kBT
, τacttrans =

rbody
vswim

, (8.10)

as the timescale for diffusion of one particle radius and the

timescale for swimming of one particle radius, respectively. In

regimes where Petrans, rot ≫ 1 the dynamics will be dominated by

active motion and when Petrans,rot ≪ 1, it will resemble passive

diffusion.
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Figure 8.2. Representation of actor-critic reinforcement learning archi-
tectures. Reproduced from Ref. [6] with permission from IOP Publishing.

8.3.3 Reinforcement learning parameters

In our investigations, the actor-critic approach to reinforcement

learning is utilised with a network architecture displayed in Fig-

ure 8.2. A two-layer network, each with 128 units, is deployed for

both the actor and the critic, along with ReLU activation func-

tions. During the training, each network is trained for 10000

episodes, each of which consists of 20 applications of the policy.

Each episode would be 2 s in real time. Updates of the network

are handled by the Adam optimizer [287] using a learning rate

of 0.002. For each swim speed and agent size, 20 reinforcement

learning runs were performed to collect statistics.
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8.3.4 Actions

Agents are endowed with the ability to perform four distinct ac-

tions

A =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Translate: vswim = n · 2rbody s−1, ωact = 0.0

Rotate CCW: vswim = 0, ωact = 10.472 s−1

Rotate CW: vswim = 0, ωact = −10.472 s−1

Do Nothing: vswim = 0, ωact = 0.0,

(8.11)

where n is a scaling factor that we vary during the experiment.

The rotation speed was chosen to be similar to that of E. coli [84].

In line with Ref. [288], we argue that agent volume is proportional

to its swimming speed. Therefore, the action velocity is measured

in body lengths.

As the state description st, agents do not receive full informa-

tion of the system which would include the position of the chemical

source that is the target of chemotaxis. Instead, the description

is designed to resemble a bacterium sensing changes of chemical

concentration, defined mathematically by

oi(t) = f (|ri(t) − rs|) − f (|ri(t− ∆t) − rs|) , (8.12)

where oi is the observable for the ith agent, f(r) = r−1 is the field

chosen to represent the chemical being sensed, and rs denotes the

position of the source of the field. To encourage chemotaxis, agents

are rewarded using a similar function

ri(t) =

⎧⎨⎩oi if oi > 0

0 else.
(8.13)
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This way, movement towards the source is encouraged, but move-

ment away is not explicitly discouraged. We further refrain from

using an absolute measure of the field in this study as it would not

resemble the natural sensing abilities of the bacteria [289].

8.3.5 Computational methods

Training and deployment of the reinforcement learning models was

performed on the University of Stuttgart SimTech compute clus-

ter. Each simulation and training routine utilised six threads of

an AMD EPYC 7702 CPU node, and all simulations were run in

parallel. Due to the system sizes and machine learning being per-

formed, no GPUs were required for these experiments. Training

of each model required approximately twenty-four hours, and the

deployment simulations were approximately six hours. The simu-

lations and models were analysed on the same cluster hardware.

8.4 Results

Due to the similarity in the results and the amount of analysis,

only the plots for the spherical agent analysis are shown in the

main manuscript. All other plots are included in Appendix A.5.1,

and any deviations between results are mentioned here.

8.4.1 Probability of emergent chemotaxis

This investigation aims to identify limits on emergent chemotaxis

in RL agents in the hope that such limits cross over into biology,
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allowing us to study natural biological processes using RL as a valid

surrogate model. These limits suggest formulating a phase diagram

with forbidden regions where this learning is impossible. To this

end, all simulations were collected where during the final 50 % of

the deployment trajectory all particles remained below 15 µm from

the source of the field. This distance was determined based on

the visual observation that no model that had successfully learned

chemotaxis was farther away from the source than this distance.

The successful simulations were used to compute the probability of

learning chemotaxis by rationing them against the total number of

simulations performed for a single speed and agent size. Figure 8.3

shows the computed phase diagram, where the color corresponds

to the probability of successfully learned chemotaxis. Interestingly,

it appears that smaller, faster agents are more likely to learn an

effective chemotaxis policy. Suppose we equate the difficulty the

RL algorithm has in training a policy with the real-world problem

of evolving a suitable structure for life. In that case, these results

suggest a trade-off between speed and size when learning how to

perform chemotaxis.

The most critical component of Fig. 8.3 is the explanation of the

phase boundary in physical terms. We consider the ratios between

Brownian motion and the active motion described by Eqs. (8.9)

and (8.10) as the main determinants of agent behaviour in this

study. The green lines in Fig. 8.3 correspond to the agent ra-

dius and speed values for which the aformentioned Péclet numbers

are 1.0 for translational (solid) and rotational (dashed) diffusion.

The translational Péclet number forms a boundary where the RL
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Figure 8.3. Probability of successful chemotaxis emerging from RL
studies. Raw data from the experiment. The colour of each point cor-
responds to the number of RL simulations that successfully learned how
to perform chemotaxis. The green lines indicate the theoretical values
at which translational (solid) and rotational (dashed) diffusion becomes
dominant compared to the active motion of the agents.
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agents can no longer learn successful chemotaxis. The rotational

diffusion boundary appears less strict, particularly for the faster

agents, where it appears that with enough translational activity,

the agents can overcome having rotational diffusion dominate over

active rotation. The alignment of our simulation results with the

physical boundaries we identified suggests that as soon as it is

physically possible for an RL agent to learn chemotaxis, it does so.

Later, we will discuss the very few cases of successful chemotaxis

that were learned in the “forbidden” region.

8.4.2 Learning efficiency

Next, we look at how the reward received from the reinforcement

learning process changed depending on the size and speed of the

agents. This measure will indicate how easy it was for the model

to learn the policy required to perform chemotaxis. Figure 8.4 out-

lines the results of this study in a similar manner to Fig. 8.3. In

the figure, the point’s colour corresponds to the total reward accu-

mulated by the agents during all 10’000 training episodes. In order

to compute the colour values in Fig. 8.4, we corrected the size dif-

ference between the agents. In the original simulations, an explicit

distance to the source is used in the reward computation. However,

this biases the results such that smaller agents will achieve higher

rewards as they can approach the source more closely. Therefore,

the rewards in Fig. 8.4 were computed by converting the reward

from distance to the number of body lengths from the source. We

can see that the reward diagrams roughly mirror the results shown

in Fig. 8.3 with larger discrepancies between the larger and smaller
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Figure 8.4. Probability of successful chemotaxis emerging from RL
studies. Raw data from the experiment. The colour of each point corre-
sponds to the maximum reward achieved by the agents during the 10’000
episodes. Reproduced from Ref. [6] with permission from IOP Publish-
ing.
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agents. Namely, the rewards achieved by small and fast agents are

noticeably larger than those of the bigger agents. This effect is par-

ticularly evident in the prolate and oblate simulations (appendix

Figs. A.14 and A.18). It is likely due to larger and faster agents

hopping over the intended target instead of remaining on it without

moving.

8.4.3 Policy efficiency

It is clear from the previous section that microswimmers of different

sizes and speeds differ in their probability of emergent chemotaxis.

