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The often reported reproducibility crisis in the biomedical
sciences also applies to enzymology and biocatalysis, and
mainly results from incomplete reporting of reaction conditions.
In this Concept article, an infrastructure based on EnzymeML is
sketched, which enables reporting, exchange, and storage of
enzymatic data according to the FAIR data principles. Enzy-
meML is a novel data exchange format for enzymology and
biocatalysis, which facilitates the application of the STRENDA
Guidelines and thus makes data on enzyme-catalyzed reactions
findable, accessible, interoperable, and reusable. EnzymeML
enables the comprehensive documentation of metadata, thus

fostering reproducibility and replicability in enzymology and
biocatalysis. An EnzymeML Application Programming Interface
integrates electronic lab notebooks with modelling platforms
and databases on enzymatic reactions, and thus enables the
seamless flow of enzymatic data from measurement to
modelling to publication, without the need for manual
intervention such as reformatting or editing. EnzymeML serves
as a valuable tool for the design of biocatalytic experiments
and contributes to the vision of a unified research data
infrastructure for catalysis research.

1. Challenges in biocatalysis

Systems biocatalysis and process intensification are considered
as cornerstones of a sustainable bioeconomy.[1] Bioinformatic
tools for rapid identification of the required enzyme functions
and bioprocess design tools have successfully contributed to
rapid prototyping of the biocatalytic reactions. However,
biocatalysis is not yet widely applied in the fine chemical
industry,[2] and the success of biocatalysis is still limited by the
performance of the biocatalyst and the cost and timeline of
development.[3] Machine learning is a promising approach to
handle the complexity of biosystems design[4] and is based on
big data from automated, high throughput, and reproducible
experimentation. However, laboratory automation requires
open standards and protocols,[5] and standardization is key to
promote interoperability, efficiency, and safety in bioprocess
development.[6] However, our current way to do biocatalytic
research and development is still limited by low reproducibility
of experimental results, limited scalability of experimentation,
and limited access to data. This Concept article is a commentary
on challenges in data management and a proposal of a
roadmap towards a unified research data infrastructure for
catalysis research.

The often reported reproducibility crisis in science[7] also
applies to biocatalytic research. It is mainly due to incomplete
reporting of reaction conditions,[8] which also hinders re-analysis
of original data. Measured data and metadata such as reaction
conditions is generally not accessible. In principle, all relevant
information is stored locally as requested by all funding
agencies, but in reality, original data and metadata is hardly
findable by the corresponding author and certainly not
accessible by the scientific community, especially if the PhD
student who generated the data had already left the research
group. Even if accessible, data and metadata cannot be easily
exchanged between research groups because of missing
interoperability, which needs additional efforts for reformatting
and results in loss of information. Limited reproducibility
severely hampers scientific development and causes additional
costs and delays in academic research and industrial develop-
ment.

A second limitation is the lack of scalability of biocatalytic
research, due to our current practices of data management.
Robotics and microfluidic systems enable high throughput
experimentation and transform biocatalysis into a data-inten-
sive science. Concepts such as retrobiosynthesis[9] depend on
the access to massive data from systematic experimentation
and from public databases. Bioprocess design is based on
kinetic modelling and on novel data-driven modelling such as
machine learning, which require traceable data and reliable
kinetic parameters from many thousands of previous experi-
ments. Without a fundamental change of data management
with a high level of standardization, an efficient design of
scalable bioprocesses by concepts such as reconfigurable
reactors[10] or biofoundries[6] is not feasible.

The major obstacle to transform biocatalysis into a data
science is the inaccessibility of published and unpublished data.

[a] Prof. J. Pleiss
Institute of Biochemistry and Technical Biochemistry,
University of Stuttgart
Allmandring 31, 70569 Stuttgart (Germany)
E-mail: Juergen.Pleiss@itb.uni-stuttgart.de

© 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH. This is
an open access article under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

ChemCatChem
Concepts
doi.org/10.1002/cctc.202100822

3909ChemCatChem 2021, 13, 3909–3913 © 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH

Wiley VCH Montag, 13.09.2021

2118 / 213286 [S. 3909/3913] 1

http://orcid.org/0000-0003-1045-8202


The bulk of data is hidden in scientific papers as text, figures,
and tables; thus, data extraction is time consuming for a human
and impossible for a machine. For enzyme-catalyzed reactions,
a number of specialized public databases such as BRENDA,[11]

SABIO-RK,[12] Enzyme Portal,[13] and STRENDA DB[14] provide
structured data, but all databases use different data models and
data formats, and none of them stores experimental data such
as the time course of substrates or products, thus making re-
analysis impossible. Storing experimental data on a local file
server or on repositories such as Zenodo is requested by
funding agencies. However, the use of ad hoc data models and
formats for storing data and metadata prevents findability and
interoperability. Local repositories have limited accessibility,
and there is a high risk of data loss. But even publicly available
repositories might shut down due to lack of funding, as it
happened to the NCBI Peptidome and ProteomeCommons
Tranche repositories in 2013, when rescuing data was a
challenge.[15] Therefore, establishing open science policies,[16]

FAIR (findable, accessible, interoperable, reusable) data
principles,[17] and a resilient storage of scientific data has
become a major concern of funding agencies.