However, what the differences are, if any, between their adopted

strategy still needs to be determined. To identify these differences,

the deployment simulations were analysed to compute the final

equilibrium distance of the agents around the source as well as after

how many action updates they reached this distance. Figure 8.5

displays the results of this investigation. The left panel shows

the equilibrium distance of the agents as a function of radius for

all studied swim speeds. For radii rbody ≳ 1 µm, we see a linear

trend, as the limiting factor for getting closer to the source becomes

overshooting the target as a result of agent size and speed. The left

non-linear side of the plot also contains interesting features. Aside

from the lowest speed, the minimum distance from the source of

the chemical field is achieved at a similar agent size for all of the

different speeds, with faster agents being able to achieve slightly

better equilibrium distances with smaller bodies.

In Fig. 8.5 (right), we show the average time the agents need

reach the equilibrium distance. For the smaller agents, as is per-
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Figure 8.5. (left) Mean distance from the source for each swim speed
and agent size. A clear minimum in each plot suggests an optimal size
dependent on swim speed. (right) Rate of convergence to the source for
different swim speeds and sizes. Interestingly, the convergence rate of
larger agents is relatively similar, suggesting some redundancy in larger
body sizes and swim speeds.

haps intuitive, the faster agents can move themselves to the source

faster than their slower counterparts. However, this relationship

fades for larger agents as we see that after approximately 1 µm

radii, all agent sizes and speeds converge at similar times except

for the slowest one. The time to minimum converges slightly above

25 s. The results also suggest that after 0.5 µm radius, there is no

conceivable benefit and, in fact, due to the larger equilibrium dis-

tance, perhaps even a detriment in being larger. Interestingly, the

most unstable equilibrium distances, identified by large variance in

mean value and distance from the source, occur close to or within
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the region displayed in Fig. 8.3 where rotational diffusion overpow-

ers the active rotation of the agents. This strong environmental

effect could cause instability in these models as they must rely

solely on their active translation to achieve chemotaxis.

8.4.4 Emergent policies

As a final investigation, we determine whether the emergent pol-

icy of the RL agent differs for changing physical properties and

shapes. Studying the particles’ trajectory alone is almost impossi-

ble as they look very similar upon visual inspection. Therefore, to

find differences in strategy, the trained models are given artificial

test data {o⋆i }, i ∈ [1, . . . , 1000] over a domain o⋆i ∈ (−10.0, 10.0)

and the probability of selecting each of the four actions is computed

from the network outputs. This encodes each learned policy’s reac-

tion to all relevant inputs and thus captures the whole policy in one

high-dimensional point. In order to identify any structure in this

4000-dimensional data, we study the two-component t-distributed

stochastic neighbourhood embedding (t-SNE) [290] of the vectors

that represent the trained models, as implemented in the sklearn

Python package [291]. Figure 8.6 outlines the results of the t-

SNE for the policy data with a perplexity of 300 and principle-

component-analysis (PCA) initialisation. Examining the t-SNE

plots, we see the emergence of four groups, one of which is seem-

ingly divided into two smaller subgroups. Using this information,

we perform k-means clustering [292] on the probability vectors to

split them into four clusters. The probability of the outcome of

each policy is listed in Table 8.1 along with the explained variance
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Figure 8.6. t-SNE embedding of the policy vectors for all successful
agents in the study. Four large groups are formed, corresponding to the
policies learned by the agents. The colour in these diagrams corresponds
to the size of the studied agents.

from a PCA decomposition of the probability vectors. The proba-

bilities are computed by examining the number of points clustered

into each class by the k-means algorithm, which we assign a policy

name by directly examining the action probabilities of the agents

mapping into the class. The diagrams used to perform this map-

ping are included in Appendix A.5, where we show the probabilities

of each action being taken for all agent sizes, shapes, and speeds.

We also perform PCA decomposition on the probability vectors

to identify how much each policy explains the data distribution. In

this approach, we see that 5.9 % of the data belongs to components

with a smaller than one percent impact on the variance of the PCA.

When we examine the policies in this region, they are typically
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made up of combinations of the more dominant policies with very

few exceptions. These policies may explain the splitting in the

medium-sized group in Fig. 8.6.

Policy Name Percentage Learned (K-Means) Explained Variance (PCA)

Run and Rotate 83.49 83.5
Gradient Gliding 12.88 7.1
Brownian Piloting 3.63 3.5
Exotic Policies 0.0 5.9

Table 8.1. Percentage of agents which learned specific policy along
with the explained variance of the principle components for each policy
identified.

The remainder of the section will discuss each emergent policy

in detail, including some policies poorly captured by the embedding

methods.

▶ Run and Rotate

In the vast majority of cases (83 %), the agents learned a policy

strikingly similar to the run-and-tumble approach to chemotaxis

found in nature. Upon positive input to the network, i.e., move-

ment towards the source of the gradient, the agents chose to trans-

late with probability 1 (see Fig. 8.7a) and b)), corresponding to a

prolonged run phase. Upon experiencing a negative input to the

network, signifying a movement away from the source of the gradi-

ent, the agents rotate either CW or CCW, akin to a tumble event.

The strategy that our RL agents learned is thus equivalent to bac-

terial chemotaxis with infinite sensitivity, i.e., infinite runs as long

as the direction is correct and instant tumbles if it is not. Interest-

ingly, once the agents chose one direction to rotate, they did not

use the other one. CW vs CCW selection was even throughout the
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Figure 8.7. Examples of the dominant emergent policies found during
the investigation. a) and b) are the run and rotate policy for CW and
CCW directions. As the input to the network becomes negative, the
agents decide to rotate and as they are moving towards the source, they
translate. c) The policy where for most inputs, the agent will translate,
but when the input is small, the agent may also decide to rotate. d) Do
nothing when negative and translate when positive. Reproduced from
Ref. [6] with permission from IOP Publishing.

206



emergence of chemotactic strategies with multi-agent

reinforcement learning | 8

simulations, with no preferred direction discovered, as is expected

from the symmetry of the problem.

▶ Gradient gliding

For large agents, some took translate for most inputs, only rotat-

ing for minimal changes in concentration. Even in these cases,

the strategy has a high probability of translation, as shown in

Fig. 8.7c) The strategy works because the large agents are not

strongly affected by thermal noise and the potential is spherically

symmetric. Initially, they just translate until by chance, they move

tangentially to an equiconcentration line where the sensed concen-

tration change is very small. There, they sometimes rotate to keep

themselves close to the equiconcentration line, while oversteering

to move closer to the source in a spiral. Far from the source, over-

steering by a large amount is beneficial, because it sends the agent

on a trajectory that climbs the gradient faster. Close to the source,

oversteering can become a problem because it can rotate the agent

away from the source, at which point it will move down the gra-

dient. The ratio between translate and rotate probability at small

concentration change sets the turning radius, which is optimised

to keep all agents circling around the source at large times.

This strategy is common amongst the chosen policies, with

somewhere between 7 % and 12 % of agents opting for this ap-

proach. The discrepancy in percentage arises due to the spurious

policies discussed in a later section. We label this policy gradient

gliding as the agents generally follow a translation path with very

small adjustments made under low gradient changes.
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▶ Brownian piloting

An alternative policy, referred to here as Brownian piloting, was

seen particularly in the case of smaller agents where rotational

Brownian motion overcomes the active rotation. The agents

learned to do nothing when experiencing negative network inputs

and to translate if they see a positive one, see Fig. 8.7d). In this

way, the agents do not fight against the Brownian forces, but in-

stead use them instead of active rotation. The strategy demon-

strates that small agents can still successfully learn to navigate

toward sources of nutrition. Overall, this policy was adopted in

3.6 % of cases.

▶ Combinations

We noticed combinations and variations of the above mentioned

strategies in many cases where classification was unsuccessful, ac-

counting for approximately 5.9 % of emergent policies. For ex-

ample, some smaller agents in Brownian-dominated regimes per-

formed active rotation in both CW and CCW directions for neg-

ative inputs and translate for positive. We identify this policy as

more or less equivalent to Brownian piloting as the active rotation

will not yield more than simply relying on Brownian rotation. In

other cases, the onset of translation was delayed or accelerated,

yielding slight variations of run-and-rotate. As these points com-

bined mixtures of the more dominant policies and yet did not oc-

cur often, the clustering algorithms could not successfully separate

them into distinct classes.

In summary, the results tell us that in the cases where active

translation and rotation are possible and dominate over Brownian
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effects, the agents often learn to perform a run-and-rotate strategy.

In cases where Brownian effects dominate active motion, the agents

learn to adapt to this environment by performing only actions that

move them into a new environment by using the Brownian forces

to their advantage.

8.5 Conclusion

In this study, we have investigated the role of size and swim

speed on the emergent strategy of microscopic active agents learn-

ing chemotaxis via multi-agent actor-critic reinforcement learning.

Our simulations demonstrated that intelligent agents can learn

chemotactic behaviour, even in environments where Brownian ran-

dom forces begin to dominate over active motion. In such regimes,

we found that the chemotaxis was not optimal in terms of the

agents’ final distance from the source of the chemical gradient or

the speed at which they made it to the source. However, they

could consistently reach their target. Interestingly, we saw that as

the Péclet number grew above one and active motion dominated

the Brownian forces and torques, the learned policies converged

quickly to a similar equilibrium distance and time.

After studying the policy efficiency, we looked into the strate-

gies adopted by the agents to perform chemotaxis. We identified

one dominant strategy that occurs in 83.5 % of the cases we stud-

ies. We found that its working mechanism is very similar to that of

bacterial chemotaxis: Translate forward when the sensed concen-

tration change is positive, rotate when the concentration change is
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negative. We also identified other strategies that leverage equicon-

centration lines or use Brownian noise to their advantage. Overall,

we have identified that reinforcement learning can replicate natu-

ral behaviour of organisms. Or, from a different perspective, that

nature evolved a chemotaxis strategy that is very similar to the

one optimized by the machine learning algorithm.

Our RL approach allows us to present the agents with near

infinite possibilities in their choice of strategy and, without hu-

man bias, let them find the optimal one. After the fact, we can

analyse the strategy by investigating the reaction to certain sen-

sory input. Interestingly, policies are not easily differentiated when

looking at the trajectories alone. Only by studying the neural net-

works can we see how the agents make decisions. Such an insight

might guide us in understanding how real-world organisms navi-

gate their environments, and perhaps, how to disrupt, as in quorum

quenching [293], or support, as in quorum enhancement [294], this

navigation. We found strategies that, to the best of our knowl-

edge, were not described before. RL is therefore a useful tool for

discovery of strategies that can provide clues for the design of arti-

ficial microagents, especially in the regime of strong thermal noise.

A further point of interest would be to identify natural biological

swimmers who have evolved such less common swimming patterns

or can outperform the emergent strategies of the RL agents.
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Chapter 9

Conclusion and outlook

In this thesis, a simulation model of motile bacteria was intro-

duced and applied to five systems in which bacteria are subject

to interactions with a complex environment. The model builds

on previous work [172], but adds significant extensions. The ge-

ometric detail, especially of the flagellar bundle, was improved,

different motility strategies implemented, and models for surface

attachment, cell growth and division developed. This enabled re-

search into bacterial accumulation (Chapter 4), biofilm initiation

(Chapter 5), porous media exploration (Chapter 6), and phage-

bacteria hydrodynamic interactions (Chapter 7). Combined with

machine learning methods, a simplified version of the model was

used to study bacterial chemotaxis in noisy environments (Chap-

ter 8). For the application-specific summaries and conclusions I

refer to the respective Sections 4.4, 5.4, 6.4, 7.4 and 8.5.

Here, I want to focus on the bigger picture and future chal-

lenges. The particle resolved model with coupling to lattice Botz-

mann hydrodynamics has proven a viable tool for investigations

into bacteria on the micrometer scale. It provides just enough
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detail to capture cell shape via steric interactions, hydrodynamic

interactions on the scale of the flow field features generated by

swimming, and coarse grained biological functions like cell growth

and division. The simplicity of the algorithm and the relatively

small number of particles that comprise a cell make the model ef-

ficient, enabling simulations of hundreds to thousands of bacteria

over the relevant time scales of minutes and hours.

The micrometer focus makes our model unique in the multi-

tude of other models used to describe bacteria [132]. Many other

modeling approaches focus on the sub-micrometer scale, resolving

bacteria and their flagella in high detail [26, 295–298]. This en-

ables a very accurate description, especially of the hydrodynamics

involved in bacterial swimming. The price to pay for this accuracy

is computational cost. For highly resolved simulations, usually a

supercomputer is employed to obtain trajectories on the order of

seconds. Parameter studies become very costly or unfeasible. In

this thesis however, usually more than one parameter is varied and

many simulations per parameter set are needed for good statis-

tics. For example, in Chapter 7 and Appendix A.4, we present

results of simulations for 5 swim speeds × 4 attachment rates ×
2 swimmer types (pusher/puller) × 2 types of particle coupling

(with/without hydrodynamics) × 5 noise realisations, where each

simulation tracks the bacterium and 1000 phages for about two

minutes of simulated time, running for one day on one CPU core.

The total computational cost for the related publication [5] includ-

ing its supplementary information is thus around 400 core days.

This could be done with reasonable time investment on a modern
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workstation or overnight on a small HPC system. Of course, more

nuanced questions can be answered with more detailed models, but

sometimes details and nuance stand in the way of forming quali-

tative conclusions that reach beyond the simplified model used to

motivate such conclusions.

Particle based simulation models for active matter like the ac-

tive Brownian particle (ABP), that are commonly used in theo-

retical physics, have a similar length scale focus as the model we

use. However, they typically do not aim to represent bacteria, but

more abstract active particles lacking any biological detail such as

shape or non-trivial motility patterns [132]. Our model thus fills a

gap between highly abstracted active objects and highly detailed

biological organisms.

On the coarse side of the detail spectrum, continuum methods

for motile cells, but especially for biofilms, are popular [210–213].

They enable simulations of very large systems over long times,

but necessarily lack particle detail. This particle detail might be

required when biofilms are young and consist of a relatively small

number of cells. The growing colony is then better described as an

agglomeration of cells rather than as a material.