2. Solution for enzyme catalysis

The efficient design of improved or novel enzymes and the
comprehensive characterization of enzyme-catalyzed reactions
is one of the bottlenecks in the development of a bioprocess.[2]

For enzyme reactions, the three challenges (reproducibility,
scalability, accessibility) are addressed by a novel infrastructure
based on EnzymeML, a standardized exchange format for
enzymatic data, which enables F.A.I.R data management in
enzyme catalysis. The concept is not limited to enzyme catalysis
but might be transferred to other research fields in catalytic
sciences and beyond.

2.1. Building block 1: Standardized enzymatic data

Many ’omics communities have proposed or instituted best
practices and reporting standards in their specific disciplines.[18]

Central to these efforts was the introduction of standardized
exchange formats,[19,20] allowing for the representation of
experimental data according to the FAIR data principles.[17]

Previously, a group of enzymologists, enzyme engineers, and
bioinformaticians developed EnzymeML to support data acquis-
ition, data analysis, and sharing of data by providing a stand-
ardized exchange format for enzymatic data. EnzymeML follows
the Standards for Reporting Enzymology Data (STRENDA)[21]

Guidelines, which define the minimum information to describe
enzyme activity data – a description of the enzyme, of the
reaction conditions, and the results. The STRENDA Guidelines
are recommended by more than 50 international biochemistry
journals. EnzymeML is written in eXtensible Markup Language
(XML). It builds on the well-established Systems Biology Markup
Language (SBML)[22] and includes information about the
enzyme, the substrate(s) and product(s), the reaction condi-

tions, the selected kinetic model, and estimated kinetic
parameters. In addition, the measured time course of substrate
or product concentrations are stored in a comma-separated
values (CSV) formatted file. From the reaction conditions and
the time course of the substrates and products, biochemical
properties such as catalytic activity, yield, stereoselectivity,
regioselectivity, and thermostability can be derived. The XML-
and the CSV-file are combined into a single EnzymeML docu-
ment using the widely-used OMEX format.[23] Documentation
and software of the EnzymeML project are freely available for
non-commercial and commercial users at https://EnzymeML.org.

2.2. Building block 2: Exchange of enzymatic data

The typical user is not expected to read or write EnzymeML
documents directly, but to use software to generate EnzymeML
documents, which are then used as a standardized exchange
format to transfer data between applications (Figure 1). There-
fore, an Application Programming Interface (API) was developed
to read, write, and edit EnzymeML documents, using the
popular programming language Python. Because the API
enables batch processing, management of biocatalytic data is
scalable, and high throughput strategies of experimentation
and data analysis become feasible. By data export in formats
such as Pandas DataFrame, large datasets can be analyzed by
data-driven modelling methods such as machine learning.
Upon reading, writing, and editing of EnzymeML documents,
the API controls data completeness and consistency, such as
checking that scalar properties such as pH are within a given
range. Additional validation tools control compatibility with
SBML or with minimum requirements of applications such as
STRENDA DB, SABIO-RK, or COPASI. As an alternative to a local
installation of the API with each application, it is also accessible
as a RESTful Web service, which makes use of standards such as
HTTP, JSON, and XML. This Web service enables applications
such as electronic laboratory notebooks (ELN), modelling plat-
forms, or specialized database to read or write EnzymeML
documents.

These two building blocks respond to the first challenge.
They enable interoperability and reproducibility of data and
metadata, and guarantee FAIR principles for data and metadata.