Mixed pseudoparticle-continuum models such as the ones de-

veloped by Picioreanu and Kreft are probably the most similar

models to ours in the sense that they use some particle dynam-

ics coupled to a lattice Boltzmann description of fluids [202–205].

However, the time propagation in these models does not follow

physical equations of motion, but rather a push-and-shove algo-

rithm that has no concept of force and is thus not able to realise a
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two-way coupling between particles and fluid. These methods cer-

tainly are viable in many cases and have been applied to various

systems and geometries, but especially for soft biofilms, a more

physics-rooted approach like ours is needed to account for internal

biofilm dynamics and the back-coupling to fluid flow.

I believe that our model sits in a previously unoccupied gap

of complexity, detail level and computational efficiency. It will

therefore continue to be a valuable tool for physicists, engineers

and biologists to answer questions beyond the applications that are

presented in this thesis. In the last paragraphs I will outline some

interesting projects that I think are worthwhile pursuing using the

methods presented in the previous chapters.

Expanding on the research into the efficiency of exploration of

porous media, one could introduce nontrivial external flow condi-

tions. Then, the influence of different motility patterns on spread-

ing and accumulation behaviour along or across the flow direc-

tion in large porous systems could be investigated. Alternatively,

one could study chemotaxis in such confined systems, coming even

closer to (medical) applications of microscopic agents that perform

tasks at predefined locations.

The biofilm model could be extended to account explicitly for

the nutrients that are transported by flow and enable cell growth.

In the lattice Boltzmann framework, this can be achieved using the

lattice electrokinetics algorithm. This algorithm couples diffusion

and reaction of dissolved chemical species to the same fluid that

bacteria interact with in the current model.

In the study of phage infection, the role of the shape of the
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phages in the hydrodynamic interaction has so far been neglected.

Some phages are highly anisotropic with long filaments on the scale

of the characteristic scales of flow features that are generated by

swimming bacteria. Understanding how this impacts the infection

process could lead to deeper insights into the clinically relevant

infection process. A more ambitious project would be modeling

the flagellar bundle in greater detail by explicitly capturing heli-

cal flagella and their rotation. Then, the influence of near field

hydrodynamics inside the flagellar bundle could be studied.

All these research avenues are within reach by comparatively

simple extension of the bacterial model presented in this thesis and

are left as an exercise to the reader.
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Appendix A

Additional information for

results chapters

A.1 Additional information for Chapter 4: The

influence of motility on bacterial accumulation

in a microporous channel

This chapter contains in large parts text that is taken verbatim

from M. Lee, C. Lohrmann, K. Szuttor, H. Auradou, and C.

Holm, “The influence of motility on bacterial accumulation in a

microporous channel”, Soft Matter 17, 893 (2021), a publication

to which I contributed preparation of figures and co-writing of the

manuscript draft.
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A.1.1 Parameter choice

The parameters for the lattice Boltzmann simulations in simulation

units are:

LB grid spacing: agrid = 1,

LB time step: ∆t = 1,

LB fluid density: ρ = 1,

LB kinematic viscosity: µ/ρ = 0.1,

LB bare friction coefficient: γ̃ = 0.25.

The parameters for the molecular dynamics simulations in sim-

ulation units are:

MD time step: δt =
∆t

5
= 0.2,

Effective diameter of a bead: σLJ = 1,

WCA potential strength: ϵLJ = 1,

Thermal energy: kBT = 0

At a low Reynolds number, the flow velocity scales linearly

with the external force density. In the case where the system

is (L,H,W ) = (500 µm, 200 µm, 20 µm) with a periodic boundary

condition in the x direction, the average flow speed in simulation

units is given by

⟨|u|⟩ = 17.7 × f ext. (A.1)

On the other hand, when the system is constructed as (L,H,W ) =

(500 µm, 500 µm, 20 µm) with a periodic boundary condition in the
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x and y directions, the average flow speed scales as

⟨|u|⟩ = 40.1 × f ext. (A.2)

The swimmer speed is determined by the dipole force strength

vswim = γ̃Fswim, (A.3)

where
vswim = 6.67 × 10−5

Fswim = 7.52 × 10−5

γ̃ = 0.89.

(A.4)

in simulation units.

The parameters listed in simulation units can be related to

those of the experiment done by Miño et al. [187] by specifying

conversion factors for the length Cs, time Ct, and mass Cm.

Starting with the length conversion factor, we match the radius

of the obstacle

Radius: R = 32agrid = 80 µm,

which yields the length conversion factor:

Cx = 2.5 µm.

The mass conversion factor can be found by matching the LB fluid

density with the density of water:

10−15 kg/µm3 = 1Cρ = 1
Cm

C3
x

→ Cm = 1.56 × 10−14 kg.
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The last conversion factor, the time, can be found by comparing

the time scales of the simulation and the experiment. We relate

the swimmer’s swimming velocity. E. coli bacteria swim at around

24 µm/s. In our simulations, our swimmers swim at vswim = 6.67×
10−5Cm

Cτ
, thus the time conversion factor is

24 µm/s = 6.67 × 10−5Cm

Cτ

→ Cτ = 6.94 × 10−6 s.

Note that this time conversion factor is 10 times larger than the

value that one would have obtained via the viscosity of water. This

is because we scale up the velocities of the experiment by a factor

of 10. It is possible as long as the system is at sufficiently low

Reynolds numbers (Re). Our simulation and the experiment show

Re ∼ 10−2 and Re ∼ 10−3, respectively.

These three conversion factors uniquely map any number that

carry a dimensionality in our simulation to its physical counter-

part.

A.2 Additional information for Chapter 5: A novel

model for biofilm formation in porous media

flow

This chapter contains in large parts text that is taken verbatim

from C. Lohrmann and C. Holm, “A novel model for biofilm

initiation in porous media flow”, Soft Matter 19, 6920 (2023), a
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publication to which I contributed the modelling, simulations, data

analysis and writing of the manuscript draft.

A.2.1 Surface attachment in flow with increased attachment

time

Complementary to Fig. 5.3 of the main text, Fig. A.1 shows

the histogram of attachment angles on a cylindrical obstacle for

motile bacteria, but with an increased average time-to-attachment

⟨tattach⟩ = 10 s. This time is much larger than the time

2Rcyl/vswim = 1.6 s it takes a bacterium to travel the diameter of a

cylinder. Many encounters are therfore needed until a bacterium

attaches to a surface. This constitutes the opposite limit compared

to the instantaneous attachment discussed in the main text. Yet,

the qualitative features of the histogram are the same, with a large

probability of downstream attachment (Θ < π/2) and a peak at

Θ = 0. This shows that the exact value of ⟨tattach⟩ does not in-

fluence the qualitative phenomenon of preferential attachment on

the downstream end of obstacles.
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Figure A.1. Normalized histogram of the angular position of attach-
ment for ⟨tattach⟩ = 10 s. Reproduced from Ref. [3] with permission from
the Royal Society of Chemistry.

A.2.2 Parameters for simulations

In the following sections we list the parameters needed to reproduce

all simulations we performed. The section headings correspond to

the respective sections in the main text. The symbols used here

are introduced in the main text.

A.2.2.1 Qualitative biofilm morphologies

Table A.1 lists the parameters that are common to all simulations

that show the qualitative biofilm morphologies. Table A.2 lists the

parameters that differ between the four simulations. γ̇wall denotes

the shear rate at the planar walls, the force applied to the fluid to

achieve this shear rate is calculated from the Poiseuille flow profile

as

f ext =
2γ̇wallµ

h
ex. (A.5)
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The simulations are meant as a showcase of model capabilities

and not to model a specific system. We use units of clength = 1 µm,

ctime = 1 s, cdensity = ρwater = 1000 kg/m3.

Table A.1. Common parameters for qualitative biofilm morphology
simulations.

Symbol δt ∆t ∆t agrid ρ µ
Value 0.05 3.45 0.2 1 1 0.1

Symbol h γ̃ rgrowth rbody lbody, max

Value 20 1.5 0.002 0.5 3

Symbol tattach rattach rbond rdetach Nanchor

Value 0.01 0.55 0.55 0.65 2

Table A.2. Parameters for the individual biofilm morphology simula-
tions.

ϵLJ kharm γ̇wall

Sphere 0.05 15 0
Flat 0.00005 15 0.05
Rolling 0.005 0.00001 0.05
Intermediate 0.02 15 0.05

A.2.2.2 Determination of model parameters

We choose units of cenergy = ϵLJ, clength = 1 µm, ctime = 1 s. Dy-

namic parameters (such as the friction coefficient γ̃) have no influ-

ence on the determination of all static properties like the biofilm

tensile strength. They only affect the speed of convergence. Since

we report tensile strength as a dimensionless quantity by dividing

out the energy scale ϵLJ, we are free to set that value to 1.
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Table A.3. Parameters for determination of biofilm tensile strength

Symbol δt ∆t ϵLJ γ̃ rgrowth rbody

Value 0.035 2.765 1 0.4 0.0025 0.5

Symbol tattach rattach rbond kharm rdetach Nanchor

Value 0.01 0.75 0.6 15 0.8 2

Symbol lbody, max
cylinder
radius

initial
cylinder
height

Value 3 4.5 7.5

A.2.2.3 Simulation of biofilm formation in porous media

Table A.4. Simulation parameters for biofilm formation simulation

Symbol δt ∆t ∆t agrid ρ

Value 0.006 s 12 s 0.03 s 1 µm 1000 kgm−3

Symbol µ h τ2
⃓⃓
fext

⃓⃓
rbody

Value 1 × 10−3 Pa s 10 µm 1h 40Nm−3 0.5 µm
Symbol lbody, max tattach rattach kharm rdetach
Value 3 µm 0.001 s 0.75 µm 8 × 10−2 kg s−2 1 µm
Symbol Nanchor f

Value 2 2 × 10−6

A.3 Additional information for Chapter 6: Optimal

motility strategies for self-propelled agents to

explore porous media

Figure A.2 shows Dt
eff as a function of mean pore radius rp for

all investigated motility strategies, analogously to Fig. 6.4. Here

however, the radius Rsphere = 10 µm is twice as large as in the

geometry used in the Chapter 6. The qualitative behaviour and

order of the curves is the same as in Fig. 6.4, leading us to believe

that the results presented in Chapter 6 are independent of the
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specific size of the grains that make up the porous medium.
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Figure A.2. Effective diffusion coefficient as a function of mean pore
radius, for Rsphere = 10 µm.

A.4 Additional information for Chapter 7: Influence

of bacterial swimming and hydrodynamics on

infection by phages

This chapter contains in large parts text that is taken verbatim

from C. Lohrmann, C. Holm, and S. S. Datta, “Influence of bacte-

rial swimming and hydrodynamics on attachment of phages”, Soft

Matter 20, 4795 (2024), a publication to which I contributed the

modelling, simulations, data analysis and writing of the manuscript
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Figure A.3. Angle-averaged flow field around the swimmer as a function
of distance. The power law fit yields a far-field exponent α = −2.12(3).

draft.

A.4.1 Far field decay of the swimming flow field

In Fig. A.3 we show the decay of the flow field ⟨|u|⟩Θ (r) generated

by the swimming bacterium. Here, ⟨·⟩Θ (r) refers to an average

over all angles Θ at distance r from the center location between

cell body and flagellar bundle. Numerically, these values are ob-

tained from linear interpolation of the lattice Boltzmann grid. We

fit a power law function f(r) = a · rα to obtain the exponent α

governing the leading order behaviour far from the cell. Our simu-

lations yield α = −2.12(3), which is very close to the theoretically

expected exponent αdipole = −2, showing that our model captures

the swimming flow field well.
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Figure A.4. Bacterium distance travelled and swim speed fit. Repro-
duced from Ref. [5] with permission from the Royal Society of Chemistry.

A.4.2 Bacterium and phage model calibration

Figure A.4 shows that using our choice of bacterial effective friction

coefficient γ̃ and determining the corresponding effective mobility

leads to the desired swim speed of the bacterium. In Fig. A.5

we show that applying the grid correction to the phage friction

coefficient γP leads to the correct diffusion coefficient of the phages.

A.4.3 Determination of infection rate

Figure A.6 shows exemplary encounter data for a single simulation

and the fit that is used to determine the infection rate.

A.4.4 Exclusion of finite size and density effects

In Fig. A.7 we show that the infection rate is independent of the

box size and independent of the phage density.
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Figure A.5. Phage mean squared displacement and diffusion coefficient
fit. Reproduced from Ref. [5] with permission from the Royal Society of
Chemistry.
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Figure A.6. Number of infection vs time for one simulation with hydro-
dynamics, katt → ∞ and vswim = 100 µm s−1. Reproduced from Ref. [5]
with permission from the Royal Society of Chemistry.
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Figure A.7. Infection rate as a function of simulation box length for
different numbers of phages. Simulations performed with hydrodynamics
at vswim = 25 µm s−1 and katt → ∞. Reproduced from Ref. [5] with
permission from the Royal Society of Chemistry.

A.4.5 Finite attachment rate

Figure A.8 and Fig. A.9 show the results for infection rate and

location on the body and flagellum, respectively. The data for

katt → 0,∞ are the same as in the corresponding figures in the

main text. For intermediate attachment rates, the curves show

the same qualitative behaviour as in the two limiting cases.

A.4.6 Puller swimmers

Figure A.10 and Fig. A.11 show results for infection rate and posi-

tion for the body and flagellum, respectively. To obtain this data,

puller type swimmers with the flagellum in front of the cell body

were simulated.
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Figure A.8. Pusher bacterium: Infection rate and positions on the
cell body for finite attachment rate. Polynomial/exponential fits are
shown to guide the eye. Reproduced from Ref. [5] with permission from
the Royal Society of Chemistry.
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Figure A.9. Pusher bacterium: Infection rate and positions on the
flagellum for finite attachment rate. Polynomial/exponential fits are
shown to guide the eye. Reproduced from Ref. [5] with permission from
the Royal Society of Chemistry.

Phages in the swimming direction are taken up by the flagel-

lum before they can reach the front of the cell body. Therefore, in

simulations without hydrodynamics, the main mechanism of infec-

tion rate increase on the cell body – uptake of more phages in the

front – is strongly reduced. As a result, the infection rate increase
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is much smaller than for pushers and is also not captured by the

cross sectional model.