2.3. Building block 3: Automated data collection

In most enzyme catalysis projects, experimental procedures and
the measured data are still recorded in paper notebooks and
electronic spreadsheets, respectively. Since 30 years, the devel-
opment of ELNs enables researchers to efficiently enter, store,
and access experimental procedures and results with a long
shelf life.[24] Several commercial ELNs have become available,
but they are still not widely adopted in academia. Recently,
open source solutions became available such as openBIS,[25]

which addresses academic life science groups, Chemotion[26] as
a repository for chemistry research data, and BioCatHub as a
specialized platform for the documentation of enzyme-cata-

ChemCatChem
Concepts
doi.org/10.1002/cctc.202100822

3910ChemCatChem 2021, 13, 3909–3913 www.chemcatchem.org © 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH

Wiley VCH Montag, 13.09.2021

2118 / 213286 [S. 3910/3913] 1

https://EnzymeML.org
https://EnzymeML.org


lyzed reactions.[27] Because an ELN stores all data at a single
place and makes it easily accessible, it speeds up work,
facilitates data retrieval, and enables automation of data
collection from high throughput experimentation. BioCatHub is
already using the API to read and write EnzymeML documents,
and the implementation with Chemotion is an ongoing project.
By enabling ELNs to read and write EnzymeML documents, the
experimental data collected by an ELN can be exchanged with
other ELNs, transferred to applications such as modelling tools,
and uploaded to specialized databases such as SABIO-RK and
STRENDA DB (Figure 1).

This building block responds to the second challenge. It
enables upscaling, repeatability, and re-analysis, and guarantees
FAIR principles for processes.

2.4. Building block 4: Data repository

Resilience and accessibility of scientific data is a major concern
of the scientific community, funding agencies, and the public. A
decentralized, distributed data repository reduces bandwidth
requirements for data storage and retrieval and contributes to
resilience, as compared to a centralized data repository. The
Dataverse platform provides a generic open-source data
repository system with a configurable metadata schema, with
more than 60 installations worldwide (https://dataverse.org/).[28]

Upon conversion of the EnzymeML data model into a Dataverse
metadata schema, a local implementation of a standardized
repository on experimental and modelling results of enzyme-
catalyzed reactions is feasible. Individual datasets can be
private, shared with project partners, or public. Because the
EnzymeML metadata schema is identical on all participating
Dataverse installations, all EnzymeML Dataverses form a decen-
tralized, distributed repository of enzymatic data, which uses
the same data model and is searchable by the Dataverse API
(https://guides.dataverse.org). The EnzymeML Dataverse system
is robust, redundant, and resilient, because transferring and

copying of EnzymeML datasets between Dataverse installations
is straightforward, and data can be easily rescued in case of
shutdown of individual repositories. Each EnzymeML Dataverse
entry forms a micropublication with a unique digital object
identifier, thus specialized databases for enzymatic data such as
STRENDA DB, SABIO-RK, or Enzyme Portal can use EnzymeML
Dataverse entries as a literature reference. Because storing
enzymatic data as an EnzymeML Dataverse entry is an
alternative to creating an EnzymeML file, writing, reading, and
editing of an EnzymeML Dataverse entry is an additional
functionality of the RESTful EnzymeML API.

This building block responds to the third challenge. It
guarantees accessibility, sustainability, resilience, and long-term
data security of experimental data.

3. Application

Applications of the EnzymeML-based infrastructure of stand-
ardized data, scalable documentation, and sustainable storage
are demonstrated for three selected scenarios: the comprehen-
sive description of enzymatic reactions, the analysis of large-
scale experiments, and the data exchange between databases.

3.1. Scenario 1: Characterization of an enzymatic reaction

The detailed characterization and kinetic modelling of enzyme-
catalyzed reactions is the basis of a successful enzyme engineer-
ing and bioprocess design to overcome the limitation of natural
enzymes and to tune catalytic activity and selectivity toward
the non-natural substrate and improve stability under non-
natural conditions.[2] A comprehensive documentation of the
measured time courses of the substrate or product concen-
trations (usually as replicates) and of the reaction conditions
according to the STRENDA Guidelines (identification of sub-
strate, product, and enzyme; concentrations of enzyme, sub-

Figure 1. Seamless data flow between tools for data acquisition, data modelling, and data integration as described in Scenario 1. The Application
Programming Interface (API) provides the functionality to read, write, and edit EnzymeML documents (as local files or as Dataverse entries).
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strate, product, inhibitors, or activators; temperature, solvent,
pH) enables advanced modelling approaches and deepens our
understanding of the bottlenecks of an enzyme-catalyzed
reaction. Reading and writing of an EnzymeML document by a
modelling tool such as COPASI[29] is enabled by the API
(Figure 1). The modelling tool reads in an EnzymeML document
with experimental data and metadata. After model selection
and parameter estimation, the kinetic law, the estimated kinetic
parameters, parameter uncertainty, and estimators of model
quality are added to the EnzymeML document. Thus, an
EnzymeML document is a human- and machine-readable micro-
publication, which contains the complete information about
the experiment and the kinetic modelling, which is either stored
locally as a file or as an EnzymeML Dataverse entry with a
unique DOI. This micropublication serves as machine-readable
literature source for a new entry in a specialized database such
as STRENDA DB or SABIO-RK. Instead of a manual upload of
enzyme activity data, a new entry is created upon upload of an
EnzymeML document and the automated extraction of the
relevant information.