When hydrodynamic interactions are considered, there is al-

most no increase in infection rate on the cell body regardless of

katt. For the pusher, the infection rate increases with vswim be-

cause the region with Pe∗Phage < 1 shrinks around the forward end

of the cell body and phages have to cross less distance by diffusion.

For the puller, the shape of Pe∗Phage < 1 around the forward end

of the cell body is roughly independent of the swim speed as it

is mainly determined by the details of the gap between cell sur-

face and the propelling part of the flagellum. Therefore, the only

increase of infection rate comes from phages that arrive from the

sides, leading to the small influence of motility. Unsurprisingly,

the model of Berg et al. cannot be employed for puller bacteria

and flagellotropic phages, because now the flagellum is the main

collector of phages instead of the cell body.

The dependence of the infection location on the cell body is

qualitatively the same as in the pusher case, except that the curves

are shifted to negative values at vswim = 0 because of the sink of

phage concentration now in front of the cell body.

For the flagellum, the qualitative observations and explanations

for the behaviour of infection rate and location are the same as in

the pusher case.
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Figure A.10. Puller bacterium: Infection rate and positions on the
cell body for finite attachment rate. Polynomial/exponential fits are
shown to guide the eye. Reproduced from Ref. [5] with permission from
the Royal Society of Chemistry.
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Figure A.11. Puller bacterium: Infection rate and positions on the
flagellum for finite attachment rate. Polynomial/exponential fits are
shown to guide the eye. Reproduced from Ref. [5] with permission from
the Royal Society of Chemistry.

A.5 Additional information for Chapter 8:

Emergence of chemotactic strategies with

multi-agent reinforcement learning

This chapter contains in large parts text that is taken verba-

tim from S. J. Tovey, C. Lohrmann, and C. Holm, “Emer-
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gence of Chemotactic Strategies with Multi-Agent Reinforcement

Learning”, Machine Learning: Science and Technology, accepted

manuscript (2024), a publication to which I contributed the physics

aspects of the simulations, data interpretation and co-writing of the

manuscript draft.

A.5.1 Shape studies

As discussed in the manuscript, we performed the chemotaxis

study for spherical, prolate, and oblate particles. Here we display

and discuss the results not presented in the main manuscript.

A.5.1.1 Sphere

While most of the sphere results are presented in the main

manuscript, the raw policy plots are presented here. Note, bl in

the figure stands for body lengths. The sphere policy diagrams

outline the majority of the policies discussed in the main text. On

the x axis, the change in gradient is plotted and on the y, the col-

loid shape. The colour of the diagram represents the probability of

an action being taken and each column corresponds to a single ac-

tion. The rows are the different swim speeds from one to five body

lengths per second. The diagrams show the forbidden region in

the chemotaxis below approximately 0.5 µm. After this point, we

see the emergence of non-zero probabilities as the networks have

learned to perform chemotaxis.
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A.5.1.2 Oblate

The oblate particles demonstrated similar behaviour to the spher-

ical colloids, not showing any unique policy deviations.

A.5.1.3 Prolate

The prolate simulations were similar to both the spherical and

oblate studies.

A.6 Code and data availability

All code and data that support the results presented in Chapters 5

to 7 can be found in the data repositories [173–175] associated with

the respective publications.
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Figure A.12. Emergent policy of the spherical microswimmers for all
speeds and sizes. Reproduced from Ref. [6] with permission from IOP
Publishing..
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Figure A.13. The probability of emergent chemotaxis for the oblate
particles along with the theoretical boundaries from the Péclet numbers.
Reproduced from Ref. [6] with permission from IOP Publishing..
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Figure A.14. Reward phase diagram computer from the oblate simula-
tions. In this case, we see the best training emerges again in the smaller
but fast region of the diagram. While the width of the colloids is cor-
rected for, more complex geometric conditions may be impacting these
results. Reproduced from Ref. [6] with permission from IOP Publishing..
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Figure A.15. Policy efficacy for the oblate particles appears almost
identical to the spherical particles. Reproduced from Ref. [6] with per-
mission from IOP Publishing..
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Figure A.16. Emergent policy diagram for the oblate particles. Repro-
duced from Ref. [6] with permission from IOP Publishing..
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Figure A.17. The probability of emergent chemotaxis for the prolate
particles along with the theoretical boundaries from the Péclet numbers.
Reproduced from Ref. [6] with permission from IOP Publishing..
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Figure A.18. Reward phase diagram computer from the prolate simu-
lations. In this case, we see the best training emerges again in the smaller
but fast region of the diagram. While the width of the colloids is cor-
rected for, more complex geometric conditions may be impacting these
results. Reproduced from Ref. [6] with permission from IOP Publishing..
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Figure A.19. Policy efficacy for the prolate particles appears almost
identical to the spherical particles.
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Figure A.20. Emergent policy diagram for the prolate particles. Re-
produced from Ref. [6] with permission from IOP Publishing.
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B.2 Zusammenfassung in deutscher Sprache

In der Natur unterliegen Bakterien Wechselwirkungen mit kom-

plexen Umgebungen. Komplexität kann durch, zum Beispiel, ge-

ometrische Begrenzung, externen Fluss oder durch andere Partikel

entstehen, die in derselben Flüssigkeit suspendiert sind. Diese Dis-

sertation berichtet über die Entwicklung und Anwendung eines nu-

merischen Modells für schwimmende Bakterien in solch komplexen

Umgebungen.

Das bakterielle Modell basiert auf vergröberter Molekular-

dynamik, das die Trajektorien einzelner Teilchen auflöst, aber

physikalische Interaktionen auf der Mikrometerskala abstrahiert.

Bakterien werden als starre Stäbe dargestellt, die aus mehreren

Molekulardynamik-Teilchen bestehen. Ihre Dynamik wird durch

physikalische Bewegungsgleichungen beschrieben, einschließlich

Wechselwirkungen mit einer Flüssigkeit, mit geometrischen Be-

grenzungen oder mit anderen Partikeln. Bei Bedarf werden hy-

drodynamische Wechselwirkungen unter Verwendung des Gitter-

Boltzmann-Algorithmus einbezogen.

Biologische Details jenseits der physikalischen Parameter wie

Form und Masse werden in einer ebenso vergröberten Weise

beschrieben, wobei nur die relevanten Merkmale für jede Anwen-

dung modelliert werden. Die Fortbewegung wird durch eine fik-

tive Antriebskraft realisiert, die durch eine entgegengesetzte Kraft

auf die Flüssigkeit ausgeglichen wird, die den Antriebsmechanis-

mus imitiert. Unterschiedliche Bewegungsmuster wie Schwimmen-

und-Taumeln, Schwimmen-und-Umkehrungen oder Schwimmen-

Umkehren-Drehen werden durch Änderungen der Antriebskraft
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und Lenkdrehmomente modelliert. Das Anhaften an Oberflächen

über (nicht-)reversible Bindungen erfolgt durch lösbare Bindungen,

die aus der Erforschung von Polymeren bekannt sind. Zellwachs-

tum und -teilung werden durch Änderungen in der Konfiguration

der einzelnen Partikel modelliert, die den bakteriellen Stab bilden.

Das Modell für Bakterien wird verwendet, um mehrere rele-

vante Fragen im Bereich der Erforschung schwimmender Bakte-

rien zu beantworten: Die erste Frage betrifft die Akkumulation

von Bakterien und die Bildung von Biofilmen, also Kolonien wach-

sender Bakterien, in porösen Medien. ”Wie beeinflusst externer

Fluss die Initiierung und Bildung von Biofilmen?” Diese Disser-

tation trägt auf zwei Arten zur Beantwortung dieser Frage bei.

In der planktonischen Phase, das heißt wenn Bakterien durch die

Flüssigkeit schwimmen und nach Oberflächen suchen, an die sie

sich anheften können, führt das Zusammenspiel zwischen bak-

teriellem Schwimmen und externem Fluss zu dem überraschen-

den Ergebnis, dass Zellen am stromabwärts liegenden Ende fester

Körner anheften anstatt an den stromaufwärts liegenden Enden,

wo man naiv Ansammlung und Anhaftung erwarten würde. Dies

wird durch das Identifizieren von Bereichen erklärt, in denen Bak-

terien mit dem externen Fluss konkurrieren können, und Bere-

ichen, in denen der externe Fluss stärker ist als der bakterielle

Vortrieb, abhängig von der Schwimmrichtung. Bakterien, die stro-

maufwärts in Gebieten mit geringem externem Fluss schwimmen,

können keine Zonen mit starkem Fluss überqueren und landen da-

her hinter den Flussbarrieren, die die Regionen mit starkem Fluss

verursachen. In der Wachstumsphase des Biofilms, also wenn Bak-
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terien bereits an der Oberfläche gebunden sind und sich replizieren,

um eine Kolonie zu bilden, untersuchen wir das Zusammenspiel

zwischen der Steifheit des Biofilms und der Stärke des externen

Flusses. Wir stellen fest, dass weichere Biofilme aufgrund der

viskosen Belastungen, die der externe Fluss verursacht, eine kom-

plexere Wachstumsdynamik aufweisen und eine Verzögerung bei

der Permeabilitätsreduktion zeigen.

Die zweite Frage bleibt im Bereich poröser Medien, betrifft

jedoch eine derart starke geometrische Begrenzung, dass sie die

Größenordnung einzelner Zellen erreicht. ”Welche ist die op-

timale Bewegungsstrategie für ein Bakterium, um effizient eine

poröse Umgebung zu erkunden?” In der Natur nutzen Bak-

terien verschiedene Bewegungsmuster, das heißt zeitliche Ab-

folgen von Vorwärtsschwimmen und (aktiver) Rotation. Wir

untersuchen die Fähigkeit von vier Mustern, gerades Schwim-

men, Schwimmen-und-Taumeln, Schwimmen-und-Umkehrungen

oder Schwimmen-Umkehren-Drehen, ungeordnete poröse Medien

zu erkunden. Wir stellen fest, dass für große Poren gerades

Schwimmen und Schwimmen-und-Taumeln am effizientesten sind,

weil sie offene Bereiche effizient nutzen. In kleinen Poren wird das

Taumeln unterdrückt, was Umkehren zur einzigen praktikablen

Optione für das Entkommen aus kleinen Poren macht. Durch

Optimierung der Schwimmparameter für jede Porengröße kann

Schwimmen-und-Umkehrungen die anderen Muster übertreffen,

aber die Umgebung muss im Voraus bekannt sein, um die Opti-

mierung zu ermöglichen. Wir schlagen daher eine adaptive Bewe-

gungsstrategie vor, die erfordert, dass Bakterien feststellen können,
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ob sie feststecken, und dann eine Umkehr initiieren. Diese Strategie

erfordert kein vorheriges Wissen über die Umgebung und übertrifft

die Strategien mit festen Mustern in Bezug auf Erkundungsef-

fizienz.

Die dritte Frage geht noch weiter ins Detail und beschäftigt

sich mit den hydrodynamischen Wechselwirkungen im Maßstab

unterhalb der Zellgröße. ”Was ist der Einfluss des bakteriellen

Schwimmens auf den Infektionsprozess zwischen Phagen und Bak-

terien?” Phagen sind Viren, die Bakterien töten, aber physischen

Kontakt mit ihrer Beute benötigen, um die Infektion zu initiieren.

Das durch schwimmende Bakterien erzeugte Strömungsfeld hat

einen Einfluss auf die Annäherung der Phagen an die Zelle. Mit

zunehmender Schwimmgeschwindigkeit steigt die Infektionsrate,

jedoch sublinear. Wenn das Bakterium vorwärts bewegt, bewegt es

eine Menge Flüssigkeit mit sich, die den Zellkörper vor einfallenden

Phagen abschirmt. Der Effekt auf das Flagellum ist das Gegenteil.

Da es Flüssigkeit rückwärts pumpt, um das Bakterium vorwärts

zu bewegen, kommt es bei schneller Bewegung mit einem größeren

Volumen Flüssigkeit und damit einer größeren Anzahl von Phagen

in Kontakt. Die Studie zeigt den wichtigen Einfluss der hydro-

dynamischen Wechselwirkungen zwischen Phagen und Bakterien.

Wenn man das hydrodynamische Feld vernachlässigt hätte, hätte

man die Infektionsrate am Zellkörper stark überschätzt und die

Infektionsrate am Flagellum stark unterschätzt.

Als Ausblick auf weitere Anwendungsfelder befasst sich

die vierte Frage mit dem Verhalten von Bakterien in nicht-

homogenen Umgebungen. ”Was ist der Einfluss von Größe und
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Geschwindigkeit bakterieller Zellen auf die Fähigkeit, chemotak-

tische Bewegung auszuführen?” Chemotaxis ist die gerichtete Be-

wegung zur Quelle einer chemischen Substanz, basierend auf der

Wahrnehmung der Konzentration jener Substanz. Bakterien be-

sitzen die Fähigkeit, sich durch Anpassung der Dauer von gera-

dem Schwimmen und zufälliger Richtungsänderung im Mittel ent-

lang eines Gradienten zu bewegen. Wir verwenden eine Methode

des maschinellen Lernens, das bestärkende Lernen (engl. “rein-

forcement learning”), um zu untersuchen, ob simulierte Teilchen

ebenfalls solch eine Strategie entwickeln können. Wir stellen fest,

dass in einem sehr großen Parameterbereich eine Strategie gel-

ernt wird, die der natürlicher Organismen sehr ähnlich ist. Durch

Vergleich der Zeitskalen für aktive und Brown’sche Translation

und Rotation finden wir physikalische Grenzen, jenseits derer ein

Lernen dieser Strategie unmöglich wird. Wir finden jedoch auch

neuartige Strategien, die sich die Brown’sche Bewegung zu Nutze

machen, anstatt gegen sie anzukämpfen. Diese Strategien könnten

bei der Entwicklung menschgemachter Mikroroboter als Inspira-

tion dienen.

Insgesamt haben wir die Anwendbarkeit unseres bakteriellen

Modells in verschiedenen komplexen Umgebungen demonstriert.