The analysis of time course data differentiates between
kinetic models and avoids misinterpretation of kinetic
parameters,[30] and using thermodynamic activity rather than
concentration separates enzyme-substrate from enzyme-solvent
interactions.[31,32] However, not only the experimental reaction
conditions mediate the kinetic parameters, but also the
modelling method[33] and even the computer program used for
modelling.[34] Therefore, in order to enable reproducibility of the
obtained kinetic parameters, the EnzymeML format will be
extended by metadata describing the process of kinetic
modelling.

The discussion about an unequivocal definition of an
“enzyme unit” is a showcase of the need for stringent stand-
ardization. Although the units of enzyme activity have been
defined by the International Union of Biochemistry,[35] there is
still ambiguity in published work. The value of “1 U” depends
not only on the substrate and the direction of reaction,[36] but
also on the assay conditions and the kinetic modelling.[37]

Therefore, a comprehensive, standardized reporting of the
experiment by EnzymeML is pivotal to an unambiguous
definition of the enzyme unit. Because EnzymeML provides
tools for comprehensive and interoperable documentation of
experiments and modelling, it supports the implementation
and communication of best practices in enzymology and
biocatalysis.

3.2. Scenario 2: Screening experiment

A systematic and extensive investigation of enzymes is needed
to understand their biochemical properties and to guide protein
engineering. Microfluidic systems developed in the Hollfelder
group enabled the analysis of hundreds of combinations of
enzymes, substrates, and inhibitors in less than 5 min, resulting
in conclusive Michaelis–Menten kinetics and inhibition curves.[38]

Using their HT-MEK microfluidic platform, the Fordyce group
analyzed thousands of kinetic experiments for thousands of

enzyme variants and modelled the kinetic and thermodynamic
constants.[39] Thus, they were able to remove effects from
misfolding and to quantify mutational effects on intrinsic
catalytic activity and other kinetic parameters. Continuous
measurement by a flow reactor enabled automatic collecting of
large amounts of kinetic data by the Woodley group.[40] For
these experiments, the complete original data and the reaction
conditions are not available in a standardized, machine-read-
able format. However, large data obtained by identical exper-
imental procedures under controlled reaction conditions would
be a valuable training set for machine learning approaches or
for mechanistic modelling. Storing the complete datasets as a
standardized EnzymeML entry on Dataverse would enable the
re-analysis by novel data-driven modelling methods.

3.3. Scenario 3: Exchange of data between specialized
databases

Currently, the content of specialized databases such as
STRENDA DB, SABIO-RK, or Enzyme Portal on enzymatic data is
still limited, because information is retrieved semi-automatically
from scientific literature, followed by a manual and therefore
labor-intensive and error-prone curation step. If each publica-
tion would provide the relevant experimental data and
metadata in a standardized format (as a supplementary
EnzymeML document or as an EnzymeML Dataverse entry with
a DOI), the upload of new datasets could be fully automated,
and a complete coverage of scientific literature is guaranteed.
As is, the contents of specialized databases can hardly be
compared, because they use different data models and output
formats. EnzymeML might serve as a universal, standardized
exchange format for specialized databases to exchange enzy-
matic data.

4. Conclusion

Combining EnzymeML as a standardized data exchange format,
an EnzymeML API for interoperability, an EnzymeML-compatible
ELN for scalable data acquisition, and a distributed, resilient,
and accessible EnzymeML Dataverse repository enables the
seamless flow of enzymatic data from measurement to
modelling to publication, without the need for manual
intervention such as reformatting or editing. It is scalable from
one to thousands of experiments and guarantees a complete
description of metadata. Data and metadata of the experiment
and the modelling process are combined into a single file, or in
an EnzymeML Dataverse entry that is addressable by a DOI and
serves as a machine-readable micropublication. The ensemble
of EnzymeML documents guarantees reproducibility of enzy-
matic experiments and enables re-analysis of enzymatic data.
Though the current version of EnzymeML is still limited to free
enzymes in a batch experiment, it is currently extended to
comprise immobilized enzymes, whole cell biocatalysts, en-
zyme-catalyzed cascade reactions, and flow reactions. It serves
as a valuable tool for the design of biocatalytic experiments
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and contributes to the vision of a unified research data
infrastructure for catalysis research.[41]
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