Ob es sich um geometrische Begrenzung, externen Fluss oder hy-

drodynamische Wechselwirkungen handelt, können wir die rel-

evante Physik auf Zellskala mithilfe der in dieser Dissertation

vorgestellten Werkzeuge beschreiben. Natürlich sind nicht alle

Fragen bezüglich schwimmender Bakterien in komplexen Umge-

bungen beantwortet. Bei der Erweiterung der Forschung zur Ef-
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fizienz der Erkundung poröser Medien könnte man nicht-triviale

externe Flussbedingungen einführen. Dann könnte der Einfluss

verschiedener Bewegungsmuster auf das Ausbreitungsverhalten

entlang oder quer zur Flussrichtung in großen porösen Syste-

men untersucht werden. Das Biofilmmodell könnte um die ex-

plizite Berücksichtigung der Nährstoffe erweitert werden, die durch

den Fluss transportiert werden und Zellwachstum ermöglichen.

Im Gitter-Boltzmann-Rahmen kann dies durch den Einsatz des

Gitter-Elektrokinetik-Algorithmus erreicht werden, der Diffusion

und Reaktion an dieselbe Flüssigkeit koppelt, mit der Bakterien

im aktuellen Modell interagieren. Bei der Untersuchung der Pha-

geninfektion wurde die Rolle der Form der Phagen in der hydrody-

namischen Interaktion bisher vernachlässigt. Einige Phagen sind

stark anisotrop mit langen Filamenten auf der Skala der charakter-

istischen Strömungsmerkmale, die durch schwimmende Bakterien

erzeugt werden. Das Verständnis, wie dies den Infektionsprozess

beeinflusst, könnte zu tieferen Einblicken in den klinisch relevanten

Infektionsprozess führen.

All diese Forschungsrichtungen sind durch eine vergleichsweise

einfache Erweiterung des hier vorgestellten bakteriellen Modells

erreichbar und werden dem Leser als Übung überlassen.
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entifiques de l’École normale supérieure, Vol. 17 (1900),

pages 21–86.

[123] J. Choi, M. Kwak, C. W. Tee, and Y. Wang, “A Black–

Scholes user’s guide to the Bachelier model”, Journal of Fu-

tures Markets 42, 959 (2022).

271



C | bibliography

[124] D. S. Lemons and A. Gythiel, “Paul Langevin’s 1908 pa-

per “on the theory of brownian motion”[“sur la théorie
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sion diélectrique pour des molécules ellipsoidales”, J. phys.

radium 5, 497 (1934).
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B. W. Kwan, J. A. Belmont, A. Rangel-Vega, T. Maeda,

and T. K. Wood, “Quorum sensing enhancement of the

stress response promotes resistance to quorum quenching

and prevents social cheating”, en, ISME J 9, 115 (2014).

[295] A. Kitao and H. Hata, “Molecular dynamics simulation of

bacterial flagella”, Biophysical reviews 10, 617 (2018).

[296] W. Lee, Y. Kim, C. S. Peskin, and S. Lim, “A novel com-

putational approach to simulate microswimmers propelled

by bacterial flagella”, Physics of Fluids 33 (2021).

[297] J. Hu, M. Yang, G. Gompper, and R. G. Winkler, “Mod-

elling the mechanics and hydrodynamics of swimming E.

coli”, Soft matter 11, 7867 (2015).

[298] N. Watari and R. G. Larson, “The hydrodynamics of a

run-and-tumble bacterium propelled by polymorphic heli-

cal flagella”, Biophysical journal 98, 12 (2010).

296

https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1093/femsre/fuv038

	Abstract
	Publications
	Introduction
	Why bacteria?
	From a physics perspective
	From an engineering perspective
	From a medical perspective

	Some biology
	Bacterial motility
	Chemotaxis
	Biofilms
	Bacteriophages


	Theory
	Stochastic dynamics
	Introduction
	Langevin dynamics
	Rotational degrees of freedom
	Active Brownian motion
	Numerical methods

	Hydrodynamics
	The Navier-Stokes equation
	The Stokes equation
	Multipole expansion
	Numerical methods: Lattice Boltzmann

	Porous media

	Methods: Modeling of bacteria
	Modeling the cell body
	Rigid body dynamics: Raspberries
	Interaction potentials

	Bacterial swimming
	``Dry'' swimming
	``Wet'' swimming
	Run-and-tumble dynamics
	Application in simulations

	Implementation

	The influence of motility on bacterial accumulation in a microporous channel
	Introduction
	Methods
	Geometry and flow
	Swimmer model

	Results
	Accumulation behind the obstacle
	Role of lateral walls on accumulation
	Influence of swimming characteristics
	Limits of the coarse-grained bacterial model

	Conclusions

	A novel model for biofilm formation in porous media flow
	Introduction
	Methods
	Cell model
	Surface attachment
	Cell growth and division
	Cell-cell interaction

	Results
	Surface attachment in flow
	Qualitative biofilm morphologies
	Determination of model parameters
	Simulation of biofilm formation in porous media

	Conclusions

	Optimal motility strategies for self-propelled agents to explore porous media
	Introduction
	Methods
	Agent model
	Motility patterns
	Porous media model
	Parameter choice

	Results
	Effective diffusivity
	Run time variation

	Conclusions

	Influence of bacterial swimming and hydrodynamics on infection by phages
	Introduction
	Methods
	Model for phages and bacteria
	Model of phage infection
	Continuum modelling
	Choice of numerical parameters

	Results
	Flow field
	Phage infection of the cell body
	Phage infection of the flagellum
	Total infection rate

	Conclusions

	Emergence of chemotactic strategies with multi-agent reinforcement learning
	Introduction
	Theory
	Actor-critic reinforcement learning
	Multi-agent reinforcement learning

	Methods
	RL implementation
	Agent model
	Reinforcement learning parameters
	Actions
	Computational methods

	Results
	Probability of emergent chemotaxis
	Learning efficiency
	Policy efficiency
	Emergent policies

	Conclusion

	Conclusion and outlook
	Additional information for results chapters
	Additional information for chap:accumulation: The influence of motility on bacterial accumulation in a microporous channel
	Parameter choice

	Additional information for chap:biofilms: A novel model for biofilm formation in porous media flow
	Surface attachment in flow with increased attachment time
	Parameters for simulations

	Additional information for chap:motilitystrategies: Optimal motility strategies for self-propelled agents to explore porous media
	Additional information for chap:phages: Influence of bacterial swimming and hydrodynamics on infection by phages
	Far field decay of the swimming flow field
	Bacterium and phage model calibration
	Determination of infection rate
	Exclusion of finite size and density effects
	Finite attachment rate
	Puller swimmers

	Additional information for chap:chemotaxis: Emergence of chemotactic strategies with multi-agent reinforcement learning
	Shape studies

	Code and data availability

	Miscellaneous
	Scientific curriculum vitae
	Zusammenfassung in deutscher Sprache
	Erklärung der Selbständigkeit
	Erklärung zur Übereinstimmung der digitalen Version mit der vorgelegten Printversion der Dissertation

	Acknowledgements
	Bibliography